Science.gov

Sample records for 2h2o sintez struktura

  1. Recent advances in the chemistry of SmI(2)-H(2)O.

    PubMed

    Sautier, Brice; Procter, David J

    2012-01-01

    Recent work from our laboratories has shown SmI(2)-H(2)O to be a versatile, readily-accessible and non-toxic reductant that is more powerful than SmI(2). This review describes the reduction of functional groups that were previously thought to lie beyond the reach of SmI(2) and complexity-generating cyclisations and cyclisation cascades triggered by the reduction of the ester carbonyl group with SmI(2)-H(2)O.

  2. EPR of Cu 2+ and VO 2+ in a cobalt saccharin complex, [Co(sac) 2(H 2O) 4]·2H 2O, single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Köksal, F.; Karadag, A.

    2003-09-01

    Cu 2+ and VO 2+ doped single crystals of [Co(sac) 2(H 2O) 4]·2H 2O (Cosacaqua) complex were investigated using EPR technique at ambient temperature. Detailed investigation of the EPR spectra indicated that the Cu 2+ and VO 2+ substitute the Co 2+. Two sites were observed for Cu 2+ and VO 2+. But each site of V 4+ corresponds two different orientations of VO 2+. The principal values of the g and the hyperfine tensors were obtained. The spectra indicate that the ground state for Cu 2+ is mainly 3 dx2- y2. The covalent bonding parameters for Cu 2+ and VO 2+ and Fermi contact terms were obtained.

  3. Dynamics of adipose tissue development by 2H2O labeling.

    PubMed

    Pouteau, Etienne; Beysen, Carine; Saad, Nabil; Turner, Scott

    2009-01-01

    Adipose tissue development undergoes remodeling in terms of newly synthesized cells (hyperplasia) and newly synthesized lipids that accumulate in adipocytes (hypertrophy). Synthesis and/or breakdown rates of adipose cells and lipids follow a continuous and dynamic pattern, e.g., during obesity development. This chapter describes a unique in vivo method to measure the dynamics of adipose tissue growth using 2H2O labeling and mass spectrometry analyses. The approach uses 2H2O as a metabolic tracer to label the adipose tissue components such as the triglycerides (TG), the fatty acids, and the genomic DNA. Deuterium from 2H2O incorporates in the C-H bonds of glycerol moiety of TG through glyceroneogenesis as well as in palmitate moiety through de novo lipogenesis (DNL). Deuterium also incorporates into DNA through the de novo nucleoside synthesis pathway. The labeled water, 2H2O, is administrated intraperitoneally and/or orally in rodents or in humans for a defined duration and biopsies are collected at the end of the labeling period. We describe the procedure to extract, isolate, and purify the adipose components (TG-glycerol, TG-palmitate, and genomic DNA) and the derivation procedure to analyze the isotopic 2H-enrichment of these components by gas chromatography/mass spectrometry. The calculation principles are described to obtain the fractional and absolute synthesis rates of TG, of DNL, and of DNA measured in the adipose tissues. The method is nonradioactive, nonhazardous, accurate, reproducible, and very sensitive. We present recent in vivo data on the ontogeny of adipose tissue growth dynamics in young and adult obese Zucker rats compared with lean Zucker rats. PMID:19763484

  4. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  5. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  6. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  7. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra. PMID:25621533

  8. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-01

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures. PMID:25198539

  9. Exploring water binding motifs to an excess electron via X2(-)(H2O) [X = O, F].

    PubMed

    Chiou, Mong-Feng; Sheu, Wen-Shyan

    2012-07-26

    X(2)(-)(H(2)O) [X = O, F] is utilized to explore water binding motifs to an excess electron via ab initio calculations at the MP4(SDQ)/aug-cc-pVDZ + diffs(2s2p,2s2p) level of theory. X(2)(-)(H(2)O) can be regarded as a water molecule that binds to an excess electron, the distribution of which is gauged by X(2). By varying the interatomic distance of X(2), r(X1-X2), the distribution of the excess electron is altered, and the water binding motifs to the excess electron is then examined. Depending on r(X1-X2), both binding motifs of C(s) and C(2v) forms are found with a critical distance of ∼1.37 Å and ∼1.71 Å for O(2)(-)(H(2)O) and F(2)(-)(H(2)O), respectively. The energetic and geometrical features of O(2)(-)(H(2)O) and F(2)(-)(H(2)O) are compared. In addition, various electronic properties of X(2)(-)(H(2)O) are examined. For both O(2)(-)(H(2)O) and F(2)(-)(H(2)O), the C(s) binding motif appears to prevail at a compact distribution of the excess electron. However, when the electron is diffuse, characterized by the radius of gyration in the direction of the X(2) bond axis with a threshold of ∼0.84 Å, the C(2v) binding motif is formed.

  10. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure.

  11. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  12. Calculation of anharmonic effects in the unimolecular dissociation of M2+(H2O)2 (M = Be, Mg, and Ca)

    NASA Astrophysics Data System (ADS)

    Li, Qian; Yao, Li; Xia, Wenwen; Lin, S. H.

    2015-11-01

    The anharmonic and harmonic rate constants of the unimolecular dissociation of M2+(H2O)2 (M = Be, Mg, and Ca) were calculated using the Rice-Ramsperger-Kassel-Marcus theory. The anharmonic effects of the reactions were investigated. The results show that the energy barrier of the dissociation of Be2+(H2O)2 is 68.47 kcal/mol, and the anharmonic (T4000K = 4.28×108 s-1) and harmonic (T4000K = 4.22×108 s-1) rate constants were close in value in both the canonical and microcanonical systems. The energy barriers of the two steps for the dissociation, Mg2+(H2O)2 → MgOH++H3O+, were 37.41 and 11.39 kcal/mol, and those for the dissociation, Ca2+(H2O)2 → CaOH++H3O+, were 21.15 and 26.42 kcal/mol. The anharmonic effect of the two reactions is significant and cannot be neglected in both the canonical and microcanonical systems. The comparison also shows that the rate constants of the dissociation of Ca2+(H2O)2 have the maximum values, while those of Be2+(H2O)2 have the minimum values in the three reactions; however, the anharmonic effect also shows the similar trend in the comparison.

  13. Reactivity of organic complexes at mineral-CO2-H2O interfaces

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Kaszuba, J. P.; Qiu, L.; Bowden, M. E.; McGrail, B. P.

    2015-12-01

    Understanding the interactions between minerals and organics in H2O-CO2 fluids is important, as they are the two most abundant volatiles in the crust. CO2-rich fluids in natural and anthropogenic environments, such as metamorphic aureoles and carbon storage reservoirs, respectively, produce a complex geochemical setting in which CO2-rich fluids containing dissolved water and organic compounds interact with rocks and minerals. We have undertaken experimental and theoretical studies to evaluate how organics impact carbonate mineralization and to determine the partitioning behavior of organic complexes between CO2, H2O, and mineral interfaces. The first groups of experiments have clarified how the type and concentration of simple organic ligands impact the degree and type of carbonation in interfacial water films. In these experiments, salts of simple organic ligands were equilibrated with wet supercritical CO2, which was reacted with the model mineral forsterite (Mg2SiO4). The forsterite dissolution and coupled carbonate precipitation reactions were followed with time-resolved pressurized X-ray diffraction (XRD) at 50 °C and 90 bar. The extent of carbonation and the relative abundance of anhydrous magnesite (MgCO3) precipitated relative to hydrated nesquehonite (MgCO3·3H2O) was impacted by the type of organic ligand. Magnesite enhancement was observed with the trend of citrate>oxalate≈malonate>acetate>organic-free control. This indicates that the organic ligands complexed Mg2+ in the interfacial water film environment and helped alleviate kinetic barriers to magnesite formation. Additional XRD experiments with varying concentrations of citrate verified the dependence of magnesite enhancement and the degree of overall carbonation on the amount of organic present in the water film. Lastly, our ongoing work concerning the partitioning of organic and metal-organic complexes between CO2, H2O, and interfacial water films will be presented. This experimental work, which

  14. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  15. Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.

    1991-01-01

    Stratospheric concentrations of HO2, H2O2, and OH have been retrieved simultaneously from the far-infrared emission spectra obtained with a balloon-borne Fourier transform spectrometer in June 1983 at 32 deg N latitude. Retrieved concentrations of HO2 and H2O2 are reported, along with vertical distributions of OH which were reported in an earlier paper for the afternoon, sunset, and nighttime periods for altitudes from 26 to 38 km. HO2 distributions are obtained with uncertainties that are about the same as OH for the same vertical range and for the afternoon and sunset periods. H2O2 concentration is obtained at an altitude of 30 km for the period that covers afternoon and sunset hours. The retrieved concentrations of these HO(x) species agree well with other individually measured results and the steady state photochemical predictions. The ratio HO2/OH at around 32 km seems to increase from the afternoon period to the sunset period.

  16. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  17. High pressure-temperature Raman spectroscopy of H2-H2O clathrate.

    NASA Astrophysics Data System (ADS)

    Somayazulu, Maddury; Levedahl, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Hemley, Russell

    2007-03-01

    The melting curve of the C2 clathrate H2-H2O has been determined by in-situ Raman spectroscopy measurements in an externally heated diamond anvil cell. We have determined the melting curve to a maximum pressure of 27 GPa. These are the first measurements on the melting line in this clathrate. Depending on the stoichiometry of the starting mixture of H2 and H2O, we are able to study either a mixture of C2 and H2O or C2 and H2. In either case, we were able to pinpoint the melting of the clathrate from the measurements of the molecular stretching mode (vibron) in the clathrate. In the case of C2 + Ice VII, we observe the vibron in the clathrate at a frequency higher than in pure H2 at the same pressure. We have cross-calibrated the melting temperatures using the Stokes-anti Stokes ratio of the diamond first order and Raman active TO phonon of cubic Boron Nitride. We find that the clathrate melts well above the H2 melting at all pressures studied indicating that the stabilization of this clathrate at high pressures is indeed due to interactions between the host and guest molecules.

  18. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  19. Monte Carlo simulations of high-pressure phase equilibria of CO2-H2O mixtures.

    PubMed

    Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2011-05-26

    Histogram-reweighting grand canonical Monte Carlo simulations were used to obtain the phase behavior of CO(2)-H(2)O mixtures over a broad temperature and pressure range (50 °C ≤ T ≤ 350 °C, 0 ≤ P ≤ 1000 bar). We performed a comprehensive test of several existing water (SPC, TIP4P, TIP4P2005, and exponential-6) and carbon dioxide (EPM2, TraPPE, and exponential-6) models using conventional Lorentz-Berthelot combining rules for the unlike-pair parameters. None of the models we studied reproduce adequately experimental data over the entire temperature and pressure range, but critical assessments were made on the range of T and P where particular model pairs perform better. Away from the critical region (T ≤ 250 °C), the exponential-6 model combination yields the best predictions for the CO(2)-rich phase, whereas the TraPPE/TIP4P2005 model combination provides the most accurate coexistence composition and pressure for the H(2)O-rich phase. Near the critical region (250 °C < T ≤ 350 °C), the critical points are not accurately estimated by any of the models studied, but the exponential-6 models are able to qualitatively capture the critical loci and the shape of the phase envelopes. Local improvements can be achieved at specific temperatures by introducing modification factors to the Lorentz-Berthelot combining rules, but the modified combining rule is still not able to achieve global improvements over the entire temperature and pressure range. Our work points to the challenge and importance of improving current atomistic models so as to accurately predict the phase behavior of this important binary mixture.

  20. Synthesis and the crystal and molecular structure of the silver(I)-germanium(IV) polymeric complex with citrate anions {[Ag2Ge(H Cit)2(H2O)2] • 2H2O} n

    NASA Astrophysics Data System (ADS)

    Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.

    2016-03-01

    The synthesis and X-ray diffraction study of compound {[Ag2Ge(H Cit)2(H2O)2] • 2H2O} n , where H4 Cit is the citric acid, are performed. In the polymeric structure, the H Cit 3- ligand fulfils the tetradentate chelate-μ4-bridging (3Ag, Ge) function (tridentate with respect to Ge and Ag atoms). The Ge atom is octahedrally coordinated by six O atoms of two H Cit 3-ligands. The coordination polyhedron of the Ag atom is an irregular five-vertex polyhedron [four O atoms of four H Cit 3- ligands and the O(H2O) atom]. An extended system of O-H···O hydrogen bonds connects complex molecules into a supramolecular 3D-framework.

  1. Selective synthesis of 3-hydroxy acids from Meldrum's acids using SmI2-H2O.

    PubMed

    Szostak, Michal; Spain, Malcolm; Procter, David J

    2012-05-01

    The single-step synthesis of 3-hydroxy carboxylic acids from readily available Meldrum's acids involves a selective monoreduction using a SmI(2)-H(2)O complex to give products in high crude purity, and it represents a considerable advancement over other methods for the synthesis of 3-hydroxy acids. The protocol includes a detailed guide to the preparation of a single electron-reducing SmI(2)-H(2)O complex and describes two representative examples of the methodology: monoreduction of a fully saturated Meldrum's acid (5-(4-bromobenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione) and tandem conjugate reduction-selective monoreduction of α,β-unsaturated Meldrum's acid (5-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione). The protocol for selective monoreduction of Meldrum's acids takes ∼6 h to complete. PMID:22538848

  2. Raman spectroscopic quantitative study of NaCl-CaCl2-H2O system at high temperatures and pressures.

    PubMed

    Li, Jing; Mao, Shi-De; Zheng, Hai-Fei

    2014-07-01

    Raman spectra features of the ternary system NaCl-CaCl2-H2O under high temperatures and high pressures were systematically studied in the present work by using hydrothermal diamond anvil cell (HDAC) and Raman shifts of quartz to determine pressures, and it has been obtained for the quantitative relationship between Raman shifts of the O-H stretching band of water, mass fractions of solutes and pressures was obtained. The mass fractions of salts, where salinity of NaCl equal to that of CaCl2, are 4.0 mass %, 8.0 mass %, and 12.0 mass %, respectively. Experimental results indicate that the standardized Raman frequency shift differences of the O-H stretching vibration (deltav(O0H)) rise with the increasing temperatures when the mass fractions of salts and pressures of the NaCl-CaCl2-H2O system remain constant. deltav(O-H) increases with the increase in mass fractions of salts in the system when the temperatures and pressures are constant. Linear relationship between deltav(O-H) and pressure with similar slopes can be found for the NaCl-CaCl2-H2O system with different salinities. The quantitative relationship between deltav(O-H), temperature (T), pressure (P), and mass fraction of solute (M) is P = -31.892 deltav(O-H) + 10.131T + 222.816M - 3 183.567, where the valid PTM range of the equation is 200 MPa < or = P < or = 1 700 MPa, 273 K < or = T < or = 539 K and M < or = 12 mass %. The equation can be used as a geobarometer in the studies of fluid inclusions of NaCl-CaCl2-H2O system with equal salinities. The method, as a direct geological detecting technique, has a potential application value. PMID:25269273

  3. Crystal structures of [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O containing MnO6+1 capped trigonal prisms and [Cu(Hspar)2](bdc)·2H2O containing CuO4 squares (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate).

    PubMed

    An, Zhe; Gao, Jing; Harrison, William T A

    2016-01-01

    The syntheses and crystal structures of 0.25-aqua-(benzene-1,4-di-carboxyl-ato-κ(2) O,O')bis-(sparfloxacin-κ(2) O,O')manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis-(sparfloxacin-κ(2) O,O')copper(II) benzene-1,4-di-carboxyl-ate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate). The Mn(2+) ion in (I) is coordinated by two O,O'-bidentate Hspar neutral mol-ecules (which exist as zwitterions) and an O,O'-bidentate bdc dianion to generate a distorted MnO6 trigonal prism. A very long bond [2.580 (12) Å] from the Mn(2+) ion to a 0.25-occupied water mol-ecule projects through a square face of the prism. In (II), the Cu(2+) ion lies on a crystallographic inversion centre and a CuO4 square-planar geometry arises from its coordination by two O,O'-bidentate Hspar mol-ecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intra-molecular N-H⋯O hydrogen bonds, which close S(6) rings. In the crystals of both (I) and (II), the components are linked by N-H⋯O, O-H⋯O and C-H⋯O hydrogen bonds, generating three-dimensional networks. PMID:26870595

  4. Crystal structures of [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O containing MnO6+1 capped trigonal prisms and [Cu(Hspar)2](bdc)·2H2O containing CuO4 squares (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate).

    PubMed

    An, Zhe; Gao, Jing; Harrison, William T A

    2016-01-01

    The syntheses and crystal structures of 0.25-aqua-(benzene-1,4-di-carboxyl-ato-κ(2) O,O')bis-(sparfloxacin-κ(2) O,O')manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis-(sparfloxacin-κ(2) O,O')copper(II) benzene-1,4-di-carboxyl-ate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate). The Mn(2+) ion in (I) is coordinated by two O,O'-bidentate Hspar neutral mol-ecules (which exist as zwitterions) and an O,O'-bidentate bdc dianion to generate a distorted MnO6 trigonal prism. A very long bond [2.580 (12) Å] from the Mn(2+) ion to a 0.25-occupied water mol-ecule projects through a square face of the prism. In (II), the Cu(2+) ion lies on a crystallographic inversion centre and a CuO4 square-planar geometry arises from its coordination by two O,O'-bidentate Hspar mol-ecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intra-molecular N-H⋯O hydrogen bonds, which close S(6) rings. In the crystals of both (I) and (II), the components are linked by N-H⋯O, O-H⋯O and C-H⋯O hydrogen bonds, generating three-dimensional networks.

  5. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments. PMID:26178101

  6. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  7. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  8. Predicting Phase Diagram of the CaCl2-H2O Binary System from the BET Adsorption Isotherm

    SciTech Connect

    Ally, Moonis Raza

    2008-01-01

    A recent publication in Fluid Phase Equilibria by Zeng (Zeng, Zhou et al. 2007) claimed remarkable accuracy in predicting the solubility of CaCl2-H2O solutions with the Brunaruer-Emett-Teller (BET) model parameters. Their approach necessarily requires prior knowledge of equilibrium water vapor pressures above saturated solutions as a function of temperature for the hydrates of CaCl2 that exist under those conditions. However, the intrinsic BET model does not require prior knowledge of such solubility data that the approach of (Zeng, Zhou et al. 2007) is dependent upon. This paper highlights the differences between the two approaches and covers a much wider range of compositions and temperatures than is done by (Zeng, Zhou et al. 2007). The statistical mechanical description of multilayer adsorption culminating in the BET adsorption isotherm for aqueous electrolytes as developed by Ally and Braunstein (Ally and Braunstein 1993) is used to predict the liquidus behavior of CaCl2-H2O across the entire composition range (from the melting point of pure water to the melting point of anhydrous calcium chloride), including possible metastable crystalline phases. The method requires as input the two BET parameters r, the statistically averaged number of adsorption sites and ε, the energy of adsorption of water in excess of the energy of condensation of pure water. Usually it suffices to keep r and ε constant, typically evaluated at 298.15 K, but in the case of CaCl2-H2O, it is found that both r and ε must be considered temperature dependent in order to predict the liquidus curve, eutectic and peritectic points with reasonable accuracy over the large temperature and compositional range for this binary system.

  9. [Cryogenic Raman spectroscopic characteristics of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O: application to analysis of fluid inclusions].

    PubMed

    Mao, Cui; Chen, Yong; Zhou, Yao-Qi; Ge, Yun-Jin; Zhou, Zhen-Zhu; Wang, You-Zhi

    2010-12-01

    Accurately diagnosing the types of the salt and calculating the salinity quantitatively are the significant content of fluid inclusions. The traditional method of testing fluid inclusions salinity is cooling. To overcome the difficulty for observing freezing phase transition, the authors tested the spectrum of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O systems at -180 degrees C by laser Raman spectroscopy. The result demonstrates that the ratio of peak values has linear relationship with salinity. Calibration curves were established by typical ratio of hydro-halite at 3 420 cm(-1) to the ice at 3 092 cm(-1), and the ratio of antarcticite at 3 432 cm(-1) to the ice at 3 092 cm(-1). The calibration curves have very high correlation coefficient. This method is verified by synthetic hydrocarbon-bearing aqueous fluid inclusions and quartz aqueous fluid inclusions of well Fengshen 6 in Dongying sag. The results of the authors' experiments show that cryogenic Raman spectroscopy can not only identify the types of the salts but also determine the salinity effectively in fluid inclusions.

  10. Blackbody infrared radiative dissociation at low temperature: hydration of X2+(H2O)n, for X = Mg, Ca

    NASA Astrophysics Data System (ADS)

    Wong, Richard L.; Paech, Kolja; Williams, Evan R.

    2004-03-01

    A new apparatus for making blackbody infrared radiative dissociation (BIRD) measurements at below ambient temperature is described, and its use for measuring threshold dissociation energies of weakly bound clusters is demonstrated. Hydration energies are determined for alkaline-earth metal water clusters, X2+(H2O)n, X=Mg, Ca and n=8-10. For n=8 and 9, the energies obtained from BIRD measurements are in excellent agreement with values reported previously, but for n=10, the energies are slightly lower than those determined previously using the high-pressure ion source mass spectrometry (HPMS) equilibrium method.

  11. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    PubMed

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  12. [Cryogenic Raman spectroscopic studies in the system of NaCl-MgCl2-H2O].

    PubMed

    Yang, Dan; Xu, Wen-Yi

    2010-03-01

    In the present paper, the best experimental conditions for producing hydrates in the NaCl-H2O and MgCl2-H2O systems were found through the cryogenic Raman spectroscopy. This experimental condition is rapidly cooling to -180 degrees C and slowly warming to observe hydrate formation process (that is manifested as a darkening of the vision in the microscope), and finally, rapidly cooling down to -180 degrees C. Moreover, a qualitative or semiquantitative analytical method for NaCl-MgCl2-H2O system was established. This method is that 3 537 cm(-1) may instruct the existence of NaCl hydrates, 3 514 cm(-1) may instruct the existence of MgCl2 hydrates, and comparison of the intensity of 3 537 and 3 514 cm(-1) peaks can be used to estimate the ratio of NaCl and MgCl2 in the system. All these are the foundations for quantifying the components of natural fluid inclusions. The author supports Samson's idea through observing the phenomenon of experiments in the controversy of the meta-stable eutectics formation model, that is ice forms on initial cooling, leaving a residual, interstitial, hypersaline liquid. On warming, the salt hydrates crystallize from this liquid.

  13. Microsolvation for the Dicyanamide Anion: [N(CN)2-](H2O)n (n=0-12)

    SciTech Connect

    Jagoda-Cwiklik, Barbra; Wang, Xue B.; Woo, Hin-Koon; Yang, Jie; Wang, Guanjun; Zhou, Mingfei; Jungwirth, Pavel; Wang, Lai S.

    2007-08-16

    Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)2 -. Photoelectron spectra of [N(CN)2-] (H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n= 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)2-, allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 ±0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)2-](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n= 1 and 2 due to the fact that the N(CN)2- anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)2- anion.

  14. Magnetic Ordering of Antiferromagnetic Trimer System 2b·3CuCl2·2H2O

    NASA Astrophysics Data System (ADS)

    Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.

    2012-12-01

    In this paper, we present the magnetic properties of 2b·3CuCl2·2H2O (b = betaine, C5H11NO2). 2b·3CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.

  15. Electron paramagnetic resonance spectral study of [Mn(acs)2(2-pic)2(H2O)2] single crystals

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn+2 ion complex with mixed ligand, [Mn(acs)2(2-pic)2(H2O)2], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  16. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    Volatile mediated model systems have been fundamental in shaping our knowledge about the way we view melting phase relations of peridotite at various depths in the Earth. Volatiles not only affect the melting temperatures, but the resulting liquids are, in some case, dramatically different than those witnessed in melting of dry peridotite. For example, the influence of CO2 and H2O on the melting phase relations of model peridotite shows a remarkable decrease in the solidus temperatures when compared to the dry peridotite (Gudfinnsson and Presnall, 2005). These model systems illustrate a gradational change above the solidus from carbonatites to kimberlites over several hundreds of degrees. Group-II kimberlites are ultrapotassic rocks with high water content where the mineral phlogopite is abundant. To get a better understanding of the melting phase relations related to carbonatitic and kimberlitic magmas, K2O was added to the system CMAS-CO2-H2O. In these systems, fluid and melt can co-exist in P-T space. However, from past studies, it is also known that in hydrous systems, both the fluid and melt will become indistinguishable from one another creating a singularity (second critical endpoint). Starting from the solidus located in six components (Keshav and Gudfinnsson, AGU abstract, 2009), with seven phases, melting phase relations in CMAS-CO2-H2O-K2O involving, fo-opx-cpx-garnet-carbonate-melt-fluid, are divariant. Fluid was recognized with the observation of large cavities seen in exposed capsules. Moreover, the presence of bright, needle-like grains found in large cavities in backscattered images implies the presence of solute in the fluid phase. Significantly, liquids on this divariant region have about 1000 ppm K2O, and so is the case with accompanying cpx. Hence, with this non-interesting amount of K2O in the mentioned phases, fluid must have all the potassium. At 30 kbar/1100C, with fo-opx-cpx-garnet-carbonate-phlogopite-melt-fluid, the melting phase

  17. Elucidating Protactinium Hydrolysis: The Relative Stabilities of PaO2(H2O)(+) and PaO(OH)2(+).

    PubMed

    Dau, Phuong D; Wilson, Richard E; Gibson, John K

    2015-08-01

    It is demonstrated that the gas-phase oxo-exchange of PaO2(+) with water is substantially faster than that of UO2(+), indicating that the Pa-O bonds are more susceptible to activation and formation of the bis-hydroxide intermediate, PaO(OH)2(+). To elucidate the nature of the water adduct of PaO2(+), hydration of PaO2(+) and UO2(+), as well as collision induced dissociation (CID) and ligand-exchange of the water adducts of PaO2(+) and UO2(+), was studied. The results indicate that, in contrast to UO2(H2O)(+), the protactinium oxo bis-hydroxide isomer, PaO(OH)2(+), is produced as a gas-phase species close in energy to the hydrate isomer, PaO2(H2O)(+). CID behavior similar to that of Th(OH)3(+) supports the assignment as PaO(OH)2(+). The gas-phase results are consistent with the spontaneous hydrolysis of PaO2(+) in aqueous solution, this in contrast to later AnO2(+) (An = U, Np, Pu), which forms stable hydrates in both solution and gas phase. In view of the known propensity for Th(IV) to hydrolyze, and previous gas-phase studies of other AnO2(+), it is concluded that the stabilities of oxo-hydroxides relative to oxide hydrates decreases in the order: Th(IV) > Pa(V) > U(V) > Np(V) > Pu(V). This trend suggests increasing covalency and decreasing ionicity of An-O bonds upon proceeding across the actinide series.

  18. Elucidating Protactinium Hydrolysis: The Relative Stabilities of PaO2(H2O)(+) and PaO(OH)2(+).

    PubMed

    Dau, Phuong D; Wilson, Richard E; Gibson, John K

    2015-08-01

    It is demonstrated that the gas-phase oxo-exchange of PaO2(+) with water is substantially faster than that of UO2(+), indicating that the Pa-O bonds are more susceptible to activation and formation of the bis-hydroxide intermediate, PaO(OH)2(+). To elucidate the nature of the water adduct of PaO2(+), hydration of PaO2(+) and UO2(+), as well as collision induced dissociation (CID) and ligand-exchange of the water adducts of PaO2(+) and UO2(+), was studied. The results indicate that, in contrast to UO2(H2O)(+), the protactinium oxo bis-hydroxide isomer, PaO(OH)2(+), is produced as a gas-phase species close in energy to the hydrate isomer, PaO2(H2O)(+). CID behavior similar to that of Th(OH)3(+) supports the assignment as PaO(OH)2(+). The gas-phase results are consistent with the spontaneous hydrolysis of PaO2(+) in aqueous solution, this in contrast to later AnO2(+) (An = U, Np, Pu), which forms stable hydrates in both solution and gas phase. In view of the known propensity for Th(IV) to hydrolyze, and previous gas-phase studies of other AnO2(+), it is concluded that the stabilities of oxo-hydroxides relative to oxide hydrates decreases in the order: Th(IV) > Pa(V) > U(V) > Np(V) > Pu(V). This trend suggests increasing covalency and decreasing ionicity of An-O bonds upon proceeding across the actinide series. PMID:26203499

  19. Structure and Dynamics of Forsterite-scCO2/H2O Interfaces as a Function of Water Content

    SciTech Connect

    Kerisit, Sebastien N.; Weare, John H.; Felmy, Andrew R.

    2012-05-01

    Molecular dynamics (MD) simulations of forsterite surfaces in contact with supercritical carbon dioxide (scCO2) fluids of varying water content were performed to determine the partition of water between the scCO2 fluid and the mineral surface, the nature of CO2 and H2O bonding at the interface, and the regions of the interface that may be conducive to HxCO3(2-x)- formation. Calculations of the free energy of the associative adsorption of water onto the (010) forsterite surface from the scCO2 phase indicated that the formation of a water film up to three-monolayer thick can be exothermic even for water contents below the water saturation concentration of the scCO2 fluid. In MD simulations of scCO2/H2O mixtures in contact with the (010) forsterite surface, H2O was found to readily displace CO2 at the surface and, therefore, CO2 directly contacted the surface only for water coverages below two monolayers. For thicker water films, a two-monolayer hydration layer formed that CO2 could not penetrate. Simulations of the hydroxylated (010) surface and of the (011) surface suggested that this conclusion can be extended to forsterite surfaces with different surface structures and/or compositions. The density, diffusion, and degree of hydration of CO2 as well as the extent of CO2/H2O mixing at the interface were all predicted to depend strongly on the thickness of the water-rich film, i.e., on the water content of the scCO2 fluid.

  20. Magnetic Phase Transition of the Mixed Antiferromagnets Ni1-xMxCl2·2H2O (M=Co, Mn)

    NASA Astrophysics Data System (ADS)

    Hamasaki, T.; Zenmyo, K.; Kubo, H.

    2012-12-01

    Mixed antiferromagnets Ni1-xMxCl2·2H2O (M=Co, Mn) were prepared. The crystal structure of NiCl2-2H2O is a little different from that of CoCl2·2H2O and MnCl2·2H2O. In order to examine how Co or Mn spins in NiCl2·2H2O crystal structure behave, we determined precisely the phase transition temperatures by measuring the specific heats and have obtained the concentration dependence of the phase transition temperature. Substitution of Co for Ni increases a little the transition temperature and contrary to this the substitution of Mn decreases the transition temperature rapidly. The results are discussed on the basis of molecular field theory. In the case of M=Co, the concentration dependence of the phase transition temperature is well explained by molecular field theory. But, in the case of M=Mn, the molecular field theory cannot explain it sufficiently. Thus Mn spins in NiCl2·2H2O crystal show the peculiar behavior. We suppose that this may be attributed to a kind of the instability of Mn spins.

  1. Equations of state for H2, H2O, and H2-H2O fluid mixtures at temperatures above 0.01° C and at high pressures

    NASA Astrophysics Data System (ADS)

    Rimbach, Helmut; Chatterjee, Niranjan D.

    1987-11-01

    Modified Redlich-Kwong (MRK) equations of state have been derived for the pure fluid species H2 and H2O by expressing the parameter a as a function of T and P, and b as as a function of P only. These equations are valid above 0° and 0.01° C, respectively. For H2O, the prediction of volumes is successful not only in the supercritical, but also in the subcritical range. As a result of this, the saturation curve of H2O can be calculated with a maximum deviation of ±1.4 bar in the range 100 350° C. Between 350° C and the critical point (374.15° C), the uncertainty increases somewhat; this is due to a fundamental inadequacy of the Redlich-Kwong equation itself. These equations of state permit extrapolations to pressures of 100 kbar for H2 and at least 200 kbar for H2O and are, therefore, eminently suited for geochemical applications. Formulation of the MRK of the binary H2-H2O mixtures was achieved by assuming the quadratic mixing rule for the parameters a mix and b+mix. To derive the cross coefficients, aH2-H2Oand b H 2-H 2O, adjustable corrective factors ɛ and τ had to be introduced. The T- and P-dependences of ɛ and τ are based on P-V-T-X H 2 data (Seward and Franck 1981) to 440° C and 2500 bar. The resulting equation of state very satisfactorily reproduces the volumes observed experimentally at various sets of T, P, and X H 2. At a total pressure of 2 kbar, positive deviation from ideal mixing behaviour is still perceptible at as high a temperature as 1000° C. At some temperature around 380° C, phase separation sets in, an aqueous solution with dissolved H2 coexisting in equilibrium with an H2-rich fluid with dissolved H2O. The computed P-T-X H 2 surface of this two-phase region agrees well with that observed in Seward and Franck's (1981) experiments. An independent proof of the validity of this equation of state is the accuracy with which H {m/ex}can be predicted. Calorimetric measurements of H {m/ex}(Smith et al. 1983, Wormald and Colling 1985

  2. Petrological mapping of a Low Velocity Zone (LVZ) induced by CO2-H2O-bearing incipient melts

    NASA Astrophysics Data System (ADS)

    Massuyeau, M.; Gardés, E.; Morizet, Y.; Le Trong, E.; Gaillard, F.

    2014-12-01

    The link between volatiles and mantle melting has so far been illuminated by experiments, revealing that ppm concentration levels of carbon and other volatiles in the Earth's mantle induce partial melting. Pressure-temperature conditions of incipient melting for CO2-H2O-peridotite [1] match fairly well with the upper part of the LVZ, as the redox melting [2] with the lower part. Recent experimental studies about the Earth mantle conductivity have shown the importance of small amounts of hydrated CO2-rich melts in the geophysical signature of the LVZ [3]. Although such melts are stable under the P-T-fO2 conditions of the LVZ [1-2, 4-6], the variability of these parameters complicates the definition of their chemical composition. Using Margules' formalisms, we established a multi-component model describing the Gibbs free energy of melt produced by mantle melting in presence of CO2-H2O, that are carbonatite-carbonated melt-nephilinite-basanite and basalt with increasing degree of partial melting. This parameterization is calibrated on crystal-liquid, redox, fluid-liquid and liquid-liquid equilibria obtained by experimental studies in the P-T range 1-10 GPa and 900-1800°C. We propose a calculation of the composition of melts produced in the oceanic LVZ as a function of ages (temperature) and chemical heterogeneities (water, alkalis). At about 80 km depth, we show that the composition of the melts is > 30 wt% SiO2 for ages < 30 Ma, and comes closer to the carbonatitic terms for older lithosphere. Besides lateral chemical variations, our model calculates the melt composition along an oceanic ridge adiabat, predicting an abrupt compositional transition between a H2O-rich carbonatitic melt and a carbonated silicate melt, between 130 km and 100 km. We propose a chemical mapping of the melt composition (and of the degree of partial melting) as a function of the distance to the ridge and of the depth. Our model represents an innovating attempt to connect the chemical

  3. Structure and properties of the (HCl)2H2O cluster observed by chirped-pulse Fourier transform microwave spectroscopy.

    PubMed

    Kisiel, Zbigniew; Lesarri, Alberto; Neill, Justin L; Muckle, Matt T; Pate, Brooks H

    2011-08-21

    The rotational spectrum of the cyclic (HCl)(2)H(2)O cluster has been identified for the first time in the chirped pulse, Fourier transform microwave spectrum of a supersonically expanded HCl/H(2)O/Ar mixture. The spectrum was measured at frequencies 6-18.5 GHz, and transitions in two inversion-tunneling states, at close to 1 : 3 relative intensity, have been assigned for the parent species. The two single (37)Cl isotopic species, and the double (37)Cl species have been assigned in the natural abundance sample, and the (18)O and HDO species of the cluster were identified in isotopically enriched samples. The rich nuclear quadrupole hyperfine structure due to the presence of two chlorine nuclei has been satisfactorily fitted and provided useful information on the nonlinearity of intermolecular bonds in the cluster. The r(s) heavy atom geometry of the cluster was determined and the strongest bond in the intermolecular cycle r(O···HCl) = 3.126(3) Å, is found to be intermediate in length between the values in H(2)O···HCl and (H(2)O)(2)HCl. The fitted spectroscopic constants and derived molecular properties are compared with ab initio predictions, and a discussion of complexation effects in these three clusters is made.

  4. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  5. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  6. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.

    PubMed

    Murray, Benjamin J; Bertram, Allan K

    2008-06-14

    Ice clouds in the Earth's upper troposphere can form via homogeneous nucleation of ice in aqueous droplets. In this study we investigate the crystallisation, or lack of crystallisation, of the solute phase and ice in aqueous (NH(4))(3)H(SO(4))(2)/H(2)O and NH(4)HSO(4)/H(2)O droplets. This is done using in situ X-ray diffraction of emulsified solution droplets mounted on a cold stage. From the diffraction patterns we are able to identify the phases of crystalline solute and ice that form after homogeneous freezing in micrometer sized droplets. An important finding from this study is that crystallisation of the solute does not always occur, even when crystallisation is strongly thermodynamically favoured. The nucleation and growth of solute phase crystals becomes inhibited since the viscosity of the aqueous brine most likely increases dramatically as the brine concentration increases and temperature decreases. If ice nucleates below a threshold freezing temperature, the brine appears to rapidly become so viscous that solute crystallisation is inhibited. This threshold temperature is 192 K and 180 K, in (NH(4))(3)H(SO(4))(2) and NH(4)HSO(4), respectively. We also speculate that the formation of cubic ice within a highly viscous brine blocks the solvent mediated cubic to hexagonal phase transformation, thus stabilising the metastable cubic ice in the most concentrated solution droplets.

  7. Interplay of magnetic sublattices in langite Cu4(OH)6SO4 · 2H2O

    NASA Astrophysics Data System (ADS)

    Lebernegg, S.; Tsirlin, A. A.; Janson, O.; Redhammer, G. J.; Rosner, H.

    2016-03-01

    Magnetic and crystallographic properties of the mineral langite Cu4(OH)6SO{}4\\cdot 2H2O are reported. Thermodynamic measurements combined with a microscopic analysis, based on density-functional bandstructure calculations, identify a quasi-two-dimensional (2D), partially frustrated spin-1/2 lattice resulting in the low Néel temperature of {T}{{N}}≃ 5.7 K. This spin lattice splits into two parts with predominant ferro- and antiferromagnetic (AFM) exchange couplings, respectively. The former, ferromagnetic (FM) part is prone to the long-range magnetic order and saturates around 12 T, where the magnetization reaches 0.5 {μ }{{B}}/Cu. The latter, AFM part features a spin-ladder geometry and should evade long-range magnetic order. This representation is corroborated by the peculiar temperature dependence of the specific heat in the magnetically ordered state. We argue that this separation into ferro- and antiferromagnetic sublattices is generic for quantum magnets in Cu2+ oxides that combine different flavors of structural chains built of CuO4 units. To start from reliable structural data, the crystal structure of langite in the 100-280 K temperature range has been determined by single-crystal x-ray diffraction, and the hydrogen positions were refined computationally.

  8. Measurements of Flow Distortion within the IRGASON Integrated Sonic Anemometer and CO_2/H_2O Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Horst, T. W.; Vogt, R.; Oncley, S. P.

    2016-07-01

    Wind-tunnel and field measurements are analyzed to investigate flow distortion within the IRGASON integrated sonic anemometer and CO_2/H_2O gas analyzer as a function of wind speed, wind direction and attack angle. The wind-tunnel measurements are complimentary to the field measurements, and the dependence of the wind-tunnel mean-wind-component flow-distortion errors on wind direction agrees well with that of the field measurements. The field measurements exhibit significant overestimation of the crosswind variance and underestimation of the momentum flux with respect to an adjacent CSAT3 sonic, as well as a transfer of turbulent kinetic energy from the streamwise wind component to the cross-stream wind components. In contrast, we find attenuation of only a few percent in the vertical velocity variance and the vertical flux of sonic temperature. The attenuation of the fluxes appears to be caused to a large extent by decorrelation between the horizontal and vertical-velocity components and between the vertical velocity and sonic temperature. Additional flow distortion due to transducer shadowing reduces to some extent the overestimation, but also increases the underestimation of the IRGASON turbulence statistics.

  9. Electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O

    NASA Astrophysics Data System (ADS)

    Ritter, Mark B.; Drumheller, John E.; Kite, Terence M.; Snively, Leslie O.; Emerson, Kenneth

    1983-11-01

    The electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O has been studied in the temperature range of 4 K to room temperature. This compound is known to behave magnetically as a spin- 1/2 , one-dimensional Heisenberg ferromagnetic with ordering below 1K. In the high-temperature regime the EPR data show a rich angular dependence of the linewidths as the magnetic field is rotated away from the chain. The data were analyzed in manner similar to that used by McGregor and Soos, who used the Blume-Hubbard result for spin dynamics and extracted exchange anisotropies in one dimension. For adequate fit, we reduced the symmetry of symmetric anisotropic exchange to orthorhombic and included the antisymmetric exchange. Isotropic symmetric, dipolar, anisotropic symmetric, and antisymmetric exchange therefore were included with the room temperature results of J0=0.8 K, Dd=0.058 K, De=0.032 K, and d=0.043 K, respectively, and further show about a 12% XY character to the exchange. These results are reasonably consistent with the previous results on this compound. Splitting of the EPR lines indicate that there are two inequivalent chains along the needle axis. Data to 4 K indicate no significant changes in the angle dependence but an anomalous monotonic broadening of the linewidths is observed as temperature is lowered.

  10. Calculation of the vapor-saturated liquidus for the NaCl-CO2-H2O system

    USGS Publications Warehouse

    Barton, P.B.; I-Ming, C.

    1993-01-01

    The polybaric liquidus surface for the H2O-rich corner of the NaCl-CO2-H2O ternary is calculated, relying heavily on 1. (1) a Henry's law equation for CO2 in brines (modified from Drummond, 1981), 2. (2) the assumption that the contributions of dissolved NaCl and CO2 in lowering the activity of H2O are additive, and 3. (3) data on the CO2 clathrate solid solution (nominally CO2 ?? 7.3H2O, but ranging from 5.75 to 8 or 9 H2O) from Bozzo et al. (1975). The variation with composition of the activity of CO2??7.3H2O, or any other composition within the clathrate field, is small, thereby simplifying the calculations appreciably. Ternary invariant points are 1. (1) ternary eutectic at -21.5??C, with ice + clathrate + hydrohalite NaCl-??H2O + brine mNaCl = 5.15, mco2 = 0.22 + vapor Ptotal ??? Pco2 = 5.7 atm; 2. (2) peritectic at -9.6??C, with clathrate + hydrohalite + liquid CO2 + brine mNaCl = 5.18, mco2 = 0.55 + vapor (Ptotal ??? Pco2 = 26.47 atm); and 3. (3) peritectic slightly below +0.1 ??C, with halite + hydrohalite + liquid CO2 + brine (mNaCl ??? 5.5, mco2 ??? 0.64) + vapor (Ptotal ??? Pco2 ??? 34 atm). CO2 isobars have been contoured on the ternary liquidus and also on the 25??C isotherm. An important caveat regarding the application of this information to the interpretation of the freezing-thawing behavior of fluid inclusions is that metastable behavior is a common characteristic of the clathrate. ?? 1993.

  11. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  12. On the (non-)existence of Tutton salts with formula types [M(H2O)6](ClO4)2(H2O)2 and Na2M(SO4)2(H2O)6 (M is a first-row transition metal).

    PubMed

    Weil, Matthias

    2013-09-01

    Two structures of the Tutton salt family, originally reported with composition [Cu(H2O)6](ClO4)2(H2O)2 and Na2Cu(SO4)2(H2O)6, have been redetermined based on the original intensity data. With respect to the original [Cu(H2O)6](ClO4)2(H2O)2 model, the perchlorate anion and the noncoordinating water molecule are replaced by a sulfate anion and an ammonium cation. With respect to the original Na2Cu(SO4)2(H2O)6 model, the sodium site is replaced by a mixed-occupancy potassium/ammonium site. The resulting revised formulae are (NH4)2Cu(SO4)2(H2O)6 [diammonium hexaaquacopper(II) disulfate] and [(NH4)1.176K0.824]Cu(SO4)2(H2O)6, respectively. In both cases, the redetermination led to chemically more sensible structure models, accompanied by lower reliability factors. Three other reported structures with formula types [M(H2O)6](ClO4)2(H2O)2 or Na2M(SO4)2(H2O)6 (M is a first row transition metal) have also been re-examined. From crystal-chemical considerations, their existence is likewise questioned. It is shown that the deposition of structure factors is beneficial for detailed re-examinations of problematic structure models.

  13. Spontaneous piezoelectric effect as order parameter in (NH4)2CuBr4·2H2O crystal

    NASA Astrophysics Data System (ADS)

    Tylczyński, Z.; Wiesner, M.; Trzaskowska, A.

    2016-11-01

    Temperature change of piezoelectric properties of (NH4)2CuBr4·2H2O crystal in the low-temperature ferroelastoelectric phase is studied. The macroscopic order parameter is proved to be the h36 component of the spontaneous piezoelectric tensor. The critical exponent related with the phase transition is α=0.60±0.05.

  14. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  15. Supramolecular arrangement promoted in trans-[PdCl2(HONC10H14O)2]·2H2O by hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Galvão, Adelino M.; Carvalho, M. Fernanda N. N.; Grilo, António L.

    2014-05-01

    Palladium(II) complexes trans-[PdCl2(3-HONC10H14O)2]ṡ2H2O and trans-[PdCl2(2-HONC10H16)2] with similar formulations and molecular geometries display considerably different supramolecular arrangements due to hydrogen bonding involving the oxime substituent (NOH) of the camphor ligand, the halide co-ligand of adjacent molecules and H2O outer-sphere molecules in the case of trans-[PdCl2(3-HONC10H14O)2]ṡ2H2O. The discussion is based on data collected by X-ray diffraction analysis and DFT calculations.

  16. The phase diagrams and Pitzer model representations for the system KCl + MgCl2 + H2O at 50 and 75°C

    NASA Astrophysics Data System (ADS)

    Yang, Ji-min; Peng, Jing; Duan, Yu-xia; Tian, Chong; Ping, Mei

    2012-12-01

    The solubilities in the KCl-MgCl2-H2O system were determined at 50 and 75°C and the phase diagrams and the diagram of refractive index vs composition were plotted. Two invariant point, three univariant curves, and three crystallization zones, corresponding to potassium chloride, hexahydrate (MgCl2 · 6H2O) and double salt (KCl · MgCl2 · 6H2O) showed up in the phase diagrams of the ternary system, The mixing parameters θK, Ca and ΨK, Ca, Cl and equilibrium constant K sp were evaluated in KCl-MgCl2-H2O system by least-squares optimization procedure, in which the single-salt Pitzer parameters of KCl and MgCl2 β(0), β(1), β(2), and C ϕ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

  17. Synthesis, crystal structure and EPR studies of vanadyl doped [Co(2-nbH)2(ina)2(H2O)] complex

    NASA Astrophysics Data System (ADS)

    Bozkurt, Esat; Çelik, Yunus; Çöpür, Fatma; Dege, Necmi; Topcu, Yıldıray; Karabulut, Bünyamin

    2016-08-01

    A novel aquabis(isonicotinamide-κN1)bis(2-nitrobenzoato-κ2O,O‧;κO)cobalt(II), (hereafter [Co(2-nbH)2(ina)2(H2O)]; 2-nbH: 2-nitrobenzoic acid; ina: isonicotinamide), complex was synthesized and characterized by using various techniques. The crystal structure was determined by X-ray diffraction (XRD) method. The magnetic properties of VO2+ doped [Co(2-nbH)2(ina)2(H2O)] complex were obtained by electron paramagnetic resonance (EPR) technique. The angular variation of EPR spectra shows that two different VO2+ complexes are present in the lattice. The FT-IR spectra of this compound were discussed in relation to other compounds containing 2-nitrobenzoato or isonicotinamide ligands. Thermal stability and reactivity of this complex were also studied by thermal analysis methods (TG/DTG/DTA).

  18. Experimental determination and model simulation of the solid-liquid equilibria in the ZnSO4-Zn(OH)2-H2O system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoya; Yin, Xia; Chen, Zifang; Yu, Xiuli; Zeng, Dewen; Tan, Yuqi

    2015-06-01

    The solubility data and pH of the ZnSO4-Zn(OH)2-H2O system were elaborately measured at T = 291.15, 298.15, 308.15, and 323.15 K, and the solid phases were determined by XRD to be ZnSO4 · 3Zn(OH)2 · 5H2O. The Pitzer model was applied to simulate thermodynamically and predict the relationship between mass percent of ZnSO4 and pH in the ZnSO4-Zn(OH)2-H2O system taking account of the equilibrium of ions over the temperature from 273.15 to 323.15 K. Based on the experimental data and the calculation results, a theoretical direction of avoiding base zinc sulfate forming in industrial processes was advised.

  19. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  20. Nqrs Data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

  1. Synthesis, crystal structure, spectroscopic, fluorescent, thermal properties and EPR spectra of doped Cu2+ ions in [Cd(sac)2(H2O)2(meim)2] single crystal

    NASA Astrophysics Data System (ADS)

    Fidan, M.; Semerci, F.; Şahin, E.; Yeşilel, O. Z.; Tapramaz, R.; Şahin, Y.

