Science.gov

Sample records for 2h nmr experiments

  1. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  2. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  3. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  4. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at Geochemical Pressures.

    PubMed

    Ochoa, Gerardo; Pilgrim, Corey D; Martin, Michele N; Colla, Christopher A; Klavins, Peter; Augustine, Matthew P; Casey, William H

    2015-12-14

    Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust. PMID:26404025

  5. Revisiting NMR composite pulses for broadband 2H excitation

    PubMed Central

    Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen

    2014-01-01

    Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576

  6. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids. PMID:22462878

  7. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  8. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  9. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  10. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  11. Interaction of antiaggregant molecule ajoene with membranes. An ESR and 1H, 2H, 31P-NMR study.

    PubMed

    Debouzy, J C; Neumann, J M; Hervé, M; Daveloose, D; Viret, J; Apitz-Castro, R

    1989-01-01

    The structure of ajoene, a molecule extracted from garlic, has been studied by 1H-NMR and its interaction with model membranes by 1H-, 2H-, 31-P-NMR and ESR experiments. This study clearly shows that the ajoene molecule is located deep in the layer and is close to the interlayer medium. Moreover while NMR experiments show that the membrane structure is only slightly affected by the presence of ajoene, ESR experiments reveal significant modifications in phospholipid dynamics. This interaction, observed before with the phenothiazine derivative, promazine, results in an increase of the membrane fluidity in its hydrophobic part and could be related to clinical properties of ajoene.

  12. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  13. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  14. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-01

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  15. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  16. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  17. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  18. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  19. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR.

    PubMed

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining

    2016-06-18

    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions. PMID:27181834

  20. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils.

  1. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    PubMed

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  2. An NMR Kinetics Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Don; And Others

    1982-01-01

    Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

  3. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  4. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  5. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  6. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    SciTech Connect

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-09-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H/sub 2/O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in /sup 2/H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D/sub 2/O was used instead of H/sub 2/O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles.

  7. Deuterium NMR of Val1. (2-2H)Ala3. gramicidin A in oriented DMPC bilayers

    SciTech Connect

    Hing, A.W.; Adams, S.P.; Silbert, D.F.; Norberg, R.E. )

    1990-05-01

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study.

  8. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.

    PubMed

    Mack, J W; Usha, M G; Long, J; Griffin, R G; Wittebort, R J

    2000-01-01

    We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.

  9. /sup 2/H-NMR studies of hypocotyl cell walls of germinating beams supplied with perdeuterated myo-inositol

    SciTech Connect

    Sasaki, K.; Wallace, J.C.; MacKay, A.L.; Balza, F.; Taylor, I.E.P.

    1987-04-01

    When myo-(2-/sup 3/H) inositol (MI) was supplied to bean seeds by imbibition, only uronic acid, arabinose and xylose residues of cell wall polysaccharides were labeled. To study the structural mobility of the uronic acid- and/or pentose-rich polysaccharides in cell wall using /sup 2/H-NMR, the authors supplied perdeuterated MI with (2-/sup 3/H) MI to germinating bean seeds. Perdeuterated MI was prepared by the /sup 1/H-/sup 2/H exchange reaction of MI in deuterium oxide with Raney nickel. During the exchange reaction, extensive epimerization occurred and at least 6 inositol epimers in addition to MI were identified in the reaction mixture of GC/MS. The perdeuterated MI was completely resolved from other inositol epimers and purified by anion-exchange chromatography using Dowex 1 (borate form) and by crystallization. The /sup 2/H-NMR analysis resolved the /sup 2/H-labeled hypocotyl cell walls into two components (rigid and mobile components). They also report the distribution of /sup 2/H and /sup 3/H from perdeuterated and (2-/sup 3/H) MI in the cell wall sugar residues.

  10. Detection of Anisotropy in Cartilage Using 2H Double-Quantum-Filtered NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharf, Y.; Eliav, U.; Shinar, H.; Navon, G.

    Double-quantum-filtered (DQF) NMR spectroscopy of I = 1 spin systems is a diagnostic tool for the detection of anisotropy in macroscopically disordered systems. For deuterium, this method reveals the presence of a residual quadrupolar interaction for D 2O in bovine nasal cartilage. This tissue is not macroscopically ordered and the quadrupolar splitting is not resolved. Fitting the calculated spectral lineshapes to the experimental results was possible only when a distribution of the residual quadrupolar interaction, omega(q), was assumed. The series of DQF lineshapes obtained for different creation times in the DQF experiment could be fitted using a single set of three parameters: the average residual quadrupolar interaction overlineω q/2π = 110 Hz, its standard deviation Δω q/2π = 73 Hz, and the transverse relaxation rate of 63 s -1. Separate deuterium DQF measurements for the constituents of the cartilage, collagen, and chondroitin sulfate indicated that the DQF spectra of cartilage are the result of anisotropic motion of D 2O due to binding to the fibrous collagen in the tissue.

  11. 1H and 2H NMR studies of water in work-free wheat flour doughs.

    PubMed

    d'Avignon, D A; Hung, C C; Pagel, M T; Hart, B; Bretthorst, G L; Ackerman, J J

    1991-01-01

    Proton and deuterium NMR relaxation methods were used to characterize water compartmentalization and hydration in work-free wheat flour doughs. Transverse (spin-spin) relaxation measurements define three motionally unique water compartments in the work-free dough preparations. The apparent occupancy fraction and relative mobility of each water domain are found to be functions of moisture content, temperature, and flour type. Additionally, the number of relaxation-resolved water compartments and their characteristic relaxation rate constants are found to depend critically on both moisture content and the interpulse-delay employed for the multi-pulse relaxation experiments. Under controlled experimental conditions, dynamics between the three water compartments can be observed to be consistent with the onset of flour hydration. The most notable observation during the initial period of hydration is a loss of "free" or "loosely bound" water to environments characterized by less mobility. Freezing studies show that hard wheat doughs have slightly less amorphous, non-freezable water than do soft wheat flour doughs prepared under similar conditions. PMID:1746346

  12. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  13. Selective photochemistry at stereogenic metal and ligand centers of cis-[Ru(diphosphine)2(H)2]: preparative, NMR, solid state, and laser flash studies.

    PubMed

    Câmpian, Marius V; Perutz, Robin N; Procacci, Barbara; Thatcher, Robert J; Torres, Olga; Whitwood, Adrian C

    2012-02-22

    Three ruthenium complexes Λ-[cis-Ru((R,R)-Me-BPE)(2)(H)(2)] Λ-R,R-Ru1H(2), Δ-[cis-Ru((S,S)-Me-DuPHOS)(2)(H)(2)] Δ-S,S-Ru2H(2), and Λ-[cis-Ru((R,R)-Me-DuPHOS)(2)(H)(2)] Λ-R,R-Ru2H(2) (1 = (Me-BPE)(2), 2 = (Me-DuPHOS)(2)) were characterized by multinuclear NMR and CD spectroscopy in solution and by X-ray crystallography. The chiral ligands allow the full control of stereochemistry and enable mechanistic studies not otherwise available. Oxidative addition of E-H bonds (E = H, B, Si, C) was studied by steady state and laser flash photolysis in the presence of substrates. Steady state photolysis shows formation of single products with one stereoisomer. Solid state structures and circular dichroism spectra reveal a change in configuration at ruthenium for some Δ-S,S-Ru2H(2)/Λ-R,R-Ru2H(2) photoproducts from Λ to Δ (or vice versa) while the configuration for Λ-R,R-Ru1H(2) products remains unchanged as Λ. The X-ray structure of silyl hydride photoproducts suggests a residual H(1)···Si(1) interaction for Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(Et(2)SiH)(H)] and Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(PhSiH(2))(H)] but not for their Ru(R,R-BPE)(2) analogues. Molecular structures were also determined for Λ-[cis-Ru((R,R)-Me-BPE)(2)(Bpin)(H)], Λ-[Ru((S,S)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], Δ-[Ru((R,R)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], and trans-[Ru((R,R)-Me-DuPHOS)(2)(C(6)F(5))(H)]. In situ laser photolysis in the presence of p-H(2) generates hyperpolarized NMR spectra because of magnetically inequivalent hydrides; these experiments and low temperature photolysis with D(2) reveal that the loss of hydride ligands is concerted. The reaction intermediates [Ru(DuPHOS)(2)] and [Ru(BPE)(2)] were detected by laser flash photolysis and have spectra consistent with approximate square-planar Ru(0) structures. The rates of their reactions with H(2), D(2), HBpin, and PhSiH(3) were measured by transient kinetics. Rate constants are significantly faster for [Ru(BPE)(2)] than for [Ru(DuPHOS)(2

  14. sup 2 H NMR study of molecular dynamics and organization in the system C sub 12 E sub 4 -water

    SciTech Connect

    Henriksson, U. ); Jonstroemer, M.; Olsson, U.; Soederman, O. ); Klose, G. )

    1991-05-02

    A sample containing 20 wt % of the nonionic surfactant tetraethylene glycol dodecyl ether (C{sub 12}E{sub 4}), specifically deuterated in the {alpha}-position, was investigated with {sup 2}H NMR relaxation in H{sub 2}O. From the frequency dependence of the longitudinal relaxation rate in the Larmor frequency range 2-55 MHz, it was concluded that the solution contains rodlike micelles. A slow motion in the microsecond time scale, as determined from the transverse relaxation rate, was interpreted taking the flexibility of the rodlike micelles explicitly into account.

  15. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  16. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  17. 2H NMR study of 2D melting and dynamic behaviour of CDCl3 confined in ACF nanospace.

    PubMed

    Ueda, Takahiro; Omichi, Hiroaki; Chen, Yu; Kobayashi, Hirokazu; Kubota, Osamu; Miyakubo, Keisuke; Eguchi, Taro

    2010-08-28

    Two-dimensional melting of trichloromethane (chloroform) confined in activated carbon fibre was investigated using differential thermal analysis and (2)H NMR techniques. Differential thermal analysis revealed a thermal anomaly with an endothermic peak at 269 K, which was distributed from 250 K to 287 K on the heating direction. This anomaly was also observed upon cooling at the same temperature. Furthermore, (2)H NMR revealed that slow motion such as molecular hopping and/or diffusion of CDCl(3) in ACF affected the spectral line width. The temperature dependence (Arrhenius plot) of the spectral line width showed an inflection point at 227 K. The activation energy of molecular motion of CDCl(3) in ACF was 4 kJ mol(-1) at temperatures greater than 227 K and 7.7 kJ mol(-1) at temperatures less than 227 K. Reduction of the activation energy suggests that the average intermolecular distance between CDCl(3) molecules enlarges above the inflection point. The difference of activation energy (3.7 kJ mol(-1)) is close to the enthalpy of fusion in typical plastic crystals. These results reveal that the thermal anomaly and the transition of dynamic process correspond respectively to melting of CHCl(3) in ACF and the pre-melting phenomenon.

  18. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two.

  19. Metabolism of excess methionine in the liver of intact rat: an in vivo /sup 2/H NMR study

    SciTech Connect

    London, R.E.; Gabel, S.A.; Funk, A.

    1987-11-03

    L-Methionine is the most toxic amino acid if supplied in excess, and the metabolic basis for this toxicity has been extensively studied, with varying conclusions. It is demonstrated here that in vivo /sup 2/H NMR spectroscopy provides a useful approach to the study of the hepatic metabolism of methionine in the anesthetized rat. Resonances corresponding to administered L-(methyl-/sup 2/H/sub 3/)methionine, and to the transmethylation product sarcosine, are observed during the first 10-min period after an intravenous injection of the labeled methionine, and the time dependence has been followed for a period of 5 h. A third resonance, assigned to the N-trimethyl groups of carnitine, phosphorylcholine, and other metabolites, becomes observable several hours after administration of the deuteriated methionine. In addition, there is a small increase in the intensity of the HDO resonance over the period of the study, which is interpreted to reflect the ultimate oxidation of the labeled sarcosine methyl group via mitochondrial sarcosine dehydrogenase. Additional small /sup 2/H resonances assigned to N/sup 1/-methylhistidine and creatine could be observed in perchloric acid extracts of the livers of rats treated with the deuteriated methionine. Inhibition of the flux through the transmethylation pathway is observed in the rat pretreated with the S-ethyl analogue of methionine, ethionine. These data provide strong support for the importance of glycine transmethylation in the catabolism of excess methionine.

  20. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  1. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-01

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.

  2. Differential scanning calorimetry and /sup 2/H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures

    SciTech Connect

    Morrow, M.R.; Davis, J.H.

    1988-03-22

    The extents of two-phase coexistence in the phase diagrams of mixtures of gramicidin with 1,2-bis(perdeuteriopalmitoyl)-sn-glycero-3-phosphocholine (DPPC-d62) and with 1,2-bis(perdeuteriomyristoyl)-sn-glycero-3-phosphocholine (DMPC-d54) mixtures have been explored with differential scanning calorimetry (DSC) and deuterium nuclear magnetic resonance (/sup 2/H NMR). For both systems, increased gramicidin content causes a decrease in transition enthalpy and a broadening of the peak in excess heat capacity at the transition. In DMPC-d54-based mixtures, the broadening is roughly symmetric about the pure lipid transition temperature. Addition of gramicidin to DPPC-d62 extends the excess heat capacity peak on the low-temperature side, resulting in a slightly asymmetric scan. Deuterium NMR spectra showing a superposition of gel and liquid-crystalline components, observed for both mixtures, indicate the presence of two-phase coexistence. For the DPPC-d62-based mixtures, two-phase coexistence is restricted to an approximately 2 degrees C temperature range below the pure transition temperature. For DMPC-d54-based mixtures, the region of two-phase coexistence is even narrower. For both mixtures, beyond a gramicidin mole fraction of 2%, distinct gel and liquid-crystal contributions to the spectra cannot be distinguished. Along with the broad featureless nature of the DSC scan in this region, this is taken to indicate that the transition has been replaced by a continuous phase change. These results are consistent with the existence of a closed two-phase region having a critical concentration of gramicidin below 2 mol%.

  3. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: An 2H-NMR study

    SciTech Connect

    Zidovetzki, R.; Atiya, A.W.; De Boeck, H. )

    1989-01-01

    The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.

  4. DFT 2H quadrupolar coupling constants of ruthenium complexes: a good probe of the coordination of hydrides in conjuction with experiments.

    PubMed

    del Rosal, Iker; Gutmann, Torsten; Maron, Laurent; Jolibois, Franck; Chaudret, Bruno; Walaszek, Bernadeta; Limbach, Hans-Heinrich; Poteau, Romuald; Buntkowsky, Gerd

    2009-07-21

    Transition metal (TM) hydrides are of great interest in chemistry because of their reactivity and their potential as catalysts for hydrogenation reactions. 2H solid-state NMR can be used in order to get information about the local environment of hydrogen atoms, and more particularly the coordination mode of hydrides in such complexes. In this work we will show that it is possible to establish at the level of density functional theory (DFT) a viable methodological strategy that allows the determination of 2H NMR parameters, namely the quadrupolar coupling constant (C(Q)) respectively the quadrupolar splitting (deltanuQ) and the asymmetry parameter (etaQ). The reliability of the method (B3PW91-DFT) and basis set effects have been first evaluated for simple organic compounds (benzene and fluorene). A good correlation between experimental and theoretical values is systematically obtained if the large basis set cc-pVTZ is used for the computations. 2H NMR properties of five mononuclear ruthenium complexes (namely Cp*RuD3(PPh3), Tp*RuD(THT)2, Tp*RuD(D2)(THT) and Tp*RuD(D2)2 and RuD2(D2)2(PCy3)2) which exhibit different ligands and hydrides involved in different coordination modes (terminal-H or eta2-H2), have been calculated and compared to previous experimental data. The results obtained are in excellent agreement with experiments. Although 2H NMR spectra are not always easy to analyze, assistance by quantum chemistry calculations allows unambiguous assignment of the signals of such spectra. As far as experiments can be achieved at very low temperatures in order to avoid dynamic effects, this hybrid theoretical/experimental tool may give useful insights in the context of the characterization of ruthenium surfaces or nanoparticles with solid-state NMR. PMID:19842483

  5. Single-crystal XRD and solid-state NMR structural resolution of a layered fluorinated gallium phosphate: RbGa3(PO4)(2)(HPO4)F4·C5N2H16·2H2O (MIL-145).

    PubMed

    Martineau, Charlotte; Loiseau, Thierry; Beitone, Lionel; Férey, Gérard; Bouchevreau, Boris; Taulelle, Francis

    2013-01-14

    A new two-dimensional fluorinated gallium phosphate RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O (MIL-145) has been hydrothermally synthesized (180 °C for 36 h) in the presence of 1,5-diaminopentane and rubidium fluoride. Its structural model has been determined by means of single-crystal X-ray diffraction analysis. The structure contains corrugated infinite ribbons of GaO(3)F(3) and GaO(4)F(2) octahedra linked through edge- and corner-sharing mode via fluoride anions. These chains are then connected to each other via phosphate groups to create a layered network delimiting 6-ring channels trapping rubidium cations. The inorganic sheets are intercalated by diprotonated 1,5-diaminopentane and water molecules, ensuring the three-dimensional cohesion via hydrogen bond scheme. (1)H, (13)C, (15)N and (87)Rb solid-state NMR spectra show the presence of two inequivalent amines as well as two Rb cations, confirming the choice of the space group, which was ambiguous from the diffraction data. (71)Ga NMR spectra, acquired at several magnetic fields, contain two different sets of Ga signals, corresponding to the two types of gallium environments in the structure. One-dimensional (19)F and (31)P and (19)F-(31)P two-dimensional NMR experiments have been recorded, which are in full agreement with the proposed structural model. Finally, possible assignments of the (19)F and (31)P resonances to the crystallographic sites in RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O have been determined by comparing adjacency matrices build-up from 2D NMR correlation spectra and from the structural data. PMID:23069866

  6. Orientational ordering of a banana-shaped solute molecule in a nematic calamitic solvent by {sup 2}H-NMR spectroscopy: An indication of glasslike behavior

    SciTech Connect

    Cinacchi, Giorgio; Domenici, Valentina

    2006-09-15

    The Saupe ordering matrix of a banana-shaped mesogenic molecule as a solute in a common nematic calamitic solvent has been determined by {sup 2}H-NMR spectroscopy as a function of temperature. The temperature dependence of the Saupe ordering matrix element associated with the principal molecular axis is consistent with a glassy behavior in the reorientational motion of this particular solute molecule. The Haller expression, appropriately modified, provides a good fit to the experimental data.

  7. 2H NMR study of phase transition and hydrogen dynamics in hydrogen bonded organic antiferroelectric 55DMBP-H2ca

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo; Hara, Masamichi; Fujimori, Hiroki; Hagiwara, Shoko

    2016-12-01

    Hydrogen dynamics in one-dimensional hydrogen bonded organic antiferroelectric, co-crystal of 5,5'-dimethyl-2,2'-bipyridine (55DMBP) and chloranilic acid (H2ca), was investigated by use of 2H high resolution solid-state NMR. The two types of hydrogen bonds O-H …N and N+-H … O - in the antiferroelectric phase were clearly observed as the splitting of the side band of the 2H MAS NMR spectra of the acid-proton deuterated compound 55DMBP-D 2ca. The temperature dependence of the spin-lattice relaxation time was measured of the N+-H and O-H deuterons, respectively. It was suggested that the motion of the O-H deuteron is already in the antiferroelectric phase in the fast-motion regime in the NMR time scale, while that of the N+-H deuteron is a slow motion. In the high-temperature paraelectric phase, the both deuterons become equivalent and the fast motion of the deuterons in the NMR time scale is taking place with the activation energy of 7.9 kJ mol-1.

  8. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study.

    PubMed Central

    Pott, T; Maillet, J C; Dufourc, E J

    1995-01-01

    The effect of pH and cholesterol on the dimyristoylphosphatidic acid (DMPA) model membrane system has been investigated by solid state 2H- and 31P-NMR. It has been shown that each of the three protonation states of the DMPA molecule corresponds to a 31P-NMR powder pattern with characteristic delta sigma values; this implies additionally that the proton exchange on the membrane surface is slow on the NMR time scale (millisecond range). Under these conditions, the 2H-labeled lipid chains sense only one magnetic environment, indicating that the three spectra detected by 31P-NMR are related to charge-dependent local dynamics or orientations of the phosphate headgroup or both. Chain ordering in the fluid phase is also found to depend weakly on the charge at the interface. In addition, it has also been found that the first pK of the DMPA membrane is modified by changes in the lipid lateral packing (gel or fluid phases or in the presence of cholesterol) in contrast to the second pK. The incorporation of 30 mol% cholesterol affects the phosphatidic acid bilayer in a way similar to what has been reported for phosphatidylcholine/cholesterol membranes, but to an extent comparable to 10-20 mol % sterol in phosphatidylcholines. However, the orientation and molecular order parameter of cholesterol in DMPA are similar to those found in dimyristoylphosphatidylcholine. PMID:8580333

  9. The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR

    PubMed Central

    Tian, Xiaoyu; Pavlopoulos, Spiro; Yang, De-Ping; Makriyannis, Alexandros

    2013-01-01

    Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using 2H solid state NMR, and the results are compared with our earlier work with delta-9-tetrahydrocannabinol (Δ9-THC). To study the effects of these ligands we used hydrated bilayers of dipalmitoylphosphatidylcholine (DPPC) deuterated at the 2′ and 16′ positions of both acyl chains with deuterium atoms serving as probes for the dynamic and phase changes at the membrane interface and at the bilayer center respectively. All three cannabinergic ligands lower the phospholipid membrane phase transition temperature, increase the lipid sn-2 chain order parameter at the membrane interface and decrease the order at the center of the bilayer. Our studies show that the cannabinoid ligands induce lateral phase separation in the lipid membrane at physiological temperatures. During the lipid membrane phase transition, the cooperative dynamic process whereby the C-2H segments at the interface and center of the bilayer spontaneously reach the fast exchange regime (2H NMR timescale) is distinctively modulated by the two cannabinoids. Specifically, CP55940 is slightly more efficient at inducing liquid crystalline-type 2H NMR spectral features at the membrane interface compared to WIN55212-2. In contrast, WIN55212-2 has a far superior ability to induce liquid crystalline-type spectral features at the center of the bilayer, and it increases the order parameter of the sn-1 chain in addition to the sn-2 chain of the lipids. These observations suggest the cannabinoid ligands may influence lipid membrane domain formations and there may be contributions to their cannabinergic activities through lipid membrane microdomain related mechanisms. Our work demonstrates that experimental design strategies utilizing specifically deuterium labeled lipids yield more detailed insights concerning the properties of lipid bilayers. PMID:21129361

  10. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  11. Short hydrogen bonds in salts of dicarboxylic acids; structural correlations from solid-state 13C and 2H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalsbeek, Nicoline; Schaumburg, Kjeld; Larsen, Sine

    1993-10-01

    Solid-state 13C and 2H NMR spectra are found to very suitable for characterizing the short Osbnd H...O hydrogen bonds observed in acid salts of dicarboxylic acids. The majority of the investigated compounds are acid salts of malonic, succinic and tartaric acid with monovalent cations derived from alkali metals and small aliphatic amines. They include systems with symmetric and asymmetric hydrogen bonds. Accurate structural information about their geometry is available from low-temperature X-ray diffraction data. The 13C chemical shifts of the C atoms in the different carboxy groups display a linear variation with the absolute difference between the two Csbnd O bond lengths. Theoretical ab initio calculations for model systems showed that the nuclear quadrupole coupling constant NQCC for 2H increases with increasing asymmetry of the hydrogen-bonded system. NQCC values for 2H in the short symmetric hydrogen-bonded systems are in the range 53-59 kHz compared with the larger values of up to 166kHz found in systems with longer asymmetric hydrogen bonds. The 2H NQCC values display a perfect linear dependence on the asymmetry of the hydrogen bond. 2H NQCC decreases with decreasing temperature in the symmetric hydrogen bonds showing that the corresponding potential has a single well.

  12. Orientational order, molecular organization, and dynamics in mixtures of bent-core and rod-shaped mesogens: a 2H NMR study.

    PubMed

    Calucci, Lucia; Fodor-Csorba, Katalin; Forte, Claudia; Geppi, Marco

    2011-01-27

    Mixtures of a bent-core mesogen (ClPbis10BB) and a calamitic mesogen (6OO8), showing a nematic phase over the entire compositional range and one or two smectic phases (namely, SmA, SmC, or SmC(A)) below the nematic one over a wide concentration range, were investigated by means of (2)H NMR spectroscopy, exploiting selectively deuterated isotopomers of both mesogens. The analysis of (2)H NMR spectra recorded in the liquid crystalline phases on several representative mixtures gave information on the orientational order properties and the molecular organization within the phases as well as on the alignment properties upon application of a magnetic field. On the other hand, the analysis of (2)H longitudinal relaxation times (T(1Z) and T(1Q)) in 6OO8-d(2)/ClPbis10BB mixtures and pure 6OO8-d(2) allowed the influence of the bent-core mesogen on the dynamics of the calamitic one to be highlighted.

  13. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report.

    PubMed

    Thomas, Freddy; Jamin, Eric

    2009-09-01

    An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and

  14. Rotational jumps of the tyrosine side chain in crystalline enkephalin. /sup 2/H NMR line shapes for aromatic ring motion in solids

    SciTech Connect

    Rice, D.N.; Wittebort, R.J.; Griffin, R.G.; Meirovitch, E.; Stimson, E.R.; Meinwald, Y.C.; Freed, J.H.; Scheraga, H.A.

    1981-12-30

    Deuterium NMR spectra of polycrystalline (tyrosine-3,5-/sup 2/H/sub 2/)(Leu/sup 5/)enkephalin show that the aromatic tyrosyl ring of this pentapeptide is executing 180/sup 0/ flips about the C/sup ..beta../-C/sup ..gamma../ axis in the solid state. Specifically, the axially symmetric powder pattern observed at low temperature collapses to an axially asymmetric pattern with eta approx. = 0.6 at high temperature. Computer simulation of the NMR line shapes, which account for spectral distortions induced by the quadrupole echo technique, indicate that at room temperature the flipping rate is approximately 5 x 10/sup 4/ s/sup -1/ and that it increases to about 10/sup 6/ s/sup -1/ at 101 /sup 0/C.

  15. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  16. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  17. H2O and Cation Structure and Dynamics in Expandable Clays: 2H and 39K NMR Investigations of Hectorite

    SciTech Connect

    Bowers, Geoffrey M.; Bish, David L.; Kirkpatrick, Robert J.

    2008-04-24

    The dynamic behavior of H2O and ionic species in two- and three-dimensional confinement plays a variety of important roles in processes such as ion transport and adsorption, water storage in hostile environments, dissolution/precipitation reactions in aqueous environments, and the swelling of smectite clays (low charge 2:1 type phyllosilicates with expandable interlayers). Historically, the structure and dynamics of ions and water in confined spaces and at solid-fluid interfaces have been difficult to characterize on the molecular scale, but the continued evolution of molecular modeling, neutron scattering, and nuclear magnetic resonance (NMR) spectroscopy has permitted ever more detailed theoretical and experimental investigations, particularly regarding the special case of H2O in the two-dimensional, nanometer-scale interlayer space of phyllosilicates.

  18. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  19. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.

    PubMed

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-08-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  20. Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining (2)H NMR Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Paz Ramos, Adrian; Lagüe, Patrick; Lamoureux, Guillaume; Lafleur, Michel

    2016-07-21

    Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is to determine how VLCFA structurally adapts in fluid phospholipid bilayers, since both species must exhibit a significant hydrophobic mismatch. The membrane organization has been described by means of (2)H NMR and molecular dynamics simulations. Our results show that the protonation state affects the position and order of free fatty acids (FFAs) in phospholipid membranes. It was shown that the protonated FFA-C24 carboxyl group is located slightly under the POPC head group and therefore its acyl chain can interact with the lipids of the opposite leaflet. This interdigitation of the end of the acyl chain causes a second plateau observed in SC-D profiles, a very unusual feature in lipid systems. PMID:27351151

  1. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy.

    PubMed

    Felderhoff, Michael; Zibrowius, Bodo

    2011-10-14

    After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4). PMID:21879065

  2. The investigation of membrane binding by amphibian peptide agonists of CCK2R using (31)P and (2)H solid-state NMR.

    PubMed

    Sherman, Patrick J; Separovic, Frances; Bowie, John H

    2014-05-01

    It has been proposed that some neuropeptides may be anchored to the cell membranes prior to attaching to the adjacent active sites of transmembrane receptors. The three amphibian skin neuropeptides signiferin 1 [RLCIPYIIPC(OH)] (smooth muscle active and immunomodulator), riparin 1.1 [[RLCIPVIFPC(OH)] (immunomodulator) and rothein 1 [SVSNIPESIGF(OH)] (immunomodulator) act via CCK2 transmembrane receptors. A combination of (31)P and (2)H solid state NMR studies of each of these three peptides in eukaryotic phospholipid models at 25°C shows that rothein 1 does not interact with the membrane at all. In contrast, both of the cyclic disulfides signiferin 1 and riparin 1.1 interact with phospholipid head groups and partially penetrate into the upper leaflet of the model bilayer, but to different extents. These interactions are not sufficiently effective to cause disruption of the lipid bilayer since the peptides are not antimicrobial, anticancer, antifungal nor active against enveloped viruses. PMID:24582625

  3. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  4. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  5. Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by (2)H NMR spectroscopy and molecular dynamics simulation.

    PubMed

    Vogel, Alexander; Scheidt, Holger A; Baek, Dong Jae; Bittman, Robert; Huster, Daniel

    2016-02-01

    Cholesterol is an evolutionarily highly optimized molecule particularly known for its ability to condense the phospholipids in cellular membranes. Until recently, the accompanying increase in the chain order of the surrounding phospholipids was attributed to the planar and rigid tetracyclic ring structure of cholesterol. However, detailed investigations of cholesterol's aliphatic side chain demonstrated that this side chain is responsible for approximately half of the condensation effect. Therefore, we investigated the structure and dynamics of the aliphatic side chain of cholesterol using (2)H solid-state nuclear magnetic resonance (NMR) spectroscopy and microsecond timescale all-atom molecular dynamics (MD) simulations in four different model membranes: POPC, DPPC, PSM, and POPC/PSM (1 : 1 mol/mol) and at three different temperatures: 5 °C, 37 °C, and 50 °C. A cholesterol variant, in which 11 hydrogens of the aliphatic side chain were exchanged for deuterium, was used and the respective (2)H NMR spectra confirmed the axially asymmetric rotational diffusion of cholesterol in DPPC and PSM. Furthermore, NMR spectra indicated that some hydrogens showed an unexpected magnetic inequivalency. This finding was confirmed by all-atom molecular dynamics simulations and detailed analysis revealed that the hydrogens of the methylene groups at C22, C23, and C24 are magnetically inequivalent. This inequivalency is caused by steric clashes of the aliphatic side chain with the ring structure of cholesterol as well as the branched C21 methyl group. These excluded volume effects result in reduced conformational flexibility of the aliphatic side chain of cholesterol and explain its high order (order parameter of 0.78 for chain motions) and large contribution to the condensation effect. Additionally, the motional pattern of the side chain becomes highly anisotropic such that it shows larger fluctuations perpendicular to the ring plane of cholesterol with a biaxiality of the

  6. Fluxionality and Isomerism of the Bis(dihydrogen) Complex RuH(2)(H(2))(2)(PCy(3))(2): INS, NMR, and Theoretical Studies.

    PubMed

    Rodriguez, Venancio; Sabo-Etienne, Sylviane; Chaudret, Bruno; Thoburn, John; Ulrich, Stefan; Limbach, Hans-Heinrich; Eckert, Juergen; Barthelat, Jean-Claude; Hussein, Khansaa; Marsden, Colin J.

    1998-07-13

    To study the fluxionality of the bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1), NMR spectra were recorded in Freons (mixture of CDCl(3), CDFCl(2), and CDF(2)Cl). 1 was found to remain fluxional at all temperatures, but the presence of CDCl(3) necessary for its solubilization induces its transformation into, first, RuHCl(H(2))(2)(PCy(3))(2) (3) and the new ruthenium(IV) dihydride RuH(2)Cl(2)(PCy(3))(2) (4). 4 is produced selectively in pure CDCl(3) but reacts further to give a mixture of chloro complexes. 4 was isolated from the reaction of 1 with aqueous HCl in Et(2)O and shows a fluxional process attributed to the interconversion between two symmetrical isomers. The activation parameters of this process were obtained by (1)H NMR line shape analysis, as well as those corresponding to the exchange between 3 and free dihydrogen. The fluxionality of the dihydrogen-hydride system is also evident at a much faster time scale than that of NMR studies in the inelastic neutron scattering observations of the rotation of the dihydrogen ligands. The geometries and relative energies of several isomers of complexes 1, 3, and 4 were studied using density functional theory (DFT) and MP2 methods, together with a few coupled-cluster (CCSD(T)) calculations. In contrast to what might have been expected, the two hydrides and the two H(2) units of 1 lie in the same plane, due to the attractive "cis effect" created by the hydrides. The two H(2) ligands adopt cis positions in the lowest-energy isomer. Rotation of the two dihydrogen ligands has been analyzed using DFT calculations. A slight preference for a C(2) conrotatory pathway has been found with a calculated barrier in good agreement with the experimental INS value. Two low-energy isomers of 4 have been characterized computationally, both of which have C(2)(v)() symmetry, consistent with the solution NMR spectra. PMID:11670430

  7. Instrument Control and Data Acquisition for NMR Experiments

    1999-03-29

    This is a software program which is intended to do some instrument control and data acquisition for NMR experiments. The basic purpose of the program is to allow a user of the NMR system to create a list of instructions which tells the program what steps should be done, the stat the data taking program and let the system run by itself (depending on the type of sample and the type of experiment being run,more » it can take from several minutes to many hours to do a data collection run).« less

  8. Biosynthesis of a specifically deuteriated diunsaturated fatty acid (18:2/sub. delta. 6,9/) for /sup 2/H NMR membrane studies

    SciTech Connect

    Baenziger, J.E.; Smith, I.C.P.; Hill, R.J.

    1987-12-15

    A unique procedure for the biosynthesis and subsequent isolation of a series of specifically deuteriated cis,cis-octadeca-6,9-dienoic acids has been developed. An auxotroph of Tetrahymena, which lacks ..delta..9 and ..delta..12 desaturase activity, is supplemented with specifically deuteriated oleic acid and converts it to the corresponding deuteriated cis,cis-octadeca-6,9-dienoic acid, 18:2/sup ..delta..6,9/. The deuteriated fatty acid is subsequently isolated by argentation chromatography and HPLC. To demonstrate the utility of the procedure, we describe here the biosynthesis of cis,cis-octadeca-6,9-dienoic acid deuteriated at positions 9 and 10. Gas and thin-layer chromatography of the isolated fatty acid showed that it was greater than 99% pure while /sup 13/C NMR and mass spectrometry of the O-(trimethylsilyl) derivative confirmed that the 18-carbon fatty acid contains two double bonds located at positions 6 and 9. The yield, from an 11-L culture, was typically 100 mg of which 35% was found to be deuteriated at both the 9- and 10-positions. The deuteriated fatty acid was esterified to 1-hexadecanoyl-sn-glycero-3-phosphocholine, and aqueous, multilamellar dispersions of the lipid were studied by /sup 2/H NMR. Each spectrum consists of two overlapping powder patterns and therefore yields two quadrupolar splittings. Over a temperature range of 0 to 40/sup 0/C, one splitting decreases from 6.6 to 1.8 kHz while other increases from 4.5 to 5.3 kHz. The magnitudes of the two splittings are equivalent between 10 and 15/sup 0/ C. The values of the splittings, and their response to temperature, differ significantly from those of the corresponding deuteriated oleic acid in microbial membranes and in bilayers of 1-hexadecanoyl-2-cis-octadec-9-enoyl-sn-glycero-3-phosphocholine (POPC).

  9. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  10. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  11. Optimized Linear Prediction for Radial Sampled Multidimensional NMR Experiments

    PubMed Central

    Gledhill, John M.; Kasinath, Vignesh; Wand, A. Joshua

    2011-01-01

    Radial sampling in multidimensional NMR experiments offers greatly decreased acquisition times while also providing an avenue for increased sensitivity. Digital resolution remains concern and depends strongly upon the extent of sampling of individual radial angles. Truncated time domain data leads to spurious peaks (artifacts) upon FT and 2D FT. Linear prediction is commonly employed to improve resolution in Cartesian sampled NMR experiments. Here, we adapt the linear prediction method to radial sampling. Significantly more accurate estimates of linear prediction coefficients are obtained by combining quadrature frequency components from the multiple angle spectra. This approach results in significant improvement in both resolution and removal of spurious peaks as compared to traditional linear prediction methods applied to radial sampled data. The ‘averaging linear prediction’ (ALP) method is demonstrated as a general tool for resolution improvement in multidimensional radial sampled experiments. PMID:21767968

  12. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed. PMID:27139016

  13. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  14. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  15. Faster and cleaner real-time pure shift NMR experiments

    NASA Astrophysics Data System (ADS)

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  16. Orientation and dynamics of benzyl alcohol and benzyl alkyl ethers dissolved in nematic lyotropic liquid crystals. 2H NMR and molecular dynamics simulations.

    PubMed

    Ahumada, H; Montecinos, R; Tieleman, D P; Weiss-López, B E

    2005-08-01

    Most drugs have to cross cell membranes to reach their final target. A better understanding of the distribution, interactions, and dynamics of biologically active molecules in model bilayers is of fundamental importance in understanding drug functioning and design. 2H NMR quadrupole splittings (delta nu(Q)) and longitudinal relaxation times (T1) from the aromatic ring of benzyl alcohol-d5 (C0), a commonly used anesthetic, and a series of linear alkyl benzyl-d5 ethers with chain lengths from 1 to 12 carbon atoms (C1-C12), were measured. The molecules were dissolved in a nematic discotic lyotropic liquid crystal solution made of tetradecyltrimethylammonium chloride (TTAC)/decanol (DeOH)/NaCl/H2O. Values of delta nu(Q) and T1 from 1,1-dideuteriodecanol (15% enriched) and DHO (H2O with 0.2% D2O) were also measured. Delta nu(Q) of DeOH and DHO remained constant throughout the series. The value of delta nu(Q) of the para position of the ring (delta nu(p)) in C1 is 30% smaller than the delta nu(p) of C0. This is attributed to the existence of an H-bond between the alcohol hydroxyl proton and the solvent, which influences the average orientation of the ring. The relaxation data show that T1o,m is always longer than T1p and both decrease with the increase in alkyl chain length. Molecular dynamics simulations of the experimentally studied systems were performed. The aggregate was represented as a bilayer. The distribution, average orientation, and order parameters of the aromatic ring of the guest molecules in the bilayer were examined. Rotational correlation functions of all the C-D bonds and the OH bond from H2O were evaluated, allowing an estimate of the correlation times and T1. According to these results all spins relax in extreme narrowing conditions, except DeOH. Experimental and calculated T1 values differ at most by a factor of 3. However, the order of magnitude and the observed trends are well reproduced by the calculations. The aromatic ring of C0 possesses a

  17. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  18. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

    PubMed

    Irvine, Alistair G; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R P; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community.

  19. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments

    NASA Astrophysics Data System (ADS)

    Irvine, Alistair G.; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R. P.; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community.

  20. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  1. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  2. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  3. Separation and complete analyses of the overlapped and unresolved 1H NMR spectra of enantiomers by spin selected correlation experiments.

    PubMed

    Prabhu, Uday Ramesh; Baishya, Bikash; Suryaprakash, N

    2008-06-26

    NMR spectroscopic discrimination of optical enantiomers is most often carried out using (2)H and (13)C spectra of chiral molecules aligned in a chiral liquid crystalline solvent. The use of proton NMR for such a purpose is severely hindered due to the spectral complexity and the significant loss of resolution arising from numerous short- and long-distance couplings and the indistinguishable overlap of spectra from both R and S enantiomers. The determination of all the spectral parameters by the analyses of such intricate NMR spectra poses challenges, such as, unraveling of the resonances for each enantiomer, spectral resolution, and simplification of the multiplet pattern. The present study exploits the spin state selection achieved by the two-dimensional (1)H NMR correlation of selectively excited isolated coupled spins (Soft-COSY) of the molecules to overcome these problems. The experiment provides the relative signs and magnitudes of all of the proton-proton couplings, which are otherwise not possible to determine from the broad and featureless one-dimensional (1)H spectra. The utilization of the method for quantification of enantiomeric excess has been demonstrated. The studies on different chiral molecules, each having a chiral center, whose spectral complexity increases with the increasing number of interacting spins, and the advantages and limitations of the method over SERF and DQ-SERF experiments have been reported in this work.

  4. Interpretation of combined 2H SNIF/NMR and 13C SIRA/MS analyses of fruit juices to detect added sugar.

    PubMed

    Martin, G G; Hanote, V; Lees, M; Martin, Y L

    1996-01-01

    The site-specific natural isotopic fractionation studied by nuclear magnetic resonance (SNIF/NMR) method measures site-specific isotope contents in a variety of organic compounds by deuterium nuclear magnetic resonance spectroscopy. This technique, together with SIRA/MS (stable isotope ratio analysis/mass spectrometry) provides a powerful tool for food authentication and characterization. By using the ethanol resulting from sugar fermentation as a molecular probe, SNIF/NMR (deuterium) and SIRA/MS (13C) have been used together for authentication of fruit juices. The influence of deuterium content of the fermentation water on the isotopic parameters is shown and a means for normalizing the results is proposed. A large number of authentic juices have been analyzed to define the variation of isotopic ratios in natural juices. On the basis of these data, a set of rules was designed to enable interpretation of isotopic parameters in terms of possible adulteration of fruit juices by sugar addition. Results of analyses of Florida orange juice are presented. Orange juice samples from Brazil and Israel are included as 2 extreme cases. Assignment limits for a sample of orange juice of unknown origin also are given. These assignment limits are also provided for apple and grapefruit juices.

  5. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  6. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  7. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  8. Structural, vibrational, electronic, NMR, NLO and reactivity analyses of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI) by ab initio HF and DFT calculations.

    PubMed

    Sridevi, C; Velraj, G

    2013-04-15

    This study represents the vibrational, electronic, NMR, NLO, reactivity and structural aspects of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI). A detailed interpretation of the FT-IR, FT-Raman, UV and NMR spectra were reported. Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. The most preferred Z isomer (cis-configuration) was confirmed through PES scan studies. The vibrational wavenumbers and potential energy distribution (PED) of various normal modes were calculated. The lower frontier orbital energy gap and high dipole moment of OPEDI illustrates the high reactivity. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. OPEDI exhibited good nonlinear optical activity and was 13 times greater than that of urea. Molecular electrostatic potential (MEP) was carried out for predicting the reactive sites. The NMR results indicated that the observed chemical shifts depend not only on the structure of the molecule being studied, but also on the solvent used.

  9. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  10. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, 2H NMR, and calorimetric study

    NASA Astrophysics Data System (ADS)

    Robles-Hernández, Beatriz; Sebastián, Nerea; de la Fuente, M. Rosario; López, David O.; Diez-Berart, Sergio; Salud, Josep; Ros, M. Blanca; Dunmur, David A.; Luckhurst, Geoffrey R.; Timimi, Bakir A.

    2015-12-01

    The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and 2H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (NTB), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the NTB-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and 2H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the NTB phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. 2H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

  11. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, (2)H NMR, and calorimetric study.

    PubMed

    Robles-Hernández, Beatriz; Sebastián, Nerea; de la Fuente, M Rosario; López, David O; Diez-Berart, Sergio; Salud, Josep; Ros, M Blanca; Dunmur, David A; Luckhurst, Geoffrey R; Timimi, Bakir A

    2015-12-01

    The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and (2)H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (N(TB)), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the N(TB)-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and (2)H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the N(TB) phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. (2)H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

  12. Hydration of DNA by tritiated water and isotope distribution: a study by /sup 1/H, /sup 2/H, and /sup 3/H NMR spectroscopy

    SciTech Connect

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-06-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent /sup 3/HHO. The combined effects of temperature (-6 to -40/sup 0/C) and H/sub 2/O//sup 2/H/sub 2/O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by /sup 3/HHO (internal radiation source) localizes close to /sup 3/H due to the short range and low energy of /sup 3/H ..beta.. rays.

  13. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  14. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study.

    PubMed Central

    Pott, T; Dufourc, E J

    1995-01-01

    Solid-state deuterium and phosphorus-31 nuclear magnetic resonance studies of deuterium-labeled beta--[2,2',3,4,4',6-2H6]-cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine have been undertaken to monitor the action of melittin on model membranes containing 30 mol% cholesterol, both at the molecular and macroscopic level. Cholesterol totally inhibits the toxin-triggered formation of large unilamellar vesicles and strongly restricts the appearance of small discs. The latter remain stable over a wide temperature range (20-60 degrees C) because of an increase in their cholesterol content as the temperature increases. This process is related to a constant disc hydrophobic thickness of approximately 29 A. The system, when not in the form of discs, appears to be composed of very large vesicles on which melittin promotes magnetically induced ellipsoidal deformation. This deformation is the greatest when the maximum of discs is observed. A model to describe both the disc formation and stability is proposed. PMID:7756559

  15. Coupled changes between lipid order and polypeptide conformation at the membrane surface. A sup 2 H NMR and Raman study of polylysine-phosphatidic acid systems

    SciTech Connect

    Laroche, G.; Pezolet, M. ); Dufourc, E.J.; Dufourcq, J. )

    1990-07-10

    Thermotropism and segmental chain order parameters of sn-2-perdeuteriated dimyristoylphosphatidic acid (DMPA)-water dispersions, with and without poly(L-lysine) (PLL) of different molecular weights, have been investigated by solid-state deuterium NMR spectroscopy. The segmental chain order parameter profile of this negatively charged lipid is similar to that already found for other lipids. Addition of long PLL increases the temperature, {Tc}, of the lipid gel-to-fluid phase transition, whereas short PLL has practically no effect on {Tc}. In the fluid phase both varieties of PLL increase the plateau character of segmental order parameters up to carbon position 10. At the same reduced temperature, long PLL more significantly increases the segmental ordering, especially at the methyl terminal position. This leads to the conclusion that polar head-group capping and charge neutralization by PLL induce severe changes in lipid chain ordering, even down to the bilayer core. The structure of PLL bound to the lipid bilayer surface was monitored by Raman spectroscopy, following the amide I bands. Results show that the lipid gel-to-fluid phase transition triggers a conformational transition from ordered {beta}-sheet to random structure of short PLL, while it does not affect the strongly stabilized {beta}-sheet structure of long PLL. It is concluded that both short and long PLL can efficiently cap and neutralize lipid head groups, whatever their structure, and that peptide length is a key parameter in whether lipids or peptides are the driving force in conformationally coupled changes of both partners in the membrane.

  16. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  17. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  18. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  19. Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.

    PubMed

    Tipple, Brett J; Berke, Melissa A; Hambach, Bastian; Roden, John S; Ehleringer, James R

    2015-06-01

    The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.

  20. Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution.

    PubMed

    Farjon, Jonathan; Boisbouvier, Jérôme; Schanda, Paul; Pardi, Arthur; Simorre, Jean-Pierre; Brutscher, Bernhard

    2009-06-24

    Atomic-resolution information on the structure and dynamics of nucleic acids is essential for a better understanding of the mechanistic basis of many cellular processes. NMR spectroscopy is a powerful method for studying the structure and dynamics of nucleic acids; however, solution NMR studies are currently limited to relatively small nucleic acids at high concentrations. Thus, technological and methodological improvements that increase the experimental sensitivity and spectral resolution of NMR spectroscopy are required for studies of larger nucleic acids or protein-nucleic acid complexes. Here we introduce a series of imino-proton-detected NMR experiments that yield an over 2-fold increase in sensitivity compared to conventional pulse schemes. These methods can be applied to the detection of base pair interactions, RNA-ligand titration experiments, measurement of residual dipolar (15)N-(1)H couplings, and direct measurements of conformational transitions. These NMR experiments employ longitudinal spin relaxation enhancement techniques that have proven useful in protein NMR spectroscopy. The performance of these new experiments is demonstrated for a 10 kDa TAR-TAR*(GA) RNA kissing complex and a 26 kDa tRNA.

  1. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  2. An experiment to measure cosmic ray 2H and 3He in the 4-10 GV range

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Golden, R. L.; Stephens, S. A.

    1975-01-01

    It is known that the mean matter traversed by cosmic rays, X, can be obtained from the observed ratio of the flux of daughter nuclei to that of the parent nuclei provided X is much less than the attenuation mean free of the daughter nuclei. This condition is well satisfied in the case of 2H and 3He. We propose to measure the 2H/1H and 3He/4He ratios, using a multiwire proportional counter array and a superconducting magnet to measure the rigidity, and a set of aerogel Cerenkov counters to measure the velocity, thus yielding the mass of the particle. Results of a Monte-Carlo calculation based on actual experimental conditions are presented to show the resolution of the instrument. The area solid angle of the telescope is 90 sq cm sr with an average maximum detectable momentum of 140 GV.

  3. NMR experiments on a three-dimensional vibrofluidized granular medium

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2004-04-01

    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient NMR coupled with one-dimensional magnetic resonance imaging. The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers Nl⩽4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom, which was highly skewed and non-Gaussian. Data taken for three values of Nl and two dimensionless accelerations Γ=15,18 were fitted to a hydrodynamic theory, which successfully models the density and temperature profiles away from the vibrating container bottom. A temperature inversion near the free upper surface is observed, in agreement with predictions based on the hydrodynamic parameter μ which is nonzero only in inelastic systems.

  4. NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2003-03-01

    We have used MRI/PFG NMR methods to measure the density and granular temperature profiles for three-dimensional samples of mustard seeds fluidized by 50 Hz vertical vibration. Data were taken for several values of the bed depth and the vibration acceleration, and jointly fit to a hydrodynamic theory for granular fluids. The fit is qualitatively accurate, apart from a region immediately adjacent to the vibrating cell bottom where the grain velocity distribution is markedly non-Gaussian. In the upper portion of the sample the granular temperature increases with height despite the fact that energy input comes only from below. This corresponds to a heat current flowing opposite the temperature gradient, an effect which is predicted by the hydrodynamic theory.

  5. A general algorithm for peak-tracking in multi-dimensional NMR experiments.

    PubMed

    Ravel, P; Kister, G; Malliavin, T E; Delsuc, M A

    2007-04-01

    We present an algorithmic method allowing automatic tracking of NMR peaks in a series of spectra. It consists in a two phase analysis. The first phase is a local modeling of the peak displacement between two consecutive experiments using distance matrices. Then, from the coefficients of these matrices, a value graph containing the a priori set of possible paths used by these peaks is generated. On this set, the minimization under constraint of the target function by a heuristic approach provides a solution to the peak-tracking problem. This approach has been named GAPT, standing for General Algorithm for NMR Peak Tracking. It has been validated in numerous simulations resembling those encountered in NMR spectroscopy. We show the robustness and limits of the method for situations with many peak-picking errors, and presenting a high local density of peaks. It is then applied to the case of a temperature study of the NMR spectrum of the Lipid Transfer Protein (LTP).

  6. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  7. Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and CO 2/H 2

    NASA Astrophysics Data System (ADS)

    Sugimoto, Atsuko; Wada, Eitaro

    1993-08-01

    Anaerobic incubations of paddy soil collected from Konosu, Japan, were carried out for 10 weeks to clarify the general principles that govern the variation of carbon isotopic composition of bacterial methane from freshwater areas. The concentrations and isotopic compositions of CH 4, CO 2, and acetate produced in the incubated system were measured. The δ13C value of biogenic CH 4 was highly variable ranging from -60 to -33%., corresponding to changes in its formation pathways: acetate fermentation and CO 2/H 2reduction. Acetate accumulated only during the first week. After it became depleted, acetate production completely limited CH 4 production. The δ13C value of the methyl carbon of acetate, which was accumulated with addition of inhibitor for methanogenesis, ranged from -43 to -30%.. The δ13C value of methane from acetate was estimated to be -43 to -30%., after acetate depletion. The δ13C value of CH 4 from CO 2/H 2 reduction was estimated to be -77 to -60%.. An enrichment in 13C of CO 2 localized around the site of methanogenesis was suggested. CO 2 produced in situ during methanogenesis (e.g., CO 2 from carboxyl group of acetate) was possibly utilized as well. Using the above δ13C values of two endmembers of CH 4, the change of acetate contribution for CH 4 production was calculated: less than 12% until week 1, 65 to 100% at weeks 1 to 3, 16 to 28% at weeks 3 to 5, and 35 to 40% after week 5. Variability of CH 4δ13C resulted from the difference in contribution of each biological process. Also, the δ13C value of CH 4 was a useful indicator for assessing the contribution of each process to methane production in sulfate depleted freshwater areas.

  8. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  9. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  10. An NMR Study of Isotope Effect on Keto-Enol Tautomerization: A Physical Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Atkinson, D.; Chechik, V.

    2004-01-01

    Isotope substitution often affects the rate of an organic reaction and can be used to reveal the underlying mechanism. A series of experiments that use (super 1)H NMR to determine primary and secondary isotope effects, activation parameters, and the regioselectivity of butanone enolization are described.

  11. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  12. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  13. Parameterized signal calibration for NMR cryoporometry experiment without external standard

    NASA Astrophysics Data System (ADS)

    Stoch, Grzegorz; Krzyżak, Artur T.

    2016-08-01

    In cryoporometric experiments non-linear effects associated with the sample and the probehead bring unwanted contributions to the total signal along with the change of temperature. The elimination of these influences often occurs with the help of an intermediate measurement of a separate liquid sample. In this paper we suggest an alternative approach under certain assumptions, solely based on data from the target experiment. In order to obtain calibration parameters the method uses all of these raw data points. Its reliability is therefore enhanced as compared to other methods based on lesser number of data points. Presented approach is automatically valid for desired temperature range. The need for intermediate measurement is removed and parameters for such a calibration are naturally adapted to the individual sample-probehead combination.

  14. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. PMID:24819425

  15. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems.

  16. A magnetic gradient induced force in NMR restricted diffusion experiments.

    PubMed

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  17. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  18. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  19. Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins.

    PubMed

    Bermel, Wolfgang; Bertini, Ivano; Felli, Isabella C; Peruzzini, Riccardo; Pierattelli, Roberta

    2010-02-22

    Provided that (13)C-detected NMR experiments are either preferable or complementary to (1)H detection, we report here tools to determine C(alpha)-C', C'-N, and C(alpha)-H(alpha) residual dipolar couplings on the basis of the CON experiment. The coupling constants determined on ubiquitin are consistent with the subset measured with the (1)H-detected HNCO sequences. Since the utilization of residual dipolar couplings may depend on the mobility of the involved nuclei, we also provide tools to measure longitudinal and transverse relaxation rates of N and C'. This new set of experiments is a further development of a whole strategy based on (13)C direct-detection NMR spectroscopy for the study of biological macromolecules. PMID:20077554

  20. NMR artifacts caused by decoupling of multiple-spin coherences: improved SLAP experiment.

    PubMed

    Blechta, Vratislav; Schraml, Jan

    2015-06-01

    Contrary to common expectations, multiple-spin coherences containing products of proton and heteronucleus operators (e.g. Hu Cx , u = x, y, z) can produce not only sidebands but also noticeable centerband NMR signals of the heteronucleus during acquisition under 1H broadband decoupling. Such centerband signals of low abundant heteronuclei can be sources of relatively strong unexpected artifacts in NMR experiments that aim to detect very weak signals from much less-abundant isotopomers, e.g. 13C-13C ones. These findings lead to a new design of Sign Labeled Polarization Transfer (SLAP) pulse sequence (MSS-SLAP) with improved suppression of centerband peaks that are because of singly, e.g. 13C, labeled molecules (parent peaks). The MSS-SLAP experiment and its MSS-BIRD-SLAP variant are compared with a few older SLAP versions.

  1. NMR analysis of weak molecular interactions using slice-selective experiments via study of concentration gradients in agar gels.

    PubMed

    Mitrev, Y; Simova, S; Jeannerat, D

    2016-04-01

    Weak molecular interactions can be localized and quantified using a single NMR experiment analysing concentration gradients generated in agar gels. The spectra from various cross-sections along the gradient were obtained using a slice-selective pulse sequence realisable with standard NMR equipment.

  2. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  3. Evidence of PVT anomaly boundaries of water at high pressure from compression and NaCl.2H2O dehydration experiments.

    PubMed

    Mirwald, P W

    2005-09-22

    Isothermal compression experiments on water have been performed between 0 to 80 degrees C and up to 1.3 GPa pressure. The compressibilities derived from the water compression experiments reveal a nonsmooth PVT behavior forming two anomaly boundaries. These boundaries originate at the melting line of ice III at about 0.25 GPa/-20 degrees C, and of ice VI at about 0.8 GPa/13 degrees C. Both boundaries have a positive sloped course separating three areas of different PVT properties of water. However, this P-T topology is obscured by an unresolved complication in the temperature range of 40-60 degrees C, which allows different topological interpretations of the data. As a cross-check for the compression experiment the dehydration boundary of sodium chloride-dihydrate (NaCl.2H2O) has been determined up to 1.5 GPa. The dehydration curve of NaCl.2H2O which traverses the two anomaly boundaries shows two inflections at the intersection, at 0.27 GPa/12 degrees C and at 0.77 GPa/22 degrees C, respectively. While the isothermal compressibility curves as well as the dP/dT course of the two anomaly boundaries give evidence of two densifications of water, the slope analysis of the inflections of the NaCl-2H2O dehydration curve suggests that the entropy change plays an important role. A recent model of water at high pressure conditions proposes a gradual structural transition from a low density water (LDW) at low pressures to a high density water (HDW) at high pressures. The compression data as well as the inflections of the dehydration boundary indicate, however, two discrete structural changes of water. Data comparison with that model suggests that the anomaly boundary at lower pressure corresponds to a volume fraction [V(HDW)/(V(LDW)+V(HDW))] of 0.8, while the upper one approaches a volume fraction of 1. PMID:16392519

  4. Computer-intensive simulation of solid-state NMR experiments using SIMPSON

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr.; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

  5. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna.

  6. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  7. An NMR Spectrometer-Computer Interface Experiment: Demonstrating How Signal Averaging Influences Signal-to-Noise Ratios.

    ERIC Educational Resources Information Center

    Henner, M.; And Others

    1979-01-01

    Presents an nmr spectrometer-computer interface experiment in digital acquisition of spectroscopic data, which is intended for students nearing the end of a master's degree in physical chemistry. (HM)

  8. Combined (Super 31)P and (Super 1)H NMR Experiments in the Structural Elucidation of Polynuclear Thiolate Complexes

    ERIC Educational Resources Information Center

    Cerrada, Elena; Laguna, Mariano

    2005-01-01

    A facile synthesis of two gold(I) complexes with 1,2-benzenedithiolate ligand and two different bidentate phosphines are described. A detailed sequence of NMR experiments is suggested to determine the structure of the compounds.

  9. Molecular Mechanics and Variable-Temperature 1H NMR Studies on N,N-Diethyl-m-toluamide. An Undergraduate NMR and Molecular Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Fort, Raymond C., Jr.

    2001-04-01

    A combination of molecular modeling and variable-temperature NMR experiments is used to analyze the barrier to rotation about the amide bond of N,N-diethyl-m-toluamide (DEET). This approach utilizes the ability of computers to calculate the potential energy of a set of conformations obtained from a dihedral drive around the N-CO bond. The results of this experiment demonstrate a substantial barrier of 15.9 kcal/mol. These data are applied to a set of 1H NMR spectra taken over a range of temperatures from 9 to 85 °C. At very low temperatures the conformation is "locked" and the spectrum displays two sets of triplets and two sets of quartets for the two nonequivalent ethyl groups. However, at high temperature the rapid rotation about the amide linkage produces only one quartet and one triplet, characteristic of two indistinguishable ethyl groups. The experiment offers students hands-on experience with two important laboratory instruments and allows for both qualitative and quantitative analysis of the data. This experiment is scheduled to coincide with lecture discussion of NMR spectroscopy, after the fundamentals of bond rotation have been presented.

  10. Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2010-01-01

    The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.

  11. Double cross polarization /sup 13/C-NMR experiment in solid fossil fuel structure analysis

    SciTech Connect

    Hagaman, E.W.; Woody, M.C.

    1988-01-01

    The Double Cross Polarization /sup 13/C-MAS/NMR experiment has been used to derive a new operational classification of solid fossil fuels based on chemical reactivity. The method requires labeling reactive sites in the organic matrix with a magnetically active isotope not present in the precursor material, and using the local, isolated dipole-dipole interaction between this nucleus and nearby /sup 13/C nuclei to detect via cross polarization the carbon centers in the vicinity of the label. The technique is a marriage of chemistry and spectroscopy and the information content of the DCP spectra is defined by both partners. /sup 1/H-/sup 13/C-/sup 31/P DCP/MAS /sup 13/C-NMR spectroscopy has been used to statistically describe phenolic ortho-substitution patterns of coals via their aryl phosphinate or phosphate derivatives. In these applications of DCP NMR the new, detailed structure and/or reactivity information is realized by detection of carbon resonances one or more bonds removed from the reaction center, but in a volume element of intramolecular dimensions. To the extent that intermolecular contributions to the spectrum are detected, and not recognized as such, the structure/reactivity correlation is weakened. Direct substitution of phosphorus on the aromatic rings in the organic matrix of the coal is not readily accomplished. This environment potentially can be labeled with fluorine in a selective fashion using newly developed reagents. The possibility of determining the changes in average ring substitution patterns as a function of chemical treatment or coal diagenesis emerges. Recent developments in the field of DCP /sup 13/C NMR are presented.

  12. The Quantitative Analysis of an Analgesic Tablet: An NMR Experiment for the Instrumental Analysis Course

    NASA Astrophysics Data System (ADS)

    Schmedake, Thomas A.; Welch, Lawrence E.

    1996-11-01

    A quantitative analysis experiment is outlined that uses 13C NMR. Initial work utilizes a known compound (acenapthene) to assess the type of NMR experiment necessary to achieve a proportional response from all of the carbons in the compound. Both gated decoupling and inverse gated decoupling routines with a variety of delay times are inspected, in addition to investigation of paramagnetic additives in conjunction with inverse gated decoupling. Once the experiments with the known compound have illuminated the merits of the differing strategies for obtaining a proportional carbon response, a quantitative assessment of an unknown analgesic tablet is undertaken. The amounts of the two major components of the tablet, acetaminophen and aspirin, are determined following addition of an internal standard to the mixture. The carbon resonances emanating from each compound can be identified using spectra of the pure analgesic components and internal standard. Knowing the concentration of the internal standard and assuming a proportional response to all carbons in the sample allows calculation of the amount of both analytes in the analgesic tablets. Data from an initial laboratory trial is presented that illustrates the accuracy of the procedure.

  13. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments

    PubMed Central

    Takeuchi, Koh; Heffron, Gregory; Sun, Zhen-Yu J.; Frueh, Dominique P.

    2010-01-01

    Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low γ nuclei, such as 13C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel 15N direct-detection experiments. The CAN experiment sequentially connects amide 15N resonances using 13Cα chemical shift matching, and the CON experiment connects the preceding 13C′ nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding 13C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower γ is counteracted by the slower 15N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the 15N observe CAN experiment is 16% higher than in the 13C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field Cα resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D2O. Thus, these features and the superior resolution of 15N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST. PMID:20556482

  14. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments.

    PubMed

    Takeuchi, Koh; Heffron, Gregory; Sun, Zhen-Yu J; Frueh, Dominique P; Wagner, Gerhard

    2010-08-01

    Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding (13)C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower gamma is counteracted by the slower (15)N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the (15)N observe CAN experiment is 16% higher than in the (13)C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C(alpha) resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D(2)O. Thus, these features and the superior resolution of (15)N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.

  15. Probing Slow Protein Dynamics by Adiabatic R1ρ and R2ρ NMR Experiments

    PubMed Central

    Mangia, Silvia; Traaseth, Nathaniel J.; Veglia, Gianluigi; Garwood, Michael; Michaeli, Shalom

    2010-01-01

    Slow μsec/msec dynamics involved in protein folding, binding, catalysis and allostery are currently detected using NMR dispersion experiments such as CPMG (Carr-Purcell-Meiboom-Gill) or spin-lock R1ρ. In these methods, protein dynamics are obtained by analyzing relaxation dispersion curves obtained from either changing the time-spacing between 180° pulses or by changing the effective spin-locking field strength. In this Communication, we introduce a new method to induce a dispersion of relaxation rates. Our approach relies on altering the shape of the adiabatic full passage pulse, and is conceptually different from existing approaches. By changing the nature of the adiabatic radiofrequency irradiation, we are able to obtain rotating frame R1 and R2 (R1ρ and R2ρ) dispersion curves that are sensitive to slow μsec/msec protein dynamics (demonstrated with ubiquitin). The strengths of this method are to (a) extend the dynamic range of the relaxation dispersion analysis, (b) avoid the need for multiple magnetic field strengths to extract dynamic parameters, (c) measure accurate relaxation rates that are independent of frequency offset, and (d) reduce the stress to NMR hardware (e.g., cryoprobes). PMID:20590094

  16. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    PubMed Central

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  17. Exploring the dynamics of reaction N((2)D)+C2H4 with crossed molecular-beam experiments and quantum-chemical calculations.

    PubMed

    Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun

    2011-05-14

    We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

  18. The composition of ternary N2/CH4/C2H6 cloud droplets under Titan conditions: Monte Carlo simulations and experiment

    NASA Astrophysics Data System (ADS)

    Luckhaus, David; Firanescu, George; Kathrin Lang, E.; Patey, Grenfell N.; Signorell, Ruth

    2013-08-01

    Molecular-level Monte Carlo simulations are performed to validate equation of state approaches for the description of the N2/CH4/C2H6 vapour-liquid equilibria under conditions relevant to Titan's lower atmosphere. The Monte Carlo simulations confirm the validity of the equation of state approaches, so that both provide a reliable description of the unknown composition of cloud droplets in this region of Titan's atmosphere. Furthermore, the models are compared with experimental data from laboratory studies of aerosol droplets that contain N2, CH4 and C2H6. Good agreement is also found here.

  19. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    PubMed

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  20. Direct ¹³C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA.

    PubMed

    Fürtig, Boris; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina; Kovacs, Helena; Schwalbe, Harald

    2016-03-01

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond (1)H detection. Here, we develop (13)C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for (13)C direct detection allows correlations of donor-acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed (13)C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

  1. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  2. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  3. An NMR Experiment Based on Off-the-Shelf Digital Data-Acquisition Equipment

    ERIC Educational Resources Information Center

    Hilty, Christian; Bowen, Sean

    2010-01-01

    Nuclear magnetic resonance (NMR) poses significant challenges for teaching in the context of an undergraduate laboratory, foremost because of high equipment cost. Current off-the-shelf data-acquisition hardware, however, is sufficiently powerful to constitute the core of a fully digital NMR spectrometer operating at the earth's field. We present…

  4. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  5. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  6. Collection of NMR Scalar and Residual Dipolar Couplings Using a Single Experiment.

    PubMed

    Gil-Silva, Leandro F; Santamaría-Fernández, Raquel; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-01-11

    A new DMSO-compatible aligning gel based on cross-linked poly(2-hydroxylethyl methacrylate) (poly-HEMA) has been developed. Due to a significant difference in bulk magnetic susceptibility between the DMSO inside and outside the gel, it is possible to simultaneously collect isotropic and anisotropic NMR data, such as residual dipolar couplings (RDC), in the same NMR tube. RDC-assisted structural analysis of menthol and the alkaloid retrorsine is reported as proof of concept.

  7. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A.; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional 13C-13C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-13C labelled samples, spin diffusion leads to propagation of signal enhancement to all 13C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  8. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments.

    PubMed

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional (13)C-(13)C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-(13)C labelled samples, spin diffusion leads to propagation of signal enhancement to all (13)C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  9. Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium.

    PubMed

    Rumble, Christopher A; Kaintz, Anne; Yadav, Sharad K; Conway, Brian; Araque, Juan C; Baker, Gary A; Margulis, Claudio; Maroncelli, Mark

    2016-09-01

    Temperature-dependent (2)H longitudinal spin relaxation times (T1) of dilute benzene-d6 in 1-butyl-3-methylimidazolium tetrafluoroborate ([Im41][BF4]) and two deuterated variants of the 1-ethyl-3-methylimidazolium cation (Im21(+)-d1 and Im21(+)-d6) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Im21][Tf2N]), measured at multiple Larmor frequencies, were used to probe rotational dynamics in ionic liquids. Rotational correlation times significantly faster than predicted by slip hydrodynamic calculations were observed for both solutes. Molecular dynamics simulations of these systems enabled extraction of more information about the rotational dynamics from the NMR data than rotation times alone. The multifrequency (2)H T1(T) data could be fit to within uncertainties over a broad region about the T1 minimum using models of the relevant rotational time correlation functions and their viscosity/temperature dependence derived from simulation. Such simulation-guided fitting provided confidence in the semiquantitative accuracy of the simulation models and enabled interpretation of NMR measurements to higher viscosities than previously possible. Simulations of the benzene system were therefore used to explore the nature of solute rotation in ionic liquids and how it might differ from rotation in conventional solvents. Whereas "spinning" about the C6 axis of benzene senses similarly weak solvent friction in both types of solvents, "tumbling" (rotations about in-plane axes) differs significantly in conventional solvents and ionic liquids. In the sluggish environment provided by ionic liquids, orientational caging and the presence of rare but influential large-amplitude (180°) jumps about in-plane axes lead to rotations being markedly nondiffusive, especially below room temperature. PMID:27509215

  10. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    PubMed Central

    Dona, Anthony C.; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A.; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R.

