Science.gov

Sample records for 2h nuclear quadrupole

  1. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  2. A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and 2H nuclear quadrupole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: a density functional theory study.

    PubMed

    Mirzaei, Mahmoud; Elmi, Fatemeh; Hadipour, Nasser L

    2006-06-08

    A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.

  3. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  4. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  5. Nuclear quadrupole resonance echoes from hexamethylenetetramine.

    PubMed

    Ota, Go; Itozaki, Hideo

    2006-10-01

    We investigated the echo phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT). We detected the pure NQR echo signal of HMT with a short pulse interval. The intensity of the echo signal increased as the pulse interval time was decreased. We observed that a clean echo signal was generated even when the pulse interval was shorter than the decay time constant T(2)(*). Since the short interval time gives a strong echo, our result insists that shorter interval time is preferred for the NQR detection.

  6. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  7. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    NASA Astrophysics Data System (ADS)

    Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-12-01

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  8. Nuclear spin squeezing via electric quadrupole interaction

    NASA Astrophysics Data System (ADS)

    Aksu Korkmaz, Yaǧmur; Bulutay, Ceyhun

    2016-01-01

    Control over nuclear-spin fluctuations is essential for processes that rely on preserving the quantum state of an embedded system. For this purpose, squeezing is a viable alternative, so far that has not been properly exploited for the nuclear spins. Of particular relevance in solids is the electric quadrupole interaction (QI), which operates on nuclei having spin higher than 1/2. In its general form, QI involves an electric-field gradient (EFG) biaxiality term. Here, we show that as this EFG biaxiality increases, it enables continuous tuning of single-particle squeezing from the one-axis twisting to the two-axis countertwisting limits. A detailed analysis of QI squeezing is provided, exhibiting the intricate consequences of EFG biaxiality. The initial states over the Bloch sphere are mapped out to identify those favorable for fast initial squeezing, or for prolonged squeezings. Furthermore, the evolution of squeezing in the presence of a phase-damping channel and an external magnetic field are investigated. We observe that dephasing drives toward an antisqueezed terminal state, the degree of which increases with the spin angular momentum. Finally, QI squeezing in the limiting case of a two-dimensional EFG with a perpendicular magnetic field is discussed, which is of importance for two-dimensional materials, and the associated beat patterns in squeezing are revealed.

  9. Emission of nuclear quadrupole resonance from polycrystalline hexamethylenetetramine.

    PubMed

    Ota, G; Itozaki, H

    2008-03-01

    The angular dependence of the nuclear quadrupole resonance (NQR) signal intensity emitted from polycrystalline hexamethylenetetramine has been analytically investigated for all directions for non-contact detection of chemicals by nuclear quadrupole resonance. The field pattern of the NQR signal from a column sample was measured. The emitted patterns were the same as that from a united single magnetic dipole, which fitted well to the estimation based on quadrupole principle axis system. This result is helpful to design an antenna for NQR remote detection.

  10. Simulation of nuclear quadrupole resonance for sensor probe optimization.

    PubMed

    Shinohara, Junichiro; Sato-Akaba, Hideo; Itozaki, Hideo

    2012-01-01

    A simulation method to estimate the detection efficiency of nuclear quadrupole resonance (NQR) was proposed for optimizing a sensing probe operating at radio frequencies (RFs). It first calculates the transmitted magnetic field from the probe coil to the target sample. The nuclei make quadrupole resonance by it. We considered this nonlinear reaction to estimate NQR emission by the nuclei. Then the received NQR signal intensity from the sample at the probe coil. We calculated the efficiency by testing two different probe types (solenoid and gradiometer) and by changing the relative positions of the probe and sample. The simulation results were in good agreement with the experimental results.

  11. The Photon Polarization Parameter of 2H(n, γ)3H reaction with Inclusion of the Electric Quadrupole Contribution

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Mosavi-Khansari, M.

    2014-09-01

    We use effective field theory (EFT) for the calculation of neutron—deuteron radiative capture at very low energies. We present here the use of EFT to calculate a low-energy photo-nuclear observable in three-body systems, the photon polarization parameter and fore—aft asymmetry at thermal neutron energies up to next-to-next to leading order (N2LO), with inclusion of the electric quadrupole contribution. The photon polarization parameter in total is found to be Rc = -0.421 ± 0.003 and is in good agreement with the other modern theoretical calculations based on modern nucleon—nucleon potentials. In comparison with our previous work, a satisfactory agreement with the available experimental data is found by inclusion of the electric quadrupole contribution.

  12. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  13. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  14. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  15. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  16. Hartree-Fock Cluster Study of Electronic Structures and Nuclear Quadrupole Interactions in Solid Nucleobases.

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Dubey, Archana; Badu, S. R.; Saha, H. P.; Pink, R. H.; Nagamine, K.; Torikai, E.; Chow, Lee; Das, T. P.

    2008-03-01

    In recent work [1] we have studied nucleobases attached to a CH3 group to simulate the influence of their binding to the sugar rings and the phosphate groups in DNA and RNA and the effect of this binding on the nuclear quadrupole interactions of ^14N, ^17O and ^2H nuclei. Our results from this work have indicated that for ^17O, the binding to the CH3 group moves our results from the free nucleobases closer to the experimentally observed data [2] in the solid nucleobases. We are now investigating the solid nucleobases by the first --principles Hartree-Fock cluster procedure that we have employed earlier for the halogen molecular solids [3]. Our results for the binding energy of an imidazole molecule in the molecular solid system and the ^14N, ^17O and ^2H nuclear quadrupole interaction parameters will be presented. [1] T.P. Das et al (at this APS meeting), [2] Gang Wu et al, J. Am.Chem. Soc. 124, 1768(2002). [3] M.M. Aryal et al Hyperfine Interactions (to be published).

  17. Nuclear electric quadrupole moment of potassium from the molecular method

    NASA Astrophysics Data System (ADS)

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Visscher, Lucas

    2015-03-01

    The current standard nuclear quadrupole moments (NQMs) of the 39K , 40K , and 41K isotopes have recently been contested by Singh and co-workers on the basis of their atomic computational data [Singh et al., Phys. Rev. A 86, 032509 (2012), 10.1103/PhysRevA.86.032509]. Thus we performed relativistic calculations of electric field gradients at the potassium nuclei in three diatomic molecules (KF, KCl, and KBr) and combined these values with accurate experimental nuclear quadrupole coupling constants to provide an independent assessment of these NQMs. Our most accurate results, obtained by treating electron correlation with coupled cluster theory, employing a four-component Hamiltonian that includes the Gaunt two-electron correction, and with an incremented relativistic basis set of quadruple-ζ quality, yield Q (39K)=60.3 (6 ) , Q (40K)=-75.0 (8 ) , and Q (41K)=73.4 (7 ) mb . These values are in better agreement with the results obtained by Singh et al. and indicate that the standard NQMs should be revised.

  18. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  19. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  20. Optimal filtering in multipulse sequences for nuclear quadrupole resonance detection

    NASA Astrophysics Data System (ADS)

    Osokin, D. Ya.; Khusnutdinov, R. R.; Mozzhukhin, G. V.; Rameev, B. Z.

    2014-05-01

    The application of the multipulse sequences in nuclear quadrupole resonance (NQR) detection of explosive and narcotic substances has been studied. Various approaches to increase the signal to noise ratio (SNR) of signal detection are considered. We discussed two modifications of the phase-alternated multiple-pulse sequence (PAMS): the 180° pulse sequence with a preparatory pulse and the 90° pulse sequence. The advantages of optimal filtering to detect NQR in the case of the coherent steady-state precession have been analyzed. It has been shown that this technique is effective in filtering high-frequency and low-frequency noise and increasing the reliability of NQR detection. Our analysis also shows the PAMS with 180° pulses is more effective than PSL sequence from point of view of the application of optimal filtering procedure to the steady-state NQR signal.

  1. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  2. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  3. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  4. Hyperfine and nuclear quadrupole coupling in chlorine and fluorine dioxides

    NASA Astrophysics Data System (ADS)

    Fernández, Berta; Christiansen, Ove; Jørgensen, Poul; Byberg, Jørgen; Gauss, Jürgen; Ruud, Kenneth

    1997-02-01

    The hyperfine and nuclear quadrupole coupling tensors have been calculated for the two chlorine dioxide isomers OClO and ClOO and for fluorine dioxide FOO. The coupled-cluster singles and doubles (CCSD) approach with a perturbative treatment of triple excitations [CCSD(T)] has been used and basis saturation has been investigated. For the symmetric isomer OClO close agreement is obtained with the accurate and detailed experimental data. For FOO a geometry optimization as well as a comparison of calculated and experimental hyperfine coupling tensors suggest a shorter F-O bond length than that obtained experimentally. For the isomer ClOO, calculations have been carried out at the theoretical equilibrium geometry determined by Peterson and Werner and at the geometry proposed by Byberg for the matrix isolated molecule. The hyperfine coupling tensors obtained at these two geometries are substantially different, but the estimated accuracy of the calculations is not high enough to allow a determination of the geometry of ClOO from the hyperfine data.

  5. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  6. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  7. Detecting body cavity bombs with nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  8. Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface

    NASA Astrophysics Data System (ADS)

    Butscher, R.; Wäckerle, G.; Mehring, M.

    1994-05-01

    We report nuclear magnetic resonance (NMR) experiments on 131Xe (I=3/2) gas-phase atoms which exhibit nuclear quadrupole interaction with the surface of the sample cell. Nuclear quadrupole coupling constants and quadrupole relaxation rates are obtained from the time-domain signal of the freely precessing nuclear magnetization in weak magnetic fields. The nuclear spin species is polarized by spin-exchange collisions with optically pumped ground-state spins of Rb gas atoms. The Rb atoms also present in the sample are used as a magnetometer to probe the free-induction decay of the nuclear-spin ensemble. The temperature dependence of both the effective quadrupole splittings and the relaxation rates are explained by a model for the surface interactions of a Xe atom adsorbed on the glass surface. The desorption is thermally activated with an activation energy of EA=0.12 eV. The surface diffusion of an adsorbed atom is characterized by an activation energy ED for thermally activated hopping between neighboring surface sites. Both energies enter the spectral density function governing wall-induced nuclear quadrupole relaxation. Our experimental results lead to the conclusion that they are on the same order of magnitude.

  9. The use of the pairing-quadrupole connections in PQM for application in nuclear systems

    NASA Astrophysics Data System (ADS)

    Drumev, K. P.; Georgieva, A. I.

    2016-03-01

    Within the algebraic realization of the Pairing-plus-Quadrupole Model /PQM/ in the framework of the Elliott's SU(3) Model,we present some particular applications for realistic nuclear systems. The probability distribution of the SU(3) basis states within the isovector, isoscalar and total pairing eigenstates is obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. This allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing all of them as limiting cases. The relative strengths of the dynamically symmetric quadrupole-quadrupole interaction with the considered types of pairing interactions are investigated systematically for systems like the 20Ne.

  10. Quadrupole splitting and isomer shifts in Te oxides investigated using nuclear forward scattering

    NASA Astrophysics Data System (ADS)

    Klobes, Benedikt; Barrier, Nicolas; Vertruyen, Benedicte; Martin, Christine; Hermann, Raphaël P.

    2014-04-01

    Nuclear forward scattering by 125Te is a viable alternative to conventional 125Te Mössbauer spectroscopy avoiding all source related issues. Using reference compounds with known hyperfine parameters and Te oxides exhibiting stereochemically active lone pairs, we show that nuclear forward scattering by 125Te can be reliably used to extract quadrupole splitting energy and relative isomer shift. The rough correlation between Te-Ocoordination and quadrupole splitting energy as put forward by Takeda and Greenwood (J. Chem. Soc. Dalton, 2207, 1975), is corroborated by the presented results.

  11. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  12. Observation of nuclear quadrupole hyperfine structure in the infrared spectrum of hydrogen iodide using a tunable-diode laser

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1980-01-01

    Nuclear quadrupole hyperfine structure has been observed in the 1-0 vibration-rotation band of hydrogen iodide with a tunable-diode laser. The measured splittings agree well with microwave measurements of the HI molecule. Evidence for a slight change in the iodine nuclear quadrupole coupling constant from the ground to first excited vibrational state in hydrogen iodide was found.

  13. Degree of accuracy in determining the nuclear electric quadrupole moment of radium

    SciTech Connect

    Bieron, Jacek; Pyykkoe, Pekka

    2005-03-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the atomic expectation values responsible for the hyperfine splittings of the 7s7p {sup 3}P{sub 1,2} and {sup 1}P{sub 1} levels of radium. Calculated electric field gradients, together with the experimental electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q({sup 223}Ra) of 1.21(0.03) barn. This value is in good agreement with the semiempirical determination based on neutral radium hyperfine and fine structure, but differs from the latest result from an alkali-like radium ion.

  14. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    SciTech Connect

    Fries, Pascal H.; Belorizky, Elie

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  15. Ab initio Study of Nuclear Quadrupole Interactions in Selenium and Tellurium

    NASA Astrophysics Data System (ADS)

    Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S. P.; Cho, Hwa-Suck; Scheicher, R. H.; Jeong, Junho; Das, T. P.

    2004-03-01

    We are systematically studying the influence of impurities in calcogenide glasses on the glass transition temperature using the first-principles Hartree-Fock cluster method. Results of our calculations on the electronic structures of pure selenium and tellurium chain systems, and with Te and Se impurities respectively, will be reported. By comparing the theoretically obtained nuclear quadrupole interaction (NQI) tensors for ^77Se and ^125Te with available experimental NQI tensors, we were able to test the accuracy of the calculated electronic structures. Good agreement for both the pure and the impurity systems has been found. We have also studied ^125Te NQI tensors in Te-Thiourea and compared our result with experimental data to check on the choice of the ^125Te quadrupole moment used.

  16. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  17. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  18. Sensing of chemical substances using SQUID-based nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Tachiki, M.; He, D. F.; Itozaki, H.

    2007-10-01

    Using a high-Tc radio frequency superconducting quantum interference device (rf SQUID) with a normal metal transformer, we successfully detected the nuclear quadrupole resonance (NQR) at about 888 kHz of 14N in p-nitrotoluene (PNT) at room temperature. Only one coil was used as the resonator coil for the transmission and the pickup coil of the transformer. To reduce the influence of the strong excitation field, cross diodes and switches were inserted in the transformer. The signal-to-noise ratio of the NQR spectrum using high-Tc rf SQUID system was comparable to that of using a low noise preamplifier.

  19. 14N nuclear quadrupole resonance of p-nitrotoluene using a high-Tc rf SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Tachiki, M.; Itozaki, H.

    2007-03-01

    Using a high-Tc radio-frequency superconducting quantum interference device (rf SQUID), we successfully detected nuclear quadrupole resonance (NQR) at about 887 kHz for 14N in p-nitrotoluene (PNT). A normal metal transformer made of copper wire was used to improve the sensitivity of the high-Tc rf SQUID and pulse-controlled rf switches and cross diodes were inserted in the transformer to reduce the influence of the strong excitation field. The preliminary results for NQR detection using the high-Tc SQUID had a similar signal-to-noise ratio to that of using a low noise preamplifier.

  20. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    SciTech Connect

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  1. An approximate analytical expression for the nuclear quadrupole transverse relaxation rate of half-integer spins in liquids.

    PubMed

    Wu, Gang

    2016-08-01

    The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.

  2. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  3. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms.

  4. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    DOE PAGES

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; ...

    2016-10-10

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites andmore » for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  5. Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; DeMille, D.; Kozlov, M. G.

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

  6. Atomic Magnetometer Multisensor Array for rf Interference Mitigation and Unshielded Detection of Nuclear Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Prescott, David W.; Matz, Peter; Sauer, Karen L.; Dural, Nezih; Romalis, Michael V.; Foley, Elizabeth L.; Kornack, Thomas W.; Monti, Mark; Okamitsu, Jeffrey

    2016-12-01

    An array of four 87Rb vector magnetometers is used to detect nuclear quadrupole resonance signals in an unshielded environment at 1 MHz. With a baseline of 25 cm, the length of the array, radio-frequency interference mitigation is also demonstrated; a radio-station signal is suppressed by a factor of 20 without degradation to the signal of interest. With these compact sensors, in which the probe beam passes through twice, the fundamental limit to detection sensitivity is found to be photon-shot noise. More passes of the probe beam overcome this limitation. With a sensor of similar effective volume, 0.25 cm3 , but 25 × more passes, the sensitivity is improved by an order of magnitude to 1.7 ±0.2 fT /√{Hz } .

  7. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules.

    PubMed

    Fu, Li-juan; Vaara, Juha

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H2O, CH3NO2, CH3CH2OH, C6H6, C6H12 (cyclohexane), HI, XeF2, WF5Cl, and Pt(C2dtp)2. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10(-3)-10(-7) rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  8. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  9. Rabi and Larmor nuclear quadrupole double resonance of spin-1 nuclei

    NASA Astrophysics Data System (ADS)

    Prescott, D. W.; Malone, M. W.; Douglass, S. P.; Sauer, K. L.

    2012-12-01

    We demonstrate the creation of two novel double-resonance conditions between spin-1 and spin-1/2 nuclei in a crystalline solid. Using a magnetic field oscillating at the spin-1/2 Larmor frequency, the nuclear quadrupole resonance (NQR) frequency is matched to the Rabi or Rabi plus Larmor frequency, as opposed to the Larmor frequency as is conventionally done. We derive expressions for the cross-polarization rate for all three conditions in terms of the relevant secular dipolar Hamiltonian, and demonstrate with these expressions how to measure the strength of the heterogenous dipolar coupling using only low magnetic fields. In addition, the combination of different resonance conditions permits the measurement of the spin-1/2 angular momentum vector using spin-1 NQR, opening up an alternate modality for the monitoring of low-field nuclear magnetic resonance. We use ammonium nitrate to explore these resonance conditions, and furthermore use the oscillating field to increase the signal-to-noise ratio per time by a factor of 3.5 for NQR detection of this substance.

  10. Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Rivera-Ascona, Christian; Polli, Roberson S.; Oliveira-Silva, Rodrigo; Vidoto, Edson L. G.; Andreeta, José P.; Bonagamba, Tito J.

    2015-06-01

    Nuclear magnetic resonance (NMR) has been widely used in the context of quantum information processing (QIP). However, despite the great similarities between NMR and nuclear quadrupole resonance (NQR), no experimental implementation for QIP using NQR has been reported. We describe the implementation of basic quantum gates and their applications on the creation and manipulation of pseudopure states using linearly polarized radiofrequency pulses under static magnetic field perturbation. The NQR quantum operations were implemented using a single-crystal sample of and observing nuclei, which possess spin 3/2 and give rise to a two-qubit system. The results are very promising and indicate that NQR can be successfully used for performing fundamental experiments in QIP. One advantage of NQR in comparison with NMR is that the main interaction is internal to the sample, which makes the system more compact, lowering its cost and making it easier to be miniaturized to solid-state devices. Furthermore, as an example, the study of squeezed spin states could receive relevant contributions from NQR.

  11. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    TonThat, Dinh M.

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  12. Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Constants of 1-Bromo-1-fluoroethane

    NASA Astrophysics Data System (ADS)

    Tatamitani, Yoshio; Kuwano, Susumu; Fuchigami, Kiyokatu; Oe, Sumio; Ogata, Teruhiko

    1999-08-01

    The microwave spectrum of 1-bromo-1-fluoroethane, CHBrF-CH3 and CHBrF-CH2D (79/81Br), has been studied for the first time from 8 to 41 GHz. A least-squares analysis of the observed a- and b-type transition frequencies gave rotational and centrifugal distortion constants and components of the bromine nuclear quadrupole coupling constant tensor in the principal axes system as follows: A = 8979.428(5) MHz, B = 2883.898(3) MHz, C = 2310.535(3) MHz, ΔJ = 0.74(2) kHz, ΔJK = 2.49(3) kHz, ΔK = 5.3(5) kHz, δJ = 0.146(1) kHz, δK = 2.75(4) kHz, χaa = 493.49(29) MHz, χbb - χcc = -38.89(11) MHz, and ‖χab‖ = 161.8(28) MHz for the CH79BrF-CH3 species; A = 8979.257(5) MHz, B = 2859.072(3) MHz, C = 2294.572(3), ΔJ = 0.76(2) kHz, ΔJK = 2.51(3) kHz, ΔK = 4.5(4) kHz, δJ = 0.145(1) kHz, δK = 2.70(4) kHz, χaa = 412.42(27) MHz, χbb - χcc = -32.56 (11) MHz, and ‖χab‖ = 133.3(3) MHz for the CH81BrF-CH3 species. The structural parameters are calculated from the 24 observed rotational constants, and electronic properties of the carbon-bromine bond in 1-bromo-1-fluoroethane are evaluated from the observed nuclear quadrupole coupling constants. These molecular properties are compared with those of other related molecules. The molecular structure of 1-bromo-1-fluoroethane is found to be very close to that of 1,1-difluoroethane except for the C-Br bond.

  13. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  14. Electron Distributions in Hexagonal Selenium and Tellurium and Monoclinic Selenium with Dilute Impurities and Associated Nuclear Quadrupole Interactions*.

    NASA Astrophysics Data System (ADS)

    Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S.; Aryal, M. M.; Cho, Hwa-Suck; Scheicher, R. H.; Chow, Lee; Jeong, Junho; Das, T. P.

    2006-03-01

    The electron structures of Selenium chains and rings with Te impurities in hexagonal and monoclinic structures respectively and Se impurities in Te chains in hexagonal lattice have been studied using Hartree-Fock cluster model including many-body effects, including lattice relaxation effects. The calculated electronic wave-functions are utilized to obtain ^77Se and ^125Te nuclear quadrupole coupling constants e^2qQ and asymmetry parameters η and compared with available experimental data from Mossbauer and perturbed angular correlation measurements. From our results, the expected nature of nuclear quadrupole interactions associated with Sb impurities will be discussed. *Supported by NSF US-Nepal Program and UGC Nepal **Also at UCF, Orlando

  15. Nuclear quadrupole interaction of111Cd on type-1 Cu-sites in blue copper proteins

    NASA Astrophysics Data System (ADS)

    Tröger, W.; Butz, T.; Danielsen, E.; Bauer, R.; Thoenes, U.; Messerschmidt, A.; Huber, R.; Canters, G. W.; den Blaauwen, T.

    1993-03-01

    The nuclear quadrupole interaction (NQI) of111Cd substituted for Cu(II) on type-1 sites in blue copper proteins is characterized by high values of ω0 in the region of 300 Mrad/s, close to that for the catalytic zinc site in alcohol dehydrogenase. Type-1 Cu has usually two sulfur ligands and two nitrogen ligands and in some cases an oxygen ligand in either a distorted tetrahedral geometry or in a trigonal bipyramidal geometry. The near tetrahedral arrangement together with the ligand sphere containing the same number of sulfur ligands explains the value of ω0 in the blue copper proteins. The present work determined the partial NQI for methionine using the known structure of azurin. This value was then used in the angular overlap model to calculate the NQI for ascorbate oxidase the structure of which is also known and gave good agreement with experiment. NQI data for laccase and stellacyanin the structures of which are unknown, are also given.

  16. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  17. Noise-resilient multi-frequency surface sensor for nuclear quadrupole resonance.

    PubMed

    Peshkovsky, A S; Cattena, C J; Cerioni, L M; Osán, T M; Forguez, J G; Peresson, W J; Pusiol, D J

    2008-10-01

    A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection. These modes have smooth distributions of the amplitudes of the corresponding radiofrequency magnetic fields everywhere along the sensor's surface. The phases of the fields, on the other hand, are cyclically shifted across the sensor's surface. Noise signals coming from distant sources, therefore, induce equal-magnitude cyclically phase-shifted currents in different parts of the sensor. When such cyclically phase-shifted currents arrive at the mode connection point, they destructively interfere with each other and are cancelled out. NQR signals of polycrystalline or disordered substances, however, are efficiently detected by these modes because they are insensitive to the phases of the excitation/detection. No blind spots exist along the sensor's surface. The sensor can be used for simultaneous detection of one or more substances in locations with environmental noise.

  18. Nuclear quadrupole coupling constants for N2O: experiment and theory.

    PubMed

    Brown, Alex; Wasylishen, Roderick E

    2012-10-04

    The nuclear quadrupole coupling constants (NQCCs) for the nitrogen and oxygen nuclei in N(2)O have been determined using a variety of computational methods (MP2, QCISD, DFT with B3LYP, PBE0, and B3PW91 functionals, CCSD, CCSD(T), CASSCF, and MRCI) combined with correlation-consistent basis sets. When compared to the available experimental determinations, the results demonstrate that only CCSD(T) and MRCI methods are capable of accurately predicting the NQCCs of the central and terminal nitrogen atoms. The spin-rotation and magnetic shielding tensors have also been determined and compared to experimental measurements where available. (14)N and (17)O NMR relaxation data for N(2)O in the gas phase and a variety of solvents is reported. The increase in the ratio of (14)N spin-lattice relaxation times in solvent for the central and terminal nitrogens supports previous reports of the modification of the electric field gradients at these nuclei in van der Waals complexes. Ab initio computations for the linear FH···N(2)O complex confirm the large change in EFGs imposed by a single perturber.

  19. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  20. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    SciTech Connect

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  1. The temperature dependence of the nuclear quadrupole interaction of 44Ti(EC)44Sc in rutile

    NASA Astrophysics Data System (ADS)

    Butz, T.; Vianden, R.

    2013-05-01

    The temperature dependence of the Nuclear Quadrupole Interaction on 44Sc in rutile was measured by Time Differential Perturbed Angular Correlation in the temperature range from 300 K to 945 K. Whereas \\upomega _Q = eQV_zz/4hbar with Vzz denoting the largest component of the electric field gradient tensor in magnitude increases with increasing temperature, the asymmetry parameter η remains essentially constant. This observation fits into the systematic with other probes provided the sign of Vzz is negative.

  2. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  3. Enhanced effect of C P -violating nuclear magnetic quadrupole moment in a HfF+ molecule

    NASA Astrophysics Data System (ADS)

    Skripnikov, L. V.; Titov, A. V.; Flambaum, V. V.

    2017-02-01

    The HfF+ cation is a very promising system to use in the search for the electron electric dipole moment (EDM), and a corresponding experiment is carried out by JILA group [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683; K.-K. Ni, H. Loh, M. Grau, K. C. Cossel, J. Ye, and E. A. Cornell, J. Mol. Spectrosc. 300, 12 (2014), 10.1016/j.jms.2014.02.001. Here we theoretically investigate the cation to search for another effect which violates time-reversal (T ) and spatial parity (P ) symmetries—the nuclear magnetic quadrupole moment (MQM) interaction with electrons. We report an accurate ab initio relativistic electronic structure calculations of the molecular parameter WM=0.494 10/33Hz e cm2 that is required to interpret the experimental data in terms of the MQM of the Hf nucleus. For this we have implemented and applied the combined Dirac-Coulomb(-Gaunt) and relativistic effective core potential approaches to treat electron correlation effects from all of the electrons and to take into account high-order correlation effects using the coupled cluster method with single, double, triple and noniterative quadruple cluster amplitudes. We discuss interpretation of the MQM effect in terms of the strength constants of T ,P -odd nuclear forces, proton and neutron EDMs, the QCD parameter θ , and quark chromo-EDMs.

  4. Nuclear magnetic resonance data of C2H10OSi2

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  5. Nuclear Quadrupole Resonance Investigation of Spin Dynamics in the Praseodymium Trihalides Praseodymium Trichloride and Praseodymium Tribromide.

    NASA Astrophysics Data System (ADS)

    Su, Sunyu

    The spin dynamics of PrCl_3 and PrBr_3 have been studied in the temperature range from 124mK to 297K using Nuclear Quadrupole Resonance (NQR) techniques. In the low temperature regime, the Pr ions are in the ground state, and the dynamical properties of PrX_3 (X = Cl,Br) are well described by a 1D XY model. The data have been shown to be in agreement with the predictions of a relaxation theory for a magnetic interaction based on a rigorous treatment of the longitudinal dynamical correlation function < S_sp{z}{m}(t)S_sp {z}{n}(t)> of the electronic pseudo-spins S^{m} associated with the crystalline electric field ground state. The fits to the data have yielded reasonable values for the hyperfine interaction parameters A and exchange integrals J/k_{B}. The dynamical properties of the PrX_3 compounds depart from the 1D model as the temperature increases. The spin lattice relaxation rates display unusual temperature dependences in the high temperature regime. These temperature dependences have been qualitatively accounted for by considering the effect of populating the excited states of the crystal electric field. The theory of NQR mixed spin echoes in solids has been established using the interaction representation formalism. The NQR mixed spin echoes theory has been applied to the study of the spin interactions in PrBr_3 . It has been shown that the second moments due to quadrupole interaction M_sp{2} {q}, magnetic dipole-dipole interactions between like spins M_sp{2}{II } and magnetic dipole-dipole interactions between unlike spins M_sp{2}{IS}(Br,Pr ^{3+}),M_sp{2}{IS }(^{79}Br,^{81}Br ) can be simultaneously determined. NQR spectra have been obtained for both praseodymium trihalides. The low temperature spectrum of PrCl _3 has provided strong support to the earlier results. In addition, the present investigation of the NQR spectrum has resulted in a better estimate of the magnitude of dimerization in PrCl_3. The PrBr_3 low temperature NQR spectrum has revealed

  6. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  7. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance.

    PubMed Central

    Lafleur, M; Fine, B; Sternin, E; Cullis, P R; Bloom, M

    1989-01-01

    A new method has been developed to determine the complete orientational order profile of lipid bilayers using 2H-NMR. The profile is obtained from a single powder spectrum of a lipid which has a saturated chain fully deuteriated. The smoothed order profile is determined directly from the normalized dePaked spectrum assuming a monotonic decrease of the order along the acyl chain. The oscillatory variations of the order at the beginning of the chain are not described by this method. However the smoothed order profile reveals in a straightforward way the crucial features of the anisotropic order of the bilayer. PMID:2605294

  8. Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sokolov, P. S.; Petrov, M. Yu.; Mehrtens, T.; Müller-Caspary, K.; Rosenauer, A.; Reuter, D.; Wieck, A. D.

    2016-01-01

    A microscopic study of the individual annealed (In,Ga)As/GaAs quantum dots is done by means of high-resolution transmission electron microscopy. The Cauchy-Green strain-tensor component distribution and the chemical composition of the (In,Ga)As alloy are extracted from the microscopy images. The image processing allows for the reconstruction of the strain-induced electric-field gradients at the individual atomic columns extracting thereby the magnitude and asymmetry parameter of the nuclear quadrupole interaction. Nuclear magnetic resonance absorption spectra are analyzed for parallel and transverse mutual orientations of the electric-field gradient and a static magnetic field.

  9. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    SciTech Connect

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearby proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.

  10. Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, D.; Lenis, D.; Petrellis, D.

    2006-04-01

    A collective Hamiltonian for the rotation-vibration motion of nuclei is considered in which the axial quadrupole and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system depends on the two deformation variables β2 and β3. The system is considered to oscillate between positive and negative β3 values by rounding an infinite potential core in the (β2,β3) plane with β2>0. By assuming a coherent contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the energy levels and electric transition probabilities in alternating parity spectra of the nuclei Nd150, Sm152, Gd154, and Dy156 is presented.

  11. Superconductivity and magnetic fluctuations in Cd(2))Re(2)O(7) via Cd nuclear magnetic resonance and re nuclear quadrupole resonance.

    PubMed

    Vyaselev, O; Arai, K; Kobayashi, K; Yamazaki, J; Kodama, K; Takigawa, M; Hanawa, M; Hiroi, Z

    2002-07-01

    We report Cd nuclear magnetic resonance (NMR) and Re nuclear quadrupole resonance (NQR) studies on Cd(2)Re(2)O(7), the first superconductor among pyrochlore oxides (T(c) approximately 1 K). The Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below T(c) exhibits a pronounced coherence peak and follows the weak-coupling BCS theory with nearly isotropic energy gap. The results of Cd NMR point to a moderate ferromagnetic enhancement at high temperatures followed by a rapid decrease of the density of states below the structural transition temperature of 200 K.

  12. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    SciTech Connect

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program.

  13. Iodine: Many Electrons and much to DISCUSS...THE Nuclear Quadrupole Coupling, Nuclear Spin-Rotation Conformational Analysis, and Structural Determination of 2-IODOBUTANE

    NASA Astrophysics Data System (ADS)

    Arsenault, Eric A.; Choi, Yoon Jeong; Obenchain, Daniel A.; Cooke, S. A.; Blake, Thomas A.; Novick, Stewart E.

    2016-06-01

    The rotational spectrum of 2-iodobutane (sec-butyl-iodide) has been collected from 5.5-16.5 GHz using jet-pulsed Fourier transform microwave spectroscopy on both broadband and Balle-Flygare cavity instruments. Transitions belonging to three unique conformers were observed, namley the gauche-, anti-, and gauche'- species. All four 13C isotopologues of the gauche-2-iodobutane were observed. The complete nuclear quadrupole coupling tensor of iodine has been determined for all conformers and 13C isotopologues. A comparison between these nuclear quadrupole coupling tensors and those of similar iodine-containing molecules will be presented. Changes in the quadrupole coupling of iodine upon isotopic substitution will also be discussed. Additionally, isotopic substitution in conjunction with ab initio calculations allowed for both an r_s and r_0 structural analysis of gauche-2-iodobutane. Brown, G. G.; Dian, B. C.; Douglass, K. O.; Geyer, S. M.; Shipman, S. T.; Pate, B. H. Review of Scientific Instruments 2008, 79, 053103. Balle, T.; Flygare, W. Review of Scientific Instruments 1981, 52, 33-45.

  14. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    NASA Astrophysics Data System (ADS)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  15. Reappraisal of nuclear quadrupole moments of atomic halogens via relativistic coupled cluster linear response theory for the ionization process.

    PubMed

    Chaudhuri, Rajat K; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2013-11-27

    The coupled cluster based linear response theory (CCLRT) with four-component relativistic spinors is employed to compute the electric field gradients (EFG) of (35)Cl, (79)Br, and (127)I nuclei. The EFGs resulting from these calculations are combined with experimental nuclear quadrupole coupling constants (NQCC) to determine the nuclear quadrupole moments (NQM), Q of the halide nuclei. Our estimated NQMs [(35)Cl = -81.12 mb, (79)Br = 307.98 mb, and (127)I = -688.22 mb] agree well with the new atomic values [(35)Cl = -81.1(1.2), (79)Br = 302(5), and (127)I = -680(10) mb] obtained via Fock space multireference coupled cluster method with the Dirac-Coulomb-Breit Hamiltonian. Although our estimated Q((79)Br) value deviates from the accepted reference value of 313(3) mb, it agrees well with the recently recommended value, Q((79)Br) = 308.7(20) mb. Good agreement with current reference data indicates the accuracy of the proposed value for these halogen nuclei and lends credence to the results obtained via CCLRT approach. The electron affinities yielded by this method with no extra cost are also in good agreement with experimental values, which bolster our belief that the NQMs values for halogen nuclei derived here are reliable.

  16. SAS2H input for computing core activities of 4.5, 5.0, and 5.5 weight % {sup 235}U fuel for Sequoyah Nuclear Plant

    SciTech Connect

    Hermann, O.W.

    1994-08-01

    Sequoyah Nuclear Plant core activities at initial fuel enrichments of 4.5, 5.0, and 5.5 wt% {sup 235}U, required in nuclear safety evaluations, were computed by the SAS2H analysis sequence and the ORIGEN-S code within the SCALE-4.2 code system.

  17. Nqrs Data for C3H12INO7 [C3H7NO2·HIO3·2(H2O)] (Subst. No. 0646)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C3H12INO7 [C3H7NO2·HIO3·2(H2O)] (Subst. No. 0646)

  18. Nqrs Data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

  19. Theory for ^77Se and ^125Te Nuclear Quadrupole Interactions in Selenium and Tellurium.

    NASA Astrophysics Data System (ADS)

    Suck-Cho, Hwa; Oh, Young-Kee; Park, Jin-Ho; Das, T. P.

    1998-03-01

    The electric field gradient(efg) tensors at ^77Se and ^125Te nuclei have been studied for the four systems involving each of these nuclei in both Selenium and Tellurium crystals utilizing the first principles Hartee-Fock Cluster procedure. Using the calculated efg for the pure systems and the experimental quadrupole coupling constants (e^2qQ), the quadrupole moments are determined to be Q(^77Se)=0.74±0,07(b) and Q(^125Te)=0.35±0.04(b). Comparison will be made with earlier values for the Q of the two nuclei. Using our values of Q and the calculated efg for ^77Se in tellurium and ^125Te in selenium, our values of e^2qQ agree within 15 per cent with that of experiment. The asymmetry parametrs η also agree reasonably well with experiment, but not as closely as the e^2qQ. Experimental results for η for ^125Te in selenium are needed to compare with theory.

  20. The position of deuterium in HOD—NNO as determined by structural and nuclear quadrupole coupling constants

    SciTech Connect

    Obenchain, Daniel A.; Frank, Derek S.; Novick, Stewart E.; Klemperer, William

    2015-08-28

    Rotational spectra of the weakly bound H{sub 2}O—N{sub 2}O complex and its HOD—N{sub 2}O isotopologue in a supersonic jet are reported. Rotational constants of the singly substituted deuterium in water and each singly substituted nitrogen-15 are presented. Combinations of isotopic data and high level ab initio calculations place the water in a similar position to those of the isoelectronic H{sub 2}O—CO{sub 2} complex, with a slight tilt of the OH towards the NNO axis. The deuterium nuclear quadrupole coupling constant places the deuterium on the O—H axis quasi-parallel to the NNO axis.

  1. (2)H-decoupling-accelerated (1)H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons.

    PubMed

    Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M

    2010-10-21

    In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.

  2. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Micko, B.; Kruk, D.; Rössler, E. A.

    2013-02-01

    We analyze the results of our previously reported 2H nuclear magnetic resonance (NMR) experiments in the plastically crystalline (PC) phase of cyanocyclohexane (Part I of this work) to study the fast secondary relaxation (or β-process) in detail. Both, the occurrence of an additional minimum in the spin-lattice relaxation T1 and the pronounced effects arising in the solid-echo spectrum above the glass transition temperature Tg = 134 K, allow for a direct determination of the restricting geometry of the β-process in terms of the "wobbling-in-a-cone" model. Whereas at temperatures below Tg the reorientation is confined to rather small solid angles (below 10°), the spatial restriction decreases strongly with temperature above Tg, i.e., the distribution of cone angles shifts continuously towards higher values. The β-process in the PC phase of cyanocyclohexane proceeds via the same mechanism as found in structural glass formers. This is substantiated by demonstrating the very similar behavior (for T < Tg) of spin-lattice relaxation, stimulated echo decays, and spectral parameters when plotted as a function of ⟨log τβ⟩ (taken from dielectric spectroscopy). We do, however, not observe a clear-cut relation between the relaxation strength of the β-process observed by NMR (calculated within the wobbling-in-a-cone model) and dielectric spectroscopy.

  3. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    SciTech Connect

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  4. 53Cr, 17O and 14N nuclear quadrupole resonance in ammonium dichromate

    NASA Astrophysics Data System (ADS)

    Stephenson, David; Singh, Nadia

    2016-12-01

    The 53Cr resonance frequency in ammonium dichromate has been detected at 4202 kHz giving a Qcc of 8404 kHz (assuming η= 0). Calculations suggest that the value of the 53Cr quadrupole moment is about 84 mB lower that the currently accepted value. The resonance frequencies of two 17O nuclei have also been detected giving Qcc = 2800, 2890 kHz and η = 0.726, 0.780 respectively. The value for coupling and asymmetry parameter for 14N has been refined using zero field NQR giving a value Qcc = 78.8 kHz and η= 0.645 the asymmetry value being considerably lower than the value previous reported.

  5. First-principles study of boron oxygen hole centers in crystals: Electronic structures and nuclear hyperfine and quadrupole parameters

    SciTech Connect

    Li Zucheng; Pan Yuanming

    2011-09-15

    The electronic structures, nuclear hyperfine coupling constants, and nuclear quadrupole parameters of fundamental boron oxygen hole centers (BOHCs) in zircon (ZrSiO{sub 4}, I4{sub 1}/amd) and calcite (CaCO{sub 3}, R3c) have been investigated using ab initio Hartree-Fock (HF) and various density functional theory (DFT) methods based on the supercell models with all-electron localized basis sets. Both exact HF exchange and appropriate correlation functionals are important in describing the BOHCs, and the parameter-free hybrid method based on Perdew, Burke, and Ernzerhof density functionals (PBE0) turns out to be the best DFT method in reproducing the electron paramagnetic resonance (EPR) data. Our results reveal three distinct types of simple-spin (S = 1/2) [BO{sub 3}]{sup 2-} centers in calcite: (i) the classic [BO{sub 3}]{sup 2-} radical with the D{sub 3h} symmetry and the unpaired spin equally distributed on the three oxygen atoms (i.e. the O{sub 3}{sup 5-} type); (ii) the previously reported [BO{sub 2}]{sup 0} center with the unpaired spin equally distributed on two of the three oxygen atoms (O{sub 2}{sup 3-}); and (iii) a new variety with {approx}90% of its unpaired spin localized on one (O{sup -}) of the three oxygen atoms with a long B-O bond (1.44 A). Calculations confirm the unusual [BO{sub 4}]{sup 0} center in zircon and show it to arise from a highly distorted configuration with 90% of the unpaired spin on one oxygen atom that has a considerably longer B-O bond (1.68 A) than its three counterparts (1.45 A). The calculated magnitudes and directions of {sup 11}B and {sup 17}O hyperfine coupling constants and nuclear quadrupole constants for the [BO{sub 4}]{sup 0} center in zircon are in excellent agreement with the 15 K EPR experimental data. These BOHCs are all characterized by a small negative spin density on the central B atom arising from spin polarization. Our calculations also demonstrate that the spin densities on BOHCs are affected substantially by

  6. Analysis of nuclear-quadrupole-resonance spectrum of incommensurate phases: The case of bis(4-chlorophenyl) sulfone

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Schürrer, C.; Wolfenson, A.; Brunetti, A.

    1998-02-01

    In this work, previous experimental studies of the 35Cl nuclear-quadrupole-resonance (NQR) line shape in the incommensurate phase of bis(4-chlorophenyl) sulfone were extended. The broad spectra in the incommensurate phase (IC) were measured using the Fourier transform of the nuclear signal to avoid systematic errors committed in some studies of this compound. The results were interpreted within the framework of the general treatment developed by Perez-Mato, Walisch, and Petersson. The effects of the incommensurate modulation on the asymmetry parameter of the electric-field gradient were explicitly included in the expression of the NQR frequency. The features of the spectra were adequately reproduced in the whole temperature range, by considering the nonsinusoidal character of the atomic modulations reported by x-ray diffraction. No evidences were found concerning IC wave fluctuations smearing out the singularities of the NQR spectrum. On the other hand, relative intensity of NQR peaks and temperature behavior of some parameters of the plane-wave ``local'' model were explicitly calculated. Comparison of these quantities with the experimental results excludes the applicability of the ``local'' model in the case of bis(4-chlorophenyl) sulfone.

  7. Hartree-Fock-Cluster Investigation of Nuclear Quadrupole Interactions in Solid Chalcogens, Selenium and Tellurium.

    NASA Astrophysics Data System (ADS)

    Aryal, M. M.; Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S. R.; Scheicher, R. H.; Badu, S. R.; Jeong, J.; Chow, Lee; Das, T. P.