    2013-06-01

    The crystal structures of the six-coordinate complexes [Cd(sac)2(H2O)2(meim)2] (complex 1) formed by reaction of 4-methylimidazole(meim) with [Cd(sac)2(H2O)4]·2H2O (saccharinate = sac), was synthesized and characterized by elemental analysis, infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy, thermal analysis and X-ray single crystal diffraction. X-ray diffraction analysis revealed that complex 1 crystallized in the monoclinic crystal system with space group P21/c. The Cd(II) center was six-coordinated with four nitrogen atoms from two sac and two 4-meim ligands, two oxygen atoms from two aqua ligands. Spectral and thermal analysis data for complex 1 was in agreement with the crystal structures. In addition complex 1 displayed blue fluorescent emission in the solid state at room temperature. Single crystal EPR spectra at room temperature are resolved and have exhibited that two different Cu2+ complexes were located in different chemical environments which contained two magnetically nonequivalent Cu2+ sites. In low temperature EPR spectra down to 110 °C did show no considerable change. At higher temperatures, however, both thermo gravimetric analyses (TGA) and EPR spectra showed detectable changes around 140 °C; the causes and the mechanisms of changes are discussed.

  2. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  3. Investigation into the effect on structure of oxoanion doping in Na2M(SO4)2·2H2O

    NASA Astrophysics Data System (ADS)

    Driscoll, L. L.; Kendrick, E.; Wright, A. J.; Slater, P. R.

    2016-10-01

    In this paper an investigation into the effect of transition metal ion and selenate/fluorophosphate doping on the structures of Na2M(SO4)2·2H2O (M=transition metal) materials is reported. In agreement with previous reports, the monoclinic (Kröhnkite) structure is adopted for M=Mn, Fe, Co, Cu, while for the smallest first row divalent transition metal ion, M=Ni, the triclinic (Fairfieldite structure) is adopted. On selenate doping there is a changeover in structure from monoclinic to triclinic for M=Fe, Co, Cu, with the larger Fe2+ system requiring the highest level of selenate to complete the changeover. Thus the results suggest that the relative stability of the two structure types is influenced by the relative size of the transition metal: oxoanion group, with the triclinic structure favoured for small transition metals/large oxoanions. The successful synthesis of fluorophosphate doped samples, Na2M(SO4)2-x(PO3F)x·2H2O was also obtained for M=Fe, Co, Cu, with the results showing a changeover in structure from monoclinic to triclinic for M=Co, Cu for very low levels (x=0.1) of fluorophosphate. In the case of M=Fe, the successful synthesis of fluorophosphates samples was achieved for x≤0.3, although no change in cell symmetry was observed. Rather in this particular case, the X-ray diffraction patterns showed evidence for selective peak broadening, attributed to local disorder as a result of the fluorophosphate group disrupting the H-bonding network. Overall the work highlights how isovalent doping can be exploited to alter the structures of Na2M(SO4)2·2H2O systems.

  4. Antiferromagnetic three-dimensional order induced by carboxylate bridges in a two-dimensional network of [Cu3(dcp)2(H2O)4] trimers.

    PubMed

    King, Philippa; Clérac, Rodolphe; Anson, Christopher E; Coulon, Claude; Powell, Annie K

    2003-06-01

    A new Cu(II) complex, [Cu(3)(dcp)(2)(H(2)O)(4)](n), with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H(3)dcp) has been prepared by hydrothermal synthesis, and it crystallizes in the monoclinic space group P2(1)/c with a = 11.633(2) A, b = 9.6005(14) A, c = 6.9230(17) A, beta = 106.01(2) degrees, and Z = 2. In the solid state structure of [Cu(3)(dcp)(2)(H(2)O)(4)](n), trinuclear [Cu(3)(dcp)(2)(H(2)O)(4)] repeating units in which two dcp(3-) ligands chelate the three Cu(II) ions with the central Cu(II) ion, Cu(1) (on an inversion center), link to form infinite 2D sheets via syn-anti equatorial-equatorial carboxylate bridges between Cu(2) atoms in adjacent trimers. These layers are further linked by syn-anti axial-equatorial carboxylate bridging between Cu(1) atoms in adjacent sheets resulting in the formation of a crystallographic 3D network. A detailed analysis of the magnetic properties of [Cu(3)(dcp)(2)(H(2)O)(4)](n) reveals that the dcp(3-) ligand acts to link Cu(II) centers in three different ways with coupling constants orders of magnitude apart in value. In the high temperature region above 50 K, the dominant interaction is strongly antiferromagnetic (J/k(B) = -32 K) within the trimer units mediated by the pyrazolate bridges. Below 20 K, the trimer motif can be modeled as an S = 1/2 unit. These units are coupled to their neighbors by a ferromagnetic interaction mediated by the syn-anti equatorial-equatorial carboxylate bridge. This interaction has been estimated at J(2D)/k(B) = +2.8 K on the basis of a 2D square lattice Heisenberg model. Finally, below 3.2 K a weak antiferromagnetic coupling (J(3D)/k(B) = -0.1 K) which is mediated by the syn-anti axial-equatorial carboxylate bridges between the 2D layers becomes relevant to describe the magnetic (T, H) phase diagram of this material.

  5. Raman spectroscopic analysis of supersaturated aqueous solution of MgO·B 2O 3-32%MgCl 2-H 2O during acidification and dilution

    NASA Astrophysics Data System (ADS)

    Zhihong, Liu; Bo, Gao; Shuni, Li; Mancheng, Hu; Shuping, Xia

    2004-11-01

    Raman spectra of supersaturated aqueous solution of MgO·B 2O 3-32%MgCl 2-H 2O during acidification/alkalization and dilution have been studied. The assignments of the recorded Raman shift are given. The main existing forms of polyborate anions and their interaction in borate aqueous solution have been proposed through spectroscopic analysis. The experimental results indicate that the higher concentration of cation are beneficial not only to the dissolution of boric acid but also to the polymerization of polyborate anions. The existing forms and interaction among them also depend on the concentration of boron and the pH value in solution.

  6. A Raman spectroscopic study of the basic carbonate mineral callaghanite Cu2Mg2(CO3)(OH)6ṡ2H2O

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Jebavá, Ivana; Xi, Yunfei; Couperthwaite, Sara J.; Frost, Ray L.

    2013-05-01

    Raman spectrum of callaghanite, Cu2Mg2(CO3)(OH)6ṡ2H2O, was studied and compared with published Raman spectra of azurite, malachite and hydromagnesite. Stretching and bending vibrations of carbonate and hydroxyl units and water molecules were tentatively assigned. Approximate O-H…O hydrogen bond lengths were inferred from the spectra. Because of the high content of hydroxyl ions in the crystal structure in comparison with low content of carbonate units, callaghanite should be better classified as a carbonatohydroxide than a hydroxycarbonate.

  7. Solid state decomposition studies on fluoroperoxo species of transition metals. IV. Photodecomposition of K 3Zr 2(O 2) 2F 7 · 2H 2O

    NASA Astrophysics Data System (ADS)

    Jere, G. V.; Kaushik, S. M.

    1980-07-01

    The kinetics of photodecomposition of solid K 3Zr 2(O 2) 2F 7 · 2H 2O have been studied under vacuum as a function of intensity and temperature by measuring the evolved oxygen with the help of a McLeod Gauge. Pressure-time curves are parabolic in nature and the data fit the empirical equation p = kt {1}/{2}. The rate of photodecomposition is a linear function of intensity. The activation energy determined from an Arrhenius plot, in the temperature range 15-55°C, of the title compound is 2.15 kcal mole -1 (9.00 kJ mole -1).

  8. Constructing three-dimensional quasi-vertical nanosheet architectures from self-assemble two-dimensional WO3·2H2O for efficient electrochromic devices

    NASA Astrophysics Data System (ADS)

    Li, Haizeng; Wang, Jinmin; Shi, Qiuwei; Zhang, Minwei; Hou, Chengyi; Shi, Guoying; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Chi, Qijin

    2016-09-01

    Three-dimensional (3D) quasi-vertical nanosheet (QVNS) architectures are of great importance in the application of electrochromic devices due to its 3D porous structures, large surface area and lamellar permeable space of nanosheets. In this study, we demonstrate successful preparing of WO3·2H2O nanosheets via a novel and facile solution route and repurposing the typical electrodeposition technique to obtain 3D QVNS electrodes. The electrode was successfully assembled into an electrochromic device which exhibits good electrochromic performance.

  9. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    PubMed

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action. PMID:24189590

  10. Vibrational spectroscopic study of the mineral penkvilksite Na 2TiSi 4O 11.2H 2O - a mineral used for the uptake of radionuclides

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei

    2013-01-01

    We have used vibrational spectroscopy to study the formula and molecular structure of the mineral penkvilksite Na 2TiSi 4O 11.2H 2O. Penkvilksite is a mineral which may be used in the uptake of radioactive elements. Both Raman and infrared spectroscopies identify a band at ∼3638 cm-1 attributed to an OH-stretching vibration of hydroxyl units. The inference is that OH units are involved in the structure of penkvilksite. The formula may be well written as Na 2TiSi 4O 10(OH)2.H 2O. The mineral is characterised by a very intense Raman band at 1085 cm-1 and a broad infrared band at 1080 cm-1 assigned to SiO-stretching vibrations. Raman bands at 620, 667 and 711 cm-1 are attributed to SiO and TiO chain bonds. Water-stretching vibrations are observed as Raman bands at 3197, 3265, 3425 and 3565 cm-1. Vibrational spectroscopy enables aspects of the molecular structure of the mineral penkvilksite to be ascertained. Penkvilksite is a mineral which can incorporate actinides and lanthanides from radioactive waste.

  11. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    PubMed

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action.

  12. The generation of HCl in the system CaCl2-H2O: Vapor-liquid relations from 380-500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.; Fournier, Robert O.

    1996-01-01

    We determined vapor-liquid relations (P-T-x) and derived critical parameters for the system CaCl2-H2O from 380-500??C. Results show that the two-phase region of this system is extremely large and occupies a significant portion of the P-T space to which circulation of fluids in the Earth's crust is constrained. Results also show the system generates significant amounts of HCl (as much as 0.1 mol/kg) in the vapor phase buffered by the liquid at surprisingly high pressures (???230 bars at 380??C, <580 bars at 500??C), presumably by hydrolysis of CaCl2: CaCl2 + 2H2O = Ca(OH)2 + 2HCl. We interpret the abundance of HCl in the vapor as due to its preference for the vapor phase, and by the preference of Ca(OH)2 for either the liquid phase or solid. The recent recognition of the abundance of CaCl2 in deep brines of the Earth's crust and their hydrothermal mobilization makes the hydrolysis of CaCl2 geologically important. The boiling of Ca-rich brines produces abundant HCl buffered by the presence of the liquid at moderate pressures. The resultant Ca(OH)2 generated by this process reacts with silicates to form a variety of alteration products, such as epidote, whereas the vapor produces acid-alteration of rocks through which it ascends.

  13. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O-implications for the formula of nesquehonite.

    PubMed

    Frost, Ray L; Palmer, Sara J

    2011-04-01

    The mineral nesquehonite Mg(OH)(HCO(3))·2H(2)O has been analysed by a combination of infrared (IR) and infrared emission spectroscopy (IES). Both techniques show OH vibrations, both stretching and deformation modes. IES proves the OH units are stable up to 450°C. The strong IR band at 934 cm(-1) is evidence for MgOH deformation modes supporting the concept of HCO(3)(-) units in the molecular structure. Infrared bands at 1027, 1052 and 1098 cm(-1) are attributed to the symmetric stretching modes of HCO(3)(-) and CO(3)(2-) units. Infrared bands at 1419, 1439, 1511, and 1528 cm(-1) are assigned to the antisymmetric stretching modes of CO(3)(2-) and HCO(3)(-) units. IES supported by thermoanalytical results defines the thermal stability of nesquehonite. IES defines the changes in the molecular structure of nesquehonite with temperature. The results of IR and IES supports the concept that the formula of nesquehonite is better defined as Mg(OH)(HCO(3))·2H(2)O. PMID:21269873

  14. Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas

    NASA Astrophysics Data System (ADS)

    McKay, K.; Liu, D. X.; Rong, M. Z.; Iza, F.; Kong, M. G.

    2012-05-01

    This study focuses on the generation and loss of reactive oxygen species (ROS) in low-temperature atmospheric-pressure RF (13.56 MHz) He + O2 + H2O plasmas, which are of interest for many biomedical applications. These plasmas create cocktails of ROS containing ozone, singlet oxygen, atomic oxygen, hydroxyl radicals, hydrogen peroxide and hydroperoxyl radicals, i.e. ROS of great significance as recognized by the free-radical biology community. By means of one-dimensional fluid simulations (61 species, 878 reactions), the key ROS and their generation and loss mechanisms are identified as a function of the oxygen and water content in the feed gas. Identification of the main chemical pathways can guide the optimization of He + O2 + H2O plasmas for the production of particular ROS. It is found that for a given oxygen concentration, the presence of water in the feed gas decreases the net production of oxygen-derived ROS, while for a given water concentration, the presence of oxygen enhances the net production of water-derived ROS. Although most ROS can be generated in a wide range of oxygen and water admixtures, the chemical pathways leading to their generation change significantly as a function of the feed gas composition. Therefore, care must be taken when selecting reduced chemical sets to study these plasmas.

  15. Synthesis, characterization, single crystal X-ray structure, EPR and theoretical studies of a new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O and its structural comparison with related [Cu(en)2(H2O)2](pnb)2

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Sharma, Raj Pal; Venugopalan, Paloth; Witwicki, Maciej; Ferretti, Valeria

    2016-11-01

    A new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O (1) (where pnb = p-nitrobenzoate), in which the tridentate ligand diethylenetriamine (dien) shows an unusual coordination behavior acting as a bidentate ligand when present in its monoprotonated form (Hdien+) has been synthesized by the reaction of copper(II) p-nitrobenzoate and slight excess of dien in methanol-water mixture (4:1v/v). Re-crystallization of the violet precipitated product from hot water gave single crystals suitable for X-ray diffraction studies. The newly synthesized compound 1 has been characterized by spectroscopic techniques (UV-Vis, FT-IR, EPR), and theoretical methods (DFT and MRCI/SORCI). Single crystal X-ray structure determination revealed the existence of the cationic species [Cu(Hdien)2(H2O)2]4+, four p-nitrobenzoate as counter anions and four water molecules are present as solvent of crystallization. Packing analyses of title compound as well as of the structurally similar [Cu(en)2(H2O)2](pnb)2,2 has shown similarities in the crystalline architecture that both hybrid inorganic-organic compounds is stabilized by various non-covalent interactions such as N-H⋯O, C-H⋯O, O-H⋯O etc.

  16. The structural transformation of monoclinic [(R)-C5H14N2][Cu(SO4)2(H2O)4].2H2O into orthorhombic [(R)-C5H14N2]2[Cu(H2O)6](SO4)3: crystal structures and thermal behavior

    NASA Astrophysics Data System (ADS)

    Saïd, Salem; Mhadhbi, Noureddine; Hajlaoui, Fadhel; Yahyaoui, Samia; Norquist, Alexander J.; Mhiri, Tahar; Bataille, Thierry; Naïli, Houcine

    2014-01-01

    Single crystals of [(R)-C5H14N2][Cu(SO4)2(H2O)4].2H2O (1) were grown through the slow evaporation of a solution containing H2SO4, (R)-C5H12N2 and CuSO4.5H2O. These crystals spontaneously transform to [(R)-C5H14N2]2[Cu(H2O)6](SO4)3 (2) over the course of four days at room temperature. The same single crystal on the same mounting was used for the determination of the structure of (1) and the unit cell determination of (2). A second single crystal of the transformed batch has served for the structural determination of (2). Compound 1 crystallizes in the noncentrosymmetric space group P21 (No. 4) and consists of trimeric [Cu(SO4)2(H2O)4]2- anions, [(R)-C5H14N2]2+ cations and occluded water molecules. Compound 2 crystallizes in P21212 (No. 18) and contains [Cu(H2O)6]2+ cations, [SO4]2- anions and occluded water molecules. The thermal decompositions of compounds 1 and 2 were studied by thermogravimetric analyses and temperature-dependent X-ray diffraction.

  17. Evidence of PVT anomaly boundaries of water at high pressure from compression and NaCl.2H2O dehydration experiments.

    PubMed

    Mirwald, P W

    2005-09-22

    Isothermal compression experiments on water have been performed between 0 to 80 degrees C and up to 1.3 GPa pressure. The compressibilities derived from the water compression experiments reveal a nonsmooth PVT behavior forming two anomaly boundaries. These boundaries originate at the melting line of ice III at about 0.25 GPa/-20 degrees C, and of ice VI at about 0.8 GPa/13 degrees C. Both boundaries have a positive sloped course separating three areas of different PVT properties of water. However, this P-T topology is obscured by an unresolved complication in the temperature range of 40-60 degrees C, which allows different topological interpretations of the data. As a cross-check for the compression experiment the dehydration boundary of sodium chloride-dihydrate (NaCl.2H2O) has been determined up to 1.5 GPa. The dehydration curve of NaCl.2H2O which traverses the two anomaly boundaries shows two inflections at the intersection, at 0.27 GPa/12 degrees C and at 0.77 GPa/22 degrees C, respectively. While the isothermal compressibility curves as well as the dP/dT course of the two anomaly boundaries give evidence of two densifications of water, the slope analysis of the inflections of the NaCl-2H2O dehydration curve suggests that the entropy change plays an important role. A recent model of water at high pressure conditions proposes a gradual structural transition from a low density water (LDW) at low pressures to a high density water (HDW) at high pressures. The compression data as well as the inflections of the dehydration boundary indicate, however, two discrete structural changes of water. Data comparison with that model suggests that the anomaly boundary at lower pressure corresponds to a volume fraction [V(HDW)/(V(LDW)+V(HDW))] of 0.8, while the upper one approaches a volume fraction of 1. PMID:16392519

  18. Malonate-containing manganese(III) complexes: synthesis, crystal structure, and magnetic properties of AsPh4[Mn(mal)2(H2O)2].

    PubMed

    Delgado, Fernando S; Kerbellec, Nicolas; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2006-02-01

    The novel manganese(III) complexes PPh4[Mn(mal)2(H2O)2] (1) and AsPh4[Mn(mal)2(H2O)2] (2) (PPh4+ = tetraphenylphosphonium cation, AsPh4+ = tetraphenylarsonium cation, and H2mal = malonic acid) have been prepared, and the structure of 2 was determined by X-ray diffraction analysis. 2 is a mononuclear complex whose structure is made up of trans-diaquabis(malonato)manganate(III) units and tetraphenylarsonium cations. Two crystallographically independent manganese(III) ions (Mn(1) and Mn(2)) occur in 2 that exhibit elongated octahedral surroundings with four oxygen atoms from two bidentate malonate groups in equatorial positions (Mn(1)-O = 1.923(6) and 1.9328(6) A and Mn(2)-O = 1.894(6) and 1.925(6) A) and two trans-coordinated water molecules in the axial sites (Mn(1)-Ow = 2.245(6) A and Mn(2)-Ow = 2.268(6) A). The [Mn(mal)2(H2O)2]- units are linked through hydrogen bonds involving the free malonate-oxygen atoms and the coordinated water molecules to yield a quasi-square-type anionic layer growing in the ab plane. The shortest intralayer metal-metal separations are 7.1557(7) and 7.1526(7) A (through the edges of the square). The anionic sheets are separated from each other by layers of AsPh4+ where sextuple- and double-phenyl embraces occur. The magnetic behavior of 1 and 2 in the temperature range 1.9-290 K reveals the occurrence of weak intralayer ferromagnetic interactions (J = +0.081(1) (1) and +0.072(2) cm(-1) (2)). These values are compared to those of the weak antiferromagnetic coupling [J = -0.19(1) cm(-1)], which is observed in the chain compound K2[Mn(mal)2(MeOH)2][Mn(mal)2] (3), where the exchange pathway involves the carboxyate-malonate bridge in the anti-syn conformation. The structure of 3 was reported elsewhere. Theoretical calculations on fragment models of 2 and 3 were performed to analyze and substantiate both the nature and magnitude of the magnetic couplings observed.

  19. Ultrasound assisted synthesis of {[Cu2(BDC)2(dabco)].2DMF.2H2O} nanostructures in the presence of modulator; new precursor to prepare nano copper oxides.

    PubMed

    Alavi, Mohammad Amin; Morsali, Ali

    2014-03-01

    As a new precursor to prepare nano copper oxide, nanostructures of porous metal organic framework (MOF) {[Cu2(BDC)2(dabco)].2DMF.2H2O} (1) have been synthesized in the presence of acetic acid as a modulator via sonochemical method. Different concentrations of metal ion, organic linkers, modulator reagent and also different sonication times were held to improve the quality of nanostructures. Ultrasound irradiation helps nucleation step of the oriented attachment of modulation method and nanoparticles with a few nanorods has been prepared. As prepared MOF was calcinated at 500 °C to prepare nano CuO and Cu2O. Compound 1, CuO and Cu2O nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). PMID:24144482

  20. A new room-temperature ultraviolet emission material: K2[Ni(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Raju, B.; Saritha, A.; Narayana Rao, D.; Hussain, K. A.

    2015-09-01

    In this study, we investigated the crystal structure, ultraviolet (UV) luminescence, and magnetic properties of potassium bis oxalate nickel(II) tetrahydrate {K2[Ni(C2O4)2(H2O)2]·4H2O} crystals. This compound crystallizes in the monoclinic system with a P21/c space group and exhibits a one-dimensional (1D) chain structure. The Ni(II) metal center possesses an octahedral environment, with four oxygen atoms from two bidentate oxalate ligands and two oxygen atoms from water molecules. Infrared spectroscopy was used to study the vibrational modes of the compound. Interestingly, the complex exhibits intense UV emission at 364 nm when excited at 323 nm. Furthermore, the luminescence lifetime is approximately 50 μs. The magnetic susceptibility and field dependent magnetization measurements revealed a paramagnetic behavior above 20 K and antiferromagnetic ordering at low temperatures.

  1. Microsolvation of the acetate anion [CH3CO-2(H2O)n,n=1-3]: A photoelectron spectroscopy and ab initio computational sutdy

    SciTech Connect

    Wang, Xue B.; Jagoda-Cwiklik, Barbra; Chi, Chaoxian; Xing, Xiaopeng; Zhou, Mingfei; Jungwirth, Pavel; Wang, Lai S.

    2009-07-28

    A combined photoelectron spectroscopy and ab initio theoretical study was carried out to study the microsolvation of the acetate anion. Photoelectron spectra of cold solvated clusters CH3CO-2 ðH2OÞn (n = 1-3) at 12 K were obtained and compared with theoretical calculations. The first water is shown to bind to the -CO -2 group in a bidentate fashion, whereas both water-water and water-CO-2 interactions are shown for n = 2 and 3. Significant rearrangement of the solvation structures is observed upon electron detachment, and water-CH3 interactions are present for all the neutral clusters, CH3CO2(H2O)n (n = 1-3).

  2. (2,2‧-bipy)[In2(OH)2(H2O)](SO4)2: The first indium sulfate with a layer structure

    NASA Astrophysics Data System (ADS)

    Tian, Zhenfen; Wang, Li; Song, Tianyou; Wang, Ying; Huang, Liangliang; Zhang, Lirong; Shi, Suhua

    2008-04-01

    The first indium sulfate coordination complex, (2,2'-bipy)[In 2(OH) 2(H 2O)](SO 4) 2 (2,2'-bipy=2,2'-bipyridyl) was hydrothermally synthesized and characterized by single-crystal X-ray diffraction (XRD), the powder XRD, elemental analysis, inductively coupled plasma (ICP) analysis, thermogravimetric analysis (TGA), IR spectroscopy and fluorescent spectroscopy. It is noteworthy that this compound exhibits a novel two-dimensional layer structure, which is built up from two distinct motifs, a butlerite-type chain and a single 4-ring (S4R) unit. The adjacent layers are stably packed together and extended into three-dimensional supramolecular arrays via π- π stacking interactions of the 2,2'-bipy ligands. Additionally, this compound shows strong fluorescent property at room temperature, which may be assigned to ligand-centered π*- π transitions.

  3. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  4. Synthesis and characterization of multifunctional coordination polymer of the type [CuxNi1-x(dedb)·2H2O]n

    NASA Astrophysics Data System (ADS)

    Singh, Deepshikha; Kushwaha, Anita; Banerjee, A.; Prasad, R. L.

    2015-07-01

    New series of multifunctional homometallic and heterobimetallic coordination polymers of the type [CuxNi1-x(dedb)·2H2O]n {where dedb = dianion of 2,5-dichloro-3,6-bis(ethylamino)-1,4-benzoquinone (1); x = 1, (2); 0 (3); 0.5 (4); 0.25 (5); 0.125 (6); 0.0625 (7) and n = degree of polymerization} have been synthesized and characterized by Powder X-ray diffraction, IR, UV-visible and ESR spectroscopic techniques. Variable temperature susceptibility measurement indicates presence of strong ferromagnetic interaction. The effects of copper doping on thermal, magnetic and conducting properties of these polymers have been investigated in this communication. A rare co-existence of ferromagnetism as well as electrical conductivity has been observed in these polymers.

  5. An Investigation of the Adsorption Characteristics of 5'ATP and 5'AMP onto the Surface of Caso4 x 2H2O

    NASA Technical Reports Server (NTRS)

    Calderon, J.; Sweeney, M. A.

    1984-01-01

    A model has been proposed in which solid surfaces can act as a site for cataletic activity of condensation reactions for certain biomolecules. From this model, the adsorption characteristics of 5'ATP and 5'AMP onto the surface of CaSO4.2H2O was chosen for study. It has been proven that 5'ATP and 5'AMP do adsorb onto the surface of CaSO4. Studies were then made to determine the dependence of absorption versus time, concentration, ionic strength and pH. It was found that the adsorption of the nucleotides is highly pH dependent, primarily determined by the phosphate acid groups of the nucleic acid molecule. From this investigation, the data obtained is discussed in relation to the model for the prebiotic earth.

  6. Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu(2+)/H2O2 and analysis on their structure-reactivity relationship.

    PubMed

    Peng, Jianbiao; Li, Jianhua; Shi, Huanhuan; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    As widely used chemicals intended to protect human being from infection of microorganisms, disinfectants are ubiquitous in the environment. Among them chlorine-substituted phenol is a basic structure in many disinfectant molecules. Removal of these pollutants from wastewater is of great concern. The oxidative degradation of antimicrobial agents such as triclosan, chlorofene, and dichlorofene by a Fenton-like system Cu(2+)/H2O2 was examined. Reaction conditions such as temperature, initial concentrations of H2O2 and Cu(2+), and pH were optimized using triclosan as a representative. The degradation kinetics of the above disinfectants followed pseudo-first-order kinetics under the investigated conditions. Fourteen chlorophenols (CPs) with different chlorine substitution were also studied to evaluate the influence of molecular structure on the degradation process in the Cu(2+)/H2O2 system. Fourteen structure-related parameters were calculated using Gaussian 09 program. A quantitative structure-activity relationship (QSAR) model was established using SPSS software with measured rate constant (k) as dependent variable and calculated molecular descriptors as independent variables. A three-parameter model including energy of HOMO (E homo), molar heat capacity at constant volume (Cv(θ)), and the most positive net charge of hydrogen atoms (qH(+)) was selected for k prediction, with correlation coefficient R(2) = 0.878. Analyses of the model demonstrated that the Cv(θ) was the most significant factor affecting the k of chlorophenols. Variance analysis and standard t-value test were used to validate the model.

  7. Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu(2+)/H2O2 and analysis on their structure-reactivity relationship.

    PubMed

    Peng, Jianbiao; Li, Jianhua; Shi, Huanhuan; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    As widely used chemicals intended to protect human being from infection of microorganisms, disinfectants are ubiquitous in the environment. Among them chlorine-substituted phenol is a basic structure in many disinfectant molecules. Removal of these pollutants from wastewater is of great concern. The oxidative degradation of antimicrobial agents such as triclosan, chlorofene, and dichlorofene by a Fenton-like system Cu(2+)/H2O2 was examined. Reaction conditions such as temperature, initial concentrations of H2O2 and Cu(2+), and pH were optimized using triclosan as a representative. The degradation kinetics of the above disinfectants followed pseudo-first-order kinetics under the investigated conditions. Fourteen chlorophenols (CPs) with different chlorine substitution were also studied to evaluate the influence of molecular structure on the degradation process in the Cu(2+)/H2O2 system. Fourteen structure-related parameters were calculated using Gaussian 09 program. A quantitative structure-activity relationship (QSAR) model was established using SPSS software with measured rate constant (k) as dependent variable and calculated molecular descriptors as independent variables. A three-parameter model including energy of HOMO (E homo), molar heat capacity at constant volume (Cv(θ)), and the most positive net charge of hydrogen atoms (qH(+)) was selected for k prediction, with correlation coefficient R(2) = 0.878. Analyses of the model demonstrated that the Cv(θ) was the most significant factor affecting the k of chlorophenols. Variance analysis and standard t-value test were used to validate the model. PMID:26408114

  8. Hydrated copper ion chemistry: guided ion beam and computational investigation of Cu2+(H2O)n (n = 7-10) complexes.

    PubMed

    Armentrout, Peter B; Sweeney, Andrew F

    2015-01-01

    Cross sections for the threshold collision-induced dissociation of Cu(2+)(H(2)O)(n), where n = 8 - 10, are measured using a guided ion beam tandem mass spectrometer. The primary dissociation pathway is found to be loss of a single water molecule followed by the sequential loss of additional water molecules until n = 8, at which point charge separation to form CuOH(+)(H(2)O)(4) (+) H(+)(H(2)O)(3) is observed to occur at a slightly lower energy than loss of a water molecule. Competition from charge separation prohibits the formation of appreciable amounts of the n = 7 or smaller complexes as reactants in the source. These findings indicate that Cu(2+) has a critical size of 8. Analysis of the data using statistical modeling techniques that account for energy distributions and lifetime effects yields primary and sequential bond dissociation energies (BDEs) for loss of one and two water molecules from n = 8 - 10 complexes as well as the barrier for charge separation from n = 8. More speculative analysis extends the thermochemistry obtained down to n = 5 and 6. Theoretical BDEs are determined from quantum chemical calculations using structures optimized at the B3LYP/6 311(+)G(d,p) level along with the lowest-energy isomers suggested by single point energies at the MP2(full), M06, B3LYP, and B3P86 levels of theory using a 6- 311(+)G(2d,2p) basis set. BDEs at 0K are converted to 298 K thermodynamic values using a rigid rotor/harmonic oscillator approximation. Experimental and theoretical entropies of activation suggest that a third solvent shell forms at n = 9, in accord with previous findings. The present work represents the first experimentally determined hydration enthalpies for the Cu(2+)(H(2)O)n system. PMID:26307731

  9. Synthesis and structure of dimeric anthracene-9-carboxylato bridged dinuclear erbium(III) complex, [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)].

    PubMed

    Kusrini, Eny; Adnan, Rohana; Saleh, Muhammad I; Yan, Lim-Kong; Fun, Hoong-Kun

    2009-05-01

    We study the influence of the bulky aromatic rings, e.g. anthracence-9-carboxylic acid (9-ACA) with a large conjugated pi-system on the structure and spectroscopic properties of [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)] complex where 9-AC=anthracence-9-carboxylato and DMF=N,N'-dimethylformamide. The complex has been prepared from the erbium chloride and 9-ACA in the mixture of H(2)O:DMF solution (4:1, v/v) followed by pH adjustment to 6. The complex is crystallized in a monoclinic system with space group P2(1)/n. The two Er(III) ions are double bridged by the deprotonated carboxyl groups of two 9-AC anions (O1 and O1A), forming an eight-coordination number. The chelating bidentate (O,O), chelating-bridging tridentate (O,O,O') and monodentate of 9-AC anions are observed in the dinuclear [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)] complex. The Er-Er distance is 4.015A in the dimeric unit. Intramolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonds as well as numerous of intermolecular C-Hcdots, three dots, centeredpi interactions between the anthracene rings by edge-to-face interactions linked the dinuclear dimeric units into two-dimensional supramolecular network in a propeller-arrangement. Electronic absorption spectra of the Er(III) complex and its salt were measured. The emission spectrum of the complex is composed of a broad band due to the emission of intraligand pi*-->pi transition from the 9-AC anions and a shoulder peak originating from the 4f-4f emission transition of the Er(III) ions. The complex has a high thermal stability which can be attributed to the effectively increase the rigidity of the 9-AC anions.

  10. The Origin and Evolution of Kimberlite Melts: Stabilizing Phlogopite in the CMAS-CO2- H2O-K2O System

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Sparks, S.; Walter, M.

    2008-12-01

    This project aims to investigate the melting phase relations of model lherzolite in the system CMAS- CO2-H2O-K2O to better understand the role of potassium (K) in the evolution and origin of kimberlitic melts. High-pressure multi-anvil and piston cylinder experiments are used to study this system at upper mantle pressures (3-9 GPa). This study aims at constraining the temperature and composition of primary melts at the volatile-rich mantle solidus at which kimberlite melts form. Kimberlites are potassium-rich, ultrabasic magmas (<35% SiO2), have a low viscosity (0.1-1 Pa s), and contain a very high volatile content (CO2 and H2O). A number of models have been suggested for the generation of carbonatite and kimberlite magmas, with the presence of volatiles being particularly important (eg. CO2). Together, H2O and CO2, show a much greater influence on the solidus of mantle lherzolite than when either are present alone. Melts of carbonatitic and kimberlitic composition can be produced under comparable P-T conditions by partial melting of carbonated lherzolite. Petrogenetic links between carbonatites and kimberlites are therefore implied in the CO2-bearing mantle source region (Gudfinnsson, 2005). The isobaric univariant equilibrium for melting of model lherzolite in CMAS-CO2-H2O-K2O is tracked at upper mantle conditions. This is done by constructing a series of bulk compositions that will saturate all phases and yield enough of each phase for EPMA analysis. The compositions of all phases along a portion of the isobaric univariant melting curves will be traced at a series of pressures. In this way, we can rigorously calculate the melting behaviour of lherzolite compositions as a function of pressure, temperature and bulk composition.

  11. Threshold collision-induced dissociation of Sr(2+)(H(2)O)(x) complexes (x=1-6): An experimental and theoretical investigation of the complete inner shell hydration energies of Sr(2+).

    PubMed

    Carl, D R; Chatterjee, B K; Armentrout, P B

    2010-01-28

    The sequential bond energies of Sr(2+)(H(2)O)(x) complexes, where x=1-6, are determined by threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer equipped with an electrospray ionization source. The electrospray source produces an initial distribution of Sr(2+)(H(2)O)(x) complexes, where x=6-9. Smaller Sr(2+)(H(2)O)(x) complexes, where x=1-5, are accessed using a recently developed in-source fragmentation technique that takes place in the high pressure region of a rf-only hexapole ion guide. This work constitutes the first experimental study for the complete inner shell of any multiply charged ion. The kinetic energy dependent cross sections are determined over a wide energy range to monitor all possible dissociation products and are modeled to obtain 0 and 298 K binding energies for loss of a single water molecule. These binding energies decrease monotonically for the Sr(2+)(H(2)O) complex to Sr(2+)(H(2)O)(6). Our experimental results agree well with previous literature results obtained by equilibrium and kinetic studies for x=5 and 6. Because there has been limited theory for the hydration of Sr(2+), we also present an in-depth theoretical study on the energetics of the Sr(2+)(H(2)O)(x) systems by employing several levels of theory with multiple effective core potentials for Sr and different basis sets for the water molecules.

  12. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation

    PubMed Central

    2013-01-01

    Background The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. Results The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, 57Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [FeII(en)2(μ-NC)CoIII(CN)4], FeIII(NH2CH2CH3)2(μ-NC)2CoII(CN)3] and FeIII[CoII(CN)5], which were suggested mainly from 57Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. Conclusions It has been found

  13. Analysis of Heterogeneity in CO2, H2O and OH in Centimeter-Sized Obsidian Pyroclasts from Mono Craters, California

    NASA Astrophysics Data System (ADS)

    Conde, G. D.; Watkins, J. M.

    2014-12-01

    Volcanic tephra deposits typically contain inclusions or fragments of quenched melt that preserve pre-eruptive volatile concentrations within the volcanic conduit. The concentrations of CO2, H2O and OH in obsidian pyroclasts provide information on magma storage depths while gradients in these volatile species provide information on rates and mechanisms of gas loss (or gain) in magma during ascent. We are measuring CO2, H2O and OH profiles and area maps in six randomly selected pyroclastic obsidian clasts from Mono Craters, California using conventional Fourier Transform Infrared Spectroscopy (FTIR). Previous studies of these pyroclasts have focused on spot analyses of volatile concentrations within clast interiors, but our study targets clast rims, bubbles, flow bands, and texturally homogeneous regions of the clasts. The objective is to use the magnitude and spatial distribution of heterogeneities to assess the role of vapor fluxing and to determine timescales of magmatic processes such as bubble growth/resorption and mixing of magma from variable depths. The first clast that we have analyzed is relatively homogeneous in dissolved H2O and OH but exhibits millimeter-scale heterogeneities in dissolved CO2. The concentration of dissolved CO2 varies by a factor of two, ranging from 15 to 30 ppm with a patchy distribution throughout the clast. The patches of high CO2 concentration do not correspond to visible textures within the clast. Total water (H2Ot) varies from 1.5 to 1.7 wt% with higher water concentrations corresponding to darker regions of glass. The distribution of CO2 requires a mechanism for introducing millimeter-scale heterogeneity within minutes to hours prior to the eruption. Our interpretation is that obsidian pyroclasts are assembled during chaotic vertical mixing and thus sample a range of depths within the feeder system. This interpretation is consistent with previous inferences that resorption of bubbles within pyroclasts is caused by repeated

  14. Hydrogen isotope systematics among H2-H2O-CH4 during the growth of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH

    NASA Astrophysics Data System (ADS)

    Kawagucci, Shinsuke; Kobayashi, Mariko; Hattori, Shohei; Yamada, Keita; Ueno, Yuichiro; Takai, Ken; Yoshida, Naohiro

    2014-10-01

    Stable hydrogen isotope systematics among H2, H2O, and CH4 during hydrogenotrophic methanogenesis were investigated by growing a thermophilic methanogen, Methanothermobacter thermautotrophicus strain ΔH, in batch cultures spiked with deuterium-labeled H2 and/or H2O. The hydrogen isotope ratio of the product, CH4, reflected not only the isotope ratio of the H2O in the medium but also that of the substrate, H2. The D/H ratios of the CH4 were highest during the early phase of growth, and the growth-phase-dependent changes were greatest in the deuterium-enriched H2 cultures. The hydrogen isotope systematics among H2, H2O, and CH4 during growth of the methanogen could be described with the following equations: δDCH4=a×δDH2O+b×δDH2-c a=0.71-0.55×b 0.17⩽b⩽0.38 c=1000×(a+b-1) The greatest effect of δDH2 on δDCH4 (b = 0.38) was observed during the earliest phase of growth. In contrast to this study, the possible disappearance of the effect (b = 0) has been suggested in a previous study (Valentine et al., 2004a) in which Methanothermobacter marburgensis was cultured and hydrogen isotope systematics during growth was monitored, as was the case in this study. The close phylogenetic relationship between M. thermautotrophicus and M. marburgensis, which likely have similar biochemical pathways, suggests a possibly broad range of the b value, 0-0.38. To explain the observed hydrogen isotope systematics, two cellular mechanisms were proposed. One is that the hydrogen atoms of both H2 and H2O are directly incorporated into the product, CH4. The other is that all four hydrogen atoms in the product, CH4, are derived from intracellular H2O, which consists of a mixture of medium-derived pristine H2O and isotopically distinct H2O derived from methanogenic H2 oxidation. Although we attempted to evaluate the feasibility of these mechanisms, both cellular mechanisms remain hypothetical. The hydrogen isotope systematics shown here contribute to put forward utility of δDCH4

  15. Overtone vibrational spectroscopy in H2-H2O complexes: A combined high level theoretical ab initio, dynamical and experimental study

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael P.; Pluetzer, Christian; Nesbitt, David J.; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-01

    First results are reported on overtone (vOH = 2 ← 0) spectroscopy of weakly bound H2-H2O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H2-H2O, followed by (ii) UV photodissociation of the resulting H2O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008), 10.1063/1.2988314] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H2 and ortho (I = 1) H2O (oH2-oH2O). Specifically, two distinct bands are seen in the oH2-oH2O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH2-oH2O, pH2-pH2O, or oH2-pH2O) are observed above current signal to noise level, which for the pH2 complexes is argued to arise from displacement by oH2 in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH2-oH2O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H2 and H2O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  16. Experimental investigation of the complete inner shell hydration energies of Ca2+: threshold collision-induced dissociation of Ca(2+)(H2O)x Complexes (x = 2-8).

    PubMed

    Carl, Damon R; Armentrout, P B

    2012-04-19

    The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation.

  17. Threshold collision-induced dissociation of hydrated magnesium: experimental and theoretical investigation of the binding energies for Mg(2+)(H2O)x complexes (x=2-10).

    PubMed

    Carl, Damon R; Armentrout, Peter B

    2013-03-18

    The sequential bond energies of Mg(2+)(H2O)x complexes, in which x=2-10, are measured by threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Mg(2+)(H2O)x complexes in which x=7-10, complexes down to x=3 are formed by using an in-source fragmentation technique. Complexes smaller than Mg(2+)(H2O)3 cannot be formed in this source because charge separation into MgOH(+)(H2O) and H3O(+) is a lower-energy pathway than simple water loss from Mg(2+)(H2O)3. The kinetic energy dependent cross sections for dissociation of Mg(2+)(H2O)x complexes, in which x=3-10, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Mg(2+) for x=2-10 and the first experimental values for x=2-4. Additionally, the thermodynamic onsets leading to the charge-separation products from Mg(2+)(H2O)3 and Mg(2+)(H2O)4 are determined for the first time. Our experimental results for x=3-7 agree well with quantum chemical calculations performed here and previously calculated binding enthalpies, as well as previous measurements for x=6. The present values for x=7-10 are slightly lower than previous experimental results and theory, but within experimental uncertainties.

  18. Redetermination of ruizite, Ca2Mn3+ 2[Si4O11(OH)2](OH)2·2H2O

    PubMed Central

    Fendrich, Kim V.; Downs, Robert T.; Origlieri, Marcus J.

    2016-01-01

    The crystal structure of ruizite, ideally Ca2Mn3+ 2[Si4O11(OH)2](OH)2·2H2O [dicalcium dimanganese(III) tetra­silicate tetra­hydroxide dihydrate] was first determined in space group A2 with an isotropic displacement parameter model (R = 5.6%) [Hawthorne (1984 ▸). Tschermaks Mineral. Petrogr. Mitt. 33, 135–146]. A subsequent refinement in space group C2/m with anisotropic displacement parameters for non-H atoms converged with R = 8.4% [Moore et al. (1985 ▸). Am. Mineral. 70, 171–181]. The current study reports a redetermination of the ruizite structure by means of single-crystal X-ray diffraction data of a natural sample from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa. Our data (R 1 = 3.0%) confirm that the space group of ruizite is that of the first study rather than C2/m. This work improves upon the structure reported by Hawthorne (1984 ▸) in that all non-H atoms were refined with anisotropic displacement parameters and all hydrogen atoms were located. The crystal structure consists of [010] chains of edge-sharing MnO6 octa­hedra flanked by finite [Si4O11(OH)2] chains. The Ca2+ cations are situated in the cavities of this arrangement and exhibit a coordination number of seven. PMID:27555940

  19. Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate, an inorganic analogue of phosphonates

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Dimitrova, O. V.; Volkov, A. S.

    2015-09-01

    The new Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate (space group Pnam = Pnma, D {2/h 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnО6 octahedra connected with PO4 tetrahedra. Water molecules are located between the layers. [IO3]- groups having a typical umbrella-like coordination are statistically implanted in layers of MnО6 octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate-iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the РО4 tetrahedron by the organic methyl radical СН3. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.

  20. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  1. Study of Protonic Mobility in CaHPO 4·2H 2O (Brushite) and CaHPO 4(Monetite) by Infrared Spectroscopy and Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Tortet, L.; Gavarri, J. R.; Nihoul, G.; Dianoux, A. J.

    1997-08-01

    We report the first quasi-elastic neutron scattering analysis of proton mobility in the solid electrolyte CaHPO4·2H2O (brushite). We have studied this hydrated phosphate, in powder state, from 190 to 520 K, using an incident wavelength of 5.12 Å. The time of flight spectra are converted inS(Q,ω) structure factor and inelastic frequency distributionP(Q,ω) in the energy range 0-200 meV (0-1600 cm)-1. A quasi-elastic contribution is clearly evidenced above room temperature; it is fitted with a jump model, involving hydrogen bonds. The quasi-elastic and inelastic scattering data are compared with FTIR results. Two kinds of motions are determined: jumps of acidic protons on hydrogen bonds and vibrations of lattice water molecules associated with the motion of their hydrogen atom on hydrogen bonds (Ea≈0.145 eV). Above 450 K the dehydration of the compound is accompanied by the appearance of a long-range diffusive motion and by the disappearance of some low-frequency inelastic bands.

  2. The Crystal and Molecular Structure of Ethyl Chlorophyllide a·2H2O and Its Relationship to the Structure and Aggregation of Chlorophyll a*

    PubMed Central

    Strouse, Charles E.

    1974-01-01

    Determination of the crystal structure of ethyl chlorophyllide a·2H2O by single crystal x-ray diffraction techniques has provided the first detailed molecular structural data available for a magnesium-containing derivative of chlorophyll. At the same time the aggregation observed in this structure serves as the basis for a model of chlorophyll aggregation in vitro and in vivo. The magnesium atom in ethyl chlorophyllide is displaced 0.4 Å from the plane of the chlorin ring in the same direction as the methyl ester substituent. A water molecule occupies the fifth coordination site. A second water molecule is hydrogen bonded to the coordinated water molecule and also to the carbonyl oxygen atom of the methyl ester. Hydrogen bonds between the water molecules and carbonyl oxygen atoms link the chlorophyllide molecules into a two-dimensional aggregate of crosslinked one-dimensional polymers. The relationship of this aggregate to aggregates of chlorophyll both in vitro and in vivo is discussed, as is the efficiency of exciton transport within the polymer. PMID:16592136

  3. A vibrational spectroscopic study of the silicate mineral analcime - Na2(Al4SiO4O12)·2H2O - A natural zeolite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Romano, Antônio Wilson; Scholz, Ricardo

    2014-12-01

    We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm-1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm-1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm-1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm-1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm-1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.

  4. Structure-property relations of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O

    NASA Astrophysics Data System (ADS)

    Haussühl, Eiken; Schreuer, Jürgen; Wiehl, Leonore; Paulsen, Natalia

    2014-04-01

    Large single crystals of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O with dimensions up to 40×40×30 mm3 were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic properties with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine-CuCl2-water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range.

  5. An investigation on the structure, spectroscopy and thermodynamic aspects of Br2((-))(H2O)n clusters using a conjunction of stochastic and quantum chemical methods.

    PubMed

    Naskar, Pulak; Chaudhury, Pinaki

    2016-06-28

    In this work we obtained global as well as local structures of Br2((-))(H2O)n clusters for n = 2 to 6 followed by the study of IR-spectral features and thermochemistry for the structures. The way adopted by us to obtain structures is not the conventional one used in most cases. Here we at first generated excellent quality pre-optimized structures by exploring the suitable empirical potential energy surface using stochastic optimizer simulated annealing. These structures are then further refined using quantum chemical calculations to obtain the final structures, and spectral and thermodynamic features. We clearly showed that our approach results in very quick and better convergence which reduces the computational cost and obviously using the strategy we are able to get one [i.e. global] or more than one [i.e. global and local(s)] energetically lower structures than those which are already reported for a given cluster size. Moreover, IR-spectral results and the evolutionary trends in interaction energy, solvation energy and vertical detachment energy for global structures of each size have also been presented to establish the utility of the procedure employed. PMID:27251059

  6. A Raman spectroscopic study of the antimonite mineral peretaite Ca(SbO) 4(OH) 2(SO 4) 2·2H 2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Keeffe, Eloise C.; Bahfenne, Silmarilly

    2010-05-01

    Raman spectra of mineral peretaite Ca(SbO) 4(OH) 2(SO 4) 2·2H 2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm -1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm -1 are assigned to the SO 42-ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm -1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm -1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm -1 and at 417, 434 and 482 cm -1 are assigned to the SO 42-ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm -1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO 42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.

  7. A Raman spectroscopic study of the mono-hydrogen phosphate mineral dorfmanite Na 2(PO 3OH)·2H 2O and in comparison with brushite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2011-11-01

    Aspects of the molecular structure of the mineral dorfmanite Na 2(PO 3OH)·2H 2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm -1 and the less intense band at 866 cm -1 are assigned to the PO 3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm -1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm -1 and 514, 541 and 570 cm -1 are attributed to the ν2 and ν4 bending modes of the HPO 4 units, respectively. Raman bands at 3373, 3443 and 3492 cm -1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm -1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.

  8. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    PubMed Central

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO4·2H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062

  9. Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3-chloropyridine)

    DOE PAGESBeta

    O'Neal, Kenneth R.; Brinzari, Tatiana V.; Wright, Joshua B.; Ma, Chunli; Giri, Santanab; Schlueter, John A.; Wang, Qian; Jena, Puru; Liu, Zhenxian; Musfeldt, Janice L.

    2014-08-13

    Here, hydrogen bonding plays a foundational role in the life, earth, and chemical sciences, with its richness and strength depending on the situation. In molecular materials, these interactions determine assembly mechanisms, control superconductivity, and even permit magnetic exchange. In spite of its long-standing importance, exquisite control of hydrogen bonding in molecule-based magnets has only been realized in limited form and remains as one of the major challenges. Here, we report the discovery that pressure can tune the dimensionality of hydrogen bonding networks in CuF2(H2O)2(3-chloropyridine) to induce magnetic switching. Specifically, we reveal how the development of exchange pathways under compression combinedmore » with an enhanced ab-plane hydrogen bonding network yields a three dimensional superexchange web between copper centers that triggers a reversible magnetic crossover. Similar pressure- and strain-driven crossover mechanisms involving coordinated motion of hydrogen bond networks may play out in other quantum magnets.« less

  10. Reactivity of a Thick BaO Film Supported on Pt(111): Adsorption and Reaction of NO2, H2O and CO2

    SciTech Connect

    Mudiyanselage, Kumudu; Yi, Cheol-Woo W.; Szanyi, Janos

    2009-09-15

    Reactions of NO2, H2O, and CO2 with a thick (> 20 MLE) BaO film supported on Pt(111) were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). NO2 reacts with a thick BaO to form surface nitrite-nitrate ion pairs at 300 K, while only nitrates form at 600 K. In the thermal decomposition process of nitrite–nitrate ion pairs, first nitrites decompose and desorb as NO. Then nitrates decompose in two steps : at lower temperature with the release of NO2 and at higher temperature, nitrates dissociate to NO + O2. The thick BaO layer converts completely to Ba(OH)2 following the adsorption of H2O at 300 K. Dehydration/dehydroxylation of this hydroxide layer can be fully achieved by annealing to 550 K. CO2 also reacts with BaO to form BaCO3 that completely decomposes to regenerate BaO upon annealing to 825 K. However, the thick BaO film cannot be converted completely to Ba(NOx)2 or BaCO3 under the experimental conditions employed in this study.

  11. Influence of some foreign metal ions on crystal growth kinetics of brushite (CaHPO 4·2H 2O)

    NASA Astrophysics Data System (ADS)

    Rosa, Silvia; Lundager Madsen, Hans E.

    2010-10-01

    Brushite, CaHPO 4·2H 2O, has been precipitated at 25 °C in the presence of Mg 2+, Ba 2+ or Cu 2+ at concentrations up to 0.5 mM. When initial pH is sufficiently low to exclude nanocrystalline apatite as the initial solid phase, overall crystal growth rate may be determined from simple mass crystallization by recording pH as function of time. A combination of surface nucleation (birth-and-spread) and spiral (BCF) growth was found. Edge free energy was determined from the former contribution and was found to be a linear function of chemical potential of the additive, indicating constant adsorption over a wide range of additive concentrations. Average distances between adsorbed additive ions as calculated from slopes of plots are compatible with lattice parameters of brushite: 0.54 nm for Mg 2+, 0.43 nm for Ba 2+ and 0.86 nm for Cu 2+. With the latter a sharp decrease in growth rate occurred early in the crystallization process, followed by an equally sharp increase to the previous level. When interpreted in terms of the Cabrera-Vermilyea theory of crystal growth inhibition, the results are consistent with an average distance between Cu ions of 0.88 nm, in perfect agreement with the above value.

  12. Structure and thermal behaviour of ScK(C 2O 4) 2(H 2O) 2 and InRb 1- x(H 3O) x(C 2O 4) 2(H 2O) 2ṡ0.5(H 2O): Two members of a family of open-framework oxalates with isotypic helical structures and zeolite-like properties

    NASA Astrophysics Data System (ADS)

    Mahé, Nathalie; Audebrand, Nathalie

    2006-08-01

    Two new mixed oxalates with an open architecture, ScK(C 2O 4) 2(H 2O) 2 ( I) and InRb 0.77(H 3O) 0.23(C 2O 4) 2(H 2O) 2ṡ0.5(H 2O) ( II), have been synthesised from precipitation methods at ambient temperature. They crystallize in hexagonal system, space group P622 (No. 180), Z=3, with the following unit-cell parameters for I: a=8.8667(2) Å, c=11.4908(4) Å, V=782.36(4) Å, for II: a=9.0148(3) Å, c=11.4645(3) Å, V=806.86(4) Å. The two structures belong to a family of isotypic helical anionic open-frameworks built from square antiprismatic coordinated metals and bischelating oxalates. The counter-cations K + and Rb +/H 3O + are located in the tunnels of the framework. The thermal decomposition process has demonstrated zeolite-like properties associated with weakly-bonded water molecules located in the voids of the framework.

  13. A candidate for a single-chain magnet: [Mn3(OAc)6(py)2(H2O)2]n (OAc is acetate and py is pyridine).

    PubMed

    Caballero-Jiménez, Judith; Reyes Ortega, Yasmi; Bernès, Sylvain; Escudero, Roberto

    2014-08-01

    The title complex, catena-poly[di-μ3-acetato-κ(6)O:O:O'-tetra-μ2-acetato-κ(4)O:O;κ(4)O:O'-diaquabis(pyridine-κN)trimanganese(II)], [Mn3(CH3COO)6(C6H5N)2(H2O)2]n, is a true one-dimensional coordination polymer, in which the Mn(II) centres form a zigzag chain along [010]. The asymmetric unit contains two metal centres, one of which (Mn1) lies on an inversion centre, while the other (Mn2) is placed close to an inversion centre on a general position. Since all the acetates behave as bridging ligands, although with different μ2- and μ3-coordination modes, a one-dimensional polymeric structure is formed, based on trinuclear repeat units (Mn1...Mn2...Mn2'), in which the Mn2 and Mn2' sites are related by an inversion centre. Within this monomeric block, the metal-metal separations are Mn1...Mn2 = 3.36180 (18) Å and Mn2...Mn2' = 4.4804 (3) Å. Cation Mn1, located on an inversion centre, displays an [MnO6] coordination sphere, while Mn2, on a general position, has a slightly stronger [MnO5N] ligand field, as the sixth coordination site is occupied by a pyridine molecule. Both centres approximate an octahedral ligand field. The chains are parallel in the crystal structure and interact via hydrogen bonds involving coordinated water molecules. However, the shortest metal-metal separation between two chains [5.3752 (3) Å] is large compared with the intrachain interactions. These structural features are compatible with a single-chain magnet behaviour, as confirmed by preliminary magnetic studies.

  14. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications. PMID:26911317

  15. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  16. Reaction Pathways and Excited States in H2O2+OH → HO2+H2O : A New ab initio Investigation

    SciTech Connect

    Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2007-08-28

    The mechanism of the hydrogen abstraction reaction H2O2+OH→ HO2+H2O in gas phase was studied, using DFT (MPW1K) level of theory. We located 2 pathways for the reaction, both going through the same intermediate complex OH-H2O2, but via two distinct transition state structures that differ by the orientation of the hydroxyl hydrogen relative to the incipient hydroperoxy hydrogen. In one case, these hydrogens are on same side of the plane made by the 3 oxygen atoms and in the other these hydrogens are on opposite sides of the plane. The first two excited states were calculated for selected points of both pathways using time-dependent DFT, multiconfigurational quasi-degenerate-perturbation theory (MCQDPT2/ CASSCF) and equation of motion coupled cluster singles, doubles model (EOM-CCSD) EOMCCSD energies and completely renormalized EOM-CCSD(T)(IA) correction. An avoided crossing between the two excited states was found on both reaction pathways, on the product side of the barrier to H-transfer on the ground state surface, near the transition states. Further more, we report on the calculation of the rate of the reaction in the gas phase for temperatures in the range of 250-500 K, and suggest that the strong temperature dependence of the rate at high temperatures is due to reaction on the low-lying excited state surface over a barrier that is much larger than on the ground state surface. This work was supported in part by the Office of Basic Energy Sciences of the Department of Energy (DOE), Chemical Sciences program (BG and MD) and in part by the U.S. Department of Energy’s Office of Biological and Environmental Research, Environmental Management Science Program (BG and DMC). The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute.

  17. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    NASA Astrophysics Data System (ADS)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  18. New zinc-glycine-iodide complexes as a product of equilibrium and non-equilibrium crystallization in the Gly - ZnI2 - H2O system

    NASA Astrophysics Data System (ADS)

    Tepavitcharova, S.; Havlíček, D.; Matulková, I.; Rabadjieva, D.; Gergulova, R.; Plocek, J.; Němec, I.; Císařová, I.

    2016-09-01

    Equilibrium crystallization of two anhydrous complex compounds, [Zn(gly)2I2] and [Zn(gly)I2], and non-equilibrium crystallization of the [Zn3(H2O)4(μ-gly)2I6] complex have been observed in the Gly - ZnI2 - H2O system at 25°C. Different mixed zinc-glycine-iodide-aqua complexes exist in the studied solutions and those with the highest activity are responsible for the crystallization process. The stable [ZnI2O2(2Gly)]0 complexes are responsible for the large equilibrium crystallization field of the compound [Zn(gly)2I2] (monoclinic system, C2/c space group), in whose crystal structure they are incorporated as discrete distorted electroneutral tetrahedra. In zinc-iodide solutions with a low water activity it is more probable that the glycine zwitterions act as bidentate ligands and form polynuclear complexes. We assume the [ZnI2O2(2/2Gly)]0 infinite chains build the compound [Zn(gly)I2], for which we have found a narrow equilibrium crystallization field. We have failed to describe the crystal structure of this compound because of its limited stability in the air. Non-equilibrium crystallization of [Zn3(H2O)4(μ-gly)2I6] (triclinic system, P-1 space group) was demonstrated, with crystal structure built by trinuclear complexes [ZnI3O(1/2Gly)] [ZnO4(4H2O)O2(2/2Gly)(trans)][ZnI3O(1/2Gly)]. The FTIR and Raman spectra and also the thermal behaviour of the three compounds were discussed.

  19. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.

    PubMed

    Sujith, K S; Ramachandran, C N

    2016-02-01

    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.

  20. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.

    PubMed

    Sujith, K S; Ramachandran, C N

    2016-02-01

    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process. PMID:26762545

  1. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    NASA Astrophysics Data System (ADS)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  2. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures. PMID:26328435

  3. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  4. Arsenic speciation in synthetic gypsum (CaSO4·2H2O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study

    NASA Astrophysics Data System (ADS)

    Lin, Jinru; Chen, Ning; Nilges, Mark J.; Pan, Yuanming

    2013-04-01

    Gypsum (CaSO4·2H2O) is a major by-product of mining and milling processes of borate, phosphate and uranium deposits worldwide and, therefore, potentially plays an important role in the stability and bioavailability of heavy metalloids, including As, in tailings and surrounding areas. Gypsum containing 1900 and 185 ppm As, synthesized with Na2HAsO4·7H2O and NaAsO2 in the starting materials, respectively, have been investigated by synchrotron X-ray absorption spectroscopy (XAS), single-crystal electron paramagnetic resonance spectroscopy (EPR), and pulsed electron nuclear double resonance spectroscopy (ENDOR). Quantitative analyses of As K edge XANES and EXAFS spectra show that arsenic occurs in both +3 and +5 oxidation states and the As3+/As5+ value varies from 0.35 to 0.79. Single-crystal EPR spectra of gamma-ray-irradiated gypsum reveal two types of arsenic-associated oxyradicals: [AsO3]2- and an [AsO2]2-. The [AsO3]2- center is characterized by principal 75As hyperfine coupling constants of A1 = 1952.0(2) MHz, A2 = 1492.6(2) MHz and A3 = 1488.7(2) MHz, with the unique A axis along the S-O1 bond direction, and contains complex 1H superhyperfine structures that have been determined by pulsed ENDOR. These results suggest that the [AsO3]2- center formed from electron trapping on the central As5+ ion of a substitutional (AsO4)3- group after removal of an O1 atom. The [AsO2]2- center is characterized by its unique A(75As) axis approximately perpendicular to the O1-S-O2 plane and the A2 axis along the S-O2 bond direction, consistent with electron trapping on the central As3+ ion of a substitutional (AsO3)3- group after removal of an O2 atom. These results confirm lattice-bound As5+ and As3+ in gypsum and point to potential application of this mineral for immobilization and removal of arsenic pollution.

  5. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Gibbons, J. A.; Maltsev, O.; Atudorei, V.; Pack, A.; Sengupta, S.; Shock, E. L.; Knauth, L. P.

    2016-08-01

    It is now recognized that variations in the Δ17O of terrestrial materials resulting from purely mass dependent fractionations, though small, have geological significance. In this study, the δ18O and δ17O values of selected low temperature quartz and silica samples were measured in order to derive the quartz-water fractionation-temperature relationship for the three oxygen isotope system. A 18O/16O quartz-water fractionation equation valid for all temperatures was generated from published high temperature exchange experiments and low temperature empirical estimates and is given by 1000ln αqz-H2O 18O /16O =4.20 (0.11) ×106/T2 - 3.3 (0.2) × 1000/T (T in Kelvins). The equilibrium δ17O-δ18O relationship is given by the equation lnα17O/16O = θlnα18O/16O . The variation of θ with temperature for the quartz-water system was determined empirically using low temperature marine diatoms, microcrystalline quartz and a modern sinter sample. A best fit to the data give the equation θSiO2-H2O = -(1.85 ± 0.04)/T + 0.5305 , indistinguishable from an earlier theoretical estimate. Application of the quartz-water triple isotope system to low temperature samples provides constraints on both temperature and composition of the water with which the silica last equilibrated. Authigenic quartz crystallization temperatures cluster around 50 °C, which are lower than many previous estimates. The combined δ18O and δ17O values of samples considered to be in equilibrium with ocean or meteoric waters can be used to estimate both formation temperatures and the δ18O value of the meteoric water. Unlike other multiple isotopes systems, such as combined H and O isotopes in cherts, the oxygen source and diagenetic potential for both 17O/16O and 18O/16O ratios are identical, simplifying interpretations from ancient samples.

  6. Origin of methane in serpentinite-hosted hydrothermal systems: The CH4-H2-H2O hydrogen isotope systematics of the Hakuba Happo hot spring

    NASA Astrophysics Data System (ADS)

    Suda, Konomi; Ueno, Yuichiro; Yoshizaki, Motoko; Nakamura, Hitomi; Kurokawa, Ken; Nishiyama, Eri; Yoshino, Koji; Hongoh, Yuichi; Kawachi, Kenichi; Omori, Soichi; Yamada, Keita; Yoshida, Naohiro; Maruyama, Shigenori

    2014-01-01

    Serpentinite-hosted hydrothermal systems have attracted considerable attention as sites of abiotic organic synthesis and as habitats for the earliest microbial communities. Here, we report a systematic isotopic study of a new serpentinite-hosted system: the Hakuba Happo hot spring in the Shiroumadake area, Japan (36°42‧N, 137°48‧E). We collected water directly from the hot spring from two drilling wells more than 500 m deep; all water samples were strongly alkaline (pH>10) and rich in H2 (201-664 μmol/L) and CH4 (124-201 μmol/L). Despite the relatively low temperatures (50-60 °C), thermodynamic calculations suggest that the H2 was likely derived from serpentinization reactions. Hydrogen isotope compositions for Happo #1 (Happo #3) were found to be as follows: δD-H2=-700‰ (-710‰), δD-CH4=-210‰ (-300‰), and δD-H2O=-85‰ (-84‰). The carbon isotope compositions of methane from Happo #1 and #3 were found to be δC13=-34.5‰ and -33.9‰, respectively. The CH4-H2-H2O hydrogen isotope systematics indicate that at least two different mechanisms were responsible for methane formation. Happo #1 has a similar hydrogen isotope compositions to other serpentinite-hosted systems reported previously. The elevated δD-CH4 (with respect to the equilibrium relationship) suggests that the hydrogen of the Happo #1 methane was not sourced from molecular hydrogen but was derived directly from water. This implies that the methane may not have been produced via the Fischer-Tropsch-type (FTT) synthesis but possibly by the hydration of olivine. Conversely, the depleted δD-CH4 (with respect to the equilibrium relationship) in Happo #3 suggests the incorporation of biological methane. Based on a comparison of the hydrogen isotope systematics of our results with those of other serpentinite-hosted hydrothermal systems, we suggest that abiotic CH4 production directly from H2O (without mediation by H2) may be more common in serpentinite-hosted systems. Hydration of olivine

  7. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Gibbons, J. A.; Maltsev, O.; Atudorei, V.; Pack, A.; Sengupta, S.; Shock, E. L.; Knauth, L. P.

    2016-08-01

    It is now recognized that variations in the Δ17O of terrestrial materials resulting from purely mass dependent fractionations, though small, have geological significance. In this study, the δ18O and δ17O values of selected low temperature quartz and silica samples were measured in order to derive the quartz-water fractionation-temperature relationship for the three oxygen isotope system. A 18O/16O quartz-water fractionation equation valid for all temperatures was generated from published high temperature exchange experiments and low temperature empirical estimates and is given by 1000ln αqz-H2O18O /16O = 4.20 (0.11) ×106/T2 - 3.3 (0.2) × 1000/T (T in Kelvins). The equilibrium δ17O-δ18O relationship is given by the equation lnα17O/16O = θlnα18O/16O . The variation of θ with temperature for the quartz-water system was determined empirically using low temperature marine diatoms, microcrystalline quartz and a modern sinter sample. A best fit to the data give the equation θSiO2 - H2O = -(1.85 ± 0.04)/T + 0.5305 , indistinguishable from an earlier theoretical estimate. Application of the quartz-water triple isotope system to low temperature samples provides constraints on both temperature and composition of the water with which the silica last equilibrated. Authigenic quartz crystallization temperatures cluster around 50 °C, which are lower than many previous estimates. The combined δ18O and δ17O values of samples considered to be in equilibrium with ocean or meteoric waters can be used to estimate both formation temperatures and the δ18O value of the meteoric water. Unlike other multiple isotopes systems, such as combined H and O isotopes in cherts, the oxygen source and diagenetic potential for both 17O/16O and 18O/16O ratios are identical, simplifying interpretations from ancient samples.

  8. Phase transitions in the system MgO-CO 2-H 2O during CO 2 degassing of Mg-bearing solutions

    NASA Astrophysics Data System (ADS)

    Hopkinson, Laurence; Kristova, Petra; Rutt, Ken; Cressey, Gordon

    2012-01-01

    This study documents the paragenesis of magnesium carbonates formed during degassing of CO 2 from a 0.15 M Mg 2+ aqueous solution. The starting solutions were prepared by CO 2 sparging of a brucite suspension at 25 °C for 19 h, followed by rapid heating to 58 °C. One experiment was performed in an agitated environment, promoted by sonication. In the second, CO 2 degassing was exclusively thermally-driven (static environment). Electric conductance, pH, and temperature of the experimental solutions were measured, whereas Mg 2+ was determined by atomic absorption spectroscopy. Precipitates were analysed by X-ray diffraction, Fourier transform (FT) mid-infrared, FT-Raman, and scanning electron microscopy. Hydromagnesite [Mg 5(CO 3) 4(OH) 2·4H 2O] precipitated at 25 °C was followed by nesquehonite [Mg(HCO 3,OH)·2H 2O] upon heating to 58 °C. The yield of the latter mineral was greater in the agitated solution. After 120 min, accelerated CO 2 degassing resulted in the loss of nesquehonite at the expense of an assemblage consisting of an unnamed mineral phase: [Mg 5(CO 3) 4(OH) 2·8H 2O] and hydromagnesite. After 240 min, dypingite [Mg 5(CO 3) 4(OH) 2·5H 2O (or less H 2O)] appears with hydromagnesite. The unnamed mineral shows greater disorder than dypingite, which in turn shows greater disorder than hydromagnesite. In the static environment, there is no evidence for nesquehonite loss or the generation of [Mg 5(CO 3) 4(OH) 2· XH 2O] phases over the same timeframe. Hence, results indicate that the transformation of nesquehonite to hydromagnesite displays mixed diffusion and reaction-limited control and proceeds through the production of metastable intermediates, and is interpreted according to the Ostwald step rule. Nevertheless, variations in the chemistry of nesquehonite, combined with the established tendency of the mineral to desiccate, implies that its transformation to hydromagnesite is unlikely to follow a single simple sequential reaction pathway.

  9. A simple synthesis and characterization of binary Co 0.5Fe 0.5(H 2PO 4) 2·2H 2O and its final decomposition product CoFeP 4O 12

    NASA Astrophysics Data System (ADS)

    Boonchom, Banjong; Danvirutai, Chanaiporn; Vittayakorn, Naratip

    2011-01-01

    This paper reports the synthesis of binary Co 0.5Fe 0.5(H 2PO 4) 2·2H 2O by a simple, rapid and cost-effective method using CoCO 3-Fe(c)-H 3PO 4 system in water-acetone media at ambient temperature. Thermal transformation of the synthesized powder was investigated by TG/DTG/DTA and DSC techniques, which indicate that its final decomposed product was a binary cobalt iron cyclotetraphosphate CoFeP 4O 12. The FTIR and XRD results of the synthesized Co 0.5Fe 0.5(H 2PO 4) 2·2H 2O and the decomposed CoFeP 4O 12 indicate the pure monoclinic phases with space group P2 1/n and C2/c, respectively. The morphologies of Co 0.5Fe 0.5(H 2PO 4) 2·2H 2O and CoFeP 4O 12 powders appear non-uniform particle shapes and high agglomerates, which are different from the cases of the single compounds M(H 2PO 4) 2·2H 2O and M 2P 4O 12 (where M = Co, Fe). The magnetic properties of the studied compounds are superparamagnetic behaviors, which are important for specific applications. The physical properties of the studied powders are comparable with those reported in our previous study, affected by medium and condition of preparation method.

  10. K3B3O4(OH)4·2H2O: A UV Nonlinear Optical Crystal with Isolated [B3O4(OH)4](3-) Anion Groups.

    PubMed

    Liu, Qiong; Zhang, Xiangyu; Yang, Zhihua; Zhang, Fangfang; Liu, Lili; Han, Jian; Li, Zhi; Pan, Shilie

    2016-09-01

    A potential ultraviolet (UV) nonlinear optical (NLO) material, K3B3O4(OH)4·2H2O, was successfully synthesized by hydrothermal methods. The compound crystallizes into the Cmc21 space group and exhibits isolated [B3O4(OH)4](3-) anion groups connected by O-H···O hydrogen bonds. The UV-vis diffuse reflectance spectrum shows that K3B3O4(OH)4·2H2O has a wide transparency range with an absorption edge below 190 nm. Powder second harmonic generation (SHG) measurements using 1064 nm radiation revealed a moderate efficiency, 0.8 × KDP. Additional particle size vs SHG efficiency measurements indicate that K3B3O4(OH)4·2H2O is type I phase-matchable. Our calculated results show that the borate groups as well as the waters of hydration determine the NLO properties of K3B3O4(OH)4·2H2O.

  11. K3B3O4(OH)4·2H2O: A UV Nonlinear Optical Crystal with Isolated [B3O4(OH)4](3-) Anion Groups.

    PubMed

    Liu, Qiong; Zhang, Xiangyu; Yang, Zhihua; Zhang, Fangfang; Liu, Lili; Han, Jian; Li, Zhi; Pan, Shilie

    2016-09-01

    A potential ultraviolet (UV) nonlinear optical (NLO) material, K3B3O4(OH)4·2H2O, was successfully synthesized by hydrothermal methods. The compound crystallizes into the Cmc21 space group and exhibits isolated [B3O4(OH)4](3-) anion groups connected by O-H···O hydrogen bonds. The UV-vis diffuse reflectance spectrum shows that K3B3O4(OH)4·2H2O has a wide transparency range with an absorption edge below 190 nm. Powder second harmonic generation (SHG) measurements using 1064 nm radiation revealed a moderate efficiency, 0.8 × KDP. Additional particle size vs SHG efficiency measurements indicate that K3B3O4(OH)4·2H2O is type I phase-matchable. Our calculated results show that the borate groups as well as the waters of hydration determine the NLO properties of K3B3O4(OH)4·2H2O. PMID:27504674

  12. Fast Switching of CO3(-)(H2O)n and O2(-)(H2O)n reactant ions in dopant-assisted negative photoionization ion mobility spectrometry for explosives detection.

    PubMed

    Cheng, Shasha; Wang, Weiguo; Zhou, Qinghua; Chen, Chuang; Peng, Liying; Hua, Lei; Li, Yang; Hou, Keyong; Li, Haiyang

    2014-03-01

    Ion mobility spectrometry (IMS) has become the most deployed technique for on-site detection of trace explosives, and the reactant ions generated in the ionization source are tightly related to the performances of IMS. Combination of multiform reactant ions would provide more information and is in favor of correct identification of explosives. Fast switchable CO3(-)(H2O)n and O2(-)(H2O)n reactant ions were realized in a dopant-assisted negative photoionization ion mobility spectrometer (DANP-IMS). The switching could be achieved in less than 2 s by simply changing the gas flow direction. Up to 88% of the total reactant ions were CO3(-)(H2O)n in the bidirectional mode, and 89% of that were O2(-)(H2O)n in the unidirectional mode. The characteristics of combination of CO3(-)(H2O)n and O2(-)(H2O)n were demonstrated by the detection of explosives, including 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), ammonium nitrate fuel oil (ANFO), and black powder (BP). For TNT, RDX, and BP, product ions with different reduced mobility values (K0) were observed with CO3(-)(H2O)n and O2(-)(H2O)n, respectively, which is a benefit for the accurate identification. For ANFO, the same product ions with K0 of 2.07 cm(2) V(-1) s(-1) were generated, but improved peak-to-peak resolution as well as sensitivity were achieved with CO3(-)(H2O)n. Moreover, an improved peak-to-peak resolution was also obtained for BP with CO3(-)(H2O)n, while the better sensitivity was obtained with O2(-)(H2O)n.

  13. Middendorfite, K3Na2Mn5Si12(O,OH)36 · 2H2O, a new mineral species from the Khibiny pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Dubinchuk, V. T.; Zadov, A. E.

    2007-12-01

    Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (-), α = 1.534, β = 1.562, and γ = 1.563; 2 V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; -O=F2-0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/ m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [ d, Å, ( I)( hkl)] are: 12.28(100)(002), 4.31(81)(11overline 4 ), 3.555(62)(301, 212), 3.063(52)(008, 31overline 6 ), 2.840(90)(312, 021, 30overline 9 ), 2.634(88)(21overline 9 , 1.0.overline 1 0

  14. Jensenite, Cu3 Te (super 6+) O6 .2H2O, a new mineral species from the Centennial Eureka Mine, Tintic District, Juab County, Utah

    USGS Publications Warehouse

    Roberts, Andrew C.; Grice, Joel D.; Groat, Lee A.; Criddle, Alan J.; Gault, Robert A.; Erd, Richard C.; Moffatt, Elizabeth A.

    1996-01-01

    Jensenite, ideally Cu 3 Te (super 6+) O 6 .2H 2 O, is monoclinic, P2 1 /n (14), with unit-cell parameters refined from powder data: a 9.204(2), b 9.170(2), c 7.584(1) Aa, beta 102.32(3) degrees , V 625.3(3) Aa 3 , a:b:c 1.0037:1:0.8270, Z = 4. The strongest six reflections of the X-ray powder-diffraction pattern [d in Aa(I)(hkl)] are: 6.428(100)(101,110), 3.217(70)(202), 2.601(40)(202), 2.530(50)(230), 2.144(35)(331) and 1.750(35)(432). The mineral is found on the dumps of the Centennial Eureka mine, Juab County, Utah, where it occurs as isolated crystals or as groups of crystals on drusy white quartz. Associated minerals are mcalpineite, xocomecatlite and unnamed Cu(Mg,Cu,Fe,Zn) 2 Te (super 6+) O 6 .6H 2 O. Individual crystals of jensenite are subhedral to euhedral, and form simple rhombs that are nearly equant. Some crystals are slightly elongate [101], with a length-to-width ratio up to 2:1. The largest crystal is approximately 0.4 mm in size; the average size is between 0.1 and 0.2 mm. Cleavage {101} fair. Forms are: {101} major; {110} medium; {100} minor; {301}, {201}, {203}, {102}, {010} very small. The mineral is transparent, emerald green, with a less intense streak of the same color and an uneven fracture. Jensenite is adamantine, brittle and nonfluorescent; H (Mohs) 3-4; D (calc.) 4.78 for the idealized formula, 4.76 g/cm 3 for the empirical formula. In a polished section, jensenite is very weakly bireflectant and nonpleochroic. In reflected plane-polarized light in air, it is a nondescript grey, and in oil, it is a much darker grey in color with a brownish tint, with ubiquitous bright green internal reflections. Anisotropy is not detectable. Measured values of reflectance, in air and in oil, are tabulated. Electron-microprobe analyses yielded CuO 50.91, ZnO 0.31, TeO 3 38.91, H 2 O (calc.) [8.00], total [98.13] wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Cu (sub 2.92) Zn (sub 0.02) ) (sub

  15. D/H isotopic fractionation effects in the H2-H2O system: An in-situ experimental study at supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Foustoukos, D.; Mysen, B. O.

    2011-12-01

    Understanding the effect of temperature on the relative distribution of volatiles in supercritical aqueous solutions is important to constrain elemental and isotopic partitioning/fractionation effects in systems applicable to planetary interiors where the temperature-pressure conditions are often beyond existing experimental or theoretical datasets. For example, very little exists for the fundamental equilibria between H2, D2 and HD (H2 + D2 = 2HD), which, in turn, constrains the internal D/H isotope exchange and the evolution of HD in H2-containing systems such as H2-CH4 and H2-H2O. Theoretical calculations considering the partition functions of the molecules predict that with temperature increase, the equilibrium constant of this reaction approximates values that correspond to the stochastic distribution of species. These calculations consider pure harmonic vibrational frequencies, which, however, do not apply to the diatomic molecule of hydrogen, especially because anharmonic oscillations are anticipated to become stronger at high temperatures. Published experimental data have been limited to conditions lower than 468°C with large uncertainties at elevated temperatures. To address the lack of experimental data, a series of hydrothermal diamond anvil experiments has been conducted utilizing vibrational spectroscopy as a novel quantitative method to explore the relative distribution of H- and D-bearing volatiles in the H2-D2-D2O-H2O-Ti-TiO2 system. The fundamentals of this methodology are based on the distinct Raman frequency shift resulting from deuterium substitution in the H-H and O-H bonds. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (for 3-9hrs) at 600-800°C and pressures of 0.5-1 GPa, leading to formation of H2, D2, HD and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in-situ and in the quenched gas phase, indicate a significant deviation from the theoretical estimate of the equilibrium

  16. Zn3(OH)2V2O7·2H2O/g-C3N4: A novel composite for efficient photodegradation of methylene blue under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Qizhao; Zheng, Longhui; Bai, Yan; Zhao, Jianjun; Wang, Fangping; Zhang, Rong; Huang, Haohao; Su, Bitao

    2015-08-01

    In this work, we used a facile method to prepare a series of Zn3(OH)2V2O7·2H2O/g-C3N4 composites in a 70 °C water bath for 10 h and characterized them by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET), and photoluminescence (PL). Degradation of methylene blue (MB) and phenol were carried out to evaluate the photocatalytic activities of samples under visible light irradiation. Presence of Zn3(OH)2V2O7·2H2O increased surface areas and promoted the charge separation, exerted great influence on the photocatalytic activity and absorption capacity of g-C3N4. In addition, the synergic effect was explained and a possible photocatalytic mechanism was proposed.

  17. Solid-liquid phase equilibria at 50 and 75°C in the NaCl + MgCl2 + H2O system and the pitzer model representations

    NASA Astrophysics Data System (ADS)

    Yang, Ji-min; Zhang, Rui-zhi; Liu, Hong; Ma, Si-hong

    2013-12-01

    The solubilities in the NaCl-MgCl2-H2O system were determined at 50 and 75°C and the phase diagrams were constructed on the base of experimental data. One invariant point, two univariant curves, and two crystallization zones, corresponding to sodium chloride and dihydrate (MgCl2 · 6H2O) showed up in the phase diagrams of the ternary system, The mixing parameters θNa,Mg and ΨNa,Mg, Cl and equilibrium constant K sp were evaluated in NaCl-MgCl2-H2O system by least-squares optimization procedure, in which the single-salt Pitzer parameters of NaCl and MgCl2β(0), β(1), and C φ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

  18. Nuclear magnetic relaxation in the ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O : three-magnon scattering?

    NASA Astrophysics Data System (ADS)

    Hori, Hiromitsu; Yamamoto, Shoji

    2004-12-01

    Recent proton spin-lattice relaxation-time (T1) measurements on the ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O are explained by an elaborately modified spin-wave theory. We give strong evidence of the major contribution to 1/T1 being made by the three-magnon scattering rather than the Raman scattering.

  19. Synthesis, Structure, Properties And Biological Behaviour Of The Complex [RuIV (H2L) Cl2].2H2O (H4L= 1,2-Cyclohexanediamminetetraacetic Acid)

    PubMed Central

    Vilaplana, Rosario A.; Castiñeiras, A.

    2004-01-01

    The highly water-soluble ruthenium complex [Ru(H2L)Cl2]2H2o, in which H4L is the sequestering ligand trans-l, 2-cyclohexanediamminetetraacetic acid (cdta) has been synthesized, structurally characterized and its properties studied. The X-ray crystallographic study shows that the chelating coordinated ligand is tetradentate while the ruthenium environment is octahedral and slightly distorted, with two chloride anions coordinated in cis positions. Potentiometric, conductimetric and infrared studies confirm the presence of two free carboxylic groups, while electronic and voltammetric studies show that the central ion is Ru(IV). The testing of the cytotoxic activity of this complex against three different human cancer cell lines indicates that [Ru(H2L)Cl2].2H2O shows a remarkable and selective antiproliferative effect against the human uterine neck carcinoma HeLa and the malign adenocarcinoma ADLD, showing only a discrete turnout cell inhibition activity against colon adenocarcinoma HT-29. The important antiprotiferative behaviour of complex 1 against the human adenocarcinoma ADLD, indicates that [Ru(H2L)Cl2].2H2O might be considered as potential antineoplastic compound. PMID:18365080

  20. Synthesis and Biological Activity of Manganese (II) Complexes of Phthalic and Isophthalic Acid: X-Ray Crystal Structures of [Mn(ph)(Phen)2(H2O)]· 4H2O, [Mn(Phen)2(H2O)2]2(Isoph)2(Phen)· 12H2O and {[Mn(Isoph)(bipy)]4· 2.75biby}n(phH2 = Phthalic Acid; isoph = Isophthalic Acid; phen = 1,10-Phenanthroline; bipy = 2,2-Bipyridine)

    PubMed Central

    McCann, Malachy; Leon, Vanessa; Geraghty, Majella; McKee, Vickie; Wikaira, Jan

    2000-01-01

    Manganese(II) acetate reacts with phthalic acid (phH2) to give [Mn(ph)]·0.5H2O (1). Reaction of 1 with 1,10-phenanthroline produces [Mn(ph)(phen)]·2H2O (2) and [Mn(ph)(phen)2(H2O)]·4H2O (3). Reaction of isophthalic acid (isophH2) with manganese(II) acetate results in the formation of [Mn(isoph)]·2H2O (4). The addition of the N,N-donor ligands 1,10-phenanthroline or 2,2'-bipyridine to 4 leads to the formation of [Mn2 (isoph)2(phen)3)]·4H2O (5), [(Mn(phen)2(H2O)2]2(isoph)2(phen)·12H2O (6) and {[Mn(isoph)(bipy)]4·2.75 biby}n (7), respectively. Molecular structures of 3, 6 and 7 were determined crystallographically. In 3 the phthalate ligand is bound to the manganese via just one of its carboxylate groups in a monodentate mode with the remaining coordination sites filled by four phenanthroline nitrogen and one water oxygen atoms. In 6 the isophthalates are uncoordinated with the octahedral manganese center ligated by two phenanthrolines and two waters. In 7 the Isophthalate ligands act as bridges resulting in a polymeric structure. One of the carboxylate groups is chelating a single manganese with the other binding two metal centres in a bridging bidentate mode. The phthalate and isophthalate complexes, the metal free ligands and a number of simple manganes salts were each tested for their ability, to inhibit the growth of Candida albicans. Only the “metal free” 1,10-phenanthroline and its manganese complexes were found to be active. PMID:18475957

  1. Synthesis, structure, and characterization of two new polar sodium tungsten selenites: Na2(WO3)3(SeO3)·2H2O and Na6(W6O19)(SeO3)2.

    PubMed

    Nguyen, Sau Doan; Halasyamani, P Shiv

    2013-03-01

    Two new quaternary sodium tungsten selenites, Na2(WO3)3(SeO3)·2H2O (P31c) and Na6(W6O19)(SeO3)2 (C2), have been synthesized and characterized. The former exhibits a hexagonal tungsten oxide layered structure, whereas the latter has a one-dimensional "ribbon" structure. The layers and "ribbons" consist of distorted WO6 and asymmetric SeO3 polyhedra. The layers in Na2(WO3)3(SeO3)·2H2O and the "ribbons" in Na6(W6O19)(SeO3)2 are separated by Na(+) cations. Powder second-harmonic-generation (SHG) measurements on Na2(WO3)3(SeO3)·2H2O and Na6(W6O19)(SeO3)2 using 1064 nm radiation reveal SHG efficiencies of approximately 450× and 20× α-SiO2, respectively. Particle size versus SHG efficiency measurements indicate that the materials are type 1 non-phase-matchable. Converse piezoelectric measurements result in d33 values of approximately 23 and 12 pm/V, whereas pyroelectric measurements reveal coefficients of -0.41 and -1.10 μC/m(2)·K at 60 °C for Na2(WO3)3(SeO3)·2H2O and Na6(W6O19)(SeO3)2, respectively. Frequency-dependent polarization measurements confirm that the materials are nonferroelectric; i.e., the macroscopic polarization is not reversible, or "switchable". IR and UV-vis spectroscopy, thermogravimetric and differential thermal analysis measurements, and electron localization function calculations were also done for the materials. Crystal data: Na2(WO3)3(SeO3)·2H2O, trigonal, space group P31c (No. 159), a = 7.2595(6) Å, b = 7.2595(6) Å, c = 12.4867(13) Å, V = 569.89(9) Å(3), Z = 2; Na6(W6O19)(SeO3)2, monoclinic, space group C2 (No. 5), a = 42.169(8) Å, b = 7.2690(15) Å, c = 6.7494(13) Å, β = 98.48(3)°, V = 2046.2(7) Å(3), Z = 4.

  2. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity.

    PubMed

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable.

  3. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. PMID:25303738

  4. Metal-containing ligands for mixed-metal polymers: novel Cu(II)-Ag(I) mixed-metal coordination polymers generated from [Cu(2-methylpyrazine-5-carboxylate)2(H2O)].3H2O and silver(I) salts.

    PubMed

    Dong, Y B; Smith, M D; zur Loye, H C

    2000-05-01

    One Cu(II)-containing ligand and two Cu(II)-Ag(I) mixed-metal coordination polymers have been synthesized. [Cu(2-methylpyrazine-5-carboxylate)2(H2O)].3H2O (1) was obtained as a molecular complex with two uncoordinated nitrogen donors by the reaction of 2-methylpyrazine-5-carboxylate sodium with CuCl(2).2H2O in water. Compound 1 crystallized in the triclinic space group P1, with a = 10.498(2) A, b = 11.000(2) A, c = 8.1424(16) A, alpha = 98.33(3) degrees, beta = 101.83(3) degrees, gamma = 66.68(3) degrees, and Z = 2. Reactions of 1 with silver(I) salts have been studied. Two Cu(II)-Ag(I) mixed-metal coordination polymers, namely, Ag[Cu(2-methylpyrazine-5-carboxylate)2.(H2O)2](BF4) (2) and Ag[Cu(2-methylpyrazine-5-carboxylate)2.(H2O)2](NO3) (3), have been generated by treating 1 with AgBF4 and AgNO3, respectively. Compound 2 crystallized in the monoclinic space group C2/c, with a = 25.827(5) A, b = 9.6430(19) A, c = 7.4525(15) A, beta = 94.74(3) degrees, and Z = 4. Compound 3 also crystallized in the monoclinic space group C2/c, with a = 25.855(5) A, b = 9.782(2) A, c = 7.1201(14) A, beta = 96.90(3) degrees, and Z = 4. The main structural feature in both 2 and 3 is a zigzag Cu(II)-Ag(I) mixed-metal chain, in which the alternating Cu(II) and Ag(I) centers are linked by 2-methylpyrazine-5-carboxylate spacers. The effect of the nitrate counterion was illustrated by compound 3, in which a novel [Ag+...NO3-] coordination chain has been found which acts as the connector to cross-link the one-dimensional zigzag chains into a three-dimensional network. In addition, an identical interchain O-H...O hydrogen bonding system has been found in both 2 and 3 and has been shown to play a significant role in directing the alignment of the one-dimensional mixed-metal polymer chains in the crystalline state. The magnetic susceptibilities of 2 and 3 were measured and found to follow the Curie law (mu eff = 1.85 for 2 and 1.83 for 3). PMID:11428114

  5. Coordinated bifluoride ions in the first thiofluoride molybdenum triangular cluster complex: synthesis and crystal structure of K5[Mo3S4F7(FHF)2]·2H2O

    NASA Astrophysics Data System (ADS)

    Mironov, Yu. V.; Yarovoi, S. S.; Solodovnikov, S. F.; Fedorov, V. E.

    2003-08-01

    The first triangular thiofluoride cluster complex of molybdenum K5[Mo3S4F7(FHF)2]·2H2O with unexpected coordination of bifluoride ions has been synthesized by the reaction of Mo3S7Br4 with molten KHF2. The compound was characterized by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc21 with four formulas in unit cell of dimensions a=15.1060(20) Å,b=8.7820(9) Å,c=14.3358(13) Å,V=1901.8(4) Å3.

  6. Encapsulation of [X2(H2O)4]2- (X = F/Cl) clusters by pyridyl terminated tripodal amide receptor in aqueous medium: single crystal X-ray structural evidence.

    PubMed

    Chakraborty, Sourav; Dutta, Ranjan; Arunachalam, M; Ghosh, Pradyut

    2014-02-01

    A new tris-amide receptor L based on 1,3,5-methyl substituted benzene platform and pyridyl as an attached unit is synthesized and explored towards anion recognition in aqueous environment. The presence of pyridyl terminal in L facilitates its aqueous solubility. The binding of halides and oxyanions towards L are examined by (1)H-NMR technique in solution and by single crystal X-ray crystallography in solid state studies. Crystallization of fluoride and chloride with L is carried out in acetone-water (1 : 1, v/v) binary solvent mixture that yields crystals for respective host-guest complexes, [L]2·[F2(H2O)4]·[TBA]2 (1) and [L]2·[Cl2(H2O)4]·[TBA]2 (2) suitable for single crystal X-ray diffraction studies. On the other hand, complexation of L with fluoride in dioxane-acetone (1 : 1, v/v) solvent mixture, results the formation of SiF6(2-) encapsulated complex, [L]2·[SiF6(H2O)2]·[TBA]2 (3). Crystallographic result shows the formation of [F2(H2O)4](2-) and [Cl2(H2O)4](2-) zipped 1D-polymeric tweezer-like assemblies of L in acetone-water (1 : 1, v/v) binary solvent mixture in complexes 1 and 2 respectively. Solution state (1)H-NMR studies in D2O-acetone-d6 (1 : 19, v/v) support 1 : 4 (host-guest) binding stoichiometry of F(-), Cl(-), Br(-), NO3(-), HSO4(-) and H2PO4(-) with L. Binding constants of these investigated anions with L by 1 : 1 binding model are calculated which show the following binding order: NO3(-) ≈ HSO4(-) > F(-) ≈ Cl(-) ≈ Br(-) > H2PO4(-). Further, solution state (19)F-NMR studies are also carried out to establish the F(-) binding with L in DMSO-d6.

  7. Significance of the direct relaxation process in the low-energy spin dynamics of a one-dimensional ferrimagnet NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.

    2000-11-01

    In response to recent nuclear magnetic resonance measurements on a ferrimagnetic chain compound NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O [Solid State Commun. 113 (2000) 433], we calculate the nuclear spin-lattice relaxation rate 1/ T1 in terms of a modified spin-wave theory. Emphasizing that the dominant relaxation mechanism arises from the direct (single-magnon) process rather than the Raman (two-magnon) one, we explain the observed temperature and applied-field dependences of 1/ T1. Ferrimagnetic relaxation phenomena are generally discussed and novel ferrimagnets with extremely slow dynamics are predicted.

  8. A novel blue luminescent material Na2[Co(C2O4)2(H2O)2]·6H2O: synthesis, structure, luminescence and magnetic properties.

    PubMed

    Saritha, A; Raju, B; Narsimhulu, M; Rao, D Narayana; Raghavaiah, P; Hussain, K A

    2016-05-17

    The synthesis, crystal structure and physical properties of new disodium trans-diaquabis(oxalato)cobaltate(ii)hexahydrate {Na2[Co(C2O4)2(H2O)2]·6H2O} crystals have been investigated. Single crystal X-ray analysis reveals that this compound crystallizes in the triclinic system with the space group P1[combining macron]. The structure of this complex consists of [Co(C2O4)2(H2O)2](2-) anionic units with a slightly distorted octahedral geometry of cobalt surrounded by four oxygen atoms of two oxalate groups. The anionic units are interlinked by two Na(+) ions with different octahedral and distorted octahedral environments. The electronic absorption spectra of the compound exhibit bands at 208, 246 and 526 nm in the UV and visible regions. A strong blue luminescence was observed at room temperature when excited at 355 nm. The M(H) curve at 2 K shows a significant nonlinear behaviour with almost zero coercivity which clearly indicates an extremely weak antiferromagnetic/ferromagnetic state of the complex.

  9. Hydrothermal synthesis of Na 2(MoOPO 4) 2(HPO 4) · 2H 2O: A layered molybdenum (V) phosphate structure and its relationship to 2VOSO 4 · H 2SO 4

    NASA Astrophysics Data System (ADS)

    Peascoe, R.; Clearfield, A.

    1991-12-01

    The hydrothermal synthesis and structure of the molybdenum (V) phosphate, Na 2(MoOPO 4) 2(HPO 4) · 2H 2O, was determined and compared to the closely related 2VOSO 4 · H 2SO 4 ( B. JORDAN AND C. CALVO, Can. J. Chem.51, 2621 (1973)). Na 2(MoOPO 4) 2(HPO 4) · 2H 2O crystallizes with lattice parameters a = 6.452(2)Å, c = 15.999(1)Å, and z = 2 in the tetragonal space group {I4}/{mmm} and was refined to Rf = 0.041 and Rwf = 0.044 with 426 reflections for which I > 2 σ. The structure is made up of layers of MoOPO 4 composed of alternating molybdenum oxygen octahedra and phosphate tetrahedra. The layers are linked by disordered phosphorus tetrahedra forming tunnels. Thermogravimetric analysis, infrared, solid state, NMR, and ESR spectra indicate the presence of water in the tunnels and molybdenum with an oxidation state of (V).

  10. Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yang; Wang, Xin; Wang, Chengliang; Zhou, Min; Fu, Qun; Wu, Minghong; Lei, Yong

    2015-10-01

    Sodium-ion batteries (SIBs) have recently attracted intensive attentions as a potential alternative to LIBs for large-scale energy storage applications. However, one of the major challenges to the commercialization of SIBs is the limited choice of anode materials that can offer high rate capability. In this regard, we report intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite, fabricated by a facile hydrothermal method, as the anode material for SIBs. It shows s a highly reversible Na-ion storage capacity of 287.4 mAh g-1 after 50 cycles at a large current density of 0.5 A g-1, and excellent rate performance of delivering 206.5 and 127.7 mAh g-1 after 50 cycles at high current densities of 5 and 10 A g-1, respectively. The promising performance is ascribed to both the crystal structure of Cu3V2O7(OH)2·2H2O with a large interlayer spacing, and unique intertwined network morphology of CuVOH-NWs/CFs composite in which CuVOH-NWs and CFs synergistically functioned. This work will pave a way to develop more metal vanadates materials as anodes for high-performance SIBs.

  11. Spectroscopic study performed on films of (3-trimethoxysilylpropyl) ethylenediamine and a dental material (acrylic resin) doped with the luminescent complexes Eu(fod) 3·2H 2O and Eu(fod) 3·terpy

    NASA Astrophysics Data System (ADS)

    de Farias, Robson F.; Alves, Severino; Belian, Mônica F.; Vieira, Magda R. S.; de Souza, Jucimar M.; Pedrosa, Gilmara G.; de Sá, Gilberto F.

    2002-10-01

    By using (3-trimethoxysilylpropyl) ethylenediamine (TSPED) and a dental material (acrylic resin) as precursors, self-standing films doped with the luminescent complexes Eu(fod) 3·2H 2O and Eu(fod) 3·terpy were prepared. The doped films were so studied from a spectroscopic point of view. Is verified that the film composition exerts remarkable effects on both, the intensity and lifetime of the emission process. Acrylic resin films reduces the intensity of the emission process, but increases the lifetime of a such process, in comparison with TSPED films, for which an opposite behavior is observed. The measured lifetimes for the emission process for the compounds Eu(fod) 3·2H 2O in TSPED and acrylic resin films are 306 and 369 μs, respectively. For the same film matrices, the measured lifetimes for the complex Eu(fod) 3·terpy gave the values 347 and 880 μs, respectively.

  12. Monitoring dehydration of the organic-inorganic [(C3H7)4N][SnCl5(H2O)]·2H2O compound using simultaneous thermal and Raman studies

    NASA Astrophysics Data System (ADS)

    Hajlaoui, S.; Chaabane, I.; Guidara, K.; Bulou, A.

    2016-07-01

    In this work we report the experimental studies of the structural phase transition in the [(C3H7)4N]SnCl5(H2O)]·2H2O compound by differential scanning calorimetric (DSC) and Raman spectroscopic. The X-ray powder diffraction study of the [(C3H7)4N][SnCl5(H2O)]·2H2O sample at room temperature showed that this compound is monoclinic and has P121/c1 space group. Differential scanning calorimetric disclosed two types of phase transitions in the temperature range 356-376 (T1) K and at 393 K (T2) characterized, by a loss of water molecules and probably a reconstruction of new anionic parts after T2 transition. The Raman scattering spectra recorded at various temperatures in the wavenumber range from 100 to 3800 cm- 1 covering the domains of existence of changes in the vicinity of the two phase transitions detected by DSC measurement. A detailed study of the spectral parameters (wave number, reduced intensity and the full width at half maximum) as a function of temperature of a chosen band, associated with (νs(Snsbnd O) + νs(Snsbnd Cl)), based on an order-disorder model allowed us to obtain information relative to the activation energy and correlation length.

  13. Reactivity of a New Zirconium Phosphonate Phase, Zr 2(O 3P-CH 2CH 2-bipyridinium-CH 2CH 2-PO 3) X6·2H 2O, Toward Organic and Inorganic Monophosphonates

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lori A.; Burgmeyer, Scott J.

    1999-11-01

    We report that zirconium viologen diphosphonate, (Zr2(O3P-CH2CH2-bipyridinium-CH2CH2-PO3)X6·2H2O), where X=halide ion, ZrVP, will react with a variety of phosphonates (H2O3P-R, where R=OH, H, CH3, C6H5) under mild conditions, producing a disordered porous phase. This is in sharp contrast to the observed reactivity of the more common zirconium phosphonate phases: the α-phase group (IVB) layered phosphonates Zr(O3PR)2 (whose structures are based upon α-(Zr(O3POH)2·H2O), α-ZrP) are resistant to reaction with monophosphonates while γ-Zr(O4P)(O2P(OH)2)·2H2O, γ-ZrP, undergoes topotactic ligand exchange with mono- and di-phosphonates to form ordered porous materials. We follow the reaction by X-ray powder diffraction and IR and UV spectroscopies and investigate the porous nature of the resulting solids through ion-exchange and N2 adsorption experiments.

  14. Mediator enhanced water oxidation using Rb4[Ru(II)(bpy)3]5[{Ru(III)4O4(OH)2(H2O)4}(γ-SiW10O36)2] film modified electrodes.

    PubMed

    Guo, Si-Xuan; Lee, Chong-Yong; Zhang, Jie; Bond, Alan M; Geletii, Yurii V; Hill, Craig L

    2014-07-21

    The water insoluble complex Rb4[Ru(II)(bpy)3]5[{Ru(III)4O4(OH)2(H2O)4}(γ-SiW10O36)2], ([Ru(II)bpy]5[Ru(III)4POM]), was synthesized from Rb8K2[{Ru(IV)4O4(OH)2(H2O)4}(γ-SiW10O36)2] and used for electrocatalytic water oxidation under both thin- and thick-film electrode conditions. Results demonstrate that the [Ru(II)bpy]5[Ru(III)4POM] modified electrode enables efficient water oxidation to be achieved at neutral pH using thin-film conditions, with [Ru(bpy)3](3+)([Ru(III)bpy]) acting as the electron transfer mediator and [Ru(V)4POM] as the species releasing O2. The rotating ring disc electrode (RRDE) method was used to quantitatively determine the turnover frequency (TOF) of the catalyst, and a value of 0.35 s(-1) was obtained at a low overpotential of 0.49 V (1.10 V vs Ag/AgCl) at pH 7.0. The postulated mechanism for the mediator enhanced catalytic water process in a pH 7 buffer containing 0.1 M LiClO4 as an additional electrolyte includes the following reactions (ion transfer for maintaining charge neutrality is omitted for simplicity): [Ru(II)bpy]5[Ru(III)4POM] → [Ru(III)bpy]5[Ru(V)4POM] + 13 e(-) and [Ru(III)bpy]5[Ru(V)4POM] + 2H2O → [Ru(III)bpy]5[Ru(IV)4POM] + O2 + 4H(+). The voltammetry of related water insoluble [Ru(II)bpy]2[S2M18O62] (M = W and Mo) and [Fe(II)Phen]x[Ru(III)4POM] materials has also been studied, and the lack of electrocatalytic water oxidation in these cases supports the hypothesis that [Ru(III)bpy] is the electron transfer mediator and [Ru(V)4POM] is the species responsible for oxygen evolution. PMID:25000486

  15. Comprehensive copper ion hydration: experimental and theoretical investigation of Cu2+(H2O)n, Cu+(H2O)n, CuOH+(H2O)n

    NASA Astrophysics Data System (ADS)

    Sweeney, Andrew

    Guided ion beam tandem mass spectrometry is used to probe the kinetic energy dependence of both Cu2+(H2O)n, where n = 5--10, and CuOH+(H2O)n, where n = 0--4 colliding with Xe. The resulting cross sections are analyzed using statistical models to yield 0 K bond dissociation energies (BDEs). The primary dissociation pathway for Cu2+(H2O)n consists of water loss followed by the sequential loss of additional waters at higher energies until n = 7, at which point charge separation to form CuOH+(H2O) m + H+(H2O)n-m-2 is energetically favored. The primary dissociation pathway for CuOH+(H 2O)n is also water loss and is followed by the sequential loss of additional waters at higher energies until n = 1, at which point OH loss become competitive. The BDEs for loss of water and OH from CuOH +(H2O) are combined in a thermodynamic cycle with literature values to derive BDEs for the loss of OH from CuOH+(H 2O)n, where n = 0, 2--4. Infrared multiple photon dissociation (IRPD) spectroscopy is performed on CuOH+(H2O)n, where n = 2--9. These spectra are characterized through comparison to theoretical spectra of low energy isomers. It is found that CuOH+(H2O) n prefers a 4-coordinate inner shell, although contributions from 5-coordinate geometries cannot be ruled out in most cases and are clearly present for n = 7. This preference is found in the Cu2+(H2O) n system as well and differs from the Cu+(H2O) n system, which prefers a 2-coordinate inner shell. Electronic structure calculations are further employed to yield BDEs which agree reasonably well with experimental values. A method for modeling kinetic energy release distributions (KERD) on a guided ion beam tandem mass spectrometer is proposed. This method achieves reasonable agreement with dissociations occurring over loose transition states when reactants have little energy in excess of the dissociation threshold. Current limitations and future possibilities of this method are discussed in detail.

  16. Theoretical studies of the local structures and electron paramagnetic resonance parameters for Cu2+ center in Zn(C3H3O4)2(H2O)2 single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-Ming; Xiao, Wen-Bo; Wan, Xiong

    2014-07-01

    The electron paramagnetic resonance (EPR) parameters (g factors gxx, gyy, gzz and hyperfine structure constants Axx, Ayy, Azz) are interpreted by taking account of the admixture of d-orbitals in the ground state wave function of the Cu2+ ion in a Zn(C3H3O4)2(H2O)2 (DABMZ) single crystal. Based on the calculation, local structural parameters of the impurity Cu2+ center were obtained (i.e. Ra≈1.92 Å, Rb≈1.96 Å, Rc≈1.99 Å). The theoretical EPR parameters based on the above Cu2+-O2- bond lengths in the DABMZ crystal show good agreement with the observed values and some improvements have been made as compared with those in the previous studies.

  17. Synthesis and structure of new light-resistant bactericide bis(nitrilotrismethylenephosphonato)diaquatetrasilver monohydrate {Ag4[NH(CH2PO3H)3]2(H2O)2} · H2O

    NASA Astrophysics Data System (ADS)

    Somov, N. V.; Chausov, F. F.

    2016-01-01

    A new four-core silver complex {Ag4[NH(CH2PO3H)3]2(H2O)2} · H2O has been synthesized and investigated. Its crystallographic characteristics are sp. gr. Pbar 1, Z = 1, a = 7.5806(2) Å, b = 8.4946(2) Å, c = 10.1092(3) Å, α = 81.087(2)°, β = 88.356(2)°, γ = 82.132(2)°. The ligand in the form of zwitterion is hexdentate. The complex is chelating; each silver atom closes an eight-membered cycle Ag-O-P-C-N-C-P-O. Simultaneously, two ligand molecules form six bridge bonds with neighboring formula units. Silver atoms form a polycyclic cluster Ag4O6, the configuration of which is stabilized by coordination and hydrogen bonds.

  18. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO2+ ion in NaH2PO4·2H2O single crystals

    NASA Astrophysics Data System (ADS)

    Kalfaoğlu, Emel; Karabulut, Bünyamin

    2016-09-01

    Electron paramagnetic resonance (EPR) spectra of VO2+ ions in NaH2PO4·2H2O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO2+ complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO2+ sites. The crystal field around VO2+ ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  19. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  20. Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C9H6NOBr2]2CuBr4·2H2O

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    Single crystals of a hybrid organic/inorganic material with the formula [C9H6NOBr2]2CuBr4·2H2O were studied by X-ray diffraction. The compound crystallizes in the monoclinic system, space group C2/c with the following unit cell parameters: a = 7.8201 (12) Ǻ, b = 18.203 (3) Ǻ, c = 19.486 (3) Ǻ, β = 98.330 (5)°, Z = 4, V = 2744.6 (7) Ǻ3. Crystal structure was solved with a final R = 5.66% for 3483 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via Osbnd H⋯Br, Csbnd H⋯Br, Nsbnd H⋯Br, Nsbnd H⋯O and Osbnd H⋯O hydrogen bending. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements have been carried out on [C9H6NOBr2]2CuBr4·2H2O crystal in the temperature range between 50 and 500 °C. The assignment of the observed bands in the solid state FTIR and Raman spectra of the compound was assisted by the theoretically predicted frequencies and compared with data previously reported for similar compounds. The theoretical geometrical parameters in the ground state have been investigated by density functional theory (DFT) with the B3LYP/LanL2DZ level of theory. The optical properties were investigated by optical absorption and show two bands at 279, 300 nm. The percentages of hydrogen bonding interactions are analyzed by Fingerprint plots of Hirshfeld surface.

  1. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system.

  2. Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H 2PO 4) 2·2H 2O. I: Region of the vibrations of the phosphate ions and external modes of the water molecules

    NASA Astrophysics Data System (ADS)

    Koleva, V.; Stefov, V.; Cahil, A.; Najdoski, M.; Šoptrajanov, B.; Engelen, B.; Lutz, H. D.

    2009-01-01

    Infrared and Raman spectra of Mn(H 2PO 4) 2·2H 2O and of series of deuterated analogues recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT) have been presented and analyzed in detail in respect to the internal vibrations of the HPO4- ions and the external modes of the water molecules. Some vibrational couplings of the stretching and bending PO 4 modes have been discussed. The stretching PO 4 modes appear to be coupled with the in-plane δ(OH) and out-of-plane γ(OH) bending POH vibrations, while the bending PO 4 modes are coupled with the water librations. The mutual exclusion rule is obeyed for all vibrations under consideration. The large frequency separation between the γ(OH) modes of the two POH groups evidences for the considerable difference in the strength of the hydrogen bonds which they form. The observed A-B and g-u splittings for the γ(OH) vibrations show that both intra-chain and inter-chain interactions of the HPO4- ions are significant. Three bands of water librations are found in the IR and Raman spectra of Mn(H 2PO 4) 2·2H 2O and the observed g-u correlation splittings are smaller than 10 cm -1. Strong interactions of ν4 and ν2 modes of PO 4 with the librations of H 2O and D 2O molecules have been found.

  3. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  4. Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7 mol/kg ionic strength at 25 °C

    USGS Publications Warehouse

    Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.

    2014-01-01

    To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.

  5. [Zn 3+ xV 2- xO 7-3 x(OH) 2+3 x]ṡ2H 2O and M[Zn 3- xV 2O 7(OH) 2]Cl 1-2 xṡ( 1+2x)H 2O two families of zinc vanadates with structures related to the hexagonal structure of [Zn 3V 2O 7(OH) 2]ṡ2H 2O

    NASA Astrophysics Data System (ADS)

    Hoyos, Dora; Palacio, Luz Amparo; Paillaud, Jean-Louis; Simon-Masseron, Angélique; Guth, Jean-Louis

    2004-11-01

    [Zn 3+ xV 2- xO 7-3 x(OH) 2+3 x]ṡ2H 2O ( I), with 02H 2O. Their Zn/V molar ratio can be determined from to the unit-cell parameter a by the linear relations Zn/V=4.896a-28.124 ( R=0.988) for ( I) and Zn/V=15.302a-91.027 (with R=0.992) for ( II). In ( I) the negative charges created by the substitution of vanadium with zinc in the tetrahedra of the pyrovanadate pillars connecting the octahedral sheets containing the zinc, are compensated by protonation of framework oxygen atoms. In ( II) the negative charges, created by the removal of zinc in the octahedral sheet, are compensated by cations ( NH4+ or Rb +) located between the pyrovanadate pillars. But in order to fill more completely the space, additional cations ( NH4+ or Rb +) are incorporated in form of the chloride salt.

  6. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  7. The adsorption of CO(2)/H(2)O/N(2) on 5A zeolite and silica gel in a packed column in one and two-dimensional flows

    NASA Astrophysics Data System (ADS)

    Mohamadinejad, Habib

    The purpose of this work is to develop a computer model that simulates the dynamic behavior of a Four-Bed Molecular Sieves (4-BMS) system. The system will be installed on the International Space Station for removal of CO 2/H2O/N2 on four beds that consist of 5A zeolite, 13X zeolite, and Silica gel. Due to the complexity of the actual 4-BMS, separately packed columns of 5A and Silica gel were built and tested using the model results to obtain the mass and heat transfer coefficients necessary for the development of the 4-BMS. This work begins by introducing the adsorption/desorption process in a packed column. The formulation of the simplest model of adsorption in a packed bed is developed assuming that Darcy's law. In this model, the mass and heat transport gradients are assumed to vary only in the axial direction, i.e., one-dimensional flow. The results of temperature and mass transfer breakthrough of one-dimensional flow are compared with the test results for adsorption of CO2/N2 and CO2/H2O/N2 on 5A zeolite. In the packed column near the wall boundary, the velocity decreases due to the viscous forces and the porosity increases exponentially. This near-wall region of higher porosity results in the channeling of fluid close to the wall surface. This channeling causes an early solute breakthrough relative to the center of the column. In order to accommodate the effect of porosity variation on the breakthrough, a two-dimensional model of the packed column is developed. The results of two-dimensional flow are compared with the test results for adsorption of CO2/N2 and CO2/H 2O/N2 on 5A zeolite. This work also investigates the dynamics of H2O adsorption on Silica gel material. A one-dimensional flow of a packed column bed is developed with the assumption that Darcy's law governs the momentum transport. The results of both models are compared with the test results for adsorption of H 2O/N2 on Silica gel. Finally, a computer model based on the obtained parameters of

  8. Study of a series of cobalt(II) sulfonamide complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. tuberculosis. Crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O

    NASA Astrophysics Data System (ADS)

    Mondelli, Melina; Pavan, Fernando; de Souza, Paula C.; Leite, Clarice Q.; Ellena, Javier; Nascimento, Otaciro R.; Facchin, Gianella; Torre, María H.

    2013-03-01

    Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic-sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated.

  9. A modern, guano-related occurrence of foggite, CaAl(PO4)(OH)2 · H2O and churchite-(Y), YPO4 · 2H2O in Cioclovina Cave, Romania

    NASA Astrophysics Data System (ADS)

    Onac, B. P.; Ettinger, K.; Kearns, J.; Balasz, I. I.

    2005-12-01

    This study reports foggite and churchite-(Y) from two spatially separate locations in the guano-related phosphate deposit from the Cioclovina Cave, Romania. Optical microscope observations, powder X-ray diffraction, electron microprobe analyses, and FTIR were used in the analysis of the two minerals. The chemical composition of foggite was determined to be Ca0.925(Al0.91Fe2+0.016)Σ0.926(P0.991Si0.043)Σ1.034O3.74(OH)2.26 · H2O and churchite-(Y) [(Y0.830Dy0.043Er0.033Gd0.029Yb0.022)Σ0.957Ca0.009]P1.023O4.00 · 2H2O. Chemical analyses of Cioclovina churchite-(Y) clearly revealed enrichment in lanthanides of even atomic number. The refined unit-cell parameters are for foggite (orthorhombic) a = 9.264(1) Å, b = 21.334(8) Å, c = 5.197(7) Å, and V = 1027.13(8) Å3 (Z = 8); for churchite-(Y) (monoclinic): a = 5.578(8) Å, b = 15.013(6) Å, c = 6.277(8) Å, β = 117.94(4)°, and V = 464.38(5) Å3 (Z = 4). FTIR spectrum of churchite-(Y) exhibits all the bands assigned to the vibrations of PO4, OH, and water groups.

  10. Infrared and Raman spectroscopic characterisation of the sulphate mineral creedite - Ca3Al2SO4(F,OH)·2H2O - and in comparison with the alums

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Granja, Amanda

    2013-05-01

    The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm-1 assigned to the SO42- ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm-1 assigned to the SO42- ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm-1 attributed to the SO42- ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.

  11. Synthesis and structural characterization of metal-organic frameworks with the mellitate linker M2(OH)2[C12O12H2]·2H2O (M = Al, Ga, In) MIL-116

    NASA Astrophysics Data System (ADS)

    Volkringer, Christophe; Loiseau, Thierry; Guillou, Nathalie; Férey, Gérard; Popov, Dmitry; Burghammer, Manfred; Riekel, Christian

    2013-12-01

    A new series of isostructural MOF-type carboxylates called MIL-116 (M2(OH)2[C12O12H2]·2H2O), was synthesized from the combination of mellitic acid and trivalent p cations M = Al3+, Ga3+ or In3+. Their structures were analyzed either by single-crystal microdiffraction using the synchrotron radiation beamline (ID13 station at ESRF, Grenoble) or solved from powder X-ray diffraction. The 3D hybrid framework is built up from the connection of infinite straight chains of metal-centered octahedra sharing trans corners linked to each other through the mellitate ligands. Here the ligand acts as octadentate linker with four of the carboxylic groups involved in the M-O-C bondings. The two other carboxylate arms remain non-bonded under their protonated form. This represents a rare case of the occurrence of both non-bonding and bonding organic functionalities in a MOF-type solid. Within the tunnels are located water species that interact with the non-coordinated -COOH groups pointing towards the channel.

  12. Hydrothermal synthesis and structural characterization of Zn(II)- and Cd(II)-pyridine-2,3-dicarboxylate 2D coordination polymers, {(NH 4) 2[M(μ-pydc) 2]·2H 2O} n

    NASA Astrophysics Data System (ADS)

    Çolak, Alper Tolga; Pamuk, Gönül; Yeşilel, Okan Zafer; Yüksel, Fatma

    2011-12-01

    In this study, two novel coordination polymers {(NH 4) 2[M(μ-pydc) 2]·2H 2O} n (M = Zn(II), 1 and Cd(II), 2) (H 2pydc = Pyridine-2,3-dicarboxylic acid or quinolinic acid) have been hydrothermally synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. It has been observed that 1 and 2 have crystallized in the monoclinic space group P2 1/n. The M(II) ions are coordinated by the tridentate pydc bridging ligand through the oxygen atom of the carboxylate groups and the nitrogen atom of the pyridine ring in a bidentate manner and the oxygen atoms of carboxylate groups of other pydc ligands forming a distorted octahedral geometry. X-ray single crystal structural analyses put forth that two-dimensional frameworks were formed, and were assembled into a three-dimensional supramolecular structure by intermolecular N-H⋯O and O-H⋯O hydrogen bonding interactions.

  13. Novel nanoporous MnOx (x=∼1.75) sorbent for the removal of SO2 and NH3 made from MnC2O4·2H2O.

    PubMed

    Ma, Xiaowei; Campbell, Nicholas; Madec, Lénaïc; Rankin, Matthew A; Croll, Lisa M; Dahn, J R

    2016-03-01

    In this work, nanoporous manganese oxides (MnOx) were prepared by thermal decomposition of MnC2O4·2H2O at 225°C for 6h in air. The manganese oxalate dihydrate precipitate was made from manganese sulfate and ammonium oxalate during ultrasonication and stirring. The physical properties of the oxalate precursors and the resulting MnOx samples were characterized with SEM, TGA-DSC, FTIR and powder XRD. The specific surface areas and porosity of MnOx were studied by single-point BET and multi-point N2 adsorption-desorption measurements. The amorphous MnOx from oxalate prepared by sonication showed a specific surface area as large as 499.7m(2)/g. Dynamic SO2 and NH3 flow tests indicated that the adsorption capacity of MnOx, especially for SO2, can be increased by increased surface area. Compared to the best Mn3O4-impregnated activated carbon adsorbent, nanoporous MnOx could remove approximately three times as much SO2 and a comparable amount of NH3 per gram of adsorbent. This could lead to respirators of lower weight and smaller size which will be attractive to users.

  14. Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6

    NASA Astrophysics Data System (ADS)

    Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.

    2015-11-01

    Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)6]·2H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.

  15. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: II. Treatment of micro-beads in He/NH3/H2O and He/O2/H2O mixtures

    NASA Astrophysics Data System (ADS)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas are increasingly being used to functionalize the surface of polymers having complex shapes for biomedical applications such as tissue scaffolds and drug delivering micro-beads. The functionalization often requires affixation of amine (NH2) or O-containing groups. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of non-planar and porous surfaces of polypropylene with NHx and O-containing groups. For the former, the discharge is sustained in He/NH3/H2O mixtures in a dielectric barrier-corona configuration. Significant microscopic non-uniformities arise due to competing pathways for reactive gas phase radicals such as OH and NH2, and on the surface by the availability of OH to initiate amine attachment. The treatment of inside surfaces of porous polymer micro-beads placed on an electrode is particularly sensitive to view angles to the discharge and pore size, and is ultimately controlled by the relative rates of radical transport and surface reactions deep into the pores. The functionalization of micro-beads suspended in He/O2/H2O discharges is rapid with comparable treatment of the outer and interior surfaces, but varies with the location of the micro-bead in the discharge volume.

  16. Two different one-dimensional structural motifs in [catena-{Cu(tacn)}2Pd(CN)4]Br2.[catena-Cu(tacn)Pd(CN)4]2.H2O (tacn is 1,4,7-triazacyclononane).

    PubMed

    Kuchár, Juraj; Cernák, Juraj

    2009-07-01

    The title compound, catena-poly[[bis[(triazacyclononane-kappa(3)N,N',N'')copper(II)]-di-mu-cyanido-kappa(4)N:C-palladate(II)-di-mu-cyanido-kappa(4)C:N] dibromide bis[[(triazacyclononane-kappa(3)N,N',N'')copper(II)]-mu-cyanido-kappa(2)N:C-[dicyanidopalladate(II)]-mu-cyanido-kappa(2)C:N] monohydrate], {[Cu(2)Pd(CN)(4)(C(6)H(15)N(3))(2)]Br(2).[Cu(2)Pd(2)(CN)(8)(C(6)H(15)N(3))(2)].H(2)O}(n), (I), was isolated from an aqueous solution containing tacn.3HBr (tacn is 1,4,7-triazacyclononane), Cu(2+) and tetracyanidopalladate(2-) anions. The crystal structure of (I) is essentially ionic and built up of 2,2-electroneutral chains, viz. [Cu(tacn)(NC)-Pd(CN)(2)-(CN)-], positively charged 2,4-ribbons exhibiting the composition {[Cu(tacn)(NC)(2)-Pd(CN)(2)-Cu(tacn)](2n+)}(n), bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one-quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one-dimensional structural motif within the same structure is a unique feature of this compound. PMID:19578255

  17. Synthesis, crystal structure and third-order non-linear optical properties of a two-dimensional coordination network [Cd(AcO)2(L)2(H2O)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Xia; Pan, Wei-Cheng; Hong, Peng-Zhi; Li, Ke-Chang; Li, Yong

    2015-02-01

    A novel two-dimensional (2-D) Cd(II) coordination network [Cd(AcO)2(L)2(H2O)] 1 (AcO = acetate, L = 4-(1,2,4-triazol-1-yl) benzoic acid ethyl ester) has been synthesized by low-temperature solid-state reaction and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and UV-visible spectra. The molecules of the complex are interconnected into layers by O-H⋯O and C-H⋯O hydrogen bonds in which participate AcO-, L and H2O ligands. The intermolecular hydrogen-bonds interactions are the most significant factors controlling the novel supramolecular sheet fashion packing of the title compound in the crystal state. The third-order non-linear optical (NLO) properties of the title compound 1 were also investigated and they exhibit the reverse saturable absorption and self-defocusing performance with modulus of the hyperpolarizability (γ) 2.30 × 10-30 esu for 1 in a 2.15 × 10-4 mol dm-3 DMF solution.

  18. Stability of the assemblage orthopyroxene-sillimanite-quartz in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Annersten, H.; Seifert, F.

    1981-06-01

    The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate →gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz→ cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)≧0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.

  19. Synthesis and characterization of (H2dab)2Cu8Ge4S14·2H2O: An expanded framework based on icosahedral Cu8S12 cluster

    NASA Astrophysics Data System (ADS)

    Zhang, Ren-Chun; Zhang, Chi; Ji, Shou-Hua; Ji, Min; An, Yong-Lin

    2012-02-01

    A new three-dimensional framework copper-thiogermanate, (H2dab)2Cu8Ge4S14·2H2O (1), was prepared under solvothermal condition and characterized by elemental analysis, single-crystal and powder X-ray diffraction, thermogravimetric analysis and UV-vis diffuse reflectance spectroscopy. Compound 1 crystallizes in the monoclinic space group P2(1)/c, a=11.444(4) Å, b=12.984(4) Å, c=12.455(6) Å, β=91.527(1)°, V=1850.2(3) Å3, Z=2. It contains a new three-dimensional Cu-Ge-S framework constructed from icosahedral [Cu8S12]16- clusters linked by [GeS4]4- and dimeric [Ge2S6]4- units, with diprotonated 1,4-dab (1,4-diaminobutane) and H2O molecules located in the intersecting channels. UV-vis reflectance spectroscopy reveals the band gap of compound 1 is 2.5 eV.

  20. Infrared and Raman spectroscopic characterisation of the sulphate mineral creedite--Ca3Al2SO4(F,OH)·2H2O--and in comparison with the alums.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Granja, Amanda

    2013-05-15

    The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm(-1) assigned to the SO4(2)- ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm(-1) assigned to the SO4(2)- ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm(-1) attributed to the SO4(2)- ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al(3+) in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.

  1. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2.

    PubMed

    Pablos, Cristina; Marugán, Javier; van Grieken, Rafael; Serrano, Elena

    2013-03-01

    Regeneration of wastewater treatment plant effluents constitutes a solution to increase the availability of water resources in arid regions. Water reuse legislation imposes an exhaustive control of the microbiological quality of water in the operation of disinfection tertiary treatments. Additionally, recent reports have paid increasing attention to emerging micropollutants with potential biological effects even at trace level concentration. This work focuses on the evaluation of several photochemical technologies as disinfection processes with the aim of simultaneously achieving bacterial inactivation and oxidation of pharmaceuticals as examples of emerging micropollutants typically present in water and widely studied in the literature. UV-C-based processes show a high efficiency to inactivate bacteria. However, the bacterial damages are reversible and only when using H(2)O(2), bacterial reproduction is affected. Moreover, a complete elimination of pharmaceutical compounds was not achieved at the end of the inactivation process. In contrast, UV-A/TiO(2) required a longer irradiation time to inactivate bacteria but pharmaceuticals were completely removed along the process. In addition, its oxidation mechanism, based on hydroxyl radicals (OH), leads to irreversible bacterial damages, not requiring of chemicals to avoid bacterial regrowth. For UV-A/TiO(2)/H(2)O(2) process, the addition of H(2)O(2) improved Escherichia coli inactivation since the cell wall weakening, due to OH attacks, allowed H(2)O(2) to diffuse into the bacteria. However, a total elimination of the pharmaceuticals was not achieved during the inactivation process.

  2. Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H 2PO 4) 2·2H 2O. Part II: Region of the internal OH group vibrations

    NASA Astrophysics Data System (ADS)

    Koleva, V.; Stefov, V.; Cahil, A.; Najdoski, M.; Šoptrajanov, B.; Engelen, B.; Lutz, H. D.

    2009-02-01

    Infrared and Raman spectra of Mn(H 2PO 4) 2·2H 2O and of series of deuterated analogues recorded at room temperature (RT) and at the boiling temperature of liquid nitrogen (LNT) have been presented and analyzed with respect to the OH vibrations. In the OH stretching mode region ABC bands behaviour is observed in accordance with the structural data for presence of a short hydrogen bond (2.609 Å). It is presumed that the A band of the ABC trio most probably originates from the stretching OH vibrations of strongly hydrogen bonded POH(1) group, but the contribution of the second POH(2) group and the water molecule should be also considered. The strength of the four hydrogen bonds as deduced from the infrared wavenumbers of the isotopically isolated OD groups has been discussed in terms of the respective O···O distances, the hydrogen bond acceptor capability of the oxygen atoms, the hydrogen bond donor strength of the H 2PO 4 ions and water molecules and the hydrogen bond acceptor angles. The influence of the cooperative effect has been also analyzed.

  3. Parallel packing of alpha-helices in crystals of the zervamicin IIA analog Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe.2H2O.

    PubMed Central

    Karle, I L; Sukumar, M; Balaram, P

    1986-01-01

    An apolar synthetic analog of the first 10 residues at the NH2-terminal end of zervamicin IIA crystallizes in the triclinic space group P1 with cell dimensions a = 10.206 +/- 0.002 A, b = 12.244 +/- 0.002 A, c = 15.049 +/- 0.002 A, alpha = 93.94 +/- 0.01 degrees, beta = 95.10 +/- 0.01 degrees, gamma = 104.56 +/- 0.01 degrees, Z = 1, C60H97N11O13 X 2H2O. Despite the relatively few alpha-aminoisobutyric acid residues, the peptide maintains a helical form. The first intrahelical hydrogen bond is of the 3(10) type between N(3) and O(0), followed by five alpha-helix-type hydrogen bonds. Solution 1H NMR studies in chloroform also favor a helical conformation, with seven solvent-shielded NH groups. Continuous columns are formed by head-to-tail hydrogen bonds between the helical molecules along the helix axis. The absence of polar side chains precludes any lateral hydrogen bonds. Since the peptide crystallizes with one molecule in a triclinic space group, aggregation of the helical columns must necessarily be parallel rather than antiparallel. The packing of the columns is rather inefficient, as indicated by very few good van der Waals' contacts and the occurrence of voids between the molecules. Images PMID:2432594

  4. Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission

    NASA Astrophysics Data System (ADS)

    Durry, G.; Li, J. S.; Vinogradov, I.; Titov, A.; Joly, L.; Cousin, J.; Decarpenterie, T.; Amarouche, N.; Liu, X.; Parvitte, B.; Korablev, O.; Gerasimov, M.; Zéninari, V.

    2010-04-01

    A near-infrared tunable diode laser spectrometer called TDLAS has been developed that combines telecommunication-type as well as new-generation antimonide laser diodes to measure C2H2, H2O, CO2 and their isotopologues in the near infrared. This sensor is devoted to the in situ analysis of the soil of the Martian satellite PHOBOS, within the framework of the Russian space mission PHOBOS-GRUNT. In the first part of the paper, we report accurate spectroscopic measurements of C2H2 and 13C12CH2 near 1.533 μm, of H2O and CO2 at 2.682 μm and of the isotopologues 13C16O2 and 16O12C18O near 2.041 μm and H2 17O, H2 18O and HDO near 2.642 μm. The achieved line strengths are thoroughly compared to data from molecular databases or from former experimental determinations. In the second part of the paper, we describe the TDLAS spectrometer for the PHOBOS-GRUNT mission.

  5. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2.

    PubMed

    Pablos, Cristina; Marugán, Javier; van Grieken, Rafael; Serrano, Elena

    2013-03-01

    Regeneration of wastewater treatment plant effluents constitutes a solution to increase the availability of water resources in arid regions. Water reuse legislation imposes an exhaustive control of the microbiological quality of water in the operation of disinfection tertiary treatments. Additionally, recent reports have paid increasing attention to emerging micropollutants with potential biological effects even at trace level concentration. This work focuses on the evaluation of several photochemical technologies as disinfection processes with the aim of simultaneously achieving bacterial inactivation and oxidation of pharmaceuticals as examples of emerging micropollutants typically present in water and widely studied in the literature. UV-C-based processes show a high efficiency to inactivate bacteria. However, the bacterial damages are reversible and only when using H(2)O(2), bacterial reproduction is affected. Moreover, a complete elimination of pharmaceutical compounds was not achieved at the end of the inactivation process. In contrast, UV-A/TiO(2) required a longer irradiation time to inactivate bacteria but pharmaceuticals were completely removed along the process. In addition, its oxidation mechanism, based on hydroxyl radicals (OH), leads to irreversible bacterial damages, not requiring of chemicals to avoid bacterial regrowth. For UV-A/TiO(2)/H(2)O(2) process, the addition of H(2)O(2) improved Escherichia coli inactivation since the cell wall weakening, due to OH attacks, allowed H(2)O(2) to diffuse into the bacteria. However, a total elimination of the pharmaceuticals was not achieved during the inactivation process. PMID:23276426

  6. Synthesis, Crystal Structure, and Magnetic Properties of a Chiral Cyanide-Bridged Bimetallic Framework K3[Mn(II)(L-asp)]6[Cr(III)(CN)6]·2H2O.

    PubMed

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-01-01

    All five coordinating atoms of the amino-acid dianion L-aspartate (L-asp = NH2CH(COO)CH2COO(2-)) are found to be involved in coordination with Mn(II) in the presence of [Cr(III)(CN)6](3-) to self-assemble into a chiral three-dimensional cyanide-bridged K3[Mn(L-asp)]6[Cr(CN)6]·2H2O containing the highest ratio of Mn:Cr of 6:1. It adopts the chiral P3 (no. 143) space group consisting of zigzag Mn-OCO-Mn chains sharing edges of hexagonal channels with central [Cr(CN)6](3-), while K(+) and H2O occupy another parallel star-shaped channel. Its magnetic susceptibility above 100 K is dominated by the nearest neighbor (Mn-Cr at 5.08 and 5.31 Å) antiferromagnetic (AF) exchange interactions (θ = -15(1) K) and below 40 K by further AF interaction between Mn and Mn at 5.32 Å. It finally reaches a steady value at 4.5 K, where a bifurcation of the zero-field-cooled and field-cooled magnetizations is observed in small fields (<1 kOe). The isothermal magnetization is linear in field and deviating toward saturation above 60 kOe at 2 K. No imaginary component of the ac susceptibilities is observed. This behavior is associated with long-range antiferromagnetic order of a helical or conic nature where the magnetic sublattices are numerous [2n × (6Mn + 1Cr)], leading to a domain of sufficient size to allow for the presence of the bifurcation. A model is proposed based on the local anisotropy and symmetry multiplicity of the space group. PMID:26671258

  7. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  8. Solubility-product constant and thermodynamic properties for synthetic otavite, CdCO3(s), and aqueous association constants for the Cd(II)-CO2-H2O system

    USGS Publications Warehouse

    Stipp, S.L.S.; Parks, George A.; Nordstrom, D.K.; Leckie, J.O.

    1993-01-01

    Considerable disparity exists in the published thermodynamic data for selected species in the Cd(II)-CO2-H2O system near 25??C and 1 atm pressure. Evaluation of published experimental and estimated data for aqueous cadmium-carbonate species suggests an association constant, pK, of -3.0 ?? 0.4 for CdCO30, about -1.5 for CdHCO3+, and -6.4 ?? 0.1 for Cd(CO3)22- (T = 298.15 K; P = 1 atm; I = 0). Examination of all available data for cadmium-hydrolysis species and ??-Cd(OH)2(s)) confirms that the consistent set of constants presented by Baes and Mesmer (Hydrolysis of Cations, 1976) is the best available. The solubility of synthetic otavite, CdCO3(s), has been measured in KClO4 solutions where I ??? 0.1 M. We calculated pKsp = 12.1 ?? 0.1 (T = 25.0??C; P = 1 atm; I = 0) from measured concentrations of Cd2+, measured PC02 and pH, our selected set of equilibrium constants, and activity corrections estimated using the Davies equation. Values at 5 and 50??C were 12.4 ?? 0.1 and 12.2 ?? 0.1, respectively. Based on the new solubility data and the CODATA key values for Cd2+ and CO32-, a new set of thermodynamic properties is recommended for otavite: ??Gf0 = -674.7 ?? 0.6 kJ/mol; ??Hf0 = -751.9 ?? 10 kJ/mol; S0 = 106 ?? 30 J/mol K; and ??Gr0 for the reaction Cd2+ + CO32- ??? CdCO3(s) is -69.08 ?? 0.57 kJ/m. ?? 1993.

  9. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10.).

    PubMed

    Liu, YuPing; Zhao, Shu-Feng; Guo, Si-Xuan; Bond, Alan M; Zhang, Jie; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2016-03-01

    Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation.

  10. Synthesis, Crystal Structure, and Magnetic Properties of a Chiral Cyanide-Bridged Bimetallic Framework K3[Mn(II)(L-asp)]6[Cr(III)(CN)6]·2H2O.

    PubMed

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-01-01

    All five coordinating atoms of the amino-acid dianion L-aspartate (L-asp = NH2CH(COO)CH2COO(2-)) are found to be involved in coordination with Mn(II) in the presence of [Cr(III)(CN)6](3-) to self-assemble into a chiral three-dimensional cyanide-bridged K3[Mn(L-asp)]6[Cr(CN)6]·2H2O containing the highest ratio of Mn:Cr of 6:1. It adopts the chiral P3 (no. 143) space group consisting of zigzag Mn-OCO-Mn chains sharing edges of hexagonal channels with central [Cr(CN)6](3-), while K(+) and H2O occupy another parallel star-shaped channel. Its magnetic susceptibility above 100 K is dominated by the nearest neighbor (Mn-Cr at 5.08 and 5.31 Å) antiferromagnetic (AF) exchange interactions (θ = -15(1) K) and below 40 K by further AF interaction between Mn and Mn at 5.32 Å. It finally reaches a steady value at 4.5 K, where a bifurcation of the zero-field-cooled and field-cooled magnetizations is observed in small fields (<1 kOe). The isothermal magnetization is linear in field and deviating toward saturation above 60 kOe at 2 K. No imaginary component of the ac susceptibilities is observed. This behavior is associated with long-range antiferromagnetic order of a helical or conic nature where the magnetic sublattices are numerous [2n × (6Mn + 1Cr)], leading to a domain of sufficient size to allow for the presence of the bifurcation. A model is proposed based on the local anisotropy and symmetry multiplicity of the space group.

  11. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10.).

    PubMed

    Liu, YuPing; Zhao, Shu-Feng; Guo, Si-Xuan; Bond, Alan M; Zhang, Jie; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2016-03-01

    Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation. PMID:26848832

  12. Multiphoton ionization studies of clusters of immiscible liquids. II. C6H6- (H2O)n, n=3-8 and (C6H6)2- (H2O)1,2

    NASA Astrophysics Data System (ADS)

    Garrett, Aaron W.; Zwier, Timothy S.

    1992-03-01

    Resonant two-photon ionization (R2PI) time-of-flight mass spectroscopy is used to record S0-S1 spectra of the neutral complexes C6H6-(H2O)n with n=3-8 and (C6H6)2-(H2O)1,2. Due to limitations imposed by the size of these clusters, a number of vibronic level arguments are used to constrain the gross features of the geometries of these clusters. Among the spectral clues provided by the data are the frequency shifts of the transitions, their van der Waals structure, the fragmentation of the photoionized clusters, and the complexation-induced origin intensity and 610 splitting. In the 1:3 cluster, simple arguments are made based on the known structures of the 1:1 and 1:2 clusters which lead to the conclusion that all three water molecules reside on the same side of the benzene ring. Three structures for the 1:3 cluster are proposed which are consistent with the available data. Of these, only one is also consistent with the remarkable similarity of the 1:4 and 1:5 spectra to those of the 1:3 cluster. This structure involves a cyclic water trimer in which one of the water molecules is near the sixfold axis in a π hydrogen-bonded configuration. This structure is then expanded in the 1:4 and 1:5 clusters to incorporate the fourth and fifth water molecules in cyclic structures which place the additional water molecules far from the benzene ring without disturbing the interaction of the other water molecules with the benzene ring. For 1:n clusters with n≥6, subtle and then significant changes are observed in the spectra which indicate changes in the way the water cluster interacts with the benzene ring. This development occurs at precisely the water cluster size which calculations predict that cagelike water cluster structures will begin to compete and eventually be favored over large cyclic structures. Finally, cursory scans of the 2:1 cluster show that this cluster also fragments efficiently upon photoionization by loss of a single water molecule and that it possesses a

  13. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    USGS Publications Warehouse

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  14. Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Lyalina, L. M.; Zolotarev, A. A.; Selivanova, E. A.; Savchenko, Ye. E.; Krivovichev, S. V.; Mikhailova, Yu. A.; Kadyrova, G. I.; Zozulya, D. R.

    2016-05-01

    Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, is a new mineral found in nepheline syenite pegmatite in the Sakharjok alkaline massif, Western Keivy, Kola Peninsula, Russia. The pegmatite mainly consists of nepheline, albite, alkali pyroxenes, amphiboles, biotite and zeolites. Batievaite-(Y) is a late-pegmatitic or hydrothermal mineral associated with meliphanite, fluorite, calcite, zircon, britholite-group minerals, leucophanite, gadolinite-subgroup minerals, titanite, smectites, pyrochlore-group minerals, zirkelite, cerianite-(Ce), rutile, behoite, ilmenite, apatite-group minerals, mimetite, molybdenite, and nickeline. Batievaite-(Y) is pale-cream coloured with white streak and dull, greasy or pearly luster. Its Mohs hardness is 5-5.5. No cleavage or parting was observed. The measured density is 3.45(5) g/cm3. Batievaite-(Y) is optically biaxial positive, α 1.745(5), β 1.747(5), γ 1.752(5) (λ 589 nm), 2V meas. = 60(5)°, 2V calc. = 65°. Batievaite-(Y) is triclinic, space group P-1, a 9.4024(8), b 5.5623(5), c 7.3784(6) Å, α 89.919(2), β 101.408(2), γ 96.621(2)°, V 375.65(6) Å3 and Z = 1. The eight strongest lines of the X-ray powder diffraction pattern [d(Å)(I)(hkl)] are: 2.991(100)(11-2), 7.238(36)(00-1), 3.061(30)(300), 4.350(23)(0-1-1), 9.145(17)(100), 4.042(16)(11-1), 2.819(16)(3-10), 3.745(13)(2-10). The chemical composition determined by electron probe microanalysis (EPMA) is (wt.%): Nb2O5 2.25, TiO2 8.01, ZrO2 2.72, SiO2 29.96, Al2O3 0.56, Fe2O3 0.43, Y2O3 11.45, La2O3 0.22, Ce2O3 0.33, Nd2O3 0.02, Gd2O3 0.07, Dy2O3 0.47, Er2O3 1.07, Tm2O3 0.25, Yb2O3 2.81, Lu2O3 0.45, CaO 24.98, MnO 1.31, MgO 0.01, Na2O 1.13, K2O 0.02, F 2.88, Cl 0.19, H2O 6.75 (determined on the basis of crystal structure data), O = (F,Cl) -1.25, total 97.09 wt.%. The empirical formula based on the EPMA and single-crystal structure analyses is (Y0.81Ca0.65Mn0.15Zr0.12Yb0.11Er0.04Fe3+ 0.04Ce0.02Dy0.02Lu0.02La0.01Tm0.01)Σ2.00((H2O)0.75Ca0.70□0.55)Σ2.00Ca2.00(□0.61Na0.25( H2O

  15. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  16. Non-centrosymmetric Y(HCOO)3 · 2 H2O crystal. A new inorganic material for Raman lasers with large frequency shift of three promoting vibration modes of its [O-CH-O]- formate anions: effective high-order Stokes and anti-Stokes generation and cascaded self-frequency [(3)(SRS) (2)(SHG, SFM)] and [(2)(SHG, SFM) (3)(SRS)] conversions

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Bohatý, L.; Becker, P.; Eichler, H. J.; Hanuza, J.; Maczka, M.; Ueda, K.; Takaichi, K.; Rhee, H.; Gad, G. M. A.

    2004-11-01

    Efficient multi-phonon steady-state stimulated Raman scattering (SRS) was excited in the novel (3)-active crystal of orthorhombic yttrium formate dihydrate, Y(HCOO)3 . 2 H2O, at room temperature under picosecond laser pumping in the visible and near-IR regions. Besides high-order Stokes and anti-Stokes generation in this non-centrosymmetric crystal, several cascaded second ((2))- and third (χ(3))-order nonlinear interactions were observed under 1 μm pumping. Among them are self-frequency χ(2) χ(3) conversion effects by simultaneous second harmonic generation (SHG) and SRS, as well as χ(3) χ(2) lasing action by successive SRS + SHG and SRS + SFM (sum-frequency mixing). All the recorded Raman-induced lasing wavelengths were identified and attributed to the SRS-promoting optical vibration modes wSRS1 1395 cm-1, wSRS2 1377 cm-1 and wSRS3 2895 cm-1 of the [O-HC-O]- ionic groups of the crystal. The measured large Raman frequency shifts and estimated moderately high steady-state Raman gain coefficient for the first Stokes generation (gSt1-1ssR ≥ 7.5 cm GW-1) in the visible of the first SRS-promoting mode, as well as the fact that it is easy to grow large crystals of Y(HCOO)3 . 2 H2O make this material attractive for a number of new applications in modern quantum electronics and nonlinear optics. Y(HCOO)3 . 2 H2O offers the largest Raman frequency shifts among all known SRS-active inorganic crystals.

  17. A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases

    NASA Astrophysics Data System (ADS)

    Fasshauer, Detlef W.; Chatterjee, Niranjan D.; Cemic, Ladislav

    Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All Cp measurements have been executed by DSC in the temperature range 133-823K. The data for T>=223K have been fitted to the function Cp(T)=a+cT -2+dT -0.5+fT -3, the fit parameters being The thermal expansion data (up to 525°C) have been fitted to the function V0(T)=V0(T) [1+v1 (T-T0)+v2 (T-T0)2], with T0=298.15K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way.

  18. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon

    NASA Astrophysics Data System (ADS)

    Soulard, P.; Tremblay, B.

    2015-12-01

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  19. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed. PMID:26671379

  20. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  1. Microcrystalline phase transformation from ZrF4·HF·2H2O to ZrO2 through the intermediate phases ZrF4·3H2O, ZrF4·H2O, Zr2OF6·H2O and ZrF4

    NASA Astrophysics Data System (ADS)

    Dey, C. C.

    2014-09-01

    The behavior of hydrated zirconium fluoride has been studied by perturbed angular correlation spectroscopy. It is found that the crystalline compound ZrF4·HF·2H2O, formed initially by drying solution of Zr metal in concentrated HF, transforms spontaneously to ZrF4·3H2O. This trihydrated compound dehydrates to ZrF4 through the intermediate monohydrates ZrF4·H2O and Zr2OF6·H2O. The compound ZrF4 finally transforms to ZrO2 at ∼343 K. Different crystalline phases of ZrF4·HF·2H2O, ZrF4·3H2O, ZrF4·H2O, Zr2OF6·H2O, ZrF4 and ZrO2 have been identified and characterized by PAC spectroscopy. From previous PAC measurements, the intermediate ZrF4·H2O and Zr2OF6·H2O were not observed and the dehydration from ZrF4·3H2O to ZrF4 was found to be routed directly. Present measurements by PAC exhibits dissimilar crystal structures for ZrF4·3H2O and ZrF4·H2O unlike the crystal structures found in hafnium analogous compounds.

  2. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)2]·2H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    PubMed

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)2]·2H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed. PMID:25279600

  3. Metal ion interactions with nucleobases in the tetradentate 1,4,7,10-tetraazacyclododecane (cyclen)-ligand system: Crystal structures of [Cu(cyclen)(adeninato)]·ClO 4·2H 2O, [{Cu(cyclen)} 2(hypoxanthinato)]·(ClO 4) 3, [Cu(cyclen)(theophyllinato)] 3·(ClO 4) 3·2H 2O, and [Cu(cyclen)(xanthinato)]·(0.7ClO 4)·(0.3ClO 4)·3H 2O·(0.5H 2O) 3

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shahidur; Yuan, Hou Qun; Kikuchi, Takanori; Fujisawa, Ikuhide; Aoki, Katsuyuki

    2010-03-01

    Reaction of 1,4,7,10-tetraazacyclododecane (cyclen) and Cu(ClO 4) 2·6H 2O with nucleobases (adenine, hypoxanthine, xanthine, theophylline, cytosine, or uracil) under alkaline conditions gave four ternary cyclen-metal-nucleobase complexes, [Cu(cyclen)(adeninato)]·ClO 4·2H 2O ( 1), [{Cu(cyclen)} 2(hypoxanthinato)]·(ClO 4) 3 ( 2), [Cu(cyclen)(theophyllinato)] 3·(ClO 4) 3·2H 2O ( 3), and [Cu(cyclen)(xanthinato)]·(0.7ClO 4)·(0.3ClO 4)·3H 2O·(0.5H 2O) 3 ( 4), whose crystal structures were determined by X-ray diffraction. In the adenine complex 1, a cyclen-capped square-pyramidal Cu 2+ ion binds to an adeninato ligand through N(9) with the formation of an intramolecular interligand hydrogen bond between the secondary amino nitrogen of cyclen and N(3) of the base. In the hypoxanthine complex 2, two cyclen-capped Cu 2+ ions bind to a hypoxanthinato ligand, one through N(7) with the formation of an intramolecular N(cyclen)-H···O(6) hydrogen bond and the other through N(9) to form an intramolecular N(cyclen)-H···N(3) hydrogen bond. Similarly, in both the theophylline complex 3 and the xanthine complex 4, each cyclen-capped Cu 2+ ion binds to a theophyllinato or xanthinato ligand through N(7) with the formation of an intramolecular N(cyclen)-H···O(6) hydrogen bond. However, unlike in 2, steric constraints between amino group(s) of cyclen and the methyl group at N(3) of theophylline in 3 or the proton attached to N(9) of xanthine in 4 preclude the metal bonding to N(9) in 3 or N(3) in 4. The significance of intramolecular interligand interaction as a factor that affects metal-binding site(s) on nucleobases is emphasized.

  4. Antiferromagnetism of UO2⋅2H2O

    USGS Publications Warehouse

    Pankey, T.; Senftle, F.E.; Cuttitta, F.

    1963-01-01

    Magnetic susceptibility measurements have been made on UO2⋅xH2O for x=1.78 to x=2.13, and from 77° to 375°K. As the value of x decreased the susceptibility increased. Both these data and structural arguments imply that the formula of this compound is U(OH)4 rather than the dihydrate form. Based on this concept the data have been corrected for diamagnetism and also small amounts of UO2 and H2O which were present. The molar susceptibility of U4+ in U(OH)4 is nearly an order of magnitude less than in other uranium compounds, and it is suggested that this is probably due to superexchange between adjacent uranium atoms through intervening oxygen atoms.

  5. STM/STS observation of polyoxoanions on HOPG surfaces: the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36-.

    PubMed

    Alam, Mohammad S; Dremov, Viacheslav; Müller, Paul; Postnikov, Andrei V; Mal, Sib Sankar; Hussain, Firasat; Kortz, Ulrich

    2006-04-01

    A combination of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) techniques have been performed on the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36- deposited on highly oriented pyrolytic graphite surfaces. Small, regular molecule clusters, as well as separated single molecules, were observed. The size of the molecules is in agreement with the data determined by X-ray crystallography. In STS measurements, we found a rather large contrast at the expected location of the Cu metal centers in our molecules, i.e., the location of the individual Cu ions in their organic matrix is directly addressable by STS.

  6. Synthesis, spectral characterizations and biological studies of transition metal mixed ligand complexes: X-ray crystal structures of [Cu(oda)(Bipy)(H 2O)]·4H 2O and [VO(oda)(Bipy)]·2H 2O

    NASA Astrophysics Data System (ADS)

    Siddiqi, Zafar A.; Sharma, Prashant K.; Shahid, M.; Khalid, Mohd.; Kumar, Sarvendra

    2011-05-01

    The ternary complexes of stoichiometries [M(oda)(Bipy)H 2O]· xH 2O [M = Cu ( 1), x = 4; Co ( 2), x = 2; Ni ( 3), x = 4 or Cr ( 4), x = 3] and [VO(oda)(Bipy)]·2H 2O ( 5), where H 2oda = oxydiacetic acid and Bipy = 2,2'-bipyridine, were prepared and characterized employing elemental, FAB-Mass, FT-IR, EPR, 1H and 13C NMR spectroscopic analyses. X-ray crystallography of ( 1) and ( 5) indicated a six coordinate distorted geometry. The antimicrobial activities of the complexes were investigated against Escherichia coli(k-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) mimic activity of the Cu(II) complex ( 1) was assessed employing NBT assay.

  7. EPR, Mössbauer and magnetic studies of coordination polymers of type [CuxFey(dedb)·2H2O]n (dedb = dianion of 2,5-dichloro-3,6-bis (ethylamino)-1,4-benzoquinone) (x = 0-1, y = 0-1)

    NASA Astrophysics Data System (ADS)

    Singh, Deepshikha; Kòtai, Làszlò; Lazar, Karoly; Prasad, R. L.

    2015-01-01

    Spectroscopic studies of newly synthesized coordination polymers of the type [CuxFey(dedb)·2H2O]n {where dedb = dianion of 2,5-dichloro-3,6-bis(ethylamino)-1,4-benzoquinone (1); x = 1, y = 0 (2); 0, 0.67 (3); 0.5, 0.33 (4); 0.25, 0.5 (5); 0.125, 0.583 (6); 0.0625, 0.625 (7) and n = degree of polymerization} have been carried out by IR, Mössbauer and electron paramagnetic resonance (EPR) spectroscopic techniques. Powder X-ray diffraction studies reveal the crystalline nature of the polymers. Mössbauer and EPR spectroscopic studies and variable temperature susceptibility measurements indicate the presence of high spin Fe(III) (S = 5/2) in the polymers. A rare coexistence of ferromagnetism and electrical conductivity observed is discussed under present communication.

  8. 2D Cu(I) and 3D mixed-valence Cu(I)/Cu(II) coordination polymers: Synthesis and structural characterization of [CuCl(pyz-H) 2]·2H 2O and [Cu 2Cl 2(pyz)(H 2O)]·H 2O (pyz-H = pyrazinic acid)

    NASA Astrophysics Data System (ADS)

    Goher, Mohamed A. S.; Mautner, Franz A.; Vicente, Ramon

    2007-11-01

    Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H) 2]·2H 2O ( 1) and [Cu 2Cl 2(pyz)(H 2O)]·H 2O ( 2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N, N', O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz) 2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu-N bond lengths are 2.009(6) Å and Cu-Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C 5H 3N 2O 2)Cl 2(H 2O)] interconnected by [Cu(I)Cl 2N] tetrahedral unit and [Cu(II)NO 2Cl 2] polyhedra. The Cu(I)-Cl and Cu(I)-N distances are 2.327(2)-2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)-Cl and Cu(II)-N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O-H⋯O are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl - anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.

  9. Single-crystal XRD and solid-state NMR structural resolution of a layered fluorinated gallium phosphate: RbGa3(PO4)(2)(HPO4)F4·C5N2H16·2H2O (MIL-145).

    PubMed

    Martineau, Charlotte; Loiseau, Thierry; Beitone, Lionel; Férey, Gérard; Bouchevreau, Boris; Taulelle, Francis

    2013-01-14

    A new two-dimensional fluorinated gallium phosphate RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O (MIL-145) has been hydrothermally synthesized (180 °C for 36 h) in the presence of 1,5-diaminopentane and rubidium fluoride. Its structural model has been determined by means of single-crystal X-ray diffraction analysis. The structure contains corrugated infinite ribbons of GaO(3)F(3) and GaO(4)F(2) octahedra linked through edge- and corner-sharing mode via fluoride anions. These chains are then connected to each other via phosphate groups to create a layered network delimiting 6-ring channels trapping rubidium cations. The inorganic sheets are intercalated by diprotonated 1,5-diaminopentane and water molecules, ensuring the three-dimensional cohesion via hydrogen bond scheme. (1)H, (13)C, (15)N and (87)Rb solid-state NMR spectra show the presence of two inequivalent amines as well as two Rb cations, confirming the choice of the space group, which was ambiguous from the diffraction data. (71)Ga NMR spectra, acquired at several magnetic fields, contain two different sets of Ga signals, corresponding to the two types of gallium environments in the structure. One-dimensional (19)F and (31)P and (19)F-(31)P two-dimensional NMR experiments have been recorded, which are in full agreement with the proposed structural model. Finally, possible assignments of the (19)F and (31)P resonances to the crystallographic sites in RbGa(3)(PO(4))(2)(HPO(4))F(4)·C(5)N(2)H(16)·2H(2)O have been determined by comparing adjacency matrices build-up from 2D NMR correlation spectra and from the structural data. PMID:23069866

  10. A Comparative Time Differential Perturbed Angular Correlation Study of the Nuclear Quadrupole Interaction in HfF4·HF·2H2O Using 180mHf and 181Hf(β-)181Ta as Nuclear Probes: Is Ta an Innocent Spy?

    NASA Astrophysics Data System (ADS)

    Butz, Tilman; Das, Satyendra K.; Manzhur, Yurij

    2009-02-01

    We report on a comparative study of the nuclear quadrupole interaction of the nuclear probes 180mHf and 181Hf(β -)181Ta in HfF4・HF・2H2O using time differential perturbed angular correlations (TDPAC) at 300 K. For the first probe, assuming a Lorentzian frequency distribution, we obtained ωQ= 103(4) Mrad/s, an asymmetry parameter η = 0.68(3), a linewidth δ = 7.3(3.9)%, and full anisotropy within experimental accuracy. For the second probe, assuming a Lorentzian frequency distribution, we obtained three fractions: (1) with 56.5(7)%, ωQ= 126.64(4) Mrad/s and η = 0.9241(4) with a rather small distribution δ = 0.40(8)% which is attributed to HfF4・HF・2H2O; (2) with 4.6(4)%, ωQ = 161.7(3) Mrad/s and η = 0.761(4) assuming no line broadening which is tentatively attributed to a small admixture of Hf2OF6・H2O; (3) the remainder of 39.0(7)% accounts for a rapid loss of anisotropy and is modelled by a perturbation function with a sharp frequency multiplied by an exponential factor exp(-λ t) with λ = 0.55(2) ns-1. Whereas the small admixture of Hf2OF6・H2O escapes detection by the 180mHf probe, there is no rapid loss of roughly half the anisotropy as is the case with 181Hf(β -)181Ta. This loss could in principle be due to fluctuating electric field gradients originating from movements of nearest neighbour HF adducts and/or H2O molecules after nuclear transmutation to the foreign atom Ta which are absent for the isomeric probe. Alternatively, paramagnetic Ta ions could lead to fluctuating magnetic dipole fields which, when combined with fluctuating electric field gradients, could also lead to a rapid loss of anisotropy. In any case, Ta is not an "innocent spy" in this compound. Although 180mHf is not a convenient probe for conventional spectrometers, the use of fast digitizers and software coincidences would allow to use all γ -quanta in the stretched cascade which would greatly improve the efficiency of the spectrometer. 180mHf could also serve as a Pu

  11. Experimental determination of quartz solubility and melting in the system SiO2-H2O-NaCl at 15-20 kbar and 900-1100 °C: implications for silica polymerization and the formation of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel F.; Manning, Craig E.

    2015-10-01

    We investigated quartz solubility and melting in the system SiO2-NaCl-H2O at 15-20 kbar and 900-1100 °C using hydrothermal piston-cylinder methods. The solubility of natural, high-purity quartz was determined by weight loss. Quartz solubility decreases with increasing NaCl mole fraction ( X NaCl) at fixed pressure and temperature. The decline is greatest at low X NaCl. The solubility patterns can be explained by changes in the concentration and identity of silica oligomers. Modeling of results at 1000 °C, 15 kbar, reveals that silica monomers and dimers predominate at low Si concentration (high X NaCl), that higher oligomers assumed to be trimers become detectable at X NaCl = 0.23, and that the trimers contain >50 % of dissolved Si at X NaCl = 0. The modeling further implies a hydration number for the silica monomer of 1.6, significantly lower than is observed in previous studies. Results at 15 kbar and 1100 °C provide evidence of two coexisting fluid phases. Although solubility could not be determined directly in these cases, the presence or absence of phases over a range of bulk compositions permitted mapping of the topology of the phase diagram. At 1100 °C, 15 kbar, addition of only a small amount of NaCl ( X NaCl = 0.05) leads to separation of two fluid phases, one rich in H2O and SiO2, the other rich in NaCl with lower SiO2. Textural identification of two fluids is supported by very low quench pH due to preferential partitioning of Na into the fluid that is rich in SiO2 and H2O, confirmed by electron microprobe analyses. The addition of NaCl causes the upper critical end point on the SiO2-H2O melting curve to migrate to significantly higher pressure. Correspondence between depolymerization and phase separation of SiO2-H2O-NaCl fluids indicates that polymerization plays a fundamental role in producing critical mixing behavior in silicate-fluid systems.

  12. Synthesis and physic-chemical properties of a copper(II) complex with 2-(2-pyridyl)iminotetrahydro-1,3-thiazine hydrochloride-water (1/2) (PyTzHCl.2H2O). Crystal structure of PyTz and [[CuCl(PyTz)]2(mu-Cl)2].

    PubMed

    Bernalte-Garcia, A; García-Barros, F J; Higes-Rolando, F J; Luna-Giles, F; Pedrero-Marín, R

    2004-01-01

    The synthesis of 2-(2-pyridyl)iminotetrahydro-1,3-thiazine (PyTz) has been carried out, as well as the determination of its X-ray crystal structure, together with the coordination behaviour and equilibra study of PyTzHCl.2H2O with copper(II) in aqueous solution at 298 K and 0.1 M ionic strength in NaClO4. The formation constants are determined and discussed in terms of the characteristics of the ligand. The compound Di-mu-chloro-bis[chloro[2-(2-pyrydil-kappaN)amino-5,6-dihydro-4H-1,3-thiazine-kappaN]copper] has been isolated and its crystal and molecular structure determined by X-ray analysis. The structure consists of dimeric molecules [Cu2Cl4L2], in which copper ions are bridged by two chloro ligands. The geometry about each copper approximates to a distorted square pyramid with the bridging ligands occupying apical and equatorial sites of each copper ion, while the PyTz ligand and the remaining chloride ion are located in an equatorial plane. The compound was also characterized through elemental analysis, magnetic susceptibility, electron paramagnetic resonance, and electronic and infrared spectroscopies. PMID:14659628

  13. Quantitative Measurements of HO2 and other products of n-butane oxidation (H2O2, H2O, CH2O, and C2H4) at elevated temperatures by direct coupling of a jet-stirred reactor with sampling nozzle and cavity ring-down spectroscopy (cw-CRDS).

    PubMed

    Djehiche, Mokhtar; Le Tan, Ngoc Linh; Jain, Chaithanya D; Dayma, Guillaume; Dagaut, Philippe; Chauveau, Christian; Pillier, Laure; Tomas, Alexandre

    2014-11-26

    For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models. PMID:25381864

  14. Optimizing synthesis of Na 2Ti 2SiO 7 · 2H 2O (Na-CST) and ion exchange pathways for Cs 0.4H 1.6Ti 2SiO 7 · H 2O (Cs-CST) determined from in situ synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Celestian, A. J.; Medvedev, D. G.; Tripathi, A.; Parise, J. B.; Clearfield, A.

    2005-08-01

    Observation of wide angle diffraction data collected in situ during synthesis of Na-CST (Na2Ti2O3SiO4 · 2H2O) showed initial crystallization of a precursor phase (SNT) at 30 °C followed by conversion to CST after 1 h at 220 °C. In situ studies of Cs+ ion exchange into the H+ form of CST showed a site-by-site ion exchange pathway accompanied by a simultaneous structural transition from P42/mbc (cell parameters a = 11.0690(6) Å, c = 11.8842(6) Å) to P42/mcm (cell parameters a = 7.847(2) Å, c = 11.9100(6) Å). After approximately 18% Cs+ exchange into site designated Cs2 in space group P42/mcm, a site designated Cs1 in space group P42/mcm began to fill at the center of the 8MR windows until a maximum of approximately 22% exchange was achieved for Cs1. Bond valence sums of site Cs1 to framework O2- are 1.00 v.u., while bond valence sums of site Cs2 to framework O2- are 0.712 v.u. suggesting Cs1 to have a more stable bonding environment.

  15. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  16. The role of steric constraints in the formation of rare aqua bridged coordination polymers: Synthesis, characterization and X-ray structures of polymeric, [Cu(2-chlorobenzoate)2(β-picoline)2(μ-H2O)]n and monomeric, [Cu(2-chlorobenzoate)2(γ-picoline)2(H2O)

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Sharma, Raj Pal; Venugopalan, Paloth; Aree, Thammarat; Ferretti, Valeria

    2015-07-01

    Reaction of hydrated copper(II) 2-chloro-benzoate with β-/γ-picoline in methanol: water mixture (4:1 v/v) yielded polymeric [Cu(2-chlorobenzoate)2(β-picoline)2(μ-H2O)]n; 1 and monomeric [Cu(2-chlorobenzoate)2(γ-picoline)2(H2O)]; 2. The newly synthesized complexes have been characterized by elemental analyses, FT-IR spectroscopy, UV-Visible spectroscopy, TGA and single crystal X-ray structure determination. X-ray crystallographic analysis revealed that both complexes crystallize in the monoclinic crystal system with space group and unit cell dimensions: C2/c; a = 51.71 Å, b = 10.58 Å, c = 10.02 Å and β = 100.5° for 1 and P21/c; a = 11.81 Å, b = 16.33 Å, c = 13.79 Å and β = 90.77° for 2. Whereas in 1 the presence of constituent and mediating water molecules running along a-axis gives rise to 1-dimensional zig-zag polymer chains, in complex 2, the presence of square pyramidal arrangement of ligands around copper(II) center results in monomeric structure. Various non-covalent interactions like Osbnd H⋯O, Csbnd H⋯O and Csbnd H⋯л have been observed to play a decisive role in the stabilization of crystal lattices in both complexes.

  17. Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6[Ga(OH)6·12H2O]2(SO4)3·2H2O and Ca6[M(OH)6·12H2O]2(SO4)2(CO3)2, M = Mn, Sn

    NASA Astrophysics Data System (ADS)

    Norman, Rachel L.; Dann, Sandra E.; Hogg, Simon C.; Kirk, Caroline A.

    2013-11-01

    Investigations into the formation of new ettringite-type phases with a range of trivalent and tetravalent cations were carried out to further study the potential this structure type has to incorporate cations covering a range of ionic radii (0.53-0.69 Å). We report the synthesis and structural characterisation of a new ettringite-type phase, Ca6[Ga(OH)6·12H2O]2(SO4)3·2H2O, which was indexed in space group P31c with the unit cell parameters a = 11.202(2) Å, c = 21.797(3) Å and two new thaumasite-type phases Ca6[M(OH)6·12H2O]2(SO4)2(CO3)2, M = Mn, Sn which were indexed in space group P63 with the unit cell parameters a = 11.071(5) Å, c = 21.156(8) Å and a = 11.066(1) Å, c = 22.420(1) Å respectively. These new phases show the versatility of the ettringite family of structures to tolerate a large range of cation sizes on the octahedral M site and highlights the preference of tetravalent cations to crystallise with the thaumasite structure over the ettringite structure.

  18. Racemic monoperoxovanadium(V) complexes with achiral OO and ON donor set heteroligands: synthesis, crystal structure and stereochemistry of [NH3(CH2)2NH3][VO(O2)(ox)(pic)].2H2O and [NH3(CH2)2NH3][VO(O2)(ox)(pca)].

    PubMed

    Tatiersky, Jozef; Schwendt, Peter; Sivák, Michal; Marek, Jaromír

    2005-07-01

    Monoperoxovanadium(V) complexes, [NH3(CH2)2NH3][VO(O2)(ox)(pic)].2H2O (1) and [NH3(CH2)2NH3][VO(O2)(ox)(pca)] (2) [NH3(CH2)2NH3 = ethane-1,2-diammonium(2+), ox=oxalate(2-), pic=pyridine-2-carboxylate(1-), pca=pyrazine-2-carboxylate(1-)], were synthesized and characterized by X-ray analysis, IR and Raman spectroscopies. The five equatorial positions of the pentagonal bipyramid around the vanadium atoms are occupied by the eta2-peroxo ligand, two oxygen atoms of the ox, and the nitrogen atom of the pic or pca ligands, respectively. The oxo ligand and the oxygen atom of pic or pca are in the axial positions. Networks of X-HO (X=C, N or O) hydrogen bonds, and pi-pi interactions between aromatic rings in and anion-pi interactions in , determine the molecular packings and build up the supramolecular architecture. Three stereochemical rules for occupation of the donor sites in two-heteroligand [VO(O2)(L1)(L2)] complexes (L1, L2 are bidentate neutral or differently charged anionic heteroligands providing an OO, NN or ON donor set) are discussed. and crystallize as racemic compounds. The 51V NMR spectra proved that the parent complex anions of and partially decompose on dissolution in water to the monoperoxo-ox, -pic or -pca complexes.

  19. Two mixed-ligand lanthanide-hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N'-(pyridin-2-ylmethylidene)benzo-hydrazide, C13H11N3O].

    PubMed

    Paschalidis, Damianos G; Harrison, William T A

    2016-02-01

    The gel-mediated syntheses and crystal structures of [N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ(2) N',O]tris(thiocyanato-κN)praseodymium(III) mono-hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ(2) O,O')[N'-(pyri-din-2-ylmethylidene-κN)benzohydrazide-κ(2) N',O](thiocyanato-κN)neo-dym-ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr(3+) ion in (I) is coordinated by two N,N,O-tridentate N'-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio-cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd(3+) ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio-cyanate ion, a bidentate nitrate ion and a water mol-ecule to generate a distorted NdN5O5 bicapped square anti-prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  20. Hydrothermal synthesis and characterization of a new organically templated three-dimensional open-framework gallium phosphate-phosphite (C 6N 2H 18) 2(C 6N 2H 17)Ga 15(OH) 8(PO 4) 2(HPO 4) 12(HPO 3) 6·2H 2O

    NASA Astrophysics Data System (ADS)

    Zhou, Guangpeng; Yang, Yulin; Fan, Ruiqing; Liu, Xinrong; Hong, Hengwu; Wang, Fuping

    2010-07-01

    Using H 3PO 3 as a phosphorus source and oxalic acid as a reducing agent, the first three-dimensional open-framework gallium phosphate-phosphite formula as (C 6N 2H 18) 2(C 6N 2H 17)Ga 15(OH) 8(PO 4) 2(HPO 4) 12(HPO 3) 6·2H 2O ( 1), has been hydrothermally synthesized in the presence of N,N,N',N'-tetramethylenediamine (TMEDA) as a structure-directing agent. Compound 1 crystallizes in trigonal system with space group P - 3, a = b = 19.046(3) Å, c = 8.3306(17) Å, γ = 120°, V = 2617.1(7) Å 3, and Z = 1. Its 3-D network is based on alternated Ga-centered (GaO 4 tetrahedra, GaO 5 trigonal bipyramids, and GaO 6 octahedra) and P-centered (PO 43-, HPO 42-, and HPO 32-) units. Protonated organic amines and water molecules are located in the 12-membered ring channels.

  1. A kinetic study of the reactions of Fe+ with N2O, N2, O2, CO2 and H2O, and the ligand-switching reactions Fe+.X + Y --> Fe+.Y + X (X = N2, O2, CO2; Y = O2, H2O).

    PubMed

    Vondrak, T; Woodcock, K R I; Plane, J M C

    2006-01-28

    A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at

  2. Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece

    NASA Astrophysics Data System (ADS)

    Will, Thomas; Okrusch, Martin; Schmädicke, Esther; Chen, Guoli

    Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist-greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite=calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450°C at 9.5 to 10kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520°C and 19kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey.

  3. Common Building Motifs in Ba2Fe3(PO4)4·2H2O, BaFe3(PO4)3, and Na3Fe3(PO4)4: Labile Fe(2+)/Fe(3+) Ordering and Charge-Dependent Magnetism.

    PubMed

    David, Rénald; Pautrat, Alain; Kabbour, Houria; Mentré, Olivier

    2016-05-01

    Two new mixed-valence Fe(2/3+) barium phosphates have been synthesized in hydrothermal conditions and characterized: Ba2Fe(2.66+)3(PO4)4·2H2O (compound 1, ratio Fe(3+)/Fe(2+) = 2:1, orthorhombic space group Pbca, a = 6.71240(10) Å, b = 10.6077(2) Å, c = 20.9975(5) Å, R1 = 3.39%) and BaFe(2.33+)3(PO4)3 (compound 2, ratio Fe(3+)/Fe(2+) = 1:2, orthorhombic, space group Imma with a = 10.5236(3) Å, b = 13.4454(4) Å, c = 6.6411(2) Å, R1 = 1.63%). 1 has a two-dimensional crystal structure built of [Fe(2.5+)2Fe(3+)1(PO4)4](4-) layers with charge segregation on two individual Fe crystal sites, in contrast to the single valence on these two sites found in similar layers of Na3Fe(3+)3(PO4)4. The crystal structure of 2 is formed of the same layers but condensed into a 3D [Fe(2+)2Fe(3+)1(PO4)3](2-) framework. The complete Fe(2+) vs Fe(3+) charge ordering on the two available sites differs from what was found in the two previous cases and denotes a remarkable charge adaptability of the common elementary units. Compared to the antiferromagnetic Na3Fe(3+)3(PO4)4 the partial iron reduction into Fe(2+) is responsible for strong ferromagnetic components along the c-easy axis for both 1 and 2. Additionally 1 shows multiple magnetization steps in the perpendicular direction, giving raise to atypical anisotropic magnetism into a complex magnetic phase diagram.

  4. Synthesis and Characterization of New Iron Phosphatooxalates: [( - 5H 14N 2] [Fe 4(C 2O 4) 3(HPO 4) 2(H 2O) 2] and [( - 5H 14N 2] [Fe 4(C 2O 4) 3(HPO 4) 2

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jung; Lin, Hsiu-Mei; Lii, Kwang-Hwa

    2001-02-01

    Two new organically templated iron(II) phosphatooxalates, [(S)-C5H14N2] [Fe4(C2O4)3(HPO4)2(H2O)2] (1) and [(S)-C5H14 N2] [Fe4(C2O4)3(HPO4)2] (2), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and Mössbauer spectroscopy. Crystal data are as follows: compound 1, triclinic, P1 (No. 1), a=7.6999(4) Å, b=7.9542(4) Å, c=9.8262(5) Å, α=74.8444(7)°, β=81.7716(8)°, γ=85.4075(8)°, V=574.34(8) Å3, Z=1, and R1=0.0255; compound 2, monoclinic, P21 (No. 4), a=7.5943(8) Å, b=7.8172(8) Å, c=18.318(2) Å, β=99.111(2)°, V=1073.8(3) Å3, Z=2, and R1=0.0281. The structure of 1 consists of dimers of edge-sharing FeO6 octahedra that are linked by phosphate and oxalate groups to generate a three-dimensional framework with intersecting tunnels parallel to the [100] and [010] directions. Diprotonated (S)-2-methylpiperazinium cations are located at the intersections of these tunnels. Compound 1 crystallizes as a minor product when a racemic mixture of 2-methylpiperazine is used in the synthesis, and can be prepared as a major product with a small amount of 2 if optically pure (S)-2-methylpiperzine is used. The structure of 2 is similar to that of 1 except that the coordination around the iron centers in the dimer are square pyramidal and octahedral. The two compounds are the first 3-dimensional phosphatooxalates containing a chiral amine.

  5. Theoretical studies of UO2(OH)(H2O)n+, UO2(OH)2(H2O)n, NpO2(OH)(H2O)n, and PuO2(OH)(H2O)n+ (n<=21) complexes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cao, Zhiji; Balasubramanian, K.

    2009-10-01

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO2(OH)+, UO2(OH)2, NpO2(OH), and PuO2(OH)+ complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO2(H2O)52+ is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  6. A semi-empirical thermodynamic formalism for high-pressure aqueous silicate solutions in the model system K2O-Na2O-CaO-MgO-Al2O3-SiO2-H2O-CO2, a first approach

    NASA Astrophysics Data System (ADS)

    Schertl, H.; Burchard, M.; Hertwig, A.; Maresch, W. V.

    2012-12-01

    The results of experimental solubility determinations in aqueous solutions at high pressures up to 5 GPa are often difficult to gauge with respect to precision and accuracy, because of the potential uncertainties inherent in the available experimental approaches. Existing models of aqueous silicate solutions at low pressures are either unsuitable for extrapolation beyond 0.5 to 1.0 GPa or involve polynomial fits in which the fit parameters lack direct physical meaning. An approach described by Gerya et al. [1,2], based on statistical thermodynamics, allows aqueous silicate solutions to be described as mixtures of fictive oxide "components" together with water molecules in both clustered and "gas-like", i.e. unassociated, states. Burchard et al. [3] presented a first data set for fluids in the system CaO-SiO2-H2O, using the statistical thermodynamic formulation of Gerya et al [1,2] and extending it to include charged fluid species such as Ca2+, Ca(OH)+, Ca(OH)2, OH- and H+. We have now further developed the data set of Burchard et al. [3] by including carbonic fluid species and extending the model system to include MgO and Al2O3. In addition, initial progress has been made in including potassium and sodium model species. Solid phase data were obtained by mathematical conversion of existing thermodynamic mineral data into the semi-empirical form. With this semi-empirical data set calculations for simple, "wet" silicate rocks are now possible. We present applications to suites of jadeitites and jadeite-lawsonite-quartz rocks from the Rio San Juan serpentinite mélanges of the northern Dominican Republic. These rocks have crystallized from high-pressure aqueous fluids in a long-lived intra-oceanic subduction-zone environment at various times and at different P-T conditions (Schertl et al. [4]). The fluid-rock interactions leading to these spectacular rocks are still poorly understood. [1] Gerya et al. (2004) Phys. Chem. Minerals 31, 429-455; [2] Gerya et al. (2005) Eur

  7. Molecular precursors for the preparation of homogenous zirconia-silica materials by hydrolytic sol-gel process in organic media. Crystal structures of [Zr{OSi(O(t)Bu)3}4(H2O)2]·2H2O and [Ti(O(t)Bu){OSi(O(t)Bu)3}3].

    PubMed

    Dhayal, Veena; Chaudhary, Archana; Choudhary, Banwari Lal; Nagar, Meena; Bohra, Rakesh; Mobin, Shaikh M; Mathur, Pradeep

    2012-08-21

    [Zr(OPr(i))(4)·Pr(i)OH] reacts with [HOSi(O(t)Bu)(3)] in anhydrous benzene in 1:1 and 1:2 molar ratios to afford alkoxy zirconosiloxane precursors of the types [Zr(OPr(i))(3){OSi(O(t)Bu)(3)}] (A) and [Zr(OPr(i))(2){OSi(O(t)Bu)(3)}(2)] (B), respectively. Further reactions of A or B with glycols in 1:1 molar ratio afforded six chemically modified precursors of the types [Zr(OPr(i))(OGO){OSi(O(t)Bu)(3)}] (1A-3A) and [Zr(OGO){OSi(O(t)Bu)(3)}(2)] (1B-3B), respectively [where G = (-CH(2)-)(2) (1A, 1B); (-CH(2)-)(3) (2A, 2B) and (-CH(2)CH(2)CH(CH(3)-)} (3A, 3B)]. The precursors A and B are viscous liquids, which solidify on ageing whereas the other products are all solids, soluble in common organic solvents. These were characterized by elemental analyses, molecular weight measurements, FAB mass, FTIR, (1)H, (13)C and (29)Si-NMR studies. Cryoscopic molecular weight measurements of all the products, as well as the FAB mass studies of 3A and 3B, indicate their monomeric nature. However, FAB mass spectrum of the solidified B suggests that it exists in dimeric form. Single crystal structure analysis of [Zr{OSi(O(t)Bu)(3)}(4)(H(2)O)(2)]·2H(2)O (3b) (R(fac) = 11.9%) as well as that of corresponding better quality crystals of [Ti(O(t)Bu){OSi(O(t)Bu)(3)}(3)] (4) (R(fac) = 5.97%) indicate the presence of a M-O-Si bond. TG analyses of 3A, B, and 3B indicate the formation of zirconia-silica materials of the type ZrO(2)·SiO(2) from 3A and ZrO(2)·2SiO(2) from B or 3B at low decomposition temperatures (≤200 °C). The desired homogenous nano-sized zirconia-silica materials [ZrO(2)·nSiO(2)] have been obtained easily from the precursors A and B as well as from the glycol modified precursors 3A and 3B by hydrolytic sol-gel process in organic media without using any acid or base catalyst, and these were characterized by powder XRD patterns, SEM images, EDX analyses and IR spectroscopy.

  8. Further evidence for the tetraoxoiodate(V) anion, IO(4)(3-): hydrothermal syntheses and structures of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O and Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O.

    PubMed

    Sykora, Richard E; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-05-20

    The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.

  9. Polynuclear complexes with bridging pyrophosphate ligands: synthesis and characterisation of {[(bipy)Cu(H2O)(mu-P2O7)Na2(H2O)6] x 4H2O}, {[(bipy)Zn-(H2O)(mu-P2O7)Zn(bipy)]2 x 14H2O} and {[(bipy)(VO)2]2(mu-P2O7)] x 5H2O}.

    PubMed

    Doyle, Robert P; Nieuwenhuyzen, Mark; Kruger, Paul E

    2005-12-01

    The reaction in water of M(II) ions (M = Cu, 1; Zn, 2; VO, 3) with 2,2'-bipyridine (bipy) followed by Na4P2O7 leads to the formation of three new complexes which feature the pyrophosphate anion, P2O7(4-), as a bridging ligand. Single crystal X-ray diffraction revealed 1 to be {[(bipy)Cu(H2O)(micro-P2O7)Na2(H2O)6] x 4H2O}, and 2 as a tetranuclear Zn(II) complex, {[(bipy)Zn(H2O)(micro-P2O7)Zn(bipy)]2 x 14H2O}. The structure of 1 consists of a mononuclear [(bipy)Cu(H2O)(P2O7)]2- unit that links via a pyrophosphate bridge to two Na atoms. The hydrated six-coordinate Na atoms themselves join together through bridging water molecules to generate a 2D Na-water sheet. The structure of 2 consists of a tetranuclear Zn(II) cluster (dimer-of-dimers) with two pyrophosphate ligands bridging between four metal centres. Adjacent clusters interact through face-to-face pi-pi interactions via the bipy ligands to yield a 2D sheet. Adjacent sheets pack in register to create channels, which are filled by the water molecules of crystallisation. An intricate 2D H-bonded water network separates adjacent sheets and encapsulates the tetranuclear clusters. Aspects of the pyrophosphate coordination modes in 1 and 2 are of structural relevance to those found within the inorganic pyrophosphatases. Compound 3, {[(bipy)(VO)2]2(micro-P2O7)] x 5H2O}, was isolated as an insoluble lime-green powder. Its dinuclear structure was elucidated from elemental and thermal analysis, magnetic susceptibility measurement and IR spectroscopy. The latter displayed characteristic bridging pyrophosphate and signature V=O stretches, which were corroborated by contrast to the IR spectra of 1 and 2 and through comparison with those found in the structurally characterised dinuclear complex, {[(bipy)Cu(H2O)]2(micro-P2O7) x 7H2O}, 4. PMID:16471055

  10. Crystal and molecular structure of aspartame X HCl X 2H2O.

    PubMed

    Görbitz, C H

    1987-02-01

    The crystal and molecular structure of the hydrochloride salt of the peptide sweetener aspartame (alpha-L-Asp-L-Phe methyl ester) has been determined at 120 K using 3877 reflections with I greater than 2.5 sigma I. Space group P2(1)2(1)2(1), cell dimensions a = 6.768(1), b = 9.796(1) and c = 26.520(3) A; final R factor 0.033. While the N-terminal L-Asp group in the structure of aspartame itself forms a six-membered ring with an intramolecular hydrogen bond between the carboxylate and the protonated amino terminus, the corresponding group in the hydrochloride adopts a completely different conformation with a weak intramolecular hydrogen bond between the carboxyl group and the N atom of the L-Phe residue. The L-Phe methyl ester moiety is rather similar in the two structures. Of the many possible conformations of aspartame, only one may be expected to function as a substrate at the receptor site for sweet taste, and a proposal is made for this active conformation. PMID:3604519

  11. The Martian climate and energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1986-01-01

    The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.

  12. Ice Grain Collisions in Comparison: CO2, H2O, and Their Mixtures

    NASA Astrophysics Data System (ADS)

    Musiolik, Grzegorz; Teiser, Jens; Jankowski, Tim; Wurm, Gerhard

    2016-08-01

    Collisions of ice particles play an important role in the formation of planetesimals and comets. In recent work, we showed that CO2 ice behaves like silicates in collisions. The resulting assumption was that it should therefore stick less efficiently than H2O ice. Within this paper, a quantification of the latter is presented. We used the same experimental setup to study collisions of pure CO2 ice, pure water ice, and 50% mixtures by mass between CO2 and water at 80 K, 1 mbar, and an average particle size of ˜90 μm. The results show a strong increase of the threshold velocity between sticking and bouncing with increasing water content. This supports the idea that water ice is favorable for early growth phases of planets in a zone within the H2O and the CO2 iceline.

  13. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been achieved.

  14. The FORMAMIDE_2-H_2O Complex: Structure and Hydrogen Bond Cooperative Effects

    NASA Astrophysics Data System (ADS)

    Blanco, Susana; Pinacho, Pablo; Lopez, Juan Carlos

    2016-06-01

    The adduct formamide_2-H_20 has been detected in a supersonic expansion and its rotational spectra in the 5-13 GHz frequency region characterized by narrow-band molecular beam Fourier transform microwave spectroscopy (MB-FTMW). The spectrum shows the hyperfine structure due to the presence of two 14N-nuclei. This hyperfine structure has been analyzed and the determined quadrupole coupling constants together with the rotational constants have been a key for the identification of the adduct structure on the light of ab initio computations. The rotational parameters are consistent with the formation of a three body cycle thanks to the double proton acceptor/proton donor character of both formamide and water. The low value of the planar moment of inertia Pcc indicates that the heavy atom skeleton of the cluster is essentially planar. A detailed analysis of the results reveals the subtle effects of hydrogen bond cooperative effects in this system.

  15. Kinetics of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Sridharan, U. C.; Reimann, B.; Kaufman, F.

    1980-01-01

    The paper describes an experimental study of the title reaction that uses the discharge-flow technique, laser-induced-fluorescence detection of OH and simultaneous monitoring of O and H atoms in the 250-459 K range. The reaction is normal and free from surface effect interference in Teflon or halocarbon wax-coated tube, but not in clean Pyrex. OH radicals are generated in three ways and at low concentrations to eliminate side reactions. The rate constants were determined at 298 K and over the 250-459 K range, with a factor of two higher at 298 K and factors of 3 to 5 higher at 10 to 30 km altitude in the terrestrial atmosphere than previous studies have indicated. The effect of the higher rate constant on atmospheric processes and on recent laboratory measurements of other reactions is also discussed.

  16. Basalt-CO2-H2O Interactions and Variability in Carbonate Mineralization Rates

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2009-02-01

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the U.S., India, Iceland, and Canada. Our previous laboratory studies with Columbia River basalts showed relative quick precipitation of carbonate minerals compared to other siliclastic rocks when batch reacted with water and supercritical CO2. In this study, our prior work with Columbia River basalt was extended to tests with basalts from the eastern U.S., India, and Africa. The basalts are all similar in bulk chemistry and share common minerals such as plagioclase, augite, and a glassy mesostasis. Single pass flow through dissolution experiments under dilute solution and mildly acidic conditions indicate similar cation release behavior among the basalt samples tested. Despite similar bulk chemistry and apparent dissolution kinetics, long-term static experiments with CO2 saturated water show significant differences in rates of mineralization as well as precipitate chemistry and morphology. For example, basalt from the Newark Basin in the U.S. is by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. Calcite grains with classic “dogtooth spar” morphology and trace cation substitution (Mg and Mn) were observed in post-reacted samples associated with the Columbia River basalts. Other basalts produced solid precipitates with compositions that varied chemically throughout the entire testing period. Polished cross sections of the reacted grains show precipitate overgrowths with irregular regions outlined by dark and bright layers indicative of zonations of different compositions. For example, SEM-EDX analysis across carbonate precipitates, which resulted from 854 days of reaction of the Central Atlantic Mafic Province (CAMP) basalt with CO2 saturated water showed distinct chemical regions. Composition of dark colored regions was dominated by a CaCO3 end-member composition, whereas the bright regions were chemically closer to an FeCO3. Chemical differences in the precipitates indicate changes in fluid chemistry unique to the dissolution behavior of each basalt sample reacted with CO2 saturated water.

  17. Surface and Electrochemical Behavior of HSLA in Supercritical CO2-H2O Environment

    SciTech Connect

    M. Ziomek-Moroz; G. R. Holcomb; J. Tylczak; J. Beck; M. Fedkin; S. Lvov

    2012-01-11

    General corrosion was observed on high strength low alloy carbon steel after electrochemical impedance spectroscopy experiments (EIS) performed in H{sub 2}O saturated with CO{sub 2} at 50 C and 15.2 MPa. However, general and localized were observed on the same material surfaces after the EIS experiments performed in supercritical CO{sub 2} containing approximately 6100 ppmv H{sub 2}O at 50 C and 15.2 MPa. The general corrosion areas were uniformly covered by the FeCO{sub 3}-like phase identified by X-ray diffraction (XRD). In the area of localized corrosion, XRD also revealed FeCO{sub 3}-rich islands embedded in {alpha}-iron. The energy dispersive X-ray (EDX) analysis revealed high concentrations of iron, carbon, and oxygen in the area affected by general corrosion and in the islands formed in the area of localized corrosion. The real and imaginary impedances were lower in H{sub 2}O saturated with CO{sub 2} than those in the supercritical CO{sub 2} containing the aqueous phase indicating faster corrosion kinetics in the former.

  18. Materials Data on K2P2H2O7 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on BaRe2H2O9 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Can water be a catalyst on the HO2 + H2O + O3 reactive cluster?

    NASA Astrophysics Data System (ADS)

    Viegas, Luís P.; Varandas, António J. C.

    2012-05-01

    We report a theoretical investigation on the role of water in the reaction between the hydroperoxyl radical and ozone. Due to the encouraging results obtained in our previous work on the HO2 + O3 reaction, and also because of the low computational cost involved, all calculations have employed the Kohn-Sham DFT formalism. In particular, functionals with a high percentage of exact exchange are utilized in order to attain a high accuracy at the saddle points for reaction. It is found that ozone reacts with the HO2 · H2O complex and that the classical barrier height of the oxygen-abstraction mechanism is now lower than the barrier to the hydrogen-abstraction mechanism. The implications of the results on the mechanism of the HO2 + O3 reaction are discussed.

  1. Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials.

    PubMed

    Ciddor, Philip E

    2002-04-20

    The author's recent studies of the refractive index of air are extended, and several assumptions made therein are further examined. It is shown that the alternative dispersion equations for CO2, which are due to Edlen [Metrologia 2, 71 (1966)] and Old et al. [J. Opt. Soc. Am. 61, 89 (1971)] result in differences of less than 2 x 10(-9) in the phase refractive index and less than 3 x 10(-9) in the group refractive index for current and predicted concentrations of CO2. However, because the dispersion equation given by Old et al. is consistent with experimental data in the near infrared, it is preferable to the equation used by Edlen, which is valid only in the ultraviolet and the visible. The classical measurement by Barrell and Sears [Philos. Trans. R. Soc. London Ser. A 238, 1 (1939)] on the refractivity of moist air is shown to have some procedural errors in addition to the one discussed by Birch and Downs [Metrologia 30, 155 (1993)]. It is shown that for normal atmospheric conditions the higher refractivity virial coefficients related to the Lorentz-Lorenz relation are adequately incorporated into the empirically determined first refractivity virial. As a guide to users the practical limits to the calculation of the refractive index of the atmosphere that result from the uncertainties in the measurement of the various atmospheric parameters are summarized.

  2. Mineralization of Basalts in the CO2-H2O-SO2-O2 System

    SciTech Connect

    Schaef, Herbert T.; Horner, Jacob A.; Owen, Antionette T.; Thompson, Christopher J.; Loring, John S.; McGrail, B. Peter

    2014-05-01

    Sequestering carbon dioxide (CO2) containing minor amounts of co-contaminants in geologic formations was investigated in the laboratory through the use of high pressure static experiments. Five different basalt samples were immersed in water equilibrated with supercritical CO2 containing 1wt% sulfur dioxide (SO2) and 1wt% oxygen (O2) at reservoir conditions (~100 bar, 90°C) for 49 and 98 days. Gypsum (CaSO4) was a common precipitate, occurred early as elongated blades with striations, and served as substrates for other mineral products. Bimodal pulses of water released during dehydroxylation were key indicators along with X-ray diffraction for verifying the presences of jarosite-alunite group minerals. Well-developed pseudocubic jarosite crystals formed surface coatings, and in some instances mixtures of natrojarosite and natroalunite aggregated into spherically shaped structures measuring 100 μm in diameter. Reaction products were also characterized using infrared spectroscopy, which indicated OH and Fe-O stretching modes. The presences of jarosite-alunite group minerals were found in the lower wavenumber region from 700–400 cm-1. A strong preferential incorporation of Fe(III) into natrojarosite was attributed to the oxidation potential of O2. Evidence of CO2 was detected during thermal decomposition of precipitates, suggesting the onset of mineral carbonation.

  3. Varying rock responses as an indicator of changes in CO2-H2O fluid composition

    NASA Technical Reports Server (NTRS)

    Friend, C. R. L.

    1986-01-01

    The formation of the late Archean charnockite zone of southern India was ascribed to dehydration recrystallization due to an influx of CO2. Pressure temperature conditions for the metamorphism were calculated at about 750 C and 7.5 Kbar. The composition of the volatile species presently contained in fluid inclusions in the rocks changes across the transition zone. The transition zone was studied at Kabbaldurga and the paths taken by the fluids were identified.

  4. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  5. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1984-01-01

    Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.

  6. Crystal and molecular structure of aspartame X HCl X 2H2O.

    PubMed

    Görbitz, C H

    1987-02-01

    The crystal and molecular structure of the hydrochloride salt of the peptide sweetener aspartame (alpha-L-Asp-L-Phe methyl ester) has been determined at 120 K using 3877 reflections with I greater than 2.5 sigma I. Space group P2(1)2(1)2(1), cell dimensions a = 6.768(1), b = 9.796(1) and c = 26.520(3) A; final R factor 0.033. While the N-terminal L-Asp group in the structure of aspartame itself forms a six-membered ring with an intramolecular hydrogen bond between the carboxylate and the protonated amino terminus, the corresponding group in the hydrochloride adopts a completely different conformation with a weak intramolecular hydrogen bond between the carboxyl group and the N atom of the L-Phe residue. The L-Phe methyl ester moiety is rather similar in the two structures. Of the many possible conformations of aspartame, only one may be expected to function as a substrate at the receptor site for sweet taste, and a proposal is made for this active conformation.

  7. The HO2 + (H2O)n + O3 reaction: an overview and recent developments*

    NASA Astrophysics Data System (ADS)

    Viegas, Luís P.; Varandas, António J. C.

    2016-03-01

    The present work is concerned with the reaction of the hydroperoxyl radical with ozone, which is key in the atmosphere. We first give a brief overview which emphasizes theoretical work developed at the authors' Group, considering not only the naked reaction (n = 0) but also the reaction with one water molecule added to the reactants (n = 1). Aiming at a broad and contextual understanding of the role of water, we have also very recently published the results of the investigation considering the addition of water dimers (n = 2) and trimers (n = 3) to the reactants. Such results are also succinctly addressed before we present our latest and unpublished research endeavors. These consist of two items: the first one addresses a new mechanistic pathway for hydrogen-abstraction in n = 2-4 cases, in which we observe a Grotthuss-like hydrogen shuttling mechanism that interconverts covalent and hydrogen bonds (water molecules are no longer spectators); the second addresses our exploratory calculations of the HO2 + O3 reaction inside a (H2O)20 water cage, where we strive to give a detailed insight of the molecular processes behind the uptake of gas-phase molecules by a water droplet. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60733-5Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  8. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  9. Materials Data on NiP2H2O7 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  11. Dual passivation of GaAs (110) surfaces using O2/H2O and trimethylaluminum.

    PubMed

    Kent, Tyler J; Edmonds, Mary; Chagarov, Evgueni; Droopad, Ravi; Kummel, Andrew C

    2013-12-28

    The nucleation and passivation of oxide deposition was studied on defect-free GaAs (110) surfaces to understand passivation of surfaces containing only III-V heterobonds. The passivation process on GaAs (110) was studied at the atomic level using scanning tunneling microscopy while the electronic structure was determined by scanning tunneling spectroscopy (STS). The bonding of the oxidant and reductant were modeled with density functional theory. To avoid Fermi level pinning during gate oxide atomic layer deposition, a dual passivation procedure was required using both a reductant, trimethylaluminum (TMA), and an oxidant, O2 or H2O. Dosing GaAs (110) with TMA resulted in the formation of an ordered complete monolayer of dimethylaluminum which passivates the group V dangling bonds but also forms metal-metal bonds with conduction band edge states. These edge states were suppressed by dosing the surface with oxidants O2 or H2O which selectively react with group III-aluminum bonds. The presence of an ordered Al monolayer with a high nucleation density was indirectly confirmed by XPS and STS. PMID:24387387

  12. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    USGS Publications Warehouse

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  13. Materials Data on CaB2(H2O3)2 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. CFD convective flow simulation of the varying properties of CO2-H2O mixtures in geothermal systems.

    PubMed

    Yousefi, S; Atrens, A D; Sauret, E; Dahari, M; Hooman, K

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

  15. Magnetic properties of the S=1/2 square lattice antiferromagnet CuF2(H2O)2(pyz)

    SciTech Connect

    Wang, Cuihuan; Lumsden, Mark D; Fishman, Randy Scott; Ehlers, Georg; Hong, Tao; Tian, Wei; Cao, Huibo; Podlesnyak, Andrey A; Dunmars, C; Schlueter, J. A.; Manson, J. L.; Christianson, Andrew D

    2012-01-01

    We have performed elastic and inelastic neutron scattering experiments on single crystal samples of the coordination polymer compound CuF{sub 2}(H{sub 2}O){sub 2}(pyz) (pyz = pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements indicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 {+-} 0.03 {micro}B/Cu. This value is significantly smaller than the single-ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two-dimensional Heisenberg model with a nearest-neighbor magnetic exchange constant J{sub 2D} = 0.934 {+-} 0.0025 meV. The interlayer interaction J{sub perp} in this compound is less than 1.5% of J{sub 2D}. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by {approx}10.3% {+-} 1.4%. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations for the S=1/2 Heisenberg square lattice antiferromagnet, which include corrections for quantum fluctuations to linear spin wave theory.

  16. Pressure-driven orbital reorientations and coordination-sphere reconstructions in [CuF2(H2O)2(pyz)

    SciTech Connect

    Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.; Tozer, S.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S.

    2012-07-23

    Successive reorientations of the Jahn-Teller axes associated with the Cu{sup II} ions accompany a series of pronounced structural transitions in the title compound, as is shown by X-ray crystallography and high-frequency EPR measurements. The second transition forces a dimerization involving two thirds of the Cu{sup II} sites due to ejection of one of the water molecules from the coordination sphere

  17. Materials Data on SrP2(H2O3)3 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.

    PubMed

    Cai, Xuanxuan; Sun, Wei; Xu, Chaochao; Cao, Limei; Yang, Ji

    2016-09-01

    Selective catalytic reduction of NO X by hydrogen (H2-SCR) in the presence of oxygen has been investigated over the NiCo2O4 and Pd-doped NiCo2O4 catalysts under varying conditions. The catalysts were prepared by a sol-gel method in the presence of oxygen within 50-350 °C and were characterized using XRD, BET, EDS, XPS, Raman, H2-TPR, and NH3-TPD analysis. The results demonstrated that the doped Pd could improve the catalyst reducibility and change the surface acidity and redox properties, resulting in a higher catalytic performance. The performance of NiCo1.95Pd0.05O4 was consistently better than that of NiCo2O4 within the 150-350 °C range at a gas hourly space velocity (GHSV) of 4800 mL g(-1) h(-1), with a feed stream containing 1070 ppm NO, 10,700 ppm H2, 2 % O2, and N2 as balance gas. The effects of GHSV, NO/H2 ratios, and O2 feed concentration on the NO conversion over the NiCo2O4 and NiCo1.95Pd0.05O4 catalysts were also investigated. The two samples similarly showed that an increase in GHSV from 4800 to 9600 mL h(-1) g(-1), the NO/H2 ratio from 1:10 to 1:1, and the O2 content from 0 to 6 % would result in a decrease in NO conversion. In addition, 2 %, 5 %, and 8 % H2O into the feed gas had a slightly negative influence on SCR activity over the two catalysts. The effect of SO2 on the SCR activity indicated that the NiCo1.95Pd0.05O4 possesses better SO2 tolerance than NiCo2O4 catalyst does. Graphical abstract The NiCo1.95Pd0.05O4 catalyst achieved over 90 % NO conversion with N2 selectivity of 100 % in the 200∼250 °C range than the maximum 40.5 % NO conversion over NiCo2O4 with N2 selectivity of approximately 80 % in 350 °C.

  19. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  20. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  1. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.

    PubMed

    Cai, Xuanxuan; Sun, Wei; Xu, Chaochao; Cao, Limei; Yang, Ji

    2016-09-01

    Selective catalytic reduction of NO X by hydrogen (H2-SCR) in the presence of oxygen has been investigated over the NiCo2O4 and Pd-doped NiCo2O4 catalysts under varying conditions. The catalysts were prepared by a sol-gel method in the presence of oxygen within 50-350 °C and were characterized using XRD, BET, EDS, XPS, Raman, H2-TPR, and NH3-TPD analysis. The results demonstrated that the doped Pd could improve the catalyst reducibility and change the surface acidity and redox properties, resulting in a higher catalytic performance. The performance of NiCo1.95Pd0.05O4 was consistently better than that of NiCo2O4 within the 150-350 °C range at a gas hourly space velocity (GHSV) of 4800 mL g(-1) h(-1), with a feed stream containing 1070 ppm NO, 10,700 ppm H2, 2 % O2, and N2 as balance gas. The effects of GHSV, NO/H2 ratios, and O2 feed concentration on the NO conversion over the NiCo2O4 and NiCo1.95Pd0.05O4 catalysts were also investigated. The two samples similarly showed that an increase in GHSV from 4800 to 9600 mL h(-1) g(-1), the NO/H2 ratio from 1:10 to 1:1, and the O2 content from 0 to 6 % would result in a decrease in NO conversion. In addition, 2 %, 5 %, and 8 % H2O into the feed gas had a slightly negative influence on SCR activity over the two catalysts. The effect of SO2 on the SCR activity indicated that the NiCo1.95Pd0.05O4 possesses better SO2 tolerance than NiCo2O4 catalyst does. Graphical abstract The NiCo1.95Pd0.05O4 catalyst achieved over 90 % NO conversion with N2 selectivity of 100 % in the 200∼250 °C range than the maximum 40.5 % NO conversion over NiCo2O4 with N2 selectivity of approximately 80 % in 350 °C. PMID:27301438

  2. Comparative sterilization effectiveness of plasma in O2-H2O2 mixtures and ethylene oxide treatment.

    PubMed

    Silva, J M F; Moreira, A J; Oliveira, D C; Bonato, C B; Mansano, R D; Pinto, T J A

    2007-01-01

    We investigated the influence of variable parameters of plasma sterilization and compared its effectiveness with that of ethylene oxide using a reactive ion etching plasma reactor at 13.56 MHz. Gases tested were pure oxygen and oxygen-hydrogen peroxide mixtures in 190/10, 180/20, and 160/40 sccm ratios with constant gas flow at 200 sccm, pressure at 0.100 torr, radio-frequency power at 25 W, 50 W, 100 W, and 150 W, and temperature below 60 degrees C. Ethylene oxide sterilization was performed using 450 mg/L at 55 degrees C, 60% humidity, and -0.65 and 0.60 kgf/cm2 pressure. The biological indicator was Bacillus atrophaeus ATCC 9372, with exposure times of 3 to 120 min. Observed D values were 215.91, 55.55, 9.19, and 2.98 min for pure oxygen plasma at 25 W, 50 W, 100 W, and 150 W, respectively. Oxygen-hydrogen peroxide plasma produced D values of 6.41 min (190/10), 6.47 min (180/20), and 4.02 min (160/40) at 100 W and 1.47 min (190/10), 3.11 min (180/20), and 1.94 min (160/40) at 150 W. Ethylene oxide processes resulted in a D value of 2.86 min. Scanning electron microscopy analyses showed damage to the spore cortex.

  3. CFD Convective Flow Simulation of the Varying Properties of CO2-H2O Mixtures in Geothermal Systems

    PubMed Central

    Yousefi, S.; Atrens, A. D.; Sauret, E.; Dahari, M.; Hooman, K.

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper. PMID:25879074

  4. Materials Data on BaCo2P2H2O9 (SG:5) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. CO2 and humidity removal system for extended Shuttle missions - CO2, H2O, and trace contaminant equilibrium testing

    NASA Technical Reports Server (NTRS)

    Davis, S. H.; Kissinger, L. D.

    1977-01-01

    The equilibrium relationships for the co-adsorption of CO2 and H2O on an amine coated acrylic ester are presented. The equilibrium data collection and reduction techniques are discussed. Based on the equilibrium relationship, other modes of operation of systems containing HS-C are discussed and specific space applications for HS-C are presented. Equilibrium data for 10 compounds which are found as trace contaminants in closed environments are also presented.

  6. Materials Data on LiAlSi2H2O7 (SG:1) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on K2MgMo2(H2O5)2 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Ternary Isothermal Diffusion Coefficients of NaCl-MgCl2-H2O at 25 C. 7. Seawater Composition

    SciTech Connect

    Miller, D G; Lee, C M; Rard, J A

    2007-02-12

    The four diffusion coefficients D{sub ij} of the ternary system NaCl-MgCl{sub 2}-H{sub 2}O at the simplified seawater composition 0.48877 mol {center_dot} dm{sup -3} NaCl and 0.05110 mol {center_dot} dm{sup -3} MgCl{sub 2} have been remeasured at 25 C. The diffusion coefficients were obtained using both Gouy and Rayleigh interferometry with the highly precise Gosting diffusiometer. The results, which should be identical in principle, are essentially the same within or very close to their combined 'realistic' errors. This system has a cross-term D{sub 12} that is larger than the D{sub 22} main-term, where subscript 1 denotes NaCl and 2 denotes MgCl{sub 2}. The results are compared with earlier, less-precise measurements. Recommended values for this system are (D{sub 11}){sub V} = 1.432 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, (D{sub 12}){sub V} = 0.750 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, (D{sub 21}){sub V} = 0.0185 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, and (D{sub 22}){sub V} = 0.728 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}.

  9. The assemblage WO2 + H2O as a steady-state hydrogen source in moderately reduced hydrothermal experiments

    USGS Publications Warehouse

    Cygan, G.L.; I-Ming, Chou

    1990-01-01

    The values of fH2 for the assemblage WO2 + WO2.72 + H2O (designated as WO) have been measured in sealed Au capsules under an external pressure of 2 kbar CH4 and between 650 and 800??C using Ag-AgBr-HBr sensors of fH2. The fH2 values obtained can be represented by the equation log(fWOH2)2kbar,T(??0.06) = (-1924.9 ??(T,K) + 4.06 and are found to be slightly greater than those associated with the previously calibrated C-CH4 buffer. -from Authors

  10. Comparative sterilization effectiveness of plasma in O2-H2O2 mixtures and ethylene oxide treatment.

    PubMed

    Silva, J M F; Moreira, A J; Oliveira, D C; Bonato, C B; Mansano, R D; Pinto, T J A

    2007-01-01

    We investigated the influence of variable parameters of plasma sterilization and compared its effectiveness with that of ethylene oxide using a reactive ion etching plasma reactor at 13.56 MHz. Gases tested were pure oxygen and oxygen-hydrogen peroxide mixtures in 190/10, 180/20, and 160/40 sccm ratios with constant gas flow at 200 sccm, pressure at 0.100 torr, radio-frequency power at 25 W, 50 W, 100 W, and 150 W, and temperature below 60 degrees C. Ethylene oxide sterilization was performed using 450 mg/L at 55 degrees C, 60% humidity, and -0.65 and 0.60 kgf/cm2 pressure. The biological indicator was Bacillus atrophaeus ATCC 9372, with exposure times of 3 to 120 min. Observed D values were 215.91, 55.55, 9.19, and 2.98 min for pure oxygen plasma at 25 W, 50 W, 100 W, and 150 W, respectively. Oxygen-hydrogen peroxide plasma produced D values of 6.41 min (190/10), 6.47 min (180/20), and 4.02 min (160/40) at 100 W and 1.47 min (190/10), 3.11 min (180/20), and 1.94 min (160/40) at 150 W. Ethylene oxide processes resulted in a D value of 2.86 min. Scanning electron microscopy analyses showed damage to the spore cortex. PMID:17722487

  11. Materials Data on SrCo2As2(H2O5)2 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on NaCoBP2H2O9 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. [Degradation of 3,4- Dichlorobenzotrifluoride by Fe3O4/CeO2-H2O2 Heterogeneous Fenton-Like Systems].

    PubMed

    Sun, Zheng-nan; Yang, Qi; Ji, Dong-li; Zheng, Lin

    2015-06-01

    The 3,4-Dichlorobenzotrifluoride (3,4-DCBTE) was dehalogenated with oxidation treatment by heterogeneous Fenton-like system, using nanoscale Fe304/CeO2 as a catalyst. This nanoscale catalyst was prepared by the impregnated method. As a highly active new heterogeneous Fenton-like catalyst, nanoscale Fe304/CeO2 not only has the characteristics of the traditional Fenton-like catalyst but also can prevent the secondary pollution which caused by Fe2+. To find the optimum catalytic conditions for nanoscale Fe3O4/CeO2, the influence factors were investigated. The results indicated that the degradation ratio of 3,4-DCBTE was significantly improved by adding nanoscale Fe3O4/CeO2, with the removal ratio reaching 97.76% in 120 minutes and 79.85% in 20 minutes. As the temperature increasing, the catalytic effect of nanoscale Fe3O4/CeO2 catalyst had been constantly improved obviously. As the pH decreased, the degradation ratio of 3,4-DCBTE increased. With the increase of dosage of hydrogen peroxide (H2O2), the degradation efficiency of 3,4-DCBTE initially increased and then decreased, because oxygen (O2) was generated in preferential self-reaction when an excess of (H2O2) was added. The optimum removal efficiency was observed with the dosage of 15 mg x L(-1). With the increased amount of catalyst, there was a same trend as dosage of hydrogen peroxide (H2O2). The degradation ratio of 3,4-DCBTE initially increased and then decreased, the optimum amount of catalyst was 0.5 g x L(-1). The results also suggested that the reaction process followed the first-order kinetics and the thermodynamic analysis demonstrated that the reaction was only needed low reaction activation energy.

  14. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, L.N.; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.

  15. 2-μm Coherent DIAL for CO2, H2O and Wind Field Profiling in the Lower Atmosphere: Instrumentation and Results

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica; Le Mounier, Florian; Dumas, Arnaud

    2016-06-01

    We report on 2-μm coherent differential absorption lidar (CDIAL) measurements of carbon dioxide (CO2), water vapour (H2O) absorption and wind field profiling in the atmospheric boundary layer. The CDIAL uses a Tm:fiber pumped, single longitudinal mode Q-switched seeded Ho:YLF laser and a fibercoupled coherent detection. The laser operates at a pulse repetition frequency of 2 kHz and emits an output energy of 10 mJ with a pulse width of 40 ns (FWHM). Experimental horizontal and vertical range-resolved measurements were made in the atmospheric boundary layer and compared to colocated in-situ sensor data.

  16. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    SciTech Connect

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.

  17. ChemCam Passive Sky Spectroscopy at Gale Crater: Diurnal and Seasonal cycles of O2, H2O, and aerosols

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; Bender, S. C.; Wolff, M. J.; Johnson, J. R.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Blaney, D. L.; DeFlores, L. P.; Harri, A. M.; Kemppinen, O.; Genzer, M.; Moores, J.; Wong, M. H.; Trainer, M. G.; Martín-Torres, J.; Zorzano, M. P.; Franz, H. B.; Barraclough, B. L.; Atreya, S. K.; Mahaffy, P. R.; Lefèvre, F.; Lasue, J.

    2015-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer has been measuring atmospheric aerosol properties and gas abundances for more than one Martian year, doing so by operating in passive mode and observing scattered sky light at two different elevation angles. We perform these observations at 1 - 2 week intervals, occasionally acquiring multiple observations on a given day to assess the diurnal cycle. Six parameters are retrieved from each observation: dust aerosol particle effective radius, ice aerosol particle effective radius, the fraction of opacity contributed by ice rather than dust aerosol, the ratio of aerosol extinction scale height to gas pressure scale height (as a parameterization of the aerosol vertical profile), the O2 volume mixing ratio, and the water vapor column abundance (in precipitable microns). The retrieval works by first constructing a ratio of the spectra from the two elevation angles and then fitting a discrete ordinates multiple scattering radiative transfer model. Total column opacity, CO2 mixing ratio, and atmospheric pressure are exogenous inputs. They are sourced from Mastcam, SAM QMS, and REMS measurements, respectively. An important feature of our procedure, which we have verified by numerical experimentation, is that the retrieved gas abundances have negligible sensitivity to the accuracy of the aerosol parameter solutions or to exogenous inputs or to a wide range of model assumptions. We will present a survey of the results from the extensive ChemCam passive sky data set, including comparisons to related SAM and REMS in-situ atmospheric sampling and to Mastcam and Navcam sky observation campaigns. We will show that O2 has temporal variation unexplained by existing photochemical models and has vertical variations within the bottom 10 km of the atmosphere in some seasons. We will also show the water vapor is well mixed within the bottom 10 km in some seasons but not in others, and we will address a variety of aerosol phenomena.

  18. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    NASA Astrophysics Data System (ADS)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  19. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander.

    PubMed

    Schulze-Makuch, Dirk; Turse, Carol; Houtkooper, Joop M; McKay, Christopher P

    2008-04-01

    In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.

  20. Major, Trace, and Volatile (CO2, H2O, S, F, and Cl) Elements from 1000+ Hawaiian Olivine-hosted Melt Inclusions Reveal the Dynamics of Crustal Recycling

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2015-12-01

    Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.

  1. Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process.

    SciTech Connect

    1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic; Lukens, Wayne W; Czerwinski, Kenneth R.

    2008-02-26

    Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented by products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.

  2. Simple approximation of total emissivity of CO2-H2O mixture used in the zonal method of calculation of heat transfer by radiation

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.

    2014-12-01

    The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.

  3. EPR, ENDOR, and DFT study of free radicals in L-lysine·HCl·2H2O single crystals X-irradiated at 298 K.

    PubMed

    Zhou, Yiying; Nelson, William H

    2011-10-27

    With K-band EPR (Electron Paramagnetic Resonance), ENDOR (Electron-Nuclear DOuble Resonance), and EIE (ENDOR-induced EPR) techniques, three free radicals (RI-RIII) in L-lysine hydrochloride dihydrate single crystals X-irradiated at 298 K were detected at 298 K, and six radicals (R1, R1', R2-R5) were detected if the temperature was lowered to 66 K from 298 K. R1 and RI dominated the central portion of the EPR at 66 and 298 K, respectively, and were identified as main chain deamination radicals, (-)OOCĊH(CH(2))(4)(NH(3))(+). R1' was identified as a main chain deamination radical with the different configuration from R1 at 66 K, and it probably formed during cooling the temperature from 298 to 66 K. The configurations of R1, R1', and RI were analyzed with their coupling tensors. R2 and R3 each contain one α- and four β-proton couplings and have very similar EIEs at three crystallographic axes. The two-layer ONIOM calculations (at B3LYP/6-31G(d,p):PM3) support that R2 and R3 are from different radicals: dehydrogenation at C4, (-)OOCCH(NH(3))(+)CH(2)ĊH(CH(2))(2)(NH(3))(+), and dehydrogenation at C5, (-)OOCCH(NH(3))(+)(CH(2))(2)ĊHCH(2)(NH(3))(+), respectively. The comparisons of the coupling tensors indicated that R2 (66 K) is the same radical as RII (298 K), and R3 is the same as RIII. Thus, RII and RIII also are the radicals of C4 and C5 dehydrogenation. R4 and R5 are minority radicals and were observed only when temperature was lowered to 66 K. R4 and R5 were only tentatively assigned as the side chain deamination radical, (-)OOCCH (NH(3))(+)(CH(2))(3)ĊH(2), and the radical dehydrogenation at C3, (-)OOCCH(NH(3))(+)ĊH(CH(2))(3)(NH(3))(+), respectively, although the evidence was indirect. From simulation of the EPR (B//a, 66 K), the concentrations of R1, R1', and R2-R5 were estimated as: R1, 50%; R1', 11%; R2, 14%; R3, 16%; R4, 6%; R5, 3%. PMID:21866901

  4. Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system

    PubMed Central

    Unosson, Erik; Tsekoura, Eleni K; Engqvist, Håkan; Welch, Ken

    2013-01-01

    TiO2 photocatalysis can be used to kill surface adherent bacteria on biomaterials, and is particularly interesting for use with percutaneous implants and devices. Its efficiency and safety, however, depend on the activation energy required. This in vitro study investigates synergetic effects against the clinically relevant strains S. epidermidis and S. mutans when combining photocatalytic surfaces with H2O2. After 20 min exposure to 0.1 wt% H2O2 and UV light on TiO2 surfaces, viabilities of S. epidermidis and S. mutans were reduced by 99.7% and 98.9%, respectively. Without H2O2 the corresponding viability reduction was 86% for S. epidermidis and 65% for S. mutans. This study indicates that low concentrations of H2O2 can enhance the efficiency of photocatalytic TiO2 surfaces, which could potentially improve current techniques used for decontamination and debridement of TiO2 coated biomedical implants and devices. PMID:24135830

  5. Reduction of Pertechnetate By Acetohydroxamic Acid: Formation of [tc**II(NO)(AHA)(2)(H(2)O)]**+ And Implications for the UREX Process

    SciTech Connect

    Gong, C.-M.S.; Lukens, W.W.; Poineau, F.; Czerwinski, K.R.

    2009-05-18

    Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented by some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}, 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.

  6. Aqueous Sulfate Separation by Sequestration of [(SO4)2(H2O)4]4 Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals

    DOE PAGESBeta

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.; Ivanov, Aleksandr; Bryantsev, Vyacheslav

    2015-12-18

    Quantitative removal of sulfate from seawater was achieved by selective crystallization of the anion with a bis(guanidinium) ligand self-assembled in situ through imine condensation of simple components. The resulting crystalline salt has an exceptionally low aqueous solubility, on a par with BaSO4. Single-crystal X-ray diffraction analysis revealed pairs of sulfate anions clustered together with four water molecules within the crystals.

  7. Absolute rate constant of the reaction OH + H2O2 yields HO2 + H2O from 245 to 423 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between the hydroxyl radical and hydrogen peroxide was measured by using the discharge-flow resonance fluorescence technique at total pressure between 1 and 4 torr. At 298 K the result is (1.64 + or - 0.32) x 10 to the -12th cu cm/molecule s. The observed rate constant is independent of pressure, surface-to-volume ratio, the addition of vibrational quenchers, and the source of OH. The temperature dependence has also been determined between 245 and 423 K; the resulting Arrhenius expression is k cu cm/molecule s is equal to (2.51 + or - 0.6) x 10 to the -12th exp(-126 + or - 76/T).

  8. Magnetic Behavior of Volborthite Cu3 V2 O7 (OH )2.2 H2O Determined by Coupled Trimers Rather than Frustrated Chains

    NASA Astrophysics Data System (ADS)

    Janson, O.; Furukawa, S.; Momoi, T.; Sindzingre, P.; Richter, J.; Held, K.

    2016-07-01

    Motivated by recent experiments on volborthite single crystals showing a wide 1/3 -magnetization plateau, we perform microscopic modeling by means of density functional theory (DFT) with the single-crystal structural data as a starting point. Using DFT +U , we find four leading magnetic exchanges: antiferromagnetic J and J2, as well as ferromagnetic J' and J1. Simulations of the derived spin Hamiltonian show good agreement with the experimental low-field magnetic susceptibility and high-field magnetization data. The 1/3 -plateau phase pertains to polarized magnetic trimers formed by strong J bonds. An effective J →∞ model shows a tendency towards condensation of magnon bound states preceding the plateau phase.

  9. Effect of glycine addition on the structural, thermal, optical, mechanical and electrical properties of Sr (HCOO)2·2H2O crystals

    NASA Astrophysics Data System (ADS)

    Muthupoongodi, S.; Theodore David Manickam, S.; Mahadevan, C. K.; Angel Mary Greena, J.; Balakumar, S.; Sahaya Shajan, X.

    2015-10-01

    Pure and glycine doped strontium formate dihydrate (SFD) single crystals were grown by the free evaporation method to understand the effect of glycine addition on the structural, thermal, optical, mechanical and electrical properties of SFD crystal. The grown crystals were characterized by carrying out powder X-ray diffraction, high resolution X-ray diffraction, Fourier transform infrared spectral, Raman spectral, UV-vis-NIR spectral, thermogravimetric (TG/DTA), second harmonic generation (SHG), microhardness and DC electrical conductivity measurements. Results obtained in the present study indicate improvement in crystalline perfection, optical transmittance, and SHG efficiency, and change in microhardness, and DC electrical conductivity on doping SFD with glycine. In addition, a large size (~1.9 cm length, ~1.2 cm breath and ~0.6 cm height) SFD crystal with good optical quality could be grown successfully by the seeded free evaporation method.

  10. Crystal structure and phase transition of bis-aqua-sebacato magnesium Mg(C 10H 16O 4) 2(H 2O) 2

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Aranda, Lionel; Steinmetz, Jean; Rocca, Emmanuel; François, Michel

    2011-07-01

    The (bis aqua)(sebacato)magnesium Mg((κ 2)-(κ 1-κ 1)-μ 3-C 10H 16O 4)(H 2O) 2 was synthesized by hydrothermal route. The structure was solved ab initio using optimisation methods from powder X-ray diffraction (PXRD) laboratory data. The structure crystallises in the monoclinic space group P2 1/c with a = 17.336(1) Å, b = 7.456(1) Å, c = 9.573(1) Å, β = 96.43 (1) °, V = 1229.61(9) Å 3, Dx = 1.407 g cm -3 and Z = 4. Rietveld refinement from 399 reflexions leads to a reliability factor Rbragg = 0.06. The structure consists of double sheets of Mg 2+ centred O-octahedra linked by H-bonds and bridged by sebacate anions along [100], building a 3D metal-organic framework 'MOF'. Heating at 100 °C provokes the condensation of the octahedra in an anhydrous compound Mg(C 10H 16O 4) .

  11. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.

    PubMed

    Newland, Mike J; Rickard, Andrew R; Alam, Mohammed S; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J

    2015-02-14

    The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.

  12. KINETICS OF HO2 + HO2 -> H2O2 + O2: IMPLICATIONS FOR STRATOSPHERIC H2O2. (R826236)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. The H2O2+OH → HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation

    SciTech Connect

    Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2008-07-07

    We applied our recently developed protocol of the conductor-like continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute, and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory CVT in the context of the equilibrium solvation path (ESP) approximation, and including correction for tunneling through the small curvature approximation (SCT) was found to be 3.6 106 M-1 s-1, in very good agreement with experiment, These results suggest that the present protocol of the conductor-like continuum model of solvation with the charge-dependent cavity definition captures accurately the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  14. Crystal and molecular structure of the dihydrate of the artificial sweetener lactitol: 4-O-β- D-galactopyranosyl- D-glucitol.2H 2O

    NASA Astrophysics Data System (ADS)

    Kanter, Jan A.; Schouten, Arie; van Bommel, Mark

    1990-10-01

    Crystallization of lactitol from aqueous ethanol readily yields crystals of the monohydrate, the structure of which has recently been reported. Slow evaporation of very concentrated aqueous syrups results in the crystalline dihydrate. The space group is P4 32 12 with a = 8.762(2), c = 45.508(8) Å, V = 3493.8(13) Å 3, Z = 8, Dc = 1.446 g cm -3, R = 0.037 for 2017 unique observed reflections and 310 variables. The galactopyranosyl ring has the 4C1 chair conformation and the carbon chain of the glucitol fragment has a non-planar, bent MAA conformation. The conformations about the glycosidic C(1)O(1) and O(1)C(14) bonds are different from those observed in the monohydrate: the torsion angles O(5)C(1)O(1)C(14) and C(1)O(1)C(14)C(13) differ by 29.6° and 15.0°, respectively. The orientations of the terminal C(11)O(11) bonds with respect to the carbon-atom chain of the glucitol fragment also differ appreciably: in the dihydrate the pertinent torsion angle is -47.3(3)° and in the monohydrate 75.5(2)°. All hydroxyl groups are involved in a complex three-dimensional system of hydrogen bonds, in which the two water molecules constitute an important cohesive element

  15. Oxidation of SO2 and formation of water droplets under irradiation of 20 MeV protons in N2/H2O/SO2

    NASA Astrophysics Data System (ADS)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei; Tanikawa, Hideomi; Harayama, Isao; Kobara, Hitomi; Sasa, Kimikazu; Pedersen, Jens Olaf Pepke; Hvelplund, Preben

    2015-12-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20 MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both droplet number and droplet size increased with SO2 consumption for the proton irradiation. The total charged droplet numbers entering the differential mobility analyzer per unit time were proportional to the 0.68 power of the SO2 consumption. These two findings suggest that coagulation among the small droplets contributes to the formation of the droplets. The charged droplet volume detected per unit time is proportional to the SO2 consumption, which indicates that a constant amount of sulfur atoms is contained in a unit volume of droplet, regardless of different droplet-size distributions depending on the SO2 consumption.

  16. Shock initiation and detonation study on high concentration H2O2/H2O solutions using in-situ magnetic gauges

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L Lee; Bartram, Brian D; Engelke, Ray

    2010-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; homogeneous shock initiation behavior has been observed in the experiments where reaction is observed. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these experiments, we have determined unreacted Hugoniot points, times-to-detonation points that indicate low sensitivity (an input of 13.5 GPa produces detonation in 1 {micro}s compared to 9.5 GPa for neat nitromethane), and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions of over 6.6 km/s.

  17. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Verreycken, T.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2012-08-01

    In this contribution, nanosecond pulsed discharges in N2 and N2/0.9% H2O at atmospheric pressure (at 300 K) are studied with time-resolved imaging, optical emission spectroscopy and Rayleigh scattering. A 170 ns high-voltage pulse is applied across two pin-shaped electrodes at a frequency of 1 kHz. The discharge consists of three phases: an ignition phase, a spark phase and a recombination phase. During the ignition phase the emission is mainly caused by molecular nitrogen (N2(C-B)). In the spark and recombination phase mainly atomic nitrogen emission is observed. The emission when H2O is added is very similar, except the small contribution of Hα and the intensity of the molecular N2(C-B) emission is less. The gas temperature during the ignition phase is about 350 K, during the discharge the gas temperature increases and is 1 µs after ignition equal to 750 K. The electron density is obtained by the broadening of the N emission line at 746 nm and, if water is added, the Hα line. The electron density reaches densities up to 4 × 1024 m-3. Addition of water has no significant influence on the gas temperature and electron density. The diagnostics used in this study are described in detail and the validity of different techniques is compared with previously reported results of other groups.

  18. Triggering Intra-Cluster Electron Capture with Vibrational Excitation: AN IR Study of the CH_3NO_2(H_2O)_6 Anion

    NASA Astrophysics Data System (ADS)

    Breen, Kristin J.; Guasco, Timothy L.; Johnson, Mark A.

    2010-06-01

    Nitromethane (NM), the simplest of the nitro-containing organic molecules, possesses a large dipole moment of 3.46 D. Nagata and co-workers have demonstrated that Ar-mediated condensation of NM can trap a significant fraction of the collision complexes in a situation where the electron is retained in a diffuse "hydrated electron" configuration. This raises the possibility of triggering the electron capture onto NM to form the NM^- radical anion, releasing the substantial exothermicity of the reaction by evaporation of water molecules and allows the barrier to evaporation to be probed. We report vibrational predissociation spectra of both the product NM^-(H_2O)_n anions as well as the high energy species that features a diffuse electron cloud. Interestingly, the spectra indicate that the high energy isomer has a neutral NM moiety and occurs with the same spectral signature of the excess electron binding site as that in the isolated water hexamer anion, indicating that it is attached in a position remote from the charge. Detailed comparison of the C-H and N-O stretching regions suggests that the reactive isomer occurs with the NM molecule attached to the backside of the water network via accepting H-bonds rather than attachment of the methyl group to the electron cloud, where the NM and water network would share the electron cloud. R. N. Compton, et. al. J. Chem. Phys., 105 (9), September 1996. R. Nakanishi and T. Nagata J. Chem. Phys., 130 (22), June 2009.

  19. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part II: Analysis-search for organic ions

    NASA Astrophysics Data System (ADS)

    Ponciano, C. R.; Farenzena, L. S.; Collado, V. M.; da Silveira, E. F.; Wien, K.

    2005-06-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture of CO2 and H2O (T = 80-90 K) bombarded by MeV nitrogen ions and by 252Cf fission fragments. The aim of the experiment is to detect organic molecules, produced in the highly excited material around the nuclear track, which appear as ions in the flux of sputtered particles. Part I of the present work [L.S. Farenzena, V.M. Collado, C.R Ponciano, E.F. da Silveira, K. Wien. Int. J. Mass Spectrom. 243 (2005) 85-93] described the method and presented the time-of-flight mass spectra; a list of the CO2 specific and H2O specific reaction products was provided. In Part II, the peaks of the TOF mass spectra are analyzed. Projectile-ice direct coulomb interaction leads to the production in the track of the H+, C+, O+, O2+, CO+ and CO2+ primarily ions, which react in the highly energized nuclear track plasma mainly with CO2 and H2O or H2CO3. The positive molecular hybrid ions formed are identified as organic species like COH+, COOH+, CHn = 1-3+, Hn = 1,2COOH+ and cluster ions. Similarly, the negative primarily ions O- and OH- formed by electron capture produce negative hybrid ions such as (CO2)nOH-, the four ions (CO4Hm = 0-3)- and the corresponding cluster ions. By far, most of the molecular ions have been formed by one-step reactions; exceptions are eventually the CO4Hm- ions created by a reaction between CO3- and water molecules. An intense mass line corresponding to HCO3+ has been observed, but not the one due to formaldehyde ion. Weak signals of ionic ketene, hydrogen peroxide and carbonic acid were seen.

  20. The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems.

    SciTech Connect

    Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.

    2007-08-01

    Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowing for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.

  1. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-01

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO4 tetrahedron of symmetry Td, the bridging oxygen (BO) Si-O-Si of symmetry C_{2{v}}, the geminal oxygen O-Si-O of symmetry C_{2{v}}, the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H6Si2O7 dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q0 monomer up to the fully polymerized Q4 tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q2 tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm-1 and the ethane-like vibrational contribution of the H6Si2O7 dimer at 870 cm-1.

  2. Spatiotemporal variations in growing season exchanges of CO2, H2O,and sensible heat in agricultural fields of the Southern GreatPlains

    SciTech Connect

    Fischer, Marc L.; Billesbach, David P.; Berry, Joseph A.; Riley,William J.; Torn, Margaret S.

    2007-06-13

    Climate, vegetation cover, and management create fine-scaleheterogeneity in unirrigated agricultural regions, with important but notwell-quantified consequences for spatial and temporal variations insurface CO2, water, and heat fluxes. We measured eddy covariance fluxesin seven agricultural fields--comprising winter wheat, pasture, andsorghum--in the U.S. Southern Great Plains (SGP) during the 2001-2003growing seasons. Land-cover was the dominant source of variation insurface fluxes, with 50-100 percent differences between fields planted inwinter-spring versus fields planted in summer. Interannual variation wasdriven mainly by precipitation, which varied more than two-fold betweenyears. Peak aboveground biomass and growing-season net ecosystem exchange(NEE) of CO2 increased in rough proportion to precipitation. Based on apartitioning of gross fluxes with a regression model, ecosystemrespiration increased linearly with gross primary production, but with anoffset that increased near the time of seed production. Because theregression model was designed for well-watered periods, it successfullyretrieved NEE and ecosystem parameters during the peak growing season,and identified periods of moisture limitation during the summer. Insummary, the effects of crop type, land management, and water limitationon carbon, water, and energy fluxes were large. Capturing the controllingfactors in landscape scale models will be necessary to estimate theecological feedbacks to climate and other environmental impactsassociated with changing human needs for agricultural production of food,fiber, and energy.

  3. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge.

    PubMed

    Walling, Sam A; Kinoshita, Hajime; Bernal, Susan A; Collier, Nick C; Provis, John L

    2015-05-01

    A cementitious system for the immobilisation of magnesium rich Magnox sludge was produced by blending an Mg(OH)2 slurry with silica fume and an inorganic phosphate dispersant. The Mg(OH)2 was fully consumed after 28 days of curing, producing a disordered magnesium silicate hydrate (M-S-H) with cementitious properties. The structural characterisation of this M-S-H phase by (29)Si and (25)Mg MAS NMR showed clearly that it has strong nanostructural similarities to a disordered form of lizardite, and does not take on the talc-like structure as has been proposed in the past for M-S-H gels. The addition of sodium hexametaphosphate (NaPO3)6 as a dispersant enabled the material to be produced at a much lower water/solids ratio, while still maintaining the fluidity which is essential in practical applications, and producing a solid monolith. Significant retardation of M-S-H formation was observed with larger additions of phosphate, however the use of 1 wt% (NaPO3)6 was beneficial in increasing fluidity without a deleterious effect on M-S-H formation. This work has demonstrated the feasibility of using M-S-H as binder to structurally immobilise Magnox sludge, enabling the conversion of a waste into a cementitious binder with potentially very high waste loadings, and providing the first detailed nanostructural description of the material thus formed. PMID:25833071

  4. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    SciTech Connect

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.

    2010-12-15

    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of deep fluids percolating through and perhaps weakening the fault zone. There is no clear evidence for a significant contribution from meteoric water, except for overprinting related to late weathering.

  5. Simulation of Canopy CO2/H2O Fluxes for a Rubber (Hevea Brasiliensis) Plantation in Central Cambodia: The Effect of the Regular Spacing of Planted Trees

    SciTech Connect

    Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki; Liu, Wen; Giambelluca, Thomas; Kobayashi, N.; Lim, Tiva Khan; Jomura, Mayuko; Matsumoto, Kazuho; Huang, Maoyi; Chen, Qi; Ziegler, Alan; Yin, Song

    2013-09-10

    We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantation trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.

  6. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.

    PubMed

    Newland, Mike J; Rickard, Andrew R; Alam, Mohammed S; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J

    2015-02-14

    The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI. PMID:25562069

  7. Studies in the system MgO-SiO2-CO2-H2O(I): The activity-product constant of chrysotile

    USGS Publications Warehouse

    Hostetler, P.B.; Christ, C.L.

    1968-01-01

    Chrysotile dissolves congruently in water according to the reaction: Mg3Si2O6(OH)4c + 5H2Ol = 3Mgaq2+ + 6OHaq- + 2H4SiO4aq. Experimental determination of the activity-product constant of chrysotile, Kchr = [Mg2+]3[OH-]6[H4SiO4aq]2, at 90??C, yields the value of Kchr = 10-49.2 ?? 100.5. A synthetic sample and a natural sample from New Idria, California, were used in the determination. Values of Kchr were calculated for temperatures ranging from 0??C to 200??C, using the thermochemical data of King et al. (1967) for chrysotile and antigorite, various solubility data for silica, and ionic partial molal heat capacities estimated by the method of criss and Cobble (1964a). Kchr is 10-54.1 at 0??C, rises to a maximum value of 10-48.5 at approximately 135??C, and is 10-49.1 at 200??C (all values for the three-phase system, chrysotile plus solution plus vapor). The calculated 90??C value is 10-49.1, in excellent agreement with the experimental value; for 25??C, the calculated value is 10-50.8. ?? 1968.

  8. Effect of SO2 on oxidation of metallic materials in CO2/H2O-rich gases relevant to oxyfuel environments

    SciTech Connect

    Huczkowski, P; Olszewski, T; Schiek, M; Lutz, B; Holcomb, G R; Shemet, V; Nowak, W; Meier, G H; Singheiser, L; Quadakkers, W J

    2014-01-01

    In an oxyfuel plant, heat exchanging metallic components will be exposed to a flue gas that contains substantially higher contents of CO2, water vapor, and SO2 than conventionalflue gases. In the present study, the oxidation behavior of the martensitic steel P92 was studied in CO2-and/or H2O-rich gas mixtures with and without addition of SO2. For this purpose, the corrosion of P92 at 550 8C up to 1000 h in Ar–H2O–SO2, Ar–CO2–SO2, Ar–CO2–O2–SO2 and simulated oxyfuel gas (Ar–CO2–H2O–O2–SO2) was compared with the behavior in selected SO2-free gases. The oxidation kinetics were estimated by a number of methods such as optical microscopy, scanning electron microscopy with energy and wave length dispersive X-ray analysis, glow discharge optical emission spectroscopy, X-ray diffraction as well as transmission electron microscopy. The experimental results revealed that the effect of SO2 addition on the materials behavior substantially differed, depending on the prevailing base gas atmosphere. The various types of corrosion attack affected by SO2 could not be explained by solely comparing equilibrium activities of the gas atmospheres with thermodynamic stabilities of possible corrosion products. The results were found to be strongly affected by relative rates of reactions of the various gas species occurring within the frequently porous corrosion scales as well as at the scale/gas-and scale/alloy interfaces.Whereas SO2 addition to Ar–CO2 resulted in formation of an external mixed oxide/sulflde layer, the presence of SO2 in oxyfuel gas and in Ar–H2O–SO2 resulted in Fe-sulflde formation near the interface between inner and outer oxide layer as well as Cr-sulflde formation in the alloy. In the latter gases, the presence of SO2 seemed to have no dramatic effect on oxide scale growth rates.

  9. Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and Dry Out Temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O

    SciTech Connect

    Rard, J A

    2005-11-29

    Boiling temperature measurements have been made for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O and NaNO{sub 3} + KNO{sub 3} + H{sub 2}O at three selected salt ratios and for NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O over the full composition range. The maximum boiling temperature found for the NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O system is 164.7 {+-} 0.6 C, and the composition is estimated to occur at x(Ca(NO{sub 3}){sub 2}) {approx} 0.25. Experiments were also performed for the five component NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O mixtures with the molar ratio of NaCl:NaNO{sub 3}:KNO{sub 3} held essentially constant at 1:0.9780:1.1468 as the solute mole fraction of Ca(NO{sub 3}){sub 2}, x(Ca(NO{sub 3}){sub 2}), was varied between 0 and 0.25. The NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O system forms low melting mixtures and thus boiling temperatures for saturated were not determined. Instead, the temperatures corresponding to the cessation of boiling (i.e., dry out temperatures) of these liquid mixtures were determined. These dry out temperatures range from {approx} 300 C when x(Ca(NO{sub 3}){sub 2}) = 0 to {ge} 400 C when x(Ca(NO{sub 3}){sub 2}) = 0.20 and 0.25. The investigated mixture compositions correspond to some of the major mineral assemblages that are predicted to control the deliquescence relative humidity of salts formed by leaching dust samples from the proposed nuclear repository at Yucca Mountain, Nevada.

  10. Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules (CO2, H2O, NH3, CH4, H2), metal ions and onium ions.

    PubMed

    Umadevi, Deivasigamani; Narahari Sastry, G

    2015-11-11

    Graphane has emerged as a two-dimensional hydrocarbon with interesting physical properties and potential applications. Understanding the interaction of graphane with various molecules and ions is crucial to appreciate its potential applications. We investigated the interaction of nucleobases, aminoacids, saturated and unsaturated heterocycles, small molecules, metal ions and onium ions with graphane by using density functional theory calculations. The preferred orientations of these molecules and ions on the graphane surface have been analysed. The binding energies of graphane with these molecules have been compared with the corresponding binding energies of graphene. Our results reveal that graphane forms stable complexes with all the molecules and ions yet showing lesser binding affinity when compared to graphene. As an exemption, the preferential strong binding of H2O with graphane than graphene reveals the fact that graphane is more hydrophilic than graphene. Charge transfer between graphane and the molecules and ions have been found to be an important factor in determining the binding strength of the complexes. The effect of the interaction of these molecules and ions on the HOMO-LUMO energy gap of graphane has also been investigated.

  11. A vibrational spectroscopic study of the phosphate mineral cyrilovite Na(Fe3+)3(PO4)2(OH)4·2(H2O) and in comparison with wardite.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo

    2013-05-01

    Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe(3+) member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800-1400 cm(-1) spectral range shows two intense bands at 992 and 1055 cm(-1) assigned to the ν1PO4(3-) symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500-1300 cm(-1) shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm(-1) and are attributed to the ν1PO4(3-) symmetric stretching mode. Raman bands are observed at 612 and 631 cm(-1) and are assigned to the ν4 out of plane bending modes of the PO4(3-) unit. In the 2600-3800 cm(-1) spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm(-1) with a broad shoulder at 3194 cm(-1) and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm(-1). Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.

  12. McCrillisite, NaCs(Be,Li)Zr2(PO4)4.1-2H2O, a new mineral species from Mount Mica, Oxford County, Maine, and new data for gainesite

    USGS Publications Warehouse

    Foord, E.E.; Brownfield, M.E.; Lichte, F.E.; Davis, A.M.; Sutley, S.J.

    1994-01-01

    McCrillisite, a member of the gainesite group, occurs in the Mount Mica granitic pegmatite, South Paris, Oxford County, Maine. The mineral is a product of late-stage hydrothermal alteration and is associated with approximately 20 other silicate, oxide, carbonate, arsenite and phosphate minerals. Crystals occur in mm- to cm-sized cavities, and individuals are up to 1.2 mm in maximum dimension. The crystallography and mineral chemistry of McCrillisite are described. -from Authors

  13. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li 2SiO 3) hollow spheres: II—Textural analysis and CO 2-H 2O sorption evaluation

    NASA Astrophysics Data System (ADS)

    Ortiz-Landeros, José; Gómez-Yáñez, Carlos; Pfeiffer, Heriberto

    2011-08-01

    In a previous work, the synthesis and structural-microstructural characterization of different nanocrystalline lithium metasilicate (Li 2SiO 3) samples were performed. Then, in this work, initially, a textural analysis was performed over the same samples. Li 2SiO 3 samples prepared with a non-ionic surfactant (TRITON X-114) presented the best textural properties. Therefore, this sample was selected to evaluate its water vapor (H 2O) and carbon dioxide (CO 2) sorption properties. Sorption experiments were performed at low temperatures (30-80 °C) in presence of water vapor using N 2 or CO 2 as carrier gases. Results clearly evidenced that CO 2 sorption on these materials is highly improved by H 2O vapor, and of course, textural properties enhanced the H 2O-CO 2 sorption efficiency, in comparison with the solid-state reference sample.

  14. In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.

    PubMed

    Brotton, Stephen J; Kaiser, Ralf I

    2013-02-21

    We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heating temperature, we observed the variations in the Raman spectra as 150 μg of crystals of gypsum and epsomite were dehydrated in anhydrous nitrogen gas. We display spectra showing the decreasing intensities of the ν1 symmetric and ν3 asymmetric stretching modes of water with time and the simultaneous shift of the ν1(SO4(2-)) symmetric stretch mode to higher wavenumbers. Our results demonstrate that the new apparatus is well suited to study the dehydration of levitated species such as minerals and offers potential advantages compared with previous experiments on bulk samples. PMID:26281883

  15. Heat capacities and entropies from 8 to 1000 K of langbeinite (K2Mg2(SO4)3), anhydrite (CaSO4) and of gypsum (CaSO4·2H2O)

    USGS Publications Warehouse

    Robie, Richard A.; Russell-Robinson, Susan; Hemingway, Bruce S.

    1989-01-01

    Although Bond (Bell Sys. Tech. J., 22 (1943) 145) reported that langbeinite was piezoelectric at room temperature, we found no evidence in our Cpo measurements for a Curie temperature above which langbeinite would no longer be piezoelectric.

  16. Isopiestic Determination of the Osmotic and Activity Coefficients of NaCl + SrCl2 + H2O at 298.15 K, and Representation with an Extended Ion-Interaction Model

    SciTech Connect

    Clegg, S L; Rard, J A; Miller, D G

    2004-11-09

    Isopiestic vapor-pressure measurements were made at 298.15 K for aqueous NaCl + SrCl{sub 2} solutions, using NaCl(aq) as the reference standard. The measurements for these ternary solutions were made at NaCl ionic strength fractions of y{sub 1} = 0.17066, 0.47366, and 0.82682 for the water activity range 0.9835 {ge} a{sub w} {ge} 0.8710. Our results, and those from two previous isopiestic studies, were combined and used with previously determined parameters for NaCl(aq) and those for SrCl{sub 2}(aq) determined here to evaluate the mixing parameters{sup S}{Theta}{sub Na,Sr} = (0.0562 {+-} 0.0007) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.00705 {+-} 0.00017) kg{sup 2} {center_dot} mol{sup -2} for an extended form of Pitzer's ion-interaction model. These model parameters are valid for ionic strengths of I {le} 7.0 mol {center_dot} kg{sup -1}, where higher-order electrostatic effects have been included in the mixture model. If the fitting range is extended to the saturated solution molalities, then {sup S}{Theta}{sub Na,Sr} = (0.07885 {+-} 0.00195) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.01230 {+-} 0.00033) kg{sup 2} {center_dot} mol{sup -2}. The extended ion-interaction model parameters obtained from available isopiestic data for SrCl{sub 2}(aq) at 298.15 K yield recommended values of the water activities and osmotic and activity coefficients.

  17. Concentrations and uncertainties of stratospheric trace species inferred from limb infrared monitor of the stratosphere data. I - Methodology and application to OH and HO2. II - Monthly averaged OH, HO2, H2O2, and HO2NO2

    NASA Technical Reports Server (NTRS)

    Kaye, J. A.; Jackman, C. H.

    1986-01-01

    Difficulties arise in connection with the verification of multidimensional chemical models of the stratosphere. The present study shows that LIMS data, together with a photochemical equilibrium model, may be used to infer concentrations of a variety of zonally averaged trace Ox, OHx, and NOx species over much of the stratosphere. In the lower stratosphere, where the photochemical equilibrium assumption for HOx species breaks down, inferred concentrations should still be accurate to about a factor of 2 for OH and 2.5 for HO2. The algebraic nature of the considered model makes it possible to see easily to the first order the effect of variation of any model input parameter or its uncertainty on the inferred concontration of the HOx species and their uncertainties.

  18. Complete Characterization of trans- Co(en)2Cl2[3 Fe(ox)3[.4-1/2H2O: An Extended Undergraduate Project Involving an Unknown Metal Complex.

    ERIC Educational Resources Information Center

    Bull, Graham S.; Searle, Graeme H.

    1986-01-01

    Discusses the need for student experiments involving the complete characterization of "unknown" inorganic compounds. Describes a project employing a complex metal compound. The compound contains six different components in both inert and labile complexions. Outlines the complete procedure and the preparation of the unknown compound. (TW)

  19. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  20. The Effect of O2, H2O, and N2 on the Fatigue Crack Growth Behavior of an Alpha + Beta Titanium Alloy at 24 C and 177 C

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Piascik, Robert S.

    2001-01-01

    To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.

  1. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: the Source of C in Methanol and the Role of Water

    SciTech Connect

    Yang, Yong; Mims, Charles A.; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.

    2013-02-01

    The low temperature (403 – 453K) conversions of CO:hydrogen and CO2:hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction ~0.04%-0.5%). For CO2:hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO:D2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2:D2, yet the steady state rates are similar. Tracer experiments in 13CO:12CO2:hydrogen (with or without added water), show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2:hydrogen, is not visible in CO:moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water gas shift, with formate playing a spectator co-adsorbate role.

  2. A vibrational spectroscopic study of the phosphate mineral cyrilovite Na(Fe3+)3(PO4)2(OH)4·2(H2O) and in comparison with wardite.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo

    2013-05-01

    Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe(3+) member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800-1400 cm(-1) spectral range shows two intense bands at 992 and 1055 cm(-1) assigned to the ν1PO4(3-) symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500-1300 cm(-1) shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm(-1) and are attributed to the ν1PO4(3-) symmetric stretching mode. Raman bands are observed at 612 and 631 cm(-1) and are assigned to the ν4 out of plane bending modes of the PO4(3-) unit. In the 2600-3800 cm(-1) spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm(-1) with a broad shoulder at 3194 cm(-1) and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm(-1). Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite. PMID:23501935

  3. Infrared matrix isolation studies of hydrogen bonds involving C-H bonds: CF 3H, (CF 2H) 2O and CF 3OCF 2H with selected bases

    NASA Astrophysics Data System (ADS)

    Jeng, Mei-Lee H.; Ault, Bruce S.

    1991-06-01

    Hydrogen bonded complexes of fluoroform and fluoromethylethers with halide anions and amines have been isolated at 15 K in argon matrices and characterized by IR spectroscopy. The observed red shifts of the CH stretching mode were significantly less than for analogous alkyne complexes. For a given alkane, the magnitude of shifts for complexes with the halide anions were greater than complexes with neutral amines, consistent with the greater basicity of the halide anions. The perturbed and shifted CH bending mode and its overtone were also observed, as well as perturbations to the CF stretching and bending modes. The spectral evidence tentatively suggests a monodentate hydrogen bond for the (CF 2H) 2O•F - complex, rather than the bidentate structure inferred from ion cyclotron resonance data.

  4. 2H2O incorporation into hepatic acetyl-CoA and de novo lipogenesis as measured by Krebs cycle-mediated 2H-enrichment of glutamate and glutamine.

    PubMed

    Silva, Ana Maria; Martins, Fatima; Jones, John G; Carvalho, Rui

    2011-12-01

    Deuterated water is widely used for measuring de novo lipogenesis on the basis of quantifying lipid (2)H-enrichment relative to that of body water. However, incorporation of (2)H-enrichment from body water into newly synthesized lipid molecules is incomplete therefore the true lipid precursor enrichment differs from that of body water. We describe a novel measurement of de novo lipogenesis that is based on a true precursor-product analysis of hepatic acetyl-CoA and triglyceride methyl enrichments from deuterated water. After deuterated water administration to seven in situ and seven perfused livers, acetyl-CoA methyl enrichment was inferred from (2)H nuclear magnetic resonance analysis of hepatic glutamate/glutamine (Glx) enrichment and triglyceride methyl enrichment was directly determined by (2)H nuclear magnetic resonance of triglycerides. Acetyl-CoA (2) H-enrichment was 71% ± 1% that of body water for in situ livers and 53% ± 2% of perfusate water for perfused livers. From the ratio of triglyceride-methyl/acetyl-CoA enrichments, fractional de novo lipogenesis rates of 0.97% ± 0.09%/2 hr and 7.92% ± 1.47%/48 hr were obtained for perfused and in situ liver triglycerides, respectively. Our method reveals that acetyl-CoA enrichment is significantly less than body water both for in situ and perfused livers. Furthermore, the difference between acetyl-CoA and body water enrichments is sensitive to the experimental setting.

  5. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5-10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12-20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 x 1013 molec cm-2 (RF12) and at least 0.5 x 1013 molec cm-2 (RF17, 0-10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 x 1012 molec cm-2 (RF12) and 2.5 x 1012 molec cm-2 (RF17) and glyoxal VCDs of 2.6 x 1014 molec cm-2 (RF12) and 2.7 x 1014 molec cm-2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1-0.2 pptv; glyoxal: 52 ± 5%, 3-20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.

  6. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12-100oC and up to 600 bar

    SciTech Connect

    Spycher, Nicolas; Pruess, Karsten

    2004-09-13

    Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO2 and H2O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which can be extended to chloride solutions other than NaCl. This approach allows computing mutual solubilities in a noniterative manner with an accuracy typically within experimental uncertainty for solutions up to 6 molal NaCl and 4 molal CaCl2.

  7. Synthesis and Characteristic of the NaYF4/Fe3O4@SiO2@Tb(DBM)3 . 2H2O/SiO2 Luminomagnetic Microspheres with Core-Shell Structure.

    PubMed

    Yu, Shiyong; Zhang, Renfei; Zhao, Jing; Gao, Xuechuan; Li, Zhao; Tan, Zhibing; Su, Haiquan

    2016-04-01

    The structure and properties of the multifunctional nanoparticles were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Photoluminescence spectra and Vibrating sample magnetometer (VSM). The experimental results show that the microsphere has the magnetic core and silica shell bonded with terbium complex. These multifunctional nanoparticles exhibit strong visible emission and up-conversion emission, which is based on the use of up-converting nanoparticles (UCNPs) of the NaYF4:Yb3+, Er3+/Tm3+ type that can be excited with 980 nm laser light to give a green and red luminescence, moreover, nanoparticles possess magnetism with a saturation magnetization of 18.48 emu/g and paramagnetism at room temperature. PMID:27451711

  8. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and air-craft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6 deg N; 101.2 to 97.4 deg W). At 14.5 km, 5-10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12-20 degrees of freedom (DoF) and up to 500m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 x 10(exp 13) molec cm(exp -2) (RF12) and at least 0.5 x 10(exp 13) molec cm(exp -2) (RF17, 0- 10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 x 10(exp 12) molec cm(exp -2) (RF12) and 2.5 x 10(exp 12) molec cm(exp -2) (RF17) and glyoxal VCDs of 2.6 x 10(exp 14) molec cm(exp -2) (RF12) and 2.7 x 10(exp 14) molec cm(exp -2) (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 plus or minus 5 %, 0.1-0.2 pptv; glyoxal: 52 plus or minus 5 %, 3-20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.

  9. Boiling Temperature and Reversed Deliquescence Relative Humidity Measurements for Mineral Assemblages in the NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O System

    SciTech Connect

    Rard, J A; Staggs, K J; Day, S D; Carroll, S A

    2005-12-01

    Boiling temperature measurements have been made at ambient pressure for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O, NaNO{sub 3} + KNO{sub 3} + H{sub 2}O, and NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O over the full composition range, along with those of the single salt systems. Boiling temperatures were also measured for the four component NaCl + NaNO{sub 3} + KNO{sub 3} + H{sub 2}O and five component NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O mixtures, where the solute mole fraction of Ca(NO{sub 3}){sub 2}, x(Ca(NO{sub 3}){sub 2}), was varied between 0 and 0.25. The maximum boiling temperature found for the NaCl + KNO{sub 3} + H{sub 2}O system is {approx} 134.9 C; for the NaNO{sub 3} + KNO{sub 3} + H{sub 2}O system is {approx} 165.1 C at x(NaNO{sub 3}) {approx} 0.46 and x(KNO{sub 3}) {approx} 0.54; and for the NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O system is 164.7 {+-} 0.6 C at x(NaCl) {approx} 0.25 and x(Ca(NO{sub 3}){sub 2}) {approx} 0.75. The NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O system forms molten salts below their maximum boiling temperatures, and the temperatures corresponding to the cessation of boiling (dry out temperatures) of these liquid mixtures were determined. These dry out temperatures range from {approx} 300 C when x(Ca(NO{sub 3}){sub 2}) = 0 to {ge} 400 C when x(Ca(NO{sub 3}){sub 2}) = 0.20 and 0.25. Mutual deliquescence/efflorescence relative humidity (MDRH/MERH) measurements were also made for the NaNO{sub 3} + KNO{sub 3} and NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture from 120 to 180 C at ambient pressure. The NaNO{sub 3} and NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture has a MDRH of 26.4% at 120 C and 20.0% at 150 C. This salt mixture also absorbs water at 180 C, which is higher than expected from the boiling temperature experiments. The NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture was found to have a MDRH of 25.9% at 120 C and 10.5% at 180 C. The investigated mixture compositions correspond to some of the major mineral assemblages that are predicted to control brine composition due to the deliquescence of salts formed in dust deposited on waste canisters in the proposed nuclear repository at Yucca Mountain, Nevada.

  10. Crystal growth of [Ca3Al(OH)6·12H2O]2·(SO4)3·2H2O (ettringite) under microgravity: On the impact of anionicity of polycarboxylate comb polymers

    NASA Astrophysics Data System (ADS)

    Meier, Markus R.; Plank, Johann

    2016-07-01

    The crystallization of ettringite at very early stage (∼10 s crystallization time) prepared by combining Ca(OH)2 and Al2(SO4)3 solutions holding different polycarboxylate (PCE) comb polymers was investigated under microgravity (μg) condition occurring on parabolic flights. The aim was to achieve a more controlled environment for the crystallization than under terrestric conditions. For all experiments, the crystal size, aspect ratio, morphology and amount of ettringite crystals formed under μg were determined. It was observed that due to the absence of convection at μg, crystal growth was generally decelerated as evidenced by the smaller size of the ettringite crystals. Highly anionic and thus strongly adsorbing PCE polymers show a strong impact on the crystal size of ettringite under both 1g and μg conditions. Whereas less anionic, weakly adsorbing PCE polymers exhibit a pronounced effect on ettringite growth only under μg conditions. For them, the diffusion-limited ion transport presents the parameter which determines the crystal size. Another remarkable observation is that under microgravity, some of the polymers change their affinity to specific crystal faces which leads to different aspect ratios compared to terrestric gravity.

  11. The solubility of BaCO3(cr) (witherite) in CO2-H2O solutions between 0 and 90°C, evaluation of the association constants of BaHCO3+(aq) and BaCO30(aq) between 5 and 80°C, and a preliminary evaluation of the thermodynamic properties of Ba2+(aq)

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L. Niel

    1986-01-01

    Problems in the thennodynamic selections of Ba compounds are considered. Newer data require the revision of ΔfH° and ΔfG° of Ba2+(aq) to −532.5 and −555.36 kJ · mol−1, respectively, for agreement with solubility data.

  12. Optimizing Synthesis of Na2Ti2SiO7 - 2H2O (Na-CST) and Ion Exchange Pathways for Cs0.4H1.6Ti2SiO7 - H2O (Cs-CST) Determined from in situ Synchrotron X-ray Powder Diffraction

    SciTech Connect

    Celestian,A.; Medvedev, D.; Tripathi, A.; Parise, J.; Clearfield, A.

    2005-01-01

    Observation of wide angle diffraction data collected in situ during previous synthesis of Na-CST (Na{sub 2}Ti{sub 2}SiO{sub 7}-2H{sub 2}O) showed initial crystallization of a precursor phase (SNT) at 30 C followed by conversion to CST after 1 h at 220 C. In situ studies of Cs{sup +} ion exchange into the H{sup +} form of CST showed a site-by-site ion exchange pathway accompanied by a simultaneous structural transition from P4{sub 2}/mbc (cell parameters a = 11.0690(6) Angstroms, c = 11.8842(6) Angstroms) to P4{sub 2}/mcm (cell parameters a = 7.847(2) Angstroms, c = 11.9100(6) Angstroms). After approximately 18% Cs{sup +} exchange into site designated Cs2 in space group P4{sub 2}/mcm, a site designated Cs1 in space group P4{sub 2}/mcm began to fill at the center of the 8MR windows until a maximum of approximately 22% exchange was achieved for Cs1. Bond valence sums of site Cs1 to framework O{sup 2-} are 1.00 v.u., while bond valence sums of site Cs2 to framework O{sup 2-} are 0.712 v.u. suggesting Cs1 to have a more stable bonding environment.

  13. Metamorphic evolution of eclogites at Qinglongshan: modeling in system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3

    NASA Astrophysics Data System (ADS)

    Yan, R.; Yang, J.; Zhang, Z.

    2011-12-01

    Eclogite at Qinglongshan in NE Jiangsu province is one of the research objects which are investigated frequently and products are remarkable in ultra-high pressure (UHP) metamorphic petrology and geochemistry nearly twenty years. Though scholars in China and abroad have made abundant petrological work, there are opposite perspectives to some important petrological questions such as peak assemblage, crystalization time and condition of epidote porphyroblasts which contain coesite, peak assemblage contains talc or not, lawsonite has occurred in the rock or not. This paper choose eclogites in Qinglongshan. Besides traditional petrological work, we applied phase diagram modeling to mineral assemblage and chemical composition, quantitatively investigating the change with temperature and pressure. With the help of petrographic observation the petrological questiones can be solved. Eclogites in Qinglongshan can be divided into three categories: porphyroblastic foliated eclogites, granular massive eclogites and banded eclogites. The peak assemblage in three kinds of eclogites is garnet + omphacite + phengite + kyanite +rutile + coesite. The minerals in the peak assemblage show shape preferred orientation defining the rock foliation in porphyroblastic eclogites. The peak assemblage defined by garnet compositional isopleths in the calculated phase diagram is garnet +omphacite + phengite + kyanite + rutile + coesite + lawsonite + talc in porphyroblastic eclogites, and is garnet + omphacite + phengite + kyanite + rutile +coesite + lawsonite in banded eclogites, both inconsistent with the petrographic observation. This discrepancy probably resulted from the assumption of pure water as the ultrahigh-pressure (UHP) fluid phase. Three stages of metamorphism are established for Qinglongshan eclogites. Prograde inclusions such as amphibole, epidote, plagioclase, chlorite, muscovite, paragonite and albite coexist in the area of < 0.8GPa and < 575. It can infer from mineral assemblage that peak temperature and pressure are higher than 710 and 2.9GPa in porphyroblastic eclogites and >620 and 2.9GPa in banded eclogites. Both petrography and phase diagram modelling demonstrate a crystallization sequence of kyanite-epidote-talc, with the first two having begun to crystallize at UHP condition and hence including coesite. The mode of epidote increases dramatically at < 2 GPa resulting in the formation of large porphyroblasts. The randomly oriented porphyroblasts overprint the rock foliation, implying that they crystallized later than the peak assemblage under a weak shear stress field. Kyanite begun to crystallize at early retrogression in banded eclogites. Epidote begun to develop at low pressure, so there is no coesite in banded eclogites. Symplectite is the product of late retrograde metamorphism. The P-T paths of porphyroblastic eclogites and banded eclogites defined by the mineral assemblages are both typically the hair-pin type. The amounts of hydrous minerals increased during retrogression, implying continuous ingress of fluids into the rock.

  14. Tetrahedral-Network Organo-Zincophosphates: Syntheses and Structures of (N(2)C(6)H(14)).Zn(HPO(4))(2).H(2)O, H(3)N(CH(2))(3)NH(3).Zn(2)(HPO(4))(3) and (N(2)C(6)H(14)).Zn(3)(HPO(4))(4)

    SciTech Connect

    Chavez, Alejandra V.; Hannooman, Lakshitha; Harrison, William T.A.; Nenoff, Tina M.

    1999-05-07

    The solution-mediated syntheses and single crystal structures of (N2C6H14)·Zn(HPO4)2·H2O (I), H3N(CH2)3NH3·Zn2(HPO4)3 (II), and (N2C6H14)·Zn3(HPO4)4 (III) are described. These phases contain vertex-sharing Zn04 and HP04 tetrahedra, accompanied by doubly- protonated organic cations. Despite their formal chemical relationship, as members of the series of t·Znn(HP04)n+1 (t= template, n = 1-3), these phases adopt fimdamentally different crystal structures, as one-dimensional, two-dimensional, and three-dimensional Zn04/HP04 networks, for I, II, and III respectively. Similarities and differences to some other zinc phosphates are briefly discussed. Crystal data: (N2C6H14)·Zn(HP04)2·H20, Mr = 389.54, monoclinic, space group P21/n (No. 14), a = 9.864 (4) Å, b = 8.679 (4) Å, c = 15.780 (3) Å, β = 106.86 (2)°, V= 1294.2 (8) Å3, Z = 4, R(F) = 4.58%, RW(F) = 5.28% [1055 reflections with I >3σ(I)]. H3N(CH2)3NH3·Zn2(HP04)3, Mr = 494.84, monoclinic, space group P21/c (No. 14), a= 8.593 (2)Å, b= 9.602 (2)Å, c= 17.001 (3)Å, β= 93.571 (8)°, V = 1400.0 (5) Å3, Z = 4, R(F) = 4.09%, RW(F) = 4.81% [2794 reflections with I > 3σ (I)]. (N2C6H14)·Zn3(HP04)4, Mr= 694.25, monoclinic, space group P21/n (No. 14), a = 9.535 (2) Å, b = 23.246 (4)Å, c= 9.587 (2)Å, β= 117.74 (2)°, V= 1880.8 (8) Å3, Z = 4, R(F) = 3.23%, RW(F) = 3.89% [4255 reflections with 1> 3σ(I)].

  15. Experimentally determined solidi in the Ca-bearing granite system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O-CO2

    USGS Publications Warehouse

    Bohlen, S.R.; Eckert, J.O., Jr.; Hankins, W.B.

    1995-01-01

    The phase relationships of melting of synthetic granite in the presence of an H2O-CO2 fluid were determined. These results provide constraints on the maximum temperatures of regional metamorphism attainable in vapor-saturated metapelitic and quartzofeldspathic rocks that escaped widespread melting. At pressures below 10 kbar, a fluid phase of XH2O = 0.75, 0.5, and 0.25 limits temperatures to below ~700-725, ~800-825, and ~850-875??C, respectively. As a consequence, the formation of granulite does not require CO2 concentrations in a coexisting fluid to exceed an XCO2 of 0.25-0.5. -from Authors

  16. The solubility of strontianite (SrCO3) in CO2-H2O solutions between 2 and 91°C, the association constants of SrHCO+3(aq) and SrCO03(aq) between 5 and 80°C, and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(cr) at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L. Neil; Parker, Vivian B.

    1984-01-01

    Our new data for strontianite have been used in an evaluation of the thermodynamic properties of Sr2+(aq), SrCO3(cr) and related compounds. The following values are recommended for the standard enthalpy (kJ · mol−1), Gibbs energy (kJ · mol−1), and entropy (J · mol−1 · K−1), respectively, of Sr2+aq): −550.90 ± 0.50, −563.83 ± 0.8 and −31.50 ± 2.0, and for SrCO3(cr): −1225.77 ± 1.1, −1144.73 ± 1.0 and 97.2.

  17. [Polonia Medyczna: struktura, współczesność i przyszłość].

    PubMed

    Rudnicki, Marek

    2016-01-01

    It is estimated that approximately 20-25 000 polish physicians practice medicine in different countries outside of Poland, enriching medical workforces in their newly elected countries. The composition of this group, known as "Medical Polonia", has been changing from post Second World War emigration, resulting from the war and its political consequences, thru the next large wave of physicians leaving the communist country in 1980's. The last large group of Polish physicians has taken advantage of training opportunities or have started practices in the European Union, having departed Poland permanently or temporarily, after the country joined the European Union in 2004. The first organizations of Polish physicians outside of Poland were founded almost immediately after WWII in London, Chicago, New York, Paris, Lille, and later in Stockholm. Decades later, re-invigorated by their native country gaining independence after 1989, they organized the first World Congress of Medical Polonia in 1991 (in collaboration with physicians' organization from Poland). The World Federation of Polish Medical Organization Abroad was then established in 1994. Subsequently, many organizations joined the Federation, including several from newly liberated countries of former Soviet Union. The Federation of Polish Medical Organizations and its member societies actively promotes medical education, collaboration between polish doctors all over the world, and the exchange of ideas-sharing experiences with significant emphasis on the quality of care and patient safety. PMID:27486709

  18. Financial Structure of Mining Sector Companies During an Economic Slowdown /Struktura Finansowania Przedsiębiorstw W Sektorze Górniczym I Wydobywczym W Okresie Spowolnienia Gospodarczego

    NASA Astrophysics Data System (ADS)

    Sierpińska, Maria; Bąk, Patrycja

    2012-12-01

    The global economic crisis that started in 2007 in the area of finance, expanded over the subsequent years to the business sphere, and resulted in a drop of demand and production almost in any field of business activity. Access to foreign sources of finance, especially to loans, has become more difficult and expensive. In such circumstances, enterprises have had to resort more often to their own capital generated by the issue of shares, and to retained profit. Banks have limited their loans for business entities, reduced credit periods, and raised credit margins as well as their levels of collaterals. The McKinsey research into the changes that occur in the structures of sources of finance confirms that the share of equity capital in the structure of financing of non-financial enterprises has visibly grown, and their crediting scopes have been limited all over the European Union as well as in the euro zone. The global tendencies as regards directions of changes in the structure of the sources of corporate financing have also been reflected in Poland. The economic slowdown has resulted in changes in the structures of corporate financing. Mining companies have risen the shares of their equity capital in their general sources of financing. This tendency corresponds to the changes of structure of corporate financing in Poland and Europe. Enterprises have resorted to bank loans to a lesser degree than in times of better market situation. In mining, public companies have increased their crediting, while in private sector the tendency has been reverse. Enterprises tend to use more flexible debiting forms as compared to credits by way of issue of long-term corporate bonds. Mining companies have developed issue programs that are to be implemented over three-year periods. Before, only Katowicki Holding Węglowy [Katowice Mining Holding] had issued bonds. The present publication is an attempt at assessing the changes in the structure of corporate financing within the mining sector in the circumstances of economic slowdown. The changes have been assessed against the background of changes in the structure of financing of other business entities. Three problems have been identified and subjected to research. The first concerns the increasing share of equity capital in the structure of corporate financing in mining enterprises. The second issue concerns the scope of corporate crediting. And the third issue relates to the time structure of corporate debt. The said issues have been analysed in the conditions of economic slowdown

  19. Uncloaking the thermodynamics of the studtite to metastudtite shear-induced transformation

    DOE PAGESBeta

    Weck, Philippe F.; Kim, Eunja

    2016-07-11

    The interplay between thermodynamics and mechanical properties in the transformation of studtite, (UO2)(O2)(H2O)2·2H2O, into metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on the surface of uranium dioxide exposed to water, is revealed using density functional perturbation theory. Phonon calculations within the quasi-harmonic approximation predict that the standard entropy change for the (UO2)(O2)(H2O)2·2H2O → (UO2)(O2)(H2O)2 + 2H2O reaction is ΔS0 = +80 J·mol–1·K–1 for the production of water in the liquid state and +389 J·mol–1·K–1 for water vapor. Similar to bulk H2O(l), the bulk modulus of (UO2)(O2)(H2O)2·2H2O increases with temperature, contrasting with (UO2)(O2)(H2O)2 which features the typical Anderson–Gruneisen temperature dependence ofmore » oxide solids. Upon removal of interstitial H2O in studtite, the most important changes in the shear modulus, the parameter limiting the mechanical stability, arise in the planes normal to chain propagation directions. Lastly, the present findings have important implications for the dehydration of other hygroscopic materials.« less

  20. Coordination polymers of 5-substituted isophthalic acid† †Electronic supplementary information (ESI) available. CCDC 1417516–1417520 contain the supplementary crystallographic data for this paper. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ce02091c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Morris, Samuel A.; Slawin, Alexandra M. Z.; Teat, Simon J.; Morris, Russell E.

    2016-01-01

    The synthesis and characterisation of five coordination polymers – Ni2(mip)2(H2O)8·2H2O (1), Zn6(mip)5(OH)2(H2O)4·7.4H2O (2), Zn6(mip)5(OH)2(H2O)2·4H2O (3), Mn(HMeOip)2 (4), and Mn3(tbip)2(Htbip)2(EtOH)2 (5) – are reported. Preliminary nitric oxide release data on compounds 2 and 3 are also given. PMID:27019640

  1. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    SciTech Connect

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh’s and Poisson’s ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

  2. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    DOE PAGESBeta

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh's and Poisson's ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Furthermore, debye temperatures of 294 and 271 K are predictedmore » for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.« less

  3. Solvent isotope effect on bile formation in the rat.

    PubMed Central

    Elsing, C; Hirlinger, A; Renner, E L; Lauterburg, B H; Meier, P J; Reichen, J

    1995-01-01

    2H2O affects many membrane transport processes by solvent and kinetic isotope effects. Since bile formation is a process of osmotic filtration where such effects could be important, we investigated the effects of 2H2O on bile formation in the in situ perfused rat liver. Dose finding experiments showed that at high concentrations, 2H2O increased vascular resistance and induced cholestasis; at 60% 2H2O however, a clear dissociation between the vascular and biliary effects was observed. Therefore, further experiments were carried out at this concentration. The main finding was a reduction in bile salt-independent bile flow from 0.99 +/- 0.04 to 0.66 +/- 0.04 microliters.min-1.g-1 (P < 0.001). This was associated with a 40% reduction in biliary bicarbonate concentration (P < 0.001). Choleretic response to neither taurocholate nor ursodeoxycholate was altered by 2H2O; in particular, there was a similar stimulation of bicarbonate secretion by ursodeoxycholate in the presence of 60% 2H2O. To further elucidate this phenomenon, the effect of 2H2O on three proteins potentially involved in biliary bicarbonate secretion was studied in vitro. 2H2O slightly inhibited cytosolic carboanhydrase and leukocyte Na+/H(+)-exchange, these effects reached statistical significance at 100% 2H2O only, however. In contrast, Cl-/HCO(3-)-exchange in canalicular membrane vesicles was already inhibited by 50% (P < 0.001) at 60% 2H2O. Finally, there was a slight reduction in biliary glutathione secretion while that of the disulphide was not affected. Our results are compatible with an inhibition of canalicular Cl-/HCO(3-)-exchange by 2H2O. Whether this is due to altered hydration of the exchanger and/or of the transported bicarbonate remains to be determined. PMID:7717973

  4. Solvent isotope effect on bile formation in the rat.

    PubMed

    Elsing, C; Hirlinger, A; Renner, E L; Lauterburg, B H; Meier, P J; Reichen, J

    1995-04-01

    2H2O affects many membrane transport processes by solvent and kinetic isotope effects. Since bile formation is a process of osmotic filtration where such effects could be important, we investigated the effects of 2H2O on bile formation in the in situ perfused rat liver. Dose finding experiments showed that at high concentrations, 2H2O increased vascular resistance and induced cholestasis; at 60% 2H2O however, a clear dissociation between the vascular and biliary effects was observed. Therefore, further experiments were carried out at this concentration. The main finding was a reduction in bile salt-independent bile flow from 0.99 +/- 0.04 to 0.66 +/- 0.04 microliters.min-1.g-1 (P < 0.001). This was associated with a 40% reduction in biliary bicarbonate concentration (P < 0.001). Choleretic response to neither taurocholate nor ursodeoxycholate was altered by 2H2O; in particular, there was a similar stimulation of bicarbonate secretion by ursodeoxycholate in the presence of 60% 2H2O. To further elucidate this phenomenon, the effect of 2H2O on three proteins potentially involved in biliary bicarbonate secretion was studied in vitro. 2H2O slightly inhibited cytosolic carboanhydrase and leukocyte Na+/H(+)-exchange, these effects reached statistical significance at 100% 2H2O only, however. In contrast, Cl-/HCO(3-)-exchange in canalicular membrane vesicles was already inhibited by 50% (P < 0.001) at 60% 2H2O. Finally, there was a slight reduction in biliary glutathione secretion while that of the disulphide was not affected. Our results are compatible with an inhibition of canalicular Cl-/HCO(3-)-exchange by 2H2O. Whether this is due to altered hydration of the exchanger and/or of the transported bicarbonate remains to be determined. PMID:7717973

  5. Binding energies for the inner hydration shells of Ca2+

    NASA Astrophysics Data System (ADS)

    Carl, Damon R.; Moision, Robert M.; Armentrout, P. B.

    2007-09-01

    The sequential bond energies of Ca2+(H2O)x complexes, where x = 5-9, are determined by collision-induced dissociation (CID) using a guided ion beam tandem mass spectrometer with a recently developed electrospray ionization source. To our knowledge, this represents the first quantitative threshold CID study of multiply charged ions. The kinetic energy dependent cross sections are determined over a wide energy range to monitor all possible dissociation products and are modeled to obtain 0 and 298 K binding energies for loss of a single water molecule. These binding energies decrease monotonically for the Ca2+(H2O)5 complex to Ca2+(H2O)7 and plateau for Ca2+(H2O)7, Ca2+(H2O)8, and Ca2+(H2O)9. This suggests that six water molecules bind directly to the calcium ion and that three outer shell water molecules bind to inner shell water molecules through similar binding motifsE Our experimental results agree well with previous literature results obtained by equilibrium and BIRD studies. We also present an in-depth theoretical study of the structures and energetics of the Ca2+(H2O)x systems, employing several levels of theory. The present theoretical results focus on the larger hydrates (x = 8 and 9) where multiple low lying conformations are possible and there is little previous theory.

  6. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. X. thermal stability and dehydration features of synthetic analogs of the cobaltomenite-ahlfeldite solid solution series

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Fokina, E. L.; Krivovichev, V. G.; Yakovenko, O. S.; Klimova, E. V.; Semenova, V. V.

    2015-12-01

    The aim of this study is the experimental investigation of the synthetic analogs of cobaltomenite, CoSeO3 • 2H2O, ahlfeldite, NiSeO3 • 2H2O, members of the cobaltomenite-ahlfeldite solid solution series (Ni x Co1- x )SeO3 • 2H2O, and singularities of their dehydration and dissociation. The intermediate members of the cobaltomenite (CoSeO3 • 2H2O)-ahlfeldite (NiSeO3 • 2H2O) series have been synthesized and studied with a combination of X-ray diffraction, scanning electron microscopy, and the simultaneous application of thermogravimetry (TG) and differential scanning calorimetry (DSC) within the temperature range from 25 to 640°C. The complete solid solution series corresponds to the monoclinic space group P21/ n. Unit-cell dimensions decrease in all crystallographic directions as the amount of Ni increases. The angle β increases from 98.82(1) (cobaltomenite) to 99.05(1)° (ahlfeldite). It has been established that CoSeO3 • 2H2O and NiSeO3 • 2H2O dehydrate at 120-340°C through two stages apparently corresponding, to the formation of intermediate hydrated species CoSeO3 • H2O and NiSeO3 • 1/3H2O. The reaction enthalpies for each dehydration stage of CoSeO3 • 2H2O and NiSeO3 • 2H2O have been determined. Changes of the unit-cell dimensions and dehydration temperatures are rationalized in terms of the Co and Ni site occupancy in the structure of the cobaltomenite-ahlfeldite solid-solution series members.

  7. Virial equations of state for gaseous ammonia, water, carbon dioxide, and their mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Voronin, G. F.; Genkin, M. V.; Kutsenok, I. B.

    2015-11-01

    The available reference and experimental data on densities of the gaseous solutions, NH3-CO2, NH3-H2O, CO2-H2O, NH3-CO2-H2O and their components, NH3, CO2, H2O have been described as accurately as possible by virial equations of state in the temperature range from ~150 to 300°C and pressure range from 1 to 280 bar. More accurate and reliable values of the gas compressibility for the ternary NH3-CO2-H2O system and new data on the virial coefficients have been obtained. It was concluded that the obtained results are of interest for physical chemical simulations of many natural and technological processes particularly in the production of carbamide and other substances on the basis of urea.

  8. Some Phase Equilibrium Systematics of Martian Volatiles

    NASA Astrophysics Data System (ADS)

    Longhi, J.

    2010-03-01

    Binary pressure (P) - temperature (T) phase diagrams were constructed for the N2-, CH4-, and SO2-H2O systems making use of published triple points, critical points, and limited experimental determination of univariant equilibria.

  9. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone. PMID:17757475

  10. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone.

  11. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  12. Heterometallic Metal-Organic Frameworks That Catalyze Two Different Reactions Sequentially.

    PubMed

    Saha, Debraj; Hazra, Dipak K; Maity, Tanmoy; Koner, Subratanath

    2016-06-20

    A series of copper- and alkaline-earth-metal-based multidimensional metal-organic frameworks, {[CuMg(pdc)2(H2O)4]·2H2O}n (1), [CuCa(pdc)2]n (2), [CuSr(pdc)2(H2O)3]n (3), and {[CuBa(pdc)2(H2O)5]·H2O}n (4), where H2Pdc = pyridine-2,5-dicarboxylic acid, were hydrothermally synthesized and characterized. Two different metals act as the active center to catalyze two kinds of reactions, viz., olefin to its epoxide followed by epoxide ring opening to afford the corresponding vicinal diol in a sequential manner. PMID:27232433

  13. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Suenram, R. D.; Lovas, F. J.

    1990-01-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  14. CO2 selective dynamic two-dimensional Zn(II) coordination polymer.

    PubMed

    Hwang, In Hong; Bae, Jeong Mi; Hwang, Yong-Kyung; Kim, Ha-Yeong; Kim, Cheal; Huh, Seong; Kim, Sung-Jin; Kim, Youngmee

    2013-11-28

    A CO2 selective dynamic two-dimensional (2D) MOF system, [Zn(glu)(μ-bpe)]·2H2O2H2O) (glu = glutarate, bpe = 1,2-bis(4-pyridyl)ethylene), is prepared. Based on variable temperature PXRD patterns, I·2H2O exhibits a structural transformation of the framework upon desolvation. Various gas sorption analyses at low temperatures reveal that solvent-free I selectively adsorbs CO2 over N2, H2, and CH4. Stepped CO2 isotherms for solvent-free I with a large hysteresis between adsorption and desorption branches at 196 K indicate that I is a dynamic framework. Moreover, I·2H2O shows efficient heterogeneous catalytic reactivity for transesterification of various esters. The catalyst can be recycled multiple times without losing its original activity.

  15. Thermodynamic fundamentals of ferrous cake sulfitization

    NASA Astrophysics Data System (ADS)

    Tyurin, A. G.; Vasekha, M. V.; Biryukov, A. I.

    2016-03-01

    The Pourbaix diagrams of the systems SO 4 2- -SO 3 2- -H2O and iron hydroxide (oxide)-H2O are refined. The E(pH) dependence of the sulfitization of iron(III) hydroxide is refined with allowance for the regions of predominant phase constituents of the systems. The potential E-pH electrochemical equilibrium diagrams of the systems Fe(OH)3-H2SO4-SO 3 2- -H2O, FeOOH-H2SO4-SO 3 2- -H2O, and Fe2O3-H2SO4-SO 3 2- -H2O are plotted. These diagrams can be considered as a thermodynamic basis for the sulfite conversion of the ferrous cake of copper-nickel production.

  16. Development of an infrared radiative heating model

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Helmle, L. C.

    1979-01-01

    Infrared radiative transfer solution algorithms used in global circulation models were assessed. Computation techniques applicable to the Ames circulation model are identified. Transmission properties of gaseous CO2, H2O, and O3 are gathered, and a computer program is developed, using the line parameter tape and Voight profile subroutine, which computes the transmission of CO2, H2O, and O3. A computer code designed to compute atmospheric cooling rates was developed.

  17. [Gauss-Lorentz quantitative research on O-H stretching Raman spectra of water in common chlorine salt solution].

    PubMed

    Yang, Dan; Xu, Wen-Yi

    2013-02-01

    In order to explore the Raman spectroscopy quantitative method of common cations in geological fluids, the present paper has systematically studied Raman spectra of NaCl-H2O, CaCl2-H2O, MgCl2-H2O, CuCl2-H2O, ZnCl2-H2O and FeCl3-H2O solutions by Gauss-Lorentz deconvolution integrated peaks. The results shows that: (1) there is a good quantitative relationship between the peak intensity ratio (low-frequency/high frequency) and the concentration for all systems studied, and this result provides a convenient and reliable quantitative method for quantitative analysis of these systems at room temperature. (2) In the NaCl-H2O and CaCl2-H2O and MgCl2-H2O system, with the concentration increasing, the peak intensity ratio (LF/HF) shows a declining trend , and this result suggests that the number of intermolecular hydrogen bonds is gradually reduced; however, in the CuCl2-H2O, ZnCl2-H2O and FeCl3-H2O system, the trend is on the rise; and this result suggests that the number of intermolecular hydrogen bonds is gradually increased; Such a result may be related to the complex that the transition metal ions formed in these three systems, and further studies are needed. (3) It can be seen through the slopes (that are obtained from fitting curves of the intensity ratio and the concentration in all systems) that the ability affecting of hydrogen bond of water molecules is in such order: CaCl2, MgCl2 > NaCl, FeCl3 > ZnCl2, CuCl2.

  18. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  19. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2016-09-01

    Three new metal coordination complexes, namely, [Co(BPO)2(H2O)4](BS)2(H2O)2 (1), [Co(BPO)2(H2O)4](ABS)2(H2O)2 (2), [Co(BPO)2(H2O)4](MBS)2(H2O)2 (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1-3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O-H···O/N) and packing interactions (C-H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time.

  20. Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment.

    PubMed

    Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; El-Sebaie, Olfat D; Arafa, Anwaar I

    2016-01-15

    A combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.e. 120 min of oxidation using a S2O8(2-)/H2O2 ratio of 1 g/1.47 g at a persulfate and hydrogen peroxide dosage of 5.88 g/50 ml and8.63 g/50 ml respectively, at pH 11) removal of 81% COD and 83% NH3-N was achieved. In addition, the biodegradability (BOD5/COD ratio) of the leachate was improved from 0.09 to 0.17. The results obtained from the combined use of (S2O8(2-)/H2O2) were compared with those obtained with sodium persulfate only, hydrogen peroxide only and sodium persulfate followed by hydrogen peroxide. The combined method (S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with the other methods using a single oxidizing agent. Additionally, the study has proved that the combination of S2O8(2-)/H2O2 is more efficient than the sequential use of sodium persulfate followed by hydrogen peroxide in advanced oxidation processes aiming at treatingstabilizedlandfill leachate.

  1. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame. PMID:24481880

  2. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  3. The thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. XI. Solubility of synthetic chalcomenite analog and zinc selenite at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Krivovichev, V. G.; Ivanova, N. M.; Semenova, V. V.

    2015-12-01

    The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist's Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10-10.63), ZnSeO3·2H2O (10-8.35), and ZnSeO3·H2O (10-7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh-pH diagrams of the Zn-Se-H2O and Cu-Se-H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.

  4. Properties of Binuclear Rhodium(II) Complexes and Their Antibacterial Activity

    PubMed Central

    Pruchnik, Florian P.; Bień, Małgorzata; Lachowicz, Tadeusz

    1996-01-01

    Binuclear rhodium(II) complexes [Rh2Cl2(μ-OOCR)2(N-N)2], [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 and [Rh2Cl2(μ-OOCCH3)(terpy)2](H3O)Cl2.9H2O (R = H, Me, Bun, ph, PhCHOH; N-N = 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (dmp) and 6,7-dimethyl-2,3- di(2-pyridyl)quinoxaline (dmpq); terpy 2,2′:6′,2′′-terpyridine) have been synthesized and their structure and properties have been studied by electronic, IR and 1H NMR spectroscopy. Antibacterial activity of these complexes against Staphylococcus aureus and Escherichia coli has been investigated. The most active antibacterial agents against S. aureus were [Rh2(OOCPh)2(phen)2(H2O)2]2+, [Rh2(OOCPh)2(dmpq)2(H2O)2]2+, [Rh2(OOCBu)2(phen)2(H2O)2]2+ and [Rh2-(OOCBu)2(bpy)2(H2O)2]2+ which were considerably more active than the appropriate nitrogen ligands. The complexes show rather low activity against E. coli. PMID:18475754

  5. Synthesis and spectroscopic characterization of magnesium oxalate nano-crystals.

    PubMed

    Lakshmi Reddy, S; Ravindra Reddy, T; Siva Reddy, G; Endo, Tamio; Frost, Ray L

    2014-04-01

    Synthesis of MgC92)O(4)⋅2H(2)O nano particles was carried out by thermal double decomposition of solutions of oxalic acid dihydrate (C(2)H(2)O(4)⋅2H(2)O) and Mg(OAc)(2)⋅(40H(2)O employing CATA-2R microwave reactor. Structural elucidation was carried out by employing X-ray diffraction (XRD), particle size and shape were studied by transmission electron microscopy (TEM) and nature of bonding was investigated by optical absorption and near-infrared (NIR) spectral studies. The powder resulting from this method is pure and possesses distorted rhombic octahedral structure. The synthesized nano rod is 80 nm in diameter and 549 nm in length.

  6. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin; Su, Zhong-Min; Ma, Jian-Fang

    2012-12-01

    Three new polymers, [Cd(L)2(H2O)2]n (1), [Cd3(L)2(μ3-OH)2(μ2-Cl)2(H2O)2]n (2), {[Cd2(L)2(nic)2(H2O)2]·H2O}n (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L- ligands connecting chain-like [Cd(μ3-OH)(μ2-Cl)]n secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4·82)(4·82·103) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.

  7. Crystal structure of complexes of bivalent Co, Ni, and Cd with anions of benzoic and 2-(acetylamino)-5-nitrobenzoic acids

    NASA Astrophysics Data System (ADS)

    Rzaeva, M. F.; Askerov, R. K.; Movsumov, E. M.; Sergienko, V. S.; Ilyukhin, A. B.

    2012-03-01

    The structure of three complexes of bivalent metals (cobalt, nickel, and cadmium) with anions of benzoic (H L 1) and 2-(acetylamino)-5-nitrobenzoic (H L 2) acids, namely, [Co{2/1} (H2O)2(μ-C4H4N2)] n ( I), [NiL2(H2O)5]L2 · 2H2O ( II), and [Cd(μ- L 2)2(H2O)2] n · 2 nH2O ( III), is determined. In chainlike structure I, cobalt atoms are connected by bridging pyrazine molecules; structure II contains isolated complexes. In structure III, centrosymmetric (CdOCO)2 cycles and polymeric ribbons are formed due to the coordination of the carboxylate group of the L 2 ligand to two cadmium atoms.

  8. Gallium Arsenate Dihydrate under Pressure: Elastic Properties, Compression Mechanism, and Hydrogen Bonding.

    PubMed

    Spencer, Elinor C; Soghomonian, Victoria; Ross, Nancy L

    2015-08-01

    Gallium arsenate dihydrate is a member of a class of isostructural compounds, with the general formula M(3+)AsO4·2H2O (M(3+) = Fe, Al, In, or Ga), which are being considered as potential solid-state storage media for the sequestration of toxic arsenic cations. We report the first high-pressure structural analysis of a metal arsenate dihydrate, namely, GaAsO4·2H2O. This compound crystallizes in the orthorhombic space group Pbca with Z = 8. Accurate unit cell parameters as a function of pressure were obtained by high-pressure single-crystal X-ray diffraction, and a bulk modulus of 51.1(3) GPa for GaAsO4·2H2O was determined from a third-order Birch-Murnaghan equation of state fit to the P-V data. Assessment of the pressure dependencies of the unit cell lengths showed that the compressibility of the structure along the axial directions increases in the order of [010] < [100] < [001]. This order was found to correlate well with the proposed compression mechanism for GaAsO4·2H2O, which involves deformation of the internal channel void spaces of the polyhedral helices that lie parallel to the [010] direction, and increased distortion of the GaO6 octahedra. The findings of the high-pressure diffraction experiment were further supported by the results from variable-pressure Raman analysis of GaAsO4·2H2O. Moreover, we propose a revised and more complex model for the hydrogen-bonding scheme in GaAsO4·2H2O, and on the basis of this revision, we reassigned the peaks in the OH stretching regions of previously published Raman spectra of this compound.

  9. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  10. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)].

  11. Determination of the effective redox potentials of SmI₂, SmBr₂, SmCl₂, and their complexes with water by reduction of aromatic hydrocarbons. Reduction of anthracene and stilbene by samarium(II) iodide-water complex.

    PubMed

    Szostak, Michal; Spain, Malcolm; Procter, David J

    2014-03-21

    Samarium(II) iodide-water complexes are ideally suited to mediate challenging electron transfer reactions, yet the effective redox potential of these powerful reductants has not been determined. Herein, we report an examination of the reactivity of SmI2(H2O)n with a series of unsaturated hydrocarbons and alkyl halides with reduction potentials ranging from -1.6 to -3.4 V vs SCE. We found that SmI2(H2O)n reacts with substrates that have reduction potentials more positive than -2.21 V vs SCE, which is much higher than the thermodynamic redox potential of SmI2(H2O)n determined by electrochemical methods (up to -1.3 V vs SCE). Determination of the effective redox potential demonstrates that coordination of water to SmI2 increases the effective reducing power of Sm(II) by more than 0.4 V. We demonstrate that complexes of SmI2(H2O)n arising from the addition of large amounts of H2O (500 equiv) are much less reactive toward reduction of aromatic hydrocarbons than complexes of SmI2(H2O)n prepared using 50 equiv of H2O. We also report that SmI2(H2O)n cleanly mediates Birch reductions of substrates bearing at least two aromatic rings in excellent yields, at room temperature, under very mild reaction conditions, and with selectivity that is not attainable by other single electron transfer reductants.

  12. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study.

    PubMed

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas; Klokishner, Sophia I; Ostrovsky, Sergei M; Palii, Andrei V; Reu, Oleg S; Bendix, Jesper; Brock-Nannestad, Theis; Pedersen, Kasper; Weihe, Høgni; Mutka, Hannu

    2009-01-01

    The electronic structures of the compounds K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)M(III)(CN)(6)].2H(2)O (M(III) = Co(III), Cr(III), Fe(III)) have been determined by inelastic neutron scattering (INS) and magnetic susceptibility studies, revealing the manganese(III) single-ion anisotropy and exchange interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1) established from AC susceptibility measurements for a spin-reversal barrier of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Cr(CN)(6)].2H(2)O may be readily rationalized in terms of the energy level diagram determined directly by INS. AC susceptibility measurements on samples of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Fe(CN)(6)].2H(2)O are contrary to those previously reported, exhibiting but the onset of peaks below temperatures of 1.8 K at oscillating frequencies in the range of 100-800 Hz. INS measurements reveal an anisotropic ferromagnetic manganese(III)-iron(III) exchange interaction, in accordance with theoretical expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical models that aim to inter-relate the electronic and molecular structure of molecular magnets should be tested. PMID:19035636

  13. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N'-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  14. Dipotassium tetra­aqua­bis­[3,5-bis­(dicyano­methyl­ene)cyclo­pentane-1,2,4-trionato(1−)-κN]cobaltate(II)

    PubMed Central

    Chagas, Luciano Honorato; Janczak, Jan; Machado, Flavia C.; de Oliveira, Luiz Fernando C.; Diniz, Renata

    2010-01-01

    The title structure, K2[Co(C11N4O3)2(H2O)4], is isotypic with K2[Fe(C11N4O3)2(H2O)4]. The CoII atom is in a distorted octa­hedral CoN2O4 geometry, forming a dianionic mononuclear entity. Each dianionic unit is associated with two potassium cations and inter­acts with adjacent units through O—H⋯N and O—H⋯O hydrogen bonds. PMID:21589332

  15. Magnetism, dimensional changes, and magnetic transitions in hydrated cesium manganese chloride

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Aron, P. R.

    1972-01-01

    Dimensional changes (strain) along the three principal crystal axes of the antiferromagnet CsMnCl3-2H2O are studied as a function of magnetic field and temperature in the antiferromagnetic, spin flopped, and paramagnetic phases. Changes in dimensions through the phase transitions between the magnetic states are examined. By applying the molecular field model and utilizing all available information, magnetic properties of CsMnCl3-2H2O are determined. The possible usefulness of this material in a magnetic refrigeration cycle is evaluated.

  16. Numerical calculations of a high power CW CO2 gas-dynamic laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif; Al-Mutaib, Kheir

    2008-03-01

    Numerical solution of gas-dynamic laser equations in a gas mixture CO2:N2:H2O was carried out, using five-temperature-model (one translational and four vibrational temperatures) by a computational program written in FORTRAN. The spatial distributions of population inversion, gain and temperatures of the gas flow, in addition to the laser intensity and power extraction were studied inside the cavity, for certain initial conditions like pressure (p0=20 atm), temperature (T0= 1500 K), ratio of gases in the laser mixture (CO2:N2:H2O ≡ 10:85:5).

  17. Synthesis, spectral characterization, molecular modeling and antimicrobial activity studies on 2-aminopyridine-cyclodiphosph(V)azane derivative and its homo-binuclear zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.

    2014-06-01

    Complexes of zinc(II) of general composition [Zn2(L)X2(H2O)4]nH2O have been synthesized [L = 1,3-dipyridyl-2,4-dioxo-2‧,4‧-bis(2-iminopyridine)cyclodi-phosph(V)azane and X = NO3-; n = 2, OAc-; n = 1, SO42-; n = 2 and Cl-; n = 2]. The elemental analysis, molar conductance measurements, mass, IR, UV, NMR (1H and 31P), TGA, DTA, SEM and XRD spectral studies of the compounds led to the conclusion that the cyclodiphosph(V)azane ligand (H2L) acts as a bidentate manner per zinc ion. The cyclodiphosph(V)azane ligand forms hexa-coordinated complexes having octahedral geometry for Zn(II) complexes. The elemental analyses and mass spectral data have justified the [Zn2(L)X2(H2O)4]nH2O composition of complexes. Infrared spectra of the zinc complexes indicate deprotonation and coordination of the imine NH. It also confirms that nitrogen atoms of the pyridine group contribute to the complexation. The X-ray powder diffraction (XRD) was performed of [Zn2L(SO4)2(H2O)4]2H2O complex. The XRD patterns indicate crystalline nature for the [Zn2L(SO4)2(H2O)4]2H2O complex. The measured low molar conductance values in dimethylformamide indicate that the complexes are non-electrolyte nature. The surface morphology (SEM) of the cyclodiphosph(V)azane ligand and the [Zn2L(NO3)2(H2O)4]2H2O complex were studied by SEM. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modeling the geometries of cyclodiphosph(V)azane ligand H2L and its zinc(II) complexes were fully optimized with respect to the energy using the 6-31G basis set. The cyclodiphosph(V)azane ligand and the zinc(II) complexes have been measured in vitro to judge their antibacterial (Escherichia coli and Staphylococcus aureus) and antifungal (Aspergillus niger and Pencillium chrysogenum) activities.

  18. Structures and spectroscopic properties of Ni(II) and Mn(II) complexes based on 5-(3‧, 5‧-dicarboxylphenyl) picolinic acid ligand

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Song, Jin-Ping; Su, Feng; Guo, Jun-Mei; Guo, Yong; Dong, Chuan

    2016-05-01

    Two novel complexes including [Ni(Hdcppa)(H2O)4] (1) and {[Mn3(dcppa)2(H2O)6]·2H2O}n (2) have been synthesized and characterized by single crystal X-ray structure analysis and elemental analysis. Results show that 1 is a mononuclear nickel(II) compound with octahedron coordination geometry, while 2 is a stairs-like 2D layer structure consisting of the trinuclear MnII units linked through dcppa3-. Spectroscopic and electrochemical properties of the complexes 1-2 have also been studied in dimethyl sulfoxide solution at room temperature.

  19. Di-aqua-bis-(2-ethyl-5-methyl-imidazole-4-sulfonato-κ(2) N (3),O)nickel(II) dihydrate.

    PubMed

    Purdy, Andrew P; Butcher, Ray J

    2014-01-01

    In the title complex, [Ni(C6H9N2O3S)2(H2O)2]·2H2O, the Ni(II) atom lies on an inversion center and is chelated by N and O atoms of two symmetry-equivalent imidazole-sulfonate ligands in the basal plane, and two water O atoms in axial positions in an overall octa-hedral configuration. The crystal structure displays O-H⋯O and N-H⋯O hydrogen bonds, which connect the components into an extended three-dimensional network. PMID:24526946

  20. Structures and luminescent properties of new uranyl-based hybrid materials

    NASA Astrophysics Data System (ADS)

    Severance, Rachel C.; Vaughn, Shae Anne; Smith, Mark D.; zur Loye, Hans-Conrad

    2011-06-01

    Six uranyl coordination compounds, UO 2(OH)(PYCA) ( 1), UO 2(PYCA) 2(H 2O2H 2O ( 2), UO 2(PIC) 2 ( 3), UO 2(H 2O) 2(NIC) 2 ( 4), UO 2(OH)(HINIC)(INIC) ( 5), and UO 2(PYTAC) 2(H 2O) 2 ( 6) were grown as single crystals via hydrothermal synthesis (PYCA = pyrazine-2-carboxylate, PIC = picolinate, NIC = nicotinate, INIC = isonicotinate, and PYTAC = 2-(pyridin-4-yl)thiazole-5-carboxylate) to study their optical properties. All six compounds have been identified via single crystal X-ray diffraction and fully characterized via powder X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. Three of the complexes, 1, 3, and 6, represent new structures, and their synthesis and structural characterization is detailed within. The structures of 2, 4, and 5 have previously been reported in the literature. Coordination polymer 1 crystallizes in the orthorhombic space group Pca21 ( a = 13.5476(5) Å, b = 6.6047(2) Å, c = 8.3458(3) Å), and forms infinite 1-D chains of corner-sharing uranium polyhedra connected into 2-D layers by bridging ligands. Coordination polymer 3 crystallizes in the monoclinic space group Cc ( a = 8.4646(8) Å, b = 13.0357(11) Å, c = 11.8955(10) Å, β = 96.815(2)°), and forms ligand-bridged 1-D chains. Complex 6 crystallizes in the triclinic space group P-1 ( a = 5.6272(7) Å, b = 8.9568(10) Å, c = 10.4673(12) Å, α = 90.508(2)°, β = 104.194(2)°, γ = 91.891(2)°), and consists of isolated uranyl complexes connected via hydrogen bonds. The structures and luminescent properties of UO 2(OH)(PYCA) ( 1), UO 2(PYCA) 2(H 2O2H 2O ( 2), UO 2(PIC) 2 ( 3), UO 2(H 2O) 2(NIC) 2 ( 4), UO 2(OH)(HINIC)(INIC) ( 5), and UO 2(PYTAC) 2(H 2O) 2 ( 6) are discussed.

  1. Precipitation diagrams and solubility of uric acid dihydrate

    NASA Astrophysics Data System (ADS)

    Babić-Ivančić, V.; Füredi-Milhofer, H.; Brown, W. E.; Gregory, T. M.

    1987-07-01

    The solubility of uric acid dihydrate (UA·2H 2O) and the precipitation of UA·2H 2O and anhydrous uric acid (UA) from solutions containing sodium hydroxide and hydrochloric acid have been investigated. For the solubility studies, crystals of pure UA·2H 2O were prepared and equilibrated with water and with solutions of HCl or NaOH for 60 min or 20 h, respectively. The equilibrium pH (pH = 2-6.25) and uric acid concentration were determined. For the precipitation experiments, commercial UA was dissolved in NaOH in a 1:1.1 molar ratio and UA·2H 2O and/or UA were precipitated with hydrochloric acid. The precipitates and/or supernatants were examined 24 h after sample preparation. The results are represented in the form of tables, precipitation diagrams and "chemical potential" diagrams. Solubility measurements with 60 min equilibration times yielded the solubility products of UA·2H 2O, K sp(298 K) = (0.926 ± 0.025) × 10 -9mol2dm-6 and K sp(310 K) = (2.25 ± 0.05) × 10 -9mol2dm-6 and the first dissociation constants of uric acid, K 1(298 K) = (2.45 ± 0.07) × 10 -6moldm-3 and K 1(310 K) = (3.63 ± 0.08) × 10 -6moldm-3. Precipitation diagrams show that under the given experimental conditions, at 298 K, UA·2H 2O is stable for 24 h while at 310 K this was true only for precipitates formed from solutions of high supersaturations. At lower supersaturations, mixtures of UA·2H 2O and UA formed. Consequently, while the Ksp value determined from precipitation data obtained at 298 K (K sp = 1.04 × 10 -9mol2dm-6) was consistent with the respective solubility product, the 310 K precipitation boundary yielded an ion activity product, AP, the value of which fulfills the conditions Ksp(UA) < AP < Ksp (UA·2H 2O). Similar ion activity products were obtained from solubility measurements in pure water at 20 h equilibration time.

  2. Preparation and characterization of a degradable magnesium phosphate bone cement

    PubMed Central

    Yu, Ying; Xu, Chao; Dai, Honglian

    2016-01-01

    A kind of degradable magnesium phosphate bone cement (MPBC) was fabricated by using the mixed powders of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4) and calcium dihydrogen phosphate (Ca(H2PO4)2.H2O). As MgKPO4, the main product of MgO and KH2PO4 was alkaline, the Ca(H2PO4)2.H2O was added to neutralize the alkali of the system. And the effects of Ca(H2PO4)2.H2O on the performance of MPBC were discussed. The results showed that the adding of Ca(H2PO4)2.H2O extended the setting time, which was about 6 min to 18 min. The compressive strength increased first and then decreased, and maximum value reached 31.2 MPa after setting for 24 h without any additional pressure. The MPBC was degradable in Tris–HCl solution, and the extracts of the cytotoxicity assay showed that the MPBC had good biocompatibility, indicating that the MPBC had good biodegradable and biocompatible properties. PMID:27482465

  3. Preparation and characterization of a degradable magnesium phosphate bone cement.

    PubMed

    Yu, Ying; Xu, Chao; Dai, Honglian

    2016-12-01

    A kind of degradable magnesium phosphate bone cement (MPBC) was fabricated by using the mixed powders of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4) and calcium dihydrogen phosphate (Ca(H2PO4)2.H2O). As MgKPO4, the main product of MgO and KH2PO4 was alkaline, the Ca(H2PO4)2.H2O was added to neutralize the alkali of the system. And the effects of Ca(H2PO4)2.H2O on the performance of MPBC were discussed. The results showed that the adding of Ca(H2PO4)2.H2O extended the setting time, which was about 6 min to 18 min. The compressive strength increased first and then decreased, and maximum value reached 31.2 MPa after setting for 24 h without any additional pressure. The MPBC was degradable in Tris-HCl solution, and the extracts of the cytotoxicity assay showed that the MPBC had good biocompatibility, indicating that the MPBC had good biodegradable and biocompatible properties. PMID:27482465

  4. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    NASA Astrophysics Data System (ADS)

    Li, Meng-Li; Song, Hui-Hua

    2013-10-01

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers {[Zn(acty)(bipy)2(H2O)2]·NO3·2H2O}n1, {[Co(acty)(bipy)2(H2O)2]·NO3·2H2O}n2, {[Cd(acty)2(bipy)H2O]·H2O}n3, and {[Cd(acty)(bpe)2(Ac)]·6H2O}n4 (bipy=4,4‧-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated.

  5. Diurnal variations of HOx and NOx in the stratosphere

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The diurnal variations of odd hydrogen (OH, HO2, H2O2) and odd nitrogen compounds (NO, NO2, HNO3) are investigated by using a one-dimensional time-dependent model containing both chemistry and eddy transport. These variations are discussed in terms of relevant processes.-

  6. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system.

    PubMed

    Saito, K; Kawaguchi, A; Okuda, S; Seyama, Y; Yamakawa, T

    1980-05-28

    The mechanism of hydrogen incorporation into fatty acids was investigated with intact Escherichia coli cells, a crude enzyme preparation and purified reductases of fatty acid synthetase system. The distributions of deuterium atoms incorporated into fatty acids from 2H2O and stereospecifically deuterium-labeled NADPH or NADH were determined by mass spectrometry. When E. coli was grown in 2H2O, almost every hydrogen atom of cellular fatty acids was incorporated from the medium. When fatty acids were synthesized from acetyl-CoA, malonyl-CoA and NADPH in the presence of a crude enzyme preparation of either E. coli or Bacillus subtilis, almost every hydrogen atom was also incorporated from the medium. In contrast to these results, purified beta-ketoacyl acyl carrier reductase directly transferred the HB hydrogen of NADPH to beta-ketoacyl acyl carrier protein, and purified enoyl acyl carrier protein reductase also transferred the HB hydrogen of NADPH and NADH directly to enoyl acyl carrier protein. In the crude enzyme preparation of E. coli, we found high activities which exchanged the HB hydrogen of NADPH with the deuterium of 2h2o. the conflicting results of the origin of hydrogen atoms of fatty acids mentioned above are explained by the presence of enzymes, which catalyzed the rapid exchange of NADPH with the deterium of 2H2O prior to the reaction of fatty acid synthetase. PMID:6990992

  7. Vibrational spectra of the two hydrates of strontium oxalate.

    PubMed

    D'Antonio, Maria C; Torres, María M; Palacios, Daniel; González-Baró, Ana C; Baran, Enrique J

    2015-02-25

    The infrared and Raman spectra of the two hydrates of strontium oxalate, SrC2O4⋅H2O and SrC2O4⋅2H2O, were recorded and discussed on the basis of their structural peculiarities and in comparison with the spectra of the related calcium oxalates and other previously investigated metallic oxalates.

  8. GTE_TRACEP_DC8 Parameters 16

    Atmospheric Science Data Center

    2013-02-18

    ... (-90, 90)(-180,180) Parameters:  Chloride (Cl-) Nitrate (NO3-) Sulfate (SO4-) Oxalate (C2H2O4) ... Ammonium (NH4-) Potassium (K-) Magnesium (Mg2) Calcium (Ca2-) Beryllium 7 (7Be) Nitric Acid (HNO3) Sulfur dioxide ...

  9. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently.

  10. A simulation of the effects of the National Aerospace Plane testing on the stratosphere using a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglas, Anne R.; Brueske, Kurt F.

    1992-01-01

    A 2D photochemical model has been utilized to investigate the influence of testing of the NASP on the stratosphere. Effluents of H2, H2O, NO, NO2, OH, H, and O from the experimental vehicles are predicted to slightly disturb the stratosphere. The European Sanger spacecraft possible influence on the stratosphere has been simulated and is predicted to also be minor.

  11. Evidence of hydrolytic route for anaerobic cyanide degradation.

    PubMed Central

    Fallon, R D

    1992-01-01

    Products observed during anaerobic cyanide transformation are consistent with a hydrolytic pathway (HCN + H2O <--> HCONH2 + H2O <--> HCOOH + NH3). Formate, the most frequently observed product, was generally converted to bicarbonate. Formamide was rapidly hydrolyzed to formate upon exposure to the anaerobic consortium but was not detected as an intermediate of cyanide transformation. PMID:1444430

  12. Stoichiometry of the heparin-Cu2+-glycine mixed-ligand complex according to differential thermal analysis and IR spectroscopy data

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Zhuravlev, E. V.; Baranova, N. V.; Ryasenskii, S. S.

    2015-02-01

    A method or the synthesis, isolation, and purification of a mixed-ligand complex of heparin with copper and glycine cations was suggested. The complex was studied by elemental, thermal, and spectral analyses. The elemental and crystalline hydrate compositions of the complex were determined and the molecular formula was suggested to be Na3CuHepGly · 2H2O.

  13. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes.

    PubMed

    Baran, Talat; Menteş, Ayfer; Arslan, Hülya

    2015-01-01

    In this study, mono-imine was synthesized (3a and 4a) via a condensation reaction between 2,4-pentadion and aminobenzoic acid (meta or para) in alcohol (1:1). The second-imine (CS-3a and CS-4a) was obtained as a result of the reaction of the free oxo groups of mono-imine (3a and 4a) with the amino groups on the chitosan (CS). Their structures were characterized with FTIR and (13)C CP-MAS. Then, the water soluble forms of CS-3a and CS-4a were obtained through oxidation of the hydroxide groups on the chitosan to carboxymethyl groups using monochloracetic acid ([O-CMCS-3a] · 2H2O and [O-CMCS-4a] · 2H2O). Thus, the solubility problem of chitosan in an aqueous media was overcome and Cu(II) complexes could be synthesized more easily. Characterization of the synthesized O-carboxymethyl chitosan Schiff base derivatives and their metal complexes, [O-CMCS-3a-Cu(OAc)2] · 2H2O and [O-CMCS-4a-Cu(OAc)2] · 2H2O, was conducted using FTIR, UV-Vis, TG/DTA, XRD, SEM, elemental analysis, conductivities and magnetic susceptibility measurements. PMID:25128824

  14. Yellow maize with high beta-carotene is an effective source of vitamin A in healthy Zimbabwean men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioconversion efficiency of yellow maize beta-carotene to retinol in humans is unknown. Thus, the objective of this study was to determine the vitamin A value of yellow maize beta-carotene in humans. A high beta-carotene containing yellow maize was grown in a hydroponic medium with 23 atom% 2H2O...

  15. Determination of (2)H-enrichment of rat brain interstitial fluid and rat plasma by headspace-gas-chromatography - quadrupole-mass-spectrometry.

    PubMed

    Eberl, Anita; Altendorfer-Kroath, Thomas; Kollmann, Denise; Birngruber, Thomas; Sinner, Frank; Raml, Reingard; Magnes, Christoph

    2016-09-15

    (2)H2O as nonradioactive, stable marker substance is commonly used in preclinical and clinical studies and the precise determination of (2)H2O concentration in biological samples is crucial. However, aside from isotope ratio mass spectrometry (IRMS), only a very limited number of methods to accurately measure the (2)H2O concentration in biological samples are routinely established until now. In this study, we present a straightforward method to accurately measure (2)H-enrichment of rat brain interstitial fluid (ISF) and rat plasma to determine the relative recovery of a cerebral open flow microperfusion (cOFM) probe, using headspace-gas-chromatography - quadrupole-mass-spectrometry. This method is based on basic-catalyzed hydrogen/deuterium exchange in acetone and detects the (2)H-labelled acetone directly by the headspace GC-MS. Small sample volumes and limited number of preparation steps make this method highly competitive. It has been fully validated. (2)H enriched to 8800 ppm in plasma showed an accuracy of 98.9% and %Relative Standard Deviation (RSD) of 3.1 with n = 18 over three days and with two operators. Similar performance was obtained for cerebral ISF enriched to 1100 ppm (accuracy: 96.5%, %RSD: 3.1). With this highly reproducible method we demonstrated the successful employment of (2)H2O as performance marker for a cOFM probe.

  16. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains...

  17. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains...

  18. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains...

  19. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains...

  20. Vitamin A equivalence of spirulina beta-carotene in Chinese adults assessed by stable isotope dilution and reference techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Spirulina is a high-protein food supplement that contains carotenoids. Objective: The study aimed at determining the vitamin A equivalence of spirulina beta-carotene in humans. Design: Spirulina was grown in a 23 atom% 2H2O cultural solution. Spirulina beta-carotene showed the highest ab...

  1. Crystal structure of poly[[hexa-qua-1κ(4) O,2κ(2) O-bis-(μ3-pyridine-2,4-di-car-box-ylato-1κO (2):2κ(2) N,O (2');1'κO (4))cobalt(II)-strontium(II)] dihydrate].

    PubMed

    Yu, Zhaojun; Jiang, Peng; Chen, Yanmei

    2015-09-01

    In the title polymeric complex, {[CoSr(C7H3NO4)2(H2O)6]·2H2O} n , the Co(II) ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-di-carboxyl-ate (pydc(2-)) ligands and two terminal water mol-ecules in a slightly distorted octa-hedral geometry, to form a trans-[Co(pydc)2(H2O)2](2-) unit. The Sr(II) ion, situated on a C 2 axis, is coordinated by four O atoms from four pydc(2-) ligands and four water mol-ecules. The coordination geometry of the Sr(II) atom can be best described as a distorted dodeca-hedron. Each Sr(II) ion bridges four [Co(pydc)2(H2O)2](2-) units by four COO(-) groups of four pydc(2-) ligands to form a three-dimensional network structure. Two additional solvent water mol-ecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O-H⋯O hydrogen bonds. Further intra- and intermolecular O-H⋯O hydrogen bonds consolidate the overall structure. PMID:26396869

  2. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range.

    PubMed

    Liu, Fudong; He, Hong; Zhang, Changbin

    2008-05-01

    An iron titanate catalyst with a crystallite phase, prepared by a co-precipitation method, showed excellent activity, stability, selectivity and SO(2)/H(2)O durability in the selective catalytic reduction of NO with NH(3) in the medium temperature range.

  3. Using Eddy Covariance to Quantify Methane Emissions from a Dynamic Heterogeneous Area

    EPA Science Inventory

    Measuring emissions of CH4, CO2, H2O, and other greenhouse gases from heterogeneous land area sources is challenging. Dynamic changes within the source area as well as changing environmental conditions make individual point measurements less informative than desired, especially w...

  4. Using Eddy Covariance to Quantify Methane Emission from a Dynamic Heterogeneous Area

    EPA Science Inventory

    Measuring emissions of CH4, CO2, H2O, and other greenhouse gases from heterogeneous land area sources is challenging. Dynamic changes within the source area as well as changing environmental conditions make individual point measurements less informative than desired, especially w...

  5. Crystal structure of poly[[hexa­qua-1κ4 O,2κ2 O-bis­(μ3-pyridine-2,4-di­car­box­ylato-1κO 2:2κ2 N,O 2′;1′κO 4)cobalt(II)­strontium(II)] dihydrate

    PubMed Central

    Yu, Zhaojun; Jiang, Peng; Chen, Yanmei

    2015-01-01

    In the title polymeric complex, {[CoSr(C7H3NO4)2(H2O)6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-di­carboxyl­ate (pydc2−) ligands and two terminal water mol­ecules in a slightly distorted octa­hedral geometry, to form a trans-[Co(pydc)2(H2O)2]2− unit. The SrII ion, situated on a C 2 axis, is coordinated by four O atoms from four pydc2− ligands and four water mol­ecules. The coordination geometry of the SrII atom can be best described as a distorted dodeca­hedron. Each SrII ion bridges four [Co(pydc)2(H2O)2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water mol­ecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H⋯O hydrogen bonds. Further intra- and intermolecular O—H⋯O hydrogen bonds consolidate the overall structure. PMID:26396869

  6. Impact of FGD gypsum soil amendment applications on soil and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper will discuss the utilization of FGD gypsum in agriculture for improving soil quality and other environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur- for crops and has been shown to i...

  7. Analysis of glucose metabolism in farmed European sea bass (Dicentrarchus labrax L.) using deuterated water.

    PubMed

    Viegas, Ivan; Mendes, Vera M; Leston, Sara; Jarak, Ivana; Carvalho, Rui A; Pardal, Miguel Â; Manadas, Bruno; Jones, John G

    2011-11-01

    Glucose metabolism in free-swimming fasted and fed seabass was studied using deuterated water ((2)H(2)O). After transfer to seawater enriched with 4.9% (2)H(2)O for 6-h or for 72-h, positional and mole percent enrichment (MPE) of plasma glucose and water were quantified by (2)H NMR and ESI-MS/MS. Plasma water (2)H-enrichment reached that of seawater within 6h. In both fasted and fed fish, plasma glucose MPE increased asymptotically attaining ~55% of plasma water enrichment by 72 h. The distribution of (2)H-enrichment between the different glucose positions was relatively uniform. The gluconeogenic contribution to glucose that was synthesized during (2)H(2)O administration was estimated from the ratio of position 5 and 2 glucose enrichments. For both fed and fasted fish, gluconeogenesis accounted for 98±1% of the glucose that was produced during the 72-h (2)H(2)O administration period. For fasted fish, gluconeogenic contributions measured after 6h were identical to 72-h values (94±3%). For fed fish, the apparent gluconeogenic contribution at 6-h was significantly lower compared to 72-h (79±5% versus 98±1%, p<0.05). This may reflect a brief augmentation of gluconeogenic flux by glycogenolysis after feeding and/or selective enrichment of plasma glucose position 2 via futile glucose-glucose-6-phosphate cycling. PMID:21777686

  8. Binary and ternary new water soluble copper(II) complexes of L-tyrosine and substituted 1,10-phenanthrolines: Effect of substitution on DNA interactions and cytotoxicities

    NASA Astrophysics Data System (ADS)

    İnci, Duygu; Aydın, Rahmiye; Vatan, Özgür; Yılmaz, Dilek; Gençkal, Hasene Mutlu; Zorlu, Yunus; Cavaş, Tolga

    2015-06-01

    Binary and ternary water soluble copper(II) complexes - [Cu(nphen)2(H2O)](NO3)2·H2O (1), [Cu(phen)2(H2O)](NO3)2 (2), [Cu(nphen)(L-tyr)(H2O)]NO3·2H2O (3), [Cu(phen)(tyr)(H2O)] NO3·2H2O (4) - and diquarternary salts of nphen and phen (nphen = 5-nitro-1,10-phenanthroline, phen = 1,10-phenanthroline and tyr = L-tyrosine) have been synthesized and characterized by CHN analysis, 1H NMR, 13C NMR and IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The CT-DNA binding properties of these compounds have been investigated by thermal denaturation measurements, absorption and emission spectroscopy. The supercoiled pUC19 plasmid DNA cleavage activity of these compounds has been explored by agarose gel electrophoresis. The cytotoxicity of these compounds against MCF-7, Caco-2, A549 cancer cells and BEAS-2B healthy cells was also studied by using XTT method. The complexes 1-4 exhibit significant high cytotoxicity with low IC50 values in compared with cisplatin. The effect of the substituents of phen and coordinated amino acid in the above complexes are presented and discussed.

  9. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    PubMed

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules.

  10. TREATMENT OF MTBE USING FENTON'S REAGENT

    EPA Science Inventory

    This paper addresses the removal of MTBE from water, using Fenton's Reagent. Although complete mineralization of MTBE by Fenton's Reagent was not achieved, greater than 99% destruction of MTBE was realized. This was accomplished at a Fe+2:H2O2 ratio of 1:1 and one hour of contact...

  11. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.

  12. A series of Ti(IV)/Ti(III) coordination polymers: Structures and surface photoelectric properties

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Li; Liu, Dong-Wei; Jin, Jing; Chi, Yu-Xian; Niu, Shu-Yun

    2012-02-01

    Three titanium coordination polymers, {[Ti(SO 4) 2(H 2O)]·0.5bipy·2H 2O} n1, {[Ti1(SO 4) 2(H 2O)]·[Ti2(SO 4) 2(H 2O)]·bipy·5H 2O} n2 and [Ti(tea)] n3 (bipy = 4,4'-bipyridine, H 3tea = triethanolamine) were synthesized and characterized by IR, UV-Vis absorption spectra, TG analysis, X-ray single crystal diffraction and surface photovoltage spectroscopy (SPS). The surface photoelectric properties of titanium coordination polymers were discussed emphatically by the SPS. The results of single crystal diffraction indicate that polymers 1 and 2 possess 1D infinite structure bridged by SO 42- groups and coordinated water molecules and further connected into supramolecular structures by hydrogen bonds. Polymer 3 possesses 2D infinite structure bridged by weak sub-coordinated Ti-O bonds. The results of SPS show that there are obvious photovoltage responses in the range of 300-500 nm, which indicates that they possess photoelectric conversion ability. The SPS of three titanium polymers were analyzed comparatively. It is found that the valence of central metal ions, coordination micro-environment and kinds of coordination atoms influence the results of the SPS. The SPS is associated with UV-Vis absorption spectra.

  13. A series of Ti(IV)/Ti(III) coordination polymers: structures and surface photoelectric properties.

    PubMed

    Li, Lei; Zhang, Li; Liu, Dong-Wei; Jin, Jing; Chi, Yu-Xian; Niu, Shu-Yun

    2012-02-01

    Three titanium coordination polymers, {[Ti(SO(4))(2)(H(2)O)]·0.5bipy·2H(2)O}(n)1, {[Ti1(SO(4))(2)(H(2)O)]·[Ti2(SO(4))(2)(H(2)O)]·bipy·5H(2)O}(n)2 and [Ti(tea)](n)3 (bipy=4,4'-bipyridine, H(3)tea=triethanolamine) were synthesized and characterized by IR, UV-Vis absorption spectra, TG analysis, X-ray single crystal diffraction and surface photovoltage spectroscopy (SPS). The surface photoelectric properties of titanium coordination polymers were discussed emphatically by the SPS. The results of single crystal diffraction indicate that polymers 1 and 2 possess 1D infinite structure bridged by SO(4)(2-) groups and coordinated water molecules and further connected into supramolecular structures by hydrogen bonds. Polymer 3 possesses 2D infinite structure bridged by weak sub-coordinated Ti-O bonds. The results of SPS show that there are obvious photovoltage responses in the range of 300-500 nm, which indicates that they possess photoelectric conversion ability. The SPS of three titanium polymers were analyzed comparatively. It is found that the valence of central metal ions, coordination micro-environment and kinds of coordination atoms influence the results of the SPS. The SPS is associated with UV-Vis absorption spectra.

  14. Local structure analysis of some Cu(II) theophylline complexes

    NASA Astrophysics Data System (ADS)

    David, L.; Cozar, O.; Forizs, E.; Cr ăciun, C.; Ristoiu, D.; B ălan, C.

    1999-10-01

    The CuT 2L 2·2H 2O complexes [T=Theophylline (1,3-dimethylxanthine); L=NH 3, n-propylamine (npa), 2-aminoethanol (ae)] were prepared and investigated by ESR spectroscopy. Powder ESR spectrum of CuT 2(NH 3) 2·2H 2O is axial ( g||=2.255, g⊥=2.059). ESR spectrum of CuT 2(npa) 2·2H 2O with ( g||=2.299, g⊥=2.081) is a superposition of one axial ( g||=2.299, g⊥=2.073) and one isotropic component ( g0≈2.089), in the same amount. The axial spectra of the former complexes are due to a static Jahn-Teller effect ( EJT≈2880 cm -1). ESR spectrum of CuT 2(ae) 2·2H 2O is orthorhombic ( g1c=2.199, g2c=2.095, g3c=2.037). The local symmetries around the Cu(II) ions remain unchanged by DMF solvating, by adsorbing these solutions on NaY zeolite or by lowering the temperature.

  15. Serpentine by Hydrogenation of Fe-rich Ferromagnesiosilica PCs in Aggregate IDPs

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A., III

    2001-01-01

    Condensed hydrogen-bearing magnesiosilica smokes support that hydrogenation at H2/H2O ratios may lead to the formation of rare Fe-rich serpentine plus metallic iron in ferromagnesiosilica PCs with appropriate (Mg,Fe)/Si ratios that were acquired during their formation. Additional information is contained in the original extended abstract.

  16. Transition metal(II) complexes of vitamin B13 with monodentate orotate(1-) ligands

    NASA Astrophysics Data System (ADS)

    Köse, Dursun Ali; Zümreoglu-Karan, Birgül; Şahin, Onur; Büyükgüngör, Orhan

    2006-05-01

    The formation of bisorotate(1-) complexes of the type [M(C 5H 3N 2O 4) 2(H 2O) 4]· nH 2O (M=Co, Ni, Zn and n=2, 4) was achieved by the reaction of ammonium orotate with the corresponding M(II) ions. The crystal structure of [Co(C 5H 3N 2O 4) 2(H 2O) 4]·2H 2O was determined by single crystal X-ray diffraction analysis. Each Co(II) ion in the monomeric Co(C 5H 3N 2O 4) 2(H 2O) 4 units adapts a slightly distorted octahedral geometry comprised of two monodentate orotate anions and four H 2O ligands. Columnar packing of pyrimidine rings along the c axis leads to the formation of layers that propagate parallel to the b axis and the adjacent layers are linked by hydrogen bonds forming a 3D lattice. Complexes of nickel and zinc were assumed to contain monodentate bound orotate ligands as well on the basis of physical and spectroscopic data.

  17. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  18. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE PAGESBeta

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  19. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  20. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  1. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sara F.; El-Gammal, Ola A.; El-Reash, Gaber Abu

    2011-12-01

    Complexes of Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II), Hg(II) and U(IV)O 22+ with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH) are reported and have been characterized by various spectroscopic techniques like IR, UV-visible, 1H NMR and ESR as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral bidentate, monoanionic tridentate or tetradentate and dianionic tetradentate. An octahedral geometry for [Mn(H 3OPAH) 2Cl 2], [Co 2(H 2OPAH) 2Cl 2(H 2O) 4] and [(UO 2) 2(HOPAH)(OAc) 2(H 2O) 2] complexes, a square planar geometry for [Cu 2(H 2OPAH)Cl 3(H 2O)]H 2O complex, a tetrahedral structure for [Cd(H 3OPAH)Cl 2], [Zn(H 3OPAH)(OAc) 2] and [Hg(H 3OPAH)Cl 2]H 2O complexes. The binuclear [Ni 2(HOPAH)Cl 2(H 2O) 2]H 2O complex contains a mixed geometry of both tetrahedral and square planar structures. The protonation constants of ligand and stepwise stability constants of its complexes at 298, 308 and 318 K as well as the thermodynamic parameters are being calculated. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( Ea, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern and Horowitz-Metzger methods.

  2. Synthesis, characterization and biological study on Cr 3+, ZrO 2+, HfO 2+ and UO 22+ complexes of oxalohydrazide and bis(3-hydroxyimino)butan-2-ylidene)-oxalohydrazide

    NASA Astrophysics Data System (ADS)

    El-Asmy, A. A.; El-Gammal, O. A.; Radwan, H. A.

    2010-09-01

    Cr 3+, ZrO 2+, HfO 2+ and UO 22+ complexes of oxalohydrazide (H 2L 1) and oxalyl bis(diacetylmonoxime hydrazone) [its IUPAC name is oxalyl bis(3-hydroxyimino)butan-2-ylidene)oxalohydrazide] (H 4L 2) have been synthesized and characterized by partial elemental analysis, spectral (IR; electronic), thermal and magnetic measurements. [Cr(L 1)(H 2O) 3(Cl)]·H 2O, [ZrO(HL 1) 2]·C 2H 5OH, [UO 2(L 1)(H 2O) 2] [ZrO(H 3L 2)(Cl)] 2·2H 2O, [HfO(H 3L 2)(Cl)] 2·2H 2O and [UO 2(H 2L 2)]·2H 2O have been suggested. H 2L 1 behaves as a monobasic or dibasic bidentate ligand while H 4L 2 acts as a tetrabasic octadentate with the two metal centers. The molecular modeling of the two ligands have been drawn and their molecular parameters were calculated. Examination of the DNA degradation of H 2L 1 and H 4L 2 as well as their complexes revealed that direct contact of [ZrO(H 3L 2)(Cl)] 2·2H 2O or [HfO(H 3L 2)(Cl)] 2·2H 2O degrading the DNA of Eukaryotic subject. The ligands and their metal complexes were tested against Gram's positive Bacillus thuringiensis (BT) and Gram's negative ( Escherichia coli) bacteria. All compounds have small inhibitory effects.

  3. The catalytic effect of water, water dimers and water trimers on H2S + (3)O2 formation by the HO2 + HS reaction under tropospheric conditions.

    PubMed

    Zhang, Tianlei; Yang, Chen; Feng, Xukai; Kang, Jiaxin; Song, Liang; Lu, Yousong; Wang, Zhiyin; Xu, Qiong; Wang, Wenliang; Wang, Zhuqing

    2016-06-29

    In this article, the reaction mechanisms of H2S + (3)O2 formation by the HO2 + HS reaction without and with catalyst X (X = H2O, (H2O)2 and (H2O)3) have been investigated theoretically at the CCSD(T)/6-311++G(3df,2pd)//B3LYP/6-311+G(2df,2p) level of theory, coupled with rate constant calculations by using conventional transition state theory. Our results show that in the presence of catalyst X (X = H2O, (H2O)2 and (H2O)3) into the channel of H2S + (3)O2 formation, the reactions between the SH radical and HO2(H2O)n (n = 1-3) complexes are more favorable than the corresponding reactions of the HO2 radical with HS(H2O)n (n = 1-3) complexes due to the lower barrier of the former reactions and the higher concentrations of HO2(H2O)n (n = 1-3) complexes. Meanwhile, the catalytic effect of water, water dimers and water trimers is mainly taken from the contribution of a single water vapor molecule, since the total effective rate constant of HO2H2O + HS and H2OHO2 + HS reactions was, respectively, larger by 7-9 and 9-12 orders of magnitude than that of SH + HO2(H2O)2 and SH + HO2(H2O)3 reactions. Besides, the enhancement factor of water vapor is only 0.37% at 240 K, while at high temperatures, such as 425 K, the positive water vapor effect is enhanced up to 38.00%, indicating that at high temperatures the positive water effect is obvious under atmospheric conditions. Overall, these results show how water and water clusters catalyze the gas phase reactions under atmospheric conditions.

  4. Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO(2) photocatalysis and Solar Photo-Fenton.

    PubMed

    Cho, Ii-Hyoung; Kim, Young-Gyu; Yang, Jae-Kyu; Lee, Nae-Hyun; Lee, Seung-Mok

    2006-01-01

    Groundwater samples contaminated by BTEX (benzene, toluene, ethylbenzene, xylene isomers and TPHs (total petroleum hydrocarbons) were treated with advanced oxidation processes (AOPs), such as TiO(2) photocatalysis and Fe(2+)/H(2)O(2) exposed to solar light (37 degrees N and 128 degrees E) with an average intensity of 1.7 mW/cm(2) at 365 nm. These AOP processes showed feasibility in the treatment of groundwater contaminated with BTEX, TPH and TOC (Total Organic Carbon). Outdoor field tests showed that the degradation efficiency of each contaminant was higher in the Fe(2+)/H(2)O(2) system without solar light compared to the TiO(2)/solar light and H(2)O(2)/solar light systems. However, the TiO(2)/solar light and the Fe(2+)/H(2)O(2)/solar light systems showed significantly enhanced efficiencies in the degradation of BTEX, TPH and TOC with the additional use of H(2)O(2). Near complete degradation of BTEX and TPH was observed within 2 and 4 hrs, respectively, however, that of TOC was slower. Without pretreatment of the groundwater, fouling of the TiO(2), due to the ionic species present, was observed within 1 hr of operation, which resulted in the inhibition of further BTEX, TPH and TOC destruction. The degradation rate of n-alkanes with carbon numbers ranging from C10 to C15 was relatively greater than that of n-alknaes with carbon numbers ranging from C16 to C20. From this work, the AOP process (Fe(2+)/H(2)O(2)/solar light and TiO(2)/H(2)O(2)/solar light) illuminated with solar light was identified as an effective ex situ technique in the remediation of groundwater contaminated with petroleum.

  5. Synthesis, characterization and biological study on Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide and bis(3-hydroxyimino)butan-2-ylidene)-oxalohydrazide.

    PubMed

    El-Asmy, A A; El-Gammal, O A; Radwan, H A

    2010-09-01

    Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide (H(2)L(1)) and oxalyl bis(diacetylmonoxime hydrazone) [its IUPAC name is oxalyl bis(3-hydroxyimino)butan-2-ylidene)oxalohydrazide] (H(4)L(2)) have been synthesized and characterized by partial elemental analysis, spectral (IR; electronic), thermal and magnetic measurements. [Cr(L(1))(H(2)O)(3)(Cl)].H(2)O, [ZrO(HL(1))(2)].C(2)H(5)OH, [UO(2)(L(1))(H(2)O)(2)] [ZrO(H(3)L(2))(Cl)](2).2H(2)O, [HfO(H(3)L(2))(Cl)](2).2H(2)O and [UO(2)(H(2)L(2))].2H(2)O have been suggested. H(2)L(1) behaves as a monobasic or dibasic bidentate ligand while H(4)L(2) acts as a tetrabasic octadentate with the two metal centers. The molecular modeling of the two ligands have been drawn and their molecular parameters were calculated. Examination of the DNA degradation of H(2)L(1) and H(4)L(2) as well as their complexes revealed that direct contact of [ZrO(H(3)L(2))(Cl)](2).2H(2)O or [HfO(H(3)L(2))(Cl)](2).2H(2)O degrading the DNA of Eukaryotic subject. The ligands and their metal complexes were tested against Gram's positive Bacillus thuringiensis (BT) and Gram's negative (Escherichia coli) bacteria. All compounds have small inhibitory effects.

  6. Analysis of ion mobility and diffusion in atmospheric gaseous mixtures from Monte Carlo simulation and macroscopic laws

    NASA Astrophysics Data System (ADS)

    Benhenni, M.; Yousfi, M.; Bekstein, A.; Eichwald, O.; Merbahi, N.

    2006-11-01

    The reduced mobility and diffusion coefficients of N_{2}^{+} and O- are calculated with a Monte Carlo simulation for the gas mixtures N2-H2O (50%, 50%) and O2-N2 (80%N2, 20%O2), respectively, from measured and calculated elastic and inelastic cross sections. These mobility and longitudinal diffusion coefficients have been compared with the standard Blanc's law and with the common mean energy (CME) procedure. Good agreement between these three calculation methods was found for the mobility and diffusion of N_{2}^{+} in the N2-H2O mixture at high reduced fields where inelastic processes are relatively uninfluential. However, a strong deviation between Blanc's law and both CME procedure and our Monte Carlo calculations for the reduced mobility and the diffusion coefficient of N_{2}^{+} in this gas mixture N2-H2O was observed at low reduced fields, because inelastic processes are significant. On the contrary, for the case of the N2-O2 mixture, where inelastic processes are small over the reduced electric field range 1-8000 Td, the three calculation methods led to similar results. The elastic collision cross sections used were determined from a semi-classical JWKB approximation by using a rigid core potential model for both symmetric N_{2}^{+}/N_{2} and asymmetric N_{2}^{+}/H_{2}O , O-/O2 and O-/N2 ion-neutral systems. Moreover, the inelastic cross sections were extended to low N_{2}^{+} energies from appropriate approximations. These cross section sets were validated from the good agreement between our Monte Carlo calculated N_{2}^{+} reduced mobilities in N2 and H2O, O- in O2 and N2 and either measured values for the systems N_{2}^{+}/N_{2} and O-/O2 or physical properties of the systems N_{2}^{+}/H_{2}O and O-/N2.

  7. Four 3D "brick-wall"-like metal-organic frameworks with a flexible ligand of (S,S,R,R)-1,2,3,4-cyclopentanetetracarboxylic acid: crystal structures, luminescent and magnetic properties.

    PubMed

    Cui, Lin; Luan, Xin-Jun; Zhang, Cui-Ping; Kang, Yi-Fan; Zhang, Wen-Tao; Wang, Yao-Yu; Shi, Qi-Zhen

    2013-02-01

    To investigate the conformation of cyclopentanetetracarboxylic acid, four new "brick-wall"-like metal-organic frameworks have been synthesized from hydrothermal reactions with different metal salts, (S,S,R,R)-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)cptc) and auxiliary N-donor ligands, namely, Cu(2)(S,S,R,R-cptc)(bpe)(H(2)O)(2)·2H(2)O (1), Co(2)(S,S,R,R-cptc)(bpe)(0.5)(H(2)O)(2)·2H(2)O (2), Cd(4)(S,S,R,R-cptc)(2)(bpa)(2)(H(2)O)(5)·2H(2)O (3) and Co(2)(S,S,R,R-cptc)(bpy)(0.5)(H(2)O)(2)·2(H(2)O) (4) (bpe = 4-(2-(pyridine-4-yl)vinyl)pyridine, bpa = 4-(2-(pyridine-4-yl)ethyl)pyridine, bpy = 4-(pyridine-4-yl)pyridine). The complexes were further characterized by single-crystal X-ray diffraction, power X-ray diffraction, FT-IR spectra, fluorescent measurements and variable-temperature magnetic susceptibility measurements. The results of the structural investigations show that 1 is a charming (3,3,4)-trinodal architecture, 3 is an interesting trinodal (3,4,5)-connected architecture, and 2 and 4 are isostructural, which are both (4,5)-connected networks. In addition, the magnetic measurements indicate that 2 and 4 show weak antiferromagnetic interactions, and the fluorescent measurement shows the strong solid-state fluorescent emission at room temperature for 3.

  8. Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller- and sandwich-like Schiff-base complexes.

    PubMed

    Wang, Hailong; Zhang, Daopeng; Ni, Zhong-Hai; Li, Xiyou; Tian, Laijin; Jiang, Jianzhuang

    2009-07-01

    A series of phenoxo-bridged heterometallic Schiff-base trinuclear complexes Zn-M-Zn [M = Cd(II), Pb(II), Nd(III), Eu(III), Gd(III), Tb(III), and Dy(III)] have been synthesized by a rational structural design based on two symmetrical Schiff-base ligands N,N'-bis(3-methoxysalicylidene)propylene-1,3-diamine (H(2)L(a)) and N,N'-bis(3-methoxysalicylidene)benzene-1,2-diamine (H(2)L(b)). Single X-ray diffraction analysis reveals a similar molecular structure among the eight propeller-like and seven sandwich-type phenoxo-bridged Zn-M-Zn complexes. In the compounds Cd[Zn(L(a))Cl](2) (1), {Cd[Zn(L(b))Cl](2)}.H(2)O (2), {Pb[Zn(L(b))Cl](2)}.2H(2)O (4), {Nd[Zn(L(a))Cl](2)(H(2)O)}.0.5ZnCl(4) .2H(2)O (5), and{M(III)[Zn(L(a))Cl](2)(H(2)O)}.0.5ZnCl(4).2MeOH [M = Eu(7), Gd (9), Tb (11), and Dy (13)], two [Zn(L)Cl](-) units coordinate to the central metal ion as a tetradentate ligand using its four oxygen atoms, forming a two-blade propeller-like left-handed and right-handed chiral Zn-M-Zn configuration despite the racemic nature of the whole complexes. Compounds {Pb[Zn(L(a))Cl](2)}.MeOH (3), {Nd[Zn(L(b))Cl](2)(DMF)(OAc)}.CH(3)CN (6), {Eu[Zn(L(b))Cl](2)(DMF)(OAc)}.CH(3)CN (8), {Gd[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (10), {Tb[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (12), {Dy[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (14), and {Pb[Zn(L(b))Cl](2)}.2H(2)O (15) exhibit a relatively rare sandwich-type structure with a central metal ion clamped by two [Zn(L)Cl](-) units. Photophysical studies indicate that all of the complexes exhibit luminescence both in solution and in solid sate, and there exists an energy transfer from the [Zn(L)Cl](-) unit to the central rare earth ions of Nd(III) (5 and 6), Tb(III) (11), and Dy(III) (for 13). In particular, systematic and comparative investigation of the photophysical properties of these trinuclear complexes reveals that the luminescence properties could easily be tuned by changing the central metal or the Schiff-base ligand.

  9. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    PubMed

    Lemke, Kono H

    2014-05-01

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles. PMID:24643288

  10. Synthesis, characterization and properties of a family of lead(II)-organic frameworks based on a multi-functional ligand 2-amino-4-sulfobenzoