Science.gov

Sample records for 2h nmr experiments

  1. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  2. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  3. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  4. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  5. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  6. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  7. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)2H MAS NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  8. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  9. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  10. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  11. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  12. Orientational landscapes of peptides in membranes: prediction of (2)H NMR couplings in a dynamic context.

    PubMed

    Esteban-Martín, Santi; Giménez, Diana; Fuertes, Gustavo; Salgado, Jesús

    2009-12-01

    Unlike soluble proteins, membrane polypeptides face an anisotropic milieu. This imposes restraints on their orientation and provides a reference that makes structure prediction tractable by minimalistic thermodynamic models. Here we use this framework to build orientational distributions of monomeric membrane-bound peptides and to predict their expected solid-state (2)H NMR quadrupolar couplings when labeled at specific side chain positions. Using a complete rigid-body sampling of configurations relative to an implicit lipid membrane, peptide free energy landscapes are calculated. This allows us to obtain probability distributions of the peptide tilt, azimuthal rotation, and depth of membrane insertion. The orientational distributions are broad and originate from an interplay among the three relevant rigid-body degrees of freedom, which allows population of multiple states in shallow free energy minima. Remarkably, only when the orientational distributions are taken into account do we obtain a close correlation between predicted (2)H NMR splittings and values measured in experiments. Such a good correlation is not seen with splittings calculated from single configurations, being either the averaged or the lowest free energy state, showing there are distributions, rather than single structures, that best define the peptide-membrane systems. Moreover, we propose that these distributions contribute to the understanding of the rigid-body dynamics of the system. PMID:19860438

  13. Alcohol binding to liposomes by 2H NMR and radiolabel binding assays: does partitioning describe binding?

    PubMed Central

    Dubey, A K; Eryomin, V A; Taraschi, T F; Janes, N

    1996-01-01

    Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes. PMID:9172754

  14. 2H transmit-receive NMR probes for magnetic field monitoring in MRI.

    PubMed

    Sipilä, Pekka; Greding, Sebastian; Wachutka, Gerhard; Wiesinger, Florian

    2011-05-01

    Measuring image encoding fields in real time and applying the information in postprocessing offer improved image quality for MRI, particularly for applications that are intrinsically sensitive to gradient imperfections. For this task, a stand-alone magnetometer system based on multiple (2)H transmit-receive NMR probes has been developed. The conceptual advantages of changing to (2)H NMR probes for (1)H magnetic field monitoring are elucidated here, and the practical design of the probes is described. In comparison to previous (1)H NMR probe-based designs, (2)H probes are perfectly decoupled from standard (1)H imaging. Utilization of RF shielding or other nonoptimal decoupling schemes is therefore not needed. Probes based on (2)H nuclei are also more easily miniaturized for high-resolution imaging. This is particularly important for diffusion tensor and phase-contrast imaging, which rely on strong motion-sensitizing gradients. The presented (2)H NMR probes have been shown to fulfill the requirements for accurate (1)H imaging down to image resolutions of 0.2 mm. Using susceptibility matching techniques, the probe's B(0) inhomogeneity-induced signal dephasing is reduced and monitoring periods beyond 200 msec are achieved. The benefit of real time magnetic field monitoring is highlighted for phase-contrast and non-Cartesian multishot imaging. PMID:21254204

  15. Conformations of banana-shaped molecules studied by 2H NMR spectroscopy in liquid crystalline solvents.

    PubMed

    Calucci, Lucia; Forte, Claudia; Csorba, Katalin Fodor; Mennucci, Benedetta; Pizzanelli, Silvia

    2007-01-11

    ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed. PMID:17201428

  16. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  17. Solid-State 2H NMR Shows Equivalence of Dehydration and Osmotic Pressures in Lipid Membrane Deformation

    PubMed Central

    Mallikarjunaiah, K.J.; Leftin, Avigdor; Kinnun, Jacob J.; Justice, Matthew J.; Rogozea, Adriana L.; Petrache, Horia I.; Brown, Michael F.

    2011-01-01

    Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins. PMID:21190661

  18. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    PubMed

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-01

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (<10(2) s(-1)). When the silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks. PMID:25619304

  19. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  20. Anisotropic sup 2 H NMR spin-lattice relaxation in L sub. alpha. -phase cerebroside bilayers

    SciTech Connect

    Speyer, J.B.; Weber, R.T.; Gupta, S.K.D.; Griffin, R.G. )

    1989-12-12

    A series of {sup 2}H NMR inversion recovery experiments in the L{sub {alpha}} phase of the cerebroside N-palmitoylgalactosylsphingosine (NPGS) have been performed. In these liquid crystalline lipid bilayers the authors have observed substantial anisotropy in the spin-lattice relaxation of the CD{sub 2} groups in the acyl chains. The form and magnitude of the anisotropy varies with position in the chain, being positive in the upper region, decreasing to zero at the 4-position, and reversing sign at the lower chain positions. It is also shown that addition of cholesterol to the bilayer results in profound changes in the anisotropy. These observations are accounted for by a simple motional model of discrete hops among nine sites, which result from the coupling of two modes of motion - long-axis rotational diffusion and guache-trans isomerization. This model is employed in quantitative simulations of the spectral line shapes and permits determination of site populations and motional rates. These results, plus preliminary results in sphingomyelin and lecithin bilayers,illustrate the utility of T{sub 1} anisotropy measurements as a probe of dynamics in L{sub {alpha}}-phase bilayers.

  1. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  2. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR.

    PubMed

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining

    2016-06-18

    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions. PMID:27181834

  3. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils. PMID:15969485

  4. Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

    NASA Astrophysics Data System (ADS)

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-11-01

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore's core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore's dormancy and thermal stability. Here, we use $^2$H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn$^{2+}$ ions. We also report and analyze the solid-state $^2$H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (~ 25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7 % on average of the maximum sixfold water coordination.

  5. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  6. Protein dynamics in the solid state from 2H NMR line shape analysis: a consistent perspective.

    PubMed

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H

    2015-02-19

    Deuterium line shape analysis of CD3 groups has emerged as a particularly useful tool for studying microsecond-millisecond protein motions in the solid state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison among the different systems is not possible. Here we develop a new methodology for (2)H NMR line shape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model improvement is accomplished by monitoring the magnitude, symmetry, and orientation of the various tensors. The generality of MOMD makes possible comparison among different scenarios. CD3 line shapes from the Chicken Villin Headpiece Subdomain and the Streptomyces Subtilisin Inhibitor are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and by axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2-3 k(B)T. The diffusion tensor is tilted at 120° from the C-CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1-1.0 ms (3.3-30 μs). Activation energies in the 1.1-8.0 kcal/mol range are estimated. Future prospects include extension to the (2)H relaxation limit, application to the (15)N and (13)C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  7. Protein Dynamics in the Solid-State from 2H NMR Lineshape Analysis: a Consistent Perspective

    PubMed Central

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H.

    2015-01-01

    Deuterium lineshape analysis of CD3 groups has emerged as a particularly useful tool for studying μs - ms protein motions in the solid-state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison amongst the different systems is not possible. Here we develop a new methodology for 2H NMR lineshape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model-improvement is accomplished by monitoring the magnitude, symmetry and orientation of the various tensors. The generality of MOMD makes possible comparison amongst different scenarios. CD3 lineshapes from the Chicken Villin Headpiece Subdomain, and the Streptomyces Subtilisin Inhibitor, are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2 − 3 [kBT]. The diffusion tensor is tilted at 120° from the C−CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1 − 1.0 ms (3.3 − 30 μs). Activation energies in the 1.1 − 8.0 kcal/mol range are estimated. Future prospects include extension to the 2H relaxation limit, application to the 15N and 13C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  8. An NMR Kinetics Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Don; And Others

    1982-01-01

    Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

  9. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  10. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  11. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    SciTech Connect

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-09-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H/sub 2/O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in /sup 2/H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D/sub 2/O was used instead of H/sub 2/O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles.

  12. 2H and 27Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite

    PubMed Central

    2015-01-01

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in order to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. Predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases. PMID:26321790

  13. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    SciTech Connect

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E. )

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.

  14. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers.

    PubMed

    Hing, A W; Adams, S P; Silbert, D F; Norberg, R E

    1990-05-01

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study. PMID:1694457

  15. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed Central

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-01-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  16. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-10-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  17. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  18. From molecular complexes to complex metallic nanostructures--2H solid-state NMR studies of ruthenium-containing hydrogenation catalysts.

    PubMed

    Gutmann, Torsten; del Rosal, Iker; Chaudret, Bruno; Poteau, Romuald; Limbach, Hans-Heinrich; Buntkowsky, Gerd

    2013-09-16

    In the last years, the combination of (2)H solid-state NMR techniques with quantum-chemical calculations has evolved into a powerful spectroscopic tool for the characterization of the state of hydrogen on the surfaces of heterogeneous catalysts. In the present minireview, a brief summary of this development is given, in which investigations of the structure and dynamics of hydrogen in molecular complexes, clusters and nanoparticle systems are presented, aimed to understand the reaction mechanisms on the surface of hydrogenation catalysts. The surface state of deuterium/hydrogen is analyzed employing a combination of variable-temperature (2)H static and magic-angle spinning (MAS) solid-state NMR techniques, in which the dominant quadrupolar interactions of deuterium give information on the binding situation and local symmetry of deuterium/hydrogen on molecular species. Using a correlation database from molecular complexes and clusters, the possibility to distinguish between terminal Ru-D, bridged Ru2-D, three-fold Ru3-D, and interstitial Ru6-D is demonstrated. Combining these results with quantum-chemical density functional theory (DFT) calculations allows the interpretation of (2)H solid-state data of complex "real world" nanostructures, which yielded new insights into reaction pathways at the molecular level. PMID:23658058

  19. Phase Separation in Binary Mixtures of Bipolar and Monopolar Lipid Dispersions Revealed by 2H NMR Spectroscopy, Small Angle X-Ray Scattering, and Molecular Theory

    PubMed Central

    Brownholland, David P.; Longo, Gabriel S.; Struts, Andrey V.; Justice, Matthew J.; Szleifer, Igal; Petrache, Horia I.; Brown, Michael F.; Thompson, David H.

    2009-01-01

    Abstract Binary mixtures of C20BAS and POPC membranes were studied by solid-state 2H NMR spectroscopy and small angle x-ray scattering (SAXS) over a wide range of concentrations and at different temperatures. Three specifically deuterated C20BAS derivatives—[1′,1′,20′,20′-2H4]C20BAS, [2′,2′,19′,19′-2H4]C20BAS, and [10′,11′-2H2]C20BAS—combined with protiated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as well as membranes containing POPC-d31 and fully protiated bolalipid, were used in NMR experiments to obtain structural information for the mixtures. The 2H NMR spectra of [10′,11′-2H2]C20BAS/POPC membrane dispersions reveal that the bolalipid is predominantly in the transmembrane conformation at high bolalipid concentrations (100, 90, and 70 mol %). At ≤50 mol % C20BAS, smaller quadrupolar couplings appear in the spectra, indicating the presence of U-shaped conformers. The proportion of U-shaped bolalipids increases as the amount of POPC in the membrane increases; however, the transmembrane component remains the dominant bolalipid conformation in the membrane even at 45°C and 10 mol % C20BAS, where it accounts for ∼50% of the bolalipid population. The large fraction of C20BAS transmembrane conformers, regardless of the C20BAS/POPC ratio, together with the findings from molecular mean-field theory calculations, suggests the coexistence of phase-separated bolalipid-rich domains and POPC-rich domains. A single lamellar repeat distance was observed in SAXS experiments corresponding to the average repeat spacing expected for C20BAS- and POPC-rich domains. These observations are consistent with the presence of microphase-separated domains in the mixed membrane samples that arise from POPC-C20BAS hydrophobic mismatch. PMID:19917223

  20. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  1. sup 2 H NMR study of molecular dynamics and organization in the system C sub 12 E sub 4 -water

    SciTech Connect

    Henriksson, U. ); Jonstroemer, M.; Olsson, U.; Soederman, O. ); Klose, G. )

    1991-05-02

    A sample containing 20 wt % of the nonionic surfactant tetraethylene glycol dodecyl ether (C{sub 12}E{sub 4}), specifically deuterated in the {alpha}-position, was investigated with {sup 2}H NMR relaxation in H{sub 2}O. From the frequency dependence of the longitudinal relaxation rate in the Larmor frequency range 2-55 MHz, it was concluded that the solution contains rodlike micelles. A slow motion in the microsecond time scale, as determined from the transverse relaxation rate, was interpreted taking the flexibility of the rodlike micelles explicitly into account.

  2. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  3. Hydration and Lateral Organization in Phospholipid Bilayers Containing Sphingomyelin: A 2H-NMR Study

    PubMed Central

    Steinbauer, Bernhard; Mehnert, Thomas; Beyer, Klaus

    2003-01-01

    Interfacial properties of lipid bilayers were studied by 2H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D2O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature Tm than below Tm. The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished 2H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the 2H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes. PMID:12885648

  4. Fully automated high-quality NMR structure determination of small 2H-enriched proteins

    PubMed Central

    Tang, Yuefeng; Schneider, William M.; Shen, Yang; Raman, Srivatsan; Inouye, Masayori; Baker, David; Roth, Monica J.

    2010-01-01

    Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using <4 days of data collection and fully automated data analysis methods together with CS-Rosetta. The resulting CspA structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with 15N- and 13C-edited NOESY data obtained with a perdeuterated 15N, 13C-enriched 13CH3 methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR. PMID:20734145

  5. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. PMID:24750769

  6. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  7. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  8. 2H-NMR resolution of the methylenic isotopomers of ethanol applied to the study of stereospecific enzyme-catalysed exchange.

    PubMed

    Rabiller, C; Mesbahi, M; Martin, M L

    1990-01-01

    We have shown that site-specific natural isotope fractionation of hydrogen studied by NMR (SNIF-NMR) is an important source of information on the mechanistic and environmental effects which govern the photosynthesis of sugars and their fermentation into ethanol. Three isotope ratios associated with the methyl, methylene, and hydroxyl sites of ethanol are determined in achiral media. In this study we show that complementary information about possible stereospecific mechanisms involving the methylenic hydrogens is also rendered accessible by 2H-NMR enantiomeric resolution. The synthesis of mandelate esters enables exchange between the pro-R site of ethanol and water to be investigated. Simultaneous access to the three site-specific isotope ratios of the ethyl group is obtained at isotopic dilutions close to the natural ones. Mediation of the exchange by the enzymic system alcohol dehydrogenase-alpha-lipoyldehydrogenase and by the yeast Saccharomyces cerevisiae are compared. The progress of the reaction can be followed quantitatively as a function of time and the occurrence of glycolytic metabolism of endogeneous materials by yeast can be substantiated in a one-pot experiment. PMID:2205266

  9. Acyl chain length effects related to glycosphingolipid crypticity in phospholipid membranes: probed by 2H-NMR.

    PubMed

    Hamilton, K S; Briere, K; Jarrell, H C; Grant, C W

    1994-03-23

    Wideline 2H-NMR was used to consider the relationships amongst glycosphingolipid and phospholipid fatty acid chain length and glycosphingolipid receptor function, in a system classically associated with crypticity. Galactosyl ceramide (GalCer), having 18- or 24-carbon fatty acid, was deuterium labelled at the conformationally-restricted fatty acid alpha-carbon (C-2). 2H-NMR spectra of N-[2,2-2H2]stearoyl and N-[2,2-2H2]lignoceroyl GalCer (GalCer with 18-vs. 24-carbon selectively deuterated fatty acid) were then compared over a range of temperatures in phosphatidylcholine/cholesterol membranes in which the host phospholipid had dimyristoyl, dipalmitoyl, or distearoyl fatty acid composition. Findings were evaluated in the light of known sensitivity of antibody interaction with GalCer to temperature and to both glycolipid fatty acid chain length and host matrix fatty acid chain length. Under the conditions of experimentation, spectra were not obtainable for glycolipids having rigid body motions that were slow on the NMR timescale (10(-4)-10(-5) s)-i.e.. motions typical of non-fluid (gel phase) membranes. The systems, DPPC/cholesterol and DSPC/cholesterol, in which the original observation was made of increased antibody binding to GalCer with long fatty acid, proved to be characterised by receptor motions that were in this slow timescale for both 18:0 and 24:0 GalCer at 22-24 degrees C. Under conditions for which spectra could be obtained, those for GalCer with [2,2-2H2]lignoceroyl (24-carbon alpha-deuterated) fatty acid were qualitatively similar to those of its 18-carbon analogue in all (fluid) membranes examined. However, spectral splittings differed quantitatively between deuterated 18:0 and 24:0 GalCer at a given temperature, dependent upon host matrix. These differences were most marked at lower temperatures and in the longer chain (more ordered) matrices, DPPC/cholesterol and DSPC/cholesterol. This suggests that maximum effects of glycolipid chain length on

  10. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-01

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data. PMID:27183247

  11. The structural properties of the transmembrane segment of the integral membrane protein phospholamban utilizing (13)C CPMAS, (2)H, and REDOR solid-state NMR spectroscopy.

    PubMed

    Karp, Ethan S; Tiburu, Elvis K; Abu-Baker, Shadi; Lorigan, Gary A

    2006-06-01

    Solid-state NMR spectroscopic techniques were used to investigate the secondary structure of the transmembrane peptide phospholamban (TM-PLB), a sarcoplasmic Ca(2+) regulator. (13)C cross-polarization magic angle spinning spectra of (13)C carbonyl-labeled Leu39 of TM-PLB exhibited two peaks in a pure 1-palmitoyl-2-oleoyl-phosphocholine (POPC) bilayer, each due to a different structural conformation of phospholamban as characterized by the corresponding (13)C chemical shift. The addition of a negatively charged phospholipid (1-palmitoyl-2-oleoylphosphatidylglycerol (POPG)) to the POPC bilayer stabilized TM-PLB to an alpha-helical conformation as monitored by an enhancement of the alpha-helical carbonyl (13)C resonance in the corresponding NMR spectrum. (13)C-(15)N REDOR solid-state NMR spectroscopic experiments revealed the distance between the (13)C carbonyl carbon of Leu39 and the (15)N amide nitrogen of Leu42 to be 4.2+/-0.2A indicating an alpha-helical conformation of TM-PLB with a slight deviation from an ideal 3.6 amino acid per turn helix. Finally, the quadrupolar splittings of three (2)H labeled leucines (Leu28, Leu39, and Leu51) incorporated in mechanically aligned DOPE/DOPC bilayers yielded an 11 degrees +/-5 degrees tilt of TM-PLB with respect to the bilayer normal. In addition to elucidating valuable TM-PLB secondary structure information, the solid-state NMR spectroscopic data indicates that the type of phospholipids and the water content play a crucial role in the secondary structure and folding of TM-PLB in a phospholipid bilayer. PMID:16839519

  12. Order and dynamics in mixtures of membrane glucolipids from Acholeplasma laidlawii studied by sup 2 H NMR

    SciTech Connect

    Eriksson, P.O.; Rilfors, L.; Lundberg, A.; Lindblom, G.; Wieslander, A. )

    1991-05-21

    The two dominant glucolipids in Acholeplasma laidlawii, viz., 1,2-diacyl-3-O-({alpha}-D-glucopyranosyl)-sn-glycerol (MGlcDG) and 1,2-diacyl-3-O-({alpha}-D-glucopyranosyl-(1{yields}2)-O-{alpha}-D-glucopyranosyl)-sn-glycerol (DGlcDG), have markedly different phase behavior. MGlcDG has an ability to form nonlamellar phases, whereas DGlcDG only forms lamellar phases. For maintenance of a stable lipid bilayer, the polar headgroup composition in A. laidlawii is metabolically regulated in vivo, in response to changes in the growth conditions. To investigate the mechanism behind the lipid regulation the authors have here studied bilayers of mixtures of unsaturated MGlcDG and DGlcDG, containing a small fraction of biosynthetically incorporated per-deuterated palmitic acid, with {sup 2}H NMR. The order-parameter profile of the acyl chains and an apparent transverse spin relaxation rate (R{sub 2}) were determined from dePaked quadrupole-echo spectra. The variation of order with lipid composition is rationalized from simple packing constraints. The relaxation data indicate the presence of slow reorientational motions, such as collective bilayer fluctuations and/or lipid lateral diffusion over a curved bilayer surface. The variation of acyl-chain order and bilayer curvature and/or fluctuations with sample composition are discussed in relation to the tendency of MGlcDG to form nonlamellar phases in vitro and in relation to the lipid regulation in vivo.

  13. Orientational ordering of a banana-shaped solute molecule in a nematic calamitic solvent by {sup 2}H-NMR spectroscopy: An indication of glasslike behavior

    SciTech Connect

    Cinacchi, Giorgio; Domenici, Valentina

    2006-09-15

    The Saupe ordering matrix of a banana-shaped mesogenic molecule as a solute in a common nematic calamitic solvent has been determined by {sup 2}H-NMR spectroscopy as a function of temperature. The temperature dependence of the Saupe ordering matrix element associated with the principal molecular axis is consistent with a glassy behavior in the reorientational motion of this particular solute molecule. The Haller expression, appropriately modified, provides a good fit to the experimental data.

  14. Fluid Mechanical Matching of H+-ATP Synthase Subunit c-Ring with Lipid Membranes Revealed by 2H Solid-State NMR

    PubMed Central

    Kobayashi, Masatoshi; Struts, Andrey V.; Fujiwara, Toshimichi; Brown, Michael F.; Akutsu, Hideo

    2008-01-01

    The F1Fo-ATP synthase utilizes the transmembrane H+ gradient for the synthesis of ATP. Fo subunit c-ring plays a key role in transporting H+ through Fo in the membrane. We investigated the interactions of Escherichia coli subunit c with dimyristoylphosphatidylcholine (DMPC-d54) at lipid/protein ratios of 50:1 and 20:1 by means of 2H-solid-state NMR. In the liquid-crystalline state of DMPC, the 2H-NMR moment values and the order parameter (SCD) profile were little affected by the presence of subunit c, suggesting that the bilayer thickness in the liquid-crystalline state is matched to the transmembrane hydrophobic surface of subunit c. On the other hand, hydrophobic mismatch of subunit c with the lipid bilayer was observed in the gel state of DMPC. Moreover, the viscoelasticity represented by a square-law function of the 2H-NMR relaxation was also little influenced by subunit c in the fluid phase, in contrast with flexible nonionic detergents or rigid additives. Thus, the hydrophobic matching of the lipid bilayer to subunit c involves at least two factors, the hydrophobic length and the fluid mechanical property. These findings may be important for the torque generation in the rotary catalytic mechanism of the F1Fo-ATPse molecular motor. PMID:18310246

  15. 2H NMR study of phase transition and hydrogen dynamics in hydrogen bonded organic antiferroelectric 55DMBP-H2ca

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo; Hara, Masamichi; Fujimori, Hiroki; Hagiwara, Shoko

    2016-12-01

    Hydrogen dynamics in one-dimensional hydrogen bonded organic antiferroelectric, co-crystal of 5,5'-dimethyl-2,2'-bipyridine (55DMBP) and chloranilic acid (H2ca), was investigated by use of 2H high resolution solid-state NMR. The two types of hydrogen bonds O-H …N and N+-H … O - in the antiferroelectric phase were clearly observed as the splitting of the side band of the 2H MAS NMR spectra of the acid-proton deuterated compound 55DMBP-D 2ca. The temperature dependence of the spin-lattice relaxation time was measured of the N+-H and O-H deuterons, respectively. It was suggested that the motion of the O-H deuteron is already in the antiferroelectric phase in the fast-motion regime in the NMR time scale, while that of the N+-H deuteron is a slow motion. In the high-temperature paraelectric phase, the both deuterons become equivalent and the fast motion of the deuterons in the NMR time scale is taking place with the activation energy of 7.9 kJ mol-1.

  16. 1H- and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H(+)-ATPase. Conformational properties and lipid-peptide interactions.

    PubMed

    Beswick, V; Roux, M; Navarre, C; Coïc, Y M; Huynh-Dinh, T; Goffeau, A; Sanson, A; Neumann, J M

    1998-01-01

    PMP1 is a 38-residue polypeptide associated with the yeast plasma membrane H(+)-ATPase, found to regulate the enzyme activity. To investigate the molecular basis of the PMP1 biological function, the conformational properties of a synthetic PMP1 fragment, A18-F38, comprising the predicted C-terminal cytoplasmic domain and a part of the transmembrane anchor have been studied by 1H- and 2H-NMR spectroscopies. High resolution 1H-NMR experiments showed that, in deuterated DPC micelles, the A18-G34 segment adopts a well defined helix conformation. Our data suggest that the whole PMP1 molecule forms a unique helix whose axis might be slightly tilted with respect to the bilayer normal. Protonated DPC, DMPC and DMPS were incorporated in deuterated micelles containing the PMP1 fragment for studying lipid-peptide interactions. Unusually strong and selective intermolecular NOEs between lipid chain and peptide side chain protons, especially those of the unique Trp residue, were observed. Solid state 2H-NMR experiments performed on pure deuterated POPC and mixed deuterated POPC:POPS (5:1) bilayers revealed that the PMP1 fragment specifically interacts with negatively charged PS lipids. PMID:9782385

  17. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  18. Diffusion Coefficient-Formula Weight (D-FW) Analysis of (2)H Diffusion-Ordered NMR Spectroscopy (DOSY).

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G

    2015-09-18

    We report extension of the D-FW analysis using referenced (2)H DOSY. This technique was developed in response to limitations due to peak overlay in (1)H DOSY spectra. We find a corresponding linear relationship (R(2) > 0.99) between log D and log FW as the basis of the D-FW analysis. The solution-state structure of THF solvated lithium diisopropyl amide (LDA) in hydrocarbon solvent was chosen to demonstrate the reliability of the methodology. We observe an equilibrium between monosolvated and disolvated dimeric LDA complexes at room temperature. Additionally we demonstrate the application of the (2)H D-FW analysis using a compound with an exchangeable proton that is readily labeled with (2)H. Hence, the (2)H DOSY D-FW analysis is shown to provide results consistent with the (1)H DOSY method, thereby greatly extending the applicability of the D-FW analysis. PMID:26318438

  19. Short hydrogen bonds in salts of dicarboxylic acids; structural correlations from solid-state 13C and 2H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalsbeek, Nicoline; Schaumburg, Kjeld; Larsen, Sine

    1993-10-01

    Solid-state 13C and 2H NMR spectra are found to very suitable for characterizing the short Osbnd H...O hydrogen bonds observed in acid salts of dicarboxylic acids. The majority of the investigated compounds are acid salts of malonic, succinic and tartaric acid with monovalent cations derived from alkali metals and small aliphatic amines. They include systems with symmetric and asymmetric hydrogen bonds. Accurate structural information about their geometry is available from low-temperature X-ray diffraction data. The 13C chemical shifts of the C atoms in the different carboxy groups display a linear variation with the absolute difference between the two Csbnd O bond lengths. Theoretical ab initio calculations for model systems showed that the nuclear quadrupole coupling constant NQCC for 2H increases with increasing asymmetry of the hydrogen-bonded system. NQCC values for 2H in the short symmetric hydrogen-bonded systems are in the range 53-59 kHz compared with the larger values of up to 166kHz found in systems with longer asymmetric hydrogen bonds. The 2H NQCC values display a perfect linear dependence on the asymmetry of the hydrogen bond. 2H NQCC decreases with decreasing temperature in the symmetric hydrogen bonds showing that the corresponding potential has a single well.

  20. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report.

    PubMed

    Thomas, Freddy; Jamin, Eric

    2009-09-01

    An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and

  1. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: 2H NMR studies on perdeuterated C-phycocyanin.

    PubMed

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high. PMID:24730877

  2. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  3. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  4. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters.

    PubMed

    Lesot, Philippe; Serhan, Zeinab; Billault, Isabelle

    2011-01-01

    The full elucidation of the enzymatic mechanisms leading to polyunsaturated ω-3 to ω-5 fatty acids (PUFAs) occurring in plants or microorganisms by analyzing their site-specific isotopic fractionation profiles is a challenging task. Isotropic SNIF-NMR® method is an historical, powerful tool for the determination of ((2)H/(1)H) ratios. However, the absence of accessible isotopic data on the enantiotopic hydrogen sites (CH(2) groups) prevents the study of the enzymatic reaction stereoselectivity. Natural-abundance deuterium (NAD) 2D NMR experiment using chiral liquid crystals (CLC) as solvent is a new tool in this field, overcoming this limitation. In this work, we have explored various possibilities for optimizing the enantio-discrimination properties of CLC by changing the nature of the polypeptide and/or increasing the polarity of the organic co-solvents. We report also the first applications of TMU as co-solvent for preparing enantio-discriminating, homogenous polypeptide mesophases. The various experimental NAD NMR results recorded at an optimal sample temperature are discussed and compared in terms of number of discriminated (2)H sites and magnitude of spectral separation for different PUFAs such as the linoleic and linolenic acids. The comparison of all NMR results shows that optimal results are obtained when CLC mixtures made of poly-γ-benzyl-L-glutamate (PBLG) and high polarity co-solvents are used. As new challenging examples of applications, we report the preliminary analytical results obtained from two ω-5 conjugated linolenic acids: the α-eleostearic acid (9Z, 11E, 13E) and the punicic acid (9Z, 11E, 13Z). NMR data are discussed in terms of molecular orientational ordering parameters and isotopic distribution. PMID:21107978

  5. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  6. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  7. Deuterium dynamics in the icosahedral and amorphous phases of the Ti40Zr40Ni20 hydrogen-absorbing alloy studied by 2H NMR

    NASA Astrophysics Data System (ADS)

    Gradišek, A.; Kocjan, A.; McGuiness, P. J.; Apih, T.; Kim, Hae Jin; Dolinšek, J.

    2008-11-01

    The Ti40Zr40Ni20 hydrogen-absorbing alloy was prepared in the icosahedral and amorphous phases by controlling the rotation speed of the melt-spinning method of sample preparation, and the deuterium dynamics was investigated by 2H NMR dynamic lineshape and spin-lattice relaxation. The results were analysed by the lineshape and relaxation models that assume deuterium thermally activated hopping within a manifold of different chemical environments. The observed 8% larger activation energy for the deuterium hopping over the interstitial sites and the 10% larger static spectrum width of the amorphous phase, as compared to the icosahedral phase, can be accounted for by the larger deuterium content of the investigated amorphous sample. From the deuterium dynamics point of view, the icosahedral phase is not special with respect to the amorphous modification of the same material.

  8. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy.

    PubMed

    Felderhoff, Michael; Zibrowius, Bodo

    2011-10-14

    After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4). PMID:21879065

  9. Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining (2)H NMR Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Paz Ramos, Adrian; Lagüe, Patrick; Lamoureux, Guillaume; Lafleur, Michel

    2016-07-21

    Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is to determine how VLCFA structurally adapts in fluid phospholipid bilayers, since both species must exhibit a significant hydrophobic mismatch. The membrane organization has been described by means of (2)H NMR and molecular dynamics simulations. Our results show that the protonation state affects the position and order of free fatty acids (FFAs) in phospholipid membranes. It was shown that the protonated FFA-C24 carboxyl group is located slightly under the POPC head group and therefore its acyl chain can interact with the lipids of the opposite leaflet. This interdigitation of the end of the acyl chain causes a second plateau observed in SC-D profiles, a very unusual feature in lipid systems. PMID:27351151

  10. Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN)2Cl2

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. F.; Gargouri, M.

    2012-06-01

    The crystal structure, the solid NMR spectroscopy and the complex impedance study have been carried out on [C2H10N2]CdCl2(SCN)2. Characterization by single crystal X-ray crystallography shows that the cadmium atoms have à 2N2S2Cl hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric-chains. These chains are themselves interconnected by means of N-H…Cl(NCS) hydrogen bonds originating from the organic cation [(NH3)2(CH2)2]2+. 111Cd isotropic chemical shifts span a range of 268ppm. The cadmium atom exhibits multiplets that result from 111Cd-14N spin-spin coupling. Examination of 111Cd and 13C MAS line shapes shows direct measurement of the indirect spin-spin coupling constant 2J(111Cd, 14N) = 105Hz and the dipolar coupling constant of 1381Hz . Impedance spectroscopy measurements of [C2H10N2]CdCl2(SCN)2 have been studied from 209Hz to 5 MHz over the temperature range 300-370 K. The Cole-Cole (Z" versus Z') plots are fitted to two equivalent circuits models. The formalism of complex permittivity and impedance were employed to analyze the experimental data. The dc conductivity follows the Arrhenius relation with an activation energy Ea = 0.54 (3) eV.

  11. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-11-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  12. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed Central

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-01-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  13. Instrument Control and Data Acquisition for NMR Experiments

    1999-03-29

    This is a software program which is intended to do some instrument control and data acquisition for NMR experiments. The basic purpose of the program is to allow a user of the NMR system to create a list of instructions which tells the program what steps should be done, the stat the data taking program and let the system run by itself (depending on the type of sample and the type of experiment being run,more » it can take from several minutes to many hours to do a data collection run).« less

  14. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR.

    PubMed

    Tremouilhac, Pierre; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2006-09-01

    The cationic antimicrobial peptide PGLa is electrostatically attracted to bacterial membranes, binds as an amphiphilic alpha-helix, and is thus able to permeabilize the lipid bilayer. Using solid state (2)H-NMR of non-perturbing Ala-d(3) labels on the peptide, we have characterized the helix alignment under a range of different conditions. Even at a very high peptide-to-lipid ratio (1:20) and in the presence of negatively charged lipids, there was no indication of a toroidal wormhole structure. Instead, PGLa re-aligns from a surface-bound S-state to an obliquely tilted T-state, which is presumably dimeric. An intermediate structure half-way between the S- and T-state was observed in fully hydrated multilamellar DMPC vesicles at 1:50, suggesting a fast exchange between the two states on the time scale of >50 kHz. We demonstrate that this equilibrium is shifted from the S- towards the T-state either upon (i) increasing the peptide concentration, (ii) adding negatively charged DMPG, or (iii) decreasing the level of hydration. The threshold concentration for re-alignment in DMPC is found to be between 1:200 and 1:100 in oriented samples at 96% humidity. In fully hydrated multilamellar DMPC vesicles, it shifts to an effective peptide-to-lipid ratio of 1:50 as some peptides are able to escape into the bulk water phase. PMID:16716250

  15. Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.

    PubMed

    Flynn, P F; Bieber Urbauer, R J; Zhang, H; Lee, A L; Wand, A J

    2001-06-01

    A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits minor rotational anisotropy in solution. The current study is focused on the use of deuterium relaxation in side chain methyl groups, which has been shown to provide a detailed and accurate measure of internal dynamics. Results obtained indicate that the side chains of ferrocytochrome c(2) exhibit a wide range of motional amplitudes, but are more rigid than generally found in the interior of nonprosthetic group bearing globular proteins. This unusual rigidity is ascribed to the interactions of the protein with the large heme prosthetic group. This observation has significant implications for the potential of the heme-protein interface to modulate the redox properties of the protein and also points to the need for great precision in the design and engineering of heme proteins. PMID:11380250

  16. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  17. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  18. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed. PMID:27139016

  19. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  20. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action.

    PubMed

    Zamora-Carreras, Héctor; Strandberg, Erik; Mühlhäuser, Philipp; Bürck, Jochen; Wadhwani, Parvesh; Jiménez, M Ángeles; Bruix, Marta; Ulrich, Anne S

    2016-06-01

    The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability. PMID:26975251

  1. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  2. High pressure 2H-NMR study of the order and dynamics of selectively deuterated dipalmitoyl phosphatidylcholine in multilamellar aqueous dispersions.

    PubMed Central

    Peng, X.; Jonas, A.; Jonas, J.

    1995-01-01

    High pressure 2H multipulse NMR techniques were used to investigate the effects of pressure on the structure and dynamics of selectively deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) multilamellar aqueous dispersions. The samples were deuterated on both chains at positions 2, 9, or 13. The deuterium lineshapes, the spin-lattice relaxation times, T1, and the spin-spin relaxation times, T2, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for the three deuterated DPPC samples. This pressure range permitted us to explore the phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as the Gel I (P beta), Gel II (L beta), Gel III, Gel X, and the interdigitated, Gel i, gel phase. Pressure had an ordering effect on all chain segments both in the LC phase and various high pressure gel phases as indicated by the increase in SCD bond order parameter and the first moment, M1, with pressure. Compared with the adjacent gel phases, the Gel i phase had the highest order. Also, in all gel phases the carbon-9 segment of the chains had the most restricted motions in contrast to the LC phase, where the carbon-2 segment was the most restricted. In the LC phase, T1 and T2 values for all segments decreased with pressure, indicative of the fast correlation time regime. Similarly, T1 decreased with pressure in the Gel I and the interdigitated Gel i gel phases but changed to the slow correlation time regime at the Gel i/Gel II phase transition. For T2, which reflects slow motions, the transition to the slow correlation time regime occurred already at LC/Gel I phase transition. Considering the various motions which contribute to relaxation, the behavior of T1 and T2 in the Gel 11 through Gel X phases showing discontinuities and slope changes at the phase transitions was, as expected, quite complex.In addition we found a straight line relationship for T-1 vs. S2D, and T-1 vs. S2CD for the deuterons in the 9

  3. Accelerating multidimensional NMR and MRI experiments using iterated maps

    NASA Astrophysics Data System (ADS)

    Barrett, Sean; Frey, Merideth; Sethna, Zachary; Manley, Gregory; Sengupta, Suvrajit; Zilm, Kurt; Loria, J. Patrick

    2014-03-01

    Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a `QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.

  4. Accelerating multidimensional NMR and MRI experiments using iterated maps

    NASA Astrophysics Data System (ADS)

    Frey, Merideth A.; Sethna, Zachary M.; Manley, Gregory A.; Sengupta, Suvrajit; Zilm, Kurt W.; Loria, J. Patrick; Barrett, Sean E.

    2013-12-01

    Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.

  5. High-Resolution NMR Probe for Experiments at High Pressures

    NASA Astrophysics Data System (ADS)

    Ballard, L.; Reiner, C.; Jonas, J.

    A 300 MHz high-resolution, high-pressure NMR probe which operates in the pressure range of 1 bar to 9 kbar at temperatures of -30 to 100°C is described. Specialized novel design features of the probe are discussed and test spectra showing resolution better than 1 Hz (<3.0 × 10 -9) for 8 mm samples are presented. Potential biochemical applications of this probe are illustrated by experiments dealing with the pressure-induced unfolding of hen egg white lysozyme.

  6. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches. PMID:22427982

  7. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  8. Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, Vipin; Reif, Bernd

    2008-09-01

    NMR studies involving perdeuterated proteins focus in general on exchangeable amide protons. However, non-exchangeable sites contain as well a small amount of protons as the employed precursors for protein biosynthesis are not completely proton depleted. The degree of methyl group protonation is in the order of 9% for CD 2H using >97% deuterium enriched glucose. We show in this manuscript that this small amount of residual protonation is sufficient to perform 2D and 3D MAS solid-state NMR experiments. In particular, we suggest a HCCH-TOBSY type experiment which we successfully employ to assign the methyl resonances in aliphatic side chains in a perdeuterated sample of the SH3 domain of chicken α-spectrin.

  9. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  10. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments

    NASA Astrophysics Data System (ADS)

    Irvine, Alistair G.; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R. P.; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community.

  11. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  12. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  13. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  14. Interpretation of combined 2H SNIF/NMR and 13C SIRA/MS analyses of fruit juices to detect added sugar.

    PubMed

    Martin, G G; Hanote, V; Lees, M; Martin, Y L

    1996-01-01

    The site-specific natural isotopic fractionation studied by nuclear magnetic resonance (SNIF/NMR) method measures site-specific isotope contents in a variety of organic compounds by deuterium nuclear magnetic resonance spectroscopy. This technique, together with SIRA/MS (stable isotope ratio analysis/mass spectrometry) provides a powerful tool for food authentication and characterization. By using the ethanol resulting from sugar fermentation as a molecular probe, SNIF/NMR (deuterium) and SIRA/MS (13C) have been used together for authentication of fruit juices. The influence of deuterium content of the fermentation water on the isotopic parameters is shown and a means for normalizing the results is proposed. A large number of authentic juices have been analyzed to define the variation of isotopic ratios in natural juices. On the basis of these data, a set of rules was designed to enable interpretation of isotopic parameters in terms of possible adulteration of fruit juices by sugar addition. Results of analyses of Florida orange juice are presented. Orange juice samples from Brazil and Israel are included as 2 extreme cases. Assignment limits for a sample of orange juice of unknown origin also are given. These assignment limits are also provided for apple and grapefruit juices. PMID:8620113

  15. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  16. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  17. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  18. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies.

    PubMed Central

    Kuroda, Y; Ogawa, M; Nasu, H; Terashima, M; Kasahara, M; Kiyama, Y; Wakita, M; Fujiwara, Y; Fujii, N; Nakagawa, T

    1996-01-01

    To study the molecular mechanisms of local anesthesia, locations of local anesthetic dibucaine in model membranes and the interactions of dibucaine with a Na+ channel inactivation gate peptide have been studied by 2H- and 1H-NMR spectroscopies. The 2H-NMR spectra of dibucaine-d9 and dibucaine-d1, which are deuterated at the butoxy group and at the 3 position in its quinoline ring, respectively, have been observed in multilamellar dispersions of the lipid mixture composed of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. 2H-NMR spectra of deuterated palmitic acids incorporated, as a probe, into the lipid mixture containing cholesterol have also been observed. An order parameter, SCD, for each carbon segment was calculated from the observed quadrupole splittings. Combining these results, we concluded that first, the butoxy group of dibucaine is penetrating between the acyl chains of lipids in the model membranes, and second, the quinoline ring of dibucaine is located at the polar region of lipids but not at the hydrophobic acyl chain moiety. These results mean that dibucaine is situated in a favorable position that permits it to interact with a cluster of hydrophobic amino acids (Ile-Phe-Met) within the intracellular linker between domains III and IV of Na+ channel protein, which functions as an inactivation gate. To confirm whether the dibucaine molecule at the surface region of lipids can really interact with the hydrophobic amino acids, we synthesized a model peptide that includes the hydrophobic amino acids (Ac-GGQDIFMTEEQK-OH, MP-1), the amino acid sequence of which corresponds to the linker part of rat brain type IIA Na+ channel, and the one in which Phe has been substituted by Gln (MP-2), and measured 1H-NMR spectra in both phosphate buffer and phosphatidylserine liposomes. It was found that the quinoline ring of dibucaine can interact with the aromatic ring of Phe by stacking of the rings; moreover, the interaction can be reinforced by

  19. Studies on 2H NMR and single crystal X-ray diffraction of thermochromic bis ( N, N-diethyl-1,2-ethanediamine) nickel(II) complexes with and without structural phase transitions

    NASA Astrophysics Data System (ADS)

    Ikeda, Ryuichi; Kotani, Kyoko; Ohki, Hiroshi; Ishimaru, Shin'ichi; Okamoto, Ken-Ichi; Ghosh, Ashutosh

    1995-02-01

    The thermochromic complex bis( N, N-diethyl-1,2-ethanediamine) ((C 2H 5) 2NC 2H 4NH 2) nickel(II) perchlorate([Ni(dieten) 2](ClO 4) 2) was studied by single crystal X-ray diffraction and found to form a triclinic lattice with space group P 1¯, a = 8.108(1) Å, b = 8.835(1) Å, c = 9.736(1) Å, α = 94.24(1)°, β = 114.28(1)°, γ = 116.49(1)°, and Z = 1 being isomorphous with that of [Cu(dieten) 2](ClO 4) 2 which has been reported to have a thermochromic phase transition. The temperature dependences of 2H NMR spectra in [Ni(dieten- d2) 2]X 2 (dieten- d2: (C 2H 5) 2NC 2H 4ND 2; X: ClO 4, BF 4, Br, NO 3, I) were observed and quadrupole coupling constants e2Qq and asymmetry parameters η were evaluated. Below room temperature, an almost rigid structure of the ND 2 group was derived by analyzing the spectra. For perchlorate and tetrafluoroborate with colour changes at respective phase transition temperatures ( Tc), quadrupole parameters were also changed discontinuously at Tc. The analysis of spectra observed above Tc afforded two-site jumps of the N-D bond by angles of 52-55° supporting the ring-puckering model of the five-membered chelate ring. However, iodide having no phase transition showed continuous changes of both e2Qq and η values with increasing temperature up to 450 K. These results which cannot be attributed to the puckering motion were explained by whole complex reorientation. These molecular motions are discussed in connection with the colour change observed in these complexes.

  20. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, 2H NMR, and calorimetric study

    NASA Astrophysics Data System (ADS)

    Robles-Hernández, Beatriz; Sebastián, Nerea; de la Fuente, M. Rosario; López, David O.; Diez-Berart, Sergio; Salud, Josep; Ros, M. Blanca; Dunmur, David A.; Luckhurst, Geoffrey R.; Timimi, Bakir A.

    2015-12-01

    The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and 2H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (NTB), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the NTB-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and 2H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the NTB phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. 2H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

  1. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  2. Hydration of DNA by tritiated water and isotope distribution: a study by /sup 1/H, /sup 2/H, and /sup 3/H NMR spectroscopy

    SciTech Connect

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-06-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent /sup 3/HHO. The combined effects of temperature (-6 to -40/sup 0/C) and H/sub 2/O//sup 2/H/sub 2/O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by /sup 3/HHO (internal radiation source) localizes close to /sup 3/H due to the short range and low energy of /sup 3/H ..beta.. rays.

  3. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  4. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study.

    PubMed Central

    Pott, T; Dufourc, E J

    1995-01-01

    Solid-state deuterium and phosphorus-31 nuclear magnetic resonance studies of deuterium-labeled beta--[2,2',3,4,4',6-2H6]-cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine have been undertaken to monitor the action of melittin on model membranes containing 30 mol% cholesterol, both at the molecular and macroscopic level. Cholesterol totally inhibits the toxin-triggered formation of large unilamellar vesicles and strongly restricts the appearance of small discs. The latter remain stable over a wide temperature range (20-60 degrees C) because of an increase in their cholesterol content as the temperature increases. This process is related to a constant disc hydrophobic thickness of approximately 29 A. The system, when not in the form of discs, appears to be composed of very large vesicles on which melittin promotes magnetically induced ellipsoidal deformation. This deformation is the greatest when the maximum of discs is observed. A model to describe both the disc formation and stability is proposed. PMID:7756559

  5. Coupled changes between lipid order and polypeptide conformation at the membrane surface. A sup 2 H NMR and Raman study of polylysine-phosphatidic acid systems

    SciTech Connect

    Laroche, G.; Pezolet, M. ); Dufourc, E.J.; Dufourcq, J. )

    1990-07-10

    Thermotropism and segmental chain order parameters of sn-2-perdeuteriated dimyristoylphosphatidic acid (DMPA)-water dispersions, with and without poly(L-lysine) (PLL) of different molecular weights, have been investigated by solid-state deuterium NMR spectroscopy. The segmental chain order parameter profile of this negatively charged lipid is similar to that already found for other lipids. Addition of long PLL increases the temperature, {Tc}, of the lipid gel-to-fluid phase transition, whereas short PLL has practically no effect on {Tc}. In the fluid phase both varieties of PLL increase the plateau character of segmental order parameters up to carbon position 10. At the same reduced temperature, long PLL more significantly increases the segmental ordering, especially at the methyl terminal position. This leads to the conclusion that polar head-group capping and charge neutralization by PLL induce severe changes in lipid chain ordering, even down to the bilayer core. The structure of PLL bound to the lipid bilayer surface was monitored by Raman spectroscopy, following the amide I bands. Results show that the lipid gel-to-fluid phase transition triggers a conformational transition from ordered {beta}-sheet to random structure of short PLL, while it does not affect the strongly stabilized {beta}-sheet structure of long PLL. It is concluded that both short and long PLL can efficiently cap and neutralize lipid head groups, whatever their structure, and that peptide length is a key parameter in whether lipids or peptides are the driving force in conformationally coupled changes of both partners in the membrane.

  6. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  7. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment

    PubMed Central

    Dashti, Hesam; Tonelli, Marco

    2015-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  8. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Markley, John L

    2015-07-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  9. Synthesis, experimental spectra (IR & Raman and NMR), vibrational analysis and theoretical DFT investigations of N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide

    NASA Astrophysics Data System (ADS)

    Aydın, Lütfiye; Şahan, Emine; Önal, Zülbiye; Özpozan, Talat

    2014-08-01

    The title molecule, N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide (C27H23N3O3), was synthesized and characterized by elemental analysis, IR, Raman, 1H and 13C NMR spectral data. To determine conformational flexibility, potential energy surfaces of the title compound were obtained by DFT regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 6° and 20° steps. The ten conformers of the title compound were determined and it was found that the conformer 1 basis the most stable one. All conformers were also optimized by using the density functional theory (DFT/B3LYP) method with the 6-31G(d,p), 6-311G(d,p) and cc-pVDZ basis sets in the ground state. Potential energy distribution was calculated with the 6-31G(d,p) basis set. The vibrational spectra were recorded in solid phase IR and Raman spectra were compared based on the results of the theoretical calculations. The formation of hydrogen bonds was explained using natural bond orbital (NBO) analysis and spectroscopic analysis. NMR analysis and frontier molecular orbitals (FMOs) were also investigated by DFT.

  10. Solution NMR Experiment for Measurement of (15)N-(1)H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.

    PubMed

    Eletsky, Alexander; Pulavarti, Surya V S R K; Beaumont, Victor; Gollnick, Paul; Szyperski, Thomas

    2015-09-01

    NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to measure N-H RDCs for proteins and supramolecular complexes in excess of 200 kDa. This enables validation and refinement of their X-ray crystal and solution NMR structures and the characterization of structural and dynamic changes occurring upon complex formation. Accurate N-H RDCs were measured at 750 MHz (1)H resonance frequency for 11-mer 93 kDa (2)H,(15)N-labeled Trp RNA-binding attenuator protein tumbling with a correlation time τc of 120 ns. This is about twice as long as that for the most slowly tumbling system, for which N-H RDCs could be measured, so far, and corresponds to molecular weights of ∼200 kDa at 25 °C. Furthermore, due to the robustness of SE2 J-TROSY with respect to residual (1)H density from exchangeable protons, increased sensitivity at (1)H resonance frequencies around 1 GHz promises to enable N-H RDC measurement for even larger systems. PMID:26293598

  11. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  12. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  13. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  14. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  15. Experimental and Theoretical Limits on Pulse Quality in Silicon NMR Experiments

    NASA Astrophysics Data System (ADS)

    Ramos, Rona

    2005-03-01

    Previous NMR experiments on Silicon involving multiple pulses showed long lived spin echoes [A.E. Dementyev, D. Li, K. MacLean, S.E. Barrett, Phys. Rev. B, 68, 153302 (2003)], an anomalous behavior that disagrees with conventional NMR theory. The application of several pulses to a many spin system warrants the understanding of pulse quality in fine detail. A series of experiments to improve the pulse characteristics and to approach the limit of delta function, spatially homogeneous pulses were performed. These experiments and detailed calculations of the pulse fields involved will be discussed, as well as the implications in understanding the anomalous long lived behavior of previous experiments.

  16. NMR experiments on a three-dimensional vibrofluidized granular medium

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2004-04-01

    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient NMR coupled with one-dimensional magnetic resonance imaging. The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers Nl⩽4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom, which was highly skewed and non-Gaussian. Data taken for three values of Nl and two dimensionless accelerations Γ=15,18 were fitted to a hydrodynamic theory, which successfully models the density and temperature profiles away from the vibrating container bottom. A temperature inversion near the free upper surface is observed, in agreement with predictions based on the hydrodynamic parameter μ which is nonzero only in inelastic systems.

  17. A High-Pressure, High-Resolution NMR Probe for Experiments at 500 MHz

    NASA Astrophysics Data System (ADS)

    Ballard, Lance; Yu, Aimee; Reiner, Carl; Jonas, Jiri

    1998-07-01

    A novel high-pressure, high-resolution NMR probe is described which operates at a frequency of 500 MHz. The design features an alternative RF coil (8 mm sample tube) for high frequency, sensitivity, probe power, and resolution (< 3.0 × 10-9). The probe is capable of pressures to at least 5 kbar over a temperature range of -30 to 80°C, and has a double-tuned1H/2H circuit which can tune at1H frequencies of either 300 or 500 MHz. The sensitivity of the 300-MHz circuit is over twice that of previous 10-mm high-pressure NMR probe designs, while at 500 MHz the sensitivity is nearly five times that of previous 300-MHz pressure probes. Potential biochemical applications are demonstrated by 2D NOESY spectra of a Troponin C mutant.

  18. NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2003-03-01

    We have used MRI/PFG NMR methods to measure the density and granular temperature profiles for three-dimensional samples of mustard seeds fluidized by 50 Hz vertical vibration. Data were taken for several values of the bed depth and the vibration acceleration, and jointly fit to a hydrodynamic theory for granular fluids. The fit is qualitatively accurate, apart from a region immediately adjacent to the vibrating cell bottom where the grain velocity distribution is markedly non-Gaussian. In the upper portion of the sample the granular temperature increases with height despite the fact that energy input comes only from below. This corresponds to a heat current flowing opposite the temperature gradient, an effect which is predicted by the hydrodynamic theory.

  19. NMR Hole-Burning Experiments on Superionic Conductor Glasses

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Kuwata, N.; Hattori, T.

    2004-04-01

    Inhomogeneity is an inherent nature of glass, which is the density and concentration fluctuation frozen at glass transition temperature. The inhomogeneity of the glass plays significant role in so called superionic conductor glasses (SIG), since the mobile ions seek to move through energetically favorable paths. The localization of mobile ions in SIG near the 2nd glass transition is a remaining issue, where the trapping, percolation and many-body interactions are playing the roles. In order to investigate the trapping process in SIG, the authors have applied 109Ag NMR Hole-Burning technique to AgI containing SIG glasses. By using this technique, the slowing down process of the site-exchange rates between different sites were evaluated.

  20. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  1. Distributions and Seasonal Variations of Tropospheric Ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Herbin, H.; Hurtmans, D.; Clarisse, L.; Turquety, S.; Clerbaux, C.; Rinsland, Curtis P.; Boone, C.; Bernath, P. F.; Coheur, P.-F.

    2009-01-01

    This work reports the first measurements of ethene (C2H4) distributions in the upper troposphere. These are obtained by retrieving vertical profiles from 5 to 20 km from infrared solar occultation spectra recorded in 2005 and 2006 by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS). Background volume mixin^ ratios (vmrs) ranging from a few to about 50 pptv (10(exp -1) are measured at the different altitudes, while for certain occultations, vmrs as high as 200 pptv are observed. Zonal distributions and vertically resolved latitudinal distributions are derived for the two year period analyzed, highlighting spatial - including a North-South gradient - as well as seasonal variations. We show the latter to be more pronounced at the highest latitudes, presumably as a result of less active photochemistry during winter. The observation of C2H4 enhancements in remote Arctic regions at high latitudes is consistent with the occurrence of fast transport processes of gaseous pollution from the continents leading to Arctic haze. Citation: Herbin, H., D. Hurtmans, L. Clarisse, S. Turquety, C. Clerbaux, C. P. Rinsland, C. Boone, P. F. Bernath, and P.-F. Colieur (2009), Distributions and seasonal variations of tropospheric ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) solar occultation spectra,

  2. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  3. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  4. The Effect of a C-Terminal Peptide of Surfactant Protein B (SP-B) on Oriented Lipid Bilayers, Characterized by Solid-State 2H- and 31P-NMR

    PubMed Central

    Yang, Tran-Chin; McDonald, Mark; Morrow, Michael R.; Booth, Valerie

    2009-01-01

    SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively. PMID:19413982

  5. An NMR Study of Isotope Effect on Keto-Enol Tautomerization: A Physical Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Atkinson, D.; Chechik, V.

    2004-01-01

    Isotope substitution often affects the rate of an organic reaction and can be used to reveal the underlying mechanism. A series of experiments that use (super 1)H NMR to determine primary and secondary isotope effects, activation parameters, and the regioselectivity of butanone enolization are described.

  6. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  7. Direct (13)C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA.

    PubMed

    Fürtig, Boris; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina; Kovacs, Helena; Schwalbe, Harald

    2016-03-01

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond (1)H detection. Here, we develop (13)C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for (13)C direct detection allows correlations of donor-acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed (13)C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics. PMID:26852414

  8. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations

    PubMed Central

    Romo, Tod D.; Bradney, Laura A.; Greathouse, Denise V.; Grossfield, Alan

    2011-01-01

    One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH2 (LfB6) derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state 2H and 31P NMR experiments are compared with those from an ensemble of all-atom molecular dynamics simulations running in aggregate more than 8.6 microseconds. 2H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. 31P NMR spectra show no significant perturbation of the phosphate headgroups of either lipid system in the presence of C6-LfB6. Molecular dynamics simulations show that for the negatively charged membrane, the peptide’s arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1–2 Å more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged

  9. Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.

    PubMed

    Matsuki, Yoh; Takahashi, Hiroki; Ueda, Keisuke; Idehara, Toshitaka; Ogawa, Isamu; Toda, Mitsuru; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-06-14

    Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic TE(0,6) mode. The sub-mm wave with a power of 0.5-3 W was transmitted to the sample in a low-temperature DNP-NMR probe with a smooth-wall circular waveguide system. The (1)H polarization enhancement factor of up to about 10 was observed for a (13)C-labeled compound with nitroxyl biradical TOTAPOL. The DNP enhancement was confirmed by the static magnetic field dependence of the NMR signal amplitude at 90 K. Improvements of the high-field DNP experiments are discussed. PMID:20518128

  10. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. PMID:24819425

  11. Parameterized signal calibration for NMR cryoporometry experiment without external standard

    NASA Astrophysics Data System (ADS)

    Stoch, Grzegorz; Krzyżak, Artur T.

    2016-08-01

    In cryoporometric experiments non-linear effects associated with the sample and the probehead bring unwanted contributions to the total signal along with the change of temperature. The elimination of these influences often occurs with the help of an intermediate measurement of a separate liquid sample. In this paper we suggest an alternative approach under certain assumptions, solely based on data from the target experiment. In order to obtain calibration parameters the method uses all of these raw data points. Its reliability is therefore enhanced as compared to other methods based on lesser number of data points. Presented approach is automatically valid for desired temperature range. The need for intermediate measurement is removed and parameters for such a calibration are naturally adapted to the individual sample-probehead combination.

  12. Two dimensional exchange NMR experiments of natural porous media with portable Halbach-Magnets

    NASA Astrophysics Data System (ADS)

    Haber, Agnes; Haber-Pohlmeier, Sabina; Casanova, Federico; Blümich, Bernhard

    2010-05-01

    The characterization of pore space and connectivity in soils of different textures is one topic within Cluster A, Partial Project A1. For this purpose low field mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geophysical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments were performed with saturated and un-saturated soil samples at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and inverting the results to 2D T2 distributions (similar to joint probability densities of transverse relaxation times T2) with the help of inverse 2D Laplace Transformation (ILT), we observed characteristic exchange processes: Soils consisting mainly of silt and clay components show predominantly exchange between the smaller pores at mixing times of some milliseconds. In addition, there exists also weaker exchange with the larger pores observable for longer mixing time. In contrast to that fine sand exhibits 2D T2 distributions with no exchange processes which can be interpreted that water molecules move within pores of the same size class. These results will be compared to the exchange behaviour under unsaturated conditions. References: 1. B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for geophysical analysis and material testing

  13. A magnetic gradient induced force in NMR restricted diffusion experiments.

    PubMed

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested. PMID:24697421

  14. A magnetic gradient induced force in NMR restricted diffusion experiments

    NASA Astrophysics Data System (ADS)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-01

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  15. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  16. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    SciTech Connect

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. )

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  17. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  18. NMR analysis of weak molecular interactions using slice-selective experiments via study of concentration gradients in agar gels.

    PubMed

    Mitrev, Y; Simova, S; Jeannerat, D

    2016-04-01

    Weak molecular interactions can be localized and quantified using a single NMR experiment analysing concentration gradients generated in agar gels. The spectra from various cross-sections along the gradient were obtained using a slice-selective pulse sequence realisable with standard NMR equipment. PMID:27009847

  19. Effective one-body dynamics in multiple-quantum NMR experiments

    NASA Astrophysics Data System (ADS)

    Rufeil-Fiori, E.; Sánchez, C. M.; Oliva, F. Y.; Pastawski, H. M.; Levstein, P. R.

    2009-03-01

    A suitable NMR experiment in a one-dimensional dipolar coupled spin system allows one to reduce the natural many-body dynamics into effective one-body dynamics. We verify this in a polycrystalline sample of hydroxyapatite (HAp) by monitoring the excitation of NMR many-body superposition states: the multiple-quantum coherences. The observed effective one-dimensionality of HAp relies on the quasi-one-dimensional structure of the dipolar coupled network that, as we show here, is dynamically enhanced by the quantum Zeno effect. Decoherence is also probed through a Loschmidt echo experiment, where the time reversal is implemented on the double-quantum Hamiltonian, HDQ∝Ii+Ij++Ii-Ij- . We contrast the decoherence of adamantane, a standard three-dimensional system, with that of HAp. While the first shows an abrupt Fermi-type decay, HAp presents a smooth exponential law.

  20. Determination of Kinetic Parameters within a Single Nonisothermal On-Flow Experiment by Nanoliter NMR Spectroscopy.

    PubMed

    Gomez, M Victoria; Rodriguez, Antonio M; de la Hoz, Antonio; Jimenez-Marquez, Francisco; Fratila, Raluca M; Barneveld, Peter A; Velders, Aldrik H

    2015-10-20

    Conventional methods to determine the kinetic parameters for a certain reaction require multiple, separate isothermal experiments, resulting in time- and material-consuming processes. Here, an approach to determine the kinetic information within a single nonisothermal on-flow experiment is presented, consuming less than 10 μmol of reagents and having a total measuring time of typically 10 min. This approach makes use of a microfluidic NMR chip hyphenated to a continuous-flow microreactor and is based on the capabilities of the NMR chip to analyze subnanomole quantities of material in the 25 nL detection volume. Importantly, useful data are acquired from the microreactor platform in specific isothermal and nonisothermal frames. A model fitting the experimental data enables rapid determination of kinetic parameters, as demonstrated for a library of isoxazole and pyrazole derivatives. PMID:26383715

  1. Evidence of PVT anomaly boundaries of water at high pressure from compression and NaCl.2H2O dehydration experiments.

    PubMed

    Mirwald, P W

    2005-09-22

    Isothermal compression experiments on water have been performed between 0 to 80 degrees C and up to 1.3 GPa pressure. The compressibilities derived from the water compression experiments reveal a nonsmooth PVT behavior forming two anomaly boundaries. These boundaries originate at the melting line of ice III at about 0.25 GPa/-20 degrees C, and of ice VI at about 0.8 GPa/13 degrees C. Both boundaries have a positive sloped course separating three areas of different PVT properties of water. However, this P-T topology is obscured by an unresolved complication in the temperature range of 40-60 degrees C, which allows different topological interpretations of the data. As a cross-check for the compression experiment the dehydration boundary of sodium chloride-dihydrate (NaCl.2H2O) has been determined up to 1.5 GPa. The dehydration curve of NaCl.2H2O which traverses the two anomaly boundaries shows two inflections at the intersection, at 0.27 GPa/12 degrees C and at 0.77 GPa/22 degrees C, respectively. While the isothermal compressibility curves as well as the dP/dT course of the two anomaly boundaries give evidence of two densifications of water, the slope analysis of the inflections of the NaCl-2H2O dehydration curve suggests that the entropy change plays an important role. A recent model of water at high pressure conditions proposes a gradual structural transition from a low density water (LDW) at low pressures to a high density water (HDW) at high pressures. The compression data as well as the inflections of the dehydration boundary indicate, however, two discrete structural changes of water. Data comparison with that model suggests that the anomaly boundary at lower pressure corresponds to a volume fraction [V(HDW)/(V(LDW)+V(HDW))] of 0.8, while the upper one approaches a volume fraction of 1. PMID:16392519

  2. Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods

    NASA Astrophysics Data System (ADS)

    Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.

    2001-10-01

    Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.

  3. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  4. Cooling overall spin temperature: Protein NMR experiments optimized for longitudinal relaxation effects

    NASA Astrophysics Data System (ADS)

    Deschamps, Michaël; Campbell, Iain D.

    2006-02-01

    In experiments performed on protonated proteins at high fields, 80% of the NMR spectrometer time is spent waiting for the 1H atoms to recover their polarization after recording the free induction decay. Selective excitation of a fraction of the protons in a large molecule has previously been shown to lead to faster longitudinal relaxation for the selected protons [K. Pervushin, B. Vögeli, A. Eletsky, Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 12898-12902; P. Schanda, B. Brutscher, Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds, J. Am. Chem. Soc. 127 (2005) 8014-8015; H.S. Attreya, T. Szyperski, G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment, Proc. Natl. Acad. Sci. USA 101 (2004) 9642-9647]. The pool of non-selected protons acts as a "thermal bath" and spin-diffusion processes ("flip-flop" transitions) channel the excess energy from the excited pool to the non-selected protons in regions of the molecule where other relaxation processes can dissipate the excess energy. We present here a sensitivity enhanced HSQC sequence (COST-HSQC), based on one selective E-BURP pulse, which can be used on protonated 15N enriched proteins (with or without 13C isotopic enrichment). This experiment is compared to a gradient sensitivity enhanced HSQC with a water flip-back pulse (the water flip-back pulse quenches the spin diffusion between 1H N and 1H α spins). This experiment is shown to have significant advantages in some circumstances. Some observed limitations, namely sample overheating with short recovery delays and complex longitudinal relaxation behaviour are discussed and analysed.

  5. Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects.

    PubMed

    Deschamps, Michaël; Campbell, Iain D

    2006-02-01

    In experiments performed on protonated proteins at high fields, 80% of the NMR spectrometer time is spent waiting for the (1)H atoms to recover their polarization after recording the free induction decay. Selective excitation of a fraction of the protons in a large molecule has previously been shown to lead to faster longitudinal relaxation for the selected protons [K. Pervushin, B. Vögeli, A. Eletsky, Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 12898-12902; P. Schanda, B. Brutscher, Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds, J. Am. Chem. Soc. 127 (2005) 8014-8015; H.S. Attreya, T. Szyperski, G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment, Proc. Natl. Acad. Sci. USA 101 (2004) 9642-9647]. The pool of non-selected protons acts as a "thermal bath" and spin-diffusion processes ("flip-flop" transitions) channel the excess energy from the excited pool to the non-selected protons in regions of the molecule where other relaxation processes can dissipate the excess energy. We present here a sensitivity enhanced HSQC sequence (COST-HSQC), based on one selective E-BURP pulse, which can be used on protonated (15)N enriched proteins (with or without (13)C isotopic enrichment). This experiment is compared to a gradient sensitivity enhanced HSQC with a water flip-back pulse (the water flip-back pulse quenches the spin diffusion between (1)H(N) and (1)H(alpha) spins). This experiment is shown to have significant advantages in some circumstances. Some observed limitations, namely sample overheating with short recovery delays and complex longitudinal relaxation behaviour are discussed and analysed. PMID:16249110

  6. Computer-intensive simulation of solid-state NMR experiments using SIMPSON

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr.; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

  7. Mathematical Modeling and Data Analysis of NMR Experiments using Hyperpolarized 13C Metabolites

    PubMed Central

    Pagès, Guilhem; Kuchel, Philip W.

    2013-01-01

    Rapid-dissolution dynamic nuclear polarization (DNP) has made significant impact in the characterization and understanding of metabolism that occurs on the sub-minute timescale in several diseases. While significant efforts have been made in developing applications, and in designing rapid-imaging radiofrequency (RF) and magnetic field gradient pulse sequences, very few groups have worked on implementing realistic mathematical/kinetic/relaxation models to fit the emergent data. The critical aspects to consider when modeling DNP experiments depend on both nuclear magnetic resonance (NMR) and (bio)chemical kinetics. The former constraints are due to the relaxation of the NMR signal and the application of ‘read’ RF pulses, while the kinetic constraints include the total amount of each molecular species present. We describe the model-design strategy we have used to fit and interpret our DNP results. To our knowledge, this is the first report on a systematic analysis of DNP data. PMID:25114541

  8. Combined (Super 31)P and (Super 1)H NMR Experiments in the Structural Elucidation of Polynuclear Thiolate Complexes

    ERIC Educational Resources Information Center

    Cerrada, Elena; Laguna, Mariano

    2005-01-01

    A facile synthesis of two gold(I) complexes with 1,2-benzenedithiolate ligand and two different bidentate phosphines are described. A detailed sequence of NMR experiments is suggested to determine the structure of the compounds.

  9. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments.

    PubMed

    Kiryutin, Alexey S; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Grishin, Yuri A; Vieth, Hans-Martin; Yurkovskaya, Alexandra V

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100μT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined. PMID:26773525

  10. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  11. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    PubMed Central

    Verdi, Kacy K; Ellis, Heidi JC; Gryk, Michael R

    2007-01-01

    Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using

  12. Molecular Mechanics and Variable-Temperature 1H NMR Studies on N,N-Diethyl-m-toluamide. An Undergraduate NMR and Molecular Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Fort, Raymond C., Jr.

    2001-04-01

    A combination of molecular modeling and variable-temperature NMR experiments is used to analyze the barrier to rotation about the amide bond of N,N-diethyl-m-toluamide (DEET). This approach utilizes the ability of computers to calculate the potential energy of a set of conformations obtained from a dihedral drive around the N-CO bond. The results of this experiment demonstrate a substantial barrier of 15.9 kcal/mol. These data are applied to a set of 1H NMR spectra taken over a range of temperatures from 9 to 85 °C. At very low temperatures the conformation is "locked" and the spectrum displays two sets of triplets and two sets of quartets for the two nonequivalent ethyl groups. However, at high temperature the rapid rotation about the amide linkage produces only one quartet and one triplet, characteristic of two indistinguishable ethyl groups. The experiment offers students hands-on experience with two important laboratory instruments and allows for both qualitative and quantitative analysis of the data. This experiment is scheduled to coincide with lecture discussion of NMR spectroscopy, after the fundamentals of bond rotation have been presented.

  13. Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2010-01-01

    The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.

  14. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  15. Geometric Approximation: A New Computational Approach To Characterize Protein Dynamics from NMR Adiabatic Relaxation Dispersion Experiments.

    PubMed

    Chao, Fa-An; Byrd, R Andrew

    2016-06-15

    A new computational strategy is reported that provides a fast approximation of numerical solutions of differential equations in general. The method is demonstrated with the analysis of NMR adiabatic relaxation dispersion experiments to reveal biomolecular dynamics. When an analytical solution to the theoretical equations describing a physical process is not available, the new approach can significantly accelerate the computational speed of the conventional numerical integration up to 10(5) times. NMR adiabatic relaxation dispersion experiments enhanced with optimized proton-decoupled pulse sequences, although extremely powerful, have previously been refractory to quantitative analysis. Both simulations and experimental validation demonstrate detectable "slow" (microsecond to millisecond) conformational exchange rates from 10(2) to 10(5) s(-1). This greatly expanded time-scale range enables the characterization of a wide array of conformational fluctuations for individual residues, which correlate with biomolecular function and were previously inaccessible. Moreover, the new computational method can be potentially generalized for analysis of new types of relaxation dispersion experiments to characterize the various dynamics of biomolecular systems. PMID:27225523

  16. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  17. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  18. Ab initio chemical kinetic study for reactions of H atoms with SiH(4) and Si(2)H(6): comparison of theory and experiment.

    PubMed

    Wu, S Y; Raghunath, P; Wu, J S; Lin, M C

    2010-01-14

    The reactions of hydrogen atom with silane and disilane are relevant to the understanding of catalytic chemical vapor deposition (Cat-CVD) and plasma enhanced chemical vapor deposition (PECVD) processes. In the present study, these reactions have been investigated by means of ab initio molecular-orbital and transition-state theory calculations. In both reactions, the most favorable pathway was found to be the H abstraction leading to the formation of SiH(3) and Si(2)H(5) products, with 5.1 and 4.0 kca/mol barriers, respectively. For H + Si(2)H(6), another possible reaction pathway giving SiH(3) + SiH(4) may take place with two different mechanisms with 4.3 and 6.7 kcal/mol barriers for H-atom attacking side-way and end-on, respectively. To validate the calculated energies of the reactions, two isodesmic reactions, SiH(3)+CH(4)-->SiH(4)+CH(3) and Si(2)H(5)+C(2)H(6)-->Si(2)H(6)+C(2)H(5) were employed; the predicted heats of the formation for SiH(3) (49.0 kcal/mol) and Si(2)H(5) (58.6 kcal/mol) were found to agree well with the experimental data. Finally, rate constants for both H-abstraction reactions predicted in the range of 290-2500 K agree well with experimental data. The result also shows that H+Si(2)H(6) producing H(2)+Si(2)H(5) is more favorable than SiH(3)+SiH(4.). PMID:19938820

  19. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    PubMed Central

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  20. Spatial reorientation experiments for NMR of solids and partially oriented liquids.

    PubMed

    Martin, Rachel W; Kelly, John E; Collier, Kelsey A

    2015-11-01

    on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years. PMID:26592947

  1. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.

    PubMed

    Wei, Qingtao; Chen, Jiajing; Mi, Juan; Zhang, Jiahai; Ruan, Ke; Wu, Jihui

    2016-07-01

    Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins. PMID:27276173

  2. The composition of ternary N2/CH4/C2H6 cloud droplets under Titan conditions: Monte Carlo simulations and experiment

    NASA Astrophysics Data System (ADS)

    Luckhaus, David; Firanescu, George; Kathrin Lang, E.; Patey, Grenfell N.; Signorell, Ruth

    2013-08-01

    Molecular-level Monte Carlo simulations are performed to validate equation of state approaches for the description of the N2/CH4/C2H6 vapour-liquid equilibria under conditions relevant to Titan's lower atmosphere. The Monte Carlo simulations confirm the validity of the equation of state approaches, so that both provide a reliable description of the unknown composition of cloud droplets in this region of Titan's atmosphere. Furthermore, the models are compared with experimental data from laboratory studies of aerosol droplets that contain N2, CH4 and C2H6. Good agreement is also found here.

  3. Extending long-range heteronuclear NMR connectivities by HSQMBC-COSY and HSQMBC-TOCSY experiments

    NASA Astrophysics Data System (ADS)

    Saurí, Josep; Marcó, Núria; Williamson, R. Thomas; Martin, Gary E.; Parella, Teodor

    2015-09-01

    The detection of long-range heteronuclear correlations presenting J(CH) coupling values smaller than 1-2 Hz is a challenge in the structural analysis of small molecules and natural products. HSQMBC-COSY and HSQMBC-TOCSY pulse schemes are evaluated as complementary NMR methods to standard HMBC/HSQMBC experiments. Incorporation of an additional J(HH) transfer step in the basic HSQMBC pulse scheme can favor the sensitive observation of traditionally missing or very weak correlations and, in addition, facilitates the detection of a significant number of still longer-range connectivities to both protonated and non-protonated carbons under optimum sensitivity conditions. A comparative 1H-13C study is performed using strychnine as a model compound and several examples are also provided including 1H-15N applications.

  4. Synthesis and valence Isomerization of delta-dimethylamino-. gamma. -chlorodienones to 2-dimethylamino-3chloro-2H-pyrans. /sup 1/H and /sup 13/C NMR and UV spectroscopic study

    SciTech Connect

    Zav'yalov, S.I.; Sitkareva, I.V.

    1985-11-01

    The authors continue their research in the development of synthetic methods for various types of sigma-dimethylamino-gamma-chlorodienones and investigate their valence isomerization: the compounds are subjected to a systematic study of their solvation, thermal, and photochromic properties. The starting materials used in this study were the previously unknown aminal (Ia) and aminoacetal (Ib) of alpha-chloro-beta-dimethylaminoacrolein; these compounds were obtained via the reaction of (2-chloro-3-dimethylamino-2-propenylidene) dimethylammonium perchlorate (II) with MeOK in C/sub 6/H/sub 6/. The C 13 NMR spectral parameters for the compounds are shown, and the rate constants and activation parameters for the photoisomerization of the CHC1/sub 3/ and heptane are presented.

  5. In Situ Determination of Tacticity, Deactivation, and Kinetics in [rac-(C2H4(1-Indenyl)2)ZrMe][B(C6F5)4] and [Cp2ZrMe][B(C6F5)4]-Catalyzed Polymerization of 1-Hexene Using (13)C Hyperpolarized NMR.

    PubMed

    Chen, Chia-Hsiu; Shih, Wei-Chun; Hilty, Christian

    2015-06-01

    The stereochemistry, kinetics, and mechanism of olefin polymerization catalyzed by a set of zirconium-based metallocenes was studied by NMR using dissolution dynamic nuclear polarization (DNP). Hyperpolarized 1-hexene was polymerized in situ with a C2 symmetric catalyst, [(EBI)ZrMe][B(C6F5)4] (EBI = rac-(C2H4(1-indenyl)2)), and a C2v symmetric catalyst, [(Cp)2ZrMe][B(C6F5)4] (Cp = cyclopentadienyl). Hyperpolarized (13)C NMR spectra were used to characterize product tacticity following initiation of the reaction. At the same time, a signal gain of 3 orders of magnitude from (13)C hyperpolarization enabled the real time observation of catalyst-polymeryl species and deactivation products, such as vinylidene and a Zr-allyl complex. The compounds appearing in the reaction provide evidence for the existence of β-hydride elimination and formation of a dormant site via a methane-generating mechanism. The presence of a deactivating mechanism was incorporated in a model used to determine kinetic parameters of the reaction. On this basis, rate constants were measured between 0.8 and 6.7 mol % of catalyst. The concentration dependence of the rate constants obtained indicates a second-order process for polymerization concomitant with a first-order process for deactivation. The simultaneous observation of both processes in the time evolution of (13)C NMR signals over the course of several seconds underlines the utility of hyperpolarized NMR for quantifying early events in polymerization reactions. PMID:25961793

  6. Nonuniform sampling of hypercomplex multidimensional NMR experiments: Dimensionality, quadrature phase and randomization

    PubMed Central

    Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C

    2015-01-01

    Nonuniform sampling (NUS) in multidimensional NMR permits the exploration of higher dimensional experiments and longer evolution times than the Nyquist Theorem practically allows for uniformly sampled experiments. However, the spectra of NUS data include sampling-induced artifacts and may be subject to distortions imposed by sparse data reconstruction techniques, issues not encountered with the discrete Fourier transform (DFT) applied to uniformly sampled data. The characterization of these NUS-induced artifacts allows for more informed sample schedule design and improved spectral quality. The DFT–Convolution Theorem, via the point-spread function (PSF) for a given sampling scheme, provides a useful framework for exploring the nature of NUS sampling artifacts. In this work, we analyze the PSFs for a set of specially constructed NUS schemes to quantify the interplay between randomization and dimensionality for reducing artifacts relative to uniformly undersampled controls. In particular, we find a synergistic relationship between the indirect time dimensions and the “quadrature phase dimension” (i.e. the hypercomplex components collected for quadrature detection). The quadrature phase dimension provides additional degrees of freedom that enable partial-component NUS (collecting a subset of quadrature components) to further reduce sampling-induced aliases relative to traditional full-component NUS (collecting all quadrature components). The efficacy of artifact reduction is exponentially related to the dimensionality of the sample space. Our results quantify the utility of partial-component NUS as an additional means for introducing decoherence into sampling schemes and reducing sampling artifacts in high dimensional experiments. PMID:25899289

  7. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  8. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  9. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations.

    PubMed

    Novotný, Jan; Sojka, Martin; Komorovsky, Stanislav; Nečas, Marek; Marek, Radek

    2016-07-13

    Ruthenium-based compounds are potential candidates for use as anticancer metallodrugs. The central ruthenium atom can be in the oxidation state +2 (e.g., RAPTA, RAED) or +3 (e.g., NAMI, KP). In this study we focus on paramagnetic NAMI analogs of a general structure [4-R-pyH](+)trans-[Ru(III)Cl4(DMSO)(4-R-py)](-), where 4-R-py stands for a 4-substituted pyridine. As paramagnetic systems are generally considered difficult to characterize in detail by NMR spectroscopy, we performed a systematic structural and methodological NMR study of complexes containing variously substituted pyridines. The effect of the paramagnetic nature of these complexes on the (1)H and (13)C NMR chemical shifts was systematically investigated by temperature-dependent NMR experiments and density-functional theory (DFT) calculations. To understand the electronic factors influencing the orbital (δ(orb), temperature-independent) and paramagnetic (δ(para), temperature-dependent) contributions to the total NMR chemical shifts, a relativistic two-component DFT approach was used. The paramagnetic contributions to the (13)C NMR chemical shifts are correlated with the distribution of spin density in the ligand moiety and the (13)C isotropic hyperfine coupling constants, Aiso((13)C), for the individual carbon atoms. To analyze the mechanism of spin distribution in the ligand, the contributions of molecular spin-orbitals (MSOs) to the hyperfine coupling constants and the spatial distribution of the z-component of the spin density in the MSOs calculated at the relativistic four-component DFT level are discussed and rationalized. The significant effects of the substituent and the solvent on δ(para), particularly the contact contribution, are demonstrated. This work should contribute to further understanding of the link between the electronic structure and the NMR chemical shifts in open-shell systems, including the ruthenium-based metallodrugs investigated in this account. PMID:27312929

  10. NMR imaging of the chest at 0.12 T: initial clinical experience with a resistive magnet.

    PubMed

    Axel, L; Kressel, H Y; Thickman, D; Epstein, D M; Edelstein, W; Bottomley, P; Redington, R; Baum, S

    1983-12-01

    The chests of 40 subjects were imaged with an experimental nuclear magnetic resonance (NMR) imager operating at a magnetic field of 0.12 T. There were six normal volunteers and 34 patients with abnormalities affecting different areas, including the chest wall, pleura, hila, mediastinum, and lung parenchyma, and including benign and malignant processes. In this initial clinical experience, NMR imaging provided useful information on the presence and extent of disease by its ability to distinguish different tissues and by the excellent demonstration of vascular structures. PMID:6606311

  11. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  12. The complexity of protein energy landscapes studied by solution NMR relaxation dispersion experiments

    PubMed Central

    Khirich, Gennady; Loria, J. Patrick

    2016-01-01

    The millisecond timescale motions in ribonuclease A (RNase A) were studied by solution NMR CPMG and off-resonance R1ρ relaxation dispersion experiments over a wide pH and temperature range. These experiments identify three separate protein regions termed Cluster 1, Cluster 2, and R33 whose motions are governed by distinct thermodynamic parameters. Moreover each of these regions has motions with different pH dependencies. Cluster 1 shows an increase in activation enthalpy and activation entropy as the pH is lowered, whereas Cluster two exhibits the opposite behavior. In contrast the activation enthalpy and entropy of R33 show no pH dependence. Compounding the differences, Δω values for Cluster 2 are characteristic of two-site conformational exchange yet similar analysis for Cluster 1 indicates that this region of the enzyme exhibits conformational fluctuations between a major conformer and a pH-dependent average of protonated and de-protonated minor conformers. PMID:25680027

  13. Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2002-06-01

    We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.

  14. An NMR Experiment Based on Off-the-Shelf Digital Data-Acquisition Equipment

    ERIC Educational Resources Information Center

    Hilty, Christian; Bowen, Sean

    2010-01-01

    Nuclear magnetic resonance (NMR) poses significant challenges for teaching in the context of an undergraduate laboratory, foremost because of high equipment cost. Current off-the-shelf data-acquisition hardware, however, is sufficiently powerful to constitute the core of a fully digital NMR spectrometer operating at the earth's field. We present…

  15. 13C NMR study of the generation of C2- and C3-deuterated lactic acid by tumoral pancreatic islet cells exposed to D-[1-13C]-, D-[2-13C]- and D-[6-13C]-glucose in 2H2O.

    PubMed

    Willem, R; Biesemans, M; Kayser, F; Malaisse, W J

    1994-03-01

    Tumoral pancreatic islet cells of the RIN5mF line were incubated for 120 min in media prepared in 2H2O and containing D-[1-13C]glucose, D-[2-13C]glucose, and D-[6-13C]glucose. The generation of C2- and C3-deuterated lactic acid was assessed by 13C NMR. The interpretation of experimental results suggests that a) the efficiency of deuteration on the C1 of D-fructose 6-phosphate does not exceed about 47% and 4% in the phosphoglucoisomerase and phosphomannoisomerase reactions, respectively; b) approximately 38% of the molecules of D-glyceraldehyde 3-phosphate generated from D-glucose escape deuteration in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase; and c) about 41% of the molecules of pyruvate generated by glycolysis are immediately converted to lactate, the remaining 59% of pyruvate molecules undergoing first a single or double back-and-forth interconversion with L-alanine. It is proposed that this methodological approach, based on high resolution 13C NMR spectroscopy, may provide novel information on the regulation of back-and-forth interconversion of glycolytic intermediates in intact cells as modulated, for instance, by enzyme-to-enzyme tunneling. PMID:8057796

  16. Determination of DNA conformational features from selective two-dimensional NMR experiments

    SciTech Connect

    Emsley, L.; Dwyer, T.J.; Spielmann, H.P.; Wemmer, D.E. |

    1993-08-25

    Selective two-dimensional NMR correlation experiments are demonstrated to be particularly well suited to the problem of obtaining quantitative three-bond coupling constants in samples of DNA. The techniques were demonstrated by obtaining high-resolution spectra of cross peaks between sugar protons, which were then iteratively fitted to simulations derived from trial coupling topologies to determine the coupling constants which contribute to the cross-peak patterns. These coupling constants were then used to determine structural parameters such as the phase angle of the deoxyribose pseudorotation and the backbone torsion angles {delta} and {epsilon}. Examples are given for both single-stranded and duplex DNA. We have studied both the unmodified 8-mer duplex d(GCGTACGC){sub 2} and the furan-side monoadduct formed between the thymidine of one of the strands and 4{prime}-(hydroxymethyl)-4,5{prime},8-trimethylpsoralen (HMT) of the same DNA sequence. We comment on the structural differences between the two. 44 refs., 7 figs., 1 tab.

  17. Structural constraints for the Crh protein from solid-state NMR experiments

    PubMed Central

    Gardiennet, Carole; Loquet, Antoine; Etzkorn, Manuel; Heise, Henrike; Baldus, Marc

    2008-01-01

    We demonstrate that short, medium and long-range constraints can be extracted from proton mediated, rare-spin detected correlation solid-state NMR experiments for the microcrystalline 10.4 × 2 kDa dimeric model protein Crh. Magnetization build-up curves from cross signals in NHHC and CHHC spectra deliver detailed information on side chain conformers and secondary structure for interactions between spin pairs. A large number of medium and long-range correlations can be observed in the spectra, and an analysis of the resolved signals reveals that the constraints cover the entire sequence, also including inter-monomer contacts between the two molecules forming the domain-swapped Crh dimer. Dynamic behavior is shown to have an impact on cross signals intensities, as indicated for mobile residues or regions by contacts predicted from the crystal structure, but absent in the spectra. Our work validates strategies involving proton distance measurements for large and complex proteins as the Crh dimer, and confirms the magnetization transfer properties previously described for small molecules in solid protein samples. Electronic supplementary material The online version of this article (doi:10.1007/s10858-008-9229-3) contains supplementary material, which is available to authorized users. PMID:18320329

  18. In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy.

    PubMed

    Joo, Chan-Gyu; Hu, Kan-Nian; Bryant, Jeffrey A; Griffin, Robert G

    2006-07-26

    We describe an experiment, in situ temperature jump dynamic nuclear polarization (TJ-DNP), that is demonstrated to enhance sensitivity in liquid-state NMR experiments of low-gamma spins--13C, 15N, etc. The approach consists of polarizing a sample at low temperature using high-frequency (140 GHz) microwaves and a biradical polarizing agent and then melting it rapidly with a pulse of 10.6 microm infrared radiation, followed by observation of the NMR signal in the presence of decoupling. In the absence of polarization losses due to relaxation, the enhancement should be epsilon+ = epsilon(T(obs)/T(mu)(wave)), where epsilon+ is the observed enhancement, epsilon is the enhancement obtained at the temperature where the polarization process occurs, and T(mu)(wave) and T(obs) are the polarization and observation temperatures, respectively. In a single experimental cycle, we observe room-temperature enhancements, epsilon(dagger), of 13C signals in the range 120-400 when using a 140 GHz gyrotron microwave source, T(mu)(wave) = 90 K, and T(obs) = 300 K. In addition, we demonstrate that the experiment can be recycled to perform signal averaging that is customary in contemporary NMR spectroscopy. Presently, the experiment is applicable to samples that can be repeatedly frozen and thawed. TJ-DNP could also serve as the initial polarization step in experiments designed for rapid acquisition of multidimensional spectra. PMID:16848479

  19. Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments: Simple pore geometries

    NASA Astrophysics Data System (ADS)

    Mitra, Partha P.; Sen, Pabitra N.

    1992-01-01

    We derive an expression for the magnetization M(k,Δ) in a pulsed-field-gradient experiment for spins diffusing in a confined space with relaxation at the pore walls. Here k=γδg, δ= pulse width, g= gradient strength, γ= the gyromagnetic ratio, and Δ is the time between gradient pulses. We show that the deviation of -ln[M(k,Δ)/M(0,Δ)] from quadratic behavior in k in experiments in porous media can be a more sensitive probe of the microgeometry (size, connectivity, size distribution, shape, etc.), than either the enhancement of 1/T1 over the bulk water value, or the macroscopic diffusion coefficient, which is derived from the slope of -ln[M(k,Δ)/M(0,Δ)] at small k2, in the limit of large Δ. We propose some simple models of randomly oriented tubes and sheets to interpret the k dependence of the amplitude beyond the leading small-k quadratic behavior. When the macroscopic diffusion coefficient is unobtainable, due to the decay, the present considerations should be useful in extracting geometrical information. The effective diffusion constant derived from NMR exactly equals that derived from electrical conductivity only when the surface relaxivity is zero, but can be close to each other in favorable circumstances even for finite surface relaxivity. Exact solutions with partially absorbing boundary conditions are obtained for a slab and a sphere to infer that the normalized amplitude M(k,Δ,ρ)/M(0,Δ,ρ) depends only weakly on the surface relaxivity ρ for monodisperse convex-shaped pores in the parameter ranges of interest. We also obtain expressions for the mean lifetime of the amplitude in the geometries considered.

  20. Manifestations of the absence of spin diffusion in multipulse NMR experiments on diluted dipolar solids

    NASA Astrophysics Data System (ADS)

    Franzoni, María Belén; Levstein, Patricia R.

    2005-12-01

    Puzzling anomalies previously observed in multipulse NMR experiments in natural abundance Si29 [A. E. Dementyev, D. Li, K. MacLean, and S. E. Barrett, Phys. Rev. B 68, 153302 (2003)], such as long-lived spin echoes and even-odd asymmetries, are also found in polycrystalline C60 . Further experiments controlling the phases and tilting angles of the pulse trains, as well as analytical and numerical calculations, allowed us to explain the origin of these anomalies. We prove that the observation of long magnetization tails requires two conditions: (i) an rf field inhomogeneity or a highly inhomogeneous line able to produce different tilting angles in different sites of the sample and (ii) the absence of spin diffusion (noneffective flip-flop interactions). The last requirement is easily satisfied in diluted dipolar solids, where the frequency differences between sites, caused by disorder or other sources, are usually at least one order of magnitude larger than the dipolar couplings. Both conditions lead to the generation of stimulated echoes in Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. We show, both experimentally and theoretically, that the stimulated echoes interfere constructively or destructively with the normal (Hahn) echoes depending on the alternation or not of the π pulse phases in the CP and CPMG sequences. Constructive interferences occur for the CP and CPMG sequences with and without phase alternation, respectively, which are the cases where long magnetization tails are observed. Sequences with two, three, and four π pulses after the π/2 pulse allow us to disentangle the contributions of the different echoes and show how the stimulated echoes originate the even-odd asymmetry observed in both Si29 and C60 polycrystalline samples.

  1. Collection of NMR Scalar and Residual Dipolar Couplings Using a Single Experiment.

    PubMed

    Gil-Silva, Leandro F; Santamaría-Fernández, Raquel; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-01-11

    A new DMSO-compatible aligning gel based on cross-linked poly(2-hydroxylethyl methacrylate) (poly-HEMA) has been developed. Due to a significant difference in bulk magnetic susceptibility between the DMSO inside and outside the gel, it is possible to simultaneously collect isotropic and anisotropic NMR data, such as residual dipolar couplings (RDC), in the same NMR tube. RDC-assisted structural analysis of menthol and the alkaloid retrorsine is reported as proof of concept. PMID:26515991

  2. The threshold photoelectron spectrum of the geminal chloro-fluoro-ethene (1,1-C2H2FCl) isomer. Experiment and theory

    NASA Astrophysics Data System (ADS)

    Locht, R.; Dehareng, D.; Leyh, B.

    2014-04-01

    The threshold photoelectron spectrum (TPES) of 1,1-C2H2FCl has been measured for the first time using synchrotron radiation. It has been compared to the HeI PES obtained earlier (Tornow et al 1990 Chem. Phys. 146 115). Eight photoelectron bands have been observed at 10.22, 12.45, 13.28, 14.29, 14.99, 17.12, 17.67 and at 20.23 eV successively. Only the first three bands exhibit a rich and extensive vibrational structure. Their adiabatic ionization energies are measured and a detailed vibrational analysis is presented. The assignments of the electronic bands and of the vibrational wavenumbers were made by using ab initio quantum chemical calculations. These allowed us to provide the MO description of the eight electronic states in terms of ionization and double excitation. The good correlation between predicted vibrational wavenumbers and the experimental values provides a strong basis for the assignment of all the vibrational structures.

  3. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    PubMed Central

    Dona, Anthony C.; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A.; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R.

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice. PMID:27087910

  4. Deriving NMR surface relaxivities, pore size distributions and water retention curves by NMR relaxation experiments on partially de-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C. L.; Klitzsch, N.

    2013-12-01

    Nuclear magnetic resonance (NMR) is a method used over a wide field of geophysical applications to non-destructively determine transport and storage properties of rocks and soils. In NMR relaxometry signal amplitudes correspond directly to the rock's fluid (water, oil) content. On the other hand the NMR relaxation behavior, i.e. the longitudinal (T1) and transverse (T2) NMR relaxation times, can be used to derive pore sizes and permeability as it is linearly linked to the pore's surface-to-volume-ratio and physiochemical properties of the rock-fluid interface by the surface relaxivity ρ_s This parameter, however, is dependent on the type and mineral constituents of the investigated rock sample and thus has to be determined and calibrated prior to estimating pore sizes from NMR relaxometry measurements. Frequently used methods to derive surface relaxivity to calibrate NMR pore sizes comprise mercury injection, pulsed field gradients (PFG-NMR) or grain size analysis. This study introduces an alternative approach to jointly estimate NMR surface relaxivity and pore radii distributions using NMR relaxation data obtained from partially de-saturated rocks. In this, inverse modeling is carried on a linked Young Laplace equation for capillary bundles and the Brownstein and Tarr equations. Subsequently, this approach is used to predict water retention curves of the investigated rocks. The method was tested and validated on simulated and laboratory transverse NMR data. Calculated inverse models are generally in a good agreement with results obtained from mercury injection and drainage measurements. Left: Measured and predicted water retention (pF) curves. Center: NMR relaxometry data, fit and error. Right: Mercury injection data (HgPor, dashed line) and jointly derived pore radii distributions and surface relaxivity by joint inverse modelling

  5. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    SciTech Connect

    Hu, Jian Zhi

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  6. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  7. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  8. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  9. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    NASA Astrophysics Data System (ADS)

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-10-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18-21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials.

  10. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments.

    PubMed

    Freitas, Jair C C; Scopel, Wanderlã L; Paz, Wendel S; Bernardes, Leandro V; Cunha-Filho, Francisco E; Speglich, Carlos; Araújo-Moreira, Fernando M; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at (13)C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18-21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  11. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  12. A thermodynamic model for the system SiO2-H2O near the upper critical end point based on quartz solubility experiments at 500-1100 °C and 5-20 kbar

    NASA Astrophysics Data System (ADS)

    Hunt, Jonathan D.; Manning, Craig E.

    2012-06-01

    A thermodynamic model of SiO2-H2O mixing in sub- and supercritical fluids has been developed based on new and existing experimental data on the solubility of quartz in H2O. To supplement previously published data, we conducted new solubility experiments at 15 and 20 kbar and 900-1100 °C using hydrothermal piston-cylinder methods. At concentrations below ∼10 mol% SiO2, solubility was measured by single-crystal weight loss. At higher concentrations, solubility was determined by bracketing the presence and absence of quartz in quenched charges using multiple isothermal and isobaric runs with varying SiO2-H2O ratios. These data were combined with previously published results to construct a thermodynamic model of SiO2-H2O mixing. Following studies of silicate melts, the model takes oxygen in the fluid to be in three forms: free, molecular H2O, Si-bridging oxygens (Obr2-), and the terminal hydroxyls (OHtm-) of silanol groups. The equilibrium exchange of oxygen between these forms can be written 1/2 >H2O+1/2 >Obr2-=OHtm-. The standard Gibbs free energy change of this reaction (ΔG∘) was incorporated into a subregular solution model for mixing of SiO2 liquid and H2O fluid. The P-T dependences of ΔG∘ and interchange energies were derived by an error minimization algorithm, producing thirteen independent fit parameters. The model is applicable from 5 to 20 kbar and 500 °C to the dry melting curve of quartz. It reproduces experimentally derived quartz solubility data to 3.8% on average (1σ = 5.3%). The model also predicts hydrous melting of quartz, critical melt-vapor mixing, activity-concentration relations, partial molar volume and entropy of aqueous silica, water speciation, and the thermal expansivity, isothermal compressibility, and isobaric heat capacity of a fluid in equilibrium with quartz. The model predicts a critical end point in the SiO2-H2O system at 1067 °C and 9.33 kbar, in very good agreement with the accepted location at ∼1080 °C and 9.5-10 kbar

  13. Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments.

    PubMed

    Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël

    2014-02-01

    Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed. PMID:24480716

  14. Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.

    PubMed

    Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis

    2012-02-01

    Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. PMID:22367881

  15. Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël

    2014-02-01

    Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100 K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.

  16. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  17. 113Cd NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p**

    PubMed Central

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-01-01

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  18. Identification of an Unknown Compound by Combined Use of IR, [to the first power]H NMR, [to the thirteenth power]C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination

    ERIC Educational Resources Information Center

    Liotta, Louis J.; James-Pederson, Magdalena

    2008-01-01

    In this introductory organic chemistry experiment, the students get an opportunity to analyze and identify an unknown compound as it is done in a real-laboratory setting. First, students are instructed on the proper operation of three major instruments, NMR, IR, and GC-MS, and are given a sample of an unknown compound. The students are expected to…

  19. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  20. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  1. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  2. Diels-Alder Cycloadditions: A MORE Experiment in the Organic Laboratory Including a Diene Identification Exercise Involving NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus

    2005-01-01

    Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…

  3. Determination of Solvent Effects on Keto-Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Cook, A. Gilbert; Feltman, Paul M.

    2007-01-01

    The use of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents has been a classic physical chemistry experiment. We are presenting an expansion of the excellent description of this experiment by Garland, Shoemaker, and Nibler. Often the assumption is made that the keto tautomer is always the…

  4. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  5. Ionic Pathways in Li13Si4 investigated by (6)Li and (7)Li solid state NMR experiments.

    PubMed

    Dupke, Sven; Langer, Thorsten; Winter, Florian; Pöttgen, Rainer; Winter, Martin; Eckert, Hellmut

    2015-02-01

    Local environments and dynamics of lithium ions in the binary lithium silicide Li13Si4 have been studied by (6)Li MAS-NMR, (7)Li spin-lattice relaxation time and site-resolved (7)Li 2D exchange NMR measurements as a function of mixing time. Variable temperature experiments result in distinct differences in activation energies characterizing the transfer rates between the different lithium sites. Based on this information, a comprehensive picture of the preferred ionic transfer pathways in this silicide has been developed. With respect to local mobility, the results of the present study suggests the ordering Li6/Li7>Li5>Li1>Li4 >Li2/Li3. Mobility within the z=0.5 plane is distinctly higher than within the z=0 plane, and the ionic transfer between the planes is most facile via Li1/Li5 exchange. The lithium ionic mobility can be rationalized on the basis of the type of the coordinating silicide anions and the lithium-lithium distances within the structure. Lithium ions strongly interacting with the isolated Si(4-) anions have distinctly lower mobility than those the coordination of which is dominated by Si2(6-) dumbbells. PMID:25524128

  6. Analysis of one-dimensional pure-exchange NMR experiments for studying dynamics with broad distributions of correlation times.

    PubMed

    deAzevedo, E R; Tozoni, J R; Schmidt-Rohr, K; Bonagamba, T J

    2005-04-15

    One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB. PMID:15945644

  7. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    NASA Astrophysics Data System (ADS)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  8. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR. PMID:25102442

  9. Solubilization of amphiphilic carboxylic acids in nonionic micelles: determination of partition coefficients from pKa measurements and NMR experiments.

    PubMed

    Dupont-Leclercq, Laurence; Giroux, Sébastien; Henry, Bernard; Rubini, Patrice

    2007-10-01

    The solubilization of octylamidotartaric acid (C8T) and octanoic acid (C8C) in Triton X-100 and Brij 58 nonionic micelles has been studied by pHmetric and 1H NMR self-diffusion experiments. As both C8C and C8T exhibit acid-base properties, a distinction between the partition of the neutral acidic form, in terms of the partition coefficient KPH, and the partition of the charged basic form, in terms of the partition coefficient KP-, has been made. The acidity constants, Ka, of C8T and C8C in the presence of micelles have been evaluated from pHmetric experiments. For both solutes, an increase in the pKa is observed in micellar media due to the difference in the partition of acidic and basic forms of the solutes. A model has been developed to determine KPH and KP- from the pKa shifts observed. The values obtained by this pKa shift modeling method and those from self-diffusion coefficient measurements are in good agreement. The acidic form of C8C is incorporated to a larger extent into the Brij 58 micelles than the acidic form of C8T, whereas the opposite trend is observed for the basic forms. Both the acidic and basic forms of C8T are more easily incorporated into Brij 58 micelles than into Triton X-100 micelles. The influence of the structure of the polar head on the solubilization properties is demonstrated. Moreover, evidence for the localization of the solutes in the micelles is obtained from the comparison of the partition coefficients and from 1H NMR data. PMID:17850105

  10. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.

    PubMed

    Kumar, Dinesh

    2013-09-01

    Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone ((1)H, (15)N, (13)C(α) and (13)C') resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment--(4,3)D-hnCOCANH and exploits the linear combinations of backbone ((13)C(α) and (13)C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks--which is different in sum (CA + CO) and difference (CA - CO) frequency regions--greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide (15)N and backbone (13)C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (i→i + 1) (15)N and (13)C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F₂-F₃ planes of the spectrum corresponding to sum (CA + CO) and difference (CA - CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW

  11. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  12. Multiple Acquisition of Magic Angle Spinning Solid-State NMR Experiments Using One Receiver: Application to Microcrystalline and Membrane Protein Preparations

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2015-01-01

    Solid-State NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POEs allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this Perspective, we describe the first generation of POEs, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic polarization, to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. PMID:25797011

  13. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  14. A Qualitative-Quantitative H-NMR Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Phillips, John S.; Leary, James J.

    1986-01-01

    Describes an experiment combining qualitative and quantitative information from hydrogen nuclear magnetic resonance spectra. Reviews theory, discusses the experimental approach, and provides sample results. (JM)

  15. Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations.

    PubMed

    Yang, Mingjun; Angles d'Ortoli, Thibault; Säwén, Elin; Jana, Madhurima; Widmalm, Göran; MacKerell, Alexander D

    2016-07-28

    The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. PMID:27346493

  16. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.

    PubMed

    Lesot, Philippe; Baillif, Vincent; Billault, Isabelle

    2008-04-15

    The quantitative determination of isotopic (2H/1H)i ratios at natural abundance using the SNIF-NMR protocol is a well-known method for understanding the enzymatic biosynthesis of metabolites. However, this approach is not always successful for analyzing large solutes and, specifically, is inadequate for prochiral molecules such as complete essential unsaturated fatty acids. To overcome these analytical limitations, we use the natural abundance deuterium 2D NMR (NAD 2D NMR) spectroscopy on solutes embedded in polypeptide chiral liquid crystals. This approach, recently explored for measuring (2H/1H)i ratios of small analytes (Lesot, P.; Aroulanda, C.; Billault, I. Anal. Chem. 2004, 76, 2827-2835), is a powerful way to separate the 2H signals of all nonequivalent enantioisotopomers on the basis both of the 2H quadrupolar interactions and of the 2H chemical shift. Two significant advances over our previous work are presented here and allow the complete isotopic analysis of four mono- and polyunsaturated fatty acid methyl esters: methyl oleate (1), methyl linoleate (2), methyl linolenate (3), and methyl vernoleate (4). The first consists of using NMR spectrometers operating at higher magnetic field strength (14.1 T) and equipped with a selective cryoprobe optimized for deuterium nuclei. The second is the development of Q-COSY Fz 2D NMR experiments able to produce phased 2H 2D maps after a double Fourier transformation. This combination of modern hardware and efficient NMR sequences provides a unique tool to analyze the (2H/1H)i ratios of large prochiral molecules (C-18) dissolved in organic solutions of poly(gamma-benzyl-L-glutamate) and requires smaller amounts of solute than previous study on fatty acids. For each compound (1-4), all 2H quadrupolar doublets visible in the 2D spectra have been assigned on the basis of 2H chemical shifts, isotopic data obtained from isotropic quantitative NAD NMR, and by an interspectral comparison of the anisotropic NAD spectra of four

  17. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  18. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate [superscript 1]H NMR Experiment to Introduce Chiral Chemistry

    ERIC Educational Resources Information Center

    Faraldos, Juan A.; Giner, Jos-Luis; Smith, David H.; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Holmes, Andrea E.; Rouhier, Kerry

    2011-01-01

    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting…

  19. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite† †Electronic supplementary information (ESI) available: Further information on the structures generated by AIRSS, alternative structural models, supercell calculations, total enthalpies of all computed structures and further information on 1H/2H NMR parameters. Example input and all raw output files from AIRSS and CASTEP NMR calculations are also included. See DOI: 10.1039/c6cp01529h Click here for additional data file.

    PubMed Central

    Moran, Robert F.; McKay, David; Pickard, Chris J.; Berry, Andrew J.; Griffin, John M.

    2016-01-01

    The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg2+ and randomly placing two H+ in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1–H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4–H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies. PMID:27020937

  20. A Cross-Polarization Based Rotating-Frame Separated-Local-Field NMR Experiment Under Ultrafast MAS Conditions

    PubMed Central

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas

    2014-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent gains in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected Cross-Polarization with a Variable Contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS. PMID:25486635

  1. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  2. Magic angle spinning solid-state NMR experiments for structural characterization of proteins.

    PubMed

    Shi, Lichi; Ladizhansky, Vladimir

    2012-01-01

    Solid-state nuclear magnetic resonance (SSNMR) has become a prominent method in biology and is suitable for the characterization of insoluble proteins and protein aggregates such as amyloid fibrils, membrane-lipid complexes, and precipitated proteins. Often, the initial and the most critical step is to obtain spectroscopic assignments, that is, to determine chemical shifts of individual atoms. The procedures for SSNMR spectroscopic assignments are now well established for small microcrystalline proteins, where high signal-to-noise can be obtained. The sensitivity of the experiments and spectral resolution decrease with the increasing molecular weight, which makes setting SSNMR experiments in large proteins a much more challenging and demanding procedure. Here, we describe the protocol for the most common set of 3D magic angle spinning (MAS) SSNMR experiments. While the procedures described in the text are well known to SSNMR practitioners, we hope they will be of interest to scientists interested in extending their repertoire of biophysical techniques. PMID:22760319

  3. Computational Chemistry Meets Experiments for Explaining the Behavior of Bibenzyl: A Thermochemical and Spectroscopic (Infrared, Raman, and NMR) Investigation.

    PubMed

    Latouche, Camille; Barone, Vincenzo

    2014-12-01

    The structure, conformational behavior, and spectroscopic parameters of bibenzyl have been investigated by a computational protocol including proper treatment of anharmonic and hindered rotor contributions. Conventional hybrid functionals overstabilize the anti conformer while low-order post-Hartree-Fock (MP2) approaches strongly favor the gauche conformer. However, inclusion of semiempirical dispersion effects in density functionals or coupled cluster post-Hartree-Fock models agree in forecasting the simultaneous presence of both conformers in the gas phase with a slightly larger stability (0.7 kcal·mol(-1)) of the gauche conformer. Addition of thermal and entropic effects finally leads to very close Gibbs free energies for both conformers and, thus, to a slight preference for the gauche form due to statistical factors (2 vs 1). The situation remains essentially the same in solution. On these grounds, perturbative vibrational computations including both electrical and mechanical anharmonicities lead to IR and Raman spectra in remarkable agreement with experiment. Full assignment of the IR spectra explains the presence of peaks from gauche or anti conformers. Comparison between computed and experimental Raman spectra confirms that both conformers are present in liquid phase, whereas the anti conformer seems to be preponderant in the solid state. Also computed NMR parameters are in good agreement with experiment. PMID:26583241

  4. Automated protein fold determination using a minimal NMR constraint strategy

    PubMed Central

    Zheng, Deyou; Huang, Yuanpeng J.; Moseley, Hunter N.B.; Xiao, Rong; Aramini, James; Swapna, G.V.T.; Montelione, Gaetano T.

    2003-01-01

    Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, 13C-, 15N-enriched protein samples with selective protonation of side-chain methyl groups (13CH3). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain 15N, HN resonances, and side-chain 13CH3 methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide 1H/2H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A. PMID:12761394

  5. Sideband separation experiments in NMR with phase incremented echo train acquisition

    NASA Astrophysics Data System (ADS)

    Walder, Brennan J.; Dey, Krishna K.; Kaseman, Derrick C.; Baltisberger, Jay H.; Grandinetti, Philip J.

    2013-05-01

    A general approach for enhancing sensitivity of nuclear magnetic resonance sideband separation experiments, such as Two-Dimensional One Pulse (TOP), Magic-Angle Turning (MAT), and Phase Adjust Spinning Sidebands (PASS) experiments, with phase incremented echo-train acquisition (PIETA) is described. This approach is applicable whenever strong inhomogeneous broadenings dominate the unmodulated frequency resonances, such as in non-crystalline solids or in samples with large residual frequency anisotropy. PIETA provides significant sensitivity enhancements while also eliminating spectral artifacts would normally be present with Carr-Purcell-Meiboom-Gill acquisition. Additionally, an intuitive approach is presented for designing and processing echo train acquisition magnetic resonance experiments on rotating samples. Affine transformations are used to relate the two-dimensional signals acquired in TOP, MAT, and PASS experiments to a common coordinate system. Depending on sequence design and acquisition conditions two significant artifacts can arise from truncated acquisition time and discontinuous damping in the T2 decay. Here we show that the former artifact can always be eliminated through selection of a suitable affine transformation, and give the conditions in which the latter can be minimized or removed entirely.

  6. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  7. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGESBeta

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  8. Residue-specific NH exchange rates studied by NMR diffusion experiments

    NASA Astrophysics Data System (ADS)

    Brand, Torsten; Cabrita, Eurico J.; Morris, Gareth A.; Günther, Robert; Hofmann, Hans-Jörg; Berger, Stefan

    2007-07-01

    We present a novel approach to the investigation of rapid (>2 s -1) NH exchange rates in proteins, based on residue-specific diffusion measurements. 1H, 15N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.

  9. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    PubMed Central

    Motáčková, Veronika; Nováček, Jiří; Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof; Šanderová, Hana; Krásný, Libor; Koźmiński, Wiktor; Sklenář, Vladimír

    2010-01-01

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9447-3) contains supplementary material, which is available to authorized users. PMID:20890634

  10. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  11. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  12. Deuterium NMR study of structural and dynamic properties of horseradish peroxidase

    SciTech Connect

    La Mar, G.N.; Thanabal, V.; Johnson, R.D.; Smith, K.M.; Parish, D.W.

    1989-04-05

    High field deuterium NMR spectra have been recorded for various horseradish peroxidase complexes reconstituted with hemins possessing specific 2H labels. The line width of the 2H NMR signals of deuteroheme reconstituted-horseradish peroxidase (HRP) and its cyano complex for the immobilized skeletal 2-2H and 4-2H labels yield the overall protein rotational correlation time (22 ms at 55 degrees C), which is consistent with expectations based on molecular weight. Meso-2H4 labels yield broad (1.3 kHz) signals just upfield from the diamagnetic protein envelope for HRP, and in the central portion of the protein envelope for the CN- ligated resting state HRP. Meso-2H4-labeled mesohemin-reconstituted HRP exhibits a similar signal but shifted further upfield by approximately 10 ppm. The net upfield meso-H hyperfine shifts confirm a five-coordinate structure for resting state HRP. 2Ha resonances for essentially rotationally immobile vinyl groups were detected in both resting state HRP and CN- ligated resting state HRP. Heme methyl-2H-labeling yields relatively narrow lines (approximately 80 Hz) indicative of effective averaging of the quadrupolar relaxation by rapid methyl rotation. Thus the 2H line width of rapidly rotating methyls in hemoproteins can be used effectively to determine the overall protein tumbling rate. Preliminary 2H experiments in meso-2H4-labeled compound I do not support large pi spin density at these positions on the porphyrin cation radical, and argue for a a1u rather than a a2u orbital ground state.

  13. High-Temperature NMR Studies of Quasicrystals and Polymers

    NASA Astrophysics Data System (ADS)

    Hill, Edward Arthur

    1995-01-01

    Icosahedral alloys such as rm Al _{65}Cu_{20}Ru_ {15}, Al_{62.5}Cu_ {24.5}Fe_{13}, and rm Al_{70}Pd_{20}Re _{10} have motivated a great deal of experimental and theoretical effort to understand fundamental issues such as the electronic structure, "lattice" dynamics, and thermodynamic stability of quasicrystalline materials. It has been shown here that Nuclear Magnetic Resonance (NMR) is a useful tool for exploring many of the essential properties of quasicrystal alloys and the so-called approximant phase alloys. Specifically, the ^{27 }Al Knight shift has been used here to study the electronic density of states in these alloys up to temperatures of 1200 K. Furthermore, ^{27}Al nuclear spin-lattice and spin-spin relaxation measurements across a wide temperature range have been used to show that the dynamic processes found in quasicrystals are quite different from those found in some crystalline alloys of similar compositions. In addition, two-dimensional exchange experiments have been employed to study the dynamics of these materials. Finally, the semiconducting alloy rm Al_2Ru has also been studied by the techniques mentioned above. It has also been demonstrated here that high temperature NMR techniques are useful in the study of organic polymers. These experiments focus on determining the timescales and other aspects of molecular motion for several specific samples. ^2H NMR measurements, including the ^2H two-dimensional exchange technique, on the high temperature polymer polybenzamidazole (PBI) are described here. ^2H NMR results for high melting temperature copolyester liquid crystals of the PCnNBB family will also be discussed. An assessment of the high temperature motion in these samples is relevant to an understanding of the physical properties that influence their high temperature applications and high temperature processing.

  14. Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.

    PubMed

    Barbieri, Letizia; Luchinat, Enrico; Banci, Lucia

    2016-06-01

    In-cell NMR spectroscopy is a unique tool for characterizing biological macromolecules in their physiological environment at atomic resolution. Recent progress in NMR instruments and sample preparation methods allows functional processes, such as metal uptake, disulfide-bond formation and protein folding, to be analyzed by NMR in living, cultured human cells. This protocol describes the necessary steps to overexpress one or more proteins of interest inside human embryonic kidney 293T (HEK293T) cells, and it explains how to set up in-cell NMR experiments. The cDNA is transiently transfected as a complex with a cationic polymer (DNA:PEI (polyethylenimine)), and protein expression is carried on for 2-3 d, after which the NMR sample is prepared. (1)H and (1)H-(15)N correlation NMR experiments (for example, using band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC)) can be carried out in <2 h, ensuring cell viability. Uniform (15)N labeling and amino-acid-specific (e.g., cysteine, methionine) labeling schemes are possible. The entire procedure takes 4 d from cell culture seeding to NMR data collection. PMID:27196722

  15. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  16. NMR methodologies for studying mitochondrial bioenergetics.

    PubMed

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  17. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  18. Simultaneous Acquisition of 2D and 3D Solid-State NMR Experiments for Sequential Assignment of Oriented Membrane Protein Samples

    PubMed Central

    Gopinath, T.; Mote, Kaustubh R; Veglia, Gianluigi

    2016-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins aligned in mechanically or magnetically lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15N-15N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15N-15N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  19. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  20. Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR.

    PubMed

    Reineke, Anne-Kirsten; Preiss, Alfred; Elend, Manfred; Hollender, Juliane

    2008-02-01

    N-heterocyclic compounds are known pollutants at tar oil contaminated sites. Here we report the degradation of methyl-, and hydroxy-methyl-substituted quinolines under nitrate-, sulfate- and iron-reducing conditions in microcosms with aquifer material of a former coke manufacturing site. Comparison of degradation potential and rate under different redox conditions revealed highest degradation activities under sulfate-reducing conditions, the prevailing conditions in the field. Metabolites of methylquinolines, with the exception of 2-methylquinolines, were formed in high amounts in the microcosms and could be identified by (1)H NMR spectroscopy as 2(1H)-quinolinone analogues. 4-Methyl-, 6-methyl-, and 7-methyl-3,4-dihydro-2(1H)-quinolinone, the hydrogenated metabolites in the degradation of quinoline compounds, were identified by high resolution LC-MS. Metabolites of methylquinolines showed persistence, although for the first time a transformation of 4-methylquinoline and its metabolite 4-methyl-2(1H)-quinolinone is described. The relevance of the identified metabolites is supported by the detection of a broad spectrum of them in groundwater of the field site using LC-NMR technique. LC-NMR allowed the differentiation of isomers and identification without reference compounds. A variety of methylated 2(1H)-quinolinones, as well as methyl-3,4-dihydro-2(1H)-quinolinone isomers were not identified before in groundwater. PMID:17936873

  1. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented. PMID:16991108

  2. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such

  3. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    PubMed

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. PMID:25178811

  4. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  5. An improved method for suppressing protein background in PFG NMR experiments to determine ligand diffusion coefficients in the presence of receptor

    NASA Astrophysics Data System (ADS)

    Becker, Bridget A.; Morris, Kevin F.; Larive, Cynthia K.

    2006-08-01

    In NMR diffusion experiments to study ligand-protein binding equilibria, the spectral background due to broad protein resonances can contribute significantly to the measured ligand signal intensity resulting in erroneous binding affinities. One method to suppress the protein spectral background involves coupling a CPMG pulse train before or after the BPPSTE pulse sequence to allow for differential T2 relaxation of the broad protein resonances. Here, we present an improved method, the Gradient Phase Encoded Spin-lock (GraPES) experiment that integrates the relaxation filter into the diffusion period. Compared with sequential CPMG-BPPSTE pulse sequences, GraPES offers effective suppression of the protein background with improved signal-to-noise ratios and shorter experiment times.

  6. Investigation on the Interactions of NiCR and NiCR-2H with DNA

    PubMed Central

    Chitranshi, Priyanka; Chen, Chang-Nan; Jones, Patrick R.; Faridi, Jesika S.; Xue, Liang

    2010-01-01

    We report here a biophysical and biochemical approach to determine the differences in interactions of NiCR and NiCR-2H with DNA. Our goal is to determine whether such interactions are responsible for the recently observed differences in their cytotoxicity toward MCF-7 cancer cells. Viscosity measurement and fluorescence displacement titration indicated that both NiCR and NiCR-2H bind weakly to duplex DNA in the grooves. The coordination of NiCR-2H with the N-7 of 2′-deoxyguanosine 5′-monophosphate (5′-dGMP) is stronger than that of NiCR as determined by 1H NMR. NiCR-2H, like NiCR, can selectively oxidize guanines present in distinctive DNA structures (e.g., bulges), and notably, NiCR-2H oxidizes guanines more efficiently than NiCR. In addition, UV and 1H NMR studies revealed that NiCR is oxidized into NiCR-2H in the presence of KHSO5 at low molar ratios with respect to NiCR (≤4). PMID:20671951

  7. Interaction study of bioactive molecules with fibrinogen and human platelets determined by 1H NMR relaxation experiments.

    PubMed

    Bonechi, Claudia; Martini, Silvia; Rossi, Claudio

    2009-02-15

    In order to investigate the interaction processes between bioactive molecules and macromolecular receptors NMR methodology based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of ligand protons was used. The contribution from the bound ligand fraction to the observed relaxation rate in relation to macromolecular target concentration allowed the calculation of the normalized affinity index[A(I)(N)](L)(T) in which the effects of motional anisotropies and different proton densities have been removed. In this paper, we applied this methodology to investigate the affinity of epinephrine and isoproterenol towards two different systems: fibrinogen and platelets. PMID:19157885

  8. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  9. An NMR study of pyridine associated with DMPC liposomes and magnetically ordered DMPC-surfactant mixed micelles.

    PubMed Central

    Henderson, J M; Iannucci, R M; Petersheim, M

    1994-01-01

    With molecular dynamics simulations of phospholipid membranes becoming a reality, there is a growing need for experiments that provide the molecular details necessary to test these computational results. Pyridine is used here to explore the interaction of planar aromatic groups with the water-lipid interface of membranes. It is shown by magic angle spinning 13C nuclear magnetic resonance (NMR) to bind between the glycerol and choline groups of dimyristoylphosphatidylcholine (DMPC) liposomes. The axial pattern for the 31P NMR spectrum of DMPC liposomes is preserved even with more than half of the interfacial sites occupied, indicating that pyridine does not disrupt the lamellar phase of this lipid. 2H NMR experiments of liposomes in deuterium oxide demonstrate that pyridine might promote greater penetration of water into restricted regions in the interface. Magnetically oriented DMPC/surfactant micelles were investigated as a means for improving resolution and sensitivity in NMR studies of species bound to bilayers. The quadrupolar splittings in the 2H NMR spectra of d5-pyridine in DMPC liposomes and magnetically oriented DMPC/Trixon X-100 micelles indicate a common bound state for the two bilayer systems. The well resolved quadrupolar splittings of d5-pyridine in oriented micelles were used to establish the tilt of the pyridine ring relative to the bilayer plane. PMID:7918992

  10. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-09-30

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40/sup 0/C for a tightly bound /sup 15/N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.

  11. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  12. Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments.

    PubMed

    Patel, Dhilon S; Pendrill, Robert; Mallajosyula, Sairam S; Widmalm, Göran; MacKerell, Alexander D

    2014-03-20

    Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton-proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2' hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6' atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. PMID:24552401

  13. Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments

    PubMed Central

    2015-01-01

    Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton–proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated 3J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental 3J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2′ hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6′ atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. PMID:24552401

  14. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  15. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics. PMID:27247284

  16. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  17. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. PMID:26480341

  18. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic

  19. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  20. Ground-based comparison of NO2, H2O, and O3 measured by long-path and in situ techniques during the 1993 Tropospheric OH Photochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Harder, J. W.; Williams, E. J.; Baumann, K.; Fehsenfeld, F. C.

    1997-03-01

    One of the major objectives of the 1993 Tropospheric OH Photochemistry Experiment (August 8 to October 4, 1993) was to compare atmospheric measurements of the important trace gas species NO2, O3, and H2O by in situ techniques and by long-path differential absorption spectroscopy. These compounds were measured over a 20.6 km folded optical path from Fritz Peak Observatory to Caribou Mine where a retroreflector array is located. In situ measurements were made at Idaho Hill, 0.7 km northwest of Caribou Mine and 25 km west of Boulder, Colorado. NO2 was determined at Idaho Hill by photolysis followed by NO chemiluminescence. O3 and H2O were measured at this site using calibrated commercial instruments. Using fractional differences ([long path - Idaho Hull]/Idaho Hill) as a measure of agreement, overall agreement for ozone and water are +3±7% and -4±17%, respectively. For NO2 the comparison is complicated by the influence of strong sources and large ambient variability during the measurements. During times of clean westerly flow, fractional differences of +30±110% were observed. Further analysis of the data to evaluate these biases show that for mixing ratios greater than 300 pptv (well above the 1σ detection limit of 30-45 pptv) the two methods differ by no more than 10%, a value well within the combined uncertainties of the measurement techniques.

  1. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  2. A 3D Time-Shared NOESY Experiment Designed to Provide Optimal Resolution for Accurate Assignment of NMR Distance Restraints in Large Proteins

    PubMed Central

    Mishra, Subrata H; Harden, Bradley J

    2014-01-01

    Structure determination of proteins by solution NMR has become an established method, but challenges increase steeply with the size of proteins. Notably spectral crowding and signal overlap impair the analysis of cross-peaks in NOESY spectra that provide distance restraints for structural models. An optimal spectral resolution can alleviate overlap but requires prohibitively long experimental time with existing methods. Here we present a time-shared 3D experiment optimized for large proteins that provides 15N and 13C dispersed NOESY spectra in a single measurement. NOESY correlations appear in the detected dimension and hence benefit from the highest resolution achievable of all dimensions without increase in experimental time. By design, this experiment is inherently optimal for non-uniform sampling acquisition when compared to current alternatives. Thus, 15N and 13C dispersed NOESY spectra with ultra-high resolution in all dimensions were acquired in parallel within about 4 days instead of 80 days for a 52 kDa monomeric protein at a concentration of 350 μM. PMID:25381567

  3. Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei.

    PubMed

    Wang, Qiang; Trébosc, Julien; Li, Yixuan; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Lafon, Oliver; Amoureux, Jean-Paul; Deng, Feng

    2013-07-28

    We show that for half-integer quadrupolar nuclei, the manipulation of the satellite transitions can accelerate and enhance coherence transfer to other isotopes. This novel strategy is demonstrated to improve the sensitivity of (31)P-{(27)Al} J-HMQC experiments for a layered aluminophosphate Mu-4. PMID:23770976

  4. 13-C NMR Spectra of Styrene Derivatives: An Undergraduate Experiment Involving the Application of the Hammett Equation.

    ERIC Educational Resources Information Center

    Blunt, J. W.; Happer, D. A. R.

    1979-01-01

    In this experiment, the observation that, for meta- and para-substituted styrene derivatives, the magnitude of the C-13 shielding value for the beta-carbon is linearly related to sigma for the ring substituent is used to determine sigma. (BB)

  5. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  6. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  7. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  8. A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Lin, Tung-Yin

    2008-01-01

    An experiment is described involving the nitration of ortho or meta monosubstituted benzoic acids (XC[subscript 6]H[subscript 4]CO[subscript 2]H, X = Halogen, Me, OH, or OMe) and monochlorinated acetanilides with nitric acid to determine the regioselectivity of addition by [superscript 1]H NMR spectroscopy and molecular modeling. Students were…

  9. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments.

    PubMed

    Muñoz-García, Juan C; Chabrol, Eric; Vivès, Romain R; Thomas, Aline; de Paz, José L; Rojo, Javier; Imberty, Anne; Fieschi, Franck; Nieto, Pedro M; Angulo, Jesús

    2015-04-01

    Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns

  10. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  11. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  12. Uncertainty minimization in NMR measurements of dynamic nuclear polarization of a proton target for nuclear physics experiments

    SciTech Connect

    Keller, Dustin M.

    2013-11-01

    A comprehensive investigation into the measurement uncertainty in polarization produced by Dynamic Nuclear Polarization is outlined. The polarization data taken during Jefferson Lab experiment E08-007 is used to obtain error estimates and to develop an algorithm to minimize uncertainty of the measurement of polarization in irradiated View the ^14NH_3 targets, which is readily applied to other materials. The target polarization and corresponding uncertainties for E08-007 are reported. The resulting relative uncertainty found in the target polarization is determined to be less than or equal to 3.9%.

  13. H(C)Ag: a triple resonance NMR experiment for (109) Ag detection in labile silver-carbene complexes.

    PubMed

    Weske, Sebastian; Li, Yingjia; Wiegmann, Sara; John, Michael

    2015-04-01

    In silver complexes, indirect detection of (109) Ag resonances via (1) H,(109) Ag-HMQC frequently suffers from small or absent JHAg couplings or rapid ligand dissociation. In these cases, it would be favourable to employ H(X)Ag triple resonance spectroscopy that uses the large one-bond JXAg coupling (where the donor atom of the ligand X is the relay nucleus). We have applied an HMQC-based version of the H(C)Ag experiment to a labile silver-NHC complex (NHC=N-heterocyclic carbene) at natural (13) C isotopic abundance and variable temperature. In agreement with simulations, H(C)Ag detection became superior to (1) H,(109) Ag-HMQC detection above -20 °C. PMID:25641122

  14. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.

    PubMed

    Ba, Yong; Mao, Yougang; Galdino, Luiz; Günsen, Zorigoo

    2013-01-01

    The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters. PMID:23860838

  15. The HN(COCA)HAHB NMR experiment for the stereospecific assignment of Hbeta-protons in non-native states of proteins.

    PubMed

    Hähnke, Martin J; Richter, Christian; Heinicke, Friederike; Schwalbe, Harald

    2010-01-27

    (3)J(H(alpha),H(beta))-coupling constants deliver precious information on the population of the three favored chi(1)-rotamers in unfolded states of proteins. Here, a novel pulse sequence, tailored toward the NMR analysis of non-native states of proteins, the HN(COCA)HAHB experiment, is developed to measure (3)J(H(alpha),H(beta)). In four subsequent INEPT steps, magnetization is transferred from H(N) to H(alpha). In a COSY-like magnetization transfer step, dephasing of magnetization on H(alpha) is quantified to determine the (3)J(H(alpha),H(beta))-coupling constants. Analysis of the measured homonuclear coupling constants, together with measurement of heteronuclear (3)J(N,C(gamma))- and (3)J(C',C(gamma))-coupling constants, allows stereospecific assignment of the two diastereotopic H(beta)-protons even in unfolded states of proteins, and the derivation of populations according to a Pachler-type analysis. PMID:20039672

  16. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  17. Application of antiferromagnetic-Fermi-liquid theory to NMR experiments in La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Monien, H.; Monthoux, P.; Pines, D.

    1991-01-01

    NMR experiments on La1.85Sr0.15CuO4 by Kitaoka et al. and Imai et al. are analyzed using the phenomenological antiferromagnetic (AF) Fermi liquid theory of Millis, Monien, and Pines, and the results are compared with those previously obtained for YBa2Cu3O7 and YBa2Cu3O6.63. A one-component model, with hyperfine couplings that are unchanged from those found previously for YBa2Cu3O7 and YBa2Cu3O6.63, and parameters obtained from experiment, provide a quantitative fit to the data. At all temperatures the antiferromagnetic correlations found in La1.85Sr0.15CuO4 are stronger than those found for the Y-Ba-Cu-O samples with the result that the characteristic energy for the antiferromagnetic paramagnons that describe the AF spin dynamics is quite low (

  18. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.

    PubMed

    Wattraint, Olivier; Warschawski, Dror E; Sarazin, Catherine

    2005-04-12

    2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy. PMID:15807556

  19. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  20. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed Central

    Bonev, B B; Morrow, M R

    1995-01-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  1. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed

    Bonev, B B; Morrow, M R

    1995-08-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  2. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  3. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  4. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  5. Large NMR signals and polarization asymmetries.

    SciTech Connect

    Penttila, S. I.

    1998-11-25

    A large modulation in the series Q-meter can lead to nonlinear NMR signals and asymmetric polarization values. With a careful circuit analysis the nonlinearity can be estimated and corrections to polarization can be determined as a function of the strength of the modulation. We describe the recent LAMPF polarized proton target experiment, its NMR measurement and corrections to the measured polarizations.

  6. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  7. NMR investigation of the short-chain ionic surfactant-water systems.

    PubMed

    Popova, M V; Tchernyshev, Y S; Michel, D

    2004-02-01

    The structure and dynamics of surfactant molecules [CH3(CH2)7COOK] in heavy water solutions were investigated by 1H and 2H NMR. A double-exponential attenuation of the spin-echo amplitude in a Carr-Purcell-Meiboom-Gill experiment was found. We expect correspondence to both bounded and monomeric states. At high concentrations in the NMR self-diffusion measurements also a double-exponential decay of the spin-echo signal versus the square of the dc magnetic gradient was observed. The slow component of the diffusion process is caused by micellar aggregates, while the fast component is the result of the self-diffusion of the monomers through the micelles. The self-diffusion studies indicate that the form of micelles changes with increasing total surfactant concentration. The critical temperature range for self-association is reflected in the 1H transverse relaxation. PMID:15773085

  8. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  9. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  10. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  11. Tetrahydroxanthene-1,3(2H)-dione derivatives from Uvaria valderramensis.

    PubMed

    Macabeo, Allan Patrick G; Martinez, Franze Perry A; Kurtán, Tibor; Tóth, László; Mándi, Attila; Schmidt, Sebastian; Heilmann, Jörg; Alejandro, Grecebio Jonathan D; Knorn, Matthias; Dahse, Hans-Martin; Franzblau, Scott G

    2014-12-26

    Two tetrahydroxanthene-1,3(2H)-dione metabolites, valderramenols A (1) and B (2), were isolated from the Philippine endemic Annonaceous species Uvaria valderramensis. Planar structures of the rac-xanthene-1,3-(2H)-diones 1 and 2 were established by MS and NMR measurements. Their enantiomers were separated by chiral HPLC, and the absolute configurations of the separated enantiomers were determined by comparison of the HPLC-ECD spectra with computed TDDFT-generated spectra. A TDDFT-ECD study of the known grandiuvarone (3) allowed the revision of its absolute configuration as S. Compound 1 showed antitubercular activity (MIC 10 μg/mL), while 3 and 4 had weaker activities (MIC 32 μg/mL). Oxepinone 3 exhibited cytotoxic activity against KB-562, a chronic myeloid leukemia cell line. PMID:25372601

  12. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  13. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  14. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  15. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  16. Hydrogen bridging in the compounds X2H (X=Al,Si,P,S)

    NASA Astrophysics Data System (ADS)

    Owens, Zachary T.; Larkin, Joseph D.; Schaefer, Henry F.

    2006-10-01

    X2H hydrides (X =Al, Si, P, and S) have been investigated using coupled cluster theory with single, double, and triple excitations, the latter incorporated as a perturbative correction [CCSD(T)]. These were performed utilizing a series of correlation-consistent basis sets augmented with diffuse functions (aug-cc-pVXZ, X =D, T, and Q). Al2H and Si2H are determined to have H-bridged C2v structures in their ground states: the Al2H ground state is of B12 symmetry with an Al-H-Al angle of 87.6°, and the Si2H ground state is of A12 symmetry with a Si-H-Si angle of 79.8°. However, P2H and S2H have nonbridged, bent Cs structures: the P2H ground state is of A'2 symmetry with a P-P-H angle of 97.0°, and the S2H ground state is of A'2 symmetry with a S-S-H angle of 93.2°. Ground state geometries, vibrational frequencies, and electron affinities have been computed at all levels of theory. Our CCSD(T)/aug-cc-pVQZ adiabatic electron affinity of 2.34eV for the Si2H radical is in excellent agreement with the photoelectron spectroscopy experiments of Xu et al. [J. Chem. Phys. 108, 7645 (1998)], where the electron affinity was determined to be 2.31±0.01eV.

  17. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  18. An NMR determination of CO diffusion on platinum electrocatalysts.

    PubMed

    Kobayashi, Takeshi; Babu, Panakkattu K; Gancs, Lajos; Chung, Jong Ho; Oldfield, Eric; Wieckowski, Andrzej

    2005-10-19

    We report the first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence. Diffusion parameters were measured in the temperature range of 253-293 K for CO adsorbed on commercial Pt-black under saturation coverage. 2H NMR of the same system indicates that the electrolyte remains in the liquid state at temperatures where the CO diffusion experiments were performed. The CO diffusion parameters follow typical Arrhenius behavior with an activation energy of 6.0 +/- 0.4 kcal/mol and a pre-exponential factor of (1.1 +/- 0.6) x 10-8 cm2/s. Exchange between different CO populations, driven by a chemical potential gradient, is suggested to be the main mechanism for CO diffusion. The presence of the electrolyte medium considerably slows down the diffusion of CO as compared to that seen on surfaces of bulk metals under UHV conditions. This work opens up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticle electrode catalysts, including the possibility of correlating diffusion parameters to catalytic activity in real world applications of broad general interest. PMID:16218593

  19. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  20. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  1. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells.

    PubMed

    Stadler, Nicole Christina; Somoza, Veronika; Schwab, Wilfried

    2009-05-13

    A number of 3(2H)-furanones are synthesized by fruits and have been found in cooked foodstuffs, where they impart flavor and odor because of their low perception thresholds. They show genotoxic properties in model studies but are also ranked among the antioxidants and anticarcinogens. This study examined the efficiency of intestinal absorption and metabolic conversion of 3(2H)-furanones by using Caco-2 cell monolayers as an intestinal epithelial cell model. The permeability of each agent was measured in both the apical to basal and basal to apical directions. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) showed the highest absorption rate in all experiments, while similar amounts of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) were taken up. HDMF-glucoside was almost not absorbed but was hydrolyzed to a small extent. The transport of 3(2H)-furanones could not be saturated even at levels of 500 microM and occurred in both directions. Because the uptake was only slightly reduced by apical hyperosmolarity, passive diffusion by paracellular transport is proposed. PMID:19338346

  2. Study on ethyl groups with two different orientations in [N(C2H5)4]2CuBr4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-06-01

    The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T1ρ results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.

  3. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  4. Relationships between solid dispersion preparation process, particle size and drug release--an NMR and NMR microimaging study.

    PubMed

    Dahlberg, Carina; Millqvist-Fureby, Anna; Schuleit, Michael; Furó, István

    2010-10-01

    Solid dispersion tablets prepared by either spray drying or rotoevaporation and exhibiting different grain and pore sizes were investigated under the process of hydration-swelling-gelation. (2)H and (1)H NMR microimaging experiments were used to selectively follow water penetration and polymer mobilization kinetics, respectively, while the drug release kinetics was followed by (1)H NMR spectroscopy. The obtained data, in combination with morphological information by scanning electron microscopy (SEM), reveal a complex process that ultimately leads to release of the drug into the aqueous phase. We find that the rate of water ingress has no direct influence on release kinetics, which also renders air in the tablets a secondary factor. On the other hand, drug release is directly correlated with the polymer mobilization kinetics. Water diffusion into the originally dry polymer grains determines the rate of grain swelling and the hydration within the grains varies strongly with grain size. We propose that this sets the stage for creating homogeneous gels for small grain sizes and heterogeneous gels for large grain sizes. Fast diffusion through water-rich sections of the inhomogeneous gels that exhibit a large mesh size is the factor which yields a faster drug release from tablets prepared by rotoevaporation. PMID:20561585

  5. Adiabatic hyperspherical study of weakly bound He(2)H(-), He(2)H, and HeH(2) systems.

    PubMed

    Suno, Hiroya

    2010-06-14

    The He(2)H(-), He(2)H, and HeH(2) triatomic systems are studied using the adiabatic hyperspherical representation. By adopting the best empirical interaction potentials, we search for weakly bound states of (4)He(2) H(-), (4)He(2) H, and (4)HeH(2). We consider not only zero total nuclear orbital angular momentum, J=0, states but also J>0 states. We find no bound state for the (4)He(2) H systems, while the (4)He(2) H(-) and (4)HeH(2) systems are shown to possess three and one bound states, respectively, for J(Pi)=0(+). Interestingly, one bound state has been found each for the J(Pi)=1(-) and 2(+) symmetries of the (4)He(2) H(-) anion. We shall calculate the bound state energies and analyze the molecular structure of these species in detail. PMID:20550401

  6. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  7. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.

    PubMed

    Zhang, Rongchun; Pandey, Manoj Kumar; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-01-01

    Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although (1)H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution. PMID:26138791

  8. Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR

    NASA Astrophysics Data System (ADS)

    Salgado, Gilmar Fernandes De Jesus

    Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and MetaII. 11-cis-[5-C 2H3]-, 11-cis-[9-C 2H3]-, and 11-cis-[13-C2H 3]-retinal were used to regenerate bleached rhodopsin. Recombinant membranes comprising purified rhodopsin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared (1:50 molar ratio). Solid-state 2H NMR spectra were obtained for the aligned rhodopsin/POPC recombinant membranes at temperatures below the order-disorder phase transition temperature of POPC. The solid-state NMR studies of aligned samples, give the orientations of the 2H nuclear coupling tensor relative to the membrane frame, which involve both the conformation and orientation of the bound retinal chromophore. Theoretical simulations of the experimental 2H NMR spectra employed a new lineshape treatment for a semi-random distribution due to static uniaxial disorder. The analysis gives the orientation of the 2H-labeled C-C2H3 methyl bond axes relative to the membrane plane as well as the extent of three-dimensional alignment disorder (mosaic spread). These results clearly demonstrate the applicability of site-directed 2H NMR methods for investigating conformational changes and dynamics of ligands bound to rhodopsin and other GPCRs in relation to their characteristic mechanisms of action.

  9. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  10. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  11. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  12. On electrophoretic NMR. Exploring high conductivity samples

    NASA Astrophysics Data System (ADS)

    Bielejewski, Michał; Giesecke, Marianne; Furó, István

    2014-06-01

    The performance of a new electrophoretic NMR (eNMR) method that uses a Carr-Purcell-Meiboom-Gill echo train with repeated electric field reversal is investigated. We show that this pulse sequence, with acronym CPMGER, yields strongly reduced artifacts from convective flow effects caused by the simultaneous presence of electroosmotic and thermal driving forces. We demonstrate the achieved improvements in various aqueous solutions. Ultimately, the method can be used for obtaining electrophoretic mobilities by eNMR without relying on uncharged reference molecules, otherwise a significant limitation for electrophoretic experiments performed with nuclei other than 1H.

  13. NMR data handbook for biomedical applications

    SciTech Connect

    Beall, P.T.; Amtey, S.R.; Kasturi, S.R.

    1984-01-01

    The text is divided into 10 chapters, each of which covers a specific block of material and has its own references. The volume is meant to serve as a laboratory handbook and a desk reference, containing basic NMR theory, useful formulae and physical constants, and compiled data from the NMR literature. The volume attempts to cover the development of biological NMR through several decades of in vitro experiments that have laid the groundwork for and pointed to profitable areas of investigation for new in vivo techniques.

  14. A Sulfide-Bridged Diiron(II) Complex with a cis-N2H4Ligand

    PubMed Central

    Stubbert, Bryan D.; Vela, Javier; Brennessel, William W.; Holland, Patrick L.

    2014-01-01

    A sulfide-bridged diiron(II) complex bearing a cis-N2H4 (hydrazine) ligand has been prepared by reaction of LFeII(μ-S)FeIIL (1; L = sterically encumbered βdiketiminate ligand) with 2 molar equivalents of N2H4. The metastable diiron(II) hydrazine complex LFeII(μ-S)(μH N–NH2)FeII (3) is formed, as shown by crystallography, and NMR, vibrational, and electronic absorption spectroscopies. Compound 3 has been crystallographically characterized as its DBU (1,8-diazabicyclo[5.4.0]undec-7$ene) adduct, which exhibits weak N–H···DBU hydrogen bonding. The synthetic process evolves roughly 2 equivalents of NH3. The cis-N2H4 bridge in 3 may be relevant to the structure and function of intermediates on the FeMoco of nitrogenase. PMID:24678131

  15. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  16. Tautomerism of 4-hydroxy-2,5-dimethyl-3(2H)-furanone: evidence for its enantioselective biosynthesis.

    PubMed

    Raab, Thomas; Hauck, Tobias; Knecht, Anja; Schmitt, Ulrich; Holzgrabe, Ulrike; Schwab, Wilfried

    2003-08-01

    Chiral natural flavor compounds exhibit characteristic enantiomeric excesses due to stereoselective, enzymatically catalyzed reactions during biogenesis. Although the enzymatic formation of the strawberry key flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol(R)) is anticipated, the naturally occurring compound is racemic. As racemization due to keto-enol-tautomerism of HDMF could account for this observation, HDMF was investigated by (1)H-NMR spectroscopy tracing the exchange of the proton bound to the furanone-ring at C2 with deuteron from the medium (D(2)O). In addition, the racemization rate of HDMF was directly determined by cyclodextrin-modified capillary electrophoresis of enantiomerically enriched HDMF stored at different pH values. Tautomerism and the racemization rate of HDMF was lowest at pH values between 4 and 5. However, tautomerism and thus racemization was catalyzed under stronger acidic conditions (pH 2) and especially at pH values greater than 7, the value published for plant cell cytosol. Approximately 50% of the protons at C2 were exchanged with deuteron within 1 h at pH 7.2. Therefore, in order to demonstrate the enzymatic formation of HDMF, incubation experiments with Zygosaccharomyces rouxii as well as strawberry protein extract were carried out under slightly acidic conditions (pH 5), the most suitable pH value for studies on the enantiomeric ratio of HDMF. In both experiments the formation of enantiomerically enriched HDMF could be demonstrated for the first time, whereas incubation experiments under neutral conditions resulted in the detection of racemic HDMF. PMID:12840820

  17. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.

    PubMed

    Ouellet, Marise; Doucet, Jean-Daniel; Voyer, Normand; Auger, Michèle

    2007-06-01

    We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness. PMID:17487978

  18. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

  19. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  20. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  1. McDonnell F2H-3 Banshee

    NASA Technical Reports Server (NTRS)

    1957-01-01

    McDonnell F2H-3 Banshee: To more clearly mark the operators of this McDonnell F2H-3 Banshee, the 'VY' of Navy has been painted out and the appropriate lettering to spell NACA has been applied. Note that the second 'A' is of a different shape than the first. The 'Banjo' retained Navy titles on the wings, however.

  2. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210). PMID:27506302

  3. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: theory and experiments.

    PubMed

    Véron, A; Sugimura, A; Luckhurst, G R; Martins, A F

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d(2)-4'-cyanobiphenyl (5CB-d(2)) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a

  4. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Véron, A.; Sugimura, A.; Luckhurst, G. R.; Martins, A. F.

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d2-4'-cyanobiphenyl (5CB-d2) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a notably

  5. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  7. Polymer swelling, drug mobilization and drug recrystallization in hydrating solid dispersion tablets studied by multinuclear NMR microimaging and spectroscopy.

    PubMed

    Dahlberg, Carina; Dvinskikh, Sergey V; Schuleit, Michael; Furó, István

    2011-08-01

    Despite the advantages offered by solid dispersions, the marketed products based on this technology are few. The most frequent concern is the stability of the amorphous drug. The state of the drug in solid dispersions is, in general, poorly characterized as the number of characterization techniques available to monitor nanometer-sized drug particles embedded in a matrix are limited. Here we present a combination of localized NMR spectroscopic and NMR imaging techniques which allow in situ monitoring of the state of the drug during tablet disintegration and dissolution. (19)F NMR relaxation is shown to be sensitive to both the crystalline/amorphous state and the size of the model nanoparticles made of the drug substance flutamide. The time course of drug mobilization and recrystallization is detected with spatial resolution within swelling solid dispersion tablets. Comparing results from spatially resolved (19)F, (2)H and (1)H NMR experiments, recrystallization is related to its enabling factors such as local hydration level and local mobility of the polymer matrix. The initially amorphous drug may recrystallize either by nanoparticle coalescence or by ripening of crystalline grains. PMID:21696185

  8. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  9. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  10. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers.

    PubMed

    Salnikov, Evgeniy S; Sarrouj, Hiba; Reiter, Christian; Aisenbrey, Christopher; Purea, Armin; Aussenac, Fabien; Ouari, Olivier; Tordo, Paul; Fedotenko, Illya; Engelke, Frank; Bechinger, Burkhard

    2015-11-19

    Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h. PMID:26487390

  11. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  12. REDOR NMR for Drug Discovery

    PubMed Central

    Cegelski, Lynette

    2014-01-01

    Rotational-Echo DOuble-Resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation. PMID:24035486

  13. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  14. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  15. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  16. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  17. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  18. The differences in the T2 relaxation rates of the protons in the partially-deuteriated and fully protonated sugar residues in a large oligo-DNA ('NMR-window') gives complementary structural information.

    PubMed Central

    Agback, P; Maltseva, T V; Yamakage, S I; Nilson, F P; Földesi, A; Chattopadhyaya, J

    1994-01-01

    Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2'', H3' and H5'/5'' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other. PMID:8190632

  19. First-Principles Electronic Structure Calculations of N2H4 Adsorbed on Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2008-03-01

    Recent experiments conducted by Desai et al. [1] reveal that single-wall carbon nanotube (SWCNT) networks exposed to N2H4 vapor at various pressures exhibit considerable drop in resistance with respect to the pristine sample. Experimental findings reveal: (i) n-type behavior for the adsorption of N2H4/SWCNT, and (ii) the binding of N2H4 on SWCNT as chemisorption. In the present work, we have performed first-principles electronic structure calculations [2] for the N2H4 adsorbed on the (14, 0) SWCNT, where several orientations for the N2H4 molecule were considered. Calculations for the combined system were performed using 3 unit cells with the DFT/GGA and ultra soft pseudo-potentials. Our calculations reveal: (i) the binding of N2H4 on SWCNT as physisorption, and (ii) the electronic structure of SWCNT to be practically unaltered by the adsorption of N2H4, suggesting that there will not be a dramatic drop in resistance for N2H4/SWCNT. This is in disagreement with the experimental findings. To further understand the experimental observations, we will discuss mechanisms that may alter the binding nature of N2H4 on SWCNT. [1] S. Desai, G. Sumanasekera, et al. (APS, March 2008). [2] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

  20. Synthesis of novel 2H,5H-Dihydrofuran-3-yl Ketones via ISNC reactions

    PubMed Central

    Grandbois, Matthew L.; Betsch, Kelsie J.; Buchanan, William D.; Duffy-Matzner, Jetty L.

    2009-01-01

    Unique 1-[2H,5H-dihydrofur-3-yl]ketones have been synthesized from propargylic nitroethers via intramolecular cycloadditions involving silyl nitronates. Various substituent groups were placed on the 2 and 5 positions of the dihydrofuran rings. We examined the scope of the long-range coupling in proton NMR of the oxo-dihydrofuran products. The identities of the diastereomers resulting from the Michael Addition/cycloaddition reactions were tentatively assigned for the first time. CAChe MNDO PM5 and CONFLEX programs were engaged to assist with the identification of these stereoisomers. The reaction times and conditions for these oxo-dihydrofurans were found to be different than that of the published dihydrofuranals, which led us to propose a different mechanism. PMID:20161382

  1. Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation

    PubMed Central

    Mazurek, Anthony; Johnson, Christopher N.; Germann, Markus W.; Fishel, Richard

    2009-01-01

    Numerous DNA mismatches and lesions activate MutS homologue (MSH) ATPase activity that is essential for mismatch repair (MMR). We have found that a mismatch embedded in a nearest-neighbor sequence context containing symmetric 3′-purines (2 × 3′-purines) enhanced, whereas symmetric 3′-pyrimidines (2 × 3′-pyrimidines) reduced, hMSH2-hMSH6 ATPase activation. The 3′-purine/pyrimidine effect was most evident for G-containing mispairs. A similar trend pervaded mismatch binding (KD) and the melting of unbound oligonucleotides (Tm; ΔG). However, these latter measures did not accurately predict the hierarchy of MSH ATPase activation. NMR studies of imino proton lifetime, solvent accessibility, and NOE connectivity suggest that sequence contexts that provoke improved MSH-activation displayed enhanced localized DNA flexibility: a dynamic DNA signature that may account for the wide range of lesions that activate MSH functions. PMID:19237577

  2. Analytical potential energy surface for O + C2H2 system

    NASA Astrophysics Data System (ADS)

    Garashchuk, Sophya; Rassolov, Vitaly A.; Braams, Bastiaan J.

    2013-11-01

    Full-dimensional analytical potential energy surfaces (PESs) for the O(1P) + C2H2 and O(3P) + C2H2 reactions are presented. The PESs are constructed by fitting thousands of ab initio data points using permutationally invariant polynomials [5]. Electronic structure data are obtained within the restricted coupled cluster theory with single and double excitations with perturbative triple corrections and correlation consistent basis set of triple-ζ with diffuse functions. Motivated by experiments, formation of DOCC and cyclic DCCO at collision energies of 2.5-4 eV is examined using quasi-classical trajectory dynamics on the triplet surface.

  3. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  4. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  5. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  6. New Determination of the 2H(d,p)3H and 2H(d,n)3He Reaction Rates at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Pizzone, R. G.; Tognelli, E.; Degl'Innocenti, S.; Burjan, V.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Piskor, S.; Prada Moroni, P. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2014-04-01

    The cross sections of the 2H(d,p)3H and 2H(d,n)3He reactions have been measured via the Trojan Horse method applied to the quasi-free 2H(3He,p 3H)1H and 2H(3He,n 3He)1H processes at 18 MeV off the proton in 3He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the 2H(d,n)3He reaction is quite influential on 7Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (<=1 Myr) with masses >=1 M ⊙.

  7. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  8. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  9. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  10. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  11. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    NASA Astrophysics Data System (ADS)

    Walder, Brennan J.; Dey, Krishna K.; Davis, Michael C.; Baltisberger, Jay H.; Grandinetti, Philip J.

    2015-01-01

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of 2H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl2ṡ2D2O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the 2H quadrupolar coupling parameters are = 118.1 kHz and <ηq> = 0.88, and the 2H paramagnetic shift tensor anisotropy parameters are <ζP> = - 152.5 ppm and <ηP> = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by ( α , β , γ ) = ( /π 2 , /π 2 , 0 ) . Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  12. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  13. Molecular motion of benzene, n-hexane, and cyclohexane in potassium zeolite L studied by deuterium NMR

    SciTech Connect

    Silbernagel, B.G.; Garcia, A.R.; Newsam, J.M.; Hulme, R. )

    1989-08-24

    The molecular motions of perdeuterated benzene, n-hexane, and cyclohexane sorbed at loading levels of 1 molecule per channel lobe (or, equivalently, per unit cell) in potassium zeolite L have been examined by {sup 2}H nuclear magnetic resonance (NMR) for 100 K {le} T {le} 350 K. Benzene (C{sub 6}D{sub 6}) gives a broad signal with, for T < {approx} 150 K, a quadrupolar splitting of half of the static value, interpreted in terms of rapid reorientation in the molecular plane. This mode of motion is consistent with the location of benzene in capping positions above channel wall site potassium cations observed at 78 K by powder neutron diffraction. For temperatures above {approx} 250 K, a less broad component (interpreted as indicating activated benzene site hopping) develops. Sorbed n-hexane (C{sub 6}H{sub 14}) also shows no evidence for isotropic motion. Two distinct spectral components, associated respectively with the methyl and methylene deuterons, are observed. The magnitudes of the {sup 2}H quadrupolar coupling strengths can be interpreted solely in terms of torsional rotations about the carbon-carbon bonds. The temperature dependence of the {sup 2}H spin-lattice relaxation processes suggests an activation energy of {approx} 2 kcal mol{sup {minus}1} for these C-C bond rotations, consistent with earlier studies of bond rotation in alkanes. Sorbed cyclohexane (C{sub 6}D{sub 12}) shows a transition in the dynamical behavior (on the time scale of the {sup 2}H NMR experiment) in the vicinity of 280 K. Close to 280 K , a narrow signal is observed consistent with effectively isotropic reorientations, but both above and below 280 K there is a significant residual quadrupole interaction. The narrow component decreases rapidly with temperature, becoming unobservable below 230 K.

  14. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  15. 2H and 133Cs nuclear magnetic resonance study of Cs3D(SO4)2 single crystals in laboratory and rotating frames

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Sun Ha; Jeong, Se-Young

    2013-01-01

    To understand the physical properties of Cs3D(SO4)2 single crystals, in which deuterium replaces hydrogen, the temperature dependence of the NMR spectrum and the spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, for 2H and 133Cs are investigated using Fourier transform nuclear magnetic resonance spectrometry. Our results for the 2H and 133Cs relaxation times provide no evidence of a phase transition. The strong temperature dependence of the 2H resonance lines is associated with deformation of the H(SO4)2- tetrahedra. Further, T1 and T1ρ for the 2H and 133Cs nuclei are governed by different mechanisms, which we discuss in terms of fast and slow motion.

  16. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  17. Size Determination of Porosity Inclusions in an Organic Solid Material by (1)H NMR Diffusion and SEM-FIB Experiments: The TATB Case.

    PubMed

    Palmas, Pascal; Botzanowski, Thomas; Guerain, Mathieu; Forzy, Alexandre; Bruneton, Eric; Delrio, Guillaume

    2016-05-01

    An original approach has been presented to characterize the local geometry of pores containing protonated small molecule impurities in organic materials. It was here applied in TATB (1,3,5-triamino-2,4,6-trinitrobenzene) powder material to investigate the porosity able to enclose water molecules. The presence of such defects may have a significant impact on TATB-based compositions mechanical properties, efficiency, and shock sensitivity. Apparent self-diffusion coefficients measured on the low water signal residue were consistent with highly mobile species experiencing restricted diffusion in confined porosities. Applying the methodology commonly used for the characterization of porous systems, we could demonstrate for the first time that pores, with an average size in the 3-5 μm range, were already present in the native TATB powder before any formulation and that these pores were closed and filled with water/NH4Cl solutions. The presence of such macrocavities was further confirmed by analyzing the TATB 3D porous structure using the SEM-FIB dual-beam technique at the scale of particle fractions. Calculation of the pore volumes was performed to deduce pore size distributions assuming spherical cavities. A volume-weighted average size was calculated showing a satisfactory agreement with NMR results and a suitable complementarity of the two approaches. PMID:27054804

  18. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  19. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    PubMed

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  20. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  1. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  2. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  3. Online high-precision delta(2)H and delta(18)O analysis in water by pyrolysis.

    PubMed

    Lu, Feng H

    2009-10-01

    A method for online simultaneous delta(2)H and delta(18)O analysis in water by high-temperature conversion is presented. Water is injected by using a syringe into a high-temperature carbon reactor and converted into H(2) and CO, which are separated by gas chromatography (GC) and carried by helium to the isotope ratio mass spectrometer for hydrogen and oxygen isotope analysis. A series of experiments was conducted to evaluate several issues such as sample size, temperature and memory effects. The delta(2)H and delta(18)O values in multiple water standards changed consistently as the reactor temperature increased from 1150 to 1480 degrees C. The delta(18)O in water can be measured at a lower temperature (e.g. 1150 degrees C) although the precision was relatively poor at temperatures <1300 degrees C. Memory effects exist for delta(2)H and delta(18)O between two waters, and can be reduced (to <1%) with proper measures. The injection of different amounts of water may affect the isotope ratio results. For example, in contrast to small injections (100 nL or less) from small syringes (e.g. 1.2 microL), large injections (1 microL or more) from larger syringes (e.g. 10 microL) with dilution produced asymmetric peaks and shifts of isotope ratios, e.g. 4 per thousand for delta(2)H and 0.4 per thousand for delta(18)O, probably resulting from isotope fractionation during dilution via the ConFlo interface. This method can be used to analyze nanoliter samples of water (e.g. 30 nL) with good precision of 0.5 per thousand for delta(2)H and 0.1 per thousand for delta(18)O. This is important for geosciences; for instance, fluid inclusions in ancient minerals may be analyzed for delta(2)H and delta(18)O to help understand the formation environments. PMID:19714707

  4. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  5. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  6. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. PMID:23374188

  7. Synthesis and antifungal activity of 2H-1,4-benzoxazin-3(4H)-one derivatives.

    PubMed

    Śmist, Małgorzata; Kwiecień, Halina; Krawczyk, Maria

    2016-06-01

    A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next "green" catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, (1)H and (13)C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi-Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata-and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L(-1)). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L(-1) in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L(-1) and 20 mg L(-1). In the concentration of 100 mg L(-1), the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L(-1), compound 6 showed good activity only against P. cactorum strain (72%). PMID:26963527

  8. Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography.

    PubMed

    Ashbrook, Sharon E; McKay, David

    2016-06-01

    Recent advances in the application of first-principles calculations of NMR parameters to periodic systems have resulted in widespread interest in their use to support experimental measurement. Such calculations often play an important role in the emerging field of "NMR crystallography", where NMR spectroscopy is combined with techniques such as diffraction, to aid structure determination. Here, we discuss the current state-of-the-art for combining experiment and calculation in NMR spectroscopy, considering the basic theory behind the computational approaches and their practical application. We consider the issues associated with geometry optimisation and how the effects of temperature may be included in the calculation. The automated prediction of structural candidates and the treatment of disordered and dynamic solids are discussed. Finally, we consider the areas where further development is needed in this field and its potential future impact. PMID:27117884

  9. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint. PMID:20513646

  10. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  11. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  12. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  13. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  14. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  15. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  16. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Masuda, Yuichi

    2015-09-01

    Hydrogen phthalate anion has a short strong O-H-O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl4, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17O and 1H nuclei monitoring the nuclear magnetic relaxation times of 1H. The experimental results indicated that the H-bond geometry of 2 is influenced by the interactions with dimethylsulfoxide, suggesting the formation of a bifurcated H-bond, which was supported by the DFT calculations. The MD simulations for the methanol solution of 2 showed that the asymmetry of the OH distance is correlated with the asymmetry in the electrostatic field of the

  17. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  18. Conformation-Specific Infrared Spectroscopy of γ2-PEPTIDE Foldamers: Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe

    NASA Astrophysics Data System (ADS)

    James, William H., III; Buchanan, Evan G.; Müller, Christian W.; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    IR/UV double-resonance spectroscopy has been used to study the intrinsic conformational preferences of naturally occurring and synthetic peptides. These studies demonstrated the power of double-resonance methods and highlighted the ability of even short peptide mimics to form a variety of intramolecular hydrogen bonded architectures. Currently, we are extending these studies to a series of model γ2-peptides, which differ from α-peptides by virtue of having two additional, substitutable methylene units separating amide groups in the peptide backbone. Initial studies centered on the conformation-specific infrared spectra of Ac-γ2-hPhe-NHMe, where three unique conformational isomers (two hydrogen-bonded and one intramolecular amide stacked) were observed under the isolated-molecule conditions of a jet-cooled environment. This talk will focus on on two larger γ2-peptides, Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe. Utilizing resonant ion-dip infrared spectroscopy, the single-conformation infrared spectra of eight resolved conformers of the two molecules were recorded in the amide NH stretch region. The resulting infrared spectra of the tri-amides contain evidence for structures comprised of one, two, and three intramolecular amide-amide hydrogen bonds, the last of which is unprecedented for a tri-amide. In an effort to make firm conformational assignments, the spectroscopic data will be compared to the results of harmonic vibrational frequency calculations using traditional DFT and dispersion-corrected DFT methods, the results of which will be discussed.

  19. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

    PubMed

    Ardenkjaer-Larsen, Jan-Henrik; Boebinger, Gregory S; Comment, Arnaud; Duckett, Simon; Edison, Arthur S; Engelke, Frank; Griesinger, Christian; Griffin, Robert G; Hilty, Christian; Maeda, Hidaeki; Parigi, Giacomo; Prisner, Thomas; Ravera, Enrico; van Bentum, Jan; Vega, Shimon; Webb, Andrew; Luchinat, Claudio; Schwalbe, Harald; Frydman, Lucio

    2015-08-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed. PMID:26136394

  20. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  1. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  2. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    motion. In the general case of large H{sub D}, isotropic spectra were obtained by dilution of {sup 1}H with {sup 2}H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids. Theoretical and technical aspects are described in the text with comments on the application of the principles to other nuclei of interest.

  3. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  4. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species. PMID:21322694

  5. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  6. Wide-line NMR and protein hydration.

    PubMed

    Tompa, K; Bokor, M; Tompa, P

    2012-01-01

    In this chapter, the reader is introduced to the basics of wide-line NMR, with particular focus on the following: (1) basic theoretical and experimental NMR elements, necessary before switching the spectrometer and designing the experiment, (2) models/theories for the interpretation of measured data, (3) definition of wide-line NMR spectrometry, the description of the measurement and evaluation variants, useful hints for the novice, (4) advice on selecting the solvent, which is not a trivial task, (5) a note of warning that not all data are acceptable in spite of the statistical confidence. Finally, we wrap up the chapter with the results on two proteins (a globular and an intrinsically disordered). PMID:22760320

  7. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  8. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  9. Theoretical NMR correlations based Structure Discussion

    PubMed Central

    2011-01-01

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction. PMID:21797997

  10. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  11. Determination of Unknown Concentrations of Sodium Acetate Using the Method of Standard Addition and Proton NMR: An Experiment for the Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Rajabzadeh, Massy

    2012-01-01

    In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…

  12. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  13. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  14. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques. PMID:26363582

  15. Use of protein trans-splicing to produce active and segmentally 2H, 15N labeled mannuronan C5-epimerase AlgE4

    PubMed Central

    Buchinger, Edith; Aachmann, Finn L; Aranko, A Sesilja; Valla, Svein; Skjåk-BræK, Gudmund; Iwaï, Hideo; Wimmer, Reinhard

    2010-01-01

    Alginate epimerases are large multidomain proteins capable of epimerising C5 on β-d-mannuronic acid (M) turning it into α-l-guluronic acid (G) in a polymeric alginate. Azotobacter vinelandii secretes a family of seven epimerases, each of which is capable of producing alginates with characteristic G distribution patterns. All seven epimerases consist of two types of modules, denoted A and R, in varying numbers. Attempts to study these enzymes with solution-state NMR are hampered by their size—the smallest epimerase, AlgE4, consisting of one A- and one R-module, is 58 kDa, resulting in heavy signal overlap impairing the interpretation of NMR spectra. Thus we obtained segmentally 2H, 15N labeled AlgE4 isotopomeres (A-[2H, 15N]-R and [2H, 15N]-A-R) by protein trans-splicing using the naturally split intein of Nostoc punctiforme. The NMR spectra of native AlgE4 and the ligated versions coincide well proving the conservation of protein structure. The activity of the ligated AlgE4 was verified by two different enzyme activity assays, demonstrating that ligated AlgE4 displays the same catalytic activity as wild-type AlgE4. PMID:20552686

  16. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Stark, S. C.; Strange, J. H.

    2005-06-01

    To further expand on the understanding of surface interactions at the liquid/solid interface on pore walls, the nuclear magnetic resonance (NMR) techniques of cryoporometry and relaxometry have been combined. The combination of these techniques allows variations in NMR relaxation parameters from pore surface to volume ratio changes and from surface interaction changes to be distinguished. By studying a range of sol-gel silicas from two different sources, it was noted that the relaxation time measurements were not consistent with the pore diameters determined by cryoporometry and N2 gas adsorption. Instead distinctly different relaxivity constants were determined for each absorbate in each of the two brands of silica. It was clear that the relaxation times were modified by more than just the pore geometry. Independent experiments on the two brands of silica suggested that the relaxometry results were heavily influenced by the concentration of paramagnetic relaxation centres in the silica gels. The strength of surface interaction, and hence surface affinity, was seen to depend on the liquid in the pores. Using this difference in surface affinities, binary mixtures of alkanes placed in sol-gel silicas were separated via preferential absorption and their components identified using cryoporometry, whereas the components could not be distinguished in the bulk liquid.

  17. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  18. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  19. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  20. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  1. Lattice Instability of 2H-TaSe2

    NASA Astrophysics Data System (ADS)

    John Bosco Balaguru, R.; Lawrence, N.; Alfred Cecil Raj, S.

    The charge density wave (CDW) in the layered compound 2H-TaSe2 at low temperatures has a commensurate phase, which causes super lattice points to appear in the Brillöuin zone of the undistorted phase. A Born-von Karman formalism has been employed for the calculation of phonon frequency distribution curves of 2H-TaSe2 both in the normal and in the commensurate charge density wave (CCDW) phases. A folding technique has been adopted for the calculation in the CCDW phase. The phonon distribution for both the phases have been reported. With these distributions the thermal properties such as specific heat capacity, Debye Waller factor W(k) and thermal conductivity have been worked out, and compared with the available experimental results.

  2. Theory of NMR in Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro; Fukuyama, Hidetoshi

    1988-09-01

    Motivated by experiments of NMR on superconductor(S)-normal-metal(N) multi-layer system, we have calculated the nuclear spin-lattice relaxation rate, T1-1, for both N and S layers based on the bilayer model of McMillan for the proximity effect. The results of calculation are in essential agreement with experiments by Aoki et al. and Imai et al.

  3. Theory of NMR for superconducting superlattices

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro; Fukuyama, Hidetoshi

    1988-06-01

    Motivated by experiments of NMR on superconductor(S)-normal-metal(N) multilayer system, we have calculated the nuclear spin-lattice relaxation rate,T1-1, for both N and S metals based on the bilayer model of McMillan for the proximity effect. The results of calculations are in essential agreement with experiments by Aoki et al. and Imai et al.

  4. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene. PMID:16660421

  5. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  6. 2H Evaporator CP class instrumentation uncertainties evaluations

    SciTech Connect

    Hwang, E.

    1994-02-10

    The Evaporator Pot Temperature Instrumentations and the Steam Condensate Gamma Monitors are two instrumentation systems in the 2H Evaporator facilities that are classified as the critical protection. The temperature high alarm and interlock circuit and the temperature recorder circuit of the pot temperature instrumentation loop are described. From the gamma monitor loop, the high gamma alarm and interlock circuit, failure alarm and interlock circuit, cesium activity recorder circuit, and americium activity recorder circuit are described. (GHH)

  7. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  8. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  9. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  10. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments. PMID:18374613

  11. Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: The case of mouse epidermal growth factor

    SciTech Connect

    Kohda, Daisuke; Sawada, Toshie; Inagaki, Fuyuhiko )

    1991-05-21

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p{sup 2}H range 1.5-9 with two-dimensional (2D) {sup 1}H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable group which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups ({alpha}-amino group, four Asp, two Glu, one His, and {alpha}-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal {alpha}-amino group induced a widespread conformational change over the {beta}-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. The authors found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins.

  12. Characterization of pH titration shifts for all the nonlabile proton resonances a protein by two-dimensional NMR: the case of mouse epidermal growth factor.

    PubMed

    Kohda, D; Sawada, T; Inagaki, F

    1991-05-21

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p2H range 1.5-9 with two-dimensional (2D) 1H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable groups which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (alpha-amino group, four Asp, two Glu, one His, and alpha-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal alpha-amino group induced a widespread conformational change over the beta-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. We found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins. PMID:2036358

  13. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  14. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  15. Experimental and computational study of the structure and spectroscopic properties of 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine

    NASA Astrophysics Data System (ADS)

    Vural, H.; Kara, M.; İdil, Ö.

    2016-12-01

    The optimized molecular geometry and vibrational frequencies of 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine] were calculated using Hartree Fock (HF) and Density Functional Theory (DFT) methods. The vibrational spectrum was experimentally recorded using Fourier Transform-Infrared (FT-IR). Gauge-independent atomic orbital (GIAO) 1H and 13C nuclear magnetic resonance (NMR) chemical shift values of the 1‧,3‧-Dihydrospiro[cyclohexane-1,2‧-[2H]imidazo[4,5-b]pyridine] were calculated using DFT/B3LYP/6-311G + (d, p). The electronic properties such as HOMO-LUMO energies, absorption wavelengths, and excitation energy were investigated by time dependent DFT (TD-DFT) method with integral equation formalism-polarized continuum model (IEF-PCM). The mulliken charges on the atoms and second-order interaction energies were derived from NBO analysis. The electric dipole moment, the mean polarizability and the mean first hyperpolarizability values were also computed by using the DFT method. The effect of the molecule on pBR322 plasmid DNA was monitored by agarose gel electrophoresis experiments. The antimicrobial activities were tested by using minimal inhibitory concentration method (MIC).

  16. Interpretive Experiments

    ERIC Educational Resources Information Center

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  17. 2H NMR study of dynamics of benzene-d6 interacting with humic and fulvic acids.

    PubMed

    Eastman, Margaret A; Brothers, Lucinda A; Nanny, Mark A

    2011-05-01

    Samples of three humic acids and one fulvic acid with 1% loading of benzene-d(6) in sealed glass tubes have been studied with solid-state deuterium quadrupole-echo nuclear magnetic resonance spectroscopy. Calculated spectra combining three motional models, two isotropic models and a third more restricted small-angle wobble (SAW) motional model, are fit to the experimental spectra. One isotropic motion (ISO(v)) is assigned to vaporous benzene-d(6) due to the small line width, short T(1), and the loss of this component by about -25 °C when the temperature is lowered. The remaining two motional components, ISO(s) and SAW, are sorbed by the humic or fulvic acid. Benzene-d(6) slowly interacts with the humic substances, progressively filling SAW sites as ISO(s) motion diminishes. Both the sorption and increase in percentage of SAW motion are for the most part complete within 200 days but continue to a lesser extent over a period of a few years. For the SAW motion there are at least two and most likely a series of T(1) values, indicating more than one adsorption environment. Enthalpies of sorption, obtained from application of the van't Hoff equation to the percentages of the different motional models derived from a series of variable temperature spectra, are comparable in magnitude to the enthalpy of vaporization of benzene. In Leonardite humic acid, ΔH and ΔS for the ISO(s) to SAW transition change from positive to negative values with age, implying a transition in the driving force from an entropic effect associated with expansion and deformation in the molecular structure of the humic substance to accommodate benzene-d(6) to an enthalpic effect of strong benzene-d(6)-humic substance interactions. In contrast, at advanced ages, Suwannee River humic and fulvic acids have small positive or near zero ΔH and positive ΔS for the ISO(s) to SAW transition. PMID:21456559

  18. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  19. Critical fluctuations in DOPC/DPPC-d62/cholesterol mixtures: 2H magnetic resonance and relaxation.

    PubMed

    Davis, James H; Ziani, Latifa; Schmidt, Miranda L

    2013-07-28

    Static and magic angle spinning (MAS) (2)H nuclear magnetic resonance experiments have been performed on a series of multilamellar dispersions of di-oleoyl-sn-glycero-3-phosphocholine/di-palmitoyl-sn-glycero-3-phosphocholine-d62/cholesterol in water to investigate the compositional fluctuations which occur in the region of the line of critical points for this ternary system. The strong dependence of the MAS line widths on temperature, sample composition, and spinning rate provides a direct measure of the magnitude of the fluctuations in the (2)H quadrupolar Hamiltonian. These data are analyzed in terms of models for critical fluctuations in composition leading to a value for the critical index for the correlation length, ν(c) = 0.628, consistent with a three dimensional Ising model. PMID:23902029

  20. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  1. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'. PMID:7533569

  2. Conformation analysis of d-glucaric acid in deuterium oxide by NMR based on its JHH and JCH coupling constants.

    PubMed

    Enomoto-Rogers, Yukiko; Masaki, Hisaharu; Ito, Tetsuya; Furihata, Kazuo; Iwata, Tadahisa

    2016-07-01

    d-Glucaric acid (GA) is an aldaric acid and consists of an asymmetric acyclic sugar backbone with a carboxyl group positioned at either end of its structure (i.e., the C1 and C6 positions). The purpose of this study was to conduct a conformation analysis of flexible GA as a solution in deuterium oxide by NMR spectroscopy, based on J-resolved conformation analysis using proton-proton ((3) JHH ) and proton-carbon ((2) JCH and (3) JCH ) coupling constants, as well as nuclear overhauser effect spectroscopy (NOESY). The (2) JCH and (3) JCH coupling constants were measured using the J-resolved heteronuclear multiple bond correlation (HMBC) NMR technique. NOESY correlation experiments indicated that H2 and H5 were in close proximity, despite the fact that these protons were separated by too large distance in the fully extended form of the chain structure to provide a NOESY correlation. The validities of the three possible conformers along the three different bonds (i.e., C2C3, C3C4, and C4C5) were evaluated sequentially based on the J-coupling values and the NOESY correlations. The results of these analyses suggested that there were three dominant conformers of GA, including conformer 1, which was H2H3:gauche, H3H4:anti, and H4H5:gauche; conformer 2, which was H2H3:gauche, H3H4:anti, and H4H5:anti; and conformer 3, which was H2H3:gauche, H3H4: gauche, and H4H5:anti. These results also suggested that all three of these conformers exist in equilibrium with each other. Lastly, the results of the current study suggested that the conformational structures of GA in solution were 'bent' rather than being fully extended. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26749401

  3. The Physical Properties of Sphingomyelin/Cholesterol Membranes: a Deuterium NMR Study

    NASA Astrophysics Data System (ADS)

    Keyvanloo, Amirmohamad; Shaghaghi, Mehran; Zuckermann, Martin; Thewalt, Jenifer

    2009-05-01

    We have used ^2H NMR to study the effect of cholesterol on N-palmitoyl(D31)-D-erythro-sphingosylphosphorylcholine (PSM) membranes. NMR spectra were taken as a function of temperature and cholesterol concentration. The constructed phase diagram exhibits both solid-ordered (so) + liquid-ordered (lo) and liquid-disordered (ld) + lo phase coexistence regions with a clear three-phase line at 37^oC. The ld + lo region was characterized by examining the cholesterol dependence of the width of resolved peaks in the depaked spectra, as well as the average spectral width (M1), at a given temperature. The so + lo region was defined using spectral subtraction. Analogous experiments were done using 1-palmitoyl,2-palmitoyl(D31)-sn-glycero-3-phosphocholine (DPPC)/cholesterol membranes in order to carefully compare the data obtained using palmitoyl chains which have similar ``kinked'' conformations. The three-phase line in sn-2 perdeuterated DPPC/cholesterol is at 39^oC. The PSM/cholesterol membrane is significantly more ordered than the DPPC/cholesterol membrane in the liquid crystalline phase. This should be compared to the difference between the cholesterol-free membranes at, where the average order of PSM is more than that of DPPC.

  4. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  5. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  6. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates

  7. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  8. Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments

    NASA Astrophysics Data System (ADS)

    Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.

    2010-12-01

    Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.

  9. Theoretical kinetics of O + C2H4

    DOE PAGESBeta

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; Miller, James A.; Klippenstein, Stephen J.

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  10. Rotational spectroscopy of 2H,3H-perfluoropentane

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The structure of 2H,3H-perfluoropentane, CF3CHFCHFCF2CF3, has been determine by a combination of Chirp-pulsed Fourier transform microwave (CP-FTMW) spectroscopy and cavity FTMW spectroscopy. Of the four possible stereoisomers, only the enantiomeric pair (R,R)/(S,S) were observed experimentally; there was no spectroscopic evidence for the enantiomeric pair (R,S)/(S,R). The conformeric structure of the (R,R)/(S,S) stereoisomer(s) was that of partial helices with C-C-C-C dihedral angles of 12° (helical) and 1° (staggered).

  11. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  12. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  13. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  14. Structure calculation, refinement and validation using CcpNmr Analysis

    PubMed Central

    Skinner, Simon P.; Goult, Benjamin T.; Fogh, Rasmus H.; Boucher, Wayne; Stevens, Tim J.; Laue, Ernest D.; Vuister, Geerten W.

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  15. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  16. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts. PMID:24946863

  17. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  18. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  19. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  20. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6.

    PubMed

    Li, Peng; He, Yabing; Arman, Hadi D; Krishna, Rajamani; Wang, Hailong; Weng, Linhong; Chen, Banglin

    2014-11-01

    A unique six-fold interpenetrated hydrogen-bonded organic framework (HOF) has been developed, for the first time, for highly selective separation of C2H4/C2H6 at room temperature and normal pressure. PMID:25223376

  1. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  2. Hydrogen and deuterium NMR of solids by magic-angle spinning

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.

  3. B2H6 PLAD Doped PMOS Device Performance

    SciTech Connect

    Fang, Z.; Miller, T.; Winder, E.; Persing, H.; Arevalo, E.; Gupta, A.; Parrill, T.; Singh, V.; Qin, S.; McTeer, A.

    2006-11-13

    Plasma doping (PLAD) achieves high wafer throughput by directly extracting ions across the plasma sheath. PLAD profiles are typically surface peaked instead of retrograde as obtained from beamline (BL) implant. It may require optimization of PLAD energy and dose in order to match BL doping results. From device optimization point of view, it is necessary to understand the impact of doping parameters to device characteristics. In this paper we present the PMOS device performance with the poly gate and source drain (SD) implants carried out using B2H6 PLAD. The BL control conditions are 2-5 keV 11B+ 4-6x1015 cm-2. Equivalent device performance for p+ poly gate doping is obtained using PLAD with B2H6 / H2. In SD doping using same gas mixture, nearly 50% reduction in SD contact resistance is observed in the PLAD splits. The reduction in SD contact resistance leads to 10-15% increase in device on-current, hence demonstrating the process advantages of using PLAD in addition to having a high wafer throughput.

  4. A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity

    PubMed Central

    Garton, Michael; Najafabadi, Hamed S.; Schmitges, Frank W.; Radovani, Ernest; Hughes, Timothy R.; Kim, Philip M.

    2015-01-01

    Development of an accurate protein–DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF–DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering. PMID:26384429

  5. Modelling of c-C2H4O formation on grain surfaces

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Viti, S.; Ward, M. D.; Price, S. D.

    2012-12-01

    Despite its potential reactivity due to ring strain, ethylene oxide (c-C2H4O) is a complex molecule that seems to be stable under the physical conditions of an interstellar dense core; indeed, it has been detected towards several high-mass star-forming regions with a column density of the order of 1013 cm-2. To date, its observational abundances cannot be reproduced by chemical models and this may be due to the significant contribution played by its chemistry on grain surfaces. Recently, Ward & Price have performed experiments in order to investigate the surface formation of ethylene oxide starting with oxygen atoms and ethylene ice as reactants. We present a chemical model which includes the most recent experimental results from Ward & Price on the formation of c-C2H4O. We study the influence of the physical parameters of dense cores on the abundances of c-C2H4O. We verify that ethylene oxide can indeed be formed during the cold phase (when the interstellar medium dense cores are formed), via addition of an oxygen atom across the C=C double bond of the ethylene molecule, and released by thermal desorption during the hot core phase. A qualitative comparison between our theoretical results and those from the observations shows that we are able to reproduce the abundances of ethylene oxide towards high-mass star-forming regions.

  6. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  7. NMR-based diffusion lattice imaging.

    PubMed

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles. PMID:27078384

  8. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  9. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance. PMID:27095695

  10. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  11. Fragment-Based Drug Discovery Using NMR Spectroscopy

    PubMed Central

    Harner, Mary J.; Frank, Andreas O.; Fesik, Stephen W.

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience. PMID:23686385

  12. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  13. A 19F NMR Study of Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery

    1998-10-01

    This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. N-Trifluoroacetylglycine was selected as a commercially available model fluorine-tagged substrate that readily undergoes acylase I-catalyzed hydrolysis to produce trifluoroacetic acid and glycine. Progress of the reaction was monitored by following conversion of the trifluoroacetyl moiety peak of N-trifluoroacetylglycine to trifluoroacetic acid. The extent of hydrolysis was determined by comparing integrated ratios of the two 19F NMR peaks. A plot of percent hydrolysis versus enzyme concentration was used to calculate unit activity of the enzyme. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.

  14. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature. PMID:17226139

  15. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  16. Highly flexible pulse programmer for NMR applications

    NASA Technical Reports Server (NTRS)

    Dart, J.; Burum, D. P.; Rhim, W. K.

    1980-01-01

    A pulse generator for NMR application is described. Eighteen output channels are provided to allow use in single and double resonance experiments. Complex pulse sequences may be generated by loading instructions into a 256-word by 16-bit program memory. Features of the pulse generator include programmable time delays from 0.5 micros to 1000 s, branching and looping instructions, and the ability to be loaded and operated either manually or from a PDP-11/10 computer.

  17. Positron measurements in 2H-TaSe/sub 2/ crystals

    SciTech Connect

    Jean, Y.C.; Fluss, M.J.

    1985-01-01

    Temperature-dependent positron annihilation lifetime and Doppler broadening experiments are reported on single crystals of 2H-TaSe/sub 2/ to search for effects from known charge-density-wave (CDW) phase transitions. The positron lifetime in the perfect lattice and in positron trapping sites were found to be 0.173 and 0.378 ns, respectively. The apparent activation energy for the thermally generated trapping sites was found to be 0.12 eV. Doppler broadening spectra exhibited no response to the known CDW phase transitions, nor any significant overall anisotropy in their temperature dependence.

  18. The quasielastic 2H(e,e'p)n reaction at high recoil momenta

    SciTech Connect

    D. Crovelli; Konrad Aniol; Javier Gomez; John LeRose; Arunava Saha; Paul Ulmer; Vina Punjabi; Richard Lindgren; Charles Perdrisat; David Meekins; Joseph Mitchell; Mark Jones; Robert Michaels; Bogdan Wojtsekhowski; Hartmuth Arenhoevel; Michael Finn; Jens-Ole Hansen; Riad Suleiman; Kevin Fissum; Sergey Malov; Cornelis De Jager; Cornelis de Jager; Rikki Roche; Michael Kuss; Eugene Chudakov; Sabine Jeschonnek; Franck Sabatie; Luminita Todor; Meihua Liang; Olivier Gayou; Jian-Ping Chen

    2001-11-01

    The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q{sup 2}=0.67 (GeV/c){sup 2}. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

  19. Perspectives of Deuteron Field-Cycling NMR Relaxometry for Probing Molecular Dynamics in Soft Matter.

    PubMed

    Flämig, M; Becher, M; Hofmann, M; Körber, T; Kresse, B; Privalov, A F; Willner, L; Kruk, D; Fujara, F; Rössler, E A

    2016-08-11

    Due to the single-particle character of the quadrupolar interaction in molecular systems, (2)H NMR poses a unique method for probing reorientational dynamics. Spin-lattice relaxation gives access to the spectral density, and its frequency dependency can be monitored by field-cycling (FC) techniques. However, most FC NMR studies employ (1)H; the use of (2)H is still rare. We report on the application of (2)H FC NMR for investigating the dynamics in molecular liquids and polymers. Commercial as well as home-built relaxometers are employed accessing a frequency range from 30 Hz to 6 MHz. Due to low gyromagnetic ratio, high coupling constants, and finite FC switching times, current (2)H FC NMR does not reach the dispersion region in liquids (toluene and glycerol), yet good agreement with the results from conventional high-field (HF) relaxation studies is demonstrated. The pronounced difference at low frequencies between (2)H and (1)H FC NMR data shows the relevance of intermolecular relaxation in the case of (1)H NMR. In the case of the polymers polybutadiene and poly(ethylene-alt-propylene), very similar relaxation dispersion is observed and attributed to Rouse and entanglement dynamics. Combination with HF (2)H relaxation data via applying frequency-temperature superposition allows the reconstruction of the full spectral density reflecting both polymer as well as glassy dynamics. Transformation into the time domain yields the reorientational correlation function C2(t) extending over nine decades in time with a long-time power law, C2(t) ∝ t(-0.45±0.05), which does not conform to the prediction of the tube-reptation model, for which ∝ t(-0.25) is expected. Entanglement sets in below C2(t = τe) ≅ S(2) = 0.001, where τe is the entanglement time and S the corresponding order parameter. Finally, we discuss the future prospects of the (2)H FC NMR technique. PMID:27420118

  20. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  1. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    SciTech Connect

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  2. Study of the $\\tau^- to 3h^- 2h^+ \

    SciTech Connect

    Aubert, Bernard; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /more authors..

    2005-05-04

    The branching fraction of the {tau}{sup -} {yields} 3h{sup -} 2h{sup +} {nu}{sub {tau}} decay (h = {pi}, K) is measured with the BABAR detector to be (8.56 {+-} 0.05 {+-} 0.42) x 10{sup -4}, where the first error is statistical and the second systematic. The observed structure of this decay is significantly different from the phase space prediction, with the {rho} resonance playing a strong role. The decay {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -}{nu}{sub {tau}}, with the f{sub 1}(1285) meson decaying to four charged pions, is observed and the branching fraction is measured to be (3.9 {+-} 0.7 {+-} 0.5) x 10{sup -4}.

  3. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  4. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  5. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  6. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  7. Deuteron NMR resolved mesogen vs. crosslinker molecular order and reorientational exchange in liquid single crystal elastomers.

    PubMed

    Milavec, J; Domenici, V; Zupančič, B; Rešetič, A; Bubnov, A; Zalar, B

    2016-02-01

    Differences in the temperature behaviour of orientational ordering of structurally equivalent side-chain liquid single crystal elastomers (LSCEs) with (2)H-labelled crosslinker and mesogen have been studied by deuteron quadrupole-perturbed NMR. The impact of nematic director reorientations on the deuteron NMR spectral shapes was analyzed in terms of a discrete reorientational exchange model. This provided for the determination of the degree of nematic director alignment and for the quantification of the influence of the reorientational exchange on the (2)H NMR spectra in terms of two parameters, the nematic director orientational dispersion parameter σθ and the motional effectiveness parameter α. A comparative analysis of model simulations and experimental spectra reveals that mesogenic molecules in LSCEs exhibit faster reorientational dynamics as compared to crosslinker molecules and that mesogens and crosslinkers exhibit a similar and rather substantial static director orientational disorder. PMID:26778188

  8. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  9. Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin

    SciTech Connect

    Johnson, R.D.; La Mar, G.N.; Smith, K.M.; Parish, D.W.; Langry, K.C. )

    1989-01-18

    NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of {sup 2}H selectively incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfine shifts of the heme resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions to the observed line widths are shown to be insignificant. The {sup 2}H line widths for the skeletal positions of deuterohemin-reconstituted myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30{degree}C) and hence reflect an immobile heme group. The {sup 2}H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar line width can be used directly to determine the protein tumbling rate. The {sup 2}H NMR lines from heme vinyl groups were found narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp{sup 2} hybridized C-{sup 2}H bonds does not permit an unequivocal interpretation in terms of mobility. 48 refs., 4 figs.

  10. Solid-state NMR as a probe of anion binding: molecular dynamics and associations in a [5]polynorbornane bisurea host complexed with terephthalate.

    PubMed

    Rawal, Aditya; Hook, James M; Robson, Ryan N; Gunzelmann, Daniel; Pfeffer, Frederick M; O'Dell, Luke A

    2015-09-14

    A range of solid-state NMR techniques is used to characterise a molecular host:guest complex consisting of a [5]polynorbornane bisurea host binding a terephthalate dianion guest. Detailed information is obtained on the molecular dynamics and associations from the point of view of both the host and guest molecules. The formation of the complex in the solid state is confirmed using (1)H 2D exchange NMR, and the 180° flipping of the (2)H-labelled terephthalate guest and its eventual expulsion from the complex at elevated temperatures are quantified using variable-temperature (2)H spin-echo experiments. Two-dimensional (1)H-(13)C HETCOR spectra obtained under fast magic angle spinning conditions (60 kHz) show a high resolution despite the poor crystallinity of the solid complex, and clearly reveal changes in the rigidity of the host molecule when complexed. Short-range intra- and intermolecular (1)H-(1)H proximities are also detected using 2D SQ-DQ correlation methods, providing insight into the molecular packing in the solid phase. PMID:26239510

  11. Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-(2)H(1)]farnesyl diphosphate catalyzed by recombinant patchoulol synthase.

    PubMed

    Faraldos, Juan A; Wu, Shuiqin; Chappell, Joe; Coates, Robert M

    2010-03-10

    Incubations of isotopically pure [2-(2)H(1)](E,E)-farnesyl diphosphate with recombinant patchoulol synthase (PTS) from Pogostemon cablin afforded a 65:35 mixture of monodeuterated and dideuterated patchoulols as well as numerous sesquiterpene hydrocarbons. Extensive NMR analyses ((1)H and (13)C NMR, (1)H homodecoupling NMR, HMQC, and (2)H NMR) of the labeled patchoulol mixture and comparisons of the spectra with those of unlabeled alcohol led to the conclusion that the deuterium label was located at positions (patchoulol numbering system) C5 (both isotopomers, ca. 100%) and C12 (minor isotopomer, 30-35%), that is, an approximately 2:1 mixture of [5-(2)H(1)]- and [5,12-(2)H(2)]-patchoulols. Low-resolution FIMS analyses and isotope ratio calculations further corroborated the composition of the mixture as mainly one singly deuterated and one doubly deuterated patchoulol. From a mechanistic point of view, the formation of [5,12-(2)H(2)]patchoulol is rationalized through the intermediacy of an unknown exocyclic [7,10:1,5]patchoul-4(12)-ene (15-d(1)), which could incorporate a deuteron at the C-12 position on the pathway to doubly labeled patchoulol. The corresponding depletion of deuterium content observed in the hydrocarbon coproducts, beta-patchoulene and alpha-guaiene (55% d(0)), identified the source of the excess label found in patchoulol-d(2). Comparison of the PTS amino acid sequence with those of other sesquiterpene synthases, and examination of an active site model, suggested that re-orientation of leucine 410 side chain in PTS might facilitate the creation of a 2-pocket active site where the observed deuteron transfers could occur. The retention of deuterium at C5 in the labeled patchoulol and its absence at C4 rule out an alternative mechanism involving two consecutive 1,2-hydride shifts and appears to confirm the previously proposed occurrence of a 1,3-hydride shift across the 5-membered ring. A new, semisystematic nomenclature is presented for the purpose

  12. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR.

    PubMed

    Gooley, P R; Johnson, B A; Marcy, A I; Cuca, G C; Salowe, S P; Hagmann, W K; Esser, C K; Springer, J P

    1993-12-01

    Stromelysin-1, a member of the matrix metalloendoprotease family, is a zinc protease involved in the degradation of connective tissue in the extracellular matrix. As a step toward determining the structure of this protein, multidimensional heteronuclear NMR experiments have been applied to an inhibited truncated form of human stromelysin-1. Extensive 1H, 13C, and 15N sequential assignments have been obtained with a combination of three- and four-dimensional experiments. On the basis of sequential and short-range NOEs and 13C alpha chemical shifts, two helices have been delineated, spanning residues Asp-111 to Val-127 and Leu-195 to Ser-206. A third helix spanning residues Asp-238 to Gly-247 is characterized by sequential NOEs and 13C alpha chemical shifts, but not short-range NOEs. The lack of the latter NOEs suggests that this helix is either distorted or mobile. Similarly, sequential and interstrand NOEs and 13C alpha chemical shifts characterize a four-stranded beta-sheet with three parallel strands (Arg-100 to Ile-101, Ile-142 to Ala-147, Asp-177 to Asp-181) and one antiparallel strand (Ala-165 to Tyr-168). Two zinc sites have been identified in stromelysin [Salowe et al. (1992) Biochemistry 31, 4535-4540]. The NMR spectral properties, including chemical shift, pH dependence, and proton coupling of the imidazole nitrogens of six histidine residues (151, 166, 179, 201, 205, and 211), invariant in the matrix metalloendoprotease family, suggest that these residues are zinc ligands. NOE data indicate that these histidines form two clusters: one ligates the catalytic zinc (His-201, -205, and -211), and the other ligates a structural zinc (His-151, -166, and -179). Heteronuclear multiple quantum correlated spectra and specific labeling experiments indicate His-151, -179, -201, -205, and -211 are in the N delta 1H tautomer and His-166 is in the N epsilon 2H tautomer. PMID:8241164

  13. 5-(Fluorodinitromethyl)-2H-tetrazole and its tetrazolates -- preparation and characterization of new high energy compounds.

    PubMed

    Haiges, Ralf; Christe, Karl O

    2015-06-14

    5-(Fluorodinitromethyl)-2H-tetrazole (HFDNTz) has been prepared by the cycloaddition reaction of HN3 with F(NO2)2CCN, which in turn was prepared by aqueous fluorination of sodium dinitrocyanomethanide. HFDNTz was converted into the ammonium, silver and tetraphenylphosphonium 5-(fluorodinitromethyl)tetrazolates. While the reaction of trinitroacetonitrile with HBr, followed by the treatment with NaOH, resulted in the formation of sodium dinitrocyanomethanide, the reaction of trinitroacetonitrile with aqueous ammonia produced ammonium dinitrocyanomethanide. Hydrazinium dinitromethanide was obtained from trinitroacetonitrile and hydrazine hydrate. All compounds were fully characterized by multinuclear NMR spectroscopy, IR spectroscopy and X-ray crystal structure determinations. Initial safety testing (impact and friction sensitivity) and thermal stability measurements (DTA) were also carried out. PMID:25826267

  14. Energetic derivatives of 5-(5-amino-2H-1,2,3-triazol-4-yl)-1H-tetrazole.

    PubMed

    Izsák, Dániel; Klapötke, Thomas M; Pflüger, Carolin

    2015-10-21

    This study presents the preparation of the novel nitrogen-rich compound 5-(5-amino-2H-1,2,3-triazol-4-yl)-1H-tetrazole (5) from commercially available chemicals in a five step synthesis. The more energetic derivatives with azido (6) and nitro (7) groups, as well as a diazene bridge (8) were also successfully prepared. The energetic compounds were comprehensively characterized by various means, including vibrational (IR, Raman) and multinuclear ((1)H, (13)C, (14)N, (15)N) NMR spectroscopy, mass spectrometry and differential thermal analysis. The sensitivities towards important outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The enthalpies of formation were calculated on the CBS-4M level of theory, revealing highly endothermic values, and were utilized to calculate the detonation parameters using EPXLO5 (6.02). PMID:26361356

  15. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  16. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  17. Molecular complex morpholine-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Zhang, Shufen; Xu, Yingmei

    2009-02-01

    Morpholine absorbs CO 2 and H 2O in air to form a molecular complex: morpholinium-1-morpholinecarboxylate-H 2O. The structure of the complex was characterized by X-ray single crystal diffraction, 1H NMR and FT-IR. The crystal structure was determined to be triclinic, space group P1¯ with a = 6.494(2) Å, b = 8.098(4) Å, c = 13.533(4) Å, α = 96.99(3)°, β = 102.57(2)°, γ = 104.15(3)°, Z = 2. The complex is stabilized via three hydrogen bonds between the three components, N…O electrostatic attraction and O…O interaction (electron transfer). Due to electron transfer of the carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O sbnd H bond is considerably shorter than that of free water molecules. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.

  18. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. PMID:25924947

  19. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  20. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  1. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  3. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  4. Using 2H labeling with neutron radiography for the study of solid polymer electrolyte water transport properties.

    PubMed

    Boillat, P; Oberholzer, P; Seyfang, B C; Kästner, A; Perego, R; Scherer, G G; Lehmann, E H; Wokaun, A

    2011-06-15

    A method combining (2)H labeling of different sources of H atoms (hydrogen, water vapor) with neutron imaging for the analysis of transport parameters in the bulk and at the interfaces of Nafion polymer electrolyte membranes is proposed. The use of different isotope compositions in the steady state allows evaluation of the relation between bulk and interface transport parameters, but relies on literature data for evaluating absolute values. By using transients of isotope composition, absolute values of these parameters including the self-diffusion coefficient of H can be extracted, making this method an attractive alternative to self-diffusion measurements using nuclear magnetic resonance (NMR), allowing measurements in precisely controlled conditions in real fuel cell structures. First measurements were realized on samples with and without electrodes and we report values of the self-diffusion coefficient of the same order of magnitude as values measured using NMR, although with slightly higher numbers. In our particular case, lower interfacial exchange rates for water transport were observed for samples with an electrode. PMID:21613688

  5. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  6. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  7. THz Dynamic Nuclear Polarization NMR.

    PubMed

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  8. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  9. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  10. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  11. Electron paramagnetic resonance spectra and structures of Cu(C sub 2 H sub 4 ), Cu(C sub 2 H sub 4 ) sub 2 , and Cu(C sub 2 H sub 4 ) sub 3 in hydrocarbon matrices

    SciTech Connect

    Howard, J.A.; Joly, H.A.; Mile, B. )

    1990-02-22

    Two mononuclear {pi}-complexes, Cu(C{sub 2}H{sub 4}) and Cu(C{sub 2}H{sub 4}){sub 2}, have been positively identified by EPR spectroscopy from reaction of Cu atoms and ethylene at 77 K in inert hydrocarbon matrices on a rotating cryostat. The spectra of these copper(O) complexes are consistent with dative bonding for both species and with a C{sub 2v} structure for Cu(C{sub 2}H{sub 4}) and a D{sub 2h} structure for Cu(C{sub 2}H{sub 4}){sub 2}. Spectra of Cu({sup 13}CH{sub 2}CH{sub 2}) and Cu({sup 13}CH{sub 2}CH{sub 2}){sub 2} are consistent with these assignments. A third complex is formed in both adamantane and cyclohexane that could be Cu(C{sub 2}H{sub 4}){sub 2} with a structure other than D{sub 2h} but is more likely to be the mononuclear trisligand complex Cu(C{sub 2}H{sub 4}){sub 3} with a D{sub 3h} structure. In the absence of a well-resolved isotropic spectrum of Cu({sup 13}CH{sub 2}CH{sub 2}){sub 3}, this assignment must however be taken as tentative.

  12. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    SciTech Connect

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J.; Dey, Krishna K.; Baltisberger, Jay H.

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  13. Protein structure by solid-state NMR of oriented systems

    SciTech Connect

    Stewart, P.L.

    1987-01-01

    A method for determining protein backbone structure from angular information obtainable by solid state NMR spectroscopy is presented. Various spin interactions including quadrupole, dipole, and chemical shift interactions and nuclei including /sup 14/N, /sup 15/N, /sup 13/C, and /sup 2/H may be observed. Angularly dependent measurements can be made when the sample has at least one direction of order along the externally applied magnetic field. Several NMR parameters are used to determine the orientation of each peptide plane with respect to the magnetic field vector, B/sub O/, to within a few symmetry related possibilities. The computer program Totlink can then be used to perform the necessary coordinate transformations and to evaluate the possible backbone structures and select for the most chemically reasonable. Experimental /sup 14/N NMR structural studies of the model peptides n-acetyl-d,l-valine, n-acetyl-l-valyl-l-leucine, and l-alanyl-glycyl-glycine and preliminary /sup 14/N NMR results on a large single crystal of orthorhombic lysozyme are presented.

  14. NMR studies of structure and dynamics in fruit cuticle polyesters.

    PubMed

    Stark, R E; Yan, B; Ray, A K; Chen, Z; Fang, X; Garbow, J R

    2000-05-01

    Cutin and suberin are support polymers involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant organs, and minimizing the deleterious impact of microbial pathogens. Despite the complexity and intractable nature of these plant biopolyesters, their molecular structure and development are amenable to study by suitable solid-state and solution-state NMR techniques. Interactions of tomato cutin with water were examined by solid-state 2H and 13C NMR, showing that water films enhance rapid segmental motions of the acyl chains and are associated with a fivefold increase in surface elasticity upon cutin hydration. The suberization of wounded potato tissues was studied by solid-state 13C NMR, revealing the likely phenylpropanoid structures that permit dense cross-linking of the suberin structure and their proximity to the cell-wall polysaccharides. Finally, two new approaches were developed to elucidate the molecular structures of these biopolymers: partial depolymerization followed by spectroscopic analysis of the soluble oligomers; and swelling of the intact materials followed by magic-angle spinning (MAS) NMR analysis. PMID:10811427

  15. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  16. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  17. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  18. Structural Biology by NMR: Structure, Dynamics, and Interactions

    PubMed Central

    Markwick, Phineus R. L.; Malliavin, Thérèse; Nilges, Michael

    2008-01-01

    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data. PMID:18818721

  19. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  20. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values. PMID:27208951