Science.gov

Sample records for 2h nmr spectra

  1. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  2. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  3. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  4. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-01

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  5. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  6. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  7. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  8. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  9. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  10. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids. PMID:22462878

  11. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  12. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  13. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  14. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  15. NMR spectra of androstane analogs of brassinosteroids

    NASA Astrophysics Data System (ADS)

    Baranovskii, A. V.; Litvinovskaya, R. P.; Aver'kova, M. A.; Khripach, N. B.; Khripach, V. A.

    2007-09-01

    We have used two-dimensional NMR spectroscopy to make a complete assignment of signals from the nuclei of hydrogen and carbon atoms in the spectra of brassinosteroids in the androstane series. We have confirmed the stereochemistry of the chiral centers and the structure of the molecules. We have studied the effect of the configuration of the 2,3-diol groups in the A ring of the steroids on the chemical shift of adjacent atoms in the 13C and 1H NMR spectra.

  16. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  17. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  18. Imaging of complex NMR spectra.

    PubMed

    Harrison, C G; Adams, D F; Kramer, P B

    1985-01-01

    The Point Spread Function (PSF) in NMR imaging is the result of both the line broadening due to magnet field inhomogeneity and the intrinsic spectrum of the nucleus at resonance. In the case of proton imaging, the line broadening dominates the small chemical shifts and the spectral lines are not resolved. This is not generally the case with other nuclei having strong chemical shifts and the PSF then has a complex structure. During imaging, the complex PSF is convolved with the spatial distribution of the nucleus at resonance and this leads to halo artifacts which are dependent on the imaging technique employed. The images due to the ensemble of spectral lines can be separated in principle by deconvolution of the data with the PSF before reconstruction. In the special case where the complex PSF is spatially independent, it can be obtained from the Free Induction Decay (FID) data produced in the absence of a spatially encoding gradient field. This technique has been successfully applied to in-vivo imaging of exogenous perfluorocarbon material. PMID:3988470

  19. Revisiting NMR composite pulses for broadband 2H excitation

    PubMed Central

    Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen

    2014-01-01

    Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576

  20. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  1. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  2. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at Geochemical Pressures.

    PubMed

    Ochoa, Gerardo; Pilgrim, Corey D; Martin, Michele N; Colla, Christopher A; Klavins, Peter; Augustine, Matthew P; Casey, William H

    2015-12-14

    Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust. PMID:26404025

  3. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  4. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  5. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  6. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils.

  7. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    PubMed

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  8. Laboratory Spectra of Mixtures of CH4, C2H6, and CH3OH

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Berry, Matthew T.; Sandford, Scott

    2011-01-01

    Infrared spectroscopy is commonly used as a tool for identifying the composition of objects in the Solar System and beyond. Using laboratory spectra, optical constants can be calculated and used to create model spectra for comparison to spectra obtained from infrared telescopes. In this study, the optical constants of mixtures of simple organics, including CH4, C2H6, and CH3OH were calculated from 15 to 70 K, in the frequency range of 9000-500 cm(sup -1) (1.1-20 micrometers), at a spectral resolution of 1 cm(sup -1).

  9. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  10. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    SciTech Connect

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-21

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  11. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-01

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  12. Differential scanning calorimetry and /sup 2/H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures

    SciTech Connect

    Morrow, M.R.; Davis, J.H.

    1988-03-22

    The extents of two-phase coexistence in the phase diagrams of mixtures of gramicidin with 1,2-bis(perdeuteriopalmitoyl)-sn-glycero-3-phosphocholine (DPPC-d62) and with 1,2-bis(perdeuteriomyristoyl)-sn-glycero-3-phosphocholine (DMPC-d54) mixtures have been explored with differential scanning calorimetry (DSC) and deuterium nuclear magnetic resonance (/sup 2/H NMR). For both systems, increased gramicidin content causes a decrease in transition enthalpy and a broadening of the peak in excess heat capacity at the transition. In DMPC-d54-based mixtures, the broadening is roughly symmetric about the pure lipid transition temperature. Addition of gramicidin to DPPC-d62 extends the excess heat capacity peak on the low-temperature side, resulting in a slightly asymmetric scan. Deuterium NMR spectra showing a superposition of gel and liquid-crystalline components, observed for both mixtures, indicate the presence of two-phase coexistence. For the DPPC-d62-based mixtures, two-phase coexistence is restricted to an approximately 2 degrees C temperature range below the pure transition temperature. For DMPC-d54-based mixtures, the region of two-phase coexistence is even narrower. For both mixtures, beyond a gramicidin mole fraction of 2%, distinct gel and liquid-crystal contributions to the spectra cannot be distinguished. Along with the broad featureless nature of the DSC scan in this region, this is taken to indicate that the transition has been replaced by a continuous phase change. These results are consistent with the existence of a closed two-phase region having a critical concentration of gramicidin below 2 mol%.

  13. Selective photochemistry at stereogenic metal and ligand centers of cis-[Ru(diphosphine)2(H)2]: preparative, NMR, solid state, and laser flash studies.

    PubMed

    Câmpian, Marius V; Perutz, Robin N; Procacci, Barbara; Thatcher, Robert J; Torres, Olga; Whitwood, Adrian C

    2012-02-22

    Three ruthenium complexes Λ-[cis-Ru((R,R)-Me-BPE)(2)(H)(2)] Λ-R,R-Ru1H(2), Δ-[cis-Ru((S,S)-Me-DuPHOS)(2)(H)(2)] Δ-S,S-Ru2H(2), and Λ-[cis-Ru((R,R)-Me-DuPHOS)(2)(H)(2)] Λ-R,R-Ru2H(2) (1 = (Me-BPE)(2), 2 = (Me-DuPHOS)(2)) were characterized by multinuclear NMR and CD spectroscopy in solution and by X-ray crystallography. The chiral ligands allow the full control of stereochemistry and enable mechanistic studies not otherwise available. Oxidative addition of E-H bonds (E = H, B, Si, C) was studied by steady state and laser flash photolysis in the presence of substrates. Steady state photolysis shows formation of single products with one stereoisomer. Solid state structures and circular dichroism spectra reveal a change in configuration at ruthenium for some Δ-S,S-Ru2H(2)/Λ-R,R-Ru2H(2) photoproducts from Λ to Δ (or vice versa) while the configuration for Λ-R,R-Ru1H(2) products remains unchanged as Λ. The X-ray structure of silyl hydride photoproducts suggests a residual H(1)···Si(1) interaction for Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(Et(2)SiH)(H)] and Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(PhSiH(2))(H)] but not for their Ru(R,R-BPE)(2) analogues. Molecular structures were also determined for Λ-[cis-Ru((R,R)-Me-BPE)(2)(Bpin)(H)], Λ-[Ru((S,S)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], Δ-[Ru((R,R)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], and trans-[Ru((R,R)-Me-DuPHOS)(2)(C(6)F(5))(H)]. In situ laser photolysis in the presence of p-H(2) generates hyperpolarized NMR spectra because of magnetically inequivalent hydrides; these experiments and low temperature photolysis with D(2) reveal that the loss of hydride ligands is concerted. The reaction intermediates [Ru(DuPHOS)(2)] and [Ru(BPE)(2)] were detected by laser flash photolysis and have spectra consistent with approximate square-planar Ru(0) structures. The rates of their reactions with H(2), D(2), HBpin, and PhSiH(3) were measured by transient kinetics. Rate constants are significantly faster for [Ru(BPE)(2)] than for [Ru(DuPHOS)(2

  14. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species.

  15. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    SciTech Connect

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-09-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H/sub 2/O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in /sup 2/H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D/sub 2/O was used instead of H/sub 2/O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles.

  16. Interaction of antiaggregant molecule ajoene with membranes. An ESR and 1H, 2H, 31P-NMR study.

    PubMed

    Debouzy, J C; Neumann, J M; Hervé, M; Daveloose, D; Viret, J; Apitz-Castro, R

    1989-01-01

    The structure of ajoene, a molecule extracted from garlic, has been studied by 1H-NMR and its interaction with model membranes by 1H-, 2H-, 31-P-NMR and ESR experiments. This study clearly shows that the ajoene molecule is located deep in the layer and is close to the interlayer medium. Moreover while NMR experiments show that the membrane structure is only slightly affected by the presence of ajoene, ESR experiments reveal significant modifications in phospholipid dynamics. This interaction, observed before with the phenothiazine derivative, promazine, results in an increase of the membrane fluidity in its hydrophobic part and could be related to clinical properties of ajoene.

  17. 2H NMR study of phase transition and hydrogen dynamics in hydrogen bonded organic antiferroelectric 55DMBP-H2ca

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo; Hara, Masamichi; Fujimori, Hiroki; Hagiwara, Shoko

    2016-12-01

    Hydrogen dynamics in one-dimensional hydrogen bonded organic antiferroelectric, co-crystal of 5,5'-dimethyl-2,2'-bipyridine (55DMBP) and chloranilic acid (H2ca), was investigated by use of 2H high resolution solid-state NMR. The two types of hydrogen bonds O-H …N and N+-H … O - in the antiferroelectric phase were clearly observed as the splitting of the side band of the 2H MAS NMR spectra of the acid-proton deuterated compound 55DMBP-D 2ca. The temperature dependence of the spin-lattice relaxation time was measured of the N+-H and O-H deuterons, respectively. It was suggested that the motion of the O-H deuteron is already in the antiferroelectric phase in the fast-motion regime in the NMR time scale, while that of the N+-H deuteron is a slow motion. In the high-temperature paraelectric phase, the both deuterons become equivalent and the fast motion of the deuterons in the NMR time scale is taking place with the activation energy of 7.9 kJ mol-1.

  18. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study.

    PubMed Central

    Pott, T; Maillet, J C; Dufourc, E J

    1995-01-01

    The effect of pH and cholesterol on the dimyristoylphosphatidic acid (DMPA) model membrane system has been investigated by solid state 2H- and 31P-NMR. It has been shown that each of the three protonation states of the DMPA molecule corresponds to a 31P-NMR powder pattern with characteristic delta sigma values; this implies additionally that the proton exchange on the membrane surface is slow on the NMR time scale (millisecond range). Under these conditions, the 2H-labeled lipid chains sense only one magnetic environment, indicating that the three spectra detected by 31P-NMR are related to charge-dependent local dynamics or orientations of the phosphate headgroup or both. Chain ordering in the fluid phase is also found to depend weakly on the charge at the interface. In addition, it has also been found that the first pK of the DMPA membrane is modified by changes in the lipid lateral packing (gel or fluid phases or in the presence of cholesterol) in contrast to the second pK. The incorporation of 30 mol% cholesterol affects the phosphatidic acid bilayer in a way similar to what has been reported for phosphatidylcholine/cholesterol membranes, but to an extent comparable to 10-20 mol % sterol in phosphatidylcholines. However, the orientation and molecular order parameter of cholesterol in DMPA are similar to those found in dimyristoylphosphatidylcholine. PMID:8580333

  19. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  20. Detection of Anisotropy in Cartilage Using 2H Double-Quantum-Filtered NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharf, Y.; Eliav, U.; Shinar, H.; Navon, G.

    Double-quantum-filtered (DQF) NMR spectroscopy of I = 1 spin systems is a diagnostic tool for the detection of anisotropy in macroscopically disordered systems. For deuterium, this method reveals the presence of a residual quadrupolar interaction for D 2O in bovine nasal cartilage. This tissue is not macroscopically ordered and the quadrupolar splitting is not resolved. Fitting the calculated spectral lineshapes to the experimental results was possible only when a distribution of the residual quadrupolar interaction, omega(q), was assumed. The series of DQF lineshapes obtained for different creation times in the DQF experiment could be fitted using a single set of three parameters: the average residual quadrupolar interaction overlineω q/2π = 110 Hz, its standard deviation Δω q/2π = 73 Hz, and the transverse relaxation rate of 63 s -1. Separate deuterium DQF measurements for the constituents of the cartilage, collagen, and chondroitin sulfate indicated that the DQF spectra of cartilage are the result of anisotropic motion of D 2O due to binding to the fibrous collagen in the tissue.

  1. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  2. Rotational jumps of the tyrosine side chain in crystalline enkephalin. /sup 2/H NMR line shapes for aromatic ring motion in solids

    SciTech Connect

    Rice, D.N.; Wittebort, R.J.; Griffin, R.G.; Meirovitch, E.; Stimson, E.R.; Meinwald, Y.C.; Freed, J.H.; Scheraga, H.A.

    1981-12-30

    Deuterium NMR spectra of polycrystalline (tyrosine-3,5-/sup 2/H/sub 2/)(Leu/sup 5/)enkephalin show that the aromatic tyrosyl ring of this pentapeptide is executing 180/sup 0/ flips about the C/sup ..beta../-C/sup ..gamma../ axis in the solid state. Specifically, the axially symmetric powder pattern observed at low temperature collapses to an axially asymmetric pattern with eta approx. = 0.6 at high temperature. Computer simulation of the NMR line shapes, which account for spectral distortions induced by the quadrupole echo technique, indicate that at room temperature the flipping rate is approximately 5 x 10/sup 4/ s/sup -1/ and that it increases to about 10/sup 6/ s/sup -1/ at 101 /sup 0/C.

  3. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  4. Short hydrogen bonds in salts of dicarboxylic acids; structural correlations from solid-state 13C and 2H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalsbeek, Nicoline; Schaumburg, Kjeld; Larsen, Sine

    1993-10-01

    Solid-state 13C and 2H NMR spectra are found to very suitable for characterizing the short Osbnd H...O hydrogen bonds observed in acid salts of dicarboxylic acids. The majority of the investigated compounds are acid salts of malonic, succinic and tartaric acid with monovalent cations derived from alkali metals and small aliphatic amines. They include systems with symmetric and asymmetric hydrogen bonds. Accurate structural information about their geometry is available from low-temperature X-ray diffraction data. The 13C chemical shifts of the C atoms in the different carboxy groups display a linear variation with the absolute difference between the two Csbnd O bond lengths. Theoretical ab initio calculations for model systems showed that the nuclear quadrupole coupling constant NQCC for 2H increases with increasing asymmetry of the hydrogen-bonded system. NQCC values for 2H in the short symmetric hydrogen-bonded systems are in the range 53-59 kHz compared with the larger values of up to 166kHz found in systems with longer asymmetric hydrogen bonds. The 2H NQCC values display a perfect linear dependence on the asymmetry of the hydrogen bond. 2H NQCC decreases with decreasing temperature in the symmetric hydrogen bonds showing that the corresponding potential has a single well.

  5. Deuterium NMR of Val1. (2-2H)Ala3. gramicidin A in oriented DMPC bilayers

    SciTech Connect

    Hing, A.W.; Adams, S.P.; Silbert, D.F.; Norberg, R.E. )

    1990-05-01

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study.

  6. Orientational order, molecular organization, and dynamics in mixtures of bent-core and rod-shaped mesogens: a 2H NMR study.

    PubMed

    Calucci, Lucia; Fodor-Csorba, Katalin; Forte, Claudia; Geppi, Marco

    2011-01-27

    Mixtures of a bent-core mesogen (ClPbis10BB) and a calamitic mesogen (6OO8), showing a nematic phase over the entire compositional range and one or two smectic phases (namely, SmA, SmC, or SmC(A)) below the nematic one over a wide concentration range, were investigated by means of (2)H NMR spectroscopy, exploiting selectively deuterated isotopomers of both mesogens. The analysis of (2)H NMR spectra recorded in the liquid crystalline phases on several representative mixtures gave information on the orientational order properties and the molecular organization within the phases as well as on the alignment properties upon application of a magnetic field. On the other hand, the analysis of (2)H longitudinal relaxation times (T(1Z) and T(1Q)) in 6OO8-d(2)/ClPbis10BB mixtures and pure 6OO8-d(2) allowed the influence of the bent-core mesogen on the dynamics of the calamitic one to be highlighted.

  7. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.

    PubMed

    Mack, J W; Usha, M G; Long, J; Griffin, R G; Wittebort, R J

    2000-01-01

    We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.

  8. /sup 2/H-NMR studies of hypocotyl cell walls of germinating beams supplied with perdeuterated myo-inositol

    SciTech Connect

    Sasaki, K.; Wallace, J.C.; MacKay, A.L.; Balza, F.; Taylor, I.E.P.

    1987-04-01

    When myo-(2-/sup 3/H) inositol (MI) was supplied to bean seeds by imbibition, only uronic acid, arabinose and xylose residues of cell wall polysaccharides were labeled. To study the structural mobility of the uronic acid- and/or pentose-rich polysaccharides in cell wall using /sup 2/H-NMR, the authors supplied perdeuterated MI with (2-/sup 3/H) MI to germinating bean seeds. Perdeuterated MI was prepared by the /sup 1/H-/sup 2/H exchange reaction of MI in deuterium oxide with Raney nickel. During the exchange reaction, extensive epimerization occurred and at least 6 inositol epimers in addition to MI were identified in the reaction mixture of GC/MS. The perdeuterated MI was completely resolved from other inositol epimers and purified by anion-exchange chromatography using Dowex 1 (borate form) and by crystallization. The /sup 2/H-NMR analysis resolved the /sup 2/H-labeled hypocotyl cell walls into two components (rigid and mobile components). They also report the distribution of /sup 2/H and /sup 3/H from perdeuterated and (2-/sup 3/H) MI in the cell wall sugar residues.

  9. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  10. 13C NMR spectra of pyridine chalcone analogs

    NASA Astrophysics Data System (ADS)

    Jovanović, B. Ž.; Mišić-Vuković, M.; Marinković, A. D.; Csanádi, J.

    1999-05-01

    13C NMR spectra of two series of pyridine chalcone analogs were determined in deuterated dimethylsulphoxide (DMSO-d 6). It was established that these compounds were in more stable E-configurations except for the 4-pyridalacetophenone which was in Z-configuration. On the basis of the Hammett correlations of 13C NMR chemical shifts of the ethylenic bond carbon atoms and the σ values for the pyridine "aza" groups, the polarization of ethylenic bonds were discussed. It was established that the opposite effect of the pyridine substituents at the electronic density distribution in pyridalacetophenone and cinnamoylpyridines depends on its direct bonding to the ethylenic carbon or the transmission electronic effects via the carbonyl group, respectively.

  11. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR.

    PubMed

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining

    2016-06-18

    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions. PMID:27181834

  12. sup 2 H NMR study of molecular dynamics and organization in the system C sub 12 E sub 4 -water

    SciTech Connect

    Henriksson, U. ); Jonstroemer, M.; Olsson, U.; Soederman, O. ); Klose, G. )

    1991-05-02

    A sample containing 20 wt % of the nonionic surfactant tetraethylene glycol dodecyl ether (C{sub 12}E{sub 4}), specifically deuterated in the {alpha}-position, was investigated with {sup 2}H NMR relaxation in H{sub 2}O. From the frequency dependence of the longitudinal relaxation rate in the Larmor frequency range 2-55 MHz, it was concluded that the solution contains rodlike micelles. A slow motion in the microsecond time scale, as determined from the transverse relaxation rate, was interpreted taking the flexibility of the rodlike micelles explicitly into account.

  13. 2H NMR study of 2D melting and dynamic behaviour of CDCl3 confined in ACF nanospace.

    PubMed

    Ueda, Takahiro; Omichi, Hiroaki; Chen, Yu; Kobayashi, Hirokazu; Kubota, Osamu; Miyakubo, Keisuke; Eguchi, Taro

    2010-08-28

    Two-dimensional melting of trichloromethane (chloroform) confined in activated carbon fibre was investigated using differential thermal analysis and (2)H NMR techniques. Differential thermal analysis revealed a thermal anomaly with an endothermic peak at 269 K, which was distributed from 250 K to 287 K on the heating direction. This anomaly was also observed upon cooling at the same temperature. Furthermore, (2)H NMR revealed that slow motion such as molecular hopping and/or diffusion of CDCl(3) in ACF affected the spectral line width. The temperature dependence (Arrhenius plot) of the spectral line width showed an inflection point at 227 K. The activation energy of molecular motion of CDCl(3) in ACF was 4 kJ mol(-1) at temperatures greater than 227 K and 7.7 kJ mol(-1) at temperatures less than 227 K. Reduction of the activation energy suggests that the average intermolecular distance between CDCl(3) molecules enlarges above the inflection point. The difference of activation energy (3.7 kJ mol(-1)) is close to the enthalpy of fusion in typical plastic crystals. These results reveal that the thermal anomaly and the transition of dynamic process correspond respectively to melting of CHCl(3) in ACF and the pre-melting phenomenon.

  14. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two.

  15. Metabolism of excess methionine in the liver of intact rat: an in vivo /sup 2/H NMR study

    SciTech Connect

    London, R.E.; Gabel, S.A.; Funk, A.

    1987-11-03

    L-Methionine is the most toxic amino acid if supplied in excess, and the metabolic basis for this toxicity has been extensively studied, with varying conclusions. It is demonstrated here that in vivo /sup 2/H NMR spectroscopy provides a useful approach to the study of the hepatic metabolism of methionine in the anesthetized rat. Resonances corresponding to administered L-(methyl-/sup 2/H/sub 3/)methionine, and to the transmethylation product sarcosine, are observed during the first 10-min period after an intravenous injection of the labeled methionine, and the time dependence has been followed for a period of 5 h. A third resonance, assigned to the N-trimethyl groups of carnitine, phosphorylcholine, and other metabolites, becomes observable several hours after administration of the deuteriated methionine. In addition, there is a small increase in the intensity of the HDO resonance over the period of the study, which is interpreted to reflect the ultimate oxidation of the labeled sarcosine methyl group via mitochondrial sarcosine dehydrogenase. Additional small /sup 2/H resonances assigned to N/sup 1/-methylhistidine and creatine could be observed in perchloric acid extracts of the livers of rats treated with the deuteriated methionine. Inhibition of the flux through the transmethylation pathway is observed in the rat pretreated with the S-ethyl analogue of methionine, ethionine. These data provide strong support for the importance of glycine transmethylation in the catabolism of excess methionine.

  16. Single-crystal XRD and solid-state NMR structural resolution of a layered fluorinated gallium phosphate: RbGa3(PO4)(2)(HPO4)F4·C5N2H16·2H2O (MIL-145).

    PubMed

    Martineau, Charlotte; Loiseau, Thierry; Beitone, Lionel; Férey, Gérard; Bouchevreau, Boris; Taulelle, Francis

    2013-01-14

    A new two-dimensional fluorinated gallium phosphate RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O (MIL-145) has been hydrothermally synthesized (180 °C for 36 h) in the presence of 1,5-diaminopentane and rubidium fluoride. Its structural model has been determined by means of single-crystal X-ray diffraction analysis. The structure contains corrugated infinite ribbons of GaO(3)F(3) and GaO(4)F(2) octahedra linked through edge- and corner-sharing mode via fluoride anions. These chains are then connected to each other via phosphate groups to create a layered network delimiting 6-ring channels trapping rubidium cations. The inorganic sheets are intercalated by diprotonated 1,5-diaminopentane and water molecules, ensuring the three-dimensional cohesion via hydrogen bond scheme. (1)H, (13)C, (15)N and (87)Rb solid-state NMR spectra show the presence of two inequivalent amines as well as two Rb cations, confirming the choice of the space group, which was ambiguous from the diffraction data. (71)Ga NMR spectra, acquired at several magnetic fields, contain two different sets of Ga signals, corresponding to the two types of gallium environments in the structure. One-dimensional (19)F and (31)P and (19)F-(31)P two-dimensional NMR experiments have been recorded, which are in full agreement with the proposed structural model. Finally, possible assignments of the (19)F and (31)P resonances to the crystallographic sites in RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O have been determined by comparing adjacency matrices build-up from 2D NMR correlation spectra and from the structural data. PMID:23069866

  17. Separation and complete analyses of the overlapped and unresolved 1H NMR spectra of enantiomers by spin selected correlation experiments.

    PubMed

    Prabhu, Uday Ramesh; Baishya, Bikash; Suryaprakash, N

    2008-06-26

    NMR spectroscopic discrimination of optical enantiomers is most often carried out using (2)H and (13)C spectra of chiral molecules aligned in a chiral liquid crystalline solvent. The use of proton NMR for such a purpose is severely hindered due to the spectral complexity and the significant loss of resolution arising from numerous short- and long-distance couplings and the indistinguishable overlap of spectra from both R and S enantiomers. The determination of all the spectral parameters by the analyses of such intricate NMR spectra poses challenges, such as, unraveling of the resonances for each enantiomer, spectral resolution, and simplification of the multiplet pattern. The present study exploits the spin state selection achieved by the two-dimensional (1)H NMR correlation of selectively excited isolated coupled spins (Soft-COSY) of the molecules to overcome these problems. The experiment provides the relative signs and magnitudes of all of the proton-proton couplings, which are otherwise not possible to determine from the broad and featureless one-dimensional (1)H spectra. The utilization of the method for quantification of enantiomeric excess has been demonstrated. The studies on different chiral molecules, each having a chiral center, whose spectral complexity increases with the increasing number of interacting spins, and the advantages and limitations of the method over SERF and DQ-SERF experiments have been reported in this work.

  18. 1H and 2H NMR studies of water in work-free wheat flour doughs.

    PubMed

    d'Avignon, D A; Hung, C C; Pagel, M T; Hart, B; Bretthorst, G L; Ackerman, J J

    1991-01-01

    Proton and deuterium NMR relaxation methods were used to characterize water compartmentalization and hydration in work-free wheat flour doughs. Transverse (spin-spin) relaxation measurements define three motionally unique water compartments in the work-free dough preparations. The apparent occupancy fraction and relative mobility of each water domain are found to be functions of moisture content, temperature, and flour type. Additionally, the number of relaxation-resolved water compartments and their characteristic relaxation rate constants are found to depend critically on both moisture content and the interpulse-delay employed for the multi-pulse relaxation experiments. Under controlled experimental conditions, dynamics between the three water compartments can be observed to be consistent with the onset of flour hydration. The most notable observation during the initial period of hydration is a loss of "free" or "loosely bound" water to environments characterized by less mobility. Freezing studies show that hard wheat doughs have slightly less amorphous, non-freezable water than do soft wheat flour doughs prepared under similar conditions. PMID:1746346

  19. Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by (2)H NMR spectroscopy and molecular dynamics simulation.

    PubMed

    Vogel, Alexander; Scheidt, Holger A; Baek, Dong Jae; Bittman, Robert; Huster, Daniel

    2016-02-01

    Cholesterol is an evolutionarily highly optimized molecule particularly known for its ability to condense the phospholipids in cellular membranes. Until recently, the accompanying increase in the chain order of the surrounding phospholipids was attributed to the planar and rigid tetracyclic ring structure of cholesterol. However, detailed investigations of cholesterol's aliphatic side chain demonstrated that this side chain is responsible for approximately half of the condensation effect. Therefore, we investigated the structure and dynamics of the aliphatic side chain of cholesterol using (2)H solid-state nuclear magnetic resonance (NMR) spectroscopy and microsecond timescale all-atom molecular dynamics (MD) simulations in four different model membranes: POPC, DPPC, PSM, and POPC/PSM (1 : 1 mol/mol) and at three different temperatures: 5 °C, 37 °C, and 50 °C. A cholesterol variant, in which 11 hydrogens of the aliphatic side chain were exchanged for deuterium, was used and the respective (2)H NMR spectra confirmed the axially asymmetric rotational diffusion of cholesterol in DPPC and PSM. Furthermore, NMR spectra indicated that some hydrogens showed an unexpected magnetic inequivalency. This finding was confirmed by all-atom molecular dynamics simulations and detailed analysis revealed that the hydrogens of the methylene groups at C22, C23, and C24 are magnetically inequivalent. This inequivalency is caused by steric clashes of the aliphatic side chain with the ring structure of cholesterol as well as the branched C21 methyl group. These excluded volume effects result in reduced conformational flexibility of the aliphatic side chain of cholesterol and explain its high order (order parameter of 0.78 for chain motions) and large contribution to the condensation effect. Additionally, the motional pattern of the side chain becomes highly anisotropic such that it shows larger fluctuations perpendicular to the ring plane of cholesterol with a biaxiality of the

  20. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    -state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.

  1. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  2. Fluxionality and Isomerism of the Bis(dihydrogen) Complex RuH(2)(H(2))(2)(PCy(3))(2): INS, NMR, and Theoretical Studies.

    PubMed

    Rodriguez, Venancio; Sabo-Etienne, Sylviane; Chaudret, Bruno; Thoburn, John; Ulrich, Stefan; Limbach, Hans-Heinrich; Eckert, Juergen; Barthelat, Jean-Claude; Hussein, Khansaa; Marsden, Colin J.

    1998-07-13

    To study the fluxionality of the bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1), NMR spectra were recorded in Freons (mixture of CDCl(3), CDFCl(2), and CDF(2)Cl). 1 was found to remain fluxional at all temperatures, but the presence of CDCl(3) necessary for its solubilization induces its transformation into, first, RuHCl(H(2))(2)(PCy(3))(2) (3) and the new ruthenium(IV) dihydride RuH(2)Cl(2)(PCy(3))(2) (4). 4 is produced selectively in pure CDCl(3) but reacts further to give a mixture of chloro complexes. 4 was isolated from the reaction of 1 with aqueous HCl in Et(2)O and shows a fluxional process attributed to the interconversion between two symmetrical isomers. The activation parameters of this process were obtained by (1)H NMR line shape analysis, as well as those corresponding to the exchange between 3 and free dihydrogen. The fluxionality of the dihydrogen-hydride system is also evident at a much faster time scale than that of NMR studies in the inelastic neutron scattering observations of the rotation of the dihydrogen ligands. The geometries and relative energies of several isomers of complexes 1, 3, and 4 were studied using density functional theory (DFT) and MP2 methods, together with a few coupled-cluster (CCSD(T)) calculations. In contrast to what might have been expected, the two hydrides and the two H(2) units of 1 lie in the same plane, due to the attractive "cis effect" created by the hydrides. The two H(2) ligands adopt cis positions in the lowest-energy isomer. Rotation of the two dihydrogen ligands has been analyzed using DFT calculations. A slight preference for a C(2) conrotatory pathway has been found with a calculated barrier in good agreement with the experimental INS value. Two low-energy isomers of 4 have been characterized computationally, both of which have C(2)(v)() symmetry, consistent with the solution NMR spectra. PMID:11670430

  3. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  4. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  5. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  6. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects.