    2008-03-01

    Using the first-principles Hartree-Fock Cluster Procedure, we have studied the electronic structures of pure chain like Selenium and Tellurium, pure ring structured Selenium, Tellurium impurity in chain and ring-structured Selenium and Selenium impurity in chain-structured Tellurium chain. For our investigations in all the systems we have carried out convergence studies with respect to variational basis set sizes,sizes of clusters and electron correlation effects using many-body perturbation theory. Using our calculated electronic field-gradient parameters q in the pure chain systems and employing the experimental quadrupole coupling constants (e^2qQ), the values Q(^77Se)=(0.50±0.04) 10-28 m^2 and Q(^125Te)=-(0.2±0.02) 10-28m^2. Results will also be presented for the asymmetry parameters η for the pure chain systems and the e^2qQ and η for ^77Se in selenium ring. Our calculated values for e^2qQ and η for the impurity systems will also be presented and compared with available experimental data and earlier theoretical results.

  8. Physical characterization and reactivity of the uranyl peroxide [UO2(η(2)-O2)(H2O)2]·2H2O: implications for storage of spent nuclear fuels.

    PubMed

    Mallon, Colm; Walshe, Aurora; Forster, Robert J; Keyes, Tia E; Baker, Robert J

    2012-08-06

    The unusual uranyl peroxide studtite, [UO(2)(η(2)-O(2))(H(2)O)(2)]·2H(2)O, is a phase alteration product of spent nuclear fuel and has been characterized by solid-state cyclic voltammetry. The voltammogram exhibits two reduction waves that have been assigned to the U(VI/V) redox couple at -0.74 V and to the U(V/IV) redox couple at -1.10 V. This potential shows some dependence upon the identity of the cation of the supporting electrolyte, where cations with larger ionic radii exhibit more cathodic reduction potentials. Raman spectroelectrochemistry indicated that exhaustive reduction at either potential result in a product that does not contain peroxide linkers and is likely to be UO(2). On the basis of the reduction potentials, the unusual behavior of neptunium in the presence of studtite can be rationalized. Furthermore, the oxidation of other species relevant to the long-term storage of nuclear fuel, namely, iodine and iodide, has been explored. The phase altered product should therefore be considered as electrochemically noninnocent. Radiotracer studies with (241)Am show that it does not interact with studtite so mobility will not be retarded in repositories. Finally, a large difference in band gap energies between studtite and its dehydrated congener metastudtite has been determined from the electronic absorption spectra.

  9. Nqrs Data for C3H10INO6 [C3H7NO2·HIO3·(1/2)(H2O)] (Subst. No. 0642)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C3H10INO6 [C3H7NO2·HIO3·(1/2)(H2O)] (Subst. No. 0642)

  10. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  11. Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pustovalova, Yulia; Kukic, Predrag; Vendruscolo, Michele; Korzhnev, Dmitry M

    2015-08-04

    The structural characterization of low populated states of proteins with accuracy comparable to that achievable for native states is important for understanding the mechanisms of protein folding and function, as well as misfolding and aggregation. Because of the transient nature of these low populated states, they are seldom detected directly under conditions that favor folding. The activation domain of human procarboxypeptidase A2 (ADA2h) is an α/β-protein that forms amyloid fibrils at low pH, presumably initiated from a denatured state with a considerable amount of residual structure. Here we used Carr-Parcell-Meiboom-Gill relaxation dispersion (CPMG RD) nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the denatured state of the ADA2h I71V mutant under conditions that favor folding. Under these conditions, the lifetime of the denatured state of I71V ADA2h is on the order of milliseconds and its population is approximately several percent, which makes this mutant amenable to studies by CPMG RD methods. The nearly complete set of CPMG RD-derived backbone (15)N, (13)C, and (1)H NMR chemical shifts in the I71V ADA2h denatured state reveals that it retains a significant fraction (up to 50-60%) of nativelike α-helical structure, while the regions encompassing native β-strands are structured to a much lesser extent. The nativelike α-helical structure of the denatured state can bring together hydrophobic residues on the same sides of α-helices, making them available for intra- or intermolecular interactions. CPMG RD data analysis thus allowed a detailed structural characterization of the ADA2h denatured state under folding conditions not previously achieved for this protein.

  12. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  13. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  14. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip Thomas

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necess-itating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent frac-tion of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  15. {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange

    SciTech Connect

    Thierfelder, Christian; Schwerdtfeger, Peter; Saue, Trond

    2007-09-15

    The electric field gradient in late transition metal compounds is incorrectly determined by most density functionals. We show that the coupling of short-range density functional based with long-range wave function based methods using a reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-Parr approximation gives reliable results for the electric field gradients of copper and gold for a series of compounds. This results in nuclear quadrupole moments of -0.208 b for {sup 63}Cu and +0.526 b for {sup 197}Au in good agreement with experimental values of -0.220(15) and +0.547(16)b, respectively.

  16. Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ≤x ≤0.02 ) studied by 59Co nuclear quadrupole resonance measurements

    NASA Astrophysics Data System (ADS)

    Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

    2015-02-01

    In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

  17. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

    PubMed Central

    2015-01-01

    X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219 Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219 Nδ is established as the stronger of the two H-bond donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available data on nuclear quadrupole tensors for imidazole nitrogens found in semiquinone-binding proteins and copper complexes reveals these systems share similar electron occupancies of the protonated nitrogen orbitals. By applying the Townes–Dailey model, developed previously for copper complexes, to the semiquinones, we find the asymmetry parameter η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by a strong correlation observed between η and the isotropic coupling constant a(14N) and is consistent with previous computational works and our own semiquinone-histidine model calculations. The empirical relationship presented here for a(14N) and η will provide an important structural characterization tool in future studies of semiquinone-binding proteins. PMID:25026433

  18. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    SciTech Connect

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; Mitchell, Jeremy Neil; Bauer, Eric Dietzgen; Thompson, Joe David

    2016-10-10

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  19. In-vivo study of the nuclear quadrupole interaction of99Mo (β- 99)Tc in nitrogenase of Klebsiella pneumoniaein nitrogenase of Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Mottner, P.; Lerf, A.; Ni, X.; Butz, T.; Erfkamp, J.; Müller, A.

    1990-08-01

    We report on the first TDPAC-measurements of the nuclear quadrupole interaction (NQI) of (NQI) of99Mo(β-)99Tc in the nitrogenase of the bacteria Klebsiella pneumoniae. Because nitrogenase is the only Mo-containing enzyme in Klebsiella pneumoniae under the chosen conditions, no further isolation of this enzyme was necessary. The majority of the incorporated99Mo is subjected to a well defined NQI with ω=365(7) Mrad/s, η=1 and a reorientational correlation time of τcoττ≈10nsec and is attributed to the active site of the FeMo cofactor. During sample preparation we noted a pronounced affinity of the bacteria to99mTc.

  20. Variable-Pitch Rectangular Cross-section Radiofrequency Coils for the Nitrogen-14 Nuclear Quadrupole Resonance Investigation of Sealed Medicines Packets

    PubMed Central

    2012-01-01

    The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis. PMID:23057555

  1. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  2. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions.

  3. Acyl chain orientational order in large unilamellar vesicles: comparison with multilamellar liposomes: a 2H and 31P nuclear magnetic resonance study.

    PubMed Central

    Fenske, D B; Cullis, P R

    1993-01-01

    Large unilamellar vesicles (LUVs) composed of 1-[2H31]palmitoyl-2-oleoyl phosphatidylcholine (POPC-d31), with diameters of approximately 117 +/- 31 and 180 +/- 44 nm, were prepared by extrusion through polycarbonate filters with pore sizes of 0.1 and 0.2 microns, respectively. The 2H nuclear magnetic resonance (NMR) spectra obtained at 21 degrees C contain two components: a broad component (approximately 17 kHz linewidth) corresponding to the methylene groups and a narrower component originating from the methyl groups. Spectra with increasing powder pattern characteristics were obtained by reducing the rate of phospholipid reorientations by addition of glycerol (to increase the solvent viscosity) and by lowering the temperature. Full powder spectra, characteristic of liquid-crystalline bilayers, were obtained for both LUV samples at 0 degrees C in the presence of 50 wt% glycerol. Individual quadrupolar splittings were not resolved in these spectra, due to broader linewidths in the LUVs, which have significantly shorter values for spin-spin relaxation time T2 measured from the decay of the quadrupolar echo (90 microseconds) than the multilmellar vesicles (MLVs; 540 microseconds). Smoothed order parameter profiles (OPPs) were obtained for these samples by integration of the dePaked spectra. The OPPs were very similar to the OPP of POPC-d31 MLVs in 50 wt% glycerol at the same temperature, indicating that orientational order in MLVs and LUVs with a diameter of > or = 100 nm is essentially the same. The presence of 80 wt% glycerol was found to have a disordering effect on the vesicles. PMID:8324185

  4. Probing the formation and evolution of comets via nuclear spin temperatures of C_2H_6, CH_3OH, CH_4, NH_3, and H_2O

    NASA Astrophysics Data System (ADS)

    Villanueva, G.; Mumma, M.; Bonev, B.; DiSanti, M.; Paganini, L.; Magee-Sauer, K.; Gibb, E.

    2014-07-01

    Comets are true remnants of our primordial Solar System, and provide unique clues to its formation and evolution, including the delivery of organics and water to our planet. A key indicator stored in the molecular structure of the nuclear ices is the spin temperature (T_{spin}), derived from spin-isomeric ratios (R_{spin}, e.g., ortho/para). At the time when cometary ices formed, the prevailing temperature defined the relative abundance of the different spin-isomeric species, and herewith R_{spin} and T_{spin} are normally treated as ''remnant thermometers'' probing the formation environments of cometary molecules. Radiative and collisional transitions between the ortho and para states are strongly forbidden and herewith this indicator is preserved over time. Most of our knowledge of this indicator comes from the measurements of the ortho-para ratios in water and NH_2 (a proxy for ammonia), suggesting a common T_{spin} near 30 K. This information is based on a restricted sample of comets, and the measurements are particularly sensitive to the molecular modeling technique and adopted spectral database. Here, we present new methodologies for extracting spin temperatures from ethane (C_2H_6), methane (CH_4), and methanol (CH_3OH), and advanced new models for ortho/para water (H_2O) and ammonia (NH_3). Our H_2O analysis is based on the most complete fluorescence radiative-transfer model to date, which incorporates 1,200 million transitions including those originating from high-energy levels that are activated in comets via a non-resonant cascade. In a similar fashion, we developed non-resonant fluorescence models for NH_3 and HCN, and quantum-band models for the ν_7 band of C_2H_6 and ν_3 band of CH_3OH. All models respect spin-symmetry non-conversion radiative rules, and make use of a realistic solar spectrum for the computation of fluorescence pumps. We applied these new methods to derive spin-isomeric ratios for H_2O, CH_4, C_2H_6, CH_3OH, and NH_3 from three high

  5. Nuclear Quadrupole Resonance Measurement of the Ferromagnetic Filled-Skutterudite Compound EuRu4Sb12

    NASA Astrophysics Data System (ADS)

    Koyama, Takehide; Maeda, Yoshitaka; Ueda, Koichi; Mito, Takeshi; Sugawara, Hitoshi

    2015-08-01

    We report the detailed analysis of the 101Ru nuclear quadrupolar resonance spectrum in the ferromagnetically ordered state of EuRu4Sb121 and propose that Eu 4f moments align in the [111] direction. The localized character of Eu 4f electrons is suggested from the temperature dependence of the nuclear spin-lattice relaxation rate.

  6. Nqrs Data for C8H5Li2O4.5 [C8H4Li2O4·1/2(H2O)] (Subst. No. 1059)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H5Li2O4.5 [C8H4Li2O4·1/2(H2O)] (Subst. No. 1059)

  7. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  8. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  9. Phase equilibria and molecular packing in the N,N-dimethyldodecylamine oxide/gramicidin D/water system studied by 2H nuclear magnetic resonance spectroscopy.

    PubMed Central

    Orädd, G; Lindblom, G; Arvidson, G; Gunnarsson, K

    1995-01-01

    A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the

  10. Multiple locations of peptides in the hydrocarbon core of gel-phase membranes revealed by peptide (13)C to lipid (2)H rotational-echo double-resonance solid-state nuclear magnetic resonance.

    PubMed

    Xie, Li; Jia, Lihui; Liang, Shuang; Weliky, David P

    2015-01-27

    Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide (13)CO to lipid (2)H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV-host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of (13)CO-(2)H REDOR using the lyophilized I4 peptide that is α-helical and (13)CO-labeled at A9 and (2)Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated (13)CO-(2)H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz (2)H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the (2)H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the (13)CO-(2)H (m = ±1) states and

  11. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  12. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  13. Monopole, Quadrupole and Pairing: a Shell Model View

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.

    The three main contributions to the nuclear Hamiltonian-monopole, quadrupole and pairing - are analyzed in a shell model context. The first has to be treated phenomenologically, while the other two can be reliably extracted from the realistic interactions. Due to simple scaling properties, the realistic quadrupole and pairing interactions eliminate the tendency to collapse of their conventional counterparts, while retaining their basic simplicity.

  14. Quadrupole ion traps.

    PubMed

    March, Raymond E

    2009-01-01

    The extraordinary story of the three-dimensional radiofrequency quadrupole ion trap, accompanied by a seemingly unintelligible theoretical treatment, is told in some detail because of the quite considerable degree of commercial success that quadrupole technology has achieved. The quadrupole ion trap, often used in conjunction with a quadrupole mass filter, remained a laboratory curiosity until 1979 when, at the American Society for Mass Spectrometry Conference in Seattle, George Stafford, Jr., of Finnigan Corp., learned of the Masters' study of Allison Armitage of a combined quadrupole ion trap/quadrupole mass filter instrument for the observation of electron impact and chemical ionization mass spectra of simple compounds eluting from a gas chromatograph. Stafford developed subsequently the mass-selective axial instability method for obtaining mass spectra from the quadrupole ion trap alone and, in 1983, Finnigan Corp. announced the first commercial quadrupole ion trap instrument as a detector for a gas chromatograph. In 1987, confinement of ions generated externally to the ion trap was demonstrated and, soon after, the new technique of electrospray ionization was shown to be compatible with the ion trap.

  15. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  16. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance.

    PubMed

    Espiritu, Rafael Atillo; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Matsunaga, Shigeki; Yoshida, Minoru

    2013-04-09

    Theonellamides (TNMs) are members of a distinctive family of antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3β-hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol binding at a molecular level has not been determined. In this study, to gain insight into the mechanism of sterol recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid-state deuterium nuclear magnetic resonance ((2)H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol % cholesterol or ergosterol into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding to the membrane surface. These findings, together with the fact that binding of TNM-A to epicholesterol (3α-cholesterol)-containing liposomes and pure POPC liposomes was comparably weak, confirmed the preference of the peptide for the 3β-hydroxysterol-containing membranes. To further establish the formation of the complex of TNM-A with 3β-hydroxysterols in lipid bilayers, solid-state (2)H NMR measurements were conducted using deuterium-labeled cholesterol, ergosterol, or epicholesterol. The (2)H NMR spectra showed that TNM-A significantly inhibits the fast rotational motion of cholesterol and ergosterol, but not epicholesterol, therefore verifying the direct complexation between TNM-A and 3β-hydroxysterols in lipid bilayers. This study demonstrates that TNM-A directly recognizes the 3β-OH moiety of sterols, which greatly facilitates its binding to bilayer membranes.

  17. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  18. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Octupole vibrations in the X(5) nuclei Nd150 and Sm152

    NASA Astrophysics Data System (ADS)

    Bizzeti, P. G.; Bizzeti-Sona, A. M.

    2010-03-01

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5)-to-SU(3) phase transition. The situation of Nd150 and Sm152 is discussed in detail. The positive-parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is also possible to describe the negative-parity sector with comparable accuracy without changing the description of the positive-parity part.

  19. Relationship between magnetic fluctuations and superconductivity in Na x(H 3O) zCoO 2 · yH 2O revealed by a Co nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Ihara, Y.; Takeya, H.; Michioka, C.; Yoshimura, K.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

    2007-09-01

    Nuclear quadrupole frequency (νQ) and spin-lattice relaxation rate 1/T1 of Co were measured on various bilayered hydrate (BLH) NaxCoO2 · yH2O (y ∼ 1.3) with different values of superconducting (SC) and magnetic-transition temperatures, Tc and TM, together with non-SC monolayered hydrate (MLH) NaxCoO2 · yH2O (y ∼ 0.7). In the temperature range above 70 K, 1/T1T in all samples follows the similar temperature dependence as each other. In the BLH compounds, 1/T1T is enhanced with decreasing temperature below 70 K, and the values of 1/T1T at Tc are larger in the higher-ν3 sample, where ν3 is the peak frequency of the NQR spectrum arising from ±5/2 ↔ ±7/2 transitions. The magnetic ordering is indicated from the prominent divergence of 1/T1T at TM and the presence of the internal field at the Co nuclear site in the samples with ν3 higher than 12.5 MHz. We analyze the temperature dependence of 1/T1T in all samples on the basis of identical formula, and discuss the relationship between magnetic fluctuations and superconductivity in the BLH cobaltate.

  20. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  1. Periodic ab initio calculation of nuclear quadrupole parameters as an assignment tool in solid-state NMR spectroscopy: applications to 23Na NMR spectra of crystalline materials.

    PubMed

    Johnson, Clive; Moore, Elaine A; Mortimer, Michael

    2005-05-01

    Periodic ab initio HF calculations using the CRYSTAL code have been used to calculate (23)Na NMR quadrupole parameters for a wide range of crystalline sodium compounds including Na(3)OCl. An approach is developed that can be used routinely as an alternative to point-charge modelling schemes for the assignment of distinct lines in (23)Na NMR spectra to specific crystallographic sodium sites. The calculations are based on standard 3-21 G and 6-21 G molecular basis sets and in each case the same modified basis set for sodium is used for all compounds. The general approach is extendable to other quadrupolar nuclei. For the 3-21 G calculations a 1:1 linear correlation between experimental and calculated values of C(Q)((23)Na) is obtained. The 6-21 G calculations, including the addition of d-polarisation functions, give better accuracy in the calculation of eta((23)Na). The sensitivity of eta((23)Na) to hydrogen atom location is shown to be useful in testing the reported hydrogen-bonded structure of Na(2)HPO(4).

  2. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  3. MQXFS1 Quadrupole Design Report

    SciTech Connect

    Ambrosio, Giorgio

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  4. Unconventional superconductivity and electron correlations in the cobalt oxyhydrate Na0.35CoO2.yH2O from nuclear quadrupole resonance.

    PubMed

    Fujimoto, Tatsuya; Zheng, Guo-qing; Kitaoka, Y; Meng, R L; Cmaidalka, J; Chu, C W

    2004-01-30

    We report a careful 59Co nuclear quadrupolar resonance measurement on the recently discovered cobalt oxyhydrate Na0.35CoO2.yH(2)O superconductor from T=40 K down to 0.2 K. We find that in the normal state the spin-lattice relaxation rate 1/T(1) follows a Curie-Weiss type temperature (T) variation, 1/T(1)T=C/(T-theta), with theta=-42 K, suggesting two-dimensional antiferromagnetic spin correlations. Below T(c)=3.9 K, 1/T(1) decreases with no coherence peak and follows a T(n) dependence with n approximately 2.2 down to approximately 2.0 K but crosses over to a 1/T(1) proportional to T variation below T=1.4 K, which suggests non-s-wave superconductivity. The data in the superconducting state are most consistent with the existence of line nodes in the gap function.

  5. A Report on the International Symposium on Nuclear Quadrupole Resonance Spectroscopy (5th) Held at the Laboratoire de Chimie du Coordination du CNRS, Toulouse, France, 10-14 September 1979,

    DTIC Science & Technology

    1980-09-03

    THIS PAGE (*Woun Da Entered __________________ RECAD INSTRUCTIOKSREPORT DOCUMENTATION PAGE BEFORS CORPLETUG PORN 1. REPORT NUMBER 2. GOVT ACCESSION NO...become a torrent . Second, the widespread vigor with which the problems of mathematical description of quadrupole resonance phe- nomena, especially

  6. Identification of 20(S)-protopanaxatriol metabolites in rats by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    He, Chunyong; Zhou, Dandan; Li, Jia; Han, Han; Ji, Guang; Yang, Li; Wang, Zhengtao

    2014-01-01

    20(S)-Protopanaxatriol (PPT), one of the aglycones of ginsenosides, has been shown to exert cardioprotective effects against myocardial ischemic injury. However, studies on PPT metabolism have rarely been reported. This study is the first to investigate the in vivo metabolism of PPT following oral administration by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy. The structures of the metabolites were identified based on the characteristics of their MS data, MS(2) data, and chromatographic retention times. A total of 22 metabolites, including 17 phase I and 5 phase II metabolites, were found and tentatively identified by comparing their mass spectrometry profiles with those of PPT. Two new monooxygenation metabolites, (20S,24S)-epoxy-dammarane-3,6,12,25-tetraol and (20S,24R)-epoxy-dammarane-3,6,12,25-tetraol, were chemicallly synthesized and unambiguously characterized according to the NMR spectroscopic data. The metabolic pathways of PPT were proposed accordingly for the first time. Results revealed that oxidation of (1) double bonds at Δ((24,25)) to form 24,25-epoxides, followed by rearrangement to yield 20,24-oxide forms; and (2) vinyl-methyl at C-26/27 to form corresponding carboxylic acid were the predominant metabolic pathways. Phase II metabolic pathways were proven for the first time to consist of glucuronidation and cysteine conjugation. This study provides valuable and new information on the metabolism of PPT, which is indispensable for understanding the safety and efficacy of PPT, as well as its corresponding ginsenosides.

  7. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

    2014-09-22

    Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable β form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline < theobromine < caffeine according to increasing electric field gradient (EFG) at the N(1) and N(7) sites, respectively, reflects the changes in biological activity profile of compounds from the methylxanthines series (different pharmacological effects). This difference is elucidated on the basis of the ability to form intra- and intermolecular interactions (hydrogen bonds and π···π stacking interactions). The introduction of methyl groups to xanthine restricts the ability of nitrogen atoms to participate in strong hydrogen bonds; as a result, the dominating effect shifts from hydrogen bond (theobromine) to π···π stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld

  8. Simultaneous quadrupole and octupole shape phase transitions in Thorium

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Song, B. Y.; Yao, J. M.; Vretenar, D.; Meng, J.

    2013-11-01

    The evolution of quadrupole and octupole shapes in Th isotopes is studied in the framework of nuclear Density Functional Theory. Constrained energy maps and observables calculated with microscopic collective Hamiltonians indicate the occurrence of a simultaneous quantum shape phase transition between spherical and quadrupole-deformed prolate shapes, and between non-octupole and octupole-deformed shapes, as functions of the neutron number. The nucleus 224Th is closest to the critical point of a double phase transition. A microscopic mechanism of this phenomenon is discussed in terms of the evolution of single-nucleon orbitals with deformation.

  9. Landmine Detection by Nuclear Quadrupole Resonance (NQR)

    DTIC Science & Technology

    2004-12-01

    14N nuclei present in the explosive (Hirshfeld and Klainer, 1980; Grechishkin, 1992; Rowe and Smith, 1996; Garroway et al., 2001; Deas et al., 2002...Mater. Chem., 7 (2), 229-235. Garroway , A.N., Buess, M.L., Miller, J.B., Suits, B.H., Hibbs, A.D., Barrall, G.A., Matthews, R. and Burnett, L.J

  10. Study of muonic atoms in the A = 40 to 70 and A = 100 to 130 mass regions (nuclear charge radii, isotope and isotone shifts) and in the Sm-Gd and W-Os-Pt transition regions (electric monopole and quadrupole moments). Progress report No. 5, December 1, 1979-October 15, 1980. [Dept. of Physics, Purdue Univ. , 12/1/79-10/15/80

    SciTech Connect

    Steffen, R M

    1980-10-01

    The muonic x-ray spectra of the stable Ru and Pd isotope have been measured, and the data have been analyzed in terms of the effective Barrett radii and in terms of isotope shifts. The effects of the neutron subshell closure on the ..delta..N = 2 isotopes shifts at N = 56 is much smaller in the Ru (Z = 44) isotopes as compared to the recently observed effect in the Mo (Z = 42) isotope shifts. This is the first time a pronounced difference in ..delta..N = 2 isotope shifts has been observed for different values of Z. The muonic x-ray measurements on 24 stable isotopes of Cd, Sn, Te, and Ba have been completed and the analysis of the 74 spectra (including calibration spectra) is progressing. The work on the quadrupole parameters of the even-A Os nuclei has been completed. The analysis of the muonic x-ray spectra of the even-A Gd isotopes is near completion. Monopole and quadrupole charge parameters of the 0/sub g//sup +/ and 2/sub g//sup +/ states (and in the case of /sup 160/Gd, of the 3/sup -/ state) have been determined. The model dependence of extracting point-quadrupole matrix elements from muonic x-ray measurements has been carefully investigated. It was found that neither the ..beta..-vibration nor the ..gamma..-vibration modes influence the value of the extracted point moments by more than 2 percent. The problem of nuclear polarization corrections was examined.

  11. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  12. A 2H nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography.

    PubMed

    Wikberg, Erika; Sparrman, Tobias; Viklund, Camilla; Jonsson, Tobias; Irgum, Knut

    2011-09-23

    2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between -80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs-Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring.

  13. Consistent quadrupole-octupole collective model

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Mazurek, K.; Góźdź, A.

    2016-11-01

    Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.

  14. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  15. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  16. Kinetics Studies of Radical-Radical Reactions (I): The NO2 + N2H3 System

    DTIC Science & Technology

    2013-08-01

    the potential energy surface for the NO2 + N2H3 system and have established the most likely reaction mechanism. The technique of laser photolysis...configuration interactions and coupled-cluster theories with single and double excitations, and correction for triple excitations. Specifically, the...differentially pumped chamber containing an electron impact ionization quadrupole mass spectrometer. 4. Results and Discussion To our knowledge

  17. Quadrupole magnets for the SSC

    SciTech Connect

    Lietzke, A.; Barale, P.; Benjegerdes, R.; Caspi, S.; Cortella, J.; Dell'Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.

    1992-08-01

    At LBL, we have designed, constructed, and tested ten models (4-1meter, 6-5meter) of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211Tesla/meter). The results of this program are herein summarized.

  18. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  19. Distal and proximal ligand interactions in heme proteins: correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C17O- and 13CO-labeled species.

    PubMed

    Park, K D; Guo, K M; Adebodun, F; Chiu, M L; Sligar, S G; Oldfield, E

    1991-03-05

    We have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C17O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7----Val E7; His E7----Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase (E.C. 1.11.1.7) isoenzymes A and C, and Caldariomyces fumago chloroperoxidase (E.C. 1.11.1.10), in some cases as a function of pH, and have determined their isotropic 17O NMR chemical shifts, delta i, and spin-lattice relaxation times, T1. We have also obtained similar results on a picket fence prophyrin, [5,10,15,20-tetrakis(alpha, alpha, alpha, alpha, alpha-pivalamidophenyl)porphyrinato]iron(II) (1-MeIm)CO, both in solution and in the solid state. Our results show an excellent correlation between the infrared C-O vibrational frequencies, v(C-O), and delta i, between v(C-O) and the 17O nuclear quadrupole coupling constant (e2qQ/h, derived from T1), and as expected between e2qQ/h and delta i. Taken together with the work of others on the 13C NMR of 13CO-labeled proteins, where we find an excellent correlation between delta i(13C) and v(Fe-C), our results suggest that IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of pi-back-bonding from Fe d to CO pi* orbitals, as outlined previously [Li, X.-Y., & Spiro, T.G. (1988) J. Am. Chem. Soc. 110, 6024]. The modulation of this interaction by the local charge field of the distal heme residue (histidine, glutamine, arginine, and possibly lysine) in a variety of species and mutants, as reflected in the NMR and IR measurements, is discussed, as is the effect of cysteine as the proximal heme ligand.

  20. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  1. Interrelations between the pairing and quadrupole interactions in the microscopic Shell Model

    NASA Astrophysics Data System (ADS)

    Drumev, K. P.; Georgieva, A. I.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  2. Accurate measurements of electric quadrupole hyperfine interactions of very dilute spins in magnetic solids

    NASA Astrophysics Data System (ADS)

    Chaplin, D. H.; Hutchison, W. D.; Prandolini, M. J.; Bowden, G. J.

    1998-01-01

    The application of double and triple resonance techniques to enhance signals in quadrupole interaction — nuclear magnetic resonance on oriented nuclei spectroscopy, is illustrated for the antiferromagnet ( 54Mn)MnBr 2-4H 2O. Unusual shifts of the quadrupolar split, higher order, ν ±2, ±1 subresonance, comparable to the NMRON linewidth, are observed and explained.

  3. Non-Abelian effects in a quadrupole system rotating around two axes

    SciTech Connect

    Zwanziger, J.W.; Koenig, M.; Pines, A. Department of Chemistry, University of California, Berkeley, CA )

    1990-09-01

    The {sup 35}Cl nuclear quadrupole resonance spectrum of a single crystal of sodium chlorate (R. Tycko, Phys. Rev. Lett. 58, 2281 (1987)) rotating about two axes reflects a non-Abelian gauge potential. This gauge potential is an example of Wilczek and Zee's (Phys. Rev. Lett. 52, 2111 (1984)) generalization of Berry's phase to the adiabatic transport of degenerate states.

  4. Quadrupole mass spectrometer for a mobile laboratory to measure isotope ratios

    SciTech Connect

    Walton, J.R.; Smith, D.H.; McKown, H.S.; Carter, J.A.

    1981-01-01

    A mobile laboratory has been assembled for on-site inspection of plant operations handlng special nuclear materials. The isotopic composition of U, Pu, and other elements can be analyzed using a quadrupole mass spectrometer. Some results of analysis of uranium and boron standards are given. (DLC)

  5. A merged quadrupole-calorimeter for CEPC

    NASA Astrophysics Data System (ADS)

    Talman, Richard; Hauptman, John

    2016-11-01

    The luminosity ℒ of colliding beams in a storage ring such as CEPC depends strongly on l∗, the half-length of the free space centered on the intersection point (IP). l∗ is also the length from the IP to the front edges of the two near-in quadrupoles that are focusing the counter-circulating beams to the IP spot. The detector length cannot, therefore, exceed 2l∗. Since ℒ increases strongly with decreasing l∗, there is incentive for reducing l∗; but this requires the detector to be shorter than desirable. This paper proposes a method for integrating these adjacent quadrupoles into the particle detector to retain (admittedly degraded) active particle detection of those forward going particles that would otherwise be obscured by the quadrupole. A gently conical quadrupole shape is more natural for merging the quadrupole into the particle detector than is the analytically exact cylindrical shape. This is true whether or not the calorimeter is integrated. It will be the task of accelerator physicists to determine the extent to which deviation from the pure quadrupole field compromises (or improves) accelerator performance. Superficially, both the presence of strongest gradient close to the IP and largest aperture farther from the IP seem to be advantageous. A tentative design for this merged, quadrupole-calorimeter is given.

  6. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-09

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  7. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  8. THz spectroscopy of D2H+

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.

    2017-01-01

    We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.

  9. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  10. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  11. Robust correlations between quadrupole moments of low-lying 2+ states within random-interaction ensembles

    NASA Astrophysics Data System (ADS)

    Lei, Y.

    2016-02-01

    In random-interaction ensembles, three proportional correlations between quadrupole moments of the first two Iπ=2+ states robustly emerge, including Q (21+) =±Q (22+) correlations previously remarked by a realistic nuclear survey, and the Q (22+) =-3/7 Q (21+) correlation, which is only observed in the s d -boson space. These correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational U(5) limit, respectively, according to the Elliott model and the s d -boson mean-field theory. The anharmonic vibration may be another phenomenological interpretation for the Q (21+) =-Q (22+) correlation, whose spectral evidence, however, is insufficient.

  12. The quadrupole moments of Cd and Zn isotopes - an apology

    NASA Astrophysics Data System (ADS)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  13. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  14. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  15. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  16. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  17. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  20. Quadrupole-bound anions: efficacy of positive versus negative quadrupole moments.

    PubMed

    Garrett, W R

    2012-02-07

    A pseudopotential method is utilized to study the critical stability of model anions formed by long-range quadrupolar molecular potentials. Results indicate that critical quadrupole moments of simple point-charge triads do not serve well as predictors of real quadrupole-bound anions of systems with negative moments.

  1. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  2. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    SciTech Connect

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  3. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  4. Rovibrational matrix elements of the quadrupole moment of N2 in a solid parahydrogen matrix

    NASA Astrophysics Data System (ADS)

    Mishra, Adya P.; Balasubramanian, T. K.

    2008-11-01

    The present work pertains to the study of the rotational dynamics of N2 molecules solvated in a matrix of solid para-H2. It is shown that the mixing of the rotational states due to the anisotropic part of the N2-H2 pair potential in the solid gives rise to an additional 5.4% contribution to the intensity of quadrupole-induced double transitions involving N2-H2 pair. Hence the recently reported quadrupole moment matrix element of N2 in a solid para-H2 crystal [A. P. Mishra and T. K. Balasubramanian, J. Chem. Phys. 125, 124507 (2006)], which was deduced from a comparison of the theoretical intensity (with rotational mixing of states neglected) with the measured value is larger by ˜2.7%. The ground electronic state rovibrational matrix elements ⟨v'J'|Q2(r)|vJ⟩ of N2 molecule in a solid parahydrogen matrix for v,v'≤1 and J,J'≤4 have also been computed by taking into account the changes in the intramolecular potential of N2 due to the intermolecular interaction in the matrix. The computed quadrupole moment matrix elements agree well with a few available values (for v =v'=0) deduced from the observed transitions.

  5. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  6. Resonance methods in quadrupole ion traps

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham

    2017-01-01

    The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.

  7. The Large Quadrupole of Water Molecules

    SciTech Connect

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshhiko

    2011-04-07

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment

  8. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  9. Quadrupole interactions: NMR, NQR, and in between from a single viewpoint.

    PubMed

    Bain, Alex D

    2017-03-01

    Nuclear spins with quantum numbers >1/2 can interact with a static magnetic field, or a local electric field gradient, to produce quantized energy levels. If the magnetic field interaction dominates, we are doing nuclear magnetic resonance (NMR). If the interaction of the nuclear electric quadrupole with electric field gradients is much stronger, this is nuclear quadrupole resonance (NQR). The two are extremes of a continuum, as the ratio of one interaction to the other changes. In this work, we look at this continuum from a single, unified viewpoint based on a Liouville-space approach: the direct method. This method does not require explicit operators and their commutators, unlike Hamiltonian methods. We derive both the quadrupole-perturbed NMR solution and also the Zeeman-perturbed NQR results. Furthermore, we examine the polarization of these signals, because this is different between pure NMR and pure NQR spectroscopy. Spin 3/2 is the focus here, but the approach is perfectly general and can be applied to any spin. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  11. Is it possible to enhance the nuclear Schiff moment by nuclear collective modes?

    SciTech Connect

    Auerbach, N. Dmitriev, V. F. Flambaum, V. V. Lisetskiy, A. Sen'kov, R. A. Zelevinsky, V. G.

    2007-09-15

    The nuclear Schiff moment is predicted to be enhanced in nuclei with static quadrupole and octupole deformation. The analogous suggestion of the enhanced contribution to the Schiff moment from the soft collective quadrupole and octupole vibrations in spherical nuclei is tested in the framework of the quasiparticle random phase approximation with separable quadrupole and octupole forces applied to the odd {sup 217-221}Ra and {sup 217-221}Rn isotopes. In this framework, we confirm the existence of the enhancement effect due to the soft modes, but only in the limit when the frequencies of quadrupole and octupole vibrations are close to zero.

  12. Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

    NASA Astrophysics Data System (ADS)

    Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2015-12-01

    The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.

  13. The effects of librations on the 13C chemical shift and 2H electric field gradient tensors in β-calcium formate

    NASA Astrophysics Data System (ADS)

    Hallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A.

    2000-12-01

    The magnitudes and orientations of the principal elements of the 13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA tensor are σ11C=104 ppm, σ22C=179 ppm, and σ33C=233 ppm. The least shielding element of the 13C CSA tensor, σ33C, is found to be collinear with the C-H bond. The temperature dependence of the 13C CSA and the 2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173-373 K). It was found that the span of the 13C CSA and the magnitude of the 2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22C axis of the 13C CSA tensor is used to model the temperature dependence of the 13C CSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be <α2>=2.6×10-4(T) rad2 K-1. The same librational motion also accounts for the temperature-dependence of the 2H quadrupole coupling tensor after the relative orientation of the 13C CSA and 2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H-13C dipolar coupling tensor of α-calcium formate at room temperature.

  14. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  15. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    SciTech Connect

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from XEFT predictions to order N3LO.

  16. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  17. Thermal analysis of SC quadrupoles in accelerator interaction regions

    SciTech Connect

    Novitski, Igor; Zlobin, Alexander V.; /Fermilab

    2006-09-01

    This paper presents results of a thermal analysis and operation margin calculation performed for NbTi and Nb{sub 3}Sn low-beta quadrupoles in collider interaction regions. Results of the thermal analysis for NbTi quadrupoles are compared with the relevant experimental data. An approach to quench limit measurements for Nb{sub 3}Sn quadrupoles is discussed.

  18. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  19. The FORMAMIDE_2-H_2O Complex: Structure and Hydrogen Bond Cooperative Effects

    NASA Astrophysics Data System (ADS)

    Blanco, Susana; Pinacho, Pablo; Lopez, Juan Carlos

    2016-06-01

    The adduct formamide_2-H_20 has been detected in a supersonic expansion and its rotational spectra in the 5-13 GHz frequency region characterized by narrow-band molecular beam Fourier transform microwave spectroscopy (MB-FTMW). The spectrum shows the hyperfine structure due to the presence of two 14N-nuclei. This hyperfine structure has been analyzed and the determined quadrupole coupling constants together with the rotational constants have been a key for the identification of the adduct structure on the light of ab initio computations. The rotational parameters are consistent with the formation of a three body cycle thanks to the double proton acceptor/proton donor character of both formamide and water. The low value of the planar moment of inertia Pcc indicates that the heavy atom skeleton of the cluster is essentially planar. A detailed analysis of the results reveals the subtle effects of hydrogen bond cooperative effects in this system.

  20. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  1. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-06-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  2. LARP Long Nb3Sn Quadrupole Design.

    SciTech Connect

    Ambrosio,G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-08-27

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  3. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2007-08-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  4. Superconducting quadrupoles for the SLC final focus

    SciTech Connect

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance.

  5. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  6. Quadrupole transitions revealed by Borrmann spectroscopy.

    PubMed

    Pettifer, Robert F; Collins, Stephen P; Laundy, David

    2008-07-10

    The Borrmann effect-a dramatic increase in transparency to X-ray beams-is observed when X-rays satisfying Bragg's law diffract through a perfect crystal. The minimization of absorption seen in the Borrmann effect has been explained by noting that the electric field of the X-ray beam approaches zero amplitude at the crystal planes, thus avoiding the atoms. Here we show experimentally that under conditions of absorption suppression, the weaker electric quadrupole absorption transitions are effectively enhanced to such a degree that they can dominate the absorption spectrum. This effect can be exploited as an atomic spectroscopy technique; we show that quadrupole transitions give rise to additional structure at the L(1), L(2) and L(3) absorption edges of gadolinium in gadolinium gallium garnet, which mark the onset of excitations from 2s, 2p(1/2) and 2p(3/2) atomic core levels, respectively. Although the Borrmann effect served to underpin the development of the theory of X-ray diffraction, this is potentially the most important experimental application of the phenomenon since its first observation seven decades ago. Identifying quadrupole features in X-ray absorption spectroscopy is central to the interpretation of 'pre-edge' spectra, which are often taken to be indicators of local symmetry, valence and atomic environment. Quadrupolar absorption isolates states of different symmetries to that of the dominant dipole spectrum, and typically reveals orbitals that dominate the electronic ground-state properties of lanthanides and 3d transition metals, including magnetism. Results from our Borrmann spectroscopy technique feed into contemporary discussions regarding resonant X-ray diffraction and the nature of pre-edge lines identified by inelastic X-ray scattering. Furthermore, because the Borrmann effect has been observed in photonic materials, it seems likely that the quadrupole enhancement reported here will play an important role in modern optics.

  7. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  8. Sensitivity of 2H NMR spectroscopy to motional models: Proteins and highly viscous liquids as examples

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Mielczarek, A.; Korpala, A.; Kozlowski, A.; Earle, K. A.; Moscicki, J.

    2012-06-01

    In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by 2H NMR spectroscopy, 2H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, Cδ D3) and binary systems of high viscosity (benzene-d6 in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of 2H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a Gaussian distribution of correlation times assuming isotropic rotation (simple Brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing 2H lineshapes. For benzene-d6 in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a Gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)], 10.1063/1.3664783 has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation.

  9. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  10. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  11. Interplay between the pairing and quadrupole interactions in the algebraic realization of the microscopic shell model

    NASA Astrophysics Data System (ADS)

    Drumev, Kalin; Georgieva, Ana

    2015-04-01

    We explore the algebraic realization of the Pairing-Plus-Quadrupole Model/PQM/ in the framework of the Elliott‘s SU(3) Model with the aim to obtain the complementary and competing features of the two interactions through the relation between the pairing and the SU(3) bases. First, we establish a correspondence between the SO(8) pairing basis and the Elliott's SU(3) basis. It is derived from their complementarity to the same LST coupling chain of the shell-model number-conserving algebra. The probability distribution of the SU(3) basis states within the SO(8) pairing states is also obtained and allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing both of them as limiting cases. The description of some realistic N∼Z nuclear systems is investigated in a SU(3)-symmetry-adapted basis within a model space of one and two oscillator shells.

  12. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  13. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    PubMed

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  14. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  15. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  16. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  17. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  18. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  19. Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles.

    PubMed

    Lin, Mei-Huey; Liang, Kung-Yu; Tsai, Chang-Hsien; Chen, Yu-Chun; Hsiao, Hung-Chang; Li, Yi-Syuan; Chen, Chung-Hao; Wu, Hau-Chun

    2016-02-19

    A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties.

  20. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  1. Precise calculations of the deuteron quadrupole moment

    SciTech Connect

    Gross, Franz L.

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  2. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  3. The Pipe-Quadrupole, an Alternative for High Gradient Interaction Region Quadrupole Designs

    SciTech Connect

    Oort, J.M. van; Scanlan, R.M.

    1996-12-12

    In the design of interaction region (IR) quadrupoles for high luminosity colliders such as the LHC or a possible upgrade of the Tevatron, the radiation heating of the coil windings is an important issue. Two obvious solutions to this problem can be chosen. The first is to reduce the heat load by added shielding, increased cooling with fins or using Nb{sub 3}Sn to increase the temperature margin. The second solution eliminates the conductor from the areas with the highest radiation intensity, which are located on the symmetry-axes of the midplanes of the coils. A novel quadrupole design is presented, in which the conductor is wound on four half-moon shaped supports, forming elongated toroid sections. The assembly of the four shapes yields a quadrupole field with an active flux return path, and a void in the high radiation area. This void can be occupied by a liquid helium cooling pipe to lower the temperature of the windings from the inside. The coil layout, harmonic optimization and mechanical design are shown, together with the calculated temperature rise for the radiation load of the LHC interaction region quadrupoles.

  4. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  5. Magnetic quench antenna for MQXF quadrupoles

    SciTech Connect

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; Strauss, Thomas; Stoynev, Stoyan; Chlachidze, Guram

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs of flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.

  6. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  7. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  8. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  9. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  10. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  11. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  12. Characterization of the ELIMED prototype permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  13. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  14. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  15. Synchrotron Tune Adjustment by Longitudinal Motion of Quadrupoles

    NASA Astrophysics Data System (ADS)

    Bertsche, K. J.

    1996-05-01

    Adjustment of the tune of a synchrotron is generally accomplished by globally varying the strength of quadrupoles, either in the main quadrupole bus or in a set of dedicated trim quadrupoles distributed around the ring. An alternate scheme for tune control involves varying the strengths of quadrupoles only within a local insert, thereby adjusting the phase advance across this insert to create a "phase trombone." In a synchrotron built of permanent magnets, such as the proposed Fermilab Recycler Ring, tune adjustment may also be accomplished by constructing a phase trombone in which the longitudinal position rather than strength of a number of quadrupoles is adjusted. Design philosophies and performance for such phase trombones will be presented. *Operated by Universities Research Association, Inc., under contract with the US. Department of Energy.

  16. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  17. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  18. Synthesis and properties of 3-nitro-2H-chromenes

    NASA Astrophysics Data System (ADS)

    Korotaev, V. Yu; Sosnovskikh, V. Ya; Barkov, A. Yu

    2013-12-01

    Methods of synthesis and chemical properties of 3-nitro-2H-chromenes, including reactions with nucleophiles, cycloaddition, oxidation and reduction, have been reviewed. Enantioselective reactions involving 3-nitro-2H-chromenes, as well as the stereochemistry of the products, are discussed. The ways of practical use of these compounds are shown. The bibliography includes 115 references.

  19. Electric Quadrupole and Magnetic Dipole Moments of Mirror Nuclei and Self-Conjugate Nuclei

    NASA Astrophysics Data System (ADS)

    Zickendraht, W.

    A transformation, which brings about the unification of the nuclear collective and single particle models, yields sumrules for the magnetic dipole moments and for the electric quadrupole moments of mirror nuclei. These sumrules are applied to cases, for which the numerical values of these moments are known.Translated AbstractElektrische Qadrupol- und Magnetische Dipolmomente von Spiegelkernen und Kernen mit N = ZMit Hilfe einer Transformation, die die Vereinigung von Kollektiv- und Schalenmodell liefert, lassen sich Summenregeln für die magnetischen Dipol- und die elektrischen Quadrupolmomente von Spiegelkernen ableiten. Diese Summenregeln werden auf Spiegelkerne angewandt, für die die numerischen Werte der Momente bekannt sind.

  20. Variations of δ2H in an idealised extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-04-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of δ2H variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

  1. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  2. Hybrid high gradient permanent magnet quadrupole

    NASA Astrophysics Data System (ADS)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  3. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  4. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-08

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.

  5. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  6. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  7. Ionic motion and Disordered Structure in the Rotator Phase of Butylammonium Chloride Studied by Temperature Dependences of 35Cl and 2H NMR

    NASA Astrophysics Data System (ADS)

    Hattori, Mineyuki; Onoda, Yoshito; Erata, Tomoki; Smith, M. E.; Hattori, Masakazu; Ohki, Hiroshi; Ikeda, Ryuichi

    1994-02-01

    Temperature dependences of 35Cl and 2H quadrupole coupling constants and 35Cl NMR spin-lat­tice relaxation times in polycrystalline samples were measured in the rotator phase of the butylammonium chlorides C4H9NH3C1 and C4H9ND3C1, obtainable above the phase transition temperature of 241 K. A rapid decrease o f the quadrupole coupling constants of both nuclei upon heating is attributed to increasing dynamic disorder formed around the polar head. The presence of self-diffussion of Cl- ions was revealed from the spin-spin relaxation time and resonance line-width in single crystals, and confirmed by measuring the dc electrical conductivity.

  8. Friction in nuclear dynamics

    SciTech Connect

    Swiatecki, W.J.

    1985-03-01

    The problem of dissipation in nuclear dynamics is related to the breaking down of nuclear symmetries and the transition from ordered to chaotic nucleonic motions. In the two extreme idealizations of the perfectly Ordered Regime and the fully Chaotic Regime, the nucleus should behave as an elastic solid or an overdamped fluid, respectively. In the intermediate regime a complicated visco-elastic behaviour is expected. The discussion is illustrated by a simple estimate of the frequency of the giant quadrupole resonance in the Ordered Regime and by applications of the wall and window dissipation formulae in the Chaotic Regime. 51 refs.

  9. The Microwave Spectrum of the HCOOCD_2H Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Huet, T. R.; Margulès, L.; Motiyenko, R.; Mollendal, H.

    2010-06-01

    Methyl formate is a non-rigid molecule displaying internal rotation of its methyl group. The microwave spectra of its normal and mono deuterated HCOOCH_2D species have already been studied and values for the tunneling splitting due to the internal rotation were determined. The normal species displays a 405 MHz A/E splitting, the mono deuterated one, a smaller 84.76 MHz A'/A'' splitting. For the bideuterated species HCOOCD_2H, the value of this splitting is not known as its microwave spectrum has not been studied yet. In this paper experimental and theoretical investigations of the microwave spectrum of HCOOCD_2H are presented. More than 9000 transitions were measured with a submillimeter wave spectrometer. About 20 lines were recorded with a molecular beam spectrometer. Like for the mono deuterated species,^c depending on the location of the only hydrogen atom of the methyl group, two configurations arise. The C_s-symmetry H-in plane configuration displays a rigid rotator spectrum and its data was analyzed using a Watson-type Hamiltonian. The C_1-symmetry H-out of plane configuration undergoes the large amplitude internal rotation. Its data was analyzed using the so called water dimer formalism which allowed us to accurately reproduce the observed frequencies and to obtain the value of the tunneling splitting as well as the parameters involved in its rotational dependence. The hyperfine structure due to quadrupole coupling at the two deuterium atoms was also analyzed. Unexpectedly, for the H-out of plane configuration, the observed hyperfine patterns are neither those expected for two equivalent deuterium atoms nor those of a rigid molecule. Ilyushin, Kryvda, and Alekseev, J. Mol. Spec. 255 (2009) 32. Margulès, Coudert, Mollendal, Guillemin, Huet, and Janeckovà, J. Mol. Spec. 254 (2009) 55. Hougen, J. Mol. Spec. 114 (1985) 395; and Coudert and Hougen, J. Mol. Spec. 130 (1988) 86.

  10. Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Titlow, Joseph P.; Bemmen, Ya-Juan

    1999-08-01

    A simple and inexpensive demonstration of acoustic monopole, dipole, and quadrupole sources utilizes four 4-in. boxed loudspeakers and a homemade switch box. The switch box allows the speakers to be driven in any combination of phase relationships. Placing the speakers on a rotating stool allows students to measure directivity patterns for monopole, dipole, and quadrupole speaker combinations. Stacking the speakers in a square, all facing the same direction, allows students to aurally compare the frequency and amplitude dependence of sound radiation from monopoles, dipoles, and quadrupoles.

  11. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  12. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  13. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  14. Observation of enhanced rate coefficients in the H2 + + H 2 → H3 + + H reaction at low collision energies

    NASA Astrophysics Data System (ADS)

    Allmendinger, Pitt; Deiglmayr, Johannes; Höveler, Katharina; Schullian, Otto; Merkt, Frédéric

    2016-12-01

    The energy dependence of the rate coefficient of the H2 + + H 2 → H3 + + H reaction has been measured in the range of collision energies between k B ṡ 10 K and k B ṡ 300 mK . A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below k B ṡ 1 K , which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2 molecules in the j = 1 rotational level, which make up 75% of the population of the neutral H2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya et al. [J. Chem. Phys. 145, 244315 (2016)], with which they are in agreement.

  15. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  16. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  17. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  18. Thermal Analysis of the ILC Superconductin Quadrupole

    SciTech Connect

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.

  19. Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO 4

    NASA Astrophysics Data System (ADS)

    Klobes, B.; Arinicheva, Y.; Neumeier, S.; Simon, R. E.; Jafari, A.; Bosbach, D.; Hermann, R. P.

    2016-12-01

    Hyperfine interactions in europium orthophosphate EuPO4 were investigated using 151Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.

  20. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  1. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  2. 2H2O incorporation into hepatic acetyl-CoA and de novo lipogenesis as measured by Krebs cycle-mediated 2H-enrichment of glutamate and glutamine.

    PubMed

    Silva, Ana Maria; Martins, Fatima; Jones, John G; Carvalho, Rui

    2011-12-01

    Deuterated water is widely used for measuring de novo lipogenesis on the basis of quantifying lipid (2)H-enrichment relative to that of body water. However, incorporation of (2)H-enrichment from body water into newly synthesized lipid molecules is incomplete therefore the true lipid precursor enrichment differs from that of body water. We describe a novel measurement of de novo lipogenesis that is based on a true precursor-product analysis of hepatic acetyl-CoA and triglyceride methyl enrichments from deuterated water. After deuterated water administration to seven in situ and seven perfused livers, acetyl-CoA methyl enrichment was inferred from (2)H nuclear magnetic resonance analysis of hepatic glutamate/glutamine (Glx) enrichment and triglyceride methyl enrichment was directly determined by (2)H nuclear magnetic resonance of triglycerides. Acetyl-CoA (2) H-enrichment was 71% ± 1% that of body water for in situ livers and 53% ± 2% of perfusate water for perfused livers. From the ratio of triglyceride-methyl/acetyl-CoA enrichments, fractional de novo lipogenesis rates of 0.97% ± 0.09%/2 hr and 7.92% ± 1.47%/48 hr were obtained for perfused and in situ liver triglycerides, respectively. Our method reveals that acetyl-CoA enrichment is significantly less than body water both for in situ and perfused livers. Furthermore, the difference between acetyl-CoA and body water enrichments is sensitive to the experimental setting.

  3. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  4. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  5. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  6. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  7. Correlating double-difference of charge radii with quadrupole deformation and B (E 2 ) in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Sun, B. H.; Liu, C. Y.; Wang, H. X.

    2017-01-01

    A good linear correlation is found between the double-difference of charge radius δ R2 p -2 n(Z ,N ) with that of quadrupole deformation data in even-even nuclei. This results in a further improved charge radius relation that holds in a precision of about 5 ×10-3 fm. The new relation can be generalized to the reduced electric quadrupole transition probability B (E 2 ) between the first 2+ state and the 0+ ground state, and the mean lifetime τ of the first 2+ state. Same correlations are also seen in global nuclear models such as Hartree-Fock-Bogoliubov (HFB-24) and relativistic mean field (RMF); however, they are not consistent with the experimental data.

  8. A density functional study of (17)O, (14)N and (2)H electric field gradient tensors in the real crystalline structure of alpha-glycine.

    PubMed

    Behzadi, Hadi; Hadipour, Nasser L; Mirzaei, Mahmoud

    2007-01-01

    A density functional theory (DFT) study was carried out to calculate (17)O, (14)N and (2)H electric field gradient (EFG) tensors in accurate neutron diffraction structures of alpha-glycine at 288 and 427 K. B3LYP is the used method and 6-311+G(*) and 6-311++G(**) are the basis sets in the calculations of EFG tensors at the sites of (17)O, (14)N and (2)H nuclei in the monomer and the octameric cluster of alpha-glycine at two temperatures. Quadrupole coupling constants and asymmetry parameters are the converted parameters of calculated EFG tensors to experimentally measurable ones. The calculated results of monomer and the target molecule in octameric cluster reveal that hydrogen-bonding interactions play an important role in the crystalline structure of alpha-glycine where the results of the target molecule in octameric cluster are in good agreement with the experiments.

  9. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  10. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  11. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  12. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  13. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  14. Mass-spectrometric measurements for nuclear safeguards

    SciTech Connect

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%.

  15. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  16. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.

  17. Stability of an aqueous quadrupole micro-trap

    SciTech Connect

    Park, Jae Hyun; Krstić, Predrag S.

    2012-01-01

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap could play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.

  18. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-01-01

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  19. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  20. Statistical thermodynamics of fluids with both dipole and quadrupole moments.

    PubMed

    Benavides, Ana L; Delgado, Francisco J García; Gámez, Francisco; Lago, Santiago; Garzón, Benito

    2011-06-21

    New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.

  1. Removal of Axial Twist in RHIC Insertion Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Cozzolino, J.; Anerella, M.; Jain, A.; Louie, W.; Muratore, P.

    1997-05-01

    The focusing triplets located on either side of the six interaction points of RHIC each consist of three 13cm aperture quadrupoles with magnetic lengths of 1.44m (Q1), 3.40m (Q2), and 2.10m (Q3). The field quality and alignment of these magnets are most critical to the performance of the accelerator. The maximum allowable axial twist of the cold mass, defined as the standard deviation in the quadrupole roll angle, is 0.5 mrad. This requirement has occasionally exceeded the capabilities of the assembly fixturing and the procedures used to complete the axial welding of the shell halves around the cold mass yoke. A corrective shell welding technique has been successfully employed to remove excessive axial twist of the 13cm quadrupoles. This ``custom straightening" method will be described along with the before and after mechanical inspection data. The magnetic results which confirm the untwisting procedure shall also be discussed.

  2. Study the most favorable shapes of electrostatic quadrupole doublet lenses

    NASA Astrophysics Data System (ADS)

    Hussein, O. A.; Sise, O.

    2017-02-01

    The optical properties of an electrostatic quadrupole doublet lens with two different electrode shapes were studied with the aid of computer simulation. The optimal electrode voltages of the electrostatic quadrupole lenses which give the stigmatic image in both planes simultaneously were found for both concave cylindrical electrode shape and plan electrode shape of the operation mode: parallel to point focusing. The effect of electrode shape on the image properties was investigated, and the aberration figures were studied. The results showed that under the same operation condition and the geometrical dimensions, the changing of the electrode shape of the electrostatic quadrupole doublet lenses lead to important differences in the optical properties of the lenses and the characteristics of the systems.

  3. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  4. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  5. Quadrupole splittings in the near-infrared spectrum of 14NH3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v1 + v3, v1 + 2v4 and v3 + 2v4 bands of 14NH3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar to the same rotational level in the groundmore » state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  6. CN and C2H in IRC +10216

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.; Morris, M.

    1984-01-01

    The effects of the production of the radicals CN and C2H from the dissociation of HCN and C2H2 by ambient UV photons in the outer envelope of IRC +10216 are investigated. The spatial distribution of the radicals and their observable millimeter emission-line characteristics are calculated from the inferred abundances of the progenitor species in the envelope of IRC +10216 using photochemical and radiative transfer models. These are compared with available observations to examine whether photoproduction is a possible explanation of the observed emission from these species. The results suggest that the variable abundances induced by photodestruction of their progenitors do affect the observed emission from the radicals.

  7. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  8. Origin of low-energy quadrupole collectivity in vibrational nuclei.

    PubMed

    Walz, C; Fujita, H; Krugmann, A; von Neumann-Cosel, P; Pietralla, N; Ponomarev, V Yu; Scheikh-Obeid, A; Wambach, J

    2011-02-11

    The coupling of the giant quadrupole resonance to valence-space configurations is shown to be the origin of the formation of low-lying quadrupole-collective structures in vibrational nuclei with symmetric and mixed-symmetric character with respect to the proton-neutron degree of freedom. For the first time experimental evidence for this picture is obtained from electron- and proton scattering experiments on the nucleus ^{92}Zr that are sensitive to the relative phase of valence-space amplitudes by quantum interference.

  9. An introduction to quadrupole-time-of-flight mass spectrometry.

    PubMed

    Chernushevich, I V; Loboda, A V; Thomson, B A

    2001-08-01

    A brief introduction is presented to the basic principles and application of a quadrupole-time-of-flight (TOF) tandem mass spectrometer. The main features of reflecting TOF instruments with orthogonal injection of ions are discussed. Their operation and performance are compared with those of triple quadrupoles with electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) TOF mass spectrometers. Examples and recommendations are provided for all major operational modes: mass spectrometry (MS) and tandem MS (MS/MS), precursor ion scans and studies of non-covalent complexes. Basic algorithms for liquid chromatography/MS/MS automation are discussed and illustrated by two applications.

  10. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  11. Carbon-13 nuclear magnetic resonance spectroscopy of lipids: Differential line broadening due to cross-correlation effects as a probe of membrane structure

    SciTech Connect

    Oldfield, E.; Adebodun, F.; Chung, J.; Montez, B.; Ki Deok Park; Hongbiao Le; Phillips, B. )

    1991-11-19

    The authors have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the 'magic-angle' sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp{sup 2}) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C{sub 2}) axis. {sup 2}H NMR spectra of (2,4,6,8-{sup 2}H{sub 4})desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of {approximately}0-2 and {approximately}20 kHz, indicating an approximate magic-angle orientation of the C2-{sup 2}H({sup 1}H) and C8-{sup 2}H({sup 1}H) vectors with respect to an axis of motional averaging, in accord with the {sup 13}C NMR results. The good qualitative agreement between {sup 13}C and {sup 2}H NMR results suggests that useful orientational ({sup 2}H NMR like) information can be deduced from natural-abundance {sup 13}C NMR spectra of a variety of mobile solids.

  12. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  13. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  14. Mechanisms of CO2/H+ Sensitivity of Astrocytes

    PubMed Central

    Turovsky, Egor; Theparambil, Shefeeq M.; Kasymov, Vitaliy; Deitmer, Joachim W.; del Arroyo, Ana Gutierrez; Ackland, Gareth L.; Corneveaux, Jason J.; Allen, April N.; Huentelman, Matthew J.; Kasparov, Sergey; Marina, Nephtali

    2016-01-01

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to

  15. Level lifetimes and quadrupole moments from Coulomb excitation in the Ba chain and the N = 80 isotones

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Guastalla, G.; Leske, J.; Möller, O.; Möller, T.; Pakarinen, J.; Pietralla, N.; Rainovski, G.; Rapisarda, E.; Seweryniak, D.; Stahl, C.; Stegmann, R.; Wiederhold, J.; Zhu, S.

    2012-12-01

    The chain of Barium isotopes enables us to study experimentally the evolution of nuclear quadrupole collectivity from the shell closure at N = 82 towards neutron-deficient or neutron-rich deformed nuclei. The TU Darmstadt group has investigated several nuclei from stable 130,132Ba up to radioactive 140,142Ba with the projectile-Coulomb excitation technique including the use of the Doppler-shift attenuation method (DSAM). Lifetimes of quadrupole-collective states of 132Ba and 140Ba were obtained for the first time as well as the static electric quadrupole moments Q(21+) for 130,132Ba and 140,142Ba. The results are compared to Monte Carlo shell model and Beyond-Mean-Field calculations. The phenomenon of shell stabilization in the N = 80 isotones is further investigated by measurements of the B(E2;21+ → 01+) values of 140Nd and 142Sm and comparison to the quasi-particle phonon model and shell-model calculations.

  16. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  17. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  18. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    PubMed

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T < 850 K, but clearly shows positive temperature dependence at T > 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1.

  19. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  20. A LIGA Fabricated Quadrupole Array for Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Wiberg, D. V.; Hecht, M. H.; Orient, O. J.; Chutjian, A.; Yee, K.; Fuerstenau, S.; Brennen, R. A.; Hruby, J.; Bonivert, W.

    1997-01-01

    A linear array of nine quadrupoles was fabricated using the LIGA process. Pole heights ranging from 1 to 3 mm were fabricated using synchrotron X-ray exposures to form free standing polymethylmethacrylate (PMMA) molds into which copper, gold or nickel were electroplated.

  1. Driving a quadrupole mass spectrometer via an isolating stage

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2002-01-01

    Driving a quadrupole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  2. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  3. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2013-01-01

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  4. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  5. LARP Long Quadrupole: A "Long" Step Toward an LHC

    SciTech Connect

    Giorgio Ambrosio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  6. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  7. Mechanisms of CO2/H+ Sensitivity of Astrocytes.

    PubMed

    Turovsky, Egor; Theparambil, Shefeeq M; Kasymov, Vitaliy; Deitmer, Joachim W; Del Arroyo, Ana Gutierrez; Ackland, Gareth L; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Kasparov, Sergey; Marina, Nephtali; Gourine, Alexander V

    2016-10-19

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H(+)]. These astrocytes respond to decreases in pH with elevations in intracellular Ca(2+) and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca(2+) excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H(+)] with Ca(2+) responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na(+)]i and/or [Ca(2+)]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca(2+)]i responses triggered by decreases in pH are preceded by Na(+) entry, markedly reduced by inhibition of Na(+)/HCO3(-) cotransport (NBC) or Na(+)/Ca(2+) exchange (NCX), and abolished in Na(+)-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca(2+)]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na(+)/HCO3(-) cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na(+)/H(+) exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na(+) inside the cell. Raising [Na(+)]i activates NCX to operate in a reverse mode, leading to Ca(2+) entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H(+) sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing.

  8. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  9. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  10. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.

    PubMed

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-12-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  11. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  12. Asymmetry Dependence of the Nuclear Caloric Curve

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.

    2013-03-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. Two independent thermometers, the momentum quadrupole fluctuation thermometer and the Albergo yield ratio thermometer, are used to extract the caloric curve. For both methods, the caloric curve extracted shows that the temperature varies linearly with quasi-projectile asymmetry For the momentum quadrupole fluctuation thermometer, an increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.

  13. CCQE, 2p2h excitations and ν—energy reconstruction

    SciTech Connect

    Nieves, J.; Simo, I. Ruiz; Sánchez, F.; Vacas, M. J. Vicente

    2015-05-15

    We analyze the MiniBooNE muon neutrino CCQE-like dσ/dT{sub μ} d cos θ{sub μ} data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M{sub A} ∼ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M{sub A} ∼ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  14. Analyses of Weapons-Grade MOX VVER-1000 Neutronics Benchmarks: Pin-Cell Calculations with SCALE/SAS2H

    SciTech Connect

    Ellis, R.J.

    2001-01-11

    A series of unit pin-cell benchmark problems have been analyzed related to irradiation of mixed oxide fuel in VVER-1000s (water-water energetic reactors). One-dimensional, discrete-ordinates eigenvalue calculations of these benchmarks were performed at ORNL using the SAS2H control sequence module of the SCALE-4.3 computational code system, as part of the Fissile Materials Disposition Program (FMDP) of the US DOE. Calculations were also performed using the SCALE module CSAS to confirm the results. The 238 neutron energy group SCALE nuclear data library 238GROUPNDF5 (based on ENDF/B-V) was used for all calculations. The VVER-1000 pin-cell benchmark cases modeled with SAS2H included zero-burnup calculations for eight fuel material variants (from LEU UO{sub 2} to weapons-grade MOX) at five different reactor states, and three fuel depletion cases up to high burnup. Results of the SAS2H analyses of the VVER-1000 neutronics benchmarks are presented in this report. Good general agreement was obtained between the SAS2H results, the ORNL results using HELIOS-1.4 with ENDF/B-VI nuclear data, and the results from several Russian benchmark studies using the codes TVS-M, MCU-RFFI/A, and WIMS-ABBN. This SAS2H benchmark study is useful for the verification of HELIOS calculations, the HELIOS code being the principal computational tool at ORNL for physics studies of assembly design for weapons-grade plutonium disposition in Russian reactors.

  15. Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

    PubMed

    Muszyńska, Marta; Ratkiewicz, Artur; Huynh, Lam K; Truong, Thanh N

    2009-07-23

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

  16. Physical and spectroscopic properties of pure C2H4 and CH4:C2H4 ices

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Zanchet, Alexandre; Luna, Ramón; Millán, Carlos; Escribano, Rafael; Tanarro, Isabel; Herrero, Víctor J.; Maté, Belén

    2017-04-01

    Physical and spectroscopic properties of ices of C2H4 and CH4:C2H4 mixtures with 3:1, 1:1 and 1:3 ratios have been investigated at 30 K. Two laboratories are involved in this work. In one of them, the density and refractive index of the samples have been measured by using a cryogenic quartz microbalance and laser interferometric techniques. In the other one, IR spectra have been recorded in the near- and mid-infrared regions, and band shifts with respect to the pure species, band strengths of the main bands, and the optical constants in both regions have been determined. Previous data on ethylene and the mixtures studied here were scarce. For methane, both the wavenumbers and band strengths have been found to follow a regular pattern of decrease with increasing dilution, but no pattern has been detected for ethylene vibrations. The method employed for the preparation of the samples, by vapour deposition under vacuum, is thought to be adequate to mimic the structure of astrophysical ices. Possible astrophysical implications, especially by means of the optical constants reported here, have been discussed.

  17. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  18. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  19. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  20. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  1. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  2. Energy-resolved depth profiling of metal-polymer interfaces using dynamic quadrupole secondary ion mass spectrometry.

    PubMed

    Téllez, Helena; Vadillo, José M; Laserna, J Javier

    2009-08-01

    Quadrupole secondary ion mass spectrometry (qSIMS) characterization of a metallized polypropylene film used in the manufacturing of capacitors has been performed. Ar(+) primary ions were used to preserve the oxidation state of the surface. The sample exhibits an incomplete metallization that made it difficult to determine the exact location of the metal-polymer interface due to the simultaneous contribution of ions with identical m/z values from the metallic and the polymer layers. Energy filtering by means of a 45 degrees electrostatic analyzer allowed resolution of the metal-polymer interface by selecting a suitable kinetic energy corresponding to the ions generated in the metallized layer but not from the polymer. Under these conditions, selective analyses of isobaric interferences such as (27)Al(+) and (27)C(2)H(3) (+) or (43)AlO(+) and (43)C(3)H(7) (+) have been successfully performed.

  3. Diabatization based on the dipole and quadrupole: The DQ method

    SciTech Connect

    Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu

    2014-09-21

    In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.

  4. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  5. Beta function measurement in the Tevatron using quadrupole gradient modulation

    SciTech Connect

    Jansson, A.; Lebrun, P.; Volk, J.T.; /Fermilab

    2005-05-01

    Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchrotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magnets and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with the theoretical values to within 20%.

  6. Quadrupole association and dissociation of hydrogen in the early Universe

    NASA Astrophysics Data System (ADS)

    Forrey, Robert C.

    2016-10-01

    Radiative association and photodissociation rates are calculated for quadrupole transitions of H2. A complete set of bound and unbound states are included in a self-consistent master equation to obtain steady-state concentrations for a dilute system of hydrogen atoms and molecules. Phenomenological rate constants computed from the steady-state concentrations satisfy detailed balance for any combination of matter and radiation temperature. Simple formulas are derived for expressing the steady-state distributions in terms of equilibrium distributions. The rate constant for radiative association is found to be generally small for all temperature combinations. The photodissociation rate constant for quadrupole transitions is found to dominate the rate constants for other H2 photodestruction mechanisms for {T}{{R}} ≤slant 3000 K. Implications for the formation and destruction of H2 in the early Universe are discussed.

  7. Diabatization based on the dipole and quadrupole: The DQ method

    NASA Astrophysics Data System (ADS)

    Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura; Truhlar, Donald G.

    2014-09-01

    In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.

  8. 3D simulations of an electrostatic quadrupole injector

    SciTech Connect

    Grote, D.P. |; Friedman, A.; Yu, S.

    1993-02-01

    Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.

  9. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  10. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  11. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  12. Quadrupole Ion/Neutral Mass Spectrometer for Space Shuttle Applications.

    DTIC Science & Technology

    1986-04-07

    fCon linue on reverse if neeec’O ond ientify by block number) _ A Quadrupole Ion/Neutral Mass Spectrometer (QINMS) was developed for the fourth flight...The charging of spacecraft surfaces, Rev. Geophys. and Space Phys. 19:577-616. 16. Paul , W., Rheinhard, H. P., and von Zahn, U. (1958) Das elektrische...massenfilter als massenspektrometer und isotopentrenner, Z. Ph sik 152:143-182. Paul , W., and Steinwedel, H. (1953) Z. Naturforsch 8a:448. Paul , W

  13. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  14. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  15. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    SciTech Connect

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  16. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  17. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  18. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  19. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    SciTech Connect

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Summers, D. J.; Neuffer, D. V.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  20. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  1. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  2. Quadrupole Splitting Distribution of Fe2+ in Synthetic Trioctahedral Micas

    NASA Astrophysics Data System (ADS)

    Redhammer, G. J.; Amthauer, G.; Lottermoser, W.; Roth, G.

    2002-06-01

    About 80 different synthetic trioctahedral micas {K}[Fe2+ 3- x Me x ]4O10(OH)2 with Me = Ni2+, Mg2+, Co2+, Al3+ and Fe3+ have been synthesized by hydrothermal methods and subsequently investigated by 57Fe Mössbauer spectroscopy. Mössbauer spectra were refined in terms of a quadrupole splitting distribution (QSD) with at least 2 components for Fe2+ and additional components for Fe3+ on octahedral and tetrahedral positions. Three Fe2+ components have to be used in all samples containing distinct amounts of trivalent cations (Fe3+, Al3+). A rough positive correlation between the intensity of this third Fe2+ QSD component and the content of trivalent octahedral cations has been found. Substitution of Fe2+ by smaller divalent cations causes a distinct increase of ferrous quadrupole splitting. This suggests the remaining Fe2+O4(OH)2 octahedra to become more regular. This holds true for micas with and with composition of the tetrahedral sheet. In micas with Fe3+ in tetrahedral coordination there is a distinct increase of the quadrupole splitting of tetrahedral Fe3+ with decreasing size of the octahedral sheet. This can be explained by an increasing distortion of the second oxygen coordination sphere around tetrahedral Fe3+ due to increasing ditrigonal distortion of the tetrahedral sheet.

  3. Statistical thermodynamics of fluids with both dipole and quadrupole moments

    NASA Astrophysics Data System (ADS)

    Benavides, Ana L.; García Delgado, Francisco J.; Gámez, Francisco; Lago, Santiago; Garzón, Benito

    2011-06-01

    New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994), 10.1016/0378-4371(94)90469-3] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.

  4. CMB quadrupole suppression. II. The early fast roll stage

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Sanchez, N. G.

    2006-12-01

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds Ntot˜59, there is a 10% 20% suppression of the CMB quadrupole and about 2% 4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l2. The suppression is much smaller for Ntot>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound Ntot˜59.

  5. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    SciTech Connect

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  6. First tests of a superconducting RFQ (rf quadrupole) structure

    SciTech Connect

    Delayen, J.R.; Shepard, K.W.

    1990-01-01

    High surface electric fields have been obtained in the first tests of a superconducting rf quadrupole device. The rf quadrupole fields were generated between niobium vanes 6.5 cm in length, with an edge radius of 2 mm, and with a beam aperture of 6 mm diameter. In tests at 4.2 K, the 64 MHz device operated cw at peak surface electric fields of 128 MV/m. Virtually no electron loading was observed at fields below 100 MV/m. It was possible to operate at surface fields of 210 MV/m in pulses of 1 msec duration using a 2.5 kW rf source. For the vane geometry tested, more than 10 square centimeters of surface support a field greater than 90% of the peak field. The present result indicates that electric fields greater than 100 MV/m can be obtained over an appreciable area, sufficient for some accelerator applications. It also shows that superconducting rf technology may provide an extended range of options for rf quadrupole design.

  7. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for spin I = 1

    NASA Astrophysics Data System (ADS)

    Nilsson, Tomas; Halle, Bertil

    2012-08-01

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water 1H and 2H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water 2H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like 2H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally important

  8. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    PubMed

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  9. Order and dynamics in mixtures of membrane glucolipids from Acholeplasma laidlawii studied by sup 2 H NMR

    SciTech Connect

    Eriksson, P.O.; Rilfors, L.; Lundberg, A.; Lindblom, G.; Wieslander, A. )

    1991-05-21

    The two dominant glucolipids in Acholeplasma laidlawii, viz., 1,2-diacyl-3-O-({alpha}-D-glucopyranosyl)-sn-glycerol (MGlcDG) and 1,2-diacyl-3-O-({alpha}-D-glucopyranosyl-(1{yields}2)-O-{alpha}-D-glucopyranosyl)-sn-glycerol (DGlcDG), have markedly different phase behavior. MGlcDG has an ability to form nonlamellar phases, whereas DGlcDG only forms lamellar phases. For maintenance of a stable lipid bilayer, the polar headgroup composition in A. laidlawii is metabolically regulated in vivo, in response to changes in the growth conditions. To investigate the mechanism behind the lipid regulation the authors have here studied bilayers of mixtures of unsaturated MGlcDG and DGlcDG, containing a small fraction of biosynthetically incorporated per-deuterated palmitic acid, with {sup 2}H NMR. The order-parameter profile of the acyl chains and an apparent transverse spin relaxation rate (R{sub 2}) were determined from dePaked quadrupole-echo spectra. The variation of order with lipid composition is rationalized from simple packing constraints. The relaxation data indicate the presence of slow reorientational motions, such as collective bilayer fluctuations and/or lipid lateral diffusion over a curved bilayer surface. The variation of acyl-chain order and bilayer curvature and/or fluctuations with sample composition are discussed in relation to the tendency of MGlcDG to form nonlamellar phases in vitro and in relation to the lipid regulation in vivo.

  10. Theoretical study of the potential energy surface governing the stereochemistry in ClC sub 2 H sub 4 reactions

    SciTech Connect

    Engels, B.; Peyerimhoff, S.D. ); Skell, P.S. )

    1990-02-22

    Large-scale multireference configuration interaction calculations in a double-{xi}-type AO basis including polarization functions are carried out for the potential surface of the ClC{sub 2}H{sub 4} system. The charge distribution for various extreme points of the surface is discussed. The absolute minimum is found for an asymmetric ClC{sub 2}H{sub 4} structure. The symmetrical bridged nuclear conformation is also found to be stable with respect to dissociation into Cl + C{sub 2}H{sub 4}. The activation energy for rotation about the C-C axis is calculated to be around 18 kJ/mol, which is comparable to that for the 1,2 migration (around 26 kJ mol). The stereochemistry is governed by the fact that addition of Cl to C{sub 2}H{sub 4} (or dissociation) is a two-step reaction proceeding through a symmetrical intermediate. The direct addition pathway possesses a small barrier of about 8 kJ/mol.

  11. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells.

    PubMed

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F

    2013-08-09

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit (14)C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited (14)C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics.

  12. Quadrupole-Echo Techniques in Multiple-Quantum-Filtered NMR Spectroscopy of Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Navon, G.

    Multiple-quantum-filtered quadrupole-echo pulse sequences for spin I = 1 and I = {3}/{2} are suggested. A general condition for obtaining simultaneously Zeeman and quadrupolar echo is formulated. A theoretical analysis of the various pulse sequences was performed on the basis of second-order perturbation approximation of the Liouville equation for the density matrix. The extent of refocusing as a function of the ratio of the residual quadrupolar interaction and the relaxation rates was calculated. Experimental results are presented for 2H and 23Na in cartilage as an example of a heterogeneous system with residual quadrupolar interaction. The difference between relaxation times measured by the multiple-quantum-filtered echo techniques and those measured by conventional multiple-quantum-filtered NMR spectroscopy is a simple diagnostic of anisotropic motion that leads to a residual quadrupolar interaction. The results of the echo experiments are compared with the relaxation times computed on the basis of lineshape analysis of double-quantum-filtered spectra of a heterogeneous system.

  13. Is the Reaction of C3N(-) with C2H2 a Possible Process for Chain Elongation in Titan's Ionosphere?

    PubMed

    Lindén, Fredrik; Alcaraz, Christian; Ascenzi, Daniela; Guillemin, Jean-Claude; Koch, Leopold; Lopes, Allan; Polášek, Miroslav; Romanzin, Claire; Žabka, Jan; Zymak, Illia; Geppert, Wolf D

    2016-07-14

    The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres.

  14. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  15. Magnetic susceptibility and Mössbauer studies of [FeX3](ClO4)2.H2O with X = bpz, bpy, phen or tpy

    NASA Astrophysics Data System (ADS)

    Ho, J. C.; Hamdeh, H. H.; Kirgan, R.; Rillema, D. P.

    2008-03-01

    Magnetic studies have been made on several tris-chelated iron complex compounds [FeX3](ClO4)2.H2O with aromatic nitrogen heterocycle ligands X = bpz (2,2'-bipyrazine), bpy (2,2'-bipyridine), phen (1,10-phenanthroline) or tpy (2,2':6,2''-terpyridine). SQUID data (2-300 K and 0.01-1 T) yielded small effective magnetic moments, which are characteristic of low-spin Fe(II), in agreement with the isomer shift and quadrupole splitting values from Mössbauer measurements (4-300 K, 0-5 T). Meanwhile, apart from the expected diamagnetism, a positive term of temperature-independent paramagnetic susceptibility prevails in most cases.

  16. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  17. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  18. Phosphorylation/dephosphorylation of the repressor MDBP-2-H1 selectively affects the level of transcription from a methylated promoter in vitro.

    PubMed Central

    Bruhat, A; Jost, J P

    1996-01-01

    We have previously shown that in vivo estradiol-dependent dephosphorylation of MDBP-2-H1 (a member of the histone H1 family) correlates with the loss of in vitro preferential binding to methylated DNA. To study the effects of the phosphorylation/dephosphorylation of MDBP-2-H1 on the expression of the avian vitellogenin II gene, we optimised an in vitro transcription system using HeLa nuclear extracts. We show that in the absence of the phosphorylated form of MDBP-2-H1 from rooster, methylation of the vitellogenin II promoter does not affect the transcription. Addition of purified MDBP-2-H1 from rooster to the in vitro transcription system inhibits transcription more efficiently from a methylated than an unmethylated DNA template. Dephosphorylation of rooster MDBP-2-H1 by phosphatase treatment or estradiol treatment of rooster lead to the loss of inhibitory activity of the protein when added to the in vitro transcription assays. These findings indicate that the phosphorylation of MDBP-2-H1 is essential for the repression of the transcription. Taken together these results establish the relationship between the dephosphorylation of MDBP-2-H1 caused by estradiol, the down regulation of its binding activity to methylated DNA and the derepression of vitellogenin II transcription. PMID:8657560

  19. Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.

    2016-04-01

    We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.

  20. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    SciTech Connect

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.; Kruk, D.; Jakubas, R.

    2016-02-07

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, and a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  1. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  2. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  3. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  4. Bose-Einstein condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Sarkar, Sumit; Verma, Gunjan; Vishwakarma, Chetan; Noaman, Md; Rapol, Umakant

    2015-02-01

    We report a novel approach for preparing a Bose-Einstein condensate (BEC) of 87Rb atoms using an electro-pneumatically driven transfer of atoms into a quadrupole-Ioffe magnetic trap (QUIC trap). More than 5 × {{10}8} atoms from a magneto-optical trap are loaded into a spherical quadrupole trap and then transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil thereby changing the distance between the quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80%. This approach is different from the conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve Bose-Einstein condensation of more than 105 atoms.

  5. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  6. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  7. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    PubMed

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  8. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  9. Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy

    PubMed Central

    Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

    2009-01-01

    Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures

  10. Ab initio calculation of the deuterium quadrupole coupling in liquid water

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-10-01

    The quadrupole coupling constant and asymmetry parameter for the deuteron in liquid heavy water was determined using purely theoretical methods. Molecular-dynamics simulations with the ab initio potential-energy surface of Lie and Clementi were used to generate snapshots of the liquid. The electric-field gradient at the deuteron was then calculated for these configurations and averaged to obtain the liquid quadrupole coupling constant. At 300 K a quadrupole coupling constant of 256±5 kHz and an asymmetry parameter of 0.164±0.003 were obtained. The temperature dependence of the quadrupole coupling constant was investigated.

  11. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  12. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  13. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  14. Design, development, and acceleration trials of radio-frequency quadrupole

    SciTech Connect

    Rao, S. V. L. S. Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-15

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D{sup +}) beam, we tested it by accelerating both the proton (H{sup +}) and D{sup +} beams. The RFQ was operated in pulsed mode and accelerated both H{sup +} and D{sup +} beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  15. Finding the Magnetic Center of a Quadrupole to High Resolution

    SciTech Connect

    Fischer, G.E.; Cobb, J.K.; Jenson, D.R.; /SLAC

    2005-08-12

    In a companion pro, collposal it is proposed to align quadrupoles of a transport line to within transverse tolerances of 5 to 10 micrometers. Such a proposal is meaningful only if the effective magnetic center of such lenses can in fact be repeatably located with respect to some external mechanical tooling to comparable accuracy. It is the purpose of this note to describe some new methods and procedures that will accomplish this aim. It will be shown that these methods are capable of yielding greater sensitivity than the more traditional methods used in the past. The notion of the ''nodal'' point is exploited.

  16. Operational aspects of the Main Injector large aperture quadrupole (WQB)

    SciTech Connect

    Chou, W.; Bartelson, L.; Brown, B.; Capista, D.; Crisp, J.; DiMarco, J.; Fitzgerald, J.; Glass, H.; Harding, D.; Johnson, D.; Kashikhin, V.; /Fermilab

    2007-06-01

    A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. [1] Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40{pi} to 60{pi} mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref [2].

  17. Microwave spectrum, molecular structure, and quadrupole coupling of vinyl chloroformate

    NASA Astrophysics Data System (ADS)

    Bimler, Jonathan; Broadbent, Stacy; Utzat, Karissa A.; Bohn, Robert K.; Restrepo, Albeiro; Harvey Michels, H.; True, Nancy S.

    2012-09-01

    Vinyl chloroformate is confirmed to have the planar structure reported in an earlier study [1]. Our study uses much higher resolution microwave rotational spectra and ab initio calculations have been extended to a higher level. Naturally abundant isotopologs with single substitution of 37Cl, 13C, and 18O isotopes have also been measured and a substitution structure obtained. The quadrupole coupling constants of the 35Cl and 37Cl isotopologs have been determined. The potential energy profiles of internal rotation about the Odbnd Csbnd Osbnd C and Csbnd Osbnd Cdbnd C dihedral angles have been calculated.

  18. Novel integrated design framework for radio frequency quadrupoles

    NASA Astrophysics Data System (ADS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ.

  19. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  20. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    SciTech Connect

    Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.

    2004-11-10

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.

  1. Quadrupole Splitting Distributions in Grandidierite and Kornerupine from Antarctica

    NASA Astrophysics Data System (ADS)

    Zhe, Li; Laixi, Tong; Xiaohan, Liu; Liudong, Ren; Mingzhi, Jin; Milan, Liu

    2000-12-01

    The Mössbauer spectra of grandidierite and kornerupine at 298 and 90 K were measured. The quadrupole splitting distributions from the Mössbauer spectra were obtained by using the Voigt-based method, and the assignments for QSDs in the Mössbauer spectra of both minerals are presented. Site occupancies of iron in the crystal structures of two minerals were determined, and the chemical formulas of grandidierite and kornerupine were rewritten based on the relative absorption areas and Mössbauer fraction f for Fe3+ and Fe2+.

  2. Nb{sub 3}Sn ARC quadrupole magnets for VLHC

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Superconducting quadrupoles with a field gradient of 400-450 T/m for a future Very Large Hadron Collider (VLHC) are being studied at Fermilab. To reach the target field gradient in a 40-50 mm aperture, Nb{sub 3}Sn superconductor is used at an operating temperature of 4.2 K. Two cases with different magnet functions, beam separation distances and coil arrangements have been analyzed and optimized in order to provide the required field quality and magnet parameters.

  3. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  4. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  5. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  6. Quadrupole splittings in the near-infrared spectrum of 14NH3

    SciTech Connect

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v1 + v3, v1 + 2v4 and v3 + 2v4 bands of 14NH3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar to the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.

  7. Analysis of quadrupole splitting of multiple Fe sites intermixed in Si(111) with Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawauchi, Taizo; Zhang, Xiaowei; Fukutani, Katsuyuki

    2016-12-01

    The iron silicide has various interesting phases both fundamentally and technologically, which have acquired much attention to date. Iron silicides are often fabricated on a Si substrate by a solid phase epitaxy method, and the initial stage of intermixing of iron atoms with substrate Si is of crucial importance for silicide fabrication, which remains to be clarified. Here, we have investigated the initial stage of the iron-silicide formation before crystallization with Mössbauer spectroscopy suited to characterization of magnetic and chemical properties of 57Fe atoms in materials. The sample was prepared by deposition of 57Fe of 1 nm on a Si(111) surface at 450 K. Conventional Mössbauer spectroscopy in the energy domain revealed presence of two iron sites with similar quadrupole splits and isomer shifts, which hampered complete analysis of this system. By combining the time-domain spectroscopy using polarized synchrotron radiation, we have separately analyzed the quadrupole splits and isomer shifts for the two iron sites. By using the theoretical simulation, furthermore, we successfully reproduced the experimentally observed time spectrum of the nuclear resonant scattering on the assumption that iron atoms randomly occupy the substitutional sites for Si at the initial stage of intermixing before crystallization of an iron silicide.

  8. Combination of magnetic and electric quadrupole lenses as zoom Sextuplet ion microprobe focusing system with minimum spherical aberration

    NASA Astrophysics Data System (ADS)

    Dymnikov, Alexander D.; Rout, Bibhudutta; Glass, Gary A.

    2007-08-01

    The new generation nuclear microprobe system at the Louisiana Accelerator Center in the University of Louisiana at Lafayette consists of a 6.25 m beam line that employs the magnetic quadrupole Sextuplet lens system. This Sextuplet is a zoom system having the same demagnifications, the same focal lengths and the same positions of the focal points in (xoz) and (yoz) planes as in the case for the Russian quadruplet. It also can have the same spherical aberrations in both planes. The parameters which allow obtaining the lowest coefficients of spherical aberration are found for different geometrical configurations of electric and magnetic quadrupole lenses. Specifically, the configuration of a combined Sextuplet consisting of two magnetic and four electrostatic lenses or consisting of two electrostatic and four magnetic lenses is studied and compared with magnetic and electrostatic Sextuplets. The values of the chromatic and spherical aberrations for these combined systems are compared and the minimum spot radius and the half-widths of the corresponding slits for some optimal magnetic and electrostatic Sextuplets are given.

  9. Precision measurements of {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He total cross sections at Big Bang nucleosynthesis energies

    SciTech Connect

    Leonard, D.S.; Karwowski, H.J.; Brune, C.R.; Fisher, B.M.; Ludwig, E.J.

    2006-04-15

    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe {omega}{sub b} with a precision of about 4%. With {omega}{sub b} tightly constrained, comparisons of Big Bang nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He total cross sections at lab energies from 110 to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2%{+-}1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, by using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used NACRE (nuclear astrophysics compilation of reaction rates) database. These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.

  10. Adjustable permanent quadrupoles for the next linear collider

    SciTech Connect

    James T. Volk et al.

    2001-06-22

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.

  11. High Reliability Prototype Quadrupole for the Next Linear Collider

    SciTech Connect

    Spencer, Cherrill M

    2001-01-04

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  12. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  13. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  14. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  15. Energy-sensitive imaging detector applied to the dissociative recombination of D{sub 2}H{sup +}

    SciTech Connect

    Buhr, H.; Schwalm, D.; Mendes, M. B.; Novotny, O.; Berg, M. H.; Bing, D.; Krantz, C.; Orlov, D. A.; Sorg, T.; Stuetzel, J.; Varju, J.; Wolf, A.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2010-06-15

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10x10 cm{sup 2}) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D{sub 2}H{sup +}. A huge isotope effect is observed when comparing the relative branching ratio between the D{sub 2} + H and the HD + D channel; the ratio 2B(D{sub 2} + H)/B(HD + D), which is measured to be 1.27{+-}0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7{+-}0.5 at {approx}5 eV.

  16. Investigating Enhanced Multiple Ionization Near Conical Intersections in C2H 2 +

    NASA Astrophysics Data System (ADS)

    McCracken, Greg; Liekhus-Schmaltz, Chelsea; Kaldun, Andreas; Bucksbaum, Phil

    2016-05-01

    Nonadiabatic behavior near conical intersections (CIs) leads to strong nonradiative mixing between different electronic states in polyatomic molecules. Recently, evidence was shown that strong field multiple ionization was significantly enhanced near the CI driving the isomerization of CHD. An interesting question is if it is a general feature that conical intersections enhance ionization rates. In this talk, we investigate the possibility of enhanced multiple ionization near the CI between the A and X states of the C2H2 cation, which is involved in the isomerization pathway to vinylidene. The cation is prepared in the A state nonlinearly using 50 fs pulses at 266 nm. The evolution of the nuclear wavepacket through the CI is then probed by a strong ultrafast pulse at 800 nm. Using a newly designed system to reconstruct the momenta of all ion fragments from a single Coulomb explosion event, we are able to see any enhancement of highly charged channels over doubly charged ones from events that are probed near the CI. This work was supported by NSF Grant PHY-0649578.

  17. Inclusive electron scattering from 2H,3He, and 4He

    NASA Astrophysics Data System (ADS)

    Dytman, S. A.; Bernstein, A. M.; Blomqvist, K. I.; Pavel, T. J.; Quinn, B. P.; Altemus, R.; McCarthy, J. S.; Mechtel, G. H.; Ueng, T. S.; Whitney, R. R.

    1988-08-01

    We present new results for inclusive electron scattering in 2H, 3He, and 4He in order to test the reaction mechanism for quasielastic scattering as a function of nuclear density. Radiative corrections are applied to the cross section data and Rosenbluth separations are made for three-momentum transfer (q) between 300 and 600 MeV/c. The A and q dependencies of the data are discussed for the quasielastic peak and the region between the quasielastic peak and the Δ resonance peak (dip region). Comparisons are shown between the data and models based on a quasielastic reaction mechanism. The models give a reasonable representation of the peak at q~500 MeV/c, but the longitudinal data for the helium isotopes are significantly suppressed with respect to the quasielastic predictions at q<400 MeV/c. None of the calculations predict the rapid rise with q and A in the transverse strength in the dip region seen in the data. A significant breakdown of the quasielastic picture is seen in the data as A increases from 2 to 4.

  18. Production of C2H4Cl+ by dissociative photoionization of weak molecular complexes in C2H4 + HCl mixtures

    NASA Astrophysics Data System (ADS)

    Walters, E. A.; Grover, J. R.; Arneberg, D. L.; Santandrea, C. J.; White, M. G.

    1990-12-01

    The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+ hv→C2H4Cl++H+ e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol-1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.

  19. Materials analysis with a nuclear microprobe

    SciTech Connect

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given.

  20. An online database of nuclear electromagnetic moments

    NASA Astrophysics Data System (ADS)

    Mertzimekis, T. J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure - including nuclear moments - which hinders the information management. A new, dedicated, public and user friendly online database (http://magneticmoments.info) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.

  1. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  2. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    SciTech Connect

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  3. Synthesis of (R)-[2-2H]isopentenyl diphosphate and determination of its enantiopurity by 2H NMR spectroscopy in a lyotropic medium.

    PubMed

    Leyes, A E; Poulter, C D

    1999-10-07

    [formula: see text] The synthesis of (R)-[2-2H]isopentenyl diphosphate from D-mannitol 1,2:5,6-bis-acetonide in 10 steps is reported. Stereospecific incorporation of the label is achieved by a BF3-catalyzed NaCNBD3 reduction of the enantiomerically pure (S)-isopropylidene oxirane intermediate. The enantiomeric excess of the penultimate precursor [2-2H]isopentenyl tosylate (> 95% ee) was determined by 2H NMR spectroscopy in a poly-gamma-benzyl-L-glutamate/CH2Cl2 liquid crystal at -50 degrees C.

  4. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGES

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; ...

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  5. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  6. Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl.

    PubMed

    Sewell, Laura J; Huertos, Miguel A; Dickinson, Molly E; Weller, Andrew S; Lloyd-Jones, Guy C

    2013-04-15

    The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2. An additional detail is that the active catalyst Rh(PCy3)2H2Cl is in rapid equilibrium with an inactive dimeric species, [Rh(PCy3)H2Cl]2. The reaction of Rh(PCy3)2H2Cl with [Rh(PCy3)H2(H2)2][BAr(F)4] forms the halide-bridged adduct [Rh(PCy3)2H2(μ-Cl)H2(PCy3)2Rh][BAr(F)4] (Ar(F) = 3,5-(CF3)2C6H3), which has been crystallographically characterized. This dinuclear cation dissociates on addition of H3B·NMe2H to re-form Rh(PCy3)2H2Cl and generate [Rh(PCy3)2H2(η(2)-H3B·NMe2H)][BAr(F)4]. The fate of the catalyst at low catalyst loadings (0.5 mol %) is also addressed, with the formation of an inactive borohydride species, Rh(PCy3)2H2(η(2)-H2BH2), observed. On addition of H3B·NMe2H to Ir(PCy3)2H2Cl, the Ir congener Ir(PCy3)2H2(η(2)-H2BH2) is formed, with concomitant generation of the salt [H2B(NMe2H)2]Cl.

  7. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  8. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  9. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  10. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  11. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  14. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  15. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  16. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  17. First Observation of the nu(17)-nu(4) Difference Bands of Diborane (10)B(2)H(6) and (11)B(2)H(6).

    PubMed

    Flaud; Lafferty; Bürger; Pawelke; Domenech; Bermejo

    2000-10-01

    An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1). In addition, the nu(17) band of (10)B(2)H(6) has been recorded and assigned. Since this band in (11)B(2)H(6) had already been studied (R. L. Sams, T. A. Blake, S. W. Sharpe, J.-M. Flaud, and W. J. Lafferty, J. Mol. Spectrosc. 191, 331-342 (1998)), it was possible to derive precise energy levels and Hamiltonian constants for the 4(1) vibrational states of both isotopic species. Copyright 2000 Academic Press.

  18. First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5

    NASA Astrophysics Data System (ADS)

    Matsuo, Motoaki; Miwa, Kazutoshi; Semboshi, Satoshi; Li, Hai-Wen; Kano, Mika; Orimo, Shin-ichi

    2011-05-01

    First-principles calculations were performed for a complex hydride YMn2H6 to investigate its electronic structure and thermodynamic stability. The results indicated that an Y atom and one of two Mn atoms were ionized as Y3+ and Mn2+, respectively, and another Mn atom bound covalently to H atoms to form a [MnH6]5- complex anion. Based on the enthalpy change of -65 kJ/mol estimated from the calculation, we experimentally verified a possible low-pressure synthesis of YMn2H6 from a metal hydride YMn2H4.5. X-ray diffractometry confirmed the formation of YMn2H6 after hydrogenation below 5 MPa, much lower than the previously reported value of 170 MPa.

  19. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  20. Bis(ethylenediammonium) decaaquadisodium decavanadate, (C2H10N2)2[Na2(H2O)10][V10O28].

    PubMed

    Li, Guo Bao; Yang, Si Hai; Xiong, Ming; Lin, Jian Hua

    2004-12-01

    In the title compound, the decavanadate anion, [V(10)O(28)](6-), and the bridged [Na(2)(H(2)O)(10)](2+) dication lie across inversion centers. The charge balance is achieved by ethylenediammonium cations, H(3)NCH(2)CH(2)NH(3)(2+), which are disordered. The decavanadate anions are surrounded by the [Na(2)(H(2)O)(10)](2+) dications, thus forming layers, and the ethylenediammonium cations are located between these layers.

  1. On quadrupole and octupole gravitational radiation in the ANK formalism

    NASA Astrophysics Data System (ADS)

    Kozameh, Carlos N.; Ortega, R. G.; Rojas, T. A.

    2017-04-01

    Following the approach of Adamo-Newman-Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour-Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.

  2. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  3. Uranus' (3-0) H2 quadrupole line profiles

    NASA Astrophysics Data System (ADS)

    Trafton, L.

    1987-04-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  4. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  5. Thermal noise in aqueous quadrupole micro- and nano-traps

    SciTech Connect

    Park, Jae; Krstić, Predrag S.

    2012-01-01

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuations as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.

  6. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-01-01

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  7. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  8. Quadrupole collectivity in neutron-rich Fe and Cr isotopes.

    PubMed

    Crawford, H L; Clark, R M; Fallon, P; Macchiavelli, A O; Baugher, T; Bazin, D; Beausang, C W; Berryman, J S; Bleuel, D L; Campbell, C M; Cromaz, M; de Angelis, G; Gade, A; Hughes, R O; Lee, I Y; Lenzi, S M; Nowacki, F; Paschalis, S; Petri, M; Poves, A; Ratkiewicz, A; Ross, T J; Sahin, E; Weisshaar, D; Wimmer, K; Winkler, R

    2013-06-14

    Intermediate-energy Coulomb excitation measurements are performed on the N ≥ 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) → 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed.

  9. Physics design of rod type proton Radio Frequency Quadrupole linac

    NASA Astrophysics Data System (ADS)

    Das, C.; Dechoudhury, S.; Pandey, H. K.; Naik, V.; Chakrabarti, A.

    2017-02-01

    A Radio Frequency Quadrupole (RFQ) linac delivering 800 keV, 5 mA protons has been designed. It is envisaged as first injector of the proton driver that will be used for production of proton-rich radioactive beams in the proposed ANURIB facility. The option of rod-type structure at frequency of 80 MHz has been chosen owing to ease of mechanical fabrications and to avoid detrimental nearby dipole modes present in vane type structure. Optimization of parameters has been carried out for a viable length and power of RFQ in order to avoid any infrastructural complexity. Conventional method of keeping focusing factor and vane voltage constant along the length of RFQ has been adopted. Results of detailed beam dynamics and RF structure design, space charge induced effects and corroborative particle tracking with realistic 3D fields of modulated vane has been presented.

  10. Microscopic analysis of quadrupole-octupole shape evolution

    NASA Astrophysics Data System (ADS)

    Nomura, Kosuke

    2015-05-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  11. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    PubMed

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  12. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect

    Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2014-02-15

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  13. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites.

    PubMed

    Song, Chengling; Jiao, Jingjing; Lin, Qiyi; Liu, Huimin; He, Yabing

    2016-03-21

    Replacing the benzene spacer in the organic linker 5,5'-(benzene-1,4-diyl)diisophthalate with the nitrogen containing heterocyclic rings, namely, pyrazine, pyridazine, and pyrimidine results in three organic linkers, which were reacted with copper ions under solvothermal conditions to form three isostructural metal-organic frameworks (ZJNU-46, ZJNU-47 and ZJNU-48) exhibiting exceptionally high sorption capacities with regard to acetylene due to the simultaneous immobilization of open metal sites and Lewis basic nitrogen sites in the frameworks. At 1 atm and 295 K, the gravimetric C2H2 adsorption uptakes reach 187, 213 and 193 cm(3) (STP) g(-1) for these three compounds. The gravimetric C2H2 adsorption amount of ZJNU-47a is the second highest reported for MOF materials. Notably, despite their same porosities, and densities of open metal sites and uncoordinated nitrogen sites, distinctly different C2H2 adsorption capacities were observed for these three compounds, which we think are mainly associated with the difference in the relative position of nitrogen atoms leading to different binding affinities of the frameworks towards C2H2 guest molecules, and thus different C2H2 adsorptions. This work demonstrates that the rational arrangement of open nitrogen sites will favorably improve the C2H2 uptake and thus provides useful information for future design of porous MOFs with high acetylene storage capacities.

  14. Tensor Force Manifestations in Ab Initio Study of the {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 3}He Reactions

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2011-09-23

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions are studied at low energies in a multichannel ab initio model that takes into account the distortions of the nuclei. The internal wave functions of these nuclei are given by the stochastic variational method with the AV8{sup '} realistic interaction and a phenomenological three-body force included to reproduce the two-body thresholds. The obtained astrophysical S factors are all in very good agreement with the experiment. The most important channels for both transfer and radiative capture are identified by comparing to calculations with an effective central force. They are all found to dominate thanks to the tensor force.

  15. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    DTIC Science & Technology

    2015-08-11

    28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR, potassium chlorate , surface coil, surface probe, decoupling... chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface plane of two tuned coils at a

  16. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  17. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  18. Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid 2H2

    NASA Astrophysics Data System (ADS)

    Atchison, F.; van den Brandt, B.; Bryś, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Kirch, K.; Kohlbrecher, J.; Kühne, G.; Konter, J. A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuźniak, M.; Geltenbort, P.; Giersch, M.; Zmeskal, J.; Hino, M.; Utsuro, M.

    2005-06-01

    The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-2H2 have been measured. The cross sections for 2H2 gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid 2H2, we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1/√(E') dependence at low energies for both states. A simple explanation for the liquid 2H2 cross section is offered.

  19. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different

  20. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  1. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  2. Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR

    SciTech Connect

    Macek, R.J.; Browman, A.A.; Ledford, J.E.; Borden, M.J.; O'Hara, J.F.; McCrady, R.C.; Rybarcyk, L.J.; Spickermann, T.; Zaugg, T.J.; Pivi, M.T.F.; /SLAC

    2007-11-14

    A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole.

  3. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  4. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  5. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  6. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    SciTech Connect

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.; Ferracin, P.; Sabbi, G.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  7. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity

    PubMed Central

    Garcia, Ana V.; Wagner, Christine; Choudhury, Sayan R.; Wang, Yiming; James, Geo Velikkakam; Griebel, Thomas; Alcázar, Ruben; Tsuda, Kenichi; Schneeberger, Korbinian; Parker, Jane E.

    2016-01-01

    Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. PMID:27082651

  8. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  9. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H*) and ethyne (C2H2).

    PubMed

    Santiago, Romero M; Indarto, Antonius

    2008-12-01

    An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl) initiated by the ethynyl radical (C(2)H*). The study covers a competition reaction between the addition reactions of C(2)H* with ethyne (C(2)H(2)) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized. A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (DeltaE), enthalpy (DeltaH), and Gibb's free energy (DeltaG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.

  10. Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile.

    PubMed

    Ellis, William W; Raebiger, James W; Curtis, Calvin J; Bruno, Joseph W; DuBois, Daniel L

    2004-03-10

    The thermodynamic hydride donor abilities of 1-benzyl-1,4-dihydronicotinamide (BzNADH, 59 +/- 2 kcal/mol), C(5)H(5)Mo(PMe(3))(CO)(2)H (55 +/- 3 kcal/mol), and C(5)Me(5)Mo(PMe(3))(CO)(2)H (58 +/- 2 kcal/mol) have been measured in acetonitrile by calorimetric and/or equilibrium methods. The hydride donor abilities of BzNADH and C(5)H(5)Mo(PMe(3))(CO)(2)H differ by 13 and 24 kcal/mol, respectively, from those reported previously for these compounds in acetonitrile. These results require significant revisions of the hydricities reported for related NADH analogues and metal hydrides. These compounds are moderate hydride donors as compared to previously determined compounds.

  11. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  12. Synthesis of 2H-indazoles by the [3 + 2] dipolar cycloaddition of sydnones with arynes.

    PubMed

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C; Shi, Feng

    2011-11-04

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles.

  13. Robustness of N2H+ as tracer of the CO snowline

    NASA Astrophysics Data System (ADS)

    van't Hoff, M. L. R.; Walsh, C.; Kama, M.; Facchini, S.; van Dishoeck, E. F.

    2017-03-01

    Context. Snowlines in protoplanetary disks play an important role in planet formation and composition. Since the CO snowline is difficult to observe directly with CO emission, its location has been inferred in several disks from spatially resolved ALMA observations of DCO+ and N2H+. Aims: N2H+ is considered to be a good tracer of the CO snowline based on astrochemical considerations predicting an anti-correlation between N2H+ and gas-phase CO. In this work, the robustness of N2H+ as a tracer of the CO snowline is investigated. Methods: A simple chemical network was used in combination with the radiative transfer code LIME to model the N2H+ distribution and corresponding emission in the disk around TW Hya. The assumed CO and N2 abundances, corresponding binding energies, cosmic ray ionization rate, and degree of large-grain settling were varied to determine the effects on the N2H+ emission and its relation to the CO snowline. Results: For the adopted physical structure of the TW Hya disk and molecular binding energies for pure ices, the balance between freeze-out and thermal desorption predicts a CO snowline at 19 AU, corresponding to a CO midplane freeze-out temperature of 20 K. The N2H+ column density, however, peaks 5-30 AU outside the snowline for all conditions tested. In addition to the expected N2H+ layer just below the CO snow surface, models with an N2/CO ratio ≳0.2 predict an N2H+ layer higher up in the disk due to a slightly lower photodissociation rate for N2 as compared to CO. The influence of this N2H+ surface layer on the position of the emission peak depends on the total CO and N2 abundances and the disk physical structure, but the emission peak generally does not trace the column density peak. A model with a total (gas plus ice) CO abundance of 3 × 10-6 with respect to H2 fits the position of the emission peak previously observed for the TW Hya disk. Conclusions: The relationship between N2H+ and the CO snowline is more complicated than generally

  14. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  15. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum.

    PubMed

    Geib, Timon; Sleno, Lekha; Hall, Rabea A; Stokes, Caroline S; Volmer, Dietrich A

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease. Graphical Abstract ᅟ.

  16. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.

  17. Nuclear {sup 111}Cd probes detect a hidden symmetry change at the {gamma} {sup {yields} {alpha}} transition in cerium considered isostructural for 60 years

    SciTech Connect

    Tsvyashchenko, A. V.; Nikolaev, A. V.; Velichkov, A. I.; Salamatin, A. V.; Fomicheva, L. N.; Ryasny, G. K.; Sorokin, A. A.; Kochetov, O. I.; Budzynski, M.

    2010-10-15

    We use the time-differential perturbed angular correlation technique to study nuclear electric quadrupole hyperfine interactions of probe {sup 111}Cd nuclei in cerium lattice sites at room temperature under pressures up to 8 GPa. We have found that the well known {gamma} {sup {yields} {alpha}} phase transition in cerium is not isostructural. In {alpha}-Ce, the probe {sup 111}Cd nuclei reveal a quadrupole electron charge density component that is absent in {gamma}-Ce. The hidden spacial structure of electronic quadrupoles in {alpha}-Ce is triple-q antiferroquadrupolar, as was suggested in [14]. We relate our findings to the current understanding of the {gamma} {sup {yields} {alpha}} phase transition and also report on nuclear quadrupole interactions in other high-pressure phases of cerium: {alpha}'' (C2/m space symmetry) and {alpha}' ({alpha}-U structure).

  18. First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model

    SciTech Connect

    Goriely, S.; Hilaire, S.; Girod, M.; Peru, S.

    2009-06-19

    We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces.

  19. Determination of distributions of the quadrupole interaction in amorphous solids by 27Al satellite transition spectroscopy.

    PubMed

    Jäger, C; Kunath, G; Losso, P; Scheler, G

    1993-04-01

    27Al Satellite transition spectroscopy (SATRAS) has been used to extract both the quadrupole interaction and its distribution width from MAS spectra of glasses. Using this method a measurement at a single magnetic field strength allows one to obtain the true chemical shifts and the quadrupole interaction (and its distributions) with high accuracy, including quantification of the results. In contrast to earlier investigations the central transition MAS lineshapes can be described without assumptions and give correct relative proportions of differently coordinated Al species in glasses. The distribution model for the quadrupole interaction and the resulting MAS lineshapes are discussed in detail including a description of the experimental requirements. Experimental results of 27Al SATRAS spectra of a ternary Al2O3-B2O3-P2O5 glass exhibiting 4-, 5-, and 6-coordinated aluminum species clearly prove different mean values and distribution widths for the quadrupole interaction in the various AlOx polyhedra.

  20. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  1. Field quality measurements and abalysis of the LARP technology quadrupole models

    SciTech Connect

    Bossert, R.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; /Fermilab /LBL, Berkeley

    2007-08-01

    One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.

  2. Field Quality Measurements and Analysis of the LARP Technology Quadrupole Models

    SciTech Connect

    Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; Ferracin, P.; Sabbi, G.I.; Bossert, R.

    2008-06-01

    One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.

  3. A new technique of beam energy resolution by using only quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Sarma, P. R.

    2003-08-01

    In the standard technique of beam energy resolution one uses the property of momentum dispersion by dipole magnets. It is shown that one can, alternatively, use three quadrupole magnets to select the beam momentum or energy. The lengths and magnetic fields of the quadrupoles can be adjusted to focus the particles of the required energy and simultaneously defocus the particles of higher or lower energies. For obtaining a very high resolving power one can use such triplets in cascade. The resolving powers of these are multiplicative, whereas in the case of dipoles one can use just two bending magnets for roughly doubling the resolving power. This method is different from the technique used in quadrupole mass filters where RF field is used in quadrupoles.

  4. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y.

    2010-12-01

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  5. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Not Available

    2010-11-29

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  6. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  7. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  8. Miniature mass spectrometer systems based on a microengineered quadrupole filter.

    PubMed

    Malcolm, Andrew; Wright, Steven; Syms, Richard R A; Dash, Neil; Schwab, Marc-André; Finlay, Alan

    2010-03-01

    Two miniature mass spectrometer systems based on a microengineered quadrupole mass filter have been developed. One of the instruments has a footprint of 27 cm x 20 cm and is intended for laboratory use when space is at a premium. The other is portable and intended for use in the field. It is battery powered, weighs 14.9 kg, and is housed in a rugged case. This is the first example of a portable mass spectrometer incorporating an analyzer fabricated using microelectromechanical systems (MEMS) techniques. The starting material for construction of the filters is a bonded silicon on insulator substrate, which is selectively etched using batch processing techniques to form coupling optics and springs that accurately hold 0.5 mm diameter stainless steel rods in the required geometry. Assembled filters measure 35 mm x 6 mm x 1.5 mm and are mounted, together with an ion source and channeltron detector, in small, interchangeable cartridges, which plug into a 220 cm(3) vacuum chamber. Recovery from accidental contamination or when servicing is required can be achieved within 5-10 min, as the cartridge is easily exchanged with a spare. A potential application to environmental monitoring has been investigated. The headspace above water spiked with dibutyl mercaptan was sampled with a solid phase microextraction (SPME) fiber, which was then injected directly into the vacuum chamber of the mass spectrometer. Using this method, the limit of detection was found to be approximately 5 ppm for a 15 s sampling period.

  9. On the formation of the South Pacific quadrupole mode

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Wang, Faming

    2016-08-01

    The formation process of the South Pacific (SP) quadrupole (SPQ) mode was investigated in this study based on observations and reanalysis data. The SPQ is the dominant mode of the sea surface temperature (SST)-surface wind covariability in the SP after removing the ENSO-related signals. The positive phase of the SPQ is characterized by a warm SST anomaly (SSTA) west of the South American coast, a cool SSTA in its southwest, a positive SSTA southeast of New Zealand, and a negative SSTA off the southeast coast of Australia, overlain by cyclonic wind anomalies. The anomalous cyclonic winds weaken the mean southeast trade winds in the southeast SP and the westerlies in the high latitudes of the SP, increasing the SSTAs at the two positive poles through decreased evaporation and latent heat flux (LHF) loss. The southeast wind anomalies advect dry and cold air to the negative pole in the central SP, which reduces the SSTA there by increasing the LHF loss. Off the southeast coast of Australia, the southwest wind anomalies induce equatorward Ekman currents and advect cold water. The resulting oceanic horizontal advection is the main contributor to the negative SSTAs there. In addition to the above processes, cloud cover change can enhance the initial SSTAs in the southeast SP by affecting shortwave radiation. The decay of the SPQ is mainly due to LHF changes.

  10. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    SciTech Connect

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.

  11. Electric Quadrupole Transition Measurements of Hydrogen Molecule with High Precision

    NASA Astrophysics Data System (ADS)

    Cheng, Cun-Feng; Wang, Jin; Tan, Yan; Liu, An-Wen; Hu, Shui-Ming

    2013-06-01

    Molecular hydrogen is the most fundamental, and the only neutral molecule expected to be both calculated and measured with extremely high accuracy. High-precision measurements of its spectroscopy, especially the levels at the electric ground state, play an important role in the examination of precise quantum chemistry calculations and some fundamental physical constants. In the infrared region, H_2, being a homonuclear diatomic molecule, only has very weak electric quadrupole transitions. We established a new spectroscopy approach with ultra-high precision and sensitivity as well, based on a laser-locked cavity ring-down spectrometer. An equivalent absorption path-length of thousands of kilometers and a frequency precision of 10^{-5} cm^{-1} have been achieved. Ro-vibrational spectra of the second overtone of H_2 have been recorded. The obtained results will provide a direct examination of the high-accuracy quantum theory. It also shades light on the determination of fundamental physical constants such as the electron/proton mass ratio in a molecular system.

  12. Modal response of 4-rod type radio frequency quadrupole linac.

    PubMed

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  13. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  14. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  15. Modal response of 4-rod type radio frequency quadrupole linac

    SciTech Connect

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  16. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.

  17. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  18. Structural characterization of (C2H2)1-6+ cluster ions by vibrational predissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.; Bopp, Joseph C.; Roscioli, Joseph R.; Johnson, Mark A.

    2009-09-01

    Vibrational predissociation spectra are reported for the cationic acetylene clusters, (C2H2)n+, n =1-6, in the region of the C-H stretching fundamentals. For n =1 and 2, predissociation could only be observed for the Ar-tagged clusters. These were prepared by charge-transfer collisions of Ark+ with C2H2 to create C2H2+ṡArm clusters, which were then converted into larger members of the (C2H2)n+ṡAr series by sequential addition of acetylene molecules. The (C2H2)2+ṡAr spectrum indicates that this species is predominantly present as the cyclobutadiene cation. Although mobility measurements on the electron-impact-generated (C2H2)3+ ion indicated that it primarily occurs as the benzene cation, [P. O. Momoh, J. Am. Chem. Soc. 128, 12408 (2006)] photofragmentation of (C2H2)3+ṡAr in the C-H stretching region is dominated by the loss of C2H2 in addition to the weakly bound Ar atom. This suggests that the dominant n =3 species formed by sequential addition of C2H2 is based on a covalently bound C4H4+ core ion. Interestingly, the spectrum of this core C4H4+ species is different from that found for the cyclobutadiene cation, displaying instead a new band pattern that is retained in the higher (C2H2)3-6+ clusters. Multiple isomers are clearly involved, as yet another pattern of bands is recovered when the (C2H2)3+ṡAr action spectrum is recorded in the (minor) Ar loss fragmentation channel. One of these features does appear in the location of the single band characteristic of the Ar-tagged benzene cation reported earlier [Phys. Chem. Chem. Phys. 4, 24 (2002)], supporting a scenario where the benzene cation is one of the isomers present. We then compare the Ar predissociation results with (C2H2)n+ spectra obtained when the ions are prepared by electron impact ionization of neutral acetylene clusters. The photofragmentation behavior and vibrational spectra indicate that the dominant species formed in this way also occur with a covalently bound C4H4+ core. There are

  19. The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Sabroux, J. C.

    1987-02-01

    Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10-36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.

  20. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  1. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    NASA Astrophysics Data System (ADS)

    Zeng, G.; Wood, S. W.; Morgenstern, O.; Jones, N. B.; Robinson, J.; Smale, D.

    2012-08-01

    We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (-0.94 ± 0.47% yr-1), C2H6 (-2.37 ± 1.18% yr-1) and HCN (-0.93 ± 0.47% yr-1) at Lauder and CO (-0.92 ± 0.46% yr-1), C2H6 (-2.82 ± 1.37% yr-1) and HCN (-1.41 ± 0.71% yr-1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997-1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997-2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily

  2. Analysis of gene expression and regulation implicates C2H9orf152 has an important role in calcium metabolism and chicken reproduction.

    PubMed

    Liu, Long; Fan, Yanfeng; Zhang, Zhenhe; Yang, Chan; Geng, Tuoyu; Gong, Daoqing; Hou, Zhuocheng; Ning, Zhonghua

    2017-01-01

    The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality.

  3. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  4. Identification of acetylene /C2H2/ in infrared atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-01-01

    Infrared atmospheric absorption spectra at 0.02/cm resolution were obtained during a balloon flight on March 23, 1981 from the Holloman AFB, New Mexico. The absorption features, attributed to C2H2, were used to derive a preliminary mixing ratio of about 25 pptv near 9 km, accurate to + or - 40%. This mixing ratio falls into the range of values calculated for the upper troposphere C2H2 in a photochemical/transport model. However, previous measurements from aircraft grab sampling (Cronn and Robinson, 1979) show four to twelve times this C2H2 concentration 1.5 km below the tropopause.

  5. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  6. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  7. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  8. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  9. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  10. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.

  11. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  12. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides.

  13. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  14. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones.

    PubMed

    Wu, Chunrui; Fang, Yuesi; Larock, Richard C; Shi, Feng

    2010-05-21

    A rapid and efficient synthesis of 2H-indazoles has been developed, which involves the [3 + 2] dipolar cycloaddition of arynes and sydnones. The process proceeds under mild reaction conditions in good to excellent yields.

  15. Large-scale Spectroscopic Mapping of the ρ Ophiuchi Molecular Cloud Complex. I. The C2H-to-N2H+ Ratio as a Signpost of Cloud Characteristics

    NASA Astrophysics Data System (ADS)

    Pan, Zhichen; Li, Di; Chang, Qiang; Qian, Lei; Bergin, Edwin A.; Wang, Junzhi

    2017-02-01

    We present 2.5-square-degree C2H N = 1–0 and N2H+ J = 1–0 maps of the ρ Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ Ophiuchi molecular cloud complex with these two tracers. The C2H emission is spatially more extended than the N2H+ emission. One faint N2H+ clump, Oph-M, and one C2H ring, Oph-RingSW, are identified for the first time. The observed C2H-to-N2H+ abundance ratio ([C2H]/[N2H+]) varies between 5 and 110. We modeled the C2H and N2H+ abundances with 1D chemical models, which show a clear decline of [C2H]/[N2H+] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density (n H > 105 cm‑3), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time of ∼105 yr). The observed [C2H]/[N2H+] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C2H]/[N2H+] values are the results of time evolution, accelerated at higher densities. For the relatively low density regions in L1688 where only C2H emission was detected, the gas should be chemically younger.

  16. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  17. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  18. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    PubMed Central

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  19. A Classical Trajectory Study of the Dissociation and Isomerization of C2H5

    DTIC Science & Technology

    2013-01-01

    C2H5) plays an important role in combustion chemistry. Because the reverse reactions constitute the addition of a hydrogen atom to a stable molecule...primary reaction zones of premixed flames. The hydrogen atom thus produced acts to promote chain branching through the H + O2 ⇌ OH + O reaction . Thus...calculations of reaction paths on the electronically excited-state potential energy surfaces (PESs) of C2H5 14 predict that the nonclassical bridge structure is

  20. Determination of Transformation Coefficients of the C2H4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Belova, A. S.; Berezkin, K. B.; Ziatkova, A. G.

    2016-11-01

    The object of theoretical research is the C 2 H 4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The "expanded" local mode approach developed earlier was used for a X2Y4 molecule. This approach makes it possible to obtain simple expressions for the transformation coefficients of the investigated molecule, which subsequently allows one to determine various spectroscopic parameters of the C 2 H 4 molecule in a simple form.

  1. Synthesis of a library of 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides.

    PubMed

    Mills, Aaron D; Maloney, Patrick; Hassanein, Elsayed; Haddadin, Makhluf J; Kurth, Mark J

    2007-01-01

    A library of 200 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides was synthesized using parallel solution-phase methods. The indazole cyclization reaction was optimized for library production with the best yields resulting from controlled alcohol/water solvent ratios. The key step, a heterocyclization reaction, proceeds by N,N-bond formation and delivers the 2H-indazole scaffold. Automated preparative HPLC was utilized to provide pure compounds on a 10+ mg scale.

  2. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  3. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  4. Asymmetry dependence of the nuclear caloric curve

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.

    2013-02-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry N-Z/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.

  5. Calculation of the solubility diagrams in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Vereecke, Guy; Lemaître, Jacques

    1990-09-01

    A computer program has been developed for calculating the solubility isotherms of sparingly soluble calcium phosphates (including octacalcium phosphate and β-tricalcium phosphate) and calcite in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O. It allows the influence of such parameters as temperature, pH, partial CO 2 pressure and ionic strength to be investigated. The calculation process takes into account the effects of ion-pair formation and ionic strength. Selected solubility isotherms are presented and compared to literature data. The influence of temperature, Ca/P ratio, ionic strength and CO 2 pressure on the stability isotherms of hydroxyapatite and dicalcium phosphate are discussed in detail.

  6. A copper–polyol complex: [Na2(C2H6O2)6][Cu(C2H4O2)2

    PubMed Central

    Rivers, Joseph H.; Carroll, Kyler J.; Jones, Richard A.; Carpenter, Everett E.

    2010-01-01

    The ionic title complex, bis(μ-ethyl­ene glycol)-κ3 O,O′:O′;κ3 O:O,O′-bis[(ethyl­ene glycol-κ2 O,O′)(ethyl­ene glycol-κO)sodium] bis(ethyl­ene glycolato-κ2 O,O′)copper(II), [Na2(C2H6O2)6][Cu(C2H4O2)2], was obtained from a basic solution of CuCl2 in ethyl­ene glycol and consists of discrete ions inter­connected by O—H⋯O hydrogen bonds. This is the first example of a disodium–ethyl­ene glycol complex cation cluster. The cation lies about an inversion center and the CuII atom of the anion lies on another independent inversion center. PMID:20203401

  7. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  8. Multiparameter functional diversity of human C2H2 zinc finger proteins

    PubMed Central

    Schmitges, Frank W.; Radovani, Ernest; Najafabadi, Hamed S.; Barazandeh, Marjan; Campitelli, Laura F.; Yin, Yimeng; Jolma, Arttu; Zhong, Guoqing; Guo, Hongbo; Kanagalingam, Tharsan; Dai, Wei F.; Taipale, Jussi; Emili, Andrew; Greenblatt, Jack F.; Hughes, Timothy R.

    2016-01-01

    C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein–protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins. PMID:27852650

  9. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  10. DISSOCIATION OF B2H6 AND ADSORPTION OF THE FRAGMENTS OF B2H6 ON THE STEPPED Ge(100) SURFACE

    NASA Astrophysics Data System (ADS)

    Türkmenoğlu, Mustafa; Katircioğlu, Şenay

    2012-06-01

    In this work, the p-type doping of the SA type stepped Ge(100) surface by a diborane (B2H6) gas flow has been simulated by the possible dissociation and adsorption models. The most probable dissociation model of B2H6 and adsorption models of the fragments of B2H6 on the stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on the Density functional (B3LYP/6-3g) and Hartree-Fock (HF/STO-3g) theories, respectively. The present calculations have shown that, the step region (for both up and down terraces) of the stepped Ge(100) surface has the most attractive sites for BH3 molecules determined to be the first dissociation fragments of B2H6 by an external energy of 1.3 eV. It has been found that, at the first step of the adsorption, BH3 can dissociate to BH2 and BH fragments on the stepped Ge(100) surface. While BH3 and BH2 products prefer to be attached to a single surface Ge atom, BH is bridged between two adjacent surface Ge atoms. According to the present optimization calculations, the p-type doping process of the stepped Ge(100) surface has started with the adsorption of BH3 on the electron deficient site (buckled down) of the Ge dimer bond close to the step edge and ended with the substitutional occupation of the Ge site in the layers of the surface by B atom. The beginning of the p-type doping of the stepped Ge(100) surface has been illustrated by the electronic states of B appeared in the optical energy gap of Ge very close to the edge of the HOMO.

  11. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  12. Fabrication and Test of 90-mm Nb3Sn Quadrupole Model Based on Dipole-type Collar

    SciTech Connect

    Bossert, R.; Andreev, N.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, M.; Velev, G.; Zlobin, A.V.; /Fermilab

    2010-07-29

    A series of 90-mm TQC quadrupole models with a collar-based mechanical structure has been fabricated and tested within the framework of the US-LHC Accelerator Research Program (LARP) using quadrupole-symmetric stainless steel collar laminations. This paper describes the design features, construction and test of TQC02Eb, the first TQC made with dipole-type collar and collaring techniques. Magnet test includes quench performance and field quality measurements at 4.5 and 1.9 K. Results of model performance for TQC quadrupoles based on dipole-type and quadrupole-type collars are compared and discussed.

  13. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  14. Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    SciTech Connect

    Fonseca, I.C.; Bakke, K.

    2015-12-15

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arise from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.

  15. Dynamics of extended bodies with spin-induced quadrupole in Kerr spacetime: generic orbits

    NASA Astrophysics Data System (ADS)

    Han, Wen-Biao; Cheng, Ran

    2017-03-01

    We discuss motions of extended bodies in Kerr spacetime by using Mathisson-Papapetrou-Dixon equations. We firstly solve the conditions for circular orbits, and calculate the orbital frequency shift due to the mass quadrupoles. The results show that we need not consider the spin-induced quadrupoles in extreme-mass-ratio inspirals for space-based gravitational wave detectors. We quantitatively investigate the temporal variation of rotational velocity of the extended body due to the coupling of quadrupole and background gravitational field. For generic orbits, we numerically integrate the Mathisson-Papapetrou-Dixon equations for evolving the motion of an extended body orbiting a Kerr black hole. By comparing with the monopole-dipole approximation, we reveal the influences of quadrupole moments of extended bodies on the orbital motion and chaotic dynamics of extreme-mass-ratio systems. We do not find any chaotic orbits for the extended bodies with physical spins and spin-induced quadrupoles. Possible implications for gravitational wave detection and pulsar timing observation are outlined.

  16. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    PubMed

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P < 0.05), within 10 min of water consumption. The ratio (2)H(2)O/H(2)O (D:H) was 47.3-55.0 times greater in plasma than in back sweat at minutes 10, 20, and 30 (DeltaD:H relative to baseline). At elapsed minute 20, the mean rate of deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  17. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  18. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  19. Simulation of Ions Confined by Quadrupole Electric Fields

    NASA Astrophysics Data System (ADS)

    Cummings, Michael David

    Computer simulations are routinely used to develop physical insight into ionic systems confined by static and time-varying quadrupole electric fields. However, after nearly 30 years of numerical exploration, three questions remain: which numerical techniques produce accurate simulations for the least computational expense? How can thermal equilibrium initial conditions be generated? How should temperature be calculated? Trapped ion simulations generally employ molecular dynamics techniques, where ion trajectories are numerically calculated at discrete points in time. While many numerical methods have been applied to these systems, it is unclear which technique is fastest or what time-step is required. In this work, the computational speed of and time-step for 11 commonly used techniques are assessed through analysis of four numerical error components. The most rapid method and required step-size depend strongly on the system parameters, with any one of the Beeman, Gear6, 5th-order Adams-Bashforth-Moulton, or 4th-order Runge-Kutta algorithms proving most appropriate. The 11 algorithms are then applied to a realistic multi-ion system and verify that the four tests accurately predict the required step size. When equilibrium properties are desired, simulations should commence from initial conditions that conform closely to thermal equilibrium; however little has been published on initial condition generation and assessment for the multi-ion system. A method is presented for generating thermal equilibrium via laser cooling and recoil heating, a ramp-down stage, where the heating and cooling are gradually reduced, and an equilibration phase where the ensemble is evolved under only the trapping forces. Furthermore, it is demonstrated that thermal equilibrium can be assessed using well-known tests of distribution normality. When time-varying fields are present, temperature calculation becomes difficult, as the ion motion contains both thermal and nonthermal components. The

  20. Nuclear vibrations and rotations of like nucleons in the same shell in even-even nuclei

    SciTech Connect

    Osman, A.; Allam, M.A.

    1987-01-01

    The vibrational and rotational motions in even nuclei are considered. A microscopic study of these motions leads to a relation between the vibrational motion in spherical nuclei and the rotational motion in deformed nuclei. Nuclei with like nucleons in the same shell are considered. The quadrupole two-body interactions are used in the large single j-shell of even nuclei. The energies and transition operators of nuclei in the nuclear rotational region are calculated using this microscopic method. Quadrupole moments are also calculated. These calculations are compared with the rotational model of the aligned coupling scheme. The present calculations are in good agreement with previous calculations.