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice. PMID:27087910

  11. NMR scanning of the pelvis: initial experience with a 0. 3 T system

    SciTech Connect

    Bryan, P.J.; Butler, H.E.; LiPuma, J.P.; Haaga, J.R.; El Yousef, S.J.; Resnick, M.I.; Cohen, A.M.; Malviya, V.K.; Nelson, A.D.; Clampitt, M.

    1983-12-01

    Pelvic NMR scans were obtained on 29 patients using a 0.3 T superconducting magnet system. Pathologies studied included four bladder carcinomas, four prostatic carcinomas, four ovarian dermoid cysts, three ovarian cysts, three endometrial carcinomas, two endometriomas, and one each of serous cystadenoma of the ovary, benign prostatic hypertrophy, pelvic hematoma, and undifferentiated sarcoma. NMR is a very promising method for characterizing pelvic masses and in staging pelvic malignancies. It can show primary tumors of the prostate, bladder, and uterus and reveals tumor extension into pelvic fat. The pelvis is particularly well suited to NMR scanning because of the abundant natural contrast provided by pelvic fat and by urine in the bladder and gas in the bowel. There is also less motion blurring than in the upper abdomen and chest because there is relatively little respiratory motion of pelvic organs. Various pulse sequences were used in scanning the pelvis; their relative merits are discussed.

  12. Deriving NMR surface relaxivities, pore size distributions and water retention curves by NMR relaxation experiments on partially de-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C. L.; Klitzsch, N.

    2013-12-01

    Nuclear magnetic resonance (NMR) is a method used over a wide field of geophysical applications to non-destructively determine transport and storage properties of rocks and soils. In NMR relaxometry signal amplitudes correspond directly to the rock's fluid (water, oil) content. On the other hand the NMR relaxation behavior, i.e. the longitudinal (T1) and transverse (T2) NMR relaxation times, can be used to derive pore sizes and permeability as it is linearly linked to the pore's surface-to-volume-ratio and physiochemical properties of the rock-fluid interface by the surface relaxivity ρ_s This parameter, however, is dependent on the type and mineral constituents of the investigated rock sample and thus has to be determined and calibrated prior to estimating pore sizes from NMR relaxometry measurements. Frequently used methods to derive surface relaxivity to calibrate NMR pore sizes comprise mercury injection, pulsed field gradients (PFG-NMR) or grain size analysis. This study introduces an alternative approach to jointly estimate NMR surface relaxivity and pore radii distributions using NMR relaxation data obtained from partially de-saturated rocks. In this, inverse modeling is carried on a linked Young Laplace equation for capillary bundles and the Brownstein and Tarr equations. Subsequently, this approach is used to predict water retention curves of the investigated rocks. The method was tested and validated on simulated and laboratory transverse NMR data. Calculated inverse models are generally in a good agreement with results obtained from mercury injection and drainage measurements. Left: Measured and predicted water retention (pF) curves. Center: NMR relaxometry data, fit and error. Right: Mercury injection data (HgPor, dashed line) and jointly derived pore radii distributions and surface relaxivity by joint inverse modelling

  13. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  14. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    SciTech Connect

    Hu, Jian Zhi

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  15. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  16. Disentangling diffusion information of individual components in a mixture with a 3D COMPACT-IDOSY NMR experiment.

    PubMed

    Shukla, Matsyendranath; Dorai, Kavita

    2012-05-01

    A new 3D diffusion-ordered heteronuclear NMR experiment COMPACT-IDOSY (cross-polarization optimized multisite polarized accelerated time internally encoded diffusion ordered spectroscopy) has been designed and experimentally implemented on a mixture of flavonoids rutin and quercetin. The pulse sequence uses a cross-polarization mixing period and diffusion encoding gradients internally incorporated into the coherence transfer interval of a long-range heteronuclear correlation experiment. Substantial reduction in experimental time, good sensitivity and excellent resolution of signal overlap lead to the accurate determination of translational diffusion coefficients of individual components in the mixture.

  17. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  18. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  19. (13)C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing.

    PubMed

    Dziekański, Paweł; Grudziąż, Katarzyna; Jarvoll, Patrik; Koźmiński, Wiktor; Zawadzka-Kazimierczuk, Anna

    2015-06-01

    Intrinsically disordered proteins (IDPs) have recently attracted much interest, due to their role in many biological processes, including signaling and regulation mechanisms. High-dimensional (13)C direct-detected NMR experiments have proven exceptionally useful in case of IDPs, providing spectra with superior peak dispersion. Here, two such novel experiments recorded with non-uniform sampling are introduced, these are 5D HabCabCO(CA)NCO and 5D HNCO(CA)NCO. Together with the 4D (HACA)CON(CA)NCO, an extension of the previously published 3D experiments (Pantoja-Uceda and Santoro in J Biomol NMR 59:43-50, 2014. doi: 10.1007/s10858-014-9827-1), they form a set allowing for complete and reliable resonance assignment of difficult IDPs. The processing is performed with sparse multidimensional Fourier transform based on the concept of restricting (fixing) some of spectral dimensions to a priori known resonance frequencies. In our study, a multiple-fixing method was developed, that allows easy access to spectral data. The experiments were tested on a resolution-demanding alpha-synuclein sample. Due to superior peak dispersion in high-dimensional spectrum and availability of the sequential connectivities between four consecutive residues, the overwhelming majority of resonances could be assigned automatically using the TSAR program. PMID:25902761

  20. Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity

    NASA Astrophysics Data System (ADS)

    Connell, Mark A.; Bowyer, Paul J.; Adam Bone, P.; Davis, Adrian L.; Swanson, Alistair G.; Nilsson, Mathias; Morris, Gareth A.

    2009-05-01

    Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coefficients. However, a significant source of systematic error exists in the spatial variation of the applied pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate from the expected exponential dependence on gradient squared. This has two undesirable effects: the apparent diffusion coefficient will deviate from the true value to an extent determined by the choice of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain a significant systematic contribution. In particular, the apparent diffusion coefficient determined by exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse widths used and on the range of gradient amplitudes chosen. These problems can be partially compensated for if experimental attenuation data are fitted to a function corrected for the measured spatial dependence of the gradient and signal strength. This study describes a general alternative to existing methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradient echoes in the presence of a weak read gradient. These data are then used to construct a predicted signal decay function for the whole sample, which is parameterised as the exponential of a power series. Results are presented which compare diffusion coefficients obtained using the new calibration method with previous literature values.

  1. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  2. Identification of an Unknown Compound by Combined Use of IR, [to the first power]H NMR, [to the thirteenth power]C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination

    ERIC Educational Resources Information Center

    Liotta, Louis J.; James-Pederson, Magdalena

    2008-01-01

    In this introductory organic chemistry experiment, the students get an opportunity to analyze and identify an unknown compound as it is done in a real-laboratory setting. First, students are instructed on the proper operation of three major instruments, NMR, IR, and GC-MS, and are given a sample of an unknown compound. The students are expected to…

  3. Hetero Diels-Alder Reaction with Aqueous Glyoxylic Acid: An Experiment in Organic Synthesis and 2-D NMR Analysis for Advanced Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Augé, Jacques; Lubin-Germain, Nadège

    1998-10-01

    As an application of the use of water as solvent in organic synthesis, a convenient synthesis of a-hydroxy-g-lactones from an aqueous solution of glyoxylic acid is described. The mechanism of the reaction leading to the lactones goes through cycloadducts which rearrange in situ. The NMR analysis of the diastereomeric lactones is particularly interesting; such an analysis illustrates the importance of modern techniques including 2-D NMR spectroscopy. Complete assignments of the signals are mentioned and NOESY spectra are enclosed. The full experiment is addressed to advanced undergraduate students who are trained in organic synthesis and NMR spectroscopy.

  4. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems.

  5. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  6. Nuclear Magnetic Resonance (NMR) Imaging Of The Brain: Initial Clinical Experience

    NASA Astrophysics Data System (ADS)

    Bydder, G. M.; Steiner, R. E.; Young, I. R.; Hall, A. S.

    1982-12-01

    Preliminary results from cranial NMR examinations of 180 patients and 40 volunteers are discussed. Three different pulse sequences have been used to produce images with varying dependence on proton density, T1 and T2. Repeated Free Induction Decay (RFID) images which largely reflect proton density are rather featureless and show limited changes in disease. Inversion-recovery (IR) images whose contrast largely depends on differences in T1 show a high level of grey white matter contrast. In addition acute haemorrhage is associated with shortened values of T but many other conditions such as infarction, infection, demyelination, oedema and thalignancy are associated with increased levels of T1. Spin-echo (SE) images whose contrast largely depends on differences in T2 show very little grey white matter contrast but highlight pathological change in a variety of conditions against the bland background of the remaining brain. NMR has a number of important advantages over CT in imaging the brain and appears likely to assume an important role in neurological diagnosis.

  7. Nearly 10(6)-fold enhancements in intermolecular (1)H double-quantum NMR experiments by nuclear hyperpolarization.

    PubMed

    Mishkovsky, Mor; Eliav, Uzi; Navon, Gil; Frydman, Lucio

    2009-09-01

    Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging - provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on (13)C nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum (1)H signals by about 600, which is significantly less than in optimized low-gamma liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 10(6). Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based (1)H NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments.

  8. The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3,4dihydro-2H-1,2,4-benzothiazine-7-sulphonamide1,1-dioxide by ab initio HF and Density Functional method.

    PubMed

    Elamurugu Porchelvi, E; Muthu, S

    2014-04-01

    The Fourier-Transform Infrared and Fourier-Transform Raman spectra of 6-Chloro-3,4dihydro-2H-1,2,4-benzothiazine-7sulphonamide1,1-dioxide(6CDBSD) was recorded in the region 4000-450cm(-1) and 4000-100cm(-1)respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 6CDBSD were carried out by HF and DFT (B3LYP) method with 6-31G (d,p) basis set. The difference between the observed and scaled wavenumber value of most of the fundamentals is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The linear polariazability (α) and the first order hyperpolarizability (βtot) values of the investigated molecule have been computed using HF and DFT with 6-31G (d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The (1)H and (13)C Nuclear Magnetic Resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic orbital (GIAO) method, confirms with the experimental values. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Thermal stability of 6CDBSD was studied by thermo gravimetric analysis (TGA). Next Fukui functions was calculated to identify changes in the reactivity of molecule. Finally molecular electrostatic potential (MEP) and other molecular properties were performed.

  9. Diels-Alder Cycloadditions: A MORE Experiment in the Organic Laboratory Including a Diene Identification Exercise Involving NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus

    2005-01-01

    Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…

  10. Determination of Solvent Effects on Keto-Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Cook, A. Gilbert; Feltman, Paul M.

    2007-01-01

    The use of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents has been a classic physical chemistry experiment. We are presenting an expansion of the excellent description of this experiment by Garland, Shoemaker, and Nibler. Often the assumption is made that the keto tautomer is always the…

  11. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  12. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.

    PubMed

    Kumar, Dinesh

    2013-09-01

    Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone ((1)H, (15)N, (13)C(α) and (13)C') resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment--(4,3)D-hnCOCANH and exploits the linear combinations of backbone ((13)C(α) and (13)C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks--which is different in sum (CA + CO) and difference (CA - CO) frequency regions--greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide (15)N and backbone (13)C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (i→i + 1) (15)N and (13)C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F₂-F₃ planes of the spectrum corresponding to sum (CA + CO) and difference (CA - CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW

  13. A Qualitative-Quantitative H-NMR Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Phillips, John S.; Leary, James J.

    1986-01-01

    Describes an experiment combining qualitative and quantitative information from hydrogen nuclear magnetic resonance spectra. Reviews theory, discusses the experimental approach, and provides sample results. (JM)

  14. Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations.

    PubMed

    Yang, Mingjun; Angles d'Ortoli, Thibault; Säwén, Elin; Jana, Madhurima; Widmalm, Göran; MacKerell, Alexander D

    2016-07-28

    The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. PMID:27346493

  15. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  16. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    PubMed

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  17. The Fourier Transform in Chemistry-NMR, Part 3. Multiple-Pulse Experiments.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; King, Roy W.

    1990-01-01

    Described are six multipulse experiments with an emphasis on their application to common problems in chemistry. Exercises in relaxation time measurement, spin echoes, and polarization transfer are proposed. (CW)

  18. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  19. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite† †Electronic supplementary information (ESI) available: Further information on the structures generated by AIRSS, alternative structural models, supercell calculations, total enthalpies of all computed structures and further information on 1H/2H NMR parameters. Example input and all raw output files from AIRSS and CASTEP NMR calculations are also included. See DOI: 10.1039/c6cp01529h Click here for additional data file.

    PubMed Central

    Moran, Robert F.; McKay, David; Pickard, Chris J.; Berry, Andrew J.; Griffin, John M.

    2016-01-01

    The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg2+ and randomly placing two H+ in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1–H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4–H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies. PMID:27020937

  20. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.

  1. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate [superscript 1]H NMR Experiment to Introduce Chiral Chemistry

    ERIC Educational Resources Information Center

    Faraldos, Juan A.; Giner, Jos-Luis; Smith, David H.; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Holmes, Andrea E.; Rouhier, Kerry

    2011-01-01

    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting…

  2. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  3. Synthesis, structural characterization, and solid-state NMR spectroscopy of [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (phen=1, 10-phenanthroline), two organic-inorganic hybrid compounds with 1-D chain structures

    SciTech Connect

    Chang, W.-J.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. . E-mail: liikh@cc.ncu.edu.tw

    2005-12-15

    Two new organic-inorganic hybrid compounds, [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O (1) and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (2) (phen=1,10-phenanthroline), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. Their structures consist of 1-D chains of strictly alternating GaO{sub 4}N{sub 2} octahedra and phosphate tetrahedra. The phen ligands in both compounds bind in a bidentate fashion to the gallium atoms and the 1-D structures extend into 3-D supramolecular arrays via {pi}-{pi} stacking interactions of phen ligands and hydrogen bonds. {sup 2}H MAS NMR spectroscopy was applied to study the deuterated sample of 1 which contains very short hydrogen bonds with an O-O distance of 2.406(2) A. Crystal data for 1: monoclinic, space group C2/c (No. 15), a=11.077(1) A, b=21.496(2) A, c=7.9989(7) A, {beta}=127.211(2){sup o}, and Z=4. The crystal symmetry is the same for 2 as for 1 except a=27.555(2) A, b=6.3501(5) A, c=21.327(2) A, {beta}=122.498(1){sup o}, and Z=8.

  4. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  5. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGES

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  6. Residue-specific NH exchange rates studied by NMR diffusion experiments

    NASA Astrophysics Data System (ADS)

    Brand, Torsten; Cabrita, Eurico J.; Morris, Gareth A.; Günther, Robert; Hofmann, Hans-Jörg; Berger, Stefan

    2007-07-01

    We present a novel approach to the investigation of rapid (>2 s -1) NH exchange rates in proteins, based on residue-specific diffusion measurements. 1H, 15N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.

  7. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  8. Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity

    NASA Astrophysics Data System (ADS)

    Muhandiram, D. R.; Kay, L. E.

    1994-03-01

    The sensitivities of a number of gradient and nongradient versions of triple-resonance experiments are compared by quantitating the signal-to-noise ratios in spectra recorded on Cellulomonas fimi cellulose binding domain (110 amino acids), Xenopus laevis calmodulin (148 amino acids), Mycococcus xanthus protein S (173 amino acids), and a 93-amino acid fragment of protein S. It is shown that it is possible to construct sensitivity-enhanced gradient experiments, with 15N selection achieved via pulsed field gradients, that are as sensitive as their sensitivity-enhanced nongradient counterparts and significantly more sensitive than other gradient approaches. These sequences are very closely related to the family of improved-sensitivity sequences proposed by Rance and co-workers (A. G. Palmer, J. Cavanagh, P. E. Wright, and M. Rance, J. Magn. Reson.93, 151, 1991). The use of gradients greatly improves the quality of water suppression and reduces both the number of artifacts and the phase-cycling requirements at no cost in sensitivity for the proteins considered in this study.

  9. High Resolution NMR Spectroscopy on Whole-Body Imagers:Optimized Single-and Multi-Pulse Experiments in Vitro

    NASA Astrophysics Data System (ADS)

    Schick, Fritz

    1995-10-01

    From 100 ml spherical glass bottles filled with aqueous solutions and suspended in a homogeneous magnetic field, NMR spectra with linewidths of about 0.7 Hz were achieved in single-pulse and multi-pulse spectra. A relatively wide receiver coil as the body coil or the standard head coil of the manufacturer were employed to acquire spectra after different non-localized pulse sequences. Examples of single-pulse spectra and double spin-echo spectra of aqueous solutions with lactate, citrate, or glucose are demonstrated and discussed. The fact that all experiments can be performed using well-defined pulse angles acting on the entire sample at the field strenght of the whole-body unit allows to determine the characteristics (e.g. chemical shift differences, coupling constants) of spin systems of biologically important molecules precisely, without need for additional spectrometers. Constant flip angles are advantageous for adequate theoretical analysis of spectra from coupled spin systems. The effects of a defined "misadjustment" of the transmitter on the spectra can be measured directly, whereas localized methods always yield a superposition of signals due to the distribution of flip angles inside the selected volume. In some cases, optimized sequence parameters for localized examinations in vivo can be derived numerically from the analyzed coupling data.

  10. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  11. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp

  12. Triple resonance experiments for aligned sample solid-state NMR of 13C and 15N labeled proteins

    PubMed Central

    Sinha, Neeraj; Grant, Christopher V.; Park, Sang Ho; Brown, Jonathan Miles; Opella, Stanley J.

    2013-01-01

    Initial steps in the development of a suite of triple-resonance 1H/13C/15N solid-state NMR experiments applicable to aligned samples of 13C and 15N labeled proteins are described. The experiments take advantage of the opportunities for 13C detection without the need for homonuclear 13C/13C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are ~20% randomly labeled with 13C in all backbone and side chain carbon sites and ~100% uniformly 15N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are 13C labeled at only the α-carbon and 15N labeled at the amide nitrogen of a few residues. The requirement for homonuclear 13C/13C decoupling while detecting 13C signals is avoided in the first case because of the low probability of any two 13C nuclei being bonded to each other; in the second case, the labeled 13Cα sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the 13C chemical shift and 1H–13C and 15N–13C heteronuclear dipolar coupling frequencies associated with the 13Cα and 13C′ backbone sites, which provide orientation constraints complementary to those derived from the 15N labeled amide backbone sites. 13C/13C spin-exchange experiments identify proximate carbon sites. The ability to measure 13C–15N dipolar coupling frequencies and correlate 13C and 15N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the 13C chemical shift and 1H–13C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach. PMID:17293139

  13. Dynamics of molecular hydrogen in the complex trans-(Fe(. eta. sup 2 -H sub 2 )(H)(PPh sub 2 CH sub 2 CH sub 2 PPh sub 2 ) sub 2 )BF sub 4 in the solid state as revealed by neutron-scattering experiments

    SciTech Connect

    Eckert, J.; Blank, H. ); Bautista, M.T.; Morris, R.H. )

    1990-02-21

    The vibrational spectrum of the Fe({sup eta}{sup 2}-H{sub 2})H fragment in trans-(FeH(H{sub 2})(PPh{sub 2}CH{sub 2}CH{sub 2}PPh{sub 2}){sub 2})BF{sub 4} has been obtained by inelastic neutron scattering in the range 200-1,000 cm{sup {minus}1}. High-resolution neutron spectroscopy was also utilized to observe the rotational tunnel splitting of the librational ground state of the dihydrogen ligand at 2.1 cm{sup {minus}1}. This and the torsional transitions assigned at 225 and 255 cm{sup {minus}1} are consistent with a modulated double-minimum potential for rotation with one angular degree of freedom. The resulting barrier to rotation of about 2.3 kcal/mol is discussed in terms of its origin in electronic and steric factors and compared with similar results on other molecular hydrogen complexes. 25 refs., 2 figs., 1 tab.

  14. Synthesis, crystal structure and physico-chemical properties of 3,3'-[(4-hydroxyphenyl)methyl] bis-(4-hydroxy-2H-chromen-2-one).

    PubMed

    Elenkova, Denitsa; Morgenstern, Bernd; Manolov, Ilia; Milanova, Maria

    2014-01-01

    The compound 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) was synthesized by the Knoevenagel reaction. Crystals, suitable for X-ray data collection, were grown by slow evaporation from an ethanol solution. The product 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) · ethanol crystallizes in the monoclinic system, space group P2(1)/n. The ultraviolet/visible absorption spectra in different solvents were recorded. Sensitivity of the compound to solvent polarity and hydrogen bonding with protic (ethanol, H(2)O) and aprotic (dimethylsulfoxide, acetonitrile) solvents was detected. Based on (1)H-NMR spectroscopy as well as on potentiometric and UV/vis titration experiments the acid dissociation constants for 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) were estimated. PMID:25551711

  15. Achievement of 1020MHz NMR.

    PubMed

    Hashi, Kenjiro; Ohki, Shinobu; Matsumoto, Shinji; Nishijima, Gen; Goto, Atsushi; Deguchi, Kenzo; Yamada, Kazuhiko; Noguchi, Takashi; Sakai, Shuji; Takahashi, Masato; Yanagisawa, Yoshinori; Iguchi, Seiya; Yamazaki, Toshio; Maeda, Hideaki; Tanaka, Ryoji; Nemoto, Takahiro; Suematsu, Hiroto; Miki, Takashi; Saito, Kazuyoshi; Shimizu, Tadashi

    2015-07-01

    We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra. PMID:25978708

  16. Pure shift NMR.

    PubMed

    Zangger, Klaus

    2015-04-01

    Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited resolution is a particular problem in proton NMR experiments, resulting in part from the limited proton chemical shift range (∼10 ppm) but even more from the splittings due to scalar coupling to nearby protons. "Pure shift" NMR spectroscopy (also known as broadband homonuclear decoupling) has been developed for disentangling overlapped proton NMR spectra. The resulting spectra are considerably simplified as they consist of single lines, reminiscent of proton-decoupled C-13 spectra at natural abundance, with no multiplet structure. The different approaches to obtaining pure shift spectra are reviewed here and several applications presented. Pure shift spectra are especially useful for highly overlapped proton spectra, as found for example in reaction mixtures, natural products and biomacromolecules.

  17. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations

    PubMed Central

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-01-01

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351

  18. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  19. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects.

    PubMed

    Brumm, T; Möps, A; Dolainsky, C; Brückner, S; Bayerl, T M

    1992-04-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with (2)H-, (31)P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze-etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit (31)P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature.The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as (31)P-and (2)H-NMR lineshapes and relaxation times as well as (2)H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied.

  20. 2H nuclear magnetic resonance study of deuterated water dynamics in perfluorosulfonic acid ionomer Nafion

    NASA Astrophysics Data System (ADS)

    Han, Jun Hee; Lee, Kyu Won; Lee, Cheol Eui

    2016-11-01

    We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin-lattice relaxation, the rotating-frame spin-lattice relaxation indicated no bulk liquid water state down to 200 K.

  1. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  2. Acetone and Ethyl Acetate in Commercial Nail Polish Removers: A Quantitative NMR Experiment Using an Internal Standard

    NASA Astrophysics Data System (ADS)

    Clarke, David W.

    1997-12-01

    The qualitative and quantitative analysis of commercial nail polish removers is performed on a 60 MHz NMR spectrometer. After taking NMR spectra of the polish removers, students can make peak assignments for the known components of acetone and ethyl acetate. Using these spectra, students are also able to identify the unknown alcohol present in the remover as ethanol. Quantitative analysis of either the acetone or ethyl acetate in the nail polish removers is accomplished by comparing the analyte peak intensities with that of an internal standard. The system in which deuterated acetone is used as a solvent and methylene chloride as an internal standard gave precise results for both commercial removers and for standards prepared from pure acetone or an ethyl acetate/ethanol mixture. As recovery from the standards was approximately 96 - 98% of what was anticipated, the analysis of the commercial products is also believed to be accurate.

  3. Molecular Recognition of Ligands by Native Viruses and Virus-Like Particles as Studied by NMR Experiments

    NASA Astrophysics Data System (ADS)

    Rademacher, Christoph; Peters, Thomas

    Viral entry into host cells is a process that in the majority of cases is not understood in its molecular details. The first step of viral entry is the recognition of cellular receptors on host cells by viruses, and although X-ray crystallography had yielded some spectacular results in individual cases, in general there is little data available to unravel the principles of virus-ligand recognition at atomic resolution. Therefore, new techniques that uncover the molecular details of these recognition processes are needed. The investigation of virus-ligand interactions using ligand-based NMR techniques is an emerging field with the potential to substantially contribute to a deeper understanding of the molecular aspects of viral entry into host cells. Here, we give an overview that covers some of the systems studied so far. This comprises native viruses as well as virus-like particles (VLPs). We will not address studies that have been performed with individual proteins that are not in a native environment. It turns out that STD NMR in particular has a great potential to shine light on the viral entry process as this technique requires only very moderate amounts of viruses or VLPs and corresponding ligands. As a further advantage, this approach is also applicable to ligands that bind to viruses with medium to low affinity. Therefore, STD NMR is extremely well suited for development of antiviral entry inhibitors utilizing fragment-based approaches with low molecular weight compounds.

  4. Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond time scale.

    PubMed

    Torres, Olga; Procacci, Barbara; Halse, Meghan E; Adams, Ralph W; Blazina, Damir; Duckett, Simon B; Eguillor, Beatriz; Green, Richard A; Perutz, Robin N; Williamson, David C

    2014-07-16

    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3)3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan (1)H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial (31)P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube.

  5. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented.

  6. On the use of time-averaging restraints when deriving biomolecular structure from [Formula: see text]-coupling values obtained from NMR experiments.

    PubMed

    Smith, Lorna J; van Gunsteren, Wilfred F; Hansen, Niels

    2016-09-01

    Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]. Ways to properly handle these issues in structure refinement of biomolecules are discussed and illustrated using the protein hen egg white lysozyme as example.

  7. An improved method for suppressing protein background in PFG NMR experiments to determine ligand diffusion coefficients in the presence of receptor

    NASA Astrophysics Data System (ADS)

    Becker, Bridget A.; Morris, Kevin F.; Larive, Cynthia K.

    2006-08-01

    In NMR diffusion experiments to study ligand-protein binding equilibria, the spectral background due to broad protein resonances can contribute significantly to the measured ligand signal intensity resulting in erroneous binding affinities. One method to suppress the protein spectral background involves coupling a CPMG pulse train before or after the BPPSTE pulse sequence to allow for differential T2 relaxation of the broad protein resonances. Here, we present an improved method, the Gradient Phase Encoded Spin-lock (GraPES) experiment that integrates the relaxation filter into the diffusion period. Compared with sequential CPMG-BPPSTE pulse sequences, GraPES offers effective suppression of the protein background with improved signal-to-noise ratios and shorter experiment times.

  8. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such

  9. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  10. Synthesis of [2H7]indatraline.

    PubMed

    Allmendinger, L; Wanner, K T

    2014-11-01

    Deuterium-labelled indatraline was synthesized in high efficiency employing a Friedel-Crafts alkylation of [(2)H6]benzene with (E)-3-(3,4-dichlorophenyl)acrylic acid as a key step. The desired labelling of the final compound was ascertained in two ways, by incorporation of [(2)H6]benzene in the target molecule and additionally by deuterium transfer to the non-deuterated aryl moiety of the Friedel-Crafts alkylation product from [(2)H6]benzene, the latter thus serving as reagent and solvent. PMID:25382822

  11. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  12. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    SciTech Connect

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-21

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  13. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-01

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  14. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    PubMed

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. PMID:21935954

  15. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    PubMed

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose.

  16. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  17. Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: caveats and data analysis.

    PubMed

    Lipton, Andrew S; Heck, Robert W; Sears, Jesse A; Ellis, Paul D

    2004-05-01

    Solid-state NMR spectroscopy of half-integer quadrupolar nuclides has received a lot of interest recently with the advent of new methodologies and higher magnetic fields. We present here the extension of our previous low temperature method to an 18.8T system. This new probe entailed a total redesign including a cross coil and variable capacitors that are operational at cryogenic temperatures. The limitations to sensitivity are also discussed; including a new diode network, the utilization of a cryogenic band pass filter, and the consequences of the RF profiles of the coil. Further, details of the spectroscopy of quadrupolar nuclei in a protein are discussed, such as the observation of the outer transitions and how to distinguish them from the desired +/-1/2 transition.

  18. Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments.

    PubMed

    Patel, Dhilon S; Pendrill, Robert; Mallajosyula, Sairam S; Widmalm, Göran; MacKerell, Alexander D

    2014-03-20

    Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton-proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2' hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6' atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. PMID:24552401

  19. Changes in Transmembrane Helix Alignment by Arginine Residues revealed by Solid-State NMR Experiments and Coarse-Grained MD Simulations

    PubMed Central

    Vostrikov, Vitaly V.; Hall, Benjamin A.; Greathouse, Denise V.; Koeppe, Roger E.; Sansom, Mark S. P.

    2010-01-01

    Independent experimental and computational approaches show agreement concerning arginine/membrane interactions when a single arginine is introduced at selected positions within the membrane-spanning region of acetyl-GGALW5LALALAL12AL14ALALW19LAGA-ethanolamide, designated GWALP23. Peptide sequence isomers having Arg in position 12 or position 14 display markedly different behaviors, as deduced by both solid-state NMR experiments and coarse-grained molecular dynamics (CG-MD) simulations. With respect to the membrane normal of DOPC or DPPC lipid bilayer membranes, GWALP23-R14 shows one major state whose apparent average tilt is ~10° greater than that of GWALP23. The presence of R14 furthermore induces bilayer thinning and peptide displacement to “lift” the charged guanidinium toward the bilayer surface. By contrast, GWALP23-R12 exhibits multiple states that are in slow exchange on the NMR time scale, with CG-MD simulations indicating two distinct positions with different screw rotation angles in the membrane, along with an increased tendency to exit the lipid bilayer. PMID:20373735

  20. Simultaneous estimation of T₁ and the flip angle in hyperpolarized NMR experiments using acquisition at non-regular time intervals.

    PubMed

    Puckeridge, Max; Pagès, Guilhem; Kuchel, Philip W

    2012-09-01

    In NMR spectroscopy of the liquid state T(1) is typically measured using an inversion recovery pulse sequence; but with hyperpolarized spins use is made of a sequence of multiple small radiofrequency (RF) induced nutations, α. Depending on the values of α and τ, the time interval between the pulses, the estimate of T(1) can be artifactually smaller than the real value; so without knowing the value of α the estimate of T(1) can be incorrect. Thus, we propose a method that involves a series of pulses with timing governed by a geometric sequence (or in general, any mathematically specified non-uniformly spaced sequence). This approach enables the simultaneous estimation of both the intrinsic T(1) value and α. The method was successfully applied to obtain T(1)=(44.9 ± 0.3)s and α=(4.0 ± 0.2)° (n=3) for a sample of hyperpolarized (13)C-urea in solution, matching with the inversion recovery pulse sequence estimate of T(1)=44 ± 2s using non-hyperpolarized (13)C-urea in solution.

  1. On the use of time-averaging restraints when deriving biomolecular structure from [Formula: see text]-coupling values obtained from NMR experiments.

    PubMed

    Smith, Lorna J; van Gunsteren, Wilfred F; Hansen, Niels

    2016-09-01

    Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]. Ways to properly handle these issues in structure refinement of biomolecules are discussed and illustrated using the protein hen egg white lysozyme as example. PMID:27627888

  2. NMR studies on epoxidations of allenamides. Evidence for formation of nitrogen-substituted allene oxide and spiro-epoxide via trapping experiments.

    PubMed

    Rameshkumar, C; Xiong, Hui; Tracey, Michael R; Berry, Craig R; Yao, Letitia J; Hsung, Richard P

    2002-02-22

    Two epoxidations of chiral allenamides are described here. While treatment with m-CPBA led to highly stereoselective formation of an alpha-keto aminal that can be useful synthetically, DMDO oxidation led to conclusive evidence for both nitrogen-substituted allene oxide (via mono-epoxidation) and spiro-epoxide (via bis-epoxidation) using intramolecular nucleophilic trapping experiments. NMR studies provide reliable evidence for a 3-oxetanone that can be derived from the spiro-epoxide and also suggest the presence of an allene oxide. Despite a facile second epoxidation as evidenced by the predominant formation of the 3-oxetanone, in the presence of furan, [4 + 3] cycloaddition of the nitrogen-substituted allene oxide or oxyallyl cation with furan occurs faster than the second epoxidation efficiently leading to cycloadducts. This rate difference plays an invaluable role for the success of a stereoselective sequential epoxidation-[4 + 3] cycloaddition reaction via DMDO epoxidations of chiral allenamides.

  3. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  4. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics.

  5. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic

  6. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. PMID:26480341

  7. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.

  8. Product operator descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\frac{1}{2}, S=\\frac{3}{2}; n=1, 2, 3) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Bahçeli, Semiha

    2010-02-01

    There are a variety of multi-pulse nuclear magnetic resonance (NMR) experiments for spectral assignment of complex molecules in a solution. The two-dimensional (2D) distortionless enhancement by polarization transfer (DEPT) J-resolved NMR experiment is a 13C-detected, spectral editing polarization transfer technique. The product operator theory is widely used for an analytical description of the multi-pulse NMR experiment for weakly coupled spin systems. In this study, analytical descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\textstyle{\\frac{1}{2}}, S=\\textstyle{\\frac{3}{2}} ; n=1, 2, 3) spin systems using the product operator theory have been introduced for the first time. The calculated intensities and positions of the observable signals are simulated for molecules containing [13C (I=\\textstyle{\\frac{1}{2}}) , 81Br (S=\\textstyle{\\frac{3}{2}})] nuclei by using a MAPLE program on a computer. Finally, we present a theoretical discussion and experimental suggestions.

  9. 13-C NMR Spectra of Styrene Derivatives: An Undergraduate Experiment Involving the Application of the Hammett Equation.

    ERIC Educational Resources Information Center

    Blunt, J. W.; Happer, D. A. R.

    1979-01-01

    In this experiment, the observation that, for meta- and para-substituted styrene derivatives, the magnitude of the C-13 shielding value for the beta-carbon is linearly related to sigma for the ring substituent is used to determine sigma. (BB)

  10. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  11. A 3D Time-Shared NOESY Experiment Designed to Provide Optimal Resolution for Accurate Assignment of NMR Distance Restraints in Large Proteins

    PubMed Central

    Mishra, Subrata H; Harden, Bradley J

    2014-01-01

    Structure determination of proteins by solution NMR has become an established method, but challenges increase steeply with the size of proteins. Notably spectral crowding and signal overlap impair the analysis of cross-peaks in NOESY spectra that provide distance restraints for structural models. An optimal spectral resolution can alleviate overlap but requires prohibitively long experimental time with existing methods. Here we present a time-shared 3D experiment optimized for large proteins that provides 15N and 13C dispersed NOESY spectra in a single measurement. NOESY correlations appear in the detected dimension and hence benefit from the highest resolution achievable of all dimensions without increase in experimental time. By design, this experiment is inherently optimal for non-uniform sampling acquisition when compared to current alternatives. Thus, 15N and 13C dispersed NOESY spectra with ultra-high resolution in all dimensions were acquired in parallel within about 4 days instead of 80 days for a 52 kDa monomeric protein at a concentration of 350 μM. PMID:25381567

  12. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins.

    PubMed

    Ward, Meaghan E; Ritz, Emily; Ahmed, Mumdooh A M; Bamm, Vladimir V; Harauz, George; Brown, Leonid S; Ladizhansky, Vladimir

    2015-12-01

    Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.

  13. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials.

    PubMed

    Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay

    2013-09-16

    Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties.

  14. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments.

    PubMed

    Muñoz-García, Juan C; Chabrol, Eric; Vivès, Romain R; Thomas, Aline; de Paz, José L; Rojo, Javier; Imberty, Anne; Fieschi, Franck; Nieto, Pedro M; Angulo, Jesús

    2015-04-01

    Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns

  15. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  16. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Uncertainty minimization in NMR measurements of dynamic nuclear polarization of a proton target for nuclear physics experiments

    SciTech Connect

    Keller, Dustin M.

    2013-11-01

    A comprehensive investigation into the measurement uncertainty in polarization produced by Dynamic Nuclear Polarization is outlined. The polarization data taken during Jefferson Lab experiment E08-007 is used to obtain error estimates and to develop an algorithm to minimize uncertainty of the measurement of polarization in irradiated View the ^14NH_3 targets, which is readily applied to other materials. The target polarization and corresponding uncertainties for E08-007 are reported. The resulting relative uncertainty found in the target polarization is determined to be less than or equal to 3.9%.

  18. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  19. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  20. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  1. Indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4 - Gas-phase NMR experiment and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Antušek, Andrej; Keḑziera, Dariusz; Jackowski, Karol; Jaszuński, Michał; Makulski, Włodzimierz

    2008-09-01

    New values of the indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4, derived from experiment and ab initio calculations, are reported. The new experimental values of 1J(CH), 1J(SiH) and 1J(GeH) are obtained from gas-phase NMR spectra. The dependence of the measured one-bond coupling constants on the density is analysed and the results are extrapolated to zero-density point to eliminate the effects due to intermolecular forces. In the calculation of the coupling constants, at the nonrelativistic level coupled cluster singles and doubles (CCSD) perturbation theory is used and the basis set convergence of the results is discussed. The relativistic corrections are estimated from Dirac-Hartree-Fock (DHF) calculations. The final theoretical values are obtained adding available estimates of the vibrational and temperature corrections. The agreement of the calculated and experimental 1J(XH), X = C, Si, Ge, constants is very satisfying, the differences are approximately 1-3%.

  2. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.

    PubMed

    Ba, Yong; Mao, Yougang; Galdino, Luiz; Günsen, Zorigoo

    2013-01-01

    The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters. PMID:23860838

  3. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  4. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  5. A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Lin, Tung-Yin

    2008-01-01

    An experiment is described involving the nitration of ortho or meta monosubstituted benzoic acids (XC[subscript 6]H[subscript 4]CO[subscript 2]H, X = Halogen, Me, OH, or OMe) and monochlorinated acetanilides with nitric acid to determine the regioselectivity of addition by [superscript 1]H NMR spectroscopy and molecular modeling. Students were…

  6. Microwave-assisted synthesis of novel 2H-chromene derivatives bearing phenylthiazolidinones and their biological activity assessment.

    PubMed

    El Azab, Islam H; Youssef, Mohamed M; Amin, Mahmoud A

    2014-01-01

    6-Hydroxy-2-oxo-2H-chromene-4-carbaldehyde (2), 6-chloro-2-oxo-2H-chromene-4-carbaldehyde (3) and 6-hydrazinyl-4-methyl-2H-chromen-2-one (5) were prepared as single-pharmacophore motif key intermediates. Compounds 2, 3 and 5 were incorporated in a series of multicomponent reactions (MCRs), under microwave assistance as well as conventional chemical synthesis processes, to afford a series of three and/or four-pharmacophoric-motif conjugates 8a,b, 11, 13, 16, 17, 19 and 20 in good yields. The newly synthesized compounds were characterized by IR, NMR, 13C-NMR, MS and elemental analyses. Finally the synthesized compounds have been screened for their biological activity whereupon they exhibited remarkable antimicrobial activity on different classes of bacteria and the fungus. PMID:25432014

  7. Solid State 2H NMR Analysis of Furanose Ring Dynamics in DNA Containing Uracil

    PubMed Central

    Kinde-Carson, Monica N.; Ferguson, Crystal; Oyler, Nathan A.; Harbison, Gerard S.; Meints, Gary A.

    2010-01-01

    DNA damage has been implicated in numerous human diseases, particularly cancer, and the aging process. Single-base lesions, such as uracil, in DNA can be cytotoxic or mutagenic and are recognized by a DNA glycosylase during the process of base excision repair. Increased dynamic properties in lesion-containing DNAs have been suggested to assist recognition and specificity. Deuterium solid-state nuclear magnetic resonance (SSNMR) has been used to directly observe local dynamics of the furanose ring within a uracil: adenine (U:A) base pair and compared to a normal thymine:adenine (T:A) base pair. Quadrupole echo lineshapes, ⟨T1Z⟩, and ⟨T2e⟩ relaxation data were collected, and computer modeling was performed. The results indicate that the relaxation times are identical within the experimental error, the solid lineshapes are essentially indistinguishable above the noise level, and our lineshapes are best fit with a model that does not have significant local motions. Therefore, U:A base pair furanose rings appear to have essentially identical dynamic properties as a normal T:A base pair, and the local dynamics of the furanose ring are unlikely to be the sole arbiter for uracil recognition and specificity in U:A base pairs. PMID:20151717

  8. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed Central

    Bonev, B B; Morrow, M R

    1995-01-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  9. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed

    Bonev, B B; Morrow, M R

    1995-08-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  10. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  11. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  12. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  13. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  14. NMR spectroscopy of some electrolyte solutions to 1.9 GPa

    NASA Astrophysics Data System (ADS)

    Ochoa, Gerardo; Colla, Christopher A.; Klavins, Peter; Augustine, Matthew P.; Casey, William H.

    2016-11-01

    Nuclear-magnetic resonance (NMR) spectra of CsCl and LaCl3 in D2O/H2O solutions were collected up to pressures of 1.9 GPa using a new NMR probe design that considerably extends the pressure range available for geochemical experiments. The longitudinal-relaxation times (T1) for 2H compare well with those reported in the previous studies of Lee et al. (1974), who examined lower pressures, and indicate that the probe functions properly. In some experiments, 133Cs and 1H NMR spectra could be taken on solutions to pressures well beyond the nominal freezing pressure of D2O or H2O to form Ice VI (near 0.9 GPa). Freezing to form the high-pressure ice is kinetically slow on an experimental time scale (minutes to hours). The data indicate that the electrolyte concentrations increase the freezing pressure of the solution. This result means that solution NMR spectra can be collected at pressures that are nearly twice the nominal freezing pressure of pure D2O or H2O. Pulsed-magnetic-field-gradient NMR methods are used to independently measure the self-diffusion coefficient of H2O in these solutions, which yields estimates of solution viscosity via the Stokes-Einstein relation. The increased viscosity accounts for the pressure variation of T1 values as rates of molecular tumbling are affected. Accounting for such changes is essential if NMR spectral line widths are used to infer pressure-enhanced rates of geochemical reactions, such as interconversion of aqueous complexes.

  15. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.

    PubMed

    Wattraint, Olivier; Warschawski, Dror E; Sarazin, Catherine

    2005-04-12

    2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy. PMID:15807556

  16. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  17. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  18. NMR of molecules partially oriented in the gas phase

    NASA Astrophysics Data System (ADS)

    van Zijl, Peter C. M.; MacLean, C.; Skoglund, Cynthia; Bothner-By, Aksel A.

    The vapor phase 2H NMR spectra of monodeuterobenzene and pentadeuterofluorobenzene were recorded at 14.1 T. Reduction of the collision time, and thus of the linewidth, was accomplished by compressing the gas to 10.8 atm with ethane. The molecules are aligned by the field of the spectrometer and, as a consequence, quadrupolar couplings are recorded. Differences from the liquid-phase spectra arise in some of the quadrupolar splittings as well as in the scalar D-F couplings. It is rationalized that the deviating quadrupolar interaction cannot be caused by interactions resulting from incomplete quenching of the rotation, but originates from environmental effects on the quadrupolar coupling in the liquid. The results agree with recent microwave experiments.

  19. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  20. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  1. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  2. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  3. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  4. Disentangling scalar coupling patterns by real-time SERF NMR.

    PubMed

    Gubensäk, Nina; Fabian, Walter M F; Zangger, Klaus

    2014-10-21

    Scalar coupling constants and signal splitting patterns in NMR spectra contain a wealth of short-range structural information. The extraction of these parameters from (1)H NMR spectra is often prohibited by simultaneous scalar coupling interactions with several other protons. Here we present a high-resolution NMR experiment where scalar coupling to only one selected signal is visible. All other couplings are removed from the spectrum. This real-time selectively refocused NMR experiment is achieved by spatially selective homonuclear broadband decoupling combined with selective refocusing during acquisition. It allows the unperturbed extraction of scalar coupling constants from the highly resolved acquisition dimension of NMR spectra.

  5. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  6. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  7. Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR.

    PubMed

    Buntkowsky, Gerd; Breitzke, Hergen; Adamczyk, Anna; Roelofs, Frank; Emmler, Thomas; Gedat, Egbert; Grünberg, Bob; Xu, Yeping; Limbach, Hans-Heinrich; Shenderovich, Ilja; Vyalikh, Anastasia; Findenegg, Gerhard

    2007-09-21

    In the last fifteen years several novel porous silica materials, which are periodically structured on the mesoscopic length scale, have been synthesized. They are of broad interest for fundamental studies of surface-substrate interactions, for studies of the dynamics of guest molecules in confinement and for studies of the effect of confinement on the structural and thermophysical properties of fluids. Examples of such confinement effects include the change of the freezing and melting points or glass transitions of the confined liquids. These effects are studied by combinations of several NMR techniques, such as (15)N- and (2)H-solid-state NMR line shape analysis, MAS NMR and NMR diffusometry with physico-chemical characterization techniques such as nitrogen adsorption and small angle diffraction of neutrons or X-rays. This combination does not require crystalline samples or special clean and well defined surfaces such as conventional surface science techniques, but can work with typical ill-defined real world systems. The review discusses, after a short introduction, the salient features of these materials and the applied NMR experiments to give the reader a basic knowledge of the systems and the experiments. The rest of the review then focuses on the structural and dynamical properties of guest molecules confined in the mesoporous silica. It is shown that the confinement into the pores leads to fascinating new features of the guests, which are often not known for their bulk phases. These features depend strongly on the interplay of the their interactions with the silica surface and their mutual interactions. PMID:17912415

  8. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  9. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  10. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.

    PubMed

    Zhang, Rongchun; Pandey, Manoj Kumar; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-01-01

    Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although (1)H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution. PMID:26138791

  11. In-cell NMR spectroscopy.

    PubMed

    Serber, Zach; Corsini, Lorenzo; Durst, Florian; Dötsch, Volker

    2005-01-01

    The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations. PMID:15808216

  12. An XPS investigation of the interaction of CH 4, C 2H 2, C 2H 4 and C 2H 6 with a barium surface

    NASA Astrophysics Data System (ADS)

    Verhoeven, J. A. Th.; Van Doveren, H.

    1982-12-01

    The generation and pumping of hydrocarbon gases by a barium getter layer in electronic vacuum devices has been investigated by characterizing a barium film in an ultra high vacuum equipment by means of XPS before, during and after exposures to respectively CH 4, C 2H 2, C 2H 4 and C 2H 6. The reaction conditions (temperatures and pretreatment of the surface, background pressure and exposure doses) closely resemble those in electronic vacuum devices. The probability that a barium layer will react with CH 4 and C 2H 6 was below the detection limit. C 2H 2 and C 2H 4 give rise to the formation of barium carbide compounds and with a high reaction probability. In addition, the interaction with C 2H 2 reveals the formation of carbon-containing surface complexes. Investigations by means of XPS on the C Is spectral features show the presence of at least two groups of carbon-containing surface complexes, which behave differently in response to moderate heating and to an exposure to water vapour. In cases where oxygen is present at the surface, oxygen-containing (hydro) carbon adsorbates are present too. XPS observations of the behaviour of these surface complexes show similarities with reaction steps in the mechanisms proposed for the hydrogenation of CO in the Fischer-Tropsch synthesis of hydrocarbons. Low-pressure hydrogenation of these adsorbates containing hydrocarbons and oxygen can led to the formation of hydrocarbon gases in electronic vacuum devices.

  13. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  14. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments

    SciTech Connect

    Mack, J.W.; Torchia, D.A.; Steinert, P.M.

    1988-07-26

    The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either (1-/sup 13/C)glycine or (2-/sup 13/C)glycine, as more than 90% of the glycines of the keratins are located in the end domains. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-(1-/sup 13/C)leucine, L-(/sup 2/H/sub 10/)leucine, or L-(2,3,3-/sup 2/H/sub 3/)leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF. Deuterium NMR experiments performed on IF labeled with deuteriated leucines indeed reveal a marked degree of peptide backbone rigidity within the coiled coils, confirming the initial conclusions of the carbon-13 data. These data, demonstrating relative peptide backbone rigidity yet side-chain flexibility, are interpreted to mean that the coiled coils of these keratin IF are not tightly packed together but rather form a somewhat looser structure which permits a significant degree of side-chain mobility.

  15. Study on ethyl groups with two different orientations in [N(C2H5)4]2CuBr4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-06-01

    The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T1ρ results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.

  16. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  17. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  18. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: theory and experiments.

    PubMed

    Véron, A; Sugimura, A; Luckhurst, G R; Martins, A F

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d(2)-4'-cyanobiphenyl (5CB-d(2)) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a

  19. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Véron, A.; Sugimura, A.; Luckhurst, G. R.; Martins, A. F.

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d2-4'-cyanobiphenyl (5CB-d2) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a notably

  20. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  1. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  2. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  3. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  4. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity

    PubMed Central

    Büchel, Gabriel E.; Stepanenko, Iryna N.; Hejl, Michaela; Jakupec, Michael A.; Keppler, Bernhard K.; Heffeter, Petra; Berger, Walter; Arion, Vladimir B.

    2012-01-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H2ind)[OsIVCl5(2H-ind)] (1) and (H2ind)[OsIVCl5(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction. PMID:22687494

  5. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments.

    PubMed

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio

    2015-12-01

    C-C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5-MIP-1α interaction affects the progress of autoimmune diseases.

  6. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  7. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  8. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  9. NMR studies of metalloproteins.

    PubMed

    Li, Hongyan; Sun, Hongzhe

    2012-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has long been used as an invaluable tool for structure and dynamic studies of macromolecules. Here we focus on the application of NMR spectroscopy in characterization of metalloproteins, including structural studies and identification of metal coordination spheres by hetero-/homo-nuclear metal NMR spectroscopy. Paramagnetic NMR as well as (13)C directly detected protonless NMR spectroscopy will also be addressed for application to paramagnetic metalloproteins. Moreover, these techniques offer great potential for studies of other non-metal binding macromolecules.

  10. REDOR NMR for Drug Discovery

    PubMed Central

    Cegelski, Lynette

    2014-01-01

    Rotational-Echo DOuble-Resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation. PMID:24035486

  11. Reactions of ethynyl radicals - Rate constants with CH4, C2H6, and C2D6

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.

    1981-01-01

    An experiment to measure ethynyl radical reactivity with other simple molecules is described. Flash photolysis of CF3C2H, a C2H precursor, was kinetically and spectroscopically analyzed for C2H reactions with CH4, C2H6, and C2D6 and rate constants for the abstraction reaction at room temperature were determined. The experimental apparatus is described, and the acetylene feedstock purification procedures are outlined. Rate constants are provided, and additional examination of the effects of added helium showed no alterations over the pressure range 20-700 torr.

  12. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  13. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  14. REASSESSMENT OF THE DISSOCIATIVE RECOMBINATION OF N{sub 2}H{sup +} AT CRYRING

    SciTech Connect

    Vigren, E.; Zhaunerchyk, V.; Hamberg, M.; Af Ugglas, M.; Larsson, M.; Thomas, R. D.; Geppert, W. D.; Kaminska, M.; Semaniak, J.

    2012-09-20

    The dissociative recombination (DR) of N{sub 2}H{sup +} has been reinvestigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. Thermal rate coefficients for electron temperatures between 10 and 1000 K have been deduced. We show that electron recombination is expected to play an approximately equally important role as CO in the removal of N{sub 2}H{sup +} in dark interstellar clouds. We note that a deeper knowledge on the influence of the ions' rotational temperature in the DR of N{sub 2}H{sup +} would be helpful to set further constraints on the relative importance of the different destruction mechanisms for N{sub 2}H{sup +} in these environments. The branching fractions in the DR of N{sub 2}H{sup +} have been reinvestigated at {approx}0 eV relative kinetic energy, showing a strong dominance of the N{sub 2} + H production channel (93{sup +4}{sub -2}%) with the rest leading to NH + N. These results are in good agreement with flowing afterglow experiments and in disagreement with an earlier measurement at CRYRING.

  15. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210). PMID:27506302

  16. NMR methods in combinatorial chemistry.

    PubMed

    Shapiro, M J; Wareing, J R

    1998-06-01

    The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.

  17. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  18. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  19. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  20. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers.

    PubMed

    Salnikov, Evgeniy S; Sarrouj, Hiba; Reiter, Christian; Aisenbrey, Christopher; Purea, Armin; Aussenac, Fabien; Ouari, Olivier; Tordo, Paul; Fedotenko, Illya; Engelke, Frank; Bechinger, Burkhard

    2015-11-19

    Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h. PMID:26487390

  1. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-01

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  2. DFT-NMR Investigation and (51)V 3QMAS experiments for probing surface oh ligands and the hydrogen-bond network in a polyoxovanadate cluster: the case of Cs(4)[H(2)V(10)O(28)].4H(2)O.

    PubMed

    Truflandier, Lionel A; Boucher, Florent; Payen, Christophe; Hajjar, Redouane; Millot, Yannick; Bonhomme, Christian; Steunou, Nathalie

    2010-04-01

    This work shows that the combination of first-principles calculations and (51)V NMR experiments is a powerful tool to elucidate the location of surface hydroxyl groups and to precisely describe the hydrogen bond network in the complex decavanadate cluster Cs(4)[H(2)V(10)O(28)].4H(2)O, enhancing the strength of NMR crystallography. The detailed characterization of H-bond networks for these kinds of inorganic compounds is of primary importance and should benefit from the DFT-NMR predictions by considering explicitly the periodic boundary conditions. The determination of the Cs(4)[H(2)V(10)O(28)].4H(2)O structure by single-crystal X-ray diffraction was not sufficiently accurate to provide the location of protons. From available diffraction data, five different protonated model structures have been built and optimized using DFT-based methods. The possible interconversion of two decavanadate isomers through a proton exchange is evaluated by calculating the energy barrier and recording variable-temperature (1)H MAS NMR spectra. First-principles calculations of (51)V NMR parameters clearly indicate that these parameters are very sensitive to the local intermolecular hydrogen-bonding interactions. Considering the DFT error limits, the fairly good agreement between calculated and experimental NMR parameters arising from the statistical modeling of the data allows the unambiguous assignment of the five (51)V NMR signals and, thus, the location of OH surface ligands in the decavanadate cluster. In particular, first-principles calculations accurately reproduce the (51)V quadrupolar parameters. These results are fully consistent with (51)V 3QMAS NMR spectra recorded with and without (1)H decoupling. Finally, correlations are established between local octahedral VO(6) deformations and (51)V NMR parameters (C(q) and Deltadelta), which will be useful for the characterization of a wide range of chemical species containing vanadium(V).

  3. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.

  4. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  5. NMR phase noise in bitter magnets.

    PubMed

    Sigmund, E E; Calder, E S; Thomas, G W; Mitrović, V F; Bachman, H N; Halperin, W P; Kuhns, P L; Reyes, A P

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr--Purcell--Meiboom--Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin--spin relaxation even in the presence of magnetic field temporal instability.

  6. Local-field approximation of homonuclear dipolar interactions in ⁷Li-NMR: density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses.

    PubMed

    Storek, Michael; Jeffrey, Kenneth R; Böhmer, Roland

    2014-01-01

    NMR echo techniques have proven to be important to study dynamics in ion conductors and other solid materials. Using the spin-3/2 nucleus (7)Li as a probe, both the quadrupolar and the often neglected homonuclear dipolar interactions modulate the NMR frequency as the ion performs jump processes. Retaining only the local-field term of the many-body Hamiltonian, the impact of the dipolar interaction on various echo experiments was studied using spin dynamics calculations yielding products of dipolar and quadrupolar correlation functions. Using a simple stochastic model these functions were simulated with particular emphasis on the impact of ionic motions and on the conditions under which the dipolar and quadrupolar contributions factorize. The results of the computations and of the random-walk simulations are compared with experimental data obtained for various lithium borate and lithium borophosphate glasses. It is concluded that the local-field approximation is a useful means of treating the Li-Li dipole interactions and that the simple model that we introduce is capable of describing many experimentally observed features. Furthermore, because the dipolar and quadrupolar contributions essentially factorize, a selective determination of the corresponding correlation functions becomes possible. PMID:24593983

  7. NMR of fd coat protein.

    PubMed

    Cross, T A; Opella, S J

    1979-01-01

    The conformations of the major coat protein of a filamentous bacteriophage can be described by nuclear magnetic resonance spectroscopy of the protein and the virus. The NMR experiments involve detection of the 13C and 1H nuclei of the coat protein. Both the 13C and 1H nuclear magnetic resonance (NMR) spectra show that regions of the polypeptide chain have substantially more motion than a typical globular protein. The fd coat protein was purified by gel chromatography of the SDA solubilized virus. Natural abundance 13C NMR spectra at 38 MHz resolve all of the nonprotonated aromatic carbons from the three phenylalanines, two tyrosines, and one tryptophan of the coat protein. The alpha carbons of the coat protein show at least two different classes of relaxation behavior, indicative of substantial variation in the motion of the backbone carbons in contrast to the rigidity of the alpha carbons of globular proteins. The 1H spectrum at 360 MHz shows all of the aromatic carbons and many of the amide protons. Titration of a 1H spectra gives the pKas for the tyrosines.

  8. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  9. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance. PMID:25774424

  10. /sup 2/H nuclear magnetic resonance of exchange-labeled gramicidin in an oriented lyotropic nematic phase

    SciTech Connect

    Davis, J.H.

    1988-01-12

    Lyotropic nematic liquid-crystalline phases, such as that formed by potassium laurate/decanol/KCl/water, are found to accept readily large amphiphilic solute molecules. Since these phases spontaneously orient in high magnetic fields, it becomes possible to obtain NMR spectra of biologically interesting solutes in an oriented axially symmetric environment. The amide hydrogens of the peptide backbone of gramicidin D (Dubos) were exchanged for deuterium, and the gramicidin was incorporated into a lyotropic nematic phase made with deuteriated buffer in place of water. /sup 2/H NMR spectra of oriented, exchange-labeled gramicidin were then obtained. The strong water signal from the deuteriated buffer was eliminated by using selective excitation and a polynomial subtraction procedure. The /sup 2/H NMR spectra at high temperature consist of twelve major quadrupolar doublets. The splittings observed are largely independent of temperature, suggesting a highly rigid backbone structure. Two of the doublets, which are chemically shifted relative to the others, show stronger temperature dependence. These two probably arise from the exchangeable amino hydrogens on the tryptophan indole moieties of the peptide. While we cannot yet assign all of the doublets, the spectra and nuclear magnetic relaxation data are consistent with a rigid slightly distorted ..beta../sub LD//sup 6.3/ helix undergoing axially symmetric reorientation about the director of the liquid-crystalline phase. The correlation time for the axially symmetric reorientation is determined by relaxation measurements to be about 10/sup -7/s.

  11. Heterozygous FA2H mutations in autism spectrum disorders

    PubMed Central

    2013-01-01

    Background Widespread abnormalities in white matter development are frequently reported in cases of autism spectrum disorders (ASD) and could be involved in the disconnectivity suggested in these disorders. Homozygous mutations in the gene coding for fatty-acid 2-hydroxylase (FA2H), an enzyme involved in myelin synthesis, are associated with complex leukodystrophies, but little is known about the functional impact of heterozygous FA2H mutations. We hypothesized that rare deleterious heterozygous mutations of FA2H might constitute risk factors for ASD. Methods We searched deleterious mutations affecting FA2H, by genotyping 1256 independent patients with ASD genotyped using Genome Wide SNP arrays, and also by sequencing in independent set of 186 subjects with ASD and 353 controls. We then explored the impact of the identified mutations by measuring FA2H enzymatic activity and expression, in transfected COS7 cells. Results One heterozygous deletion within 16q22.3-q23.1 including FA2H was observed in two siblings who share symptoms of autism and severe cognitive impairment, axial T2-FLAIR weighted MRI posterior periventricular white matter lesions. Also, two rare non-synonymous mutations (R113W and R113Q) were reported. Although predictive models suggested that R113W should be a deleterious, we did not find that FA2H activity was affected by expression of the R113W mutation in cultured COS cells. Conclusions While our results do not support a major role for FA2H coding variants in ASD, a screening of other genes related to myelin synthesis would allow us to better understand the role of non-neuronal elements in ASD susceptibility. PMID:24299421

  12. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  13. First-Principles Electronic Structure Calculations of N2H4 Adsorbed on Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2008-03-01

    Recent experiments conducted by Desai et al. [1] reveal that single-wall carbon nanotube (SWCNT) networks exposed to N2H4 vapor at various pressures exhibit considerable drop in resistance with respect to the pristine sample. Experimental findings reveal: (i) n-type behavior for the adsorption of N2H4/SWCNT, and (ii) the binding of N2H4 on SWCNT as chemisorption. In the present work, we have performed first-principles electronic structure calculations [2] for the N2H4 adsorbed on the (14, 0) SWCNT, where several orientations for the N2H4 molecule were considered. Calculations for the combined system were performed using 3 unit cells with the DFT/GGA and ultra soft pseudo-potentials. Our calculations reveal: (i) the binding of N2H4 on SWCNT as physisorption, and (ii) the electronic structure of SWCNT to be practically unaltered by the adsorption of N2H4, suggesting that there will not be a dramatic drop in resistance for N2H4/SWCNT. This is in disagreement with the experimental findings. To further understand the experimental observations, we will discuss mechanisms that may alter the binding nature of N2H4 on SWCNT. [1] S. Desai, G. Sumanasekera, et al. (APS, March 2008). [2] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

  14. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  15. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  16. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  17. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  18. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  19. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  20. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  1. The source of NMR-detected motional anisotropy of water in blood vessel walls.

    PubMed Central

    Sharf, Y; Knubovets, T; Dayan, D; Hirshberg, A; Akselrod, S; Navon, G

    1997-01-01

    2H Double quantum-filtered (DQF) NMR spectroscopy of deuterated water is sensitive to the presence of order in biological systems. This is because the only nuclei that are detected are those with residual quadrupolar interactions due to their anisotropic motion. In the present study, samples of aorta, coronary and carotid arteries, and vena cava were studied in parallel by 2H DQF NMR and by light microscopy. The average quadrupolar splitting, calculated from the NMR data, varies considerably among the different blood vessels, with high reproducibility for each type of vessel. Polarization microscopy examinations using collagen-specific staining with picrosirius red, have shown a variety of color profiles for the different blood vessels. These reflect different physical modes of aggregation (packing and thickness) of collagen fibers. A correlation was found between the NMR parameters and the color profiles of the picrosirius red-stained sections. Treating the blood vessels with 90% formic acid resulted in the elimination of the 2H DQF NMR signal. Histological analysis demonstrated a complete degradation of collagen and muscle, whereas the elastin filaments were preserved. Evidence is given that the 2H DQF NMR signal is dominated by the contribution of water molecules interacting with the collagen fibers. Images FIGURE 3 PMID:9284287

  2. The acquisition of multidimensional NMR spectra within a single scan

    PubMed Central

    Frydman, Lucio; Scherf, Tali; Lupulescu, Adonis

    2002-01-01

    A scheme enabling the complete sampling of multidimensional NMR domains within a single continuous acquisition is introduced and exemplified. Provided that an analyte's signal is sufficiently strong, the acquisition time of multidimensional NMR experiments can thus be shortened by orders of magnitude. This could enable the characterization of transient events such as proteins folding, 2D NMR experiments on samples being chromatographed, bring the duration of higher dimensional experiments (e.g., 4D NMR) into the lifetime of most proteins under physiological conditions, and facilitate the incorporation of spectroscopic 2D sequences into in vivo imaging investigations. The protocol is compatible with existing multidimensional pulse sequences and can be implemented by using conventional hardware; its performance is exemplified here with a variety of homonuclear 2D NMR acquisitions. PMID:12461169

  3. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  4. sup 2 H Nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer

    SciTech Connect

    Prosser, R.S.; Davis, J.H. ); Dahlquist, F.W.; Lindorfer, M.A. )

    1991-05-14

    Solid-state {sup 2}H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44{degree}C and 53{degree}C, from gramicidin A labels in which the proton attached to the {alpha} carbon of residue 3,4,5,10,12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-{sup 2}H bonds. The authors conclude that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor.

  5. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  6. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  7. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  8. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  9. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  10. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  11. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Masuda, Yuichi

    2015-09-01

    Hydrogen phthalate anion has a short strong O-H-O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl4, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17O and 1H nuclei monitoring the nuclear magnetic relaxation times of 1H. The experimental results indicated that the H-bond geometry of 2 is influenced by the interactions with dimethylsulfoxide, suggesting the formation of a bifurcated H-bond, which was supported by the DFT calculations. The MD simulations for the methanol solution of 2 showed that the asymmetry of the OH distance is correlated with the asymmetry in the electrostatic field of the

  12. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  13. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  14. NMR in a Diamond Anvil Pressure Cell

    NASA Astrophysics Data System (ADS)

    Lawson, Matthew; Dioguardi, Adam; Weir, Samuel; Bush, Blaine; Dunuwille, Mihindra; Deemyad, Shanti; Curro, Nichlas

    We present recent advances in the use of diamond anvil pressure cells in nuclear magnetic resonance measurements. This technique allows access to new regions of the phase diagrams of iron pnictide and heavy fermion materials, and promises to allow NMR experiments under pressures not previously accessible.

  15. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  16. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  17. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  18. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

    PubMed

    Ardenkjaer-Larsen, Jan-Henrik; Boebinger, Gregory S; Comment, Arnaud; Duckett, Simon; Edison, Arthur S; Engelke, Frank; Griesinger, Christian; Griffin, Robert G; Hilty, Christian; Maeda, Hidaeki; Parigi, Giacomo; Prisner, Thomas; Ravera, Enrico; van Bentum, Jan; Vega, Shimon; Webb, Andrew; Luchinat, Claudio; Schwalbe, Harald; Frydman, Lucio

    2015-08-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed. PMID:26136394

  19. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

    PubMed

    Ardenkjaer-Larsen, Jan-Henrik; Boebinger, Gregory S; Comment, Arnaud; Duckett, Simon; Edison, Arthur S; Engelke, Frank; Griesinger, Christian; Griffin, Robert G; Hilty, Christian; Maeda, Hidaeki; Parigi, Giacomo; Prisner, Thomas; Ravera, Enrico; van Bentum, Jan; Vega, Shimon; Webb, Andrew; Luchinat, Claudio; Schwalbe, Harald; Frydman, Lucio

    2015-08-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed.

  20. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  1. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  2. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  3. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  4. Determination of Unknown Concentrations of Sodium Acetate Using the Method of Standard Addition and Proton NMR: An Experiment for the Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Rajabzadeh, Massy

    2012-01-01

    In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…

  5. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  6. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  7. Synthesis and antifungal activity of 2H-1,4-benzoxazin-3(4H)-one derivatives.

    PubMed

    Śmist, Małgorzata; Kwiecień, Halina; Krawczyk, Maria

    2016-01-01

    A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next "green" catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, (1)H and (13)C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi-Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata-and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L(-1)). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L(-1) in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L(-1) and 20 mg L(-1). In the concentration of 100 mg L(-1), the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L(-1), compound 6 showed good activity only against P. cactorum strain (72%). PMID:26963527

  8. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  9. Dynamics of an integral membrane peptide: a deuterium NMR relaxation study of gramicidin.

    PubMed Central

    Prosser, R S; Davis, J H

    1994-01-01

    Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, 1/2 (= 16 +/- 2 degrees at

  10. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    motion. In the general case of large H{sub D}, isotropic spectra were obtained by dilution of {sup 1}H with {sup 2}H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids. Theoretical and technical aspects are described in the text with comments on the application of the principles to other nuclei of interest.

  11. Molecular hydrogen complexes of the transition metals. 2. Evidence for a new complex, Mo(CO) (dppe)/sub 2/(H/sub 2/), and for solution equilibrium between dihydrogen and dihydride forms, M-eta/sup 2/-H/sub 2/ in equilibrium H-M-H, in W(CO)/sub 3/(PR/sub 3/)/sub 2/(H/sub 2/)

    SciTech Connect

    Kubas, G.J.; Ryan, R.R.; Wrobleski, D.A.

    1986-03-19

    Coordination of molecular hydrogen to transition metals is now firmly established, initially in the stable, structurally characterized complexes M(CO)/sub 3/(PR/sub 3/)/sub 2/(eta/sup 2/-H/sub 2/) (M = Mo, W; R = Cy, i-Pr), then in low-temperature stable Cr(CO)/sub 5/(H/sub 2/), and recently in IrH(H/sub 2/)(PPh/sub 3/)/sub 2/(C/sub 13/H/sub 8/N))SbF/sub 6/, (IrH/sub 2/(H/sub 2/)/sub 2/L/sub 2/)/sup +/, and (FeH(H/sub 2/)(dppe)/sub 2/)BF/sub 4/. In order to better define the steric and electronic requirements for H/sub 2/ to bind in molecular fashion rather than being cleaved to hydride ligands, reported here is new stable H/sub 2/ complex, Mo(CO)(dppe)/sub 2/(H/sub 2/) (dppe = diphenylphosphinoethane). Also, NMR evidence is presented for a dynamic equilibrium between the H/sub 2/ complex W(CO)/sub 3/(P-i-Pr/sub 3/)/sub 2/(eta/sup 2/-H/sub 2/), and an apparent dihydride complex, WH/sub 2/(CO)/sub 3/)P-i-Pr/sub 3/)/sub 2/, derived by oxidative addition of the H/sub 2/ ligand. 16 references, 2 figures.

  12. 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR.

    PubMed

    Causier, A; Carret, G; Boutin, C; Berthelot, T; Berthault, P

    2015-05-01

    Dissolution of hyperpolarized species in liquids of interest for NMR is often hampered by the presence of bubbles that degrade the field homogeneity. Here a device composed of a bubble pump and a miniaturized NMR cell both fitted inside the narrow bore of an NMR magnet is built by 3D printing. (129)Xe NMR experiments performed with hyperpolarized xenon reveal high and homogeneous dissolution of the gas in water.

  13. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  14. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  15. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  16. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  17. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  18. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species.

  19. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  20. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  1. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  2. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  3. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  4. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques.

  5. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  6. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  7. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'.

  8. SENSASS NMR: New NMR techniques for enhancing the sensitivity and the spectral resolution of polymer supported chemicals

    NASA Astrophysics Data System (ADS)

    Prosa, Nicolò; Scherrmann, Marie-Christine; Merlet, Denis; Farjon, Jonathan

    2013-12-01

    The use of polyethylene glycols (PEGs) as organic polymer soluble supports for synthesis has been receiving growing interest. The main advantages of using PEGs as support are related to their non-toxicity, their commercial availability and their solubility properties allowing easy recovery and analysis of compounds linked to the polymer. The NMR characterization of PEG-branched products could however be difficult due to the presence of huge signals of the polymeric support. In order to overcome this problem, we developed new NMR experiments named SENSitivity increAsed and resolution enhanced by Signal Suppression or SENSASS NMR. These experiments implement either semi-selective pulses or Water Gate sequences for reducing signals of the polymer as well as fast pulsing techniques optimizing the recycling delay for enhancing the sensitivity of signals. They have been successfully implemented in classical NMR characterization experiments namely, COSY, HSQC and HMBC experiments.

  9. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  10. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system.

  11. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. PMID:20149698

  12. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  13. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  14. Thermodynamic properties of solid C2H4

    PubMed Central

    Ma, Shao-mu; Eyring, Henry

    1979-01-01

    The significant structures procedure of liquids has been used to calculate the thermodynamic properties of solid C2H4. Two degeneracy terms were used to describe the behavior in the vicinities of the two phase transitions. The calculated entropy and specific heat agree well with experimental results from a few kelvins to the melting point. Less satisfactory agreement is obtained for compressibility and thermal expansion coefficients. This simple model represents surprisingly well the phase transitions in the solid state. PMID:16592659

  15. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene.

  16. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  17. Characterization of pH titration shifts for all the nonlabile proton resonances a protein by two-dimensional NMR: the case of mouse epidermal growth factor.

    PubMed

    Kohda, D; Sawada, T; Inagaki, F

    1991-05-21

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p2H range 1.5-9 with two-dimensional (2D) 1H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable groups which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (alpha-amino group, four Asp, two Glu, one His, and alpha-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal alpha-amino group induced a widespread conformational change over the beta-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. We found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins. PMID:2036358

  18. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  19. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered.

  20. Live cell NMR.

    PubMed

    Freedberg, Darón I; Selenko, Philipp

    2014-01-01

    Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas "looking into cells" is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.

  1. Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments

    NASA Astrophysics Data System (ADS)

    Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.

    2010-12-01

    Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.

  2. The distribution of ND2H in LDN 1689N

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Lis, D. C.; Philipp, S.; Güsten, R.; Roueff, E.; Reveret, V.

    2006-08-01

    Aims.Finding tracers of the innermost regions of prestellar cores is important for understanding their chemical and dynamical evolution before the onset of gravitational collapse. While classical molecular tracers, such as CO and CS, have been shown to be strongly depleted in cold, dense gas by condensation on grain mantles, it has been a subject of discussion to what extent nitrogen-bearing species, such as ammonia, are affected by this process. As deuterium fractionation is efficient in cold, dense gas, deuterated species are excellent tracers of prestellar cores. A comparison of the spatial distribution of neutral and ionized deuterated species with the dust continuum emission can thus provide important insights into the physical and chemical structure of such regions. Methods: .We study the spatial distribution of the ground-state 335.5 GHz line of ND2H in LDN 1689N, using APEX, and compare it with the distribution of the DCO+(3-2) line, as well as the 350 μm dust continuum emission observed with the SHARC II bolometer camera at CSO. Results: .While the distribution of the ND2H emission in LDN 1689N is generally similar to that of the 350 μm dust continuum emission, the peak of the ND2H emission is offset by ~10'' to the East from the dust continuum and DCO+ emission peak. ND2H and ND3 share the same spatial distribution. The observed offset between the ND2H and DCO+ emission is consistent with the hypothesis that the deuterium peak in LDN 1689N is an interaction region between the outflow shock from IRAS 16293-2422 and the dense ambient gas. We detect the J = 4 → 3 line of H13CO+ at 346.998 GHz in the image side band serendipitously. This line shows the same spatial distribution as DCO+(3-2), and peaks close to the 350 μm emission maximum which provides further support for the shock interaction scenario.

  3. Understanding multi-quantum NMR through secular approximation.

    PubMed

    Srivastava, Deepansh; SubbaRao, R Venkata; Ramachandran, Ramesh

    2013-05-14

    With the development of technology and improved understanding of nuclear spin-spin interactions and their behavior in static/oscillating magnetic fields, NMR spectroscopy has emerged as a powerful tool for characterizing molecular structure in a wide range of systems of chemical, physical and biological relevance. Here in this article, we revisit the important connection between "Secular-Approximation" (a well-known fundamental concept) and NMR spectroscopy. Employing recent experimental results as the background, an alternate interpretation of the secular approximation is presented for describing and understanding the nuances of Multi-Quantum (MQ) NMR spectroscopy of quadrupolar nuclei. Since MQ NMR spectroscopy of quadrupolar nuclei forms the basis of the structural characterization of inorganic solids and clusters, we believe that the analytic theory presented herein would be beneficial both in the understanding and design of MQ NMR experiments. Additionally, the analytic results are corroborated with rigorous numerical simulations and could be employed in the quantitative interpretation of experimental results.

  4. A review of blind source separation in NMR spectroscopy.

    PubMed

    Toumi, Ichrak; Caldarelli, Stefano; Torrésani, Bruno

    2014-08-01

    Fourier transform is the data processing naturally associated to most NMR experiments. Notable exceptions are Pulse Field Gradient and relaxation analysis, the structure of which is only partially suitable for FT. With the revamp of NMR of complex mixtures, fueled by analytical challenges such as metabolomics, alternative and more apt mathematical methods for data processing have been sought, with the aim of decomposing the NMR signal into simpler bits. Blind source separation is a very broad definition regrouping several classes of mathematical methods for complex signal decomposition that use no hypothesis on the form of the data. Developed outside NMR, these algorithms have been increasingly tested on spectra of mixtures. In this review, we shall provide an historical overview of the application of blind source separation methodologies to NMR, including methods specifically designed for the specificity of this spectroscopy. PMID:25142734

  5. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  6. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  7. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  8. Interpretive Experiments

    ERIC Educational Resources Information Center

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  9. Dynamical structure of paramagnetic [M(H2O)6][SiF6] (M = Fe2+,Ni2+) crystal studied by means of 2H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Iijima, T.; Suhara, M.

    2000-08-01

    The temperature dependences of the 2H nuclear magnetic resonance (NMR) spectra and the spin-lattice relaxation time T1 were measured for [Ni(H2O)6][SiF6] and [Fe(H2O)6][SiF6]. The motional modes for both compounds were discussed on the basis of the spectral simulation. The temperature variations of the 2H NMR spectra at high temperatures could be explained by three-site jumps of [Ni(H2O)6]2+ about the C3 axis for [Ni(H2O)6][SiF6]. For [Fe(H2O)6][SiF6], however, six-site jumps of [Fe(H2O)6]2+ about the C3 axis were found to be most probable form of motion at high temperatures. At low temperatures, the 2H NMR spectra of both compounds could be explained by 180° flips of the water molecule. The 2H NMR T1 was dominated by the fluctuations of the electric field gradient caused by the molecular motion and of the magnetic interaction between the 2H nucleus and the unpaired electron spin in the metal ion. T1 was analysed in terms of the motional modes predicted from the spectral simulation. The activation energies, the jumping rates at infinite temperature for each form of motion and the quadrupole interaction parameters (e2Qq/h,η) were obtained from the 2H NMR spectra and T1. The conclusions from the spectral simulation are in good agreement with the results for T1. These results suggest that [Fe(H2O)6][SiF6] possesses dynamic disorder structure in the high-temperature phase.

  10. The rate of the reaction between C2H and C2H2 at interstellar temperatures.

    PubMed

    Herbst, E; Woon, D E

    1997-11-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  11. The rate of the reaction between C2H and C2H2 at interstellar temperatures

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Woon, D. E.

    1997-01-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  12. Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wooten, Jan B.; And Others

    1979-01-01

    The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)

  13. Experimental and computational study of the structure and spectroscopic properties of 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine

    NASA Astrophysics Data System (ADS)

    Vural, H.; Kara, M.; İdil, Ö.

    2016-12-01

    The optimized molecular geometry and vibrational frequencies of 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine] were calculated using Hartree Fock (HF) and Density Functional Theory (DFT) methods. The vibrational spectrum was experimentally recorded using Fourier Transform-Infrared (FT-IR). Gauge-independent atomic orbital (GIAO) 1H and 13C nuclear magnetic resonance (NMR) chemical shift values of the 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine] were calculated using DFT/B3LYP/6-311G + (d, p). The electronic properties such as HOMO-LUMO energies, absorption wavelengths, and excitation energy were investigated by time dependent DFT (TD-DFT) method with integral equation formalism-polarized continuum model (IEF-PCM). The mulliken charges on the atoms and second-order interaction energies were derived from NBO analysis. The electric dipole moment, the mean polarizability and the mean first hyperpolarizability values were also computed by using the DFT method. The effect of the molecule on pBR322 plasmid DNA was monitored by agarose gel electrophoresis experiments. The antimicrobial activities were tested by using minimal inhibitory concentration method (MIC).

  14. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates

  15. Structure calculation, refinement and validation using CcpNmr Analysis

    PubMed Central

    Skinner, Simon P.; Goult, Benjamin T.; Fogh, Rasmus H.; Boucher, Wayne; Stevens, Tim J.; Laue, Ernest D.; Vuister, Geerten W.

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  16. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  17. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  18. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; Miller, James A.; Klippenstein, Stephen J.

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  19. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  20. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  1. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  2. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    PubMed

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  3. Temperature-reversible eruptions of vesicles in model membranes studied by NMR.

    PubMed Central

    Nezil, F A; Bayerl, S; Bloom, M

    1992-01-01

    Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein. Images FIGURE 5 FIGURE 5 FIGURE 5 FIGURE 6

  4. Dynamic nuclear polarization surface enhanced NMR spectroscopy.

    PubMed

    Rossini, Aaron J; Zagdoun, Alexandre; Lelli, Moreno; Lesage, Anne; Copéret, Christophe; Emsley, Lyndon

    2013-09-17

    Many of the functions and applications of advanced materials result from their interfacial structures and properties. However, the difficulty in characterizing the surface structure of these materials at an atomic level can often slow their further development. Solid-state NMR can probe surface structure and complement established surface science techniques, but its low sensitivity often limits its application. Many materials have low surface areas and/or low concentrations of active/surface sites. Dynamic nuclear polarization (DNP) is one intriguing method to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude. In a DNP experiment, the large polarization of unpaired electrons is transferred to surrounding nuclei, which provides a maximum theoretical DNP enhancement of ∼658 for (1)H NMR. In this Account, we discuss the application of DNP to enhance surface NMR signals, an approach known as DNP surface enhanced NMR spectroscopy (DNP SENS). Enabling DNP for these systems requires bringing an exogeneous radical solution into contact with surfaces without diluting the sample. We proposed the incipient wetness impregnation technique (IWI), a well-known method in materials science, to impregnate porous and particulate materials with just enough radical containing solution to fill the porous volume. IWI offers several advantages: it is extremely simple, provides a uniform wetting of the surface, and does not increase the sample volume or substantially reduce the concentration of the sample. This Account describes the basic principles behind DNP SENS through results obtained for mesoporous and nanoparticulate samples impregnated with radical solutions. We also discuss the quantification of the overall sensitivity enhancements obtained with DNP SENS and compare that with ordinary room temperature NMR spectroscopy. We then review the development of radicals and solvents that give the best possible enhancements today. With the best

  5. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  6. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  7. Cold denaturation and sup 2 H sub 2 O stabilization of a staphylococcal nuclease mutant

    SciTech Connect

    Antonino, L.C.; Nakano, Takayuki; Fink, A.L. ); Kautz, R.A.; Fox, R.O. )

    1991-09-01

    Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration of low pH. By destabilizing the protein using site-directed mutagenesis, the authors have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which the authors call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28{yields}Gly. The temperature of maximum stability (t{sub max}) as determined by circular dichroism (CD) was 18.1C, and the midpoints of the thermal unfolding transitions (t{sub m}) were 0.6C and 30.0C. These values may be compared with the t{sub m} of 52.5C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in {sup 2}H{sub 2}O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the t{sub max} was noted as well as a decrease in t{sub max}, reflecting increased stability.

  8. B2H6 PLAD Doped PMOS Device Performance

    SciTech Connect

    Fang, Z.; Miller, T.; Winder, E.; Persing, H.; Arevalo, E.; Gupta, A.; Parrill, T.; Singh, V.; Qin, S.; McTeer, A.

    2006-11-13

    Plasma doping (PLAD) achieves high wafer throughput by directly extracting ions across the plasma sheath. PLAD profiles are typically surface peaked instead of retrograde as obtained from beamline (BL) implant. It may require optimization of PLAD energy and dose in order to match BL doping results. From device optimization point of view, it is necessary to understand the impact of doping parameters to device characteristics. In this paper we present the PMOS device performance with the poly gate and source drain (SD) implants carried out using B2H6 PLAD. The BL control conditions are 2-5 keV 11B+ 4-6x1015 cm-2. Equivalent device performance for p+ poly gate doping is obtained using PLAD with B2H6 / H2. In SD doping using same gas mixture, nearly 50% reduction in SD contact resistance is observed in the PLAD splits. The reduction in SD contact resistance leads to 10-15% increase in device on-current, hence demonstrating the process advantages of using PLAD in addition to having a high wafer throughput.

  9. NMR velocity mapping of gas flow around solid objects.

    PubMed

    Han, Song-I; Pierce, Kimberly L; Pines, Alexander

    2006-07-01

    We present experimental visualizations of gas flow around solid blunt bodies by NMR imaging. NMR velocimetry is a model-free and tracer-free experimental means for quantitative and multi-dimensional flow visualization. Hyperpolarization of (129)Xe provided sufficient NMR signal to overcome the low density of the dilute gas phase, and its long coherence time allows for true velocity vector mapping. In this study, the diverging gas flow around and wake patterns immediately behind a sphere could be vectorally visualized and quantified. In a similar experiment, the flow over an aerodynamic model airplane body revealed a less disrupted flow pattern.

  10. NMR velocity mapping of gas flow around solid objects

    NASA Astrophysics Data System (ADS)

    Han, Song-I.; Pierce, Kimberly L.; Pines, Alexander

    2006-07-01

    We present experimental visualizations of gas flow around solid blunt bodies by NMR imaging. NMR velocimetry is a model-free and tracer-free experimental means for quantitative and multi-dimensional flow visualization. Hyperpolarization of Xe129 provided sufficient NMR signal to overcome the low density of the dilute gas phase, and its long coherence time allows for true velocity vector mapping. In this study, the diverging gas flow around and wake patterns immediately behind a sphere could be vectorally visualized and quantified. In a similar experiment, the flow over an aerodynamic model airplane body revealed a less disrupted flow pattern.

  11. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  12. Fragment-Based Drug Discovery Using NMR Spectroscopy

    PubMed Central

    Harner, Mary J.; Frank, Andreas O.; Fesik, Stephen W.

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience. PMID:23686385

  13. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  14. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  15. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions. PMID:26857803

  16. A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity.

    PubMed

    Garton, Michael; Najafabadi, Hamed S; Schmitges, Frank W; Radovani, Ernest; Hughes, Timothy R; Kim, Philip M

    2015-10-30

    Development of an accurate protein-DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF-DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering. PMID:26384429

  17. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.

    PubMed

    Samultsev, Dmitry O; Semenov, Valentin A; Krivdin, Leonid B

    2014-05-01

    The main factors affecting the accuracy and computational cost of the gauge-independent atomic orbital density functional theory (GIAO-DFT) calculation of (15)N NMR chemical shifts in the representative series of key nitrogen-containing heterocycles--azoles and azines--have been systematically analyzed. In the calculation of (15)N NMR chemical shifts, the best result has been achieved with the KT3 functional used in combination with Jensen's pcS-3 basis set (GIAO-DFT-KT3/pcS-3) resulting in the value of mean absolute error as small as 5 ppm for a range exceeding 270 ppm in a benchmark series of 23 compounds with an overall number of 41 different (15)N NMR chemical shifts. Another essential finding is that basically, the application of the locally dense basis set approach is justified in the calculation of (15)N NMR chemical shifts within the 3-4 ppm error that results in a dramatic decrease in computational cost. Based on the present data, we recommend GIAO-DFT-KT3/pcS-3//pc-2 as one of the most effective locally dense basis set schemes for the calculation of (15)N NMR chemical shifts.

  18. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  19. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  20. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  1. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    SciTech Connect

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  2. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  3. Perspectives of Deuteron Field-Cycling NMR Relaxometry for Probing Molecular Dynamics in Soft Matter.

    PubMed

    Flämig, M; Becher, M; Hofmann, M; Körber, T; Kresse, B; Privalov, A F; Willner, L; Kruk, D; Fujara, F; Rössler, E A

    2016-08-11

    Due to the single-particle character of the quadrupolar interaction in molecular systems, (2)H NMR poses a unique method for probing reorientational dynamics. Spin-lattice relaxation gives access to the spectral density, and its frequency dependency can be monitored by field-cycling (FC) techniques. However, most FC NMR studies employ (1)H; the use of (2)H is still rare. We report on the application of (2)H FC NMR for investigating the dynamics in molecular liquids and polymers. Commercial as well as home-built relaxometers are employed accessing a frequency range from 30 Hz to 6 MHz. Due to low gyromagnetic ratio, high coupling constants, and finite FC switching times, current (2)H FC NMR does not reach the dispersion region in liquids (toluene and glycerol), yet good agreement with the results from conventional high-field (HF) relaxation studies is demonstrated. The pronounced difference at low frequencies between (2)H and (1)H FC NMR data shows the relevance of intermolecular relaxation in the case of (1)H NMR. In the case of the polymers polybutadiene and poly(ethylene-alt-propylene), very similar relaxation dispersion is observed and attributed to Rouse and entanglement dynamics. Combination with HF (2)H relaxation data via applying frequency-temperature superposition allows the reconstruction of the full spectral density reflecting both polymer as well as glassy dynamics. Transformation into the time domain yields the reorientational correlation function C2(t) extending over nine decades in time with a long-time power law, C2(t) ∝ t(-0.45±0.05), which does not conform to the prediction of the tube-reptation model, for which ∝ t(-0.25) is expected. Entanglement sets in below C2(t = τe) ≅ S(2) = 0.001, where τe is the entanglement time and S the corresponding order parameter. Finally, we discuss the future prospects of the (2)H FC NMR technique. PMID:27420118

  4. NMR of a Phospholipid: Modules for Advanced Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Gaede, Holly C.; Stark, Ruth E.

    2001-09-01

    A laboratory project is described that builds upon the NMR experience undergraduates receive in organic chemistry with a battery of NMR experiments that investigate egg phosphatidylcholine (egg PC). This material, often labeled in health food stores as lecithin, is a major constituent of mammalian cell membranes. The NMR experiments may be used to make resonance assignments, to study molecular organization in model membranes, to test the effects of instrumental parameters, and to investigate the physics of nuclear spin systems. A suite of modular NMR exercises is described, so that the instructor may tailor the laboratory sessions to biochemistry, instrumental analysis, or physical chemistry. The experiments include solution-state one-dimensional (1D) 1H, 13C, and 31P experiments; two-dimensional (2D) TOtal Correlated SpectroscopY (TOCSY); and the spectral editing technique of Distortionless Enhancement by Polarization Transfer (DEPT). To demonstrate the differences between solution and solid-state NMR spectroscopy and instrumentation, a second set of experiments generates 1H, 13C, and 31P spectra of egg PC dispersed in aqueous solution, under both static and magic-angle spinning conditions.

  5. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  6. Gold-Catalyzed Highly Selective Photoredox C(sp(2) )-H Difluoroalkylation and Perfluoroalkylation of Hydrazones.

    PubMed

    Xie, Jin; Zhang, Tuo; Chen, Fei; Mehrkens, Nina; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-02-18

    The first gold-catalyzed photoredox C(sp(2) )-H difluoroalkylation and perfluoroalkylation of hydrazones with readily available RF -Br reagents is reported. The resulting gem-difluoromethylated and perfluoroalkylated hydrazones are highly functionalized, versatile molecules. A mild reduction of the coupling products can efficiently produce gem-difluoromethylated β-amino phosphonic acids and β-amino acid derivatives. In mechanistic studies, a difluoroalkyl radical intermediate was detected by an EPR spin-trapping experiment, indicating that a gold-catalyzed radical pathway is operating. PMID:26800002

  7. The leptonic CP phase from T2(H)K and μ+ decay at rest

    DOE PAGES

    Evslin, Jarah; Ge, Shao-Feng; Hagiwara, Kaoru

    2016-02-22

    Combining v oscillations at T2K or T2HK withmore » $$\\bar{v}$$ oscillations from μ+ decay at rest (DAR) allows a determination of the leptonic CP-violating phase . The degeneracies of this phase with θ13 and θ23 are broken and δ can be reliably distinguished from 180° - δ. In this study, we present the sensitivity to δ of T2(H)K together with a μ+ DAR experiment using Super-K as a near detector and Hyper-K at the Tochibora site as a far detector.« less

  8. Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin

    SciTech Connect

    Johnson, R.D.; La Mar, G.N.; Smith, K.M.; Parish, D.W.; Langry, K.C. )

    1989-01-18

    NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of {sup 2}H selectively incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfine shifts of the heme resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions to the observed line widths are shown to be insignificant. The {sup 2}H line widths for the skeletal positions of deuterohemin-reconstituted myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30{degree}C) and hence reflect an immobile heme group. The {sup 2}H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar line width can be used directly to determine the protein tumbling rate. The {sup 2}H NMR lines from heme vinyl groups were found narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp{sup 2} hybridized C-{sup 2}H bonds does not permit an unequivocal interpretation in terms of mobility. 48 refs., 4 figs.

  9. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis.

    PubMed

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V; Telkki, Ville-Veikko

    2015-09-18

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  10. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  11. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  12. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR.

    PubMed

    Gooley, P R; Johnson, B A; Marcy, A I; Cuca, G C; Salowe, S P; Hagmann, W K; Esser, C K; Springer, J P

    1993-12-01

    Stromelysin-1, a member of the matrix metalloendoprotease family, is a zinc protease involved in the degradation of connective tissue in the extracellular matrix. As a step toward determining the structure of this protein, multidimensional heteronuclear NMR experiments have been applied to an inhibited truncated form of human stromelysin-1. Extensive 1H, 13C, and 15N sequential assignments have been obtained with a combination of three- and four-dimensional experiments. On the basis of sequential and short-range NOEs and 13C alpha chemical shifts, two helices have been delineated, spanning residues Asp-111 to Val-127 and Leu-195 to Ser-206. A third helix spanning residues Asp-238 to Gly-247 is characterized by sequential NOEs and 13C alpha chemical shifts, but not short-range NOEs. The lack of the latter NOEs suggests that this helix is either distorted or mobile. Similarly, sequential and interstrand NOEs and 13C alpha chemical shifts characterize a four-stranded beta-sheet with three parallel strands (Arg-100 to Ile-101, Ile-142 to Ala-147, Asp-177 to Asp-181) and one antiparallel strand (Ala-165 to Tyr-168). Two zinc sites have been identified in stromelysin [Salowe et al. (1992) Biochemistry 31, 4535-4540]. The NMR spectral properties, including chemical shift, pH dependence, and proton coupling of the imidazole nitrogens of six histidine residues (151, 166, 179, 201, 205, and 211), invariant in the matrix metalloendoprotease family, suggest that these residues are zinc ligands. NOE data indicate that these histidines form two clusters: one ligates the catalytic zinc (His-201, -205, and -211), and the other ligates a structural zinc (His-151, -166, and -179). Heteronuclear multiple quantum correlated spectra and specific labeling experiments indicate His-151, -179, -201, -205, and -211 are in the N delta 1H tautomer and His-166 is in the N epsilon 2H tautomer. PMID:8241164

  13. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. PMID:25924947

  14. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR.

  15. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  16. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  17. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  18. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  19. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.

    PubMed

    Shaikh, Saame Raza; Dumaual, Alfred C; Castillo, Alicia; LoCascio, Daniel; Siddiqui, Rafat A; Stillwell, William; Wassall, Stephen R

    2004-09-01

    We have previously suggested that the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) may in part function by enhancing membrane lipid phase separation into lipid rafts. Here we further tested for differences in the molecular interactions of an oleic (OA) versus DHA-containing phospholipid with sphingomyelin (SM) and cholesterol (CHOL) utilizing (2)H NMR spectroscopy, differential scanning calorimetry, atomic force microscopy, and detergent extractions in model bilayer membranes. (2)H NMR and DSC (differential scanning calorimetry) established the phase behavior of the OA-containing 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31))/SM (1:1) and the DHA-containing 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31))/SM (1:1) in the absence and presence of equimolar CHOL. CHOL was observed to affect the OA-containing phosphatidylethanolamine (PE) more than the DHA-containing PE, as exemplified by >2 x greater increase in order measured for the perdeuterated palmitic chain in 16:0-18:1PE-d(31)/SM (1:1) compared to 16:0-22:6PE-d(31)/SM (1:1) bilayers in the liquid crystalline phase. Atomic force microscopy (AFM) experiments showed less lateral phase separation between 16:0-18:1PE-rich and SM/CHOL-rich raft domains in 16:0-18:1PE/SM/CHOL (1:1:1) bilayers than was observed when 16:0-22:6PE replaced 16:0-18:1PE. Differences in the molecular interaction of 16:0-18:1PE and 16:0-22:6PE with SM/CHOL were also found using biochemical detergent extractions. In the presence of equimolar SM/CHOL, 16:0-18:1PE showed decreased solubilization in comparison to 16:0-22:6PE, indicating greater phase separation with the DHA-PE. Detergent experiments were also conducted with cardiomyocytes fed radiolabeled OA or DHA. Although both OA and DHA were found to be largely detergent solubilized, the amount of OA that was found to be associated with raft-rich detergent-resistant membranes exceeded DHA by

  20. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  1. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  2. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  3. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  4. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed

    Bayerl, T M; Bloom, M

    1990-08-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A.

  5. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed Central

    Bayerl, T M; Bloom, M

    1990-01-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A. PMID:2207243

  6. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  7. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  8. Ultrafast Multidimensional Laplace NMR Using a Single-Sided Magnet.

    PubMed

    King, Jared N; Lee, Vanessa J; Ahola, Susanna; Telkki, Ville-Veikko; Meldrum, Tyler

    2016-04-11

    Laplace NMR (LNMR) consists of relaxation and diffusion measurements providing detailed information about molecular motion and interaction. Here we demonstrate that ultrafast single- and multidimensional LNMR experiments, based on spatial encoding, are viable with low-field, single-sided magnets with an inhomogeneous magnetic field. This approach shortens the experiment time by one to two orders of magnitude relative to traditional experiments, and increases the sensitivity per unit time by a factor of three. The reduction of time required to collect multidimensional data opens significant prospects for mobile chemical analysis using NMR. Particularly tantalizing is future use of hyperpolarization to increase sensitivity by orders of magnitude, allowed by single-scan approach.

  9. Protein structure by solid-state NMR of oriented systems

    SciTech Connect

    Stewart, P.L.

    1987-01-01

    A method for determining protein backbone structure from angular information obtainable by solid state NMR spectroscopy is presented. Various spin interactions including quadrupole, dipole, and chemical shift interactions and nuclei including /sup 14/N, /sup 15/N, /sup 13/C, and /sup 2/H may be observed. Angularly dependent measurements can be made when the sample has at least one direction of order along the externally applied magnetic field. Several NMR parameters are used to determine the orientation of each peptide plane with respect to the magnetic field vector, B/sub O/, to within a few symmetry related possibilities. The computer program Totlink can then be used to perform the necessary coordinate transformations and to evaluate the possible backbone structures and select for the most chemically reasonable. Experimental /sup 14/N NMR structural studies of the model peptides n-acetyl-d,l-valine, n-acetyl-l-valyl-l-leucine, and l-alanyl-glycyl-glycine and preliminary /sup 14/N NMR results on a large single crystal of orthorhombic lysozyme are presented.

  10. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  11. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  12. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  13. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    SciTech Connect

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J.; Dey, Krishna K.; Baltisberger, Jay H.

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  14. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  15. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA.

  16. Apparatus for direct addition of reagents into a nuclear magnetic resonance (NMR) sample in the NMR probe

    NASA Astrophysics Data System (ADS)

    Perrin, Charles L.; Rivero, Ignacio A.

    1999-04-01

    Nuclear magnetic resonance (NMR) is a widely used tool in chemistry and biochemistry. It is occasionally necessary to add small aliquots of solvents or reagents repeatedly into the NMR tube. Ordinarily this is accomplished only by ejecting the sample and carrying out the addition outside the probe. It would be preferable to add the aliquot directly into the sample. We have designed and implemented a delivery system to accomplish this. This apparatus is particularly applicable to a recent NMR titration method for measuring relative pK's and to experiments where temperature must also be varied. This apparatus provides a safe, simple, and inexpensive method for repeated aliquot addition directly into the sample in the NMR probe.

  17. Multinuclear NMR studies of relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua

    Multinuclear NMR of 93Nb, 45Sc, and 207Pb has been carried out to study the structure, disorder, and dynamics of a series of important solid solutions: perovskite relaxor ferroelectric materials (1-x) Pb(Mg1/3Nb 2/3)O3-x Pb(Sc1/2Nb1/2)O 3 (PMN-PSN). 93Nb NMR investigations of the local structure and cation order/disorder are presented as a function of PSN concentration, x. The superb fidelity and accuracy of 3QMAS allows us to make clear and consistent assignments of spectral intensities to the 28 possible nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb), where each number ranges from 0 to 6 and their sum is 6. For most of the 28 possible nBn configurations, isotropic chemical shifts and quadrupole product constants have been extracted from the data. The seven configurations with only larger cations, Mg 2+ and Sc3+ (and no Nb5+) are assigned to the seven observed narrow peaks, whose deconvoluted intensities facilitate quantitative evaluation of, and differentiation between, different models of B-site (chemical) disorder. The "completely random" model is ruled out and the "random site" model is shown to be in qualitative agreement with the NMR experiments. To obtain quantitative agreement with observed NMR intensities, the random site model is slightly modified by including unlike-pair interaction energies. To date, 45Sc studies have not been as fruitful as 93Nb NMR because the resolution is lower in the 45Sc spectra. The lower resolution of 45Sc spectra is due to a smaller span of isotropic chemical shift (40 ppm for 45Sc vs. 82 ppm for 93Nb) and to the lack of a fortuitous mechanism that simplifies the 93Nb spectra; for 93Nb the overlap of the isotropic chemical shifts of 6-Sc and 6-Nb configurations results in the alignment of all the 28 configurations along only seven quadrupole distribution axes. Finally we present variable temperature 207Pb static, MAS, and 2D-PASS NMR studies. Strong linear correlations between isotropic and anisotropic chemical

  18. The rate of the reaction between CN and C2H2 at interstellar temperatures

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Herbst, E.

    1997-01-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  19. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon

    NASA Astrophysics Data System (ADS)

    Soulard, P.; Tremblay, B.

    2015-12-01

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  20. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed. PMID:26671379

  1. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  2. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  3. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  4. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  5. Volume-discharge formed in SF6 and C2H6 mixtures without preionization

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Ke, Changjun; Zhang, Shujuan

    2014-11-01

    A new approach to obtain glow discharge in working mixtures of non-chain HF laser has been brought forward. The most advantage of the approach is without pre-ionization, so the contamination of pre-ionization will not happen and the laser equipment is compact and simple. It is found, if the cathode surface is equally rough, we can obtain uniform volume-discharge in SF6 mixtures without any pre-ionization, and dispense with uniform electric field electrode profile. The form of Self-Sustained Volume Discharge (SSVD) is a Self-Initiated Volume Discharge (SIVD). We show here the possibility of obtaining SIVD with a uniform energy deposition in a system of electrodes with non-uniform electric field. Experiments show that, with rough cathode and even anode, a volume discharge is forming in non-uniform electric-field without pre-ionization in SF6 and C2H6 mixtures. At the beginning of the discharge, many diffuse channels attached to bright circular cathode spots, then, diverge towards the anode, with the channels overlapping, form a spatially uniform glow discharge. SIVD has been performed at a total mixture pressure up to 8kPa and energy deposition up to 200J/l. We also report measurements of the V-I characteristics of SIVD with SF6 and C2H6 mixtures at pressure up to about 8kPa. The experimental results indicate that SSVD in SF6 and C2H6 mixtures develops in the form of SIVD is promising for creation of high energy and pulse-periodic HF laser.

  6. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  7. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  8. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  9. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  10. A novel analysis for the NMR magic sandwich echo in polymers: application to the α-relaxation in polybutadiene

    NASA Astrophysics Data System (ADS)

    Pieruccini, Marco; Sturniolo, Simone; Corti, Maurizio; Rigamonti, Attilio

    2015-11-01

    On the basis of a method to describe the relaxation dynamics in an ensemble of spin pairs, an analytical expression is derived for the magic sandwich echo refocusing efficiency of 1H-NMR signals from systems where dipolar interaction dominates. At the sake of illustration the method is applied to the analysis of the α-relaxation in poly(butadiene). The Vogel-Fulcher-Tammann behaviour of the central relaxation rates, derived by fitting the refocusing efficiency as a function of the temperature, follows very well independent measurements performed with stimulated echo 2H-NMR experiments. Comparison with literature data worked out by broad band dielectric spectroscopy also shows very good agreement. In the framework of an Havriliak-Negami representation of the distribution of correlation times, information about width and asymmetry of the frequency profile is also provided by the analysis. This novel method is believed to represent a suitable path to extract basic information on the motional distribution in a variety of similar systems.

  11. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  12. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils. PMID:26453215

  13. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  14. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases

    SciTech Connect

    Jaeger, Martin Rothacker, Boris; Ilg, Thomas

    2008-08-01

    Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD{sup +}/NADP{sup +} indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD{sup +}/NADP{sup +} adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD{sup +}/NADP{sup +} adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.

  15. Electron swarm parameters in pure C2H2 and in C2H2-Ar mixtures and electron collision cross sections for the C2H2 molecule

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshiharu

    2010-09-01

    Electron swarm parameters (the drift velocity and the longitudinal diffusion coefficient) were measured in pure C2H2 and also in C2H2-Ar mixtures containing 0.517% and 5.06% acetylene over wide E/N ranges. These swarm parameters were analysed using a Boltzmann equation analysis and a set of electron collision cross sections for the C2H2 molecule was derived so that it was consistent with the present swarm data and published ionization coefficient. The present result suggested the presence of a Ramsauer-Townsend minimum in the elastic momentum transfer cross section at 0.08 eV and prominent threshold and resonance peaks in the ν4/ν5 vibrational excitation cross section. The present cross section set was also confirmed to be consistent with the published experimental total cross section of C2H2.

  16. Paramagnetic shimming for wide-range variable-field NMR.

    PubMed

    Ichijo, Naoki; Takeda, Kazuyuki; Takegoshi, K

    2014-09-01

    We propose a new passive shimming strategy for variable-field NMR experiments, in which the magnetic field produced by paramagnetic shim pieces placed inside the magnet bore compensates the inhomogeneity of a variable-field magnet for a wide range of magnet currents. Paramagnetic shimming is demonstrated in (7)Li, (87)Rb, and (45)Sc NMR of a liquid solution sample in magnetic fields of 3.4, 4.0, and 5.4T at a fixed carrier frequency of 56.0MHz. Since both the main-field inhomogeneity and the paramagnetic magnetization are proportional to the main-magnet current, the resonance lines are equally narrowed by the improved field homogeneity with an identical configuration of the paramagnetic shim pieces. Paramagnetic shimming presented in this work opens the possibility of high-resolution variable-field NMR experiments. PMID:25080372

  17. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

    PubMed Central

    Aachmann, Finn L.; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2012-01-01

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu2+ (Kd = 55 nM; from isothermal titration calorimetry) and higher preference for Cu1+ (Kd ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu1+ was also reflected in a reduction in the pKa values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2H/1H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  18. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  19. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  20. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  1. beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine.

    PubMed

    Moolenaar, S H; Göhlich-Ratmann, G; Engelke, U F; Spraul, M; Humpfer, E; Dvortsak, P; Voit, T; Hoffmann, G F; Bräutigam, C; van Kuilenburg, A B; van Gennip, A; Vreken, P; Wevers, R A

    2001-11-01

    In this work, NMR investigations that led to the discovery of a new inborn error of metabolism, beta-ureidopropionase (UP) deficiency, are reported. 1D (1)H-NMR experiments were performed using a patient's urine. 3-Ureidopropionic acid was observed in elevated concentrations in the urine spectrum. A 1D (1)H-(1)H total correlation spectroscopy (TOCSY) and two heteronuclear 2D NMR techniques (heteronuclear multiple bond correlation (HMBC) and heteronuclear single-quantum correlation (HSQC)) were used to identify the molecular structure of the compound that caused an unknown doublet resonance at 1.13 ppm. Combining the information from the various NMR spectra, this resonance could be assigned to 3-ureidoisobutyric acid. These observations suggested a deficiency of UP. With 1D (1)H-NMR spectroscopy, UP deficiency can be easily diagnosed. The (1)H-NMR spectrum can also be used to diagnose patients suffering from other inborn errors of metabolism in the pyrimidine degradation pathway.

  2. Solubilization and Reconstitution of the Mg2+/2H+ Antiporter of the Lutoid Tonoplast from Hevea brasiliensis Latex.

    PubMed Central

    Amalou, Z.; Gibrat, R.; Trouslot, P.; D'Auzac, J.

    1994-01-01

    The Mg2+/2H+ antiporter recently described on lutoid membrane (Z. Amalou, R. Gibrat, C. Brugidou, P. Trouslot, J.d'Auzac [1992] Plant Physiol 100: 255-260) was solubilized by octylglucoside and reconstituted into soybean liposomes using the detergent dilution method. Magnesium efflux or influx experiments were used to generate a H+ influx or efflux, respectively, monitored with the fluorescent probe 9-amino-6-chloro-2-methoxyacridine. Both experiments gave saturable H+ fluxes as a function of internal or external Mg2+ concentrations with similar kinetic parameters Km and Vmax. The Km value for Mg2+ (about 2 mM) was identical to that previously found in lyophilized-resuspended lutoid (reference therein), whereas the Vmax value was 14-fold higher. Since only 10% of the initial proteins were recovered in proteoliposomes, and electrophoretic patterns of the two kinds of vesicles differed significantly, it was inferred that the increase in Vmax was due essentially to an enrichment of the protein antiporter in the reconstituted fraction, owing to a selective effect of octylglucoside at both solubilization and reconstitution steps. None of the various divalent cations used could dissipate the pH gradient of control liposomes of soybean lipids, unless the divalent/H+ exchanger A23187 was added, whereas a rapid dissipation of the pH gradient was observed with reconstituted proteoliposomes from lutoid proteins, with the cation selectivity sequence Zn2+ > Cd2+ > Mg2+ in the millimolar concentration range. The divalent ions Ca2+, Ba2+, and Mn2+ were incapable of generating a H+ efflux in reconstituted proteoliposomes, whereas both Mg2+/H+ and Ca2+/H+ exchanges were observed in lyophilized-resuspended lutoids. Therefore, the lutoid membrane seems to contain separate Mg2+/H+ and Ca2+/H transport systems, the latter being eliminated during the solubilization/reconstitution of lutoid membrane proteins. PMID:12232305

  3. Single-shot titrations and reaction monitoring by slice-selective NMR spectroscopy.

    PubMed

    Niklas, T; Stalke, D; John, M

    2015-01-25

    A new method, based on slice-selective NMR spectroscopy of inhomogeneous mixtures, is introduced to perform NMR titrations and reaction monitoring in a single experiment. The method was applied to the titration of a lithium salt with 12-crown-4, and to the reaction of nBuLi with N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDTA).

  4. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  5. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…

  6. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  7. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  8. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  9. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  10. NMR Methods for Characterization of RNA Secondary Structure.

    PubMed

    Kennedy, Scott D

    2016-01-01

    Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed. PMID:27665604

  11. Disentangling Complex Mixtures of Compounds with Near-Identical (1) H and (13) C NMR Spectra using Pure Shift NMR Spectroscopy.

    PubMed

    Castañar, Laura; Roldán, Raquel; Clapés, Pere; Virgili, Albert; Parella, Teodor

    2015-05-18

    The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the (13) C indirect dimension enables the distinction of similar compounds exhibiting near-identical (1) H and (13) C NMR spectra. It is shown that a complete set of extremely small Δδ((1) H) and Δδ((13) C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.

  12. Cell-free conversion of 1 prime -deoxy- sup 2 H-ABA to sup 2 H-ABA in extracts from Cercospora rosicola

    SciTech Connect

    Al-Nimri, L.; Coolbaugh, R.C. )

    1990-05-01

    The characteristics of the enzyme converting 1{prime}-deoxy-ABA into ABA have been studied in the fungus C. rosicola. Enzyme extracts were prepared from cold-pressed mycelia of C. rosicola. The suspension was a high speed supernatant and a microsomal fraction. A cell-free system was developed to convert 1{prime}-deoxy-{sup 2}H-ABA into {sup 2}H-ABA using a reaction mixture containing 300 {mu}l enzyme extract, 10 {mu}m 1{prime}-deoxy-{sup 2}H-ABA. The reaction products were chromatographed by reverse phase HPLC. The presumptive ABA fractions were collected and {sup 2}H-ABA was quantified by GC-MS using a {sup 2}H-(2Z, 4E)-ABA standard curve. 1{prime}-deoxy-{sup 2}H-ABA was converted to an average of 1.47 pmole {sup 2}H-ABA/mg protein per min. Most of the enzymic activity was found in the microsomal fraction. The reaction required NADPH and was enhanced by FAD. The reaction was not inhibited by triarimol.

  13. An ignored but most favorable channel for NCO+C2H2 reaction.

    PubMed

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-28

    The NCO+C(2)H(2) reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP6-31G(d), B3LYP6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD6-31G(d), and Gaussian-3 levels are performed for the NCO+C(2)H(2) reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P(3) H+HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500 K) and pressures (10-560 Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P(2) HCN+HCCO and P

  14. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  15. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    NASA Technical Reports Server (NTRS)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  16. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  17. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  18. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  19. Lipid-ethanol interaction studied by NMR on bicelles.

    PubMed

    Koenig, Bernd W; Gawrisch, Klaus

    2005-04-21

    The interaction of ethanol with phospholipids was studied in bicelles at a physiologically relevant ethanol concentration of 20 mM and a lipid content of 14 wt % by high-resolution NMR. Transient association of ethanol with magnetically aligned bicelles imparts a small degree of anisotropy to the solute. This anisotropy allows detection of residual (1)H-(1)H and (1)H-(13)C dipolar couplings, which are superimposed on scalar couplings. Residual (2)H NMR quadrupole splittings of isotope-labeled ethanol were measured as well. The analysis of residual tensorial interactions yielded information on the orientation and motions of ethanol in the membrane-bound state. The fraction of phosphatidylcholine-bound ethanol was determined independently by gas chromatography and NMR. About 4% of ethanol is bound to phosphatidylcholine at a bicelle concentration of 14 wt % at 40 degrees C. Free and bound ethanol are in rapid exchange. The lifetime of ethanol association with phosphatidylcholine membranes is of the order of a few nanoseconds.

  20. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.