    PubMed

    Brumm, T; Möps, A; Dolainsky, C; Brückner, S; Bayerl, T M

    1992-04-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with (2)H-, (31)P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze-etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit (31)P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature.The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as (31)P-and (2)H-NMR lineshapes and relaxation times as well as (2)H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied.

  7. Total lineshape analysis of high-resolution NMR spectra powered by simulated annealing

    NASA Astrophysics Data System (ADS)

    Cheshkov, D. A.; Sinitsyn, D. O.; Sheberstov, K. F.; Chertkov, V. A.

    2016-11-01

    The novel algorithm for a total lineshape analysis of high-resolution NMR spectra has been developed. A global optimization by simulated annealing has been applied that has allowed to overcome the main trouble of common approaches which had frequently returned solutions for local minima rather than for global ones. The algorithm has been verified for the four-spin test systems ABCD, and has been successfully used for analysis of experimental NMR spectra of proline. The approach has allowed to avoid a sophisticated manual setup of initial parameters and to conduct the analysis of complicated high-resolution NMR spectra nearly automatically.

  8. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  9. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  10. The acquisition of multidimensional NMR spectra within a single scan

    PubMed Central

    Frydman, Lucio; Scherf, Tali; Lupulescu, Adonis

    2002-01-01

    A scheme enabling the complete sampling of multidimensional NMR domains within a single continuous acquisition is introduced and exemplified. Provided that an analyte's signal is sufficiently strong, the acquisition time of multidimensional NMR experiments can thus be shortened by orders of magnitude. This could enable the characterization of transient events such as proteins folding, 2D NMR experiments on samples being chromatographed, bring the duration of higher dimensional experiments (e.g., 4D NMR) into the lifetime of most proteins under physiological conditions, and facilitate the incorporation of spectroscopic 2D sequences into in vivo imaging investigations. The protocol is compatible with existing multidimensional pulse sequences and can be implemented by using conventional hardware; its performance is exemplified here with a variety of homonuclear 2D NMR acquisitions. PMID:12461169

  11. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: An 2H-NMR study

    SciTech Connect

    Zidovetzki, R.; Atiya, A.W.; De Boeck, H. )

    1989-01-01

    The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.

  12. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  13. Pulse Electron Double Resonance Detected Multinuclear NMR Spectra of Distant and Low Sensitivity Nuclei and Its Application to the Structure of Mn(II) Centers in Organisms.

    PubMed

    Bruch, Eduardo M; Warner, Melissa T; Thomine, Sébastien; Tabares, Leandro C; Un, Sun

    2015-10-29

    The ability to characterize the structure of metal centers beyond their primary ligands is important to understanding their chemistry. High-magnetic-field pulsed electron double resonance detected NMR (ELDOR-NMR) is shown to be a very sensitive approach to measuring the multinuclear NMR spectra of the nuclei surrounding Mn(II) ions. Resolved spectra of intact organisms with resonances arising from (55)Mn, (31)P, (1)H, (39)K, (35)Cl, (23)Na, and (14)N nuclei surrounding Mn(2+) centers were obtained. Naturally abundant cellular (13)C could be routinely measured as well. The amplitudes of the (14)N and (2)H ELDOR-NMR spectra were found to be linearly dependent on the number of nuclei in the ligand sphere. The evolution of the Mn(II) ELDOR-NMR spectra as a function of excitation time was found to be best described by a saturation phenomenon rather than a coherently driven process. Mn(II) ELDOR-NMR revealed details about not only the immediate ligands to the Mn(II) ions but also more distant nuclei, providing a view of their extended structures. This will be important for understanding the speciation and chemistry of the manganese complexes as well as other metals found in organisms.

  14. Quantification of in vivo ³¹P NMR brain spectra using LCModel.

    PubMed

    Deelchand, Dinesh Kumar; Nguyen, Tra-My; Zhu, Xiao-Hong; Mochel, Fanny; Henry, Pierre-Gilles

    2015-06-01

    Quantification of (31)P NMR spectra is commonly performed using line-fitting techniques with prior knowledge. Currently available time- and frequency-domain analysis software includes AMARES (in jMRUI) and CFIT respectively. Another popular frequency-domain approach is LCModel, which has been successfully used to fit both (1)H and (13)C in vivo NMR spectra. To the best of our knowledge LCModel has not been used to fit (31)P spectra. This study demonstrates the feasibility of using LCModel to quantify in vivo (31)P MR spectra, provided that adequate prior knowledge and LCModel control parameters are used. Both single-voxel and MRSI data are presented, and similar results are obtained with LCModel and with AMARES. This provides a new method for automated, operator-independent analysis of (31)P NMR spectra. PMID:25871439

  15. High-resolution 2D NMR spectra in inhomogeneous fields via 3D acquisition

    NASA Astrophysics Data System (ADS)

    Lin, Yanqin; Wei, Zhiliang; Zhang, Liandi; Lin, Liangjie; Chen, Zhong

    2014-04-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical studies. Here, a pulse sequence, based on coherence transfer module of tracking differences of precession frequencies of two spins and spin echo module, is proposed to obtain two dimension (2D) high-resolution NMR spectra via 3D acquisition under large field inhomogeneity. The proposed scheme composes of simple hard pulses and rectangle gradients. Resulting 2D spectra exhibit chemical shift differences and J coupling splittings in two orthogonal dimensions. The method developed here may offer a promising way for in situ high-resolution NMR studies on combinatorial chemistry.

  16. Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin.

    PubMed

    Jubert, Alicia H; Alegre, María L; Diez, Reinaldo Pis; Pomilio, Alicia B; Szewczuk, Víctor D

    2007-04-01

    NMR, infrared and Raman vibrational spectra of alpha-cypermethrin have been measured at room temperature. Infrared spectra were also recorded to low temperature. The spectra were analyzed by means of ab initio calculations. The conformational space of both enantiomers and some rotamers A, B and C of alpha-cypermethrin has been scanned using molecular dynamics and complemented with functional density calculations that optimize the geometry of the lowest-energy conformers of each species as obtained in the simulations. The vibrational frequencies and the 1H and 13C NMR chemical shifts were assigned using functional density calculations. The molecular electrostatic potential maps were obtained and analyzed.

  17. Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin

    NASA Astrophysics Data System (ADS)

    Jubert, Alicia H.; Alegre, María L.; Diez, Reinaldo Pis; Pomilio, Alicia B.; Szewczuk, Víctor D.

    2007-04-01

    NMR, infrared and Raman vibrational spectra of alpha-cypermethrin have been measured at room temperature. Infrared spectra were also recorded to low temperature. The spectra were analyzed by means of ab initio calculations. The conformational space of both enantiomers and some rotamers A, B and C of alpha-cypermethrin has been scanned using molecular dynamics and complemented with functional density calculations that optimize the geometry of the lowest-energy conformers of each species as obtained in the simulations. The vibrational frequencies and the 1H and 13C NMR chemical shifts were assigned using functional density calculations. The molecular electrostatic potential maps were obtained and analyzed.

  18. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  19. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  20. Rototranslational absorption spectra of H/sub 2/-H/sub 2/ pairs in the far infrared

    SciTech Connect

    Meyer, W.; Frommhold, L.; Birnbaum, G.

    1989-03-01

    For the computation of the induced dipole moments, the collisional H/sub 2/-H/sub 2/ complex is treated as a molecule in the self-consistent field and size-consistent, coupled electron pair approximations. The basis set accounts for 95% of the correlation energies and separates correctly at distant range. The average of the induced dipole components is obtained for the case of both H/sub 2/ molecules in the vibrational groundstate (v = v' = 0) and recast in a simple but accurate analytical form. The analytical dipole expression is used for computations of the spectral moments (sum rules) and line shapes of the collision-induced rototranslational absorption spectra of molecular hydrogen in the far infrared, over a range of frequencies from 0 to 2200 cm/sup -1/, and for temperatures from 77 to 300 K, using a quantum formalism. Proven isotropic potential models are input. Numerical consistency of the line-shape calculations with the sum rules is observed at the 1% level. The comparison of the computational results with the available measurements shows agreement within the estimated uncertainties of the measurements of typically better than 10%. This fact suggests that the theory is capable of predicting these spectra reliably at temperatures for which no measurements exist.

  1. Orientational ordering of a banana-shaped solute molecule in a nematic calamitic solvent by {sup 2}H-NMR spectroscopy: An indication of glasslike behavior

    SciTech Connect

    Cinacchi, Giorgio; Domenici, Valentina

    2006-09-15

    The Saupe ordering matrix of a banana-shaped mesogenic molecule as a solute in a common nematic calamitic solvent has been determined by {sup 2}H-NMR spectroscopy as a function of temperature. The temperature dependence of the Saupe ordering matrix element associated with the principal molecular axis is consistent with a glassy behavior in the reorientational motion of this particular solute molecule. The Haller expression, appropriately modified, provides a good fit to the experimental data.

  2. Computer aided evaluation of two-dimensional NMR spectra of proteins.

    PubMed

    Neidig, K P; Bodenmueller, H; Kalbitzer, H R

    1984-12-28

    A computer program for the automatic evaluation of two-dimensional NMR spectra of peptides and proteins has been developed. The used strategy is described, the advantages and limits of this approach are discussed. The program was successfully tested on a COSY-spectrum of the neuropeptide Glp-Pro-Pro-Gly-Gly-Ser-Lys-Val-Ile-Leu-Phe from hydra, resulting in a drastic reduction of the time needed for the evaluation of two-dimensional NMR data.

  3. 17O NMR and Raman spectra of water with different calcium salts

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Ou, Xiao-xia; Zhang, Hui-ping

    2014-09-01

    17O NMR and Raman spectra of water with different calcium salts have been measured. Different water samples were prepared by adding nano-materials, calcium gluconate, calcium citrate and calcium chloride into distilled water. Both 17O NMR and Raman spectra of different water samples were recorded. The effects of temperature and time on 17O NMR line-width of different water samples were analyzed as well. The experimental results showed that Raman spectra of water with these four calcium salts were almost the same as those for distilled water when the temperature increased to 40 °C. The 17O NMR line-width of distilled water decreased from 76.8 Hz to 46.9 Hz and 65.8 Hz after nano-materials and calcium chloride were added, respectively. Besides, the 17O NMR line-width of distilled water increased from 76.8 Hz to 131.6 Hz after calcium citrate was added, while the 17O NMR line-width of distilled water increased from 76.8 Hz to 77.2 Hz after calcium gluconate was added. The 17O NMR line-width of water with calcium chloride increased while the other three water samples were nearly stable as the temperature increased from 30 °C to 85 °C. The 17O NMR line-width of water with nano-materials kept steady while the 17O NMR line-width of the other three water samples all increased in 42 days.

  4. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  5. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum.

  6. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  7. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.

    PubMed

    Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D

    2014-01-01

    Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.

  8. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  9. The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR

    PubMed Central

    Tian, Xiaoyu; Pavlopoulos, Spiro; Yang, De-Ping; Makriyannis, Alexandros

    2013-01-01

    Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using 2H solid state NMR, and the results are compared with our earlier work with delta-9-tetrahydrocannabinol (Δ9-THC). To study the effects of these ligands we used hydrated bilayers of dipalmitoylphosphatidylcholine (DPPC) deuterated at the 2′ and 16′ positions of both acyl chains with deuterium atoms serving as probes for the dynamic and phase changes at the membrane interface and at the bilayer center respectively. All three cannabinergic ligands lower the phospholipid membrane phase transition temperature, increase the lipid sn-2 chain order parameter at the membrane interface and decrease the order at the center of the bilayer. Our studies show that the cannabinoid ligands induce lateral phase separation in the lipid membrane at physiological temperatures. During the lipid membrane phase transition, the cooperative dynamic process whereby the C-2H segments at the interface and center of the bilayer spontaneously reach the fast exchange regime (2H NMR timescale) is distinctively modulated by the two cannabinoids. Specifically, CP55940 is slightly more efficient at inducing liquid crystalline-type 2H NMR spectral features at the membrane interface compared to WIN55212-2. In contrast, WIN55212-2 has a far superior ability to induce liquid crystalline-type spectral features at the center of the bilayer, and it increases the order parameter of the sn-1 chain in addition to the sn-2 chain of the lipids. These observations suggest the cannabinoid ligands may influence lipid membrane domain formations and there may be contributions to their cannabinergic activities through lipid membrane microdomain related mechanisms. Our work demonstrates that experimental design strategies utilizing specifically deuterium labeled lipids yield more detailed insights concerning the properties of lipid bilayers. PMID:21129361

  10. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  11. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  12. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  13. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins.

    PubMed

    Bermel, Wolfgang; Bruix, Marta; Felli, Isabella C; Kumar M V, Vasantha; Pierattelli, Roberta; Serrano, Soraya

    2013-03-01

    Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure-function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of (13)C(α), is proposed.

  14. A Newly Developed Fluorescence Model for C2H6 v5 and Application to Cometary Spectra Acquired with NIRSPEC at Keck II

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; A?Hearn, Michael F.

    2011-01-01

    Accurate rotational temperatures are essential for extracting production rates for parent volatiles in comets. Two strong bands of ethane (v7 at 2985.39/cm and v5 at 2895.67/cm) are seen in infrared cometary spectra, but the Q-branches of v7 are not resolved by current instruments and cannot provide an accurate rotational temperature with current models.We developed a fluorescence model for the C2H6 v5 band that can be used to derive a rotational temperature.We applied our C2H6 5 model to high-resolution infrared spectra of the comets C/2004 Q2 Machholz and C/2000 WM1 (LINEAR), acquired with the Near-infrared Echelle Spectrograph on the Keck II telescope. We demonstrate agreement among the rotational temperatures derived from C2H6 v5 and other species, and between mixing ratios derived from C2H6 v5 and C2H6 v7. As a symmetric hydrocarbon, C2H6 is observed only in the infrared, and it is now the fifth molecule (along with H2O, HCN, CO, and H2CO) for which we can derive a reliable rotational temperature from cometary infrared spectra.

  15. Structural, vibrational, electronic, NMR, NLO and reactivity analyses of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI) by ab initio HF and DFT calculations.

    PubMed

    Sridevi, C; Velraj, G

    2013-04-15

    This study represents the vibrational, electronic, NMR, NLO, reactivity and structural aspects of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI). A detailed interpretation of the FT-IR, FT-Raman, UV and NMR spectra were reported. Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. The most preferred Z isomer (cis-configuration) was confirmed through PES scan studies. The vibrational wavenumbers and potential energy distribution (PED) of various normal modes were calculated. The lower frontier orbital energy gap and high dipole moment of OPEDI illustrates the high reactivity. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. OPEDI exhibited good nonlinear optical activity and was 13 times greater than that of urea. Molecular electrostatic potential (MEP) was carried out for predicting the reactive sites. The NMR results indicated that the observed chemical shifts depend not only on the structure of the molecule being studied, but also on the solvent used.

  16. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  17. HyperBIRD: a sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra.

    PubMed

    Donovan, Kevin J; Frydman, Lucio

    2015-01-01

    Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low-γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like (1)H nuclei. Small- and intermediate-sized molecules, however, show strong heteronuclear cross-relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the (13)C-bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear-decoupled (1)H spectra in natural abundance samples based on heteronuclear couplings to these same, (13)C-bonded nuclei. This results in the HyperBIRD methodology; a single-shot combination of these two effects that can simultaneously simplify and resolve complex, congested (1)H NMR spectra with many overlapping spin multiplets, while achieving 50-100 times sensitivity enhancements over conventional thermal counterparts. PMID:25256418

  18. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    PubMed

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  19. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  20. Intelligent Automated Correction of Baseplane and Systematic Noise in Two-Dimensional NMR Spectra

    NASA Astrophysics Data System (ADS)

    Levy, G. C.; Jeong, G. W.; Yu, J. Q.; Wang, K.

    A computer program useful for 2D NMR data is described that provides automatic two-dimensional baseplane correction and subsequent tl and t2 ridge suppression. The algorithm per forms combined correction of smooth baseplane distortions and sharp ridges in 2D NMR spectra through five steps: (1) identification of resonance peaks and ridges, (2) extraction of initial, putative global baseplane, (3) window filtering of the corresponding time domain, (4) construction of a 2D spectrum free of baseplane distortion, and (5) suppression of ridges, The optimal parameters for baseplane and ridge correction are automatically decided by the program, yielding a greatly improved spectrum, together with more accurate spectral information.

  1. Rapid assignment of solution 31P NMR spectra of large proteins by solid-state spectroscopy.

    PubMed

    Iuga, Adriana; Spoerner, Michael; Ader, Christian; Brunner, Eike; Kalbitzer, Hans Robert

    2006-07-21

    The application of the (31)P NMR spectroscopy to large proteins or protein complexes in solution is hampered by a relatively low intrinsic sensitivity coupled with large line widths. Therefore, the assignment of the phosphorus signals by two-dimensional NMR methods in solution is often extremely time consuming. In contrast, the quality of solid-state NMR spectra is not dependent on the molecular mass and the solubility of the protein. For the complex of Ras with the GTP-analogue GppCH(2)p we show solid-state (31)P NMR methods to be more sensitive by almost one order of magnitude than liquid-state NMR. Thus, solid-state NMR seems to be the method of choice for obtaining the resonance assignment of the phosphorus signals of protein complexes in solution. Experiments on Ras.GDP complexes show that the microcrystalline sample can be substituted by a precipitate of the sample and that unexpectedly the two structural states observed earlier in solution are present in crystals as well.

  2. H2O and Cation Structure and Dynamics in Expandable Clays: 2H and 39K NMR Investigations of Hectorite

    SciTech Connect

    Bowers, Geoffrey M.; Bish, David L.; Kirkpatrick, Robert J.

    2008-04-24

    The dynamic behavior of H2O and ionic species in two- and three-dimensional confinement plays a variety of important roles in processes such as ion transport and adsorption, water storage in hostile environments, dissolution/precipitation reactions in aqueous environments, and the swelling of smectite clays (low charge 2:1 type phyllosilicates with expandable interlayers). Historically, the structure and dynamics of ions and water in confined spaces and at solid-fluid interfaces have been difficult to characterize on the molecular scale, but the continued evolution of molecular modeling, neutron scattering, and nuclear magnetic resonance (NMR) spectroscopy has permitted ever more detailed theoretical and experimental investigations, particularly regarding the special case of H2O in the two-dimensional, nanometer-scale interlayer space of phyllosilicates.

  3. Disentangling Complex Mixtures of Compounds with Near-Identical (1) H and (13) C NMR Spectra using Pure Shift NMR Spectroscopy.

    PubMed

    Castañar, Laura; Roldán, Raquel; Clapés, Pere; Virgili, Albert; Parella, Teodor

    2015-05-18

    The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the (13) C indirect dimension enables the distinction of similar compounds exhibiting near-identical (1) H and (13) C NMR spectra. It is shown that a complete set of extremely small Δδ((1) H) and Δδ((13) C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.

  4. Measurement of longitudinal relaxation times in crowded 1H NMR spectra using one- and two-dimensional maximum quantum (MAXY) NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Ye, Chaohui; Farrant, R. Duncan; Nicholson, Jeremy K.; Lindon, John C.

    Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH31H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.

  5. Interpreting C-13 NMR spectra of technical lignins based on ionization chemical shifts

    SciTech Connect

    Akim, L.G.; Fedulina, T.G.; Shevchenko, S.M.

    1996-10-01

    Newly developed technique of C-13 NMR spectroscopy of ionized lignins in aqueous alkali has been applied to analysis of the chemical structure of technical lignins. Ionization of phenolic and carboxylic hydroxyl groups has a strong effect on the electronic structure of lignin and leads to significant changes in C-13 NMR spectra of the polymer. Comparative analysis of the spectra of organosolv and alkali lignins in neutral organic and aqueous alkaline media based on the data obtained for lignin model compounds demonstrated the usefulness and scope of applicability of the method. This method was especially useful when applied to a highly degraded alkaline lignin, enhancing our ability to analyze the poorly resolved spectrum. A technique is developed that permits the user to analyze a lignin spectrum in an aqueous alkaline solution without the accompanying spectrum in an organic solution. The research described was made possible by Grant No. NWFOOO from the International Science Foundation.

  6. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  7. Sensitivity enhancement of MQMAS NMR spectra of spin 3/2 nuclei using hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Siegel, Renée; Nakashima, Thomas T.; Wasylishen, Roderick E.

    2005-02-01

    The use of hyperbolic secant (HS) pulses to enhance the intensity of the central transition in MQMAS experiments for spin 3/2 quadrupolar nuclei is investigated by examining 87Rb NMR spectra of a powder sample of RbNO 3. The application of HS pulses prior to the triple-quantum (3Q) excitation provides sensitivity enhancements in MQMAS spectra that are superior to those previously reported. For the conversion of 3Q to single-quantum (1Q) observables, the HS pulses have an efficiency similar to that reported for double frequency sweeps (DFS) but greater than that of the fast amplitude modulation (FAM) technique.

  8. Deuteron and triton magnetic moments from NMR spectra of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2015-08-01

    We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass effects and determine the magnetic moments of deuteron and triton using the known NMR spectra of HD and HT molecules. The results μd=0.857 438 234 6 (53 ) μN and μt=2.978 962 471 (10 ) μN are more accurate and in good agreement with the currently accepted values.

  9. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-01

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.

  10. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.

  11. Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining (2)H NMR Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Paz Ramos, Adrian; Lagüe, Patrick; Lamoureux, Guillaume; Lafleur, Michel

    2016-07-21

    Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is to determine how VLCFA structurally adapts in fluid phospholipid bilayers, since both species must exhibit a significant hydrophobic mismatch. The membrane organization has been described by means of (2)H NMR and molecular dynamics simulations. Our results show that the protonation state affects the position and order of free fatty acids (FFAs) in phospholipid membranes. It was shown that the protonated FFA-C24 carboxyl group is located slightly under the POPC head group and therefore its acyl chain can interact with the lipids of the opposite leaflet. This interdigitation of the end of the acyl chain causes a second plateau observed in SC-D profiles, a very unusual feature in lipid systems. PMID:27351151

  12. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy.

    PubMed

    Felderhoff, Michael; Zibrowius, Bodo

    2011-10-14

    After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4). PMID:21879065

  13. The investigation of membrane binding by amphibian peptide agonists of CCK2R using (31)P and (2)H solid-state NMR.

    PubMed

    Sherman, Patrick J; Separovic, Frances; Bowie, John H

    2014-05-01

    It has been proposed that some neuropeptides may be anchored to the cell membranes prior to attaching to the adjacent active sites of transmembrane receptors. The three amphibian skin neuropeptides signiferin 1 [RLCIPYIIPC(OH)] (smooth muscle active and immunomodulator), riparin 1.1 [[RLCIPVIFPC(OH)] (immunomodulator) and rothein 1 [SVSNIPESIGF(OH)] (immunomodulator) act via CCK2 transmembrane receptors. A combination of (31)P and (2)H solid state NMR studies of each of these three peptides in eukaryotic phospholipid models at 25°C shows that rothein 1 does not interact with the membrane at all. In contrast, both of the cyclic disulfides signiferin 1 and riparin 1.1 interact with phospholipid head groups and partially penetrate into the upper leaflet of the model bilayer, but to different extents. These interactions are not sufficiently effective to cause disruption of the lipid bilayer since the peptides are not antimicrobial, anticancer, antifungal nor active against enveloped viruses. PMID:24582625

  14. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  15. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  16. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product.

  17. Distinguishing Vaccinium Species by Chemical Fingerprinting Based on NMR Spectra, Validated with Spectra Collected in Different Laboratories

    PubMed Central

    Markus, Michelle A.; Ferrier, Jonathan; Luchsinger, Sarah M.; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J.; Hicks, Joshua M.; Killday, K. Brian; Kirby, Christopher W.; Berrue, Fabrice; Kerr, Russell G.; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E.; Lankin, David C.; Pauli, Guido F.; Burton, Ian; Karakach, Tobias K.; Arnason, John T.; Colson, Kimberly L.

    2014-01-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R2 = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  18. Synthesis, crystal structure, spectroscopic, fluorescent, thermal properties and EPR spectra of doped Cu2+ ions in [Cd(sac)2(H2O)2(meim)2] single crystal

    NASA Astrophysics Data System (ADS)

    Fidan, M.; Semerci, F.; Şahin, E.; Yeşilel, O. Z.; Tapramaz, R.; Şahin, Y.

    2013-06-01

    The crystal structures of the six-coordinate complexes [Cd(sac)2(H2O)2(meim)2] (complex 1) formed by reaction of 4-methylimidazole(meim) with [Cd(sac)2(H2O)4]·2H2O (saccharinate = sac), was synthesized and characterized by elemental analysis, infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy, thermal analysis and X-ray single crystal diffraction. X-ray diffraction analysis revealed that complex 1 crystallized in the monoclinic crystal system with space group P21/c. The Cd(II) center was six-coordinated with four nitrogen atoms from two sac and two 4-meim ligands, two oxygen atoms from two aqua ligands. Spectral and thermal analysis data for complex 1 was in agreement with the crystal structures. In addition complex 1 displayed blue fluorescent emission in the solid state at room temperature. Single crystal EPR spectra at room temperature are resolved and have exhibited that two different Cu2+ complexes were located in different chemical environments which contained two magnetically nonequivalent Cu2+ sites. In low temperature EPR spectra down to 110 °C did show no considerable change. At higher temperatures, however, both thermo gravimetric analyses (TGA) and EPR spectra showed detectable changes around 140 °C; the causes and the mechanisms of changes are discussed.

  19. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  20. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  1. (129) Xe and (131) Xe nuclear magnetic dipole moments from gas phase NMR spectra.

    PubMed

    Makulski, Włodzimierz

    2015-04-01

    (3) He, (129) Xe and (131) Xe NMR measurements of resonance frequencies in the magnetic field B0=11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of (129) Xe and (131) Xe in terms of that of the (3) He nucleus. They are as follows: μ((129) Xe) = -0.7779607(158)μN and μ((131) Xe) = +0.6918451(70)μN . By this means, the new 'helium method' for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the (3) He and (129) Xe and (131) Xe shielding in the gaseous mixtures with Xe, CO2 and SF6 .

  2. Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra.

    PubMed

    Borgogno, Andrea; Rastrelli, Federico; Bagno, Alessandro

    2014-07-01

    Many transition-metal complexes easily change their spin state S in response to external perturbations (spin crossover). Determining such states and their dynamics can play a central role in the understanding of useful properties such as molecular magnetism or catalytic behavior, but is often far from straightforward. In this work we demonstrate that, at a moderate computational cost, density functional calculations can predict the correct ground spin state of Fe(ii) and Fe(iii) complexes and can then be used to determine the (1)H NMR spectra of all spin states. Since the spectral features are remarkably different according to the spin state, calculated (1)H NMR resonances can be used to infer the correct spin state, along with supporting the structure elucidation of numerous paramagnetic complexes.

  3. Gas phase NMR spectra of N,N-dimethylnitrosamine. Environmental effects on kinetic parameters

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; Leung, Doris Y.; True, Nancy S.

    1984-04-01

    Gas phase 1H NMR spectra of N,N-dimethylnitrosamine are consistent with first order chemical exchange rate constants which are ca. 25 times faster than those observed in neat liquids at corresponding temperatures. The associated kinetic parameters: Eact(∞), 20.5(1.1) kcal mol -1, Δ H‡, 19.7(1.0) kcal mol -1 and Δ G‡, 21.1(0.4) kcal mol -1 are approximately 2.5 kcal mol -1 lower than the most recently reported values for the neat liquid. The observed phase dependence is consistent with a process proceeding via a freely rotating transition state.

  4. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  5. Line broadening, line shifting, and line coupling effects on N sub 2 --H sub 2 O stimulated Raman spectra

    SciTech Connect

    Bonamy, J.; Robert, D. ); Hartmann, J.M. ); Gonze, M.L.; Saint-Loup, R.; Berger, H. )

    1989-11-15

    In order to understand the influence of H{sub 2}O on the stimulated Raman {ital Q}-branch spectra of nitrogen in combusting media, an exhaustive theoretical and experimental study has been carried out. Starting from a semiclassical model, particularly convenient at high temperature, the {ital Q}-line broadening and shifting coefficients have been calculated over a wide temperature range and for a large number of lines. Stimulated Raman Spectra (SRS) measurements have allowed us to test these calculated line broadening coefficients and thus establish the high accuracy of semiclassical values. The theoretical broadening coefficients have been inverted to deduce state-to-state rotational relaxation rates by using two types of fitting laws. A partial test of the resulting {ital Q}-branch profiles has been realized at moderate pressures leading to a discrimination between these two laws. Furthermore, the effect of rotational energy transfers on collisionally narrowed profiles at higher densities has been simulated and compared with the pure N{sub 2} case.

  6. Sorting signals from protein NMR spectra: SPI, a Bayesian protocol for uncovering spin systems.

    PubMed

    Grishaev, Alexander; Llinás, Miguel

    2002-11-01

    Grouping of spectral peaks into J-connected spin systems is essential in the analysis of macromolecular NMR data as it provides the basis for disentangling chemical shift degeneracies. It is a mandatory step before resonance and NOESY cross-peak identities can be established. We have developed SPI, a computational protocol that scrutinizes peak lists from homo- and hetero-nuclear multidimensional NMR spectra and progressively assembles sets of resonances into consensus J- and/or NOE-connected spin systems. SPI estimates the likelihood of nuclear spin resonances appearing at defined frequencies given sets of cross-peaks measured from multi-dimensional experiments. It quantifies spin system matching probabilities via Bayesian inference. The protocol takes advantage of redundancies in the number of connectivities revealed by suites of diverse NMR experiments, systematically tracking the adequacy of each grouping hypothesis. SPI was tested on 2D homonuclear and 2D/3D(15)N-edited data recorded from two protein modules, the col 2 domain of matrix metalloproteinase-2 (MMP-2) and the kringle 2 domain of plasminogen, of 60 and 83 amino acid residues, respectively. For these protein domains SPI identifies approximately 95% unambiguous resonance frequencies, a relatively good performance vis-à-vis the reported 'manual' (interactive) analyses. Abbreviations and Acronyms: SPI, SPin Identification; BMRB, BioMagResBank (Madison, WI).

  7. Structures of Si-Carbohydrate Aqueous Complexes: Comparison of NMR Spectra and Molecular Orbital Results

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Heaney, P. J.

    2002-12-01

    Researchers recently have made the discovery that hypercoordinate Si-sorbitol complexes will readily form in biologically relevant fluids, and they have reported the first evidence for a transient organosilicon complex generated within the life cycle of an organism. These interpretations are based upon peak assignments of Si-29 NMR spectra that invoke Si-polyol complexes with Si in five- and six-fold coordination states. However, ab initio analyses of the proposed organosilicon structures do not reproduce the experimentally observed chemical shifts. We have successfully modeled one of the observed Si-29 chemical shifts with a 5-fold Si-disorbitol complex involving 5-membered ring configurations (i.e., Si-O-C-C-O), which yielded Si-29 chemical shifts that closely matched the observed values in the -100 to -102 ppm range. Likewise, Si-29 NMR peaks near -144 ppm were well fit by a model in which a 6-fold Si was complexed to three sorbitol molecules in a 5-membered ring configuration. The ability to simulate observed NMR signals using molecular orbital calculations provides strong support for the controversial role of hypercoordinate organosilicon species in the uptake and transport of silica by biological systems. The existence of such complexes in turn may explain other puzzles in Si biogeochemistry, such as the persistence of monomeric silica in concentrated biological fluids and the biofractionation of Si isotopes and Ge.

  8. Biosynthesis of a specifically deuteriated diunsaturated fatty acid (18:2/sub. delta. 6,9/) for /sup 2/H NMR membrane studies

    SciTech Connect

    Baenziger, J.E.; Smith, I.C.P.; Hill, R.J.

    1987-12-15

    A unique procedure for the biosynthesis and subsequent isolation of a series of specifically deuteriated cis,cis-octadeca-6,9-dienoic acids has been developed. An auxotroph of Tetrahymena, which lacks ..delta..9 and ..delta..12 desaturase activity, is supplemented with specifically deuteriated oleic acid and converts it to the corresponding deuteriated cis,cis-octadeca-6,9-dienoic acid, 18:2/sup ..delta..6,9/. The deuteriated fatty acid is subsequently isolated by argentation chromatography and HPLC. To demonstrate the utility of the procedure, we describe here the biosynthesis of cis,cis-octadeca-6,9-dienoic acid deuteriated at positions 9 and 10. Gas and thin-layer chromatography of the isolated fatty acid showed that it was greater than 99% pure while /sup 13/C NMR and mass spectrometry of the O-(trimethylsilyl) derivative confirmed that the 18-carbon fatty acid contains two double bonds located at positions 6 and 9. The yield, from an 11-L culture, was typically 100 mg of which 35% was found to be deuteriated at both the 9- and 10-positions. The deuteriated fatty acid was esterified to 1-hexadecanoyl-sn-glycero-3-phosphocholine, and aqueous, multilamellar dispersions of the lipid were studied by /sup 2/H NMR. Each spectrum consists of two overlapping powder patterns and therefore yields two quadrupolar splittings. Over a temperature range of 0 to 40/sup 0/C, one splitting decreases from 6.6 to 1.8 kHz while other increases from 4.5 to 5.3 kHz. The magnitudes of the two splittings are equivalent between 10 and 15/sup 0/ C. The values of the splittings, and their response to temperature, differ significantly from those of the corresponding deuteriated oleic acid in microbial membranes and in bilayers of 1-hexadecanoyl-2-cis-octadec-9-enoyl-sn-glycero-3-phosphocholine (POPC).

  9. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  10. Quantum Mechanical Calculations to Interpret Vibrational and NMR Spectra of Organic Compounds Adsorbed onto Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.

    2008-12-01

    Vibrational (e.g., ATR FTIR and Raman) and nuclear magnetic resonance (NMR) spectroscopies provide excellent information on the bonding and atomic environment of adsorbed organic compounds. However, interpretation of observed spectra collected for organic compounds adsorbed onto mineral surfaces can be complicated by the lack of comparable analogs of known structure and uncertainties about the mineral surface structure. Quantum mechanical calculations provide a method for testing interpretations of observed spectra because models can be built to mimic predicted structures, and the results are independent of experimental parameters (i.e., no fitting to data is necessary). In this talk, methodologies for modeling vibrational frequencies and NMR chemical shifts of adsorbed organic compounds are discussed. Examples included salicylic acid (as an analog for important binding functional groups in humic acids) adsorbed onto aluminum oxides, organic phosphoryl compounds that represent herbicides and bacterial extracellular polymeric substances (EPS), and ofloxacin (a common agricultural antibiotic). The combination of the ability of quantum mechanical calculations to predict structures, spectroscopic parameters and energetics of adsorption with experimental data on these same properties allows for more definitive construction of surface complex models.

  11. Assignment of congested NMR spectra: Carbonyl backbone enrichment via the Entner Doudoroff pathway

    NASA Astrophysics Data System (ADS)

    Goldbourt, Amir; Day, Loren A.; McDermott, Ann E.

    2007-12-01

    In NMR spectra of complex proteins, sparse isotope enrichment can be important, in that the removal of many 13C- 13C homonuclear J-couplings can narrow the lines and thereby facilitate the process of spectral assignment and structure elucidation. We present a simple scheme for selective yet extensive isotopic enrichment applicable for production of proteins in organisms utilizing the Entner-Doudoroff (ED) metabolic pathway. An enrichment scheme so derived is demonstrated in the context of a magic-angle spinning solid-state NMR (MAS SSNMR) study of Pf1 bacteriophage, the host of which is Pseudomonas aeruginosa, strain K (PAK), an organism that uses the ED pathway for glucose catabolism. The intact and infectious Pf1 phage in this study was produced by infected PAK cells grown on a minimal medium containing 1- 13C D-glucose ( 13C in position 1) as the sole carbon source, as well as 15NH 4Cl as the only nitrogen source. The 37 MDa Pf1 phage consists of about 93% major coat protein, 1% minor coat proteins, and 6% single-stranded, circular DNA. As a consequence of this composition and the enrichment scheme, the resonances in the MAS SSNMR spectra of the Pf1 sample were almost exclusively due to carbonyl carbons in the major coat protein. Moreover, 3D heteronuclear NCOCX correlation experiments also show that the amino acids leucine, serine, glycine, and tyrosine were not isotopically enriched in their carbonyl positions (although most other amino acids were), which is as expected based upon considerations of the ED metabolic pathway. 3D NCOCX NMR data and 2D 15N- 15N data provided strong verification of many previous assignments of 15N amide and 13C carbonyl shifts in this highly congested spectrum; both the semi-selective enrichment patterns and the narrowed linewidths allowed for greater certainty in the assignments as compared with use of uniformly enriched samples alone.

  12. MATCAKE: a flexible toolbox for 2D NMR spectra integration by CAKE algorithm

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Vilasi, Silvia; Paris, Debora; Motta, Andrea; Barone, Fabrizio

    2011-04-01

    MatCAKE (www.cake.unisa.it) is a toolbox for integrating 2D NMR spectra by the CAKE (Monte CArlo peaK volume Estimation)1 algorithm within the Matlab environment (www.mathworks.com). Quantitative information from multidimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. CAKE is a simple algorithm designed for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Due to the large number of software packages available for processing nuclear magnetic resonance data, MatCAKE is designed just for implementing the new CAKE algorithm. In MatCAKe, in fact, only already processed bidimensional spectra are imported and, at the moment, the only volume integration (by CAKE and by the most simple standard procedure) are allowed. MatCAKE is a free software at disposal for the scientific community and can be obtained on line at the web address cake.unisa.it.

  13. Cu-NMR spectra in UCu4Ni uncover site disorder

    NASA Astrophysics Data System (ADS)

    Bernal, O. O.; Rose, D. A.; Wu, Hsin-Ju; Chiang, M.; MacLaughlin, D. E.; Stewart, G. R.; Kim, J. S.

    2012-12-01

    Cu-NMR measurements in a random powder of UCu4Ni reveal two types of spectral lines for each of the two isotopes of naturally abundant Cu in the material. These lines, which we label L1 and L2, point to the existence of two inequivalent Cu sites in the sample. We present a study of the NMR line shape in UCu4Ni at three different frequencies (in the range from 40-70 MHz) and two temperature values (10 K and 150 K), that allow us to assign the lines to particular Cu sites. L1 is strongly broadened as the frequency decreases, but changes less with increasing temperature. In contrast, the width of L2 grows in proportion to frequency and decreases noticeably with increasing temperature. This behavior indicates that the crystallographic site corresponding to L1 is exposed to electric field gradients and has lower point symmetry than the site corresponding to L2, which displays some anisotropy but no discernible quadrupole effects. By comparison with the Cu-NMR spectra in UCu4Pd, where only one type of Cu-NMR line has been observed clearly, we can associate L1 with Cu(16e) nuclei: Cu nuclei sitting at the 16e site (Wyckoff notation) in the AuBe5 structure of the parent compound UCu5. This leaves L2 as originating from Cu(4c) nuclei; i.e., those sitting at the 4c site of the same structure. Unlike in UCu4Pd, the appearance of signal from Cu(4c) nuclei in the Ni compound is clear evidence of site disorder in UCu4Ni.

  14. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Spatially encoded pulse sequences for the acquisition of high resolution NMR spectra in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Shapira, Boaz; Frydman, Lucio

    2006-09-01

    We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions. Different variants are presented, tailored according to the relative sensitivity and chemical nature of the spin system being explored. In particular a simple multi-scan experiment is discussed capable of affording substantial improvements in the spectral resolution, at nearly no sensitivity or scaling penalties. This new compensation scheme is therefore well-suited for the collection of high-resolution data in low-field systems possessing limited signal-to-noise ratios, where magnetic field heterogeneities might present a serious obstacle. Potential areas of applications of these techniques include high-field in vivo NMR studies in regions near tissue/air interfaces, clinical low field MR spectroscopy on relatively large off-center volumes difficult to shim, and ex situ NMR. The principles of the different compensation methods are reviewed and experimentally demonstrated for one-dimensional inhomogeneities; further improvements and extensions are briefly discussed.

  16. Characterization of Paramagnetic Reactive Intermediates: Predicting the NMR Spectra of Iron(IV)-Oxo Complexes by DFT.

    PubMed

    Borgogno, Andrea; Rastrelli, Federico; Bagno, Alessandro

    2015-09-01

    The relative energies of spin states of several iron(IV)-oxo complexes and related species have been calculated with DFT methods by employing the B3LYP* functional. We show that such calculations can predict the correct ground spin state of Fe(IV) complexes and can then be used to determine the (1) H NMR spectra of all spin states; the spectral features are remarkably different, hence calculated paramagnetic (1) H NMR spectra can be used to support the structure elucidation of numerous paramagnetic complexes. Applications to a number of stable and reactive iron(IV)-oxo species are described.

  17. Investigation of broad resonances in 31P NMR spectra of the human brain in vivo.

    PubMed

    McNamara, R; Arias-Mendoza, F; Brown, T R

    1994-08-01

    Broad resonances that lie underneath the familiar small molecule profile of in vivo 31P NMR spectra can make accurate spectral integration of these mobile phosphates difficult. The two major broad components are the phosphate contained in the hydroxyapatite in cranial bone and the phosphodiester moiety in partially mobile membrane phospholipids. They can be removed with post-acquisition processing but this results in distortion of lineshapes and intensities and interferes with accurate quantitation. We have employed an off-resonance saturation procedure to eliminate the bone resonance and isolate the signal from the membrane phospholipids by subtraction. Selective saturation of the phospholipid resonance increases the clarity of the sharp peaks downfield from the phosphocreatine peak. Selective saturation 3-D chemical shift imaging techniques were used to create a localized phospholipid profile of the entire brain simultaneously. Monitoring localized phospholipid concentration may be important in studying demyelinating diseases. PMID:7848814

  18. An analytical derivation of a popular approximation of the Voigt function for quantification of NMR spectra.

    PubMed

    Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H

    2000-01-01

    The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435

  19. Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach.

    PubMed

    Romano, Rocco; Paris, Debora; Acernese, Fausto; Barone, Fabrizio; Motta, Andrea

    2008-06-01

    Quantitative information from multi-dimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. Here we describe a simple method, called CAKE, for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Tests on simulated and experimental peaks, with different degrees of overlap and signal-to-noise ratios, show that CAKE results in improved volume estimates. A main advantage of CAKE is that the volume fraction can be flexibly chosen so as to minimize the effect of overlap, frequently observed in two-dimensional spectra. PMID:18396078

  20. Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Paris, Debora; Acernese, Fausto; Barone, Fabrizio; Motta, Andrea

    2008-06-01

    Quantitative information from multi-dimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. Here we describe a simple method, called CAKE, for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Tests on simulated and experimental peaks, with different degrees of overlap and signal-to-noise ratios, show that CAKE results in improved volume estimates. A main advantage of CAKE is that the volume fraction can be flexibly chosen so as to minimize the effect of overlap, frequently observed in two-dimensional spectra.

  1. Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Paris, Debora; Motta, Andrea; Barone, Fabrizio

    2009-03-01

    Quantitative information from multidimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. Here we describe a simple method, called CAKE, for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Tests on simulated and experimental peaks, with different degrees of overlap and signal-to-noise ratios, show that CAKE results in improved volume estimates. A main advantage of CAKE is that the volume fraction can be flexibly chosen so as to minimize the effect of overlap, frequently observed in two-dimensional spectra.

  2. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report.

    PubMed

    Thomas, Freddy; Jamin, Eric

    2009-09-01

    An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and

  3. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  4. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  5. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  6. Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C2 H2

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Embriaco, Davide; Massini, Michol; Simonucci, Stefano; Taioli, Simone

    2004-10-01

    Analytic expressions for the direct, resonant, and interference contributions to the differential cross section of a resonant Auger process, produced by the inner-shell photoionization of a linear molecule either “fixed in space” or belonging to a gas of randomly oriented molecules, have been derived following Dill’s procedures [ Dill , Phys. Rev. Lett. 45, 1393 (1980) ], but going beyond the two-step approximation. Angle-resolved Auger spectra of the C2H2 molecule measured on top of the C1s→π* resonance [ Kivimäki , J. Phys. B 30, 4279 (1997) ] have been calculated together with asymmetry parameters, analyzing also the different contributions to the electron angular distributions.

  7. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  8. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  9. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained.

  10. Infrared spectra of the C2H2-(OCS)2 van der Waals complex: observation of a structure with C2 symmetry.

    PubMed

    Rezaei, Mojtaba; McKellar, A R W; Moazzen-Ahmadi, N

    2011-09-29

    Infrared spectra of the C(2)H(2)-(OCS)(2) trimer are studied by means of direct infrared absorption spectroscopy. The van der Waals complexes are generated in a supersonic slit-jet apparatus and probed using a rapid-scan tunable diode laser in the region of the ν(1) fundamental vibration of the OCS monomer. Two infrared bands are analyzed for the lowest energy isomer of the trimer, which has C(2) symmetry and is experimentally observed here for the first time. A relatively strong band centered at 2068.93 cm(-1) is assigned as the out-of-phase vibrations of the pair of equivalent OCS monomers. This band is blue-shifted relative to the free OCS monomer but with a reduced shift as compared with the analogous vibration of the nonpolar OCS dimer. A weaker red-shifted band observed at 2049.64 cm(-1) establishes the nonplanarity of the OCS dimer subunit within the trimer. Spectra for three isotopologues in addition to the normal form are used to help define an experimental structure, which agrees well with past and present semiempirical calculations.

  11. 13C NMR spectra of 1,3-dipyridyl- and pyridylphenylthioureas. Chemical shift assignments and conformational implications

    NASA Astrophysics Data System (ADS)

    Sudha, L. V.; Sathyanarayana, D. N.; Manogaran, S.

    The 13C NMR spectra of a series of 1,3-dipyridyl- and pyridylphenylthioureas have been obtained. Complete analyses of the experimental spectra have provided the chemical shifts and coupling constants. The spectra of dipyridylthioureas over a temperature range showed important changes which could be attributed to an intramolecular conversion between the two equivalent E,Z and Z,E conformations. The coalescence temperature of the 13C signals leads to a Δ G* of ˜ 58.0 kJ mol -1 for the dynamic process involved. The results show that pyridylphenyl thioureas exist in a single conformation at ambient temperature.

  12. Orientation and dynamics of benzyl alcohol and benzyl alkyl ethers dissolved in nematic lyotropic liquid crystals. 2H NMR and molecular dynamics simulations.

    PubMed

    Ahumada, H; Montecinos, R; Tieleman, D P; Weiss-López, B E

    2005-08-01

    Most drugs have to cross cell membranes to reach their final target. A better understanding of the distribution, interactions, and dynamics of biologically active molecules in model bilayers is of fundamental importance in understanding drug functioning and design. 2H NMR quadrupole splittings (delta nu(Q)) and longitudinal relaxation times (T1) from the aromatic ring of benzyl alcohol-d5 (C0), a commonly used anesthetic, and a series of linear alkyl benzyl-d5 ethers with chain lengths from 1 to 12 carbon atoms (C1-C12), were measured. The molecules were dissolved in a nematic discotic lyotropic liquid crystal solution made of tetradecyltrimethylammonium chloride (TTAC)/decanol (DeOH)/NaCl/H2O. Values of delta nu(Q) and T1 from 1,1-dideuteriodecanol (15% enriched) and DHO (H2O with 0.2% D2O) were also measured. Delta nu(Q) of DeOH and DHO remained constant throughout the series. The value of delta nu(Q) of the para position of the ring (delta nu(p)) in C1 is 30% smaller than the delta nu(p) of C0. This is attributed to the existence of an H-bond between the alcohol hydroxyl proton and the solvent, which influences the average orientation of the ring. The relaxation data show that T1o,m is always longer than T1p and both decrease with the increase in alkyl chain length. Molecular dynamics simulations of the experimentally studied systems were performed. The aggregate was represented as a bilayer. The distribution, average orientation, and order parameters of the aromatic ring of the guest molecules in the bilayer were examined. Rotational correlation functions of all the C-D bonds and the OH bond from H2O were evaluated, allowing an estimate of the correlation times and T1. According to these results all spins relax in extreme narrowing conditions, except DeOH. Experimental and calculated T1 values differ at most by a factor of 3. However, the order of magnitude and the observed trends are well reproduced by the calculations. The aromatic ring of C0 possesses a

  13. Vibrational and multinuclear NMR spectra of anionic mercuriomethanes [CH 4-n(HgX) n] n-

    NASA Astrophysics Data System (ADS)

    Breitinger, D. K.; Krumphanzl, U.; Moll, M.

    1990-03-01

    Vibrational spectra of solid sodium sulfitomercuriomethanates Na n[CH 4-n(HgSO 3) n]·nH 2O (2 ≤ and ≤ 4) exhibit high frequencies of the valence vibrations ν as(SO 3) > ν s(SO 3) (average 1057 cm -1) with big differences ν as - ν s (mean 104 cm -1), and ν(HgS) vibrations in the 200 to 230 cm -1 range, thus indicating S-coordinated sulfite ligands. Force field calculations for the ion [C(HgSO 3) 4] 4- yield high force constants K(S-O) = 605 N/m, K(Hg-S) = 258 N/m, and even K(C-Hg) = 181 N/m.- For thiosulfatomercuriomethanates [CH 4-n(HgS 2O 3] n- (1 ≤ n ≤ 4) in aqueous solutions Raman spectra suggest S-coordination with high ν as(SO 3) and ν s(SO 3) (average 1130 cm -1), and low ν(S-S) (˜420 cm -1) frequencies, and strong ν(Hg-S) bands (˜250 cm -1). From 1H, 13C and 199Hg NMR data is concluded that the CHg bond strengths in the series decrease on a lower level than in other mercuriomethanes.- On the whole, the electronic properties of the peripheral ligands X in the mercuriomethanes CH 4-n(HgX) n seem to be more important for the CHg bond strengths than the total charge.

  14. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  15. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra.

    PubMed

    Mauri, F; Vast, N; Pickard, C J

    2001-08-20

    Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.

  16. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  17. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates.

  18. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  19. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    NASA Astrophysics Data System (ADS)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  20. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  1. A general method for diagonal peak suppression in homonuclear correlated NMR spectra by spatially and frequency selective pulses☆

    PubMed Central

    Glanzer, Simon; Schrank, Evelyne; Zangger, Klaus

    2013-01-01

    Homonuclear two- and multidimensional NMR spectra are standard experiments for the structure determination of small to medium-sized molecules. In the large majority of homonuclear correlated spectra the diagonal contains the most intense peaks. Cross-peaks near the diagonal could overlap with huge tails of diagonal peaks and can therefore be easily overlooked. Here we present a general method for the suppression of peaks along the diagonal in homonuclear correlated spectra. It is based on a spatially selective excitation followed by the suppression of magnetization which has not changed the frequency during the mixing process. In addition to the auto correlation removal, these experiments are also less affected by magnetic field inhomogeneities due to the slice selective excitation, which on the other side leads to a reduced intensity compared to regular homonuclear correlated spectra. PMID:23665403

  2. Fingerprints of molecular structure and hydrogen bonding effects in the /sup 13/C NMR spectra of monosaccharides with partially deuterated hydroxyls

    SciTech Connect

    Reuben, J.

    1984-10-17

    A new NMR approach to structure elucidation of carbohydrates in solution is presented. Examined in detail are the isotopic multiplets in /sup 13/C NMR spectra that result from partial deuteration of the hydroxyls for a series of monosaccharides and some of their deoxy and methyl glycoside derivatives in Me/sub 2/SO-d/sub 6/ solutions. Chemical shift and isotope effect data are presented for the pyranose and furanose forms of aldopentoses, aldohexoses, and ketohexoses. The results show that the magnitude of the ..gamma.. effect resulting from deuteration of a hydroxyl on a vicinal carbon atoms is sensitive to the relative geometric relationship, cis or trans, of the hydroxyls in vicinal diol arrays. Thus, the multiplet pattern for carbons 3 and 4 of the pyranose ring can serve as a fingerprint of molecular structure at the pentopyranose level. The aldopentoses and ketohexoses are amenable to structural analysis by this simple approach. Ambiguity will arise for pairs of aldohexoses related to each other by epimerization at C5. Intramolecular hydrogen bonding between the hydroxyls at C2 and C4 in ..cap alpha..-D-talopyranose gives rise to some unusual effects. A mechanism involving isotopic perturbation of the equilibrium between the hydrogen-bonded structures O4-H...O2-H and O2-H...O4-H is suggested as the possible source of these effects. Similarly, the extra splitting observed in the /sup 13/C resonance of C3 of ..beta..-D-fucofuranose are rationalized in terms of an equilibrium between the hydrogen-bonded structures C5-O5-H...O3-H and Cl-O1-H...O3-H. The approach of isotopic multiplets appears to be uniquely suited for the study of such structures.

  3. Resistively detected NMR spectra of the crystal states of the two-dimensional electron gas in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Côté, R.; Simoneau, Alexandre M.

    2016-02-01

    Transport experiments on the two-dimensional electron gas (2DEG) confined into a semiconductor quantum well and subjected to a quantizing magnetic field have uncovered a rich variety of uniform and nonuniform phases such as the Laughlin liquids, the Wigner, bubble, and Skyrme crystals, and the quantum Hall stripe state. Optically pumped nuclear magnetic resonance (OP-NMR) has also been extremely useful in studying the magnetization and dynamics of electron solids with exotic spin textures such as the Skyrme crystal. Recently, it has been demonstrated that a related technique, resistively-detected nuclear magnetic resonance (RD-NMR), could be a good tool to study the topography of the electron solids in the fractional and integer quantum Hall regimes. In this work, we compute theoretically the RD-NMR line shapes of various crystal phases of the 2DEG and study the relation between their spin density and texture and their NMR spectra. This allows us to evaluate the ability of the RD-NMR to discriminate between the various types of crystal states.

  4. Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids.

    PubMed

    Cui, Yingna; Yin, Jingmei; Li, Changping; Li, Shenmin; Wang, Ailing; Yang, Guang; Jia, Yingping

    2016-07-20

    The compositions and structures of amine-based functionalized protic ionic liquids (PILs), namely N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP) and N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) have been investigated systematically by IR and (1)H NMR spectroscopy and density functional theory (DFT) calculations. Analysis of the IR spectra suggests that both DMCEAP and DMEOAP are composed of neutral and ionized species in the liquid phase, the former one mainly existing in the state of precursor molecules, and the latter mainly as ion-pairs. The ratio of precursor molecules to ion-pairs in the liquid phase depends on the types of precursors, especially the functional groups of cations. (1)H NMR spectra indicate that there is a dynamic equilibrium between the neutral and ionized species, probably due to the formation of some intermediates in the PILs. The DFT calculations have been carried out to reveal the conformation, and obtain the corresponding IR and (1)H NMR spectra of the neutral and ionized species, so that the theoretical support to the experimental results can be provided. The present study will help understand the properties of PILs and provide guidance for further applications of PILs. PMID:27385035

  5. Vibrational spectra, monomer, dimer, NBO, HOMO, LUMO and NMR analyses of trans-4-hydroxy-L-proline

    NASA Astrophysics Data System (ADS)

    Xavier, R. John; Dinesh, P.

    2014-07-01

    This work presents the characterization of trans-4-hydroxy-L-proline (abbreviated as THLP) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR (4000-400 cm-1) and FT-Raman (3500-10 cm-1) spectra in the solid phase were recorded for THLP. The 1H and 13C NMR spectra were recorded in DMSO solution. The energies of THLP are obtained for all the eight conformers form density functional theory (DFT) with 6-311++G(d,p) basis set calculations. From the computational results, C1 conformer is identified as the most stable conformer of THLP. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method in terms of fundamental modes. The values of the total dipole moment (μ) and the first order hyperpolarizability (β) of the investigated compound were computed using B3LYP/6-311++G(d,p) calculations. The calculated HOMO-LUMO energies reveal charges transfer occurs within the molecule. The isotropic chemical shift computed by 1H and 13C NMR chemical shifts of the THLF, calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  6. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  7. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  8. Matrix-dependent modulation of anisotropic effects on NMR spectra from 7Li+ and 23Na+ encapsulated in cryptands.

    PubMed

    Naumann, Christoph; Kuchel, Philip W

    2013-01-01

    (7)Li and (23)Na NMR spectra of the respective cations in gelatin and ι-carrageenan gels containing cryptand-[2.1.1] (for Li(+)) or cryptand-[2.2.2] (for Na(+)) displayed two transitions: the one at higher frequency corresponded to the cation surrounded by gel, the other to cation inside its appropriately sized cryptand. While binding to cryptands yielded much broader lines and shorter T (1) relaxation times, anisotropic splitting in first order (7)Li or (23)Na NMR spectra was not detected. Stretching the gels resulted in increasing the anisotropic electric field gradient tensor; thus, the NMR transitions of the cation in the gel were split (removal of degeneracy) to display its characteristic 3:4:3 triplet for spin = 3/2 nuclei. The transitions of the cryptand-bound cations (Li(+)-cryptand-[2.1.1] and Na(+)-cryptand-[2.2.2]) showed different extents of interaction with the electric field gradient tensor depending on the composition of the gel matrix. The NMR signal for (7)Li(+)-cryptand-[2.1.1] in stretched gelatin gel showed a five-fold increased splitting as compared to the (7)Li(+) signal in the reference gel. In stretched ι-carrageenan gels, no anisotropic splitting from the cryptand-bound Li(+) was recorded. Steady-state irradiation envelopes or z-spectra showed evidence of Li(+) exchange between isotropic (cryptand) and anisotropic (gel) sites only at higher temperatures (55 °C). For Na(+) bound to the cryptand-[2.2.2], anisotropic splitting (three-fold smaller compared with the (23)Na signal in the reference gel) was only recorded in stretched ι-carrageenan gels, whereas gelatin gels showed only anisotropic splitting for the (23)Na signal in the reference gel.

  9. Analysis of the electronic, IR, and 1H NMR spectra of conjugated oligomers based on 4,4'-triphenylamine vinylene

    NASA Astrophysics Data System (ADS)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Sun, V.-H.; Grigoras, M.

    2016-09-01

    Two types of conjugated oligomers based on 4,4'-triphenylamine vinylene have been synthesized and characterized by the methods of IR, UV-visible, and 1H NMR spectroscopy. The corresponding spectra have also been simulated theoretically at the density functional theory level with application of the B3LYP and BMK hybrid exchange-correlation functionals. A comparative analysis of the experimental and theoretical spectra of polymers and oligomers has revealed regularities of the manifestation of spectral signals depending on the conjugation chain length and the presence of a substituent in the triphenylamine core. It has been established, in particular, that the absolute intensity of IR bands satisfies a linear dependence with increase in the degree of polymerization; however, no frequency shift is observed at the same time. The position of the main peak in electron absorption spectra demonstrates the bathochromic shift with an increase in the oligomeric chain length due to the narrowing of the energy gap between the boundary molecular orbitals. Based on the theoretical estimation of the hydrogen atoms chemical shifts, the signals of various protons types in the strongly broadened experimental 1H NMR spectra of the bis-(4-iodine phenyl)-phenylamine and N,N-bis-(4-iodine phenyl)-4'-(phenylethynyl)-phenylamine polymerization products have also been identified.

  10. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  11. Biaxial Q-shearing of 27Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates.

    PubMed

    Kobera, Libor; Brus, Jiri; Klein, Petr; Dedecek, Jiri; Urbanova, Martina

    2014-01-01

    In this contribution, we present the application potentiality of biaxial Q-shearing of (27)Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded (27)Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of (27)Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, γ-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y).

  12. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  13. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  14. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  15. Interpretation of combined 2H SNIF/NMR and 13C SIRA/MS analyses of fruit juices to detect added sugar.

    PubMed

    Martin, G G; Hanote, V; Lees, M; Martin, Y L

    1996-01-01

    The site-specific natural isotopic fractionation studied by nuclear magnetic resonance (SNIF/NMR) method measures site-specific isotope contents in a variety of organic compounds by deuterium nuclear magnetic resonance spectroscopy. This technique, together with SIRA/MS (stable isotope ratio analysis/mass spectrometry) provides a powerful tool for food authentication and characterization. By using the ethanol resulting from sugar fermentation as a molecular probe, SNIF/NMR (deuterium) and SIRA/MS (13C) have been used together for authentication of fruit juices. The influence of deuterium content of the fermentation water on the isotopic parameters is shown and a means for normalizing the results is proposed. A large number of authentic juices have been analyzed to define the variation of isotopic ratios in natural juices. On the basis of these data, a set of rules was designed to enable interpretation of isotopic parameters in terms of possible adulteration of fruit juices by sugar addition. Results of analyses of Florida orange juice are presented. Orange juice samples from Brazil and Israel are included as 2 extreme cases. Assignment limits for a sample of orange juice of unknown origin also are given. These assignment limits are also provided for apple and grapefruit juices.

  16. Vibrational spectra, monomer, dimer, NBO, HOMO, LUMO and NMR analyses of trans-4-hydroxy-L-proline.

    PubMed

    Xavier, R John; Dinesh, P

    2014-07-15

    This work presents the characterization of trans-4-hydroxy-L-proline (abbreviated as THLP) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and (1)H and (13)C nuclear magnetic resonance (NMR) techniques. The FT-IR (4000-400 cm(-1)) and FT-Raman (3500-10 cm(-1)) spectra in the solid phase were recorded for THLP. The (1)H and (13)C NMR spectra were recorded in DMSO solution. The energies of THLP are obtained for all the eight conformers form density functional theory (DFT) with 6-311++G(d,p) basis set calculations. From the computational results, C1 conformer is identified as the most stable conformer of THLP. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method in terms of fundamental modes. The values of the total dipole moment (μ) and the first order hyperpolarizability (β) of the investigated compound were computed using B3LYP/6-311++G(d,p) calculations. The calculated HOMO-LUMO energies reveal charges transfer occurs within the molecule. The isotropic chemical shift computed by (1)H and (13)C NMR chemical shifts of the THLF, calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations. PMID:24657468

  17. Fast and simple acquisition of solid-state 14N NMR spectra with signal enhancement via population transfer.

    PubMed

    O'Dell, Luke A; Schurko, Robert W

    2009-05-20

    A new approach for the acquisition of static, wideline (14)N NMR powder patterns is outlined. The method involves the use of frequency-swept pulses which serve two simultaneous functions: (1) broad-band excitation of magnetization and (2) signal enhancement via population transfer. The signal enhancement mechanism is described using numerical simulations and confirmed experimentally. This approach, which we call DEISM (Direct Enhancement of Integer Spin Magnetization), allows high-quality (14)N spectra to be acquired at intermediate field strengths in an uncomplicated way and in a fraction of the time required for previously reported methods.

  18. Automatic phase correction of fourier transform NMR spectra based on the dispersion versus absorption (DISPA) lineshape analysis

    NASA Astrophysics Data System (ADS)

    Sotak, Christopher H.; Dumoulin, Charles L.; Newsham, Mark D.

    A method for automatic phase correction of Fourier transform NMR spectra bused on the dispersion versus absorption (DISPA) lineshape analysis is described. The DISPA display of a single misphased Lorentzian line gives a unit circle which has been rotated about the origin (relative to its "reference circle") by a number of degrees equal to the phase misadjustment. This rotation, Φ, is a combination of the zero- and first-order phase angles at the frequency of the resonance. Calculation of Φ for two or more resonances allows the spectral phasing parameters to be determined and applied to correct the spectrum. This approach has been implemented in both automatic and "semi-automatic" modes.

  19. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  20. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  1. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  2. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed

    Lebedev, A V; Rezvukhin, A I

    1984-07-25

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered.

  3. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, 2H NMR, and calorimetric study

    NASA Astrophysics Data System (ADS)

    Robles-Hernández, Beatriz; Sebastián, Nerea; de la Fuente, M. Rosario; López, David O.; Diez-Berart, Sergio; Salud, Josep; Ros, M. Blanca; Dunmur, David A.; Luckhurst, Geoffrey R.; Timimi, Bakir A.

    2015-12-01

    The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and 2H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (NTB), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the NTB-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and 2H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the NTB phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. 2H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

  4. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, (2)H NMR, and calorimetric study.

    PubMed

    Robles-Hernández, Beatriz; Sebastián, Nerea; de la Fuente, M Rosario; López, David O; Diez-Berart, Sergio; Salud, Josep; Ros, M Blanca; Dunmur, David A; Luckhurst, Geoffrey R; Timimi, Bakir A

    2015-12-01

    The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and (2)H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (N(TB)), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the N(TB)-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and (2)H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the N(TB) phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. (2)H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

  5. HiFSA Fingerprinting Applied to Isomers with Near-Identical NMR Spectra: The Silybin/Isosilybin Case

    PubMed Central

    Napolitano, José G.; Lankin, David C.; Graf, Tyler N.; Friesen, J. Brent; Chen, Shao-Nong; McAlpine, James B.; Oberlies, Nicholas H.; Pauli, Guido F.

    2013-01-01

    This study demonstrates how regio- and diastereo-isomers with near-identical NMR spectra can be distinguished and unambiguously assigned using quantum mechanical driven, 1H iterative Full Spin Analysis (HiFSA). The method is illustrated with four natural products, the flavonolignans silybin A, silybin B, isosilybin A, and isosilybin B, which exhibit extremely similar coupling patterns and chemical shift differences well below the commonly reported level of accuracy of 0.01 ppm. The HiFSA approach generated highly reproducible 1H NMR fingerprints that enable distinction of all four isomers at 1H frequencies from 300 to 900 MHz. Furthermore, it is demonstrated that the underlying numeric 1H NMR profiles, combined with iterative computational analysis, allow parallel quantification of all four isomers, even in difficult to characterize reference materials and mixtures. The results shed new light on the historical challenges to the qualitative and quantitative analysis of these therapeutically relevant flavonolignans and open new opportunities to explore hidden diversity in the chemical space of organic molecules. PMID:23461697

  6. {sup 139}La NMR in lanthanum manganites: Indication of the presence of magnetic polarons from spectra and nuclear relaxations

    SciTech Connect

    Allodi, G.; De Renzi, R.; Guidi, G.

    1998-01-01

    We present {sup 139}La NMR experiments on five powder samples of lanthanum manganites, with a Mn{sup 4+} concentration ranging from the antiferromagnetic-insulator (AFM) to the ferromagnetic-conducting (FM) region of the phase diagram. We measure a positive hyperfine coupling C=0.13 T/{mu}{sub B}. A signal from nuclei in a FM environment is present at all compositions, as evidenced by a hyperfine frequency in zero-field experiments, by a positive hyperfine shift in NMR experiments below T{sub c}, and by a paramagnetic frequency shift following Curie-Weiss law. A signal from nuclei in an AFM environment is identified by a similar negative intercept Curie-Weiss law. The NMR spectra reveal a large temperature dependent fraction of static spin defects below T{sub c} in the FM domains. Nuclear relaxation indicates that the FM regions are influenced by diffusing, AFM-correlated excitations, while the AFM regions probe spin fluctuations from diffusing, FM correlated excitations. These results are interpreted in terms of electronic inhomogeneities due to the presence of a magnetic small polaron. {copyright} {ital 1998} {ital The American Physical Society}

  7. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: the silybin/isosilybin case.

    PubMed

    Napolitano, José G; Lankin, David C; Graf, Tyler N; Friesen, J Brent; Chen, Shao-Nong; McAlpine, James B; Oberlies, Nicholas H; Pauli, Guido F

    2013-04-01

    This study demonstrates how regio- and diastereo-isomers with near-identical NMR spectra can be distinguished and unambiguously assigned using quantum mechanical driven (1)H iterative Full Spin Analysis (HiFSA). The method is illustrated with four natural products, the flavonolignans silybin A, silybin B, isosilybin A, and isosilybin B, which exhibit extremely similar coupling patterns and chemical shift differences well below the commonly reported level of accuracy of 0.01 ppm. The HiFSA approach generated highly reproducible (1)H NMR fingerprints that enable distinction of all four isomers at (1)H frequencies from 300 to 900 MHz. Furthermore, it is demonstrated that the underlying numeric (1)H NMR profiles, combined with iterative computational analysis, allow parallel quantification of all four isomers, even in difficult to characterize reference materials and mixtures. The results shed new light on the historical challenges to the qualitative and quantitative analysis of these therapeutically relevant flavonolignans and open new opportunities to explore hidden diversity in the chemical space of organic molecules. PMID:23461697

  8. The structure elucidation of mequindox and 1,4-bisdesoxymequindox: NMR analyses, FT-IR spectra, DFT calculations and thermochemical studies

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaheng; He, Xin; Gao, Haixiang

    2011-10-01

    In the current work, we report a combined experimental and theoretical study on the molecular conformation, vibrational spectra, and nuclear magnetic resonance (NMR) spectra of mequindox (MEQ) and 1,4-bisdesoxymequindox (1,4-BDM). The geometric structure and vibrational frequencies of MEQ and 1,4-BDM have been calculated by density functional theory employing the B3LYP functional and 6-311++G(d,p) basis set. The 1H and 13C NMR chemical shifts have been calculated by gauge-including atomic orbital method with B3LYP 6-311++G(2df,2pd) approach. The calculation results have been applied to simulate the infrared and NMR spectra of the compounds. The theoretical results agree well with the observed spectra. The bond dissociation enthalpy of MEQ and the heat of formation of MEQ and 1,4-BDM have also been computed.

  9. Hydration of DNA by tritiated water and isotope distribution: a study by /sup 1/H, /sup 2/H, and /sup 3/H NMR spectroscopy

    SciTech Connect

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-06-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent /sup 3/HHO. The combined effects of temperature (-6 to -40/sup 0/C) and H/sub 2/O//sup 2/H/sub 2/O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by /sup 3/HHO (internal radiation source) localizes close to /sup 3/H due to the short range and low energy of /sup 3/H ..beta.. rays.

  10. Alterations in the natural abundance /sup 13/C NMR spectra of skeletal muscle membranes depending on the extraction medium of muscle

    SciTech Connect

    Barany, M.; Arus, C.; Anderson, J.A.; Marotta, S.F.

    1986-03-01

    Minced rat muscles were extracted with NaCl solution with additions: 1) 10 mM EDTA, or 2) 2 mM MgCl/sub 2/, or 3) None (final ionic strength equivalent to 150 mM NaCl, pH 7.0). The total muscle membranes were pelleted between 1500 and 252,000 x g. All membranes were washed several times by homogenization with 0.05 M NaCl, pH 6.1, and centrifugation at 252,000 x g. The final pellets were suspended in /sup 2/H/sub 2/O to contain 150 mg membrane protein/ml in 30% /sup 2/H/sub 2/O. /sup 13/C NMR spectra were recorded at 50.3 MHz, under fully relaxed conditions. The spectral pattern varied according to the extraction medium of muscle: Relative to None addition, EDTA caused a decrease in the intensity of the polyunsaturated carbon resonance (128.6 ppm), whereas with MgCl/sub 2/ the opposite effect was found. Metal analysis, after combustion of the membranes, showed 1.1-1.6 mol Ca/sup 2 +/ per 10/sup 5/ g protein in None and Mgcl/sub 2/ membranes, and 1000-times less Ca/sup 2 +/ in EDTA membranes. The Mg/sup 2 +/ content of the membranes was not affected by EDTA, however, it was increased 5-fold when MgCl/sub 2/ was present in the extraction medium. Thus, the results indicate that membrane-bound Ca/sup 2 +/ and Mg/sup 2 +/ alter the conformation of membrane-phospholipis.

  11. A Global Approach to Accurate and Automatic Quantitative Analysis of NMR Spectra by Complex Least-Squares Curve Fitting

    NASA Astrophysics Data System (ADS)

    Martin, Y. L.

    The performance of quantitative analysis of 1D NMR spectra depends greatly on the choice of the NMR signal model. Complex least-squares analysis is well suited for optimizing the quantitative determination of spectra containing a limited number of signals (<30) obtained under satisfactory conditions of signal-to-noise ratio (>20). From a general point of view it is concluded, on the basis of mathematical considerations and numerical simulations, that, in the absence of truncation of the free-induction decay, complex least-squares curve fitting either in the time or in the frequency domain and linear-prediction methods are in fact nearly equivalent and give identical results. However, in the situation considered, complex least-squares analysis in the frequency domain is more flexible since it enables the quality of convergence to be appraised at every resonance position. An efficient data-processing strategy has been developed which makes use of an approximate conjugate-gradient algorithm. All spectral parameters (frequency, damping factors, amplitudes, phases, initial delay associated with intensity, and phase parameters of a baseline correction) are simultaneously managed in an integrated approach which is fully automatable. The behavior of the error as a function of the signal-to-noise ratio is theoretically estimated, and the influence of apodization is discussed. The least-squares curve fitting is theoretically proved to be the most accurate approach for quantitative analysis of 1D NMR data acquired with reasonable signal-to-noise ratio. The method enables complex spectral residuals to be sorted out. These residuals, which can be cumulated thanks to the possibility of correcting for frequency shifts and phase errors, extract systematic components, such as isotopic satellite lines, and characterize the shape and the intensity of the spectral distortion with respect to the Lorentzian model. This distortion is shown to be nearly independent of the chemical species

  12. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  13. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed

    Lebedev, A V; Rezvukhin, A I

    1984-07-25

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered. PMID:6087290

  14. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study.

    PubMed Central

    Pott, T; Dufourc, E J

    1995-01-01

    Solid-state deuterium and phosphorus-31 nuclear magnetic resonance studies of deuterium-labeled beta--[2,2',3,4,4',6-2H6]-cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine have been undertaken to monitor the action of melittin on model membranes containing 30 mol% cholesterol, both at the molecular and macroscopic level. Cholesterol totally inhibits the toxin-triggered formation of large unilamellar vesicles and strongly restricts the appearance of small discs. The latter remain stable over a wide temperature range (20-60 degrees C) because of an increase in their cholesterol content as the temperature increases. This process is related to a constant disc hydrophobic thickness of approximately 29 A. The system, when not in the form of discs, appears to be composed of very large vesicles on which melittin promotes magnetically induced ellipsoidal deformation. This deformation is the greatest when the maximum of discs is observed. A model to describe both the disc formation and stability is proposed. PMID:7756559

  15. Coupled changes between lipid order and polypeptide conformation at the membrane surface. A sup 2 H NMR and Raman study of polylysine-phosphatidic acid systems

    SciTech Connect

    Laroche, G.; Pezolet, M. ); Dufourc, E.J.; Dufourcq, J. )

    1990-07-10

    Thermotropism and segmental chain order parameters of sn-2-perdeuteriated dimyristoylphosphatidic acid (DMPA)-water dispersions, with and without poly(L-lysine) (PLL) of different molecular weights, have been investigated by solid-state deuterium NMR spectroscopy. The segmental chain order parameter profile of this negatively charged lipid is similar to that already found for other lipids. Addition of long PLL increases the temperature, {Tc}, of the lipid gel-to-fluid phase transition, whereas short PLL has practically no effect on {Tc}. In the fluid phase both varieties of PLL increase the plateau character of segmental order parameters up to carbon position 10. At the same reduced temperature, long PLL more significantly increases the segmental ordering, especially at the methyl terminal position. This leads to the conclusion that polar head-group capping and charge neutralization by PLL induce severe changes in lipid chain ordering, even down to the bilayer core. The structure of PLL bound to the lipid bilayer surface was monitored by Raman spectroscopy, following the amide I bands. Results show that the lipid gel-to-fluid phase transition triggers a conformational transition from ordered {beta}-sheet to random structure of short PLL, while it does not affect the strongly stabilized {beta}-sheet structure of long PLL. It is concluded that both short and long PLL can efficiently cap and neutralize lipid head groups, whatever their structure, and that peptide length is a key parameter in whether lipids or peptides are the driving force in conformationally coupled changes of both partners in the membrane.

  16. Structure of 1-methyl-6-oxyquinolinium betaine dihydrate studied by X-ray diffraction, DFT calculations, vibrational and NMR spectra

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Ratajczak-Sitarz, M.; Katrusiak, A.; Szafran, M.

    2010-07-01

    The crystals of 1-methyl-6-oxyquinolinium betaine dihydrate, 6QB·2H 2O, are triclinic, space group P1¯. The oxygen atom of 6QB exhibits an extremely rare capability of accepting four hydrogen bonds. It is engaged in four hydrogen bonds to water molecules of the 2.823, 2.825, 2.833 and 2.849 Å; each water molecule interacts with two neighbouring 6QB molecules linking them into infinite sheets. Differences in geometrical parameters between the X-ray and calculated molecules reflect changes in their structures between zwitterion and quinonoid forms. The probable assignments of the experimental FTIR solid spectrum have been made on the basis of B3LYP/6-311G(d,p) calculated frequencies in vacuum. Both 1H and 13C chemical shifts are solvent dependent. Linear correlations between the experimental 1H and 13C NMR chemical shifts of 6QB·2H 2O in solutions and the GIAO/B3LYP/6-311G(d,p) calculated magnetic isotropic shielding tensors ( σcal) using the screening solvation model, δexp = a + bσcal, are reported.

  17. Improving sensitivity and resolution of MQMAS spectra: A 45Sc-NMR case study of scandium sulphate pentahydrate

    NASA Astrophysics Data System (ADS)

    Chandran, C. Vinod; Cuny, Jérôme; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J.; Bräuniger, Thomas

    2010-04-01

    To efficiently obtain multiple-quantum magic-angle spinning (MQMAS) spectra of the nuclide 45Sc ( I = 7/2), we have combined several previously suggested techniques to enhance the signal-to-noise ratio and to improve spectral resolution for the test sample, scandium sulphate pentahydrate (ScSPH). Whereas the 45Sc-3QMAS spectrum of ScSPH does not offer sufficient resolution to clearly distinguish between the 3 scandium sites present in the crystal structure, these sites are well-resolved in the 5QMAS spectrum. The loss of sensitivity incurred by using MQMAS with 5Q coherence order is partly compensated for by using fast-amplitude modulated (FAM) sequences to improve the efficiency of both 5Q coherence excitation and conversion. Also, heteronuclear decoupling is employed to minimise dephasing of the 45Sc signal during the 5Q evolution period due to dipolar couplings with the water protons in the ScSPH sample. Application of multi-pulse decoupling schemes such as TPPM and SPINAL results in improved sensitivity and resolution in the F1 (isotropic) dimension of the 5QMAS spectrum, the best results being achieved with the recently suggested SW f-TPPM sequence. By numerical fitting of the 45Sc-NMR spectra of ScSPH from 3QMAS, 5QMAS and single-quantum MAS at magnetic fields B0 = 9.4 T and 17.6 T, the isotropic chemical shift δiso, the quadrupolar coupling constant χ, and the asymmetry parameter η were obtained. Averaging over all experiments, the NMR parameters determined for the 3 scandium sites, designated (a), (b) and (c) are: δiso( a) = -15.5 ± 0.5 ppm, χ( a) = 5.60 ± 0.10 MHz, η( a) = 0.06 ± 0.05; δiso( b) = -12.9 ± 0.5 ppm, χ( b) = 4.50 ± 0.10 MHz, η( b) = 1.00 ± 0.00; and δiso( c) = -4.7 ± 0.2 ppm, χ( c) = 4.55 ± 0.05 MHz, η( c) = 0.50 ± 0.02. The NMR scandium species were assigned to the independent crystallographic sites by evaluating their experimental response to proton decoupling, and by density functional theory (DFT) calculations using

  18. Optical detection of NMR J-spectra at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Crawford, C. W.; Pines, A.; Wemmer, D. E.; Knappe, S.; Kitching, J.; Budker, D.

    2009-07-01

    Scalar couplings of the form JI1 · I2 between nuclei impart valuable information about molecular structure to nuclear magnetic-resonance spectra. Here we demonstrate direct detection of J-spectra due to both heteronuclear and homonuclear J-coupling in a zero-field environment where the Zeeman interaction is completely absent. We show that characteristic functional groups exhibit distinct spectra with straightforward interpretation for chemical identification. Detection is performed with a microfabricated optical atomic magnetometer, providing high sensitivity to samples of microliter volumes. We obtain 0.1 Hz linewidths and measure scalar-coupling parameters with 4-mHz statistical uncertainty. We anticipate that the technique described here will provide a new modality for high-precision "J spectroscopy" using small samples on microchip devices for multiplexed screening, assaying, and sample identification in chemistry and biomedicine.

  19. Analysis of the collision-induced absorption spectra in the second overtone region of H2-H2 at 298 K

    NASA Astrophysics Data System (ADS)

    Abu-Kharma, M.

    2015-02-01

    The collision-induced absorption (CIA) spectra of the second overtone band of normal hydrogen in a pure gas were recorded for a number of gas densities up to 750 amagat (1 amagat = 44.614981 mol/m3) with a two meter stainless steel absorption cell at 298 K. The profile analyses of these spectra were carried out using the Birnbaum-Cohen line shape function for the quadrupolar vibrational transitions and the Levine-Birnbaum line shape function for the overlap transitions.

  20. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  1. Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.

    PubMed

    Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T

    1999-03-01

    A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments.

  2. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils.

  3. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. PMID:19544589

  4. Rotational spectra and structure of the Ar2-H2S complex: pulsed nozzle Fourier transform microwave spectroscopic and ab initio studies.

    PubMed

    Mandal, Pankaj K; Ramdass, Dharmender J; Arunan, E

    2005-07-21

    This paper reports the rotational spectrum and structure of the Ar2-H2S complex and its HDS and D2S isotopomers. The ground state structure has heavy-atom C2v symmetry with the two Ar atoms indistinguishable and H2S freely rotating as evinced by the fact that asymmetric top energy levels with Kp=odd levels are missing. The rotational constants for the parent isotopomer are: A=1733.115(1) MHz, B=1617.6160(5) MHz and C=830.2951(2) MHz. Unlike the Ar-H2S complex, the Ar2-H2S does not show an anomalous isotopic shift in rotational constants on deuterium substitution. However, the intermolecular potential is still quite floppy, leading to very different centrifugal distortion constants for the three isotopomers. The Ar-Ar and Ar-c.m.(H2S) distances are determined to be 3.820 A and 4.105 A, respectively. The A rotational constants for Ar2-H2S/HDS/D2S isotopomers are very close to each other and to the B constant of free Ar2, indicating that H2S does not contribute to the moment of inertia about the a-axis. Ab initio calculations at MP2 level with aug-cc-pVQZ basis set lead to an equilibrium C2v minimum structure with the Ar-Ar line perpendicular to the H-H line and the S away from Ar2. The centrifugal distortion constants, calculated using the ab initio force field, are in reasonable agreement with the experimental values. However, they do not show the variation observed for different isotopmers. The binding energy of Ar2-H2S has been determined to be 507 cm-1(6.0 kJ mol-1) by CBS extrapolation after correcting for basis set superposition error. Potential energy scans point out that the barrier for internal rotation of H2S about its b axis is only 10 cm-1 and it is below the zero point energy (13.5 cm-1) in this torsional degree of freedom. Internal rotation of H2S about its a- and c-axes also have small barriers of about 50 cm-1 only, suggesting that H2S is extremely floppy within the complex.

  5. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  6. Structure of dimethylphenyl betaine hydrochloride studied by X-ray diffraction, DFT calculation, NMR and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Katrusiak, A.; Dega-Szafran, Z.; Kowalczyk, I.

    2013-01-01

    The structure of dimethylphenyl betaine hydrochloride (1) has been studied by X-ray diffraction, DFT calculations, NMR and FTIR spectra. The crystals are monoclinic, space group P21/c. In the crystal, the Cl- anion is connected with protonated betaine through the O-H⋯Cl- hydrogen bond of 2.943(2) Å. The structures in the gas phase (2) and water solution (3) have been optimized by the B3LYP/6-311++G(d,p) approach and the geometrical results have been compared with the X-ray data of 1. The FTIR spectrum of the solid compound is consistent with the X-ray results. The probable assignments of the anharmonic experimental vibrational frequencies of the investigated chloride (1) based on the calculated harmonic frequencies in water solution (3) are proposed. The correlations between the experimental 1H and 13C NMR chemical shifts (δexp) of 1 in D2O and the magnetic isotropic shielding constants (σcalc) calculated by the GIAO/B3LYP/6-311G++(d,p) approach, using the screening solvation model (COSMO), δexp = a + b σcalc, for optimized molecule 3 in water solution are linear and correctly reproduce the experimental chemical shifts.

  7. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  8. Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra.

    PubMed

    De Meyer, Tim; Sinnaeve, Davy; Van Gasse, Bjorn; Rietzschel, Ernst-R; De Buyzere, Marc L; Langlois, Michel R; Bekaert, Sofie; Martins, José C; Van Criekinge, Wim

    2010-10-01

    Proton nuclear magnetic resonance ((1)H-NMR)-based metabolomics enables the high-resolution and high-throughput assessment of a broad spectrum of metabolites in biofluids. Despite the straightforward character of the experimental methodology, the analysis of spectral profiles is rather complex, particularly due to the requirement of numerous data preprocessing steps. Here, we evaluate how several of the most common preprocessing procedures affect the subsequent univariate analyses of blood serum spectra, with a particular focus on how the standard methods perform compared to more advanced examples. Carr-Purcell-Meiboom-Gill 1D (1)H spectra were obtained for 240 serum samples from healthy subjects of the Asklepios study. We studied the impact of different preprocessing steps--integral (standard method) and probabilistic quotient normalization; no, equidistant (standard), and adaptive-intelligent binning; mean (standard) and maximum bin intensity data summation--on the resonance intensities of three different types of metabolites: triglycerides, glucose, and creatinine. The effects were evaluated by correlating the differently preprocessed NMR data with the independently measured metabolite concentrations. The analyses revealed that the standard methods performed inferiorly and that a combination of probabilistic quotient normalization after adaptive-intelligent binning and maximum intensity variable definition yielded the best overall results (triglycerides, R = 0.98; glucose, R = 0.76; creatinine, R = 0.70). Therefore, at least in the case of serum metabolomics, these or equivalent methods should be preferred above the standard preprocessing methods, particularly for univariate analyses. Additional optimization of the normalization procedure might further improve the analyses.

  9. A method based on covariance and pattern recognition for improving resolutions of spatially encoded NMR spectra.

    PubMed

    Qiu, Wenqi; Chen, Youhe; Wei, Zhiliang; Yang, Jian; Lin, Yulan; Chen, Zhong

    2015-11-01

    The spatially encoded technique enables the fast acquisition of two-dimensional (2D) nuclear magnetic resonance spectrum within a single scan, serving as a powerful tool for studying various systems and phenomena in short time scales. In spatially encoded spectroscopy, the resolution in the direct dimension can be enhanced by increasing effective acquisition times. However, spectral widths and resolutions in indirect dimensions are no longer independent of each other with wider spectral widths yielding lower resolution. The covariance method, which has achieved success in enhancing resolutions in the indirect dimensions of conventional 2D spectroscopy, is employed here to improve resolutions in the spatially encoded dimension. Moreover, an algorithm is developed based on pattern recognition to eliminate artifacts arising from the employment of the covariance method and experimental imperfections in recording the spatially encoded spectra. Therefore, high-resolution homonuclear 2D correlated spectra are obtained. Experiments are performed to show the feasibility and effectiveness of this proposed method in providing high-resolution spectra within greatly shortened times.

  10. Composition of saturn's atmosphere at northern temperate latitudes from Voyager iris spectra: NH/sub 3/, PH/sub 3/, C/sub 2/H/sub 2/, C/sub 2/H/sub 6/, CH/sub 3/D, CH/sub 4/, and the saturnian D/H isotopic ratio

    SciTech Connect

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-12-15

    The abundances of minor atmospheric constituents at northern Saturnian latitudes have been inferred from infrared emission spectra recorded by Voyager. The NH/sub 3/, PH/sub 3/, C/sub 2/H/sub 2/, and C/sub 2/H/sub 6/ vertical distributions have been determined from spectra selected in a cloud-free region centered approximately at the latitude of the Voyager 2 radio-occultation point (36.5 N). The NH/sub 3/ mixing ratio in the upper troposphere is found to be compatible with the saturated partial pressure. The inferred PH/sub 3//H/sub 2/ ratio of 1.4 +- 0.8 x 10/sup -6/ is higher than the value derived from the solar P/H ratio, and the PH/sub 3/ vertical profile may extend somewhat into the stratosphere, up to a few millibars. The stratospheric C/sub 2/H/sub 2//H/sub 2/ and C/sub 2/H/sub 6//H/sub 2/ ratios are, respectively, 2.1 +- 1.4 x 10/sup -7/ and 3.0 x 1.1 x 10/sup -6/; the latter decreases sharply below the 20-50 mbar level. A larger selection of spectra yields CH/sub 3/D/H/sub 2/ = 3.9 +- 2.5 x 10/sup -7/ and CH/sub 4//H/sub 2/ = 4.5/sup +2.4//sub -1.9/ x 10/sup -3/. This result implies an enrichment of Saturn's upper atmosphere is carbon by at least a factor of 3 over the solar abundance. The D/H value resulting from our CH/sub 3/D/CH/sub 4/ ratio is 1.6/sup +1.3//sub -1.2/ x 10/sup -5/, significantly lower than previous determinations obtained from HD lines; it is also less than half of the IRIS-inferred Jovian value. Finally, the interpretation of two NH/sub 3/ lines in the 5 ..mu..m window suggests a NH/sub 3/H/sub 2/ ratio at the 2 bar level below the solar value.

  11. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-03-25

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4'-Nitrobiphenyl (abbreviated as 4M4'NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4'NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm(-1). The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental (1)H and (13)C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4'NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  12. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  13. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    PubMed Central

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  14. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  15. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  16. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  17. A specialized database manager for interpretation of NMR spectra of synthetic glucides: JPD

    NASA Astrophysics Data System (ADS)

    Czaplicki, J.; Ponthus, C.

    1998-02-01

    The current communication presents a program, written specifically to create and handle a specialized database, containing NMR spectral patterns of various monosaccharidic units. The program's database format is compatible with that of the Aurelia/Amix Bruker software package. The software facilitates the search for J patterns included in the database and their comparison with an experimental spectrum, in order to identify the components of the studied system, including the contaminants. Nous présentons ici un logiciel écrit spécifiquement pour créer et gérer une base de données spécialisées, contenant les motifs du couplage J des unités monosaccharidiques différentes. Le format de la base de données est compatible avec le format utilisé par le logiciel Aurelia/Amix de Bruker. Le logiciel facilite la recherche des motifs J inclus dans la base de données de leurs comparaisons avec un spectre expérimental, afin d'identifier les constituants de l'échantillon étudié, et ses éventuelles impuretés.

  18. Gas-phase NMR spectra of cyclohexene are consistent with a barrier to ring inversion of less than 30 kJ mol -1

    NASA Astrophysics Data System (ADS)

    Suarez, Cristina; Tafazzoli, Mohsen; True, Nancy S.

    1992-08-01

    1H NMR spectra of gaseous cyclohexene at 7.05 T and 195 K do not show line broadening attributable to axial-equatorial proton exchange, indicating that the Gibbs energy of activation, Δ G‡, is less than 30 kJ mol -1, considerably lower than the 43 kJ mol -1 barrier recently determined from a vibrational analysis.

  19. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary. PMID:25854619

  20. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary.

  1. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  2. A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.

    PubMed

    Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A

    2016-01-18

    Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses.

  3. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  4. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    NASA Astrophysics Data System (ADS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  5. A General Method for Extracting Individual Coupling Constants from Crowded 1H NMR Spectra

    PubMed Central

    Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A.

    2015-01-01

    Abstract Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of 1H‐1H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J‐resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F 2, and only the couplings to chosen spins appear, as simple doublets, in F 1. This approaches the theoretical limit for resolving 1H‐1H couplings, with close to natural linewidths and with only chemical shifts in F 2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773

  6. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  7. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  8. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  9. Achievement of 1020MHz NMR.

    PubMed

    Hashi, Kenjiro; Ohki, Shinobu; Matsumoto, Shinji; Nishijima, Gen; Goto, Atsushi; Deguchi, Kenzo; Yamada, Kazuhiko; Noguchi, Takashi; Sakai, Shuji; Takahashi, Masato; Yanagisawa, Yoshinori; Iguchi, Seiya; Yamazaki, Toshio; Maeda, Hideaki; Tanaka, Ryoji; Nemoto, Takahiro; Suematsu, Hiroto; Miki, Takashi; Saito, Kazuyoshi; Shimizu, Tadashi

    2015-07-01

    We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra. PMID:25978708

  10. Unusual effects in variable temperature powder NMR spectra of the methyl group protons in 9,10-dimethyltriptycene-d₁₂.

    PubMed

    Bernatowicz, P; Ratajczyk, T; Kalicki, P; Szymanski, S

    2014-01-01

    Variable temperature (1)H wide line NMR spectra of polycrystalline 9,10-dimethyltriptycene-d12 deuterated in the aromatic positions were studied. The spectra show different patterns in an unrepeatable dependence on the way of preparation of the powdered samples. Simultaneously, no anomalies were seen in the MAS and CPMAS proton-decoupled room-temperature (13)C spectra as well as in powder X-ray diffraction patterns. The effects observed in the (1)H spectra are tentatively explained in terms of a phenomenological model. For one of the examined samples it afforded a consistent interpretation of the entire series of temperature dependent spectra in terms of structural non uniformity of the solid material studied. Quantum character of the stochastic dynamics of the methyl groups in the investigated compound was confirmed, although these dynamics are close to the classical limit where the familiar random jump model applies. PMID:24656571

  11. MetaboID: a graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues.

    PubMed

    MacKinnon, Neil; Somashekar, Bagganahalli S; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M; Chinnaiyan, Arul M; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts.

  12. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  13. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  14. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques.

  15. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  16. The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3,4dihydro-2H-1,2,4-benzothiazine-7-sulphonamide1,1-dioxide by ab initio HF and Density Functional method.

    PubMed

    Elamurugu Porchelvi, E; Muthu, S

    2014-04-01

    The Fourier-Transform Infrared and Fourier-Transform Raman spectra of 6-Chloro-3,4dihydro-2H-1,2,4-benzothiazine-7sulphonamide1,1-dioxide(6CDBSD) was recorded in the region 4000-450cm(-1) and 4000-100cm(-1)respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 6CDBSD were carried out by HF and DFT (B3LYP) method with 6-31G (d,p) basis set. The difference between the observed and scaled wavenumber value of most of the fundamentals is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The linear polariazability (α) and the first order hyperpolarizability (βtot) values of the investigated molecule have been computed using HF and DFT with 6-31G (d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The (1)H and (13)C Nuclear Magnetic Resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic orbital (GIAO) method, confirms with the experimental values. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Thermal stability of 6CDBSD was studied by thermo gravimetric analysis (TGA). Next Fukui functions was calculated to identify changes in the reactivity of molecule. Finally molecular electrostatic potential (MEP) and other molecular properties were performed.

  17. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  18. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  19. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins.

  20. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  1. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  2. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  3. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc].

  4. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    OM application, which was consistent with other studies (Wang et al., 2001). The content of the WSS increased after the OM application indicating that the increase of labile organic carbon. The C/H mole ratio of the HS could reflect the degree of condensation (Dou et al., 1995). Effects on HA chemical and optical properties. The chemical and optical properties of HA were listed. The C/H ratios decreased after OM application, from 0.830 (CKbr) to 0.754 (O2). While △lgK increased, from 0.623 (CKbr) to 0.658 (O2). The HA structure tended to become simpler. The C/H ratio of the HA decreased after OM application. This indicates that OM application decreased the degree of condensation. The △lgK values can be used as the index of HA molecule complexity in the soil. If △lgK increased, the molecular structure becomes simpler. After OM application, △lgK increased indicating that the molecular structure became simpler. Effects on HA thermal properties. It could be seen that HA had exothermic peaks in moderate and high temperature regions. After OM application, heat (H2) of exothermic peak increased in moderate temperature region, while heat (H3) of exothermic peak decreased in high temperature region. The the heat ratio of exothermic peaks in high temperature region to moderate (H3/H2) decreased. From CKbr to O2, H3/H2 decreased from 4.31 to0.86. The HA had moderate and high temperature exothermic peaks. The heat of exothermic peaks in the moderate temperature region might show that aliphatic compounds decomposed and peripheral functional groups decarboxylated. The heat of the exothermic peaks in the high temperature region might show that the HA was oxidized completely and inter-aromatic structures in the molecule decomposed. The heat ratio of the high to moderate temperature exothermic regions (H3/H2) decreased significantly after PM application, indicating that the proportion of aromatic structure decreased and the HA molecular structure simplified. Effects on CP

  5. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented.

  6. Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C{sub 2}H{sub 2}

    SciTech Connect

    Colle, Renato; Embriaco, Davide; Massini, Michol; Simonucci, Stefano; Taioli, Simone

    2004-10-01

    Analytic expressions for the direct, resonant, and interference contributions to the differential cross section of a resonant Auger process, produced by the inner-shell photoionization of a linear molecule either 'fixed in space' or belonging to a gas of randomly oriented molecules, have been derived following Dill's procedures [Dill et al., Phys. Rev. Lett. 45, 1393 (1980)], but going beyond the two-step approximation. Angle-resolved Auger spectra of the C{sub 2}H{sub 2} molecule measured on top of the C 1s{yields}{pi}* resonance [Kivimaeki et al., J. Phys. B 30, 4279 (1997)] have been calculated together with asymmetry parameters, analyzing also the different contributions to the electron angular distributions.

  7. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  8. New hypodiphosphates of the alkali metals: Synthesis, crystal structure and vibrational spectra of the hypodiphosphates(IV) M{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (M=Rb and Cs)

    SciTech Connect

    Wu, Peng; Wiegand, Thomas; Eckert, Hellmut

    2012-10-15

    The new hypodiphosphates(IV) Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (1) and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (2) were synthesized by soft chemistry reactions from aqueous solutions of hypophosphoric acid and the corresponding heavy alkali-metal carbonates. Their crystal structures were determined by single crystal X-ray diffraction. Both compounds crystallize isotypic in the triclinic space group P-1 with one formula unit in the unit cell. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units in staggered conformation for the P{sub 2}O{sub 6} skeleton and the corresponding alkali-metal cations. In the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} ion the hydrogen atoms are in a 'trans-trans' conformation. O{center_dot}H-O hydrogen bonds between the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups consolidate the structures into a three-dimensional network. The FT-Raman and {sup 31}P and {sup 1}H and MAS NMR spectra of the title compounds have been recorded and interpreted, especially with respect to their assignment to the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups. Thermogravimetric data of 2 have been interpreted in terms of a thermal decomposition model. - Graphical Abstract: The layered compounds Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] have been synthesized and investigated. Both crystallize isotypic. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units and the corresponding alkali-metal cations. Highlights: Black-Right-Pointing-Pointer Synthesis and single-crystal structure of new alkali hypodiphosphates. Black-Right-Pointing-Pointer Structures are characterized by [(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})]{sup 2-} units and M{sup +} cations

  9. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    ERIC Educational Resources Information Center

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  10. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    OM application, which was consistent with other studies (Wang et al., 2001). The content of the WSS increased after the OM application indicating that the increase of labile organic carbon. The C/H mole ratio of the HS could reflect the degree of condensation (Dou et al., 1995). Effects on HA chemical and optical properties. The chemical and optical properties of HA were listed. The C/H ratios decreased after OM application, from 0.830 (CKbr) to 0.754 (O2). While △lgK increased, from 0.623 (CKbr) to 0.658 (O2). The HA structure tended to become simpler. The C/H ratio of the HA decreased after OM application. This indicates that OM application decreased the degree of condensation. The △lgK values can be used as the index of HA molecule complexity in the soil. If △lgK increased, the molecular structure becomes simpler. After OM application, △lgK increased indicating that the molecular structure became simpler. Effects on HA thermal properties. It could be seen that HA had exothermic peaks in moderate and high temperature regions. After OM application, heat (H2) of exothermic peak increased in moderate temperature region, while heat (H3) of exothermic peak decreased in high temperature region. The the heat ratio of exothermic peaks in high temperature region to moderate (H3/H2) decreased. From CKbr to O2, H3/H2 decreased from 4.31 to0.86. The HA had moderate and high temperature exothermic peaks. The heat of exothermic peaks in the moderate temperature region might show that aliphatic compounds decomposed and peripheral functional groups decarboxylated. The heat of the exothermic peaks in the high temperature region might show that the HA was oxidized completely and inter-aromatic structures in the molecule decomposed. The heat ratio of the high to moderate temperature exothermic regions (H3/H2) decreased significantly after PM application, indicating that the proportion of aromatic structure decreased and the HA molecular structure simplified. Effects on CP

  11. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate

    PubMed Central

    Fulcher, Yan G.; Fotso, Martial; Chang, Chee-Hoon; Rindt, Hans; Reinero, Carol R.

    2016-01-01

    Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans. PMID:27764146

  12. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile using NMR and vibrational spectra, X-ray analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2008-11-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.

  13. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils. PMID:23676036

  14. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  15. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    PubMed

    Diserens, G; Vermathen, M; Precht, C; Broskey, N T; Boesch, C; Amati, F; Dufour, J-F; Vermathen, P

    2015-01-01

    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

  16. Molecular structure, vibrational spectra, HOMO, LUMO and NMR studies of 2,3,4,5,6-penta bromo toluene and bromo durene based on density functional calculations.

    PubMed

    Krishna Kumar, V; Suganya, S; Mathammal, R

    2014-05-01

    This work deals with the vibrational spectra of 2,3,4,5,6-Penta Bromo Toluene (PBT) and Bromo Durene (BD) by quantum chemical calculations. The solid phase FTIR and FT-Raman spectra of the title compounds were recorded in the regions 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using B3LYP/6-31G* level and basis set combinations and was scaled using various scale factors yielding a good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. The HOMO and LUMO energies were calculated within the molecule. (13)C and (1)H NMR chemical shifts results were also calculated and compared with the experimental values. Thermodynamical properties like entropy heat capacity, zero point energy have been calculated for the title molecules.

  17. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  18. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  19. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  20. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  1. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  2. Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei.

    PubMed

    Pöppler, Ann-Christin; Demers, Jean-Philippe; Malon, Michal; Singh, Amit Pratap; Roesky, Herbert W; Nishiyama, Yusuke; Lange, Adam

    2016-03-16

    The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

  3. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  4. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  5. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. PMID:26480341

  6. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.

  7. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR…

  8. Combined experimental (FT-IR, UV-visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Srivastava, Ambrish Kumar; Gangwar, Shashi; Misra, Neeraj; Mondal, Avijit; Brahmachari, Goutam

    2015-09-01

    Phomarin is an important natural product belonging to anthraquinone series of compounds. The equilibrium geometry of phomarin has been determined and analyzed at DFT method employing B3LYP/6-311++G(d,p) level of computation. The reactivity of molecule using various descriptors such as Fukui functions, local softness, electrophilicity, electronegativity, Hardness, HOMO-LUMO gap are calculated and discussed. The infrared and UV-vis spectra of phomarin are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. We also notice that phomarin shows remarkable biological activities against malaria parasite. The study suggests further investigation on phomarin for their pharmacological importance.

  9. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile using X-ray analysis, NMR and vibrational spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2009-12-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.

  10. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution

    NASA Astrophysics Data System (ADS)

    Zvereva, Elena E.; Katsyuba, Sergey A.; Vandyukov, Alexander E.; Chernova, Alla V.; Kovalenko, Valery I.; Solovieva, Svetlana E.; Antipin, Igor S.; Konovalov, Alexander I.

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm -1) red shift of the IR bands of the NH 2 stretching vibrations, which suggests rather weak NH⋯N hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes.

  11. Anomalous peaks in NMR spectra of iron-containing silicate minerals: pseudo-contact shifts and the potential for mapping the distributions of transition metal ions

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.; Kelsey, K. E.

    2009-04-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy has now been applied to problems of mineral structure for more than 25 years. Early attempts to collect MAS spectra on natural minerals rich in iron (or other cations with unpaired electron spins, e.g. more than a few % FeO) showed serious peak broadening, loss of signal, and thus loss of structural information. Spectroscopists have thus largely avoided such materials and have worked either with low-Fe natural minerals (e.g. zeolites) or with Fe-free synthetic compositions. While this problem remains, it has recently become apparent that in silicates with minor contents of such elements (100's to 1000's of ppm), or, in special cases, with much higher contents (at least 4% FeO), NMR spectra of nuclides such as Si-29 and Al-27 may indeed provide interesting and useful structural information that may eventually reveal new details of cation distribution, ordering, clustering, etc. Here we report on the early stages of this new application. In a recent report (Stebbins, Panero, Smyth and Frost, Am. Min. in press) we noted the presence of a variety of tiny "extra" peaks in Si-29 spectra of forsterite and wadsleyite, both containing 10's to 1000's of ppm of transition metal impurities. Some of these have chemical shifts well outside the known range for diamagnetic silicates, and were hypothesized to result from "pseudo-contact" interactions with unpaired electrons, which depend strongly on local structure. Peak shifts of this type have long been known in Sn-119 and Y-89 spectra for oxides such as rare-earth stannates (Grey et al.), but have apparently not been previously reported for silicates. New data on Si-29 and Al-27 NMR of synthetic pyrope (0.6 % CoO) and natural pyropes from the Dora Maira massif (1.5 to 3.5 wt % FeO) also show "anomalous" resonances, some of which again fall well outside the range of normal chemical shifts (e.g. +140 ppm in a Si-29 spectrum, 70 and 35 ppm in the Al-27 spectrum of a

  12. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra.

    PubMed

    Bernal, Andrés; Castillo, Andrés M; González, Fabio; Patiny, Luc; Wist, Julien

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems. PMID:25701998

  13. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  14. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    NASA Astrophysics Data System (ADS)

    Bernal, Andrés; Castillo, Andrés M.; González, Fabio; Patiny, Luc; Wist, Julien

    2015-02-01

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.

  15. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    SciTech Connect

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.; González, Fabio; Wist, Julien

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.

  16. Effects of T2-relaxation in MAS NMR spectra of the satellite transitions for quadrupolar nuclei: a 27Al MAS and single-crystal NMR study of alum KAl(SO 4) 2 · 12H 2O

    NASA Astrophysics Data System (ADS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jørgen

    2005-04-01

    Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO 4) 2 · 12H 2O), recorded in the temperature range from -76 to 92 °C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse ( T2) relaxation times for the two inner ( m = 1/2 ↔ m = 3/2 and m = -1/2 ↔ m = -3/2) and correspondingly for the two outer ( m = 3/2 ↔ m = 5/2 and m = -3/2 ↔ m = -5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 °C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant ( T1 = 0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear ( 27Al- 1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.

  17. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  18. A comparative study of the conformational equilibria, vibrational, 1H and 13C NMR spectra of isobutyranilide and its derivative the anticancer drug flutamide

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The molecular structure of isobutyranilide and flutamide were investigated by DFT-B3LYP/6-311G** and MP2/6-311G** calculations. Isobutyranilide was predicted to exist predominantly in a planar cis conformation, while flutamide in non-planar structures with the CF3 and the NO2 groups adopting an out of the phenyl-plane configuration. The vibrational frequencies of the low energy structures of the two molecules were computed at the DFT-B3LYP level of theory. From the calculated Gibb's free energies, isobutyranilide is estimated to have an equilibrium mixture of 91% cis and 9% trans structures, while flutamide is calculated to have a mixture of 65% cis-cis and 28% trans-cis structures at 298.15 K. The analysis of the observed vibrational spectra supports the presence of isobutyranilide in only one conformation at room temperature. From a 1:1 acetonitrile solvent experiment flutamide is determined to exist in more than one conformation at ambient temperature. Complete vibrational assignments of the normal modes of isobutyranilide and flutamide were provided on the basis of combined normal coordinate calculations and experimental Infrared and Raman spectra. The 1H and 13C NMR spectra of isobutyranilide were measured and their chemical shifts were compared to the corresponding ones of flutamide.

  19. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  20. Reactions of vanadium dioxide molecules with acetylene: infrared spectra of VO2(η(2)-C2H2)(x) (x = 1, 2) and OV(OH)CCH in solid neon.

    PubMed

    Zhou, Xiaojie; Chen, Mohua; Zhou, Mingfei

    2013-07-01

    Reactions of vanadium dioxide molecules with acetylene have been studied by matrix isolation infrared spectroscopy. Reaction intermediates and products are identified on the basis of isotopic substitutions as well as density functional frequency calculations. Ground state vanadium dioxide molecule reacts with acetylene in forming the side-on-bonded VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes spontaneously on annealing in solid neon. The VO2(η(2)-C2H2) complex is characterized to have a (2)B2 ground state with C2v symmetry, whereas the VO2(η(2)-C2H2)2 complex has a (2)A ground state with C2 symmetry. The VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes are photosensitive. The VO2(η(2)-C2H2) complex rearranges to the OV(OH)CCH molecule upon UV-vis light excitation.

  1. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  2. /sup 2/H nuclear magnetic resonance of exchange-labeled gramicidin in an oriented lyotropic nematic phase

    SciTech Connect

    Davis, J.H.

    1988-01-12

    Lyotropic nematic liquid-crystalline phases, such as that formed by potassium laurate/decanol/KCl/water, are found to accept readily large amphiphilic solute molecules. Since these phases spontaneously orient in high magnetic fields, it becomes possible to obtain NMR spectra of biologically interesting solutes in an oriented axially symmetric environment. The amide hydrogens of the peptide backbone of gramicidin D (Dubos) were exchanged for deuterium, and the gramicidin was incorporated into a lyotropic nematic phase made with deuteriated buffer in place of water. /sup 2/H NMR spectra of oriented, exchange-labeled gramicidin were then obtained. The strong water signal from the deuteriated buffer was eliminated by using selective excitation and a polynomial subtraction procedure. The /sup 2/H NMR spectra at high temperature consist of twelve major quadrupolar doublets. The splittings observed are largely independent of temperature, suggesting a highly rigid backbone structure. Two of the doublets, which are chemically shifted relative to the others, show stronger temperature dependence. These two probably arise from the exchangeable amino hydrogens on the tryptophan indole moieties of the peptide. While we cannot yet assign all of the doublets, the spectra and nuclear magnetic relaxation data are consistent with a rigid slightly distorted ..beta../sub LD//sup 6.3/ helix undergoing axially symmetric reorientation about the director of the liquid-crystalline phase. The correlation time for the axially symmetric reorientation is determined by relaxation measurements to be about 10/sup -7/s.

  3. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  4. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  5. Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR

    PubMed Central

    Traaseth, Nathaniel J.; Veglia, Gianluigi

    2011-01-01

    We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and high redundancy in the primary sequence. We implemented this approach in both heteronuclear 15N-13Cα and homonuclear 13C-13C dipolar assisted rotational resonance (DARR) correlation experiments. We demonstrate its efficacy for the membrane protein phospholamban reconstituted in fluid PC/PE/PA lipid bilayers. The main advantage of this method is to discriminate overlapped 13Cα resonances by strategically labeling the preceding residue. This method is highly complementary to 13C′i-1-15Ni-13Cαi and 13Cαi-1-15Ni-1-13C′i experiments to discriminate inter-residue spin systems at a minimal cost to signal-to-noise. PMID:21482162

  6. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  7. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study.

    PubMed

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  8. Pure shift NMR.

    PubMed

    Zangger, Klaus

    2015-04-01

    Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited resolution is a particular problem in proton NMR experiments, resulting in part from the limited proton chemical shift range (∼10 ppm) but even more from the splittings due to scalar coupling to nearby protons. "Pure shift" NMR spectroscopy (also known as broadband homonuclear decoupling) has been developed for disentangling overlapped proton NMR spectra. The resulting spectra are considerably simplified as they consist of single lines, reminiscent of proton-decoupled C-13 spectra at natural abundance, with no multiplet structure. The different approaches to obtaining pure shift spectra are reviewed here and several applications presented. Pure shift spectra are especially useful for highly overlapped proton spectra, as found for example in reaction mixtures, natural products and biomacromolecules.

  9. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.

  10. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    PubMed

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. PMID:25998807

  11. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  12. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  13. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. PMID:25305625

  14. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  15. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  16. NMR of 133Cs+ in stretched hydrogels: One-dimensional, z- and NOESY spectra, and probing the ion's environment in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H.; Naumann, Christoph; Chapman, Bogdan E.

    2015-12-01

    133Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on 133Cs+ in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular 133Cs+ signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of 133Cs+ reported here opens up applications of this K+ congener for studies of cation-handling by metabolically-active cells and tissues in aligned states.

  17. NMR spectra and potentiometry studies of aluminum(III) binding with coenzyme NAD+ in acidic aqueous solutions.

    PubMed

    Yang, Xiaodi; Bi, Shuping; Yang, Xiaoliang; Yang, Li; Hu, Jun; Liu, Jian; Yang, Zhengbiao

    2003-06-01

    Complexation and conformational studies of coenzyme NAD+ with aluminum were conducted in acidic aqueous solutions (pH 2-5) by means of potentiometry as well as multinuclear (1H, 13C, 31P, 27Al) and two-dimensional (1H, 1H-NOESY) NMR spectroscopy. These led to the following results: (1) Al could coordinate with NAD+ through the following binding sites: N7' of adenine and pyrophosphate free oxygen (O(A)1, O(N)1,O(A)2) to form various mononuclear 1:1 (AlLH23+, AlLH2+) and 2:1 (AlL2-) species, and dinuclear 2:2 (Al2L22+) species. (2) The conformations of NAD+ and Al-NAD+ depended on the solvents and different species in the complexes. The results suggest the occurrence of an Al-linked complexation, which causes structural changes at the primary recognition sites and secondary conformational alterations for coenzymes. This finding will help us to understand role of Al in biological enzyme reaction systems.

  18. A Comparison of NMR Spectra Obtained for Solid-Phase-Synthesis Resins Using Conventional High-Resolution, Magic-Angle-Spinning, and High-Resolution Magic-Angle-Spinning Probes

    NASA Astrophysics Data System (ADS)

    Keifer, Paul A.; Baltusis, Laima; Rice, David M.; Tymiak, Adrienne A.; Shoolery, James N.

    It has recently been shown that high-resolution 1H NMR spectra can be obtained for samples covalently bound to polystyrene-based (Tentagel) solid-phase-synthesis resins by the use of magic-angle spinning (MAS) combined with high-resolution-probe technology. The attainable spectral resolution in the 1H and 13C NMR spectra of these resins is affected by molecular mobility and magnetic-susceptibility mismatches, both within the sample and in the probe itself. Using new high-resolution MAS probes called Nano·nmr probes, the importance of magnetic-susceptibility matching in the construction of these probes is demonstrated, and the limitations of using MAS alone to generate line narrowing in both 1H and 13C NMR are explored using a solvent-swollen functionalized Wang resin. The effects of presaturation, temperature, spin rate, and different solvents upon spectral quality have also been investigated, and advanced 1D- and 2D-experimental capability is demonstrated. This ability to generate high-resolution NMR spectra of samples still bound to the resins is expected to be of extreme interest in not only solid-phase synthesis, but also in the rapidly growing field of combinatorial chemistry.

  19. Technical aspects of fast magic-angle turning NMR for dilute spin-1/2 nuclei with broad spectra.

    PubMed

    Hu, Y-Y; Schmidt-Rohr, K

    2011-09-01

    For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (>1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Gan's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8γB(1); methods to minimize the duration of z-periods by cyclic decrementation; shearing without digitization artifacts, by sharing between channels (points); and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple-π-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb(2)Te(3) and Ag(0.53)Pb(18)Sb(1.2)Te(20), with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the (125)Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation. PMID:21782396

  20. Dynamical structure of paramagnetic [M(H2O)6][SiF6] (M = Fe2+,Ni2+) crystal studied by means of 2H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Iijima, T.; Suhara, M.

    2000-08-01

    The temperature dependences of the 2H nuclear magnetic resonance (NMR) spectra and the spin-lattice relaxation time T1 were measured for [Ni(H2O)6][SiF6] and [Fe(H2O)6][SiF6]. The motional modes for both compounds were discussed on the basis of the spectral simulation. The temperature variations of the 2H NMR spectra at high temperatures could be explained by three-site jumps of [Ni(H2O)6]2+ about the C3 axis for [Ni(H2O)6][SiF6]. For [Fe(H2O)6][SiF6], however, six-site jumps of [Fe(H2O)6]2+ about the C3 axis were found to be most probable form of motion at high temperatures. At low temperatures, the 2H NMR spectra of both compounds could be explained by 180° flips of the water molecule. The 2H NMR T1 was dominated by the fluctuations of the electric field gradient caused by the molecular motion and of the magnetic interaction between the 2H nucleus and the unpaired electron spin in the metal ion. T1 was analysed in terms of the motional modes predicted from the spectral simulation. The activation energies, the jumping rates at infinite temperature for each form of motion and the quadrupole interaction parameters (e2Qq/h,η) were obtained from the 2H NMR spectra and T1. The conclusions from the spectral simulation are in good agreement with the results for T1. These results suggest that [Fe(H2O)6][SiF6] possesses dynamic disorder structure in the high-temperature phase.

  1. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  2. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost.

  3. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation.

    PubMed

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost. PMID:26397220

  4. Automated feature extraction for the classification of human in vivo 13C NMR spectra using statistical pattern recognition and wavelets.

    PubMed

    Tate, A R; Watson, D; Eglen, S; Arvanitis, T N; Thomas, E L; Bell, J D

    1996-06-01

    If magnetic resonance spectroscopy (MRS) is to become a useful tool in clinical medicine, it will be necessary to find reliable methods for analyzing and classifying MRS data. Automated methods are desirable because they can remove user bias and can deal with large amounts of data, allowing the use of all the available information. In this study, techniques for automatically extracting features for the classification of MRS in vivo data are investigated. Among the techniques used were wavelets, principal component analysis, and linear discriminant function analysis. These techniques were tested on a set of 75 in vivo 13C spectra of human adipose tissue from subjects from three different dietary groups (vegan, vegetarian, and omnivore). It was found that it was possible to assign automatically 94% of the vegans and omnivores to their correct dietary groups, without the need for explicit identification or measurement of peaks.

  5. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  6. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  7. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in (23)Na and (133)Cs spectra.

    PubMed

    Kuchel, Philip W; Chapman, Bogdan E; Müller, Norbert; Bubb, William A; Philp, David J; Torres, Allan M

    2006-06-01

    NMR spectra of (23)Na(+) and (133)Cs(+) in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 degrees C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to approximately 2-fold. After constituting the gel in buffers containing NaCl and CsCl, both (23)Na and (133)Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B(0), of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  8. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: Verification with residual quadrupolar splittings in 23Na and 133Cs spectra

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Chapman, Bogdan E.; Müller, Norbert; Bubb, William A.; Philp, David J.; Torres, Allan M.

    2006-06-01

    NMR spectra of 23Na + and 133Cs + in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 °C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to ˜2-fold. After constituting the gel in buffers containing NaCl and CsCl, both 23Na and 133Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B0, of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  9. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  10. DFT 2H quadrupolar coupling constants of ruthenium complexes: a good probe of the coordination of hydrides in conjuction with experiments.

    PubMed

    del Rosal, Iker; Gutmann, Torsten; Maron, Laurent; Jolibois, Franck; Chaudret, Bruno; Walaszek, Bernadeta; Limbach, Hans-Heinrich; Poteau, Romuald; Buntkowsky, Gerd

    2009-07-21

    Transition metal (TM) hydrides are of great interest in chemistry because of their reactivity and their potential as catalysts for hydrogenation reactions. 2H solid-state NMR can be used in order to get information about the local environment of hydrogen atoms, and more particularly the coordination mode of hydrides in such complexes. In this work we will show that it is possible to establish at the level of density functional theory (DFT) a viable methodological strategy that allows the determination of 2H NMR parameters, namely the quadrupolar coupling constant (C(Q)) respectively the quadrupolar splitting (deltanuQ) and the asymmetry parameter (etaQ). The reliability of the method (B3PW91-DFT) and basis set effects have been first evaluated for simple organic compounds (benzene and fluorene). A good correlation between experimental and theoretical values is systematically obtained if the large basis set cc-pVTZ is used for the computations. 2H NMR properties of five mononuclear ruthenium complexes (namely Cp*RuD3(PPh3), Tp*RuD(THT)2, Tp*RuD(D2)(THT) and Tp*RuD(D2)2 and RuD2(D2)2(PCy3)2) which exhibit different ligands and hydrides involved in different coordination modes (terminal-H or eta2-H2), have been calculated and compared to previous experimental data. The results obtained are in excellent agreement with experiments. Although 2H NMR spectra are not always easy to analyze, assistance by quantum chemistry calculations allows unambiguous assignment of the signals of such spectra. As far as experiments can be achieved at very low temperatures in order to avoid dynamic effects, this hybrid theoretical/experimental tool may give useful insights in the context of the characterization of ruthenium surfaces or nanoparticles with solid-state NMR. PMID:19842483

  11. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  12. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Hertkorn, N; Harir, M; Schmitt-Kopplin, Ph

    2015-09-01

    High-field NMR spectra of Murchison meteorite methanolic extracts revealed primarily aliphatic extraterrestrial organic matter (EOM) with near statistical branching of commonly C(3-5) units separated by heteroatoms and aromatic units. The ratios of CCH, OCH and C(sp2)H units were 89 : 8 : 3, whereas carbon-based aliphatic chain termination was in the order methyl >  -COOH >  -CH(CH3)COOH. Aliphatic methine carbon was abundant, but its weak NMR signatures were primarily deduced from JRES (J-resolved) NMR spectra. Carbon NMR spectra were dominated by methylene and methyl carbon; strong apodization revealed methine carbon, of which about 20% was aromatic. Extrapolation provided 5-7% aromatic carbon present in Murchison soluble EOM. Compositional heterogeneity in Murchison methanolic extracts was visible in NMR and Fourier transform ion cyclotron (FTICR) mass spectra obtained from a few cubic millimeters of solid Murchison meteorite; increasing sample size enhanced uniformity of NMR spectra. Intrinsic chemical diversity and pH-dependent chemical shift variance contributed to the disparity of NMR spectra. FTICR mass spectra provided distinct clustering of CHO/CHOS and CHNO/CHNOS molecular series and confirmed the prevalence of aliphatic/alicyclic (73%) over single aromatic (21%) and polyaromatic (6%) molecular compositions, suggesting extensive aliphatic substitution of aromatic units as proposed by NMR. Murchison soluble EOM molecules feature a center with enhanced aromatic and heteroatom content, which provides rather diffuse and weak NMR signatures resulting from a huge overall chemical diversity. The periphery of Murchison EOM molecules comprises flexible branched aliphatic chains and aliphatic carboxylic acids. These project on narrow ranges of chemical shift, facilitating observation in one-dimensional and two-dimensional NMR spectra. The conformational entropy provided by these flexible surface moieties facilitates the solubility of EOM. PMID

  13. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Hertkorn, N; Harir, M; Schmitt-Kopplin, Ph

    2015-09-01

    High-field NMR spectra of Murchison meteorite methanolic extracts revealed primarily aliphatic extraterrestrial organic matter (EOM) with near statistical branching of commonly C(3-5) units separated by heteroatoms and aromatic units. The ratios of CCH, OCH and C(sp2)H units were 89 : 8 : 3, whereas carbon-based aliphatic chain termination was in the order methyl >  -COOH >  -CH(CH3)COOH. Aliphatic methine carbon was abundant, but its weak NMR signatures were primarily deduced from JRES (J-resolved) NMR spectra. Carbon NMR spectra were dominated by methylene and methyl carbon; strong apodization revealed methine carbon, of which about 20% was aromatic. Extrapolation provided 5-7% aromatic carbon present in Murchison soluble EOM. Compositional heterogeneity in Murchison methanolic extracts was visible in NMR and Fourier transform ion cyclotron (FTICR) mass spectra obtained from a few cubic millimeters of solid Murchison meteorite; increasing sample size enhanced uniformity of NMR spectra. Intrinsic chemical diversity and pH-dependent chemical shift variance contributed to the disparity of NMR spectra. FTICR mass spectra provided distinct clustering of CHO/CHOS and CHNO/CHNOS molecular series and confirmed the prevalence of aliphatic/alicyclic (73%) over single aromatic (21%) and polyaromatic (6%) molecular compositions, suggesting extensive aliphatic substitution of aromatic units as proposed by NMR. Murchison soluble EOM molecules feature a center with enhanced aromatic and heteroatom content, which provides rather diffuse and weak NMR signatures resulting from a huge overall chemical diversity. The periphery of Murchison EOM molecules comprises flexible branched aliphatic chains and aliphatic carboxylic acids. These project on narrow ranges of chemical shift, facilitating observation in one-dimensional and two-dimensional NMR spectra. The conformational entropy provided by these flexible surface moieties facilitates the solubility of EOM.

  14. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such

  15. HOMO-LUMO, UV, NLO, NMR and vibrational analysis of 3-methyl-1-phenylpyrazole using FT-IR, FT-RAMAN FT-NMR spectra and HF-DFT computational methods.

    PubMed

    Carthigayan, K; Xavier, S; Periandy, S

    2015-05-01

    In this paper, the spectral analysis of 3-methyl-1-phenylpyrazole is carried out using the FT-IR, FT Raman, FT NMR and UV-Vis spectra with the help of quantum mechanical computations using HF and density functional theories. The different conformers of the compound and their minimum energies are studied using B3LYP functional with 6-311+G (d,p) basis set and the most stable conformer with minimum energy was identified and the same conformer was used for further computations. The computed wave numbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the modes of vibrations are assigned and the structure the molecule is analyzed in terms of parameters like bond length, bond angle and dihedral angle predicted by both HF and B3LYP methods with 6-311+G (d,p) and 6-311++G (d,p) basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non-linear property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for (1)H and (13)C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. PMID:25710893

  16. HOMO-LUMO, UV, NLO, NMR and vibrational analysis of 3-methyl-1-phenylpyrazole using FT-IR, FT-RAMAN FT-NMR spectra and HF-DFT computational methods.

    PubMed

    Carthigayan, K; Xavier, S; Periandy, S

    2015-05-01

    In this paper, the spectral analysis of 3-methyl-1-phenylpyrazole is carried out using the FT-IR, FT Raman, FT NMR and UV-Vis spectra with the help of quantum mechanical computations using HF and density functional theories. The different conformers of the compound and their minimum energies are studied using B3LYP functional with 6-311+G (d,p) basis set and the most stable conformer with minimum energy was identified and the same conformer was used for further computations. The computed wave numbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the modes of vibrations are assigned and the structure the molecule is analyzed in terms of parameters like bond length, bond angle and dihedral angle predicted by both HF and B3LYP methods with 6-311+G (d,p) and 6-311++G (d,p) basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non-linear property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for (1)H and (13)C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated.

  17. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  18. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  19. Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules.

    PubMed

    Bally, Thomas; Rablen, Paul R

    2011-06-17

    The performance of 250 different computational protocols (combinations of density functionals, basis sets and methods) was assessed on a set of 165 well-established experimental (1)H-(1)H nuclear coupling constants (J(H-H)) from 65 molecules spanning a wide range of "chemical space". Thereby we found that, if one uses core-augmented basis sets and allows for linear scaling of the raw results, calculations of only the Fermi contact term yield more accurate predictions than calculations where all four terms that contribute to J(H-H) are evaluated. It turns out that B3LYP/6-31G(d,p)u+1s is the best (and, in addition, one of the most economical) of all tested methods, yielding predictions of J(H-H) with a root-mean-square deviation from experiment of less than 0.5 Hz for our test set. Another method that does similarly well, without the need for additional 1s basis functions, is B3LYP/cc-pVTZ, which is, however, ca. 8 times more "expensive" in terms of CPU time. A selection of the better methods was tested on a probe set comprising 61 J(H-H) values from 37 molecules. In this set we also included five molecules where conformational averaging is required. The rms deviations were better than or equal to those with the training set, which indicates that the method we recommend is generally applicable for organic molecules. We give instructions on how to carry out calculations of (1)H chemical shifts and J(H-H) most economically and provide scripts to extract the relevant information from the outputs of calculations with the Gaussian program in clearly arranged form, e.g., to feed them into programs for simulating entire (1)H NMR spectra.

  20. First theoretical global line lists of ethylene (12C2H4) spectra for the temperature range 50-700 K in the far-infrared for quantification of absorption and emission in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Rey, M.; Delahaye, T.; Nikitin, A. V.; Tyuterev, Vl. G.

    2016-10-01

    We present the construction of complete and comprehensive ethylene line lists for the temperatures 50-700 K based on accurate ab initio potential and dipole moment surfaces and extensive first-principle calculations. Three lists spanning the [0-6400] cm-1 infrared region were built at T = 80, 160, and 296 K, and two lists in the range [0-5200] cm-1 were built at 500 and 700 K. For each of these five temperatures, we considered possible convergence problems to ensure reliable opacity calculations. Our final list at 700 K was computed up to J = 71 and contains almost 60 million lines for intensities I > 5 × 10-27 cm/molecule. Comparisons with experimental spectra carried out in this study showed that for the most active infrared bands, the accuracy of band centers in our theoretical lists is better on average than 0.3 cm-1, and the integrated absorbance errors in the intervals relevant for spectral analyses are about 1-3%. These lists can be applied to simulations of absorption and emission spectra, radiative and non-LTE processes, and opacity calculations for planetary and astrophysical applications. The lists are freely accessible through the TheoReTS information system at http://theorets.univ-reims.fr and http://theorets.tsu.ru

  1. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  2. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed

    Bayerl, T M; Bloom, M

    1990-08-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A.

  3. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed Central

    Bayerl, T M; Bloom, M

    1990-01-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A. PMID:2207243

  4. 19F high magnetic field NMR study of beta-ZrF4 and CeF4: from spectra reconstruction to correlation between fluorine sites and 19F isotropic chemical shifts.

    PubMed

    Legein, C; Fayon, F; Martineau, C; Body, M; Buzaré, J-Y; Massiot, D; Durand, E; Tressaud, A; Demourgues, A; Péron, O; Boulard, B

    2006-12-25

    High magnetic field and high spinning frequency one- and two-dimensional one-pulse MAS 19F NMR spectra of beta-ZrF4 and CeF4 were recorded and reconstructed allowing the accurate determination of the 19F chemical shift tensor parameters for the seven different crystallographic fluorine sites of each compound. The attributions of the NMR resonances are performed using the superposition model for 19F isotropic chemical shift calculation initially proposed by Bureau et al. (Bureau, B.; Silly, G.; Emery, J.; Buzaré, J.-Y. Chem. Phys. 1999, 249, 85-104). A satisfactory reliability is reached with a root-mean-square (rms) deviation between calculated and measured isotropic chemical shift values equal to 1.5 and 3.5 ppm for beta-ZrF4 and CeF4, respectively. PMID:17173418

  5. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system.

  6. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. PMID:20149698

  7. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  8. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin.

  9. Synthesis, crystal structure and physico-chemical properties of 3,3'-[(4-hydroxyphenyl)methyl] bis-(4-hydroxy-2H-chromen-2-one).

    PubMed

    Elenkova, Denitsa; Morgenstern, Bernd; Manolov, Ilia; Milanova, Maria

    2014-01-01

    The compound 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) was synthesized by the Knoevenagel reaction. Crystals, suitable for X-ray data collection, were grown by slow evaporation from an ethanol solution. The product 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) · ethanol crystallizes in the monoclinic system, space group P2(1)/n. The ultraviolet/visible absorption spectra in different solvents were recorded. Sensitivity of the compound to solvent polarity and hydrogen bonding with protic (ethanol, H(2)O) and aprotic (dimethylsulfoxide, acetonitrile) solvents was detected. Based on (1)H-NMR spectroscopy as well as on potentiometric and UV/vis titration experiments the acid dissociation constants for 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) were estimated. PMID:25551711

  10. NBO, HOMO-LUMO, UV, NLO, NMR and vibrational analysis of veratrole using FT-IR, FT-Raman, FT-NMR spectra and HF-DFT computational methods.

    PubMed

    Suvitha, A; Periandy, S; Gayathri, P

    2015-03-01

    This work deals with FT-IR, FT-Raman and FT-NMR spectral analysis and NBO, NLO, HOMO-LUMO and electronic transitions studies on veratrole. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands were interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d, p) basis set. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. In addition, molecular electrostatic potential (MEP), Natural Bond-Orbital (NBO) analysis and thermodynamic properties were performed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method and compared with experimental chemical shift.

  11. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  12. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  13. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  14. Deuterium NMR study of amino acid coordination to chromium(III)

    SciTech Connect

    Green, C.A.; Place, H.; Willett, R.D.; Legg, J.I.

    1986-12-17

    A series of bis(ethylenediamine)Cr(III)-amino acid complexes, synthesized with deuterium-labeled alanine, glycine, homoserine, leucine, methionine, phenylalanine, serine, and threonine, was characterized by /sup 2/H NMR spectroscopy. The spectra show that these bidentate-coordinated amino acid complexes decompose via monodentate species. In addition, the diastereomeric isomers of alanine and leucine can be distinguished in the spectra. This was confirmed by the isolation of one of the L-leucine isomers. The bis(1,3-propanediamine)Cr(III) complexes of glycine and alanine were also synthesized, and the NMR spectra of these complexes and ..cap alpha..-cis-(Cr(ethylenediaminediacetate)(glycinate)) show changes due to variation in the ligand complement. The crystal structure of ..cap alpha..-cis(Cr(ethylenediaminediacetate)(glycinate)) x 2H/sub 2/O (CrO/sub 6/N/sub 3/C/sub 8/H/sub 14/ x 2H/sub 2/O) was determined and supports the NMR observations. This complex crystallizes in the space group P2/sub 1//c of the monoclinic crystal system with a = 8.9231 (19) A, b = 10.1889 (22) A, c = 15.4180 (30) A, ..beta.. = 102.657 (17)/sup 0/, and Z = 4. An improved method for the synthesis of bis(diamine)Cr(III)-amino acid complexes is also reported. 24 references, 3 figures, 7 tables.

  15. Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond time scale.

    PubMed

    Torres, Olga; Procacci, Barbara; Halse, Meghan E; Adams, Ralph W; Blazina, Damir; Duckett, Simon B; Eguillor, Beatriz; Green, Richard A; Perutz, Robin N; Williamson, David C

    2014-07-16

    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3)3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan (1)H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial (31)P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube.

  16. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: A combined experimental and density functional methods

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xueliang

    2015-01-01

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  17. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method. PMID:25123947

  18. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  19. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  20. Theoretical investigation of 5-(2-acetoxyethyl)-6-methylpyrimidin-2,4-dione: conformational study, NBO and NLO analysis, molecular structure and NMR spectra.

    PubMed

    Pir, Hacer; Günay, Nergin; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2013-08-01

    Structural and conformational, natural bond orbital (NBO) and nonlinear optical (NLO) analysis was performed, and (1)H and (13)C NMR chemical shifts values of 5-(2-Acetoxyethyl)-6-methylpyrimidin-2,4-dione [C9H12N2O4] in the ground state were calculated by using Density Functional Theory (DFT-B3LYP/6-311++G(d,p)) and Hartree-Fock (HF/6-311++G(d,p)) methods. The NMR data were calculated by means of the GIAO, CSGT, and IGAIM methods. In addition, the molecular frontier orbital energies, thermodynamic parameters (in the range of 200-700 K), molecular surfaces, Mulliken charges and atomic polar tensor-based charges were investigated. Besides, the analysis of all possible conformational of the title compound, a detailed potential energy curve for τ1(C8O3C10O4), τ2 (C8O3C10C11) and τ3 (C5C7C8O3) dihedral angles were performed in steps of 10° from 0° to 360°, and depicted to find the most stable form. Finally, the calculated HOMO and LUMO energies show that charge transfer occurs within the title compound.

  1. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite† †Electronic supplementary information (ESI) available: Further information on the structures generated by AIRSS, alternative structural models, supercell calculations, total enthalpies of all computed structures and further information on 1H/2H NMR parameters. Example input and all raw output files from AIRSS and CASTEP NMR calculations are also included. See DOI: 10.1039/c6cp01529h Click here for additional data file.

    PubMed Central

    Moran, Robert F.; McKay, David; Pickard, Chris J.; Berry, Andrew J.; Griffin, John M.

    2016-01-01

    The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg2+ and randomly placing two H+ in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1–H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4–H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies. PMID:27020937

  2. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments.

    PubMed

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio

    2015-12-01

    C-C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5-MIP-1α interaction affects the progress of autoimmune diseases.

  3. sup 2 H Nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer

    SciTech Connect

    Prosser, R.S.; Davis, J.H. ); Dahlquist, F.W.; Lindorfer, M.A. )

    1991-05-14

    Solid-state {sup 2}H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44{degree}C and 53{degree}C, from gramicidin A labels in which the proton attached to the {alpha} carbon of residue 3,4,5,10,12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-{sup 2}H bonds. The authors conclude that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor.

  4. Synthesis, structural characterization, and solid-state NMR spectroscopy of [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (phen=1, 10-phenanthroline), two organic-inorganic hybrid compounds with 1-D chain structures

    SciTech Connect

    Chang, W.-J.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. . E-mail: liikh@cc.ncu.edu.tw

    2005-12-15

    Two new organic-inorganic hybrid compounds, [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O (1) and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (2) (phen=1,10-phenanthroline), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. Their structures consist of 1-D chains of strictly alternating GaO{sub 4}N{sub 2} octahedra and phosphate tetrahedra. The phen ligands in both compounds bind in a bidentate fashion to the gallium atoms and the 1-D structures extend into 3-D supramolecular arrays via {pi}-{pi} stacking interactions of phen ligands and hydrogen bonds. {sup 2}H MAS NMR spectroscopy was applied to study the deuterated sample of 1 which contains very short hydrogen bonds with an O-O distance of 2.406(2) A. Crystal data for 1: monoclinic, space group C2/c (No. 15), a=11.077(1) A, b=21.496(2) A, c=7.9989(7) A, {beta}=127.211(2){sup o}, and Z=4. The crystal symmetry is the same for 2 as for 1 except a=27.555(2) A, b=6.3501(5) A, c=21.327(2) A, {beta}=122.498(1){sup o}, and Z=8.

  5. Vibrational analysis using FT-IR, FT-Raman spectra and HF-DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4-trimethyl pentane.

    PubMed

    Suvitha, A; Periandy, S; Govindarajan, M; Gayathri, P

    2015-03-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000cm(-1)and 50-4000cm(-1), respectively, for 2,2,4-Trimethyl Pentane, TMP (C8H18) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The scaled B3LYP/6-311++G(d,p) results shows the best agreement with the experimental values over the other method. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The physical reactions of single bond hydrocarbon TMP were investigated. The results of the calculations were applied to simulate spectra of the title compound, which shows the excellent agreement with observed spectra. Besides, Mulliken atomic charges, UV, frontier molecular orbital (FMO), MEP, NLO activity, Natural Bond-Orbital (NBO) analysis, NMR and thermodynamic properties of title molecule were also performed.

  6. Relaxation times of spin states of all ranks and orders of quadrupolar nuclei estimated from NMR z-spectra: Markov chain Monte Carlo analysis applied to 7Li+ and 23Na+ in stretched hydrogels.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Puckeridge, Max; Chapman, Bogdan E; Szekely, David

    2011-09-01

    The NMR z-spectra of 7Li+ and 23Na+ in stretched hydrogels contain five minima, or critical values, with a sharp "dagger" on the central dip. The mathematical representation of such z-spectra from spin-3/2 nuclei contains nine distinct (the total is 15 but there is redundancy of the ±order-numbers) relaxation rate constants that are unique for each of the spin states, up to rank 3, order 3. We present an approach to multiple-parameter-value estimation that exploits the high level of separability of the effects of each of the relaxation rate constants on the features of the z-spectrum. The Markov chain Monte Carlo (MCMC) method is computationally demanding but it yielded statistically robust estimates (low coefficients of variation) of the parameter values. We describe the implementation of the MCMC analysis (in the present context) and posit that it can obviate the need for using multiple-quantum filtered RF-pulse sequences to estimate all relaxation rate constants/times under experimentally favorable, but readily achievable, circumstances.

  7. Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces

    PubMed Central

    Breen, Nicholas F.; Li, Kun; Olsen, Gregory L.; Drobny, Gary P.

    2011-01-01

    LKα14 is a 14 amino acid peptide with a periodic sequence of leucine and lysine residues consistent with an amphipathic α-helix. This “hydrophobic periodicity” has been found to result in an α-helical secondary structure at air-water interfaces and on both polar and non-polar solid polymer surfaces. In this paper the dynamics of LKα14 peptides, selectively deuterated at a single leucine and adsorbed onto polystyrene and carboxylated polystyrene beads, are studied using 2H Magic Angle Spinning (MAS) solid state NMR over a 100 degree temperature range. We first demonstrate the sensitivity enhancement possible with 2H MAS techniques, which in turn enables us to obtain high quality 2H NMR spectra for selectively deuterated peptides adsorbed onto solid polymer surfaces. An extensive literature shows that the dynamics of leucine side chains are sensitive to the local structural environment of the protein. Therefore the degree to which the dynamics of leucine side chains and the backbone of the peptide LKα14 are influenced by surface proximity and surface chemistry is studied as a function of temperature with 2H MAS NMR. It is found that the dynamics of the leucine side chains in LKα14 depend strongly upon the orientation of the polymer on the surface, which in turn depends on whether the LKα14 peptide adsorbs onto a polar or non-polar surface. 2H MAS line shapes therefore permit probes of surface orientation over a wide temperature range. PMID:21650191

  8. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  9. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz.

  10. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches.

    PubMed

    Serhan, Zeinab; Borgogno, Andrea; Billault, Isabelle; Ferrarini, Alberta; Lesot, Philippe

    2012-01-01

    The overall and detailed elucidation (including the stereochemical aspects) of enzymatic mechanisms requires the access to all reliable information related to the natural isotopic fractionation of both precursors and products. Natural abundance deuterium (NAD) 2D-NMR experiments in polypeptide liquid-crystalline solutions are a new, suitable tool for analyzing site-specific deuterium isotopic distribution profiles. Here this method is utilized for analyzing saturated C14 to C18 fatty acid methyl esters (FAMEs), which are challenging because of the crowding of signals in a narrow spectral region. Experiments in achiral and chiral oriented solutions were performed. The spectral analysis is supplemented by the theoretical prediction of quadrupolar splittings as a function of the geometry and flexibility of FAMEs, based on a novel computational methodology. This allows us to confirm the spectral assignments, while providing insights into the mechanism of solute ordering in liquid-crystalline polypeptide solutions. This is found to be dominated by steric repulsions between FAMEs and polypeptides.

  11. Insight into dissolution mechanism of cellulose in [C4mim][CH3COO]/DMSO solvent by 13C NMR spectra

    NASA Astrophysics Data System (ADS)

    Xu, Airong; Zhang, Yibo

    2015-05-01

    Recently, it has been reported that 1-butyl-3-methylimidazolium acetate/dimethyl sulfoxide ([C4mim][CH3COO]/DMSO) can efficiently dissolve cellulose at room temperature. In the present study, 13C NMR measurements of 1-butyl-3-methylimidazolium acetate [C4mim][CH3COO] and cellulose were carried out in [C4mim][CH3COO]/DMSO-d6 (Deuterated dimethyl sulfoxide)/cellulose solution to directly reveal the possible dissolution mechanism of cellulose in true [C4mim][CH3COO]/DMSO solvent. The results indicate that both cation and anion of [C4mim][CH3COO] in [C4mim][CH3COO]/DMSO solvent dominate cellulose dissolution, and DMSO mainly serves to dissociate the ion pairs in [C4mim][CH3COO] into solvated cations and anions. Moreover, the hydrogen bonding interaction of anion of [C4mim][CH3COO] with cellulose hydroxyl proton is much stronger than that of cation of [C4mim][CH3COO] with cellulose hydroxyl oxygen.

  12. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz. PMID:25885091

  13. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: a combined experimental and theoretical study.

    PubMed

    Arivazhagan, M; Gayathri, R

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ(*) and π(*) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra.

  14. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Arivazhagan, M.; Gayathri, R.

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ* and π* antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra.

  15. Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).

    PubMed

    Fernández, C O; Cricco, J A; Slutter, C E; Richards, J H; Gray, H B; Vila, A J

    2001-11-28

    Cu(A) is an electron-transfer copper center present in heme-copper oxidases and N2O reductases. The center is a binuclear unit, with two cysteine ligands bridging the metal ions and two terminal histidine residues. A Met residue and a peptide carbonyl group are located on opposite sides of the Cu2S2 plane; these weaker ligands are fully conserved in all known Cu(A) sites. The Met160Gln mutant of the soluble subunit II of Thermus thermophilus ba3 oxidase has been studied by NMR spectroscopy. In its oxidized form, the binuclear copper is a fully delocalized mixed-valence pair, as are all natural Cu(A) centers. The faster nuclear relaxation in this mutant suggests that a low-lying excited state has shifted to higher energies compared to that of the wild-type protein. The introduction of the Gln residue alters the coordination mode of His114 but does not affect His157, thereby confirming the proposal that the axial ligand-to-copper distances influence the copper-His interactions (Robinson, H.; Ang, M. C.; Gao, Y. G.; Hay, M. T.; Lu, Y.; Wang, A. H. Biochemistry 1999, 38, 5677). Changes in the hyperfine coupling constants of the Cys beta-CH2 groups are attributed to minor geometrical changes that affect the Cu-S-C(beta)-H(beta) dihedral angles. These changes, in addition, shift the thermally accessible excited states, thus influencing the spectral position of the Cys beta-CH2 resonances. The Cu-Cys bonds are not substantially altered by the Cu-Gln160 interaction, in contrast to the situation found in the evolutionarily related blue copper proteins. It is possible that regulatory subunits in the mitochondrial oxidases fix the relative positions of thermally accessible Cu(A) excited states by tuning axial ligand interactions.

  16. NMR of molecules partially oriented in the gas phase

    NASA Astrophysics Data System (ADS)

    van Zijl, Peter C. M.; MacLean, C.; Skoglund, Cynthia; Bothner-By, Aksel A.

    The vapor phase 2H NMR spectra of monodeuterobenzene and pentadeuterofluorobenzene were recorded at 14.1 T. Reduction of the collision time, and thus of the linewidth, was accomplished by compressing the gas to 10.8 atm with ethane. The molecules are aligned by the field of the spectrometer and, as a consequence, quadrupolar couplings are recorded. Differences from the liquid-phase spectra arise in some of the quadrupolar splittings as well as in the scalar D-F couplings. It is rationalized that the deviating quadrupolar interaction cannot be caused by interactions resulting from incomplete quenching of the rotation, but originates from environmental effects on the quadrupolar coupling in the liquid. The results agree with recent microwave experiments.

  17. NMR characterization of membrane protein–detergent micelle solutions using microcoil equipment

    PubMed Central

    Stanczak, Pawel; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2010-01-01

    Using microcoil NMR technology, the uniformly 2H,15N-labeled integral membrane protein OmpX and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein–detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [15N,1H]-TROSY spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90 mM to 180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, Dr and Dt, respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations, and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies. PMID:19950959

  18. NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment.

    PubMed

    Stanczak, Pawel; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2009-12-30

    Using microcoil NMR technology, the uniformly (2)H,(15)N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein-detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [(15)N,(1)H]-transverse relaxation-optimized spectroscopy (TROSY) spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90-180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, D(r) and D(t), respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies.

  19. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  20. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  1. Exploring Chromophore-Binding Pocket: High-Resolution Solid-State H-C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme.

    PubMed

    Song, Chen; Lang, Christina; Mailliet, Jo; Hughes, Jon; Gärtner, Wolfgang; Matysik, Jörg

    2012-02-01

    High-resolution two-dimensional (2D) (1)H-(13)C heteronuclear correlation spectra are recorded for selective observation of interfacial 3-5.5 Å contacts of the uniformly (13)C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI-HETCOR) method. For improving (1)H spectral resolution, a windowed phase-modulated Lee-Goldburg (wPMLG) decoupling scheme is applied during the t(1) evolution period. Our approach allows for identification of chromophore-protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1-514, Cph1Δ2) containing uniformly (13)C- and (15)N-labeled PCB chromophore (u-[(13)C,(15)N]-PCB-Cph1Δ2) at 17.6 T. PMID:22303079

  2. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra.

    PubMed

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400cm(-1) and 4000-10cm(-1), respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability 〈β〉, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach. PMID:23892116

  3. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: Conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M.; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400 cm-1 and 4000-10 cm-1, respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability <β>, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach.

  4. Hydration water dynamics in bovine serum albumin at low temperatures as studied by deuterium solid-state NMR

    NASA Astrophysics Data System (ADS)

    Miyatou, Tatsuya; Araya, Takashi; Ohashi, Ryutaro; Ida, Tomonori; Mizuno, Motohiro

    2016-10-01

    Solid state 2H NMR was used to investigate changes in the structure and dynamics of hydration waters of bovine serum albumin (BSA) due to glass transitions. The 2H NMR spectra were separated into fast and slow components based on differences in spin-lattice relaxation time T1. The fast components corresponded to water molecules interacting with protein while the slow components were the water molecules similar to bulk water and deuterons of the protein backbone. Simulation analysis of the 2H NMR spectra of the fast components was used to assess the mode and rate of motions of hydration waters around the protein. At low temperatures, the water molecules underwent a 180° flip and slow reorientation in the tetrahedral sites. The distribution of the rate of the 180° flip and the D-O-D angle of water molecules were clarified. The distribution of the D-O-D angle of water molecules spread with decreasing temperature. The marked slowing down in the reorientation of water molecules was observed at a glass transition of around 200 K, which is linked to the disordered region of the protein. In contrast, the 180° flip of water molecules occurred frequently, even below 200 K. A freeze of the 180° flip of water molecules was observed around the glass transition temperature of 110 K, where primary hydrate water formed a direct hydrogen bond with the protein, making it perfectly immobile.

  5. NMR spectroscopy of some electrolyte solutions to 1.9 GPa

    NASA Astrophysics Data System (ADS)

    Ochoa, Gerardo; Colla, Christopher A.; Klavins, Peter; Augustine, Matthew P.; Casey, William H.

    2016-11-01

    Nuclear-magnetic resonance (NMR) spectra of CsCl and LaCl3 in D2O/H2O solutions were collected up to pressures of 1.9 GPa using a new NMR probe design that considerably extends the pressure range available for geochemical experiments. The longitudinal-relaxation times (T1) for 2H compare well with those reported in the previous studies of Lee et al. (1974), who examined lower pressures, and indicate that the probe functions properly. In some experiments, 133Cs and 1H NMR spectra could be taken on solutions to pressures well beyond the nominal freezing pressure of D2O or H2O to form Ice VI (near 0.9 GPa). Freezing to form the high-pressure ice is kinetically slow on an experimental time scale (minutes to hours). The data indicate that the electrolyte concentrations increase the freezing pressure of the solution. This result means that solution NMR spectra can be collected at pressures that are nearly twice the nominal freezing pressure of pure D2O or H2O. Pulsed-magnetic-field-gradient NMR methods are used to independently measure the self-diffusion coefficient of H2O in these solutions, which yields estimates of solution viscosity via the Stokes-Einstein relation. The increased viscosity accounts for the pressure variation of T1 values as rates of molecular tumbling are affected. Accounting for such changes is essential if NMR spectral line widths are used to infer pressure-enhanced rates of geochemical reactions, such as interconversion of aqueous complexes.

  6. Solid-state NMR and computational investigation of solvent molecule arrangement and dynamics in isostructural solvates of droperidol.

    PubMed

    Bērziņš, Agris; Hodgkinson, Paul

    2015-02-01

    (13)C, (15)N and (2)H solid-state NMR spectroscopy have been used to rationalize arrangement and dynamics of solvent molecules in a set of isostructural solvates of droperidol. The solvent molecules are determined to be dynamically disordered in the methanol and ethanol solvates, while they are ordered in the acetonitrile and nitromethane solvates. (2)H NMR spectra of deuterium-labelled samples allowed the characterization of the solvent molecule dynamics in the alcohol solvates and the non-stoichiometric hydrate. The likely motion of the alcohol molecules is rapid libration within a site, plus occasional exchange into an equivalent site related by the inversion symmetry, while the water molecules are more strongly disordered. DFT calculations strongly suggest that the differences in dynamics between the solvates are related to differences in the energetic penalty for reversing the orientation of a solvent molecule. PMID:25282618

  7. Disentangling scalar coupling patterns by real-time SERF NMR.

    PubMed

    Gubensäk, Nina; Fabian, Walter M F; Zangger, Klaus

    2014-10-21

    Scalar coupling constants and signal splitting patterns in NMR spectra contain a wealth of short-range structural information. The extraction of these parameters from (1)H NMR spectra is often prohibited by simultaneous scalar coupling interactions with several other protons. Here we present a high-resolution NMR experiment where scalar coupling to only one selected signal is visible. All other couplings are removed from the spectrum. This real-time selectively refocused NMR experiment is achieved by spatially selective homonuclear broadband decoupling combined with selective refocusing during acquisition. It allows the unperturbed extraction of scalar coupling constants from the highly resolved acquisition dimension of NMR spectra.

  8. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  9. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb).

  10. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb). PMID:27245403

  11. 2H nuclear magnetic resonance study of deuterated water dynamics in perfluorosulfonic acid ionomer Nafion

    NASA Astrophysics Data System (ADS)

    Han, Jun Hee; Lee, Kyu Won; Lee, Cheol Eui

    2016-11-01

    We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin-lattice relaxation, the rotating-frame spin-lattice relaxation indicated no bulk liquid water state down to 200 K.

  12. Solid state and solution 43Ca NMR of calcium peroxides involved in the disproportionation of hydrogen peroxide by calcium hydroxide.

    PubMed

    Trokiner, Arlette; Bessière, Aurélie; Thouvenot, René; Hau, Damien; Marko, Jean; Nardello, Véronique; Pierlot, Christel; Aubry, Jean-Marie

    2004-06-01

    In order to get some insight into the mechanism of the disproportionation of hydrogen peroxide catalyzed by calcium hydroxide, 43Ca NMR spectra of enriched samples of calcium peroxides and of their precursors have been studied in both solution and solid state. This study demonstrates that no well-defined peroxidized calcium species are formed in solution, showing that the catalytic role of calcium is likely restricted to the solid state. Most of the calcium compounds that could be involved in the catalytic process have been investigated with solid state NMR. The shift and quadrupolar parameters of Ca(OH)2, CaO2.8H2O and CaO2.2H2O2 are reported for the first time. These parameters are different enough to allow the quantitative analysis of a complex mixture of these compounds by NMR.

  13. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window).

    PubMed

    Földesi, A; Nilson, F P; Glemarec, C; Gioeli, C; Chattopadhyaya, J

    1993-02-01

    Pure 1'#,2',3',4'#,5',5''-2H6-ribonucleoside derivatives 10-14, 1'#,2',2'',3',4'#,5',5''-2H7-2'-deoxynucleoside blocks 15-18 and their natural-abundance counterparts were used to assemble partially deuterated ribonucleotide-dimers (* indicates deuteration at 1'#,2',3',4'#,5',5''(2H6)): ApU* 21, GpC* 22 and partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*) 23, d(ApT*) 25, d(GpC*) 26 (* indicates deuteration at 1'#,2',2'',3',4'#,5',5''(2H7)) according to the procedure described by Földesi et al. (Tetrahedron, in press). These five partially deuterated oligonucleotides were subsequently compared with their corresponding natural-abundance counterparts by 500 MHz 1H-NMR spectroscopy to evaluate the actual NMR simplifications achieved in the non-deuterated part (1H-NMR window) as a result of specific deuterium incorporation. Detailed one-dimensional 1H-NMR (500 MHz), two-dimensional correlation spectra (DQF-COSY and TOCSY) and deuterium isotope effect on the chemical shifts of oligonucleotides have been presented.

  14. Phase behavior and 13C NMR spectroscopic analysis of the mixed methane + ethane + propane hydrates in mesoporous silica gels.

    PubMed

    Lee, Seungmin; Cha, Inuk; Seo, Yongwon

    2010-11-25

    In this study, the phase behavior and quantitative determination of hydrate composition and cage occupancy for the mixed CH(4) + C(2)H(6) + C(3)H(8) hydrates were closely investigated through the experimental measurement of three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria and (13)C NMR spectra. To examine the effect of pore size and salinity, we measured hydrate phase equilibria for the quaternary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + water mixtures in silica gel pores of nominal diameters of 6.0, 15.0, and 30.0 nm and for the quinary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + NaCl + water mixtures of two different NaCl concentrations (3 and 10 wt %) in silica gel pores of a nominal 30.0 nm diameter. The value of hydrate-water interfacial tension for the CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) hydrate was found to be 47 ± 4 mJ/m(2) from the relation of the dissociation temperature depression with the pore size of silica gels at a given pressure. At a specified temperature, three-phase H-L(W)-V equilibrium curves of pore hydrates were shifted to higher pressure regions depending on pore sizes and NaCl concentrations. From the cage-dependent (13)C NMR chemical shifts of enclathrated guest molecules, the mixed CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) gas hydrate was confirmed to be structure II. The cage occupancies of each guest molecule and the hydration number of the mixed gas hydrates were also estimated from the (13)C NMR spectra.

  15. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta.

    PubMed

    Marion, D; Driscoll, P C; Kay, L E; Wingfield, P T; Bax, A; Gronenborn, A M; Clore, G M

    1989-07-25

    The application of three-dimensional (3D) heteronuclear NMR spectroscopy to the sequential assignment of the 1H NMR spectra of larger proteins is presented, using uniformly labeled (approximately 95%) [15N]interleukin 1 beta, a protein of 153 residues and molecular mass of 17.4 kDa, as an example. The two-dimensional (2D) 600-MHz spectra of interleukin 1 beta are too complex for complete analysis, owing to extensive cross-peak overlap and chemical shift degeneracy. We show that the combined use of 3D 1H-15N Hartmann-Hahn-multiple quantum coherence (HOHAHA-HMQC) and nuclear Overhauser-multiple quantum coherence (NOESY-HMQC) spectroscopy, designed to provide the necessary through-bond and through-space correlations for sequential assignment, provides a practical general-purpose method for resolving ambiguities which severely limit the analysis of conventional 2D NMR spectra. The absence of overlapping cross-peaks in these 3D spectra allows the unambiguous identification of C alpha H(i)-NH(i+1) and NH(i)-NH(i+1) through-space nuclear Overhauser connectivities necessary for connecting a particular C alpha H(i)-NH(i) through-bond correlation with its associated through-space sequential cross-peak The problem of amide NH chemical shift degeneracy in the 1H NMR spectrum is therefore effectively removed, and the assignment procedure simply involves inspecting a series of 2D 1H-1H slices edited by the chemical shift of the directly bonded 15N atom. Connections between residues can be identified almost without any knowledge of the spin system types involved, though this type of information is clearly required for the eventual placement of the connected residues within the primary sequence.

  16. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  17. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  18. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  19. Synthesis of [2H7]indatraline.

    PubMed

    Allmendinger, L; Wanner, K T

    2014-11-01

    Deuterium-labelled indatraline was synthesized in high efficiency employing a Friedel-Crafts alkylation of [(2)H6]benzene with (E)-3-(3,4-dichlorophenyl)acrylic acid as a key step. The desired labelling of the final compound was ascertained in two ways, by incorporation of [(2)H6]benzene in the target molecule and additionally by deuterium transfer to the non-deuterated aryl moiety of the Friedel-Crafts alkylation product from [(2)H6]benzene, the latter thus serving as reagent and solvent. PMID:25382822

  20. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  1. Study of carbohydrate structure and reactivity by modern NMR methods and isotopic labeling

    SciTech Connect

    Snyder, J.R.

    1987-01-01

    Chemical methods are described for preparing unenriched and (1-/sup 13/C)-enriched 5-deoxy- and 5-O-methylpentoses in the D or L configuration. The /sup 1/H and /sup 13/C NMR spectra of these compounds have been interpreted and the carbon spectra assigned with the aid of 2D /sup 13/C-/sup 1/H chemical-shift correlation spectroscopy. The tautomeric composition in /sup 2/H/sub 2/O has been quantitated with the aid of (1-/sup 13/C)-enriched derivatives. The branched-chain pentose, DL-apiose has been synthesized in good yield by a new and simple chemical method that can be adapted to prepare (1-/sup 13/C)-, (2-/sup 13/C)-, (1-/sup 2/H)- and/or (2-/sup 2/H)-enriched derivatives. The solution composition of D-idose in D/sup 2/O has been examined by /sup 13/C NMR spectroscopy using (/sup 13/C)-enriched compounds. In addition to two furanoses and two pyranoses, aldehyde and hydrate forms have been detected and quantified. The solution composition of D-talose has been investigated by /sup 13/C NMR spectroscopy using (1-/sup 13/C)talose. The tautomeric composition has been determined at 28/sup 0/, and the results show equivalent amounts of the acyclic aldehyde and hydrate. Several structurally modified furanose sugars were synthesized to assess the extent the Thorpe-Ingold effect promotes rings formation and enhances rates of ring-closure.

  2. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  3. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  4. Using NMR to study full intact wine bottles

    NASA Astrophysics Data System (ADS)

    Weekley, A. J.; Bruins, P.; Sisto, M.; Augustine, M. P.

    2003-03-01

    A nuclear magnetic resonance (NMR) probe and spectrometer capable of investigating full intact wine bottles is described and used to study a series of Cabernet Sauvignons with high resolution 1H NMR spectroscopy. Selected examples of full bottle 13C NMR spectra are also provided. The application of this full bottle NMR method to the measurement of acetic acid content, the detection of complex sugars, phenols, and trace elements in wine is discussed.

  5. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  6. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR.

    PubMed

    Misiewicz, Julia; Afonin, Sergii; Grage, Stephan L; van den Berg, Jonas; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2015-04-01

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

  7. Review of advances in coupling electrochemistry and liquid state NMR.

    PubMed

    Bussy, Ugo; Boujtita, Mohammed

    2015-05-01

    The coupling of electrochemistry and NMR spectroscopy (EC-NMR) may present an interesting approach in the environmental oxidative degradation or metabolism studies. This review presents experimental advances in the field of EC-NMR and highlights the main advantages and drawbacks of in situ and on line of NMR spectroelectrochemistry. The analysis of NMR spectra recorded in situ or on line EC-NMR permits to elucidate the reaction pathway of the electrochemical oxidation reactions and could constitute a fast way for monitoring unstable species as for instance quinone and quinone imine structures without using any coupling agents. The use of 1D and 2D NMR coupled with electrochemistry may leads to the elucidation of the major species produced from the electrochemical oxidation process. The present review gives an overview about the development of the electrochemical cells which can operate on line or in situ with NMR measurements. Future developments and potential applications of EC-NMR are also discussed.

  8. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  9. Vibrationally resolved photoelectron imaging of Cu2H- and AgCuH- and theoretical calculations.

    PubMed

    Xie, Hua; Li, Xiaoyi; Zhao, Lijuan; Liu, Zhiling; Qin, Zhengbo; Wu, Xia; Tang, Zichao; Xing, Xiaopeng

    2013-02-28

    Vibrationally resolved photoelectron spectra have been obtained for Cu(2)H(-) and AgCuH(-) using photoelectron imaging at 355 nm. Two transition bands X and A are observed for each spectrum. The X bands in both spectra show the vibration progressions of the Cu-H stretching mode and the broad peaks of these progressions indicate significant structural changes from Cu(2)H(-) and AgCuH(-) to their neutral ground states. The A bands in the spectra of Cu(2)H(-) and CuAgH(-) show stretching progressions of Cu-Cu and Ag-Cu, respectively. The contours of these two progressions are pretty narrow, indicating relatively small structural changes from Cu(2)H(-) and AgCuH(-) to their neutral excited states. Calculations based on density functional theory indicate that the ground states of Cu(2)H(-) and AgCuH(-) and the first excited states of their neutrals are linear, whereas their neutral ground states are bent. The photoelectron detachment energies and vibrational frequencies from these calculations are in good agreement with the experimental observations. Especially, the theoretical predication of linear structures for the anions and the neutral excited states are supported by the spectral features of A bands, in which the bending modes are inactive. Comparisons among the vertical detachment energies of Cu(2)H(-), AgCuH(-), and their analogs help to elucidate electronic characteristics of coinage metal elements and hydrogen in small clusters.

  10. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  11. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    motion. In the general case of large H{sub D}, isotropic spectra were obtained by dilution of {sup 1}H with {sup 2}H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids. Theoretical and technical aspects are described in the text with comments on the application of the principles to other nuclei of interest.

  12. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  13. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  14. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  15. NMR of fd coat protein.

    PubMed

    Cross, T A; Opella, S J

    1979-01-01

    The conformations of the major coat protein of a filamentous bacteriophage can be described by nuclear magnetic resonance spectroscopy of the protein and the virus. The NMR experiments involve detection of the 13C and 1H nuclei of the coat protein. Both the 13C and 1H nuclear magnetic resonance (NMR) spectra show that regions of the polypeptide chain have substantially more motion than a typical globular protein. The fd coat protein was purified by gel chromatography of the SDA solubilized virus. Natural abundance 13C NMR spectra at 38 MHz resolve all of the nonprotonated aromatic carbons from the three phenylalanines, two tyrosines, and one tryptophan of the coat protein. The alpha carbons of the coat protein show at least two different classes of relaxation behavior, indicative of substantial variation in the motion of the backbone carbons in contrast to the rigidity of the alpha carbons of globular proteins. The 1H spectrum at 360 MHz shows all of the aromatic carbons and many of the amide protons. Titration of a 1H spectra gives the pKas for the tyrosines.

  16. Experimental, DFT and molecular docking studies on 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Singh, Ravindra Kumar

    2016-10-01

    A new coumarin derivative 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol (COMSB) was synthesized and characterized with the help of 1H,13C NMR, FT-IR, FT-Raman and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. The UV-Vis spectrum studied by TD-DFT theory, with a hybrid exchange-correlation functional using Coulomb-attenuating method (CAM-B3LYP) in solvent phase gives similar pattern of bands, at energies and is consistent with that of experimental findings. The detailed analysis of vibrational (IR and Raman) spectra and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. Intra-molecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Computed first static hyperpolarizability (β0 = 8.583 × 10-30 esu) indicates non-linear optical (NLO) response of the molecule. Molecular docking studies show that the title molecule may act as potential acetylcholine esterase (AChE) inhibitor.

  17. Determination of de novo synthesized amino acids in cellular proteins revisited by 13C NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1997-04-01

    13C nuclear magnetic resonance spectroscopy was used to determine the absolute amounts to de novo synthesized amino acids in both the perchloric acid extracts and the hydrolyzed protein fractions of F98 glioma cells incubated for 2 h with 5 mmol/l [U-13C]glucose. 13C NMR spectra of the hydrolyzed protein fraction revealed a marked incorporation of 13C-labelled alanine, aspartate and glutamate into the proteins of F98 cells within the incubation period. Additionally, small amounts of 13C-labelled glycine, proline and serine could unambiguously be identified in the protein fraction. Astonishingly, approximately equal amounts of 13C-labelled glutamate and aspartate were incorporated into the cellular proteins, although the cytosolic steady-state concentration of aspartate was below 13C NMR detectability. Hypertonic stress decreased the incorporation of 13C-labelled amino acids into the total protein, albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. On the other hand, hypotonic stress increased the amount of 13C-labelled proline incorporated into the cellular proteins even though the cytosolic concentration of 13C-labelled proline was largely decreased. Apparently, hypoosmotic conditions stimulate the synthesis of proteins or peptides with a high proline content. The results show that already after 2 h of incubation with [U-13C]glucose there is a pronounced flux of 13C label into the cellular proteins, which is usually disregarded if cytosolic fluids are examined only. This means that calculations of metabolic fluxes based on 13C NMR spectroscopic data obtained from perchloric acid extracts of cells or tissues and also from in vivo measurements consider only the labelled 'NMR visible' cytosolic metabolites, which may have to be corrected for fast label flowing off into other compartments.

  18. Synthesis and x-ray structural characterization of binuclear iridium(I) and rhodium(I) hydroxypyridinate complexes. 1. Complete assignment of the /sup 1/H NMR spectra by two-dimensional and NOE techniques. The nature of inside and outside /sup 1/H chemical shift differences

    SciTech Connect

    Rodman, G.S.; Mann, K.R.

    1988-09-21

    Six new d/sup 8/-d/sup 8/ complexes, (Ir(COD)(..mu..-hp))/sub 2/, (Ir(COD)(..mu..-mhp))/sub 2/, (Ir(COD)(..mu..-chp))/sub 2/, (Ir(COD)(..mu..-2hq))/sub 2/, (Rh(COD)(..mu..-hp))/sub 2/, and (Rh(COD)(..mu..-mhp))/sub 2/ (hp = 2-hydroxyphridinate, mhp = 6-methyl-2-hydroxypyridinate, chp = 6-chloro-2-hydroxypyridinate, 2hq = 2-hydroxyquinolate, COD = 1,5-cyclooctadiene), were synthesized and characterized by /sup 1/H NMR, /sup 13/C NMR, and IR spectroscopy and FAB mass spectrometry. X-ray crystallographic analyses of the isostructural (M(COD)(..mu..-mhp))/sub 2/ (M = Ir and Rh) complexes confirmed the binuclear nature of the complexes. The complete assignment of the /sup 1/H NMR spectrum of (Ir(COD)(..mu..-hp))/sub 2/ (and by analogy, the spectra of the other five complexes) was carried out with selective decoupling, nuclear Overhauser effect (NOE), and two-dimensional NMR techniques. The NOE observed between hp proton H5 and COD proton H15 allowed the precise assignment of all 12 COD resonances. Olefinic proton H12 (trans to N and outside) resonates downfield of olefinic proton H11 (trans to N and inside). Olefininc proton H15 (trans to O and outside) resonates upfield of olefinic proton H16 (trans to O and inside). The endo methylene protons resonate upfield of the exo methylene protons. The inside/outside chemical shift differences observed for these compounds are ascribed to steric and magnetic anisotropy effects. The crystallographic data are presented. The molecular structure of the complexes is discussed in detail. 39 references, 5 figures, 9 tables.

  19. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    PubMed Central

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  20. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-01

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  1. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  2. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  3. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  4. EPR of Cu 2+ and VO 2+ in a cobalt saccharin complex, [Co(sac) 2(H 2O) 4]·2H 2O, single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Köksal, F.; Karadag, A.

    2003-09-01

    Cu 2+ and VO 2+ doped single crystals of [Co(sac) 2(H 2O) 4]·2H 2O (Cosacaqua) complex were investigated using EPR technique at ambient temperature. Detailed investigation of the EPR spectra indicated that the Cu 2+ and VO 2+ substitute the Co 2+. Two sites were observed for Cu 2+ and VO 2+. But each site of V 4+ corresponds two different orientations of VO 2+. The principal values of the g and the hyperfine tensors were obtained. The spectra indicate that the ground state for Cu 2+ is mainly 3 dx2- y2. The covalent bonding parameters for Cu 2+ and VO 2+ and Fermi contact terms were obtained.

  5. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  6. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  7. Microwave-assisted synthesis of novel 2H-chromene derivatives bearing phenylthiazolidinones and their biological activity assessment.

    PubMed

    El Azab, Islam H; Youssef, Mohamed M; Amin, Mahmoud A

    2014-01-01

    6-Hydroxy-2-oxo-2H-chromene-4-carbaldehyde (2), 6-chloro-2-oxo-2H-chromene-4-carbaldehyde (3) and 6-hydrazinyl-4-methyl-2H-chromen-2-one (5) were prepared as single-pharmacophore motif key intermediates. Compounds 2, 3 and 5 were incorporated in a series of multicomponent reactions (MCRs), under microwave assistance as well as conventional chemical synthesis processes, to afford a series of three and/or four-pharmacophoric-motif conjugates 8a,b, 11, 13, 16, 17, 19 and 20 in good yields. The newly synthesized compounds were characterized by IR, NMR, 13C-NMR, MS and elemental analyses. Finally the synthesized compounds have been screened for their biological activity whereupon they exhibited remarkable antimicrobial activity on different classes of bacteria and the fungus. PMID:25432014

  8. Solid State 2H NMR Analysis of Furanose Ring Dynamics in DNA Containing Uracil

    PubMed Central

    Kinde-Carson, Monica N.; Ferguson, Crystal; Oyler, Nathan A.; Harbison, Gerard S.; Meints, Gary A.

    2010-01-01

    DNA damage has been implicated in numerous human diseases, particularly cancer, and the aging process. Single-base lesions, such as uracil, in DNA can be cytotoxic or mutagenic and are recognized by a DNA glycosylase during the process of base excision repair. Increased dynamic properties in lesion-containing DNAs have been suggested to assist recognition and specificity. Deuterium solid-state nuclear magnetic resonance (SSNMR) has been used to directly observe local dynamics of the furanose ring within a uracil: adenine (U:A) base pair and compared to a normal thymine:adenine (T:A) base pair. Quadrupole echo lineshapes, ⟨T1Z⟩, and ⟨T2e⟩ relaxation data were collected, and computer modeling was performed. The results indicate that the relaxation times are identical within the experimental error, the solid lineshapes are essentially indistinguishable above the noise level, and our lineshapes are best fit with a model that does not have significant local motions. Therefore, U:A base pair furanose rings appear to have essentially identical dynamic properties as a normal T:A base pair, and the local dynamics of the furanose ring are unlikely to be the sole arbiter for uracil recognition and specificity in U:A base pairs. PMID:20151717

  9. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed Central

    Bonev, B B; Morrow, M R

    1995-01-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  10. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed

    Bonev, B B; Morrow, M R

    1995-08-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  11. Tautomerism in o-hydroxyanilino-1,4-naphthoquinone derivatives: Structure, NMR, HPLC and density functional theoretic investigations

    NASA Astrophysics Data System (ADS)

    Bhand, Sujit; Patil, Rishikesh; Shinde, Yogesh; Lande, Dipali N.; Rao, Soniya S.; Kathawate, Laxmi; Gejji, Shridhar P.; Weyhermüller, Thomas; Salunke-Gawali, Sunita

    2016-11-01

    Structure and spectral characteristics of 'Ortho' ((E)-4-hydroxy-2-(2‧-(4‧-R)-hydroxyphenyl)-imino)-naphthalen-1(2H)-one) and 'para' (2-(2‧-(4‧-R)-hydroxyphenyl)-amino)-1,4-naphthoquinone) tautomers of o-hydroxyanilino-1,4-naphthoquinone derivatives (Rdbnd H, 1A; sbnd CH3, 2A; and -Cl, 3A) are investigated using the 1H, 13C, DEPT, gDQCOSY, gHSQCAD NMR, HPLC, cyclic voltammetry techniques combined with the density functional theory. The compound 2A crystallizes in monoclinic space group P21/c. wherein the polymer chain is facilitated via Osbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding. Marginal variations in bond distances in quinonoid and aminophenol moieties render structural flexibility to these compounds those in solution exist as exist in 'ortho - para' tautomers. 1H and 13C NMR spectra in DMSO-d6 showed two sets of peaks in all compounds; whereas only the para tautomer of for 1A and 2A, the para tautomer is predominant in CD3CN solution. Further the ortho-para interconversion is accompanied by a large up-field signals for C(3)sbnd H(3) in their 1H and 13C NMR spectra. These inferences are corroborated by the density functional theoretic calculations.

  12. Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.

    PubMed

    Yang, Yu; Yao, Hongwei; Hong, Mei

    2015-04-16

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR line shapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic (31)P or (2)H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static (31)P chemical shift line shapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that (31)P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit 2 orders of magnitude shorter T2 relaxation times. These differences are explained by the different time scales of lipid lateral diffusion on the cubic-phase surface versus the time scales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static (31)P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena

  13. MetaboQuant: a tool combining individual peak calibration and outlier detection for accurate metabolite quantification in 1D (1)H and (1)H-(13)C HSQC NMR spectra.

    PubMed

    Klein, Matthias S; Oefner, Peter J; Gronwald, Wolfram

    2013-05-01

    Solution nuclear magnetic resonance (NMR) spectroscopy is widely used to analyze complex mixtures of organic compounds such as biological fluids and tissue extracts. Targeted profiling approaches with reliable compound quantitifcation are hampered, however, by signal overlap and other interferences. Here, we present a tool named MetaboQuant for automated compound quantification from pre-processed 1D and 2D heteronuclear single quantum coherence (HSQC) NMR spectral data and concomitant validation of results. Performance of MetaboQuant was tested on a urinary spike-in data set and compared with other quantification strategies. The use of individual calibration factors in combination with the validation algorithms of MetaboQuant raises the reliability of the quantification results. MetaboQuant can be downloaded at http://genomics.uni-regensburg.de/site/institute/software/metaboquant/ as stand-alone software for Windows or run on other operating systems from within Matlab. Separate software for peak fitting and integration is necessary in order to use MetaboQuant. PMID:23662895

  14. 1H and 13C NMR studies of glycine in anisotropic media: Double-quantum transitions and the effects of chiral interactions

    NASA Astrophysics Data System (ADS)

    Naumann, Christoph; Kuchel, Philip W.

    2011-07-01

    The 1H NMR spectrum of glycine in stretched gelatin gel and in cromolyn liquid crystal displays a well-resolved doublet due to 1H- 1H dipolar interaction. Multiple spectra were obtained within a wide range of offset frequencies of partially saturating radio-frequency (RF) radiation to generate steady-state irradiation envelopes or z-spectra of glycine. Maximal suppression of the doublet occurred when the irradiation was applied exactly at the centre frequency, between the two glycine peaks. This phenomenon is due to double-quantum transitions and is similar to our previous work on quadrupolar nuclei 2H (HDO) and 23Na +. When the 13C isotopomer glycine-2- 13C was used, the same effect was found in twice, split by 1JCH + 2 DCH. Additional signals in 1H and 13C NMR due to prochiral-chiral interactions were found when glycine-2- 13C was dissolved in chiral anisotropic gelatin and κ-carrageenan gels. The NMR spectra were successfully simulated assuming a 2JHH coupling constant of -16.5 Hz and two distinct dipolar coupling constants for the - 13CH 2- group ( DC,HA, and DC,HB).

  15. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  16. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  17. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  18. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    SciTech Connect

    Hauser, H.; Pascher, I.; Sundell, S. )

    1988-12-27

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by {sup 1}H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or {sup 2}H{sub 2}O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From {sup 1}H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles {beta}{sub 1} to {beta}{sub 4} and {gamma}{sub 1} to {gamma}{sub 4} of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond.

  19. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  20. High-resolution absorption cross sections of C2H6 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Buzan, Eric; Dulick, Michael; Bernath, Peter F.

    2015-11-01

    Infrared absorption cross sections near 3.3 μm have been obtained for ethane, C2H6. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm-1. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C2H6 cross sections at elevated temperatures.

  1. Spatially selective heteronuclear multiple-quantum coherence (HMQC) spectroscopy for bio-molecular NMR studies

    PubMed Central

    Sathyamoorthy, Bharathwaj; Parish, David M.; Montelione, Gaetano T.; Xiao, Rong; Szyperski, Thomas

    2014-01-01

    Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy was devised for solution studies of proteins. Due to ‘time-staggered’ acquisition of free induction decays (FIDs) in different slices, SS HMQC allows one to employ long delays for longitudinal nuclear spin relaxation at high repetition rates for the acquisition of the FIDs. To also achieve high intrinsic sensitivity, SS HMQC was implemented by combing a single spatially selective 1H excitation pulse with non-selective 1H 180° pulses. High-quality spectra could be obtained within 66 seconds for a 7.6 kDa uniformly 13C,15N-labeled protein, and within 45 and 90 seconds for, respectively, two uniformly 2H,13C,15N-labeled but isoleucine, leucine and valine methyl group protonated proteins with molecular weights of 7.5 and 43 kDa. PMID:24789578

  2. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  3. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  4. SEnD NMR: Sensitivity Enhanced n-Dimensional NMR

    PubMed Central

    Gledhill, John M.; Wand, A. Joshua

    2009-01-01

    Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many instances sensitivity rather than time remains of foremost importance when collecting data on protein samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the minimal set of radial sampling angles required to resolve all peaks of interest in combination with a fundamental statistical property of radial sampled data. The approach appears general and can achieve a substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time. Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First, data collection is optimized using routines to determine a minimal set of radial sampling angles required to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate combinations of experimental parameters (transients and increments) are defined by simple statistical considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally, the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise removal step is employed. PMID:20004602

  5. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  6. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  7. Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

    PubMed

    Dumez, Jean-Nicolas; Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Lalande-Martin, Julie; Tea, Illa; Yon, Maxime; Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Frydman, Lucio; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2015-09-01

    Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics. PMID:26215673

  8. ALMA observations of Titan : Vertical and spatial distribution of HNC and C2H5CN

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark A.; Moullet, Arielle; Hidayat, Taufiq

    2016-10-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ~0.47''. Titan's angular surface diameter was 0.77''. Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/d λ = 3106).We have obtained maps of several nitriles present in Titan' stratosphere: HCN, HC3N, CH3CN, HNC, C2H5CN and other weak lines (isotopes, vibrationnally excited lines).We will present radiative transfer analysis of the spectra acquired focused on HNC and C2H5CN. With the combination of all these detected rotational lines, we will constrain the spatial and vertical distribution of these species.

  9. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  10. Application of chirally-deuterated (S)-D-(6-2H1)glucose to conformational studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deuterated sugars are widely used to elucidate mechanisms of biosynthesis and of chemical reactions, and to confirm assignments of complex NMR or mass spectra. To date, however, there are few reported syntheses for regio and stereospecifically deuterated pyranoses. Chirally-deuterated (S)-D-(6-**2...

  11. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  12. Structure of 3-aminopyridine betaine hydrochloride studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, I.; Katrusiak, A.; Szafran, M.

    2010-08-01

    The structure of 3-aminopyridine betaine hydrochloride (1-carboxymethyl-3-aminopyridinium chloride), 3-NH 2PBH·Cl, has been studied by X-ray diffraction, B3LYP/6-311G(d,p) calculations, FTIR and NMR spectra. The compound crystallized in monoclinic, space group P2 1/c in the crystal, the Cl - anion is connected with protonated betaine via the hydrogen bond O-H⋯Cl of 2.946(3) Å. Both protons of the NH 2 group are engaged in hydrogen bonds with the neighboring molecules: N(2)-H(2B)⋯O(2) of 2.905(6) Å and N(2)-H(2B)⋯Cl(1) of 3.324(3) Å. The Cl - ion interacts electrostatically with three neighboring molecules. The probable assignments of the anharmonic experimental solid state vibrational frequencies of the investigated compound, based on the calculated frequencies in vacuum at the same level of theory for optimized structure, have been made. Correlations between the experimental 13C and 1H NMR chemical shifts ( δexp) and the GIAO/B3LYP/6-311G(d,p) calculated magnetic isotropic shielding ( σcal) in DMSO and D 2O, δexp = a + b · σcalc, are reported.

  13. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  14. z-Spectra of 23Na + in stretched gels: Quantitative multiple quantum analysis

    NASA Astrophysics Data System (ADS)

    Chapman, Bogdan E.; Naumann, Christoph; Philp, David J.; Eliav, Uzi; Navon, Gil; Kuchel, Philip W.

    2010-08-01

    The 23Na NMR spectrum of NaCl in various stretched hydrogels displays a well-resolved triplet with the theoretically predicted relative intensities of the components of 3:4:3. Families of such spectra were obtained using partially-saturating radio-frequency (RF) radiation over a range of off-set frequencies; the resulting steady-state irradiation envelopes, or ' z-spectra', have the notable feature that marked suppression of the three peaks occurs when the irradiation is applied on any of them or exactly in the middle between the central peak and either of the two satellites. We present a quantum mechanical analysis that describes this phenomenon and show that it depends on double and triple quantum transitions. The physical-mathematical analysis is an extension of our quadrupolar case for HDO with 2H NMR. The experimental procedures and results have implications for enhancement of contrast in 23Na magnetic resonance imaging of heterogeneous systems using quadrupolar interactions.

  15. Analysis of human muscle extracts by proton NMR

    SciTech Connect

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-03-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in /sup 2/H/sub 2/O to contain 120 O.D. units at 280 nm per 0.5 ml. /sup 1/H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference.

  16. In situ deuteron NMR investigations of sheared liquid crystalline polymers.

    PubMed

    Siebert, Hartmut; Becker, Patrick; Quijada-Garrido, Isabel; Grabowski, David A; Schmidt, Claudia

    2002-01-01

    The flow behavior of nematic liquid crystalline polysiloxanes of the side-chain type is studied by in situ 2H NMR spectroscopy on samples under shear in a cone-and-plate cell. The director orientation as a function of applied shear rate is determined from the quadrupole splitting of the spectra. The data analysis yields the two Leslie viscosity coefficients alpha2 and alpha3 and the flow-alignment parameter lambda = -(alpha3 + alpha2)/(alpha3 - alpha2). The values of lambda were determined for several homopolymers with only one type of side chain and random copolymers containing two different side chains. The results show that the flow behavior is related to the phase structure of the polymers, which varies with their composition. Only polymers with large amounts of smectic clusters in the nematic state show the tumbling instability (absolute value(lambda) < 1); other polymers are flow aligning (absolute value(lambda) > or = 1). For some polymers, a transition from tumbling at low temperature to flow aligning at high temperatures was observed.

  17. Prediction of the existence of the N2H- molecular anion

    NASA Astrophysics Data System (ADS)

    Lique, François; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2012-06-01

    We predict the existence of the N2H- anion from first principle calculations. We present the three-dimensional potential energy surface and the bound states of the N2H-/D- van der Waals anion. The electronic calculations were performed using state-of-the-art ab initio methods and the nuclear motions were solved using a quantum close-coupling scattering theory. A T-shaped equilibrium structure was found, with a well depth of 349.1 cm-1, where 18 bound states have been located for N2H- and 25 for N2D- for total angular momentum J = 0. We also present the absorption spectra of the N2H- complex. This anion could be formed after low energy collisions between N2 and H- through radiative association. The importance of this prediction in astrophysics and the possible use of N2H- as a tracer of N2 and H- in the interstellar medium is discussed.

  18. An XPS investigation of the interaction of CH 4, C 2H 2, C 2H 4 and C 2H 6 with a barium surface

    NASA Astrophysics Data System (ADS)

    Verhoeven, J. A. Th.; Van Doveren, H.

    1982-12-01

    The generation and pumping of hydrocarbon gases by a barium getter layer in electronic vacuum devices has been investigated by characterizing a barium film in an ultra high vacuum equipment by means of XPS before, during and after exposures to respectively CH 4, C 2H 2, C 2H 4 and C 2H 6. The reaction conditions (temperatures and pretreatment of the surface, background pressure and exposure doses) closely resemble those in electronic vacuum devices. The probability that a barium layer will react with CH 4 and C 2H 6 was below the detection limit. C 2H 2 and C 2H 4 give rise to the formation of barium carbide compounds and with a high reaction probability. In addition, the interaction with C 2H 2 reveals the formation of carbon-containing surface complexes. Investigations by means of XPS on the C Is spectral features show the presence of at least two groups of carbon-containing surface complexes, which behave differently in response to moderate heating and to an exposure to water vapour. In cases where oxygen is present at the surface, oxygen-containing (hydro) carbon adsorbates are present too. XPS observations of the behaviour of these surface complexes show similarities with reaction steps in the mechanisms proposed for the hydrogenation of CO in the Fischer-Tropsch synthesis of hydrocarbons. Low-pressure hydrogenation of these adsorbates containing hydrocarbons and oxygen can led to the formation of hydrocarbon gases in electronic vacuum devices.

  19. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  20. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody

    SciTech Connect

    Takahashi, Hideo; Odaka, Asano; Matsunaga, Chigusa; Kato, Koichi; Shimada, Ichio; Arata, Yoji ); Kawaminami, Shunro )

    1991-07-02

    A multinuclear NMR study is reported of Fv, which is a minimum antigen-binding unit of immunoglobulin. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire C{sub H}1 domain. A variety of Fv analogues labeled with {sup 2}H in the aromatic rings and with {sup 13}C and/or {sup 15}N in the peptide bonds have been prepared and used for multinuclear NMR analyses of Fv spectra of Fv sensitively reflect the antigen binding and can be used along with {sup 1}H and {sup 13}C spectral data for the structural analyses of antigen-antibody interactions. Hydrogen-deuterium exchange of the amide protons has been folowed in the absence and presence of DNS-Lys by using the {sup 1}H-{sup 15}N shift correlation spectra. Use of the {beta}-shift observed for the carbonyl carbon resonances has also been helpful in following the hydrogen-deuterium exchange. On the basis of the NMR data obtained, the static and dynamic structure of the Fv fragment in the absence and presence of DNS-Lys has been discussed.

  1. Study on ethyl groups with two different orientations in [N(C2H5)4]2CuBr4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-06-01

    The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T1ρ results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.

  2. Theoretical Modeling of (99)Tc NMR Chemical Shifts.

    PubMed

    Hall, Gabriel B; Andersen, Amity; Washton, Nancy M; Chatterjee, Sayandev; Levitskaia, Tatiana G

    2016-09-01

    Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions. PMID:27518482

  3. Determination of the illicit drug gamma-hydroxybutyrate (GHB) in human saliva and beverages by 1H NMR analysis.

    PubMed

    Grootveld, Martin; Algeo, Deborah; Silwood, Christopher J L; Blackburn, John C; Clark, Anthony D

    2006-01-01

    High resolution 1H NMR spectroscopy has been employed to investigate the detection and quantification of the illicit "date-rape" drug gamma-hydroxybutyrate (GHB) in both human saliva and a commonly-consumed low-alcohol beer product. Data acquired revealed that this multicomponent analytical technique provided unequivocal evidence for the detection of this agent by this technique in both of these matrices, i.e., all three of its resonances [those ascribable to the alpha-CH2 (t, delta=2.25 ppm), beta-CH2 (tt, delta=1.81 ppm) and gamma-CH2 (t, delta=3.61 ppm) group protons] were present in spectra acquired on human saliva, and two of these (the alpha- and beta-CH2 group signals) in the beverage product examined, the latter observation attributable to overlap of the gamma-CH2 1H resonance with those of carbohydrates. Since good linear calibration relationships between the intensities of each of the NMR-visible signals and added GHB concentration (the former normalised to that of an external 3-trimethylsilyl [2,2,3,3-2H4]- propionate standard present in a coaxial NMR tube insert) were observed, this illicit drug is also readily quantifiable in such multicomponent samples. Our data demonstrate the advantages offered by this technique when applied to the analysis of illicit drugs in multicomponent sample matrices such as human biofluids and beverage products. PMID:17012769

  4. Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy.

    PubMed

    Sastry, Mallika; Xu, Ling; Georgiev, Ivelin S; Bewley, Carole A; Nabel, Gary J; Kwong, Peter D

    2011-07-01

    NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in (15)N, (13)C, or (2)H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched (15)N or (15)N/(13)C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the (15)N- and (15)N/(13)C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including (1)H-(15)N and (1)H-(13)C HSQCs, (15)N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy.

  5. Conformational NMR Study of Bistriazolyl Anion Receptors.

    PubMed

    Makuc, Damjan; Merckx, Tamara; Dehaen, Wim; Plavec, Janez

    2016-01-01

    Conformational features of pyridine- and pyrimidine-based bistriazolyl anion receptors dissolved in acetonitrile-d3 were assessed by multidimensional, heteronuclear NMR spectroscopy. NOESY correlation signals suggested preorganization of both host molecules in solution in the absence of anions. In addition, only a single set of signals was observed in the 1H NMR spectra, which suggested a symmetrical conformation of anion receptors or their conformational exchange that is fast on the NMR time-scale. Furthermore, the predominant conformations of the pyridine- and pyrimidine-based anion receptors are preserved upon addition of chloride, bromide, and acetate anions. Chemical shift changes observed upon addition of anions showed that the NH (thio)urea and triazole protons are involved in anion-receptor interactions through hydrogen bonding. PMID:27640375

  6. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  7. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  8. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  9. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  10. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  11. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  12. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity

    PubMed Central

    Büchel, Gabriel E.; Stepanenko, Iryna N.; Hejl, Michaela; Jakupec, Michael A.; Keppler, Bernhard K.; Heffeter, Petra; Berger, Walter; Arion, Vladimir B.

    2012-01-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H2ind)[OsIVCl5(2H-ind)] (1) and (H2ind)[OsIVCl5(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction. PMID:22687494

  13. Hydrothermal synthesis of Na 2(MoOPO 4) 2(HPO 4) · 2H 2O: A layered molybdenum (V) phosphate structure and its relationship to 2VOSO 4 · H 2SO 4

    NASA Astrophysics Data System (ADS)

    Peascoe, R.; Clearfield, A.

    1991-12-01

    The hydrothermal synthesis and structure of the molybdenum (V) phosphate, Na 2(MoOPO 4) 2(HPO 4) · 2H 2O, was determined and compared to the closely related 2VOSO 4 · H 2SO 4 ( B. JORDAN AND C. CALVO, Can. J. Chem.51, 2621 (1973)). Na 2(MoOPO 4) 2(HPO 4) · 2H 2O crystallizes with lattice parameters a = 6.452(2)Å, c = 15.999(1)Å, and z = 2 in the tetragonal space group {I4}/{mmm} and was refined to Rf = 0.041 and Rwf = 0.044 with 426 reflections for which I > 2 σ. The structure is made up of layers of MoOPO 4 composed of alternating molybdenum oxygen octahedra and phosphate tetrahedra. The layers are linked by disordered phosphorus tetrahedra forming tunnels. Thermogravimetric analysis, infrared, solid state, NMR, and ESR spectra indicate the presence of water in the tunnels and molybdenum with an oxidation state of (V).

  14. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  15. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  16. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  17. NMR studies of metalloproteins.

    PubMed

    Li, Hongyan; Sun, Hongzhe

    2012-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has long been used as an invaluable tool for structure and dynamic studies of macromolecules. Here we focus on the application of NMR spectroscopy in characterization of metalloproteins, including structural studies and identification of metal coordination spheres by hetero-/homo-nuclear metal NMR spectroscopy. Paramagnetic NMR as well as (13)C directly detected protonless NMR spectroscopy will also be addressed for application to paramagnetic metalloproteins. Moreover, these techniques offer great potential for studies of other non-metal binding macromolecules.

  18. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  19. Chemical analysis using J-coupling multiplets in zero-field NMR

    NASA Astrophysics Data System (ADS)

    Theis, Thomas; Blanchard, John W.; Butler, Mark C.; Ledbetter, Micah P.; Budker, Dmitry; Pines, Alexander

    2013-08-01

    Zero-field nuclear magnetic resonance (NMR) spectroscopy is emerging as a new, potentially portable, and cost-effective NMR modality with the ability to provide information-rich, high-resolution spectra. We present simple rules for analysis of zero-field NMR spectra based on first-order perturbation theory and the addition of angular momenta. These rules allow for the prediction of observed spectral lines without numerical simulation. Results are presented for a few small organic molecules with characteristic spin topologies, demonstrating unambiguous assignment of peaks, highlighting the potential of zero-field NMR as a tool for chemical identification.

  20. Faster and cleaner real-time pure shift NMR experiments

    NASA Astrophysics Data System (ADS)

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  1. NMR methods in combinatorial chemistry.

    PubMed

    Shapiro, M J; Wareing, J R

    1998-06-01

    The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.

  2. A review of blind source separation in NMR spectroscopy.

    PubMed

    Toumi, Ichrak; Caldarelli, Stefano; Torrésani, Bruno

    2014-08-01

    Fourier transform is the data processing naturally associated to most NMR experiments. Notable exceptions are Pulse Field Gradient and relaxation analysis, the structure of which is only partially suitable for FT. With the revamp of NMR of complex mixtures, fueled by analytical challenges such as metabolomics, alternative and more apt mathematical methods for data processing have been sought, with the aim of decomposing the NMR signal into simpler bits. Blind source separation is a very broad definition regrouping several classes of mathematical methods for complex signal decomposition that use no hypothesis on the form of the data. Developed outside NMR, these algorithms have been increasingly tested on spectra of mixtures. In this review, we shall provide an historical overview of the application of blind source separation methodologies to NMR, including methods specifically designed for the specificity of this spectroscopy. PMID:25142734

  3. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  4. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  5. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra. PMID:25621533

  6. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  7. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. PMID:25924947

  8. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR.

  9. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  10. Temperature-reversible eruptions of vesicles in model membranes studied by NMR.

    PubMed Central

    Nezil, F A; Bayerl, S; Bloom, M

    1992-01-01

    Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein. Images FIGURE 5 FIGURE 5 FIGURE 5 FIGURE 6

  11. Computer compensation for NMR quantitative analysis of trace components

    SciTech Connect

    Nakayama, T.; Fujiwara, Y.

    1981-07-22

    A computer program has been written that determines trace components and separates overlapping components in multicomponent NMR spectra. This program uses the Lorentzian curve as a theoretical curve of NMR spectra. The coefficients of the Lorentzian are determined by the method of least squares. Systematic errors such as baseline/phase distortion are compensated and random errors are smoothed by taking moving averages, so that there processes contribute substantially to decreasing the accumulation time of spectral data. The accuracy of quantitative analysis of trace components has been improved by two significant figures. This program was applied to determining the abundance of 13C and the saponification degree of PVA.

  12. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  13. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  14. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance. PMID:25774424

  15. Molecular Level Insights on Collagen-Polyphenols Interaction Using Spin-Relaxation and Saturation Transfer Difference NMR.

    PubMed

    Reddy, R Ravikanth; Phani Kumar, Bandaru V N; Shanmugam, Ganesh; Madhan, Balaraman; Mandal, Asit B

    2015-11-01

    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., (1)H and (13)C chemical shifts (δH and δC), (1)H nonselective spin-lattice relaxation times (T1NS) and selective spin-lattice relaxation times (T1SEL), as well as spin-spin relaxation times (T2). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that -COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from (13)C analysis, while PG, which is devoid of -COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2', H5' and H6') and C-ring (H6 and H8) protons of CA, and A-ring (H2' and H6'), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective (1)H T1 measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols. PMID:26447653

  16. Heterozygous FA2H mutations in autism spectrum disorders

    PubMed Central

    2013-01-01

    Background Widespread abnormalities in white matter development are frequently reported in cases of autism spectrum disorders (ASD) and could be involved in the disconnectivity suggested in these disorders. Homozygous mutations in the gene coding for fatty-acid 2-hydroxylase (FA2H), an enzyme involved in myelin synthesis, are associated with complex leukodystrophies, but little is known about the functional impact of heterozygous FA2H mutations. We hypothesized that rare deleterious heterozygous mutations of FA2H might constitute risk factors for ASD. Methods We searched deleterious mutations affecting FA2H, by genotyping 1256 independent patients with ASD genotyped using Genome Wide SNP arrays, and also by sequencing in independent set of 186 subjects with ASD and 353 controls. We then explored the impact of the identified mutations by measuring FA2H enzymatic activity and expression, in transfected COS7 cells. Results One heterozygous deletion within 16q22.3-q23.1 including FA2H was observed in two siblings who share symptoms of autism and severe cognitive impairment, axial T2-FLAIR weighted MRI posterior periventricular white matter lesions. Also, two rare non-synonymous mutations (R113W and R113Q) were reported. Although predictive models suggested that R113W should be a deleterious, we did not find that FA2H activity was affected by expression of the R113W mutation in cultured COS cells. Conclusions While our results do not support a major role for FA2H coding variants in ASD, a screening of other genes related to myelin synthesis would allow us to better understand the role of non-neuronal elements in ASD susceptibility. PMID:24299421

  17. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  18. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  19. Experimental and theoretical study of the intramolecular C-H···N and C-H···S hydrogen bonding effects in the 1H and 13C NMR spectra of the 2-(alkylsulfanyl)-5-amino-1-vinylpyrroles: a particular state of amine nitrogen.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Tarasova, Ol'ga A; Nedolya, Nina A

    2013-07-01

    In the (1)H NMR spectra of the 1-vinylpyrroles with amino- and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one-bond (1)J(C(β),H(B)) coupling constant is surprisingly greater than the (1)J(C(β),H(A)) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π-system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C-HB •••N hydrogen bonding in the s-cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C-HB •••S hydrogen bonding in the s-cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C-H•••N and C-H•••S hydrogen bonding. Therefore, an unusual high-frequency shift of the HB signal and the increase in the (1)J(C(β),H(B)) coupling constant can be explained by the effects of hydrogen bonding. PMID:23695830

  20. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis.

    PubMed

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V; Telkki, Ville-Veikko

    2015-09-18

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  1. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  2. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  3. Multinuclear NMR studies of relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua

    Multinuclear NMR of 93Nb, 45Sc, and 207Pb has been carried out to study the structure, disorder, and dynamics of a series of important solid solutions: perovskite relaxor ferroelectric materials (1-x) Pb(Mg1/3Nb 2/3)O3-x Pb(Sc1/2Nb1/2)O 3 (PMN-PSN). 93Nb NMR investigations of the local structure and cation order/disorder are presented as a function of PSN concentration, x. The superb fidelity and accuracy of 3QMAS allows us to make clear and consistent assignments of spectral intensities to the 28 possible nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb), where each number ranges from 0 to 6 and their sum is 6. For most of the 28 possible nBn configurations, isotropic chemical shifts and quadrupole product constants have been extracted from the data. The seven configurations with only larger cations, Mg 2+ and Sc3+ (and no Nb5+) are assigned to the seven observed narrow peaks, whose deconvoluted intensities facilitate quantitative evaluation of, and differentiation between, different models of B-site (chemical) disorder. The "completely random" model is ruled out and the "random site" model is shown to be in qualitative agreement with the NMR experiments. To obtain quantitative agreement with observed NMR intensities, the random site model is slightly modified by including unlike-pair interaction energies. To date, 45Sc studies have not been as fruitful as 93Nb NMR because the resolution is lower in the 45Sc spectra. The lower resolution of 45Sc spectra is due to a smaller span of isotropic chemical shift (40 ppm for 45Sc vs. 82 ppm for 93Nb) and to the lack of a fortuitous mechanism that simplifies the 93Nb spectra; for 93Nb the overlap of the isotropic chemical shifts of 6-Sc and 6-Nb configurations results in the alignment of all the 28 configurations along only seven quadrupole distribution axes. Finally we present variable temperature 207Pb static, MAS, and 2D-PASS NMR studies. Strong linear correlations between isotropic and anisotropic chemical

  4. The source of NMR-detected motional anisotropy of water in blood vessel walls.

    PubMed Central

    Sharf, Y; Knubovets, T; Dayan, D; Hirshberg, A; Akselrod, S; Navon, G

    1997-01-01

    2H Double quantum-filtered (DQF) NMR spectroscopy of deuterated water is sensitive to the presence of order in biological systems. This is because the only nuclei that are detected are those with residual quadrupolar interactions due to their anisotropic motion. In the present study, samples of aorta, coronary and carotid arteries, and vena cava were studied in parallel by 2H DQF NMR and by light microscopy. The average quadrupolar splitting, calculated from the NMR data, varies considerably among the different blood vessels, with high reproducibility for each type of vessel. Polarization microscopy examinations using collagen-specific staining with picrosirius red, have shown a variety of color profiles for the different blood vessels. These reflect different physical modes of aggregation (packing and thickness) of collagen fibers. A correlation was found between the NMR parameters and the color profiles of the picrosirius red-stained sections. Treating the blood vessels with 90% formic acid resulted in the elimination of the 2H DQF NMR signal. Histological analysis demonstrated a complete degradation of collagen and muscle, whereas the elastin filaments were preserved. Evidence is given that the 2H DQF NMR signal is dominated by the contribution of water molecules interacting with the collagen fibers. Images FIGURE 3 PMID:9284287

  5. RNA Secondary Structure Determination by NMR.

    PubMed

    Chen, Jonathan L; Bellaousov, Stanislav; Turner, Douglas H

    2016-01-01

    Dynamic programming methods for predicting RNA secondary structure often use thermodynamics and experimental restraints and/or constraints to limit folding space. Chemical mapping results typically restrain certain nucleotides not to be in AU or GC pairs. Two-dimensional nuclear magnetic resonance (NMR) spectra can reveal the order of AU, GC, and GU pairs in double helixes. This chapter describes a program, NMR-assisted prediction of secondary structure and chemical shifts (NAPSS-CS), that constrains possible secondary structures on the basis of the NMR determined order and 5'-3' direction of AU, GC, and GU pairs in helixes. NAPSS-CS minimally requires input of the order of base pairs as determined from nuclear Overhauser effect spectroscopy (NOESY) of imino protons. The program deduces the 5'-3' direction of the base pairs if certain chemical shifts are also input. Secondary structures predicted by the program provide assignments of input chemical shifts to particular nucleotides in the sequence, thus facilitating an important step for determination of the three dimensional structure by NMR. The method is particularly useful for revealing pseudoknots and an example is provided. The method may also allow determination of secondary structures when a sequence folds into two structures that exchange slowly. PMID:27665599

  6. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  7. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  8. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  9. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  10. Complete assignments of 1H and 13C NMR data for ten phenylpiperazine derivatives.

    PubMed

    Xiao, Zhihui; Yuan, Mu; Zhang, Si; Wu, Jun; Qi, Shuhua; Li, Qingxin

    2005-10-01

    Ten phenylpiperazine derivatives were designed and synthesized. The first complete assignments of (1)H and (13)C NMR chemical shifts for these phenylpiperazine derivatives were achieved by means of 1D and 2D NMR techniques, including (1)H-(1)H COSY, HSQC and HMBC spectra.

  11. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides.

    PubMed

    Wu, Jun; Huang, Jianshe; Xiao, Qiang; Zhang, Si; Xiao, Zhihui; Li, Qingxin; Long, Lijuan; Huang, Liangmin

    2004-07-01

    Ten phenylethanoid glycosides, including two new ones, isolated from the aerial parts of the mangrove plant Acanthus ilicifolius were identified. The first complete assignments of the 1H and 13C NMR chemical shifts for these glycosides were achieved by means of 2D NMR techniques, including 1H-1H COSY, TOCSY, HSQC and HMBC spectra.

  12. NMR at cryogenic temperatures: A {sup 13}C NMR study of ferrocene

    SciTech Connect

    Orendt, A.M.; Facelli, J.C.; Jiang, Y.J.; Grant, D.M.

    1998-09-24

    A new cryogenic apparatus is described that can be used to obtain NMR spectra at temperatures down to 8--10 K. The static solid {sup 13}C NMR spectrum of ferrocene is recorded at that temperature. Spectra recorded at higher temperatures show that ferrocene is still freely rotating about its 5-fold symmetry axis on the {sup 13}C NMR time scale at 45--50 K. A comparison of the principal values of the {sup 13}C chemical-shift tensor obtained from the room- and low-temperature spectra of ferrocene indicates that the lowest frequency chemical shift principal component, {delta}{sub 33}, is tilted off this symmetry axis by approximately 12{degree}. Quantum chemical calculations of the chemical-shift tensor, completed on structures of ferrocene from the literature as well as on optimized structures with the cyclopentadienyl rings locked in both the staggered and eclipsed arrangements, predict the angle between the {delta}{sub 33} direction and the rotation axis to be between 11 and 15{degree}, depending upon the geometry used in the calculation. The calculations also predict the sign of the angular perturbation, information not obtained from the experiment. An explanation of this angular change in the {delta}{sub 33} direction is provided by the composition of the molecular orbitals.

  13. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  14. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  15. High-Resolution NMR Studies of Human Tissue Factor

    PubMed Central

    Nuzzio, Kristin M.; Watt, Eric D.; Boettcher, John M.; Gajsiewicz, Joshua M.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    In normal hemostasis, the blood clotting cascade is initiated when factor VIIa (fVIIa, other clotting factors are named similarly) binds to the integral membrane protein, human tissue factor (TF). The TF/fVIIa complex in turn activates fX and fIX, eventually concluding with clot formation. Several X-ray crystal structures of the soluble extracellular domain of TF (sTF) exist; however, these structures are missing electron density in functionally relevant regions of the protein. In this context, NMR can provide complementary structural information as well as dynamic insights into enzyme activity. The resolution and sensitivity for NMR studies are greatly enhanced by the ability to prepare multiple milligrams of protein with various isotopic labeling patterns. Here, we demonstrate high-yield production of several isotopically labeled forms of recombinant sTF, allowing for high-resolution NMR studies both in the solid and solution state. We also report solution NMR spectra at sub-mM concentrations of sTF, ensuring the presence of dispersed monomer, as well as the first solid-state NMR spectra of sTF. Our improved sample preparation and precipitation conditions have enabled the acquisition of multidimensional NMR data sets for TF chemical shift assignment and provide a benchmark for TF structure elucidation. PMID:27657719

  16. Gas-phase CO2, C2H2, and HCN toward Orion-KL

    NASA Astrophysics Data System (ADS)

    Boonman, A. M. S.; van Dishoeck, E. F.; Lahuis, F.; Doty, S. D.; Wright, C. M.; Rosenthal, D.

    2003-03-01

    The infrared spectra toward Orion-IRc2, Peak 1 and Peak 2 in the 13.5-15.5 mu m wavelength range are presented, obtained with the Short Wavelength Spectrometer on board the Infrared Space Observatory. The spectra show absorption and emission features of the vibration-rotation bands of gas-phase CO2, HCN, and C2H2, respectively. Toward the deeply embedded massive young stellar object IRc2 all three bands appear in absorption, while toward the shocked region Peak 2 CO2, HCN, and C2H2 are seen in emission. Toward Peak 1 only CO2 has been detected in emission. Analysis of these bands shows that the absorption features toward IRc2 are characterized by excitation temperatures of ~ 175-275 K, which can be explained by an origin in the shocked plateau gas. HCN and C2H2 are only seen in absorption in the direction of IRc2, whereas the CO2 absorption is probably more widespread. The CO2 emission toward Peak 1 and 2 is best explained with excitation by infrared radiation from dust mixed with the gas in the warm component of the shock. The similarity of the CO2 emission and absorption line shapes toward IRc2, Peak 1 and Peak 2 suggests that the CO2 is located in the warm component of the shock (T ~ 200 K) toward all three positions. The CO2 abundances of ~ 10-8 for Peak 1 and 2, and of a few times 10-7 toward IRc2 can be explained by grain mantle evaporation and/or reformation in the gas-phase after destruction by the shock. The HCN and C2H2 emission detected toward Peak 2 is narrower (T ~ 50-150 K) and originates either in the warm component of the shock or in the extended ridge. In the case of an origin in the warm component of the shock, the low HCN and C2H2 abundances of ~ 10-9 suggest that they are destroyed by the shock or have only been in the warm gas for a short time (t <~ 104 yr). In the case of an origin in the extended ridge, the inferred abundances are much higher and do not agree with predictions from current chemical models at low temperatures. Based on

  17. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  18. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  19. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  20. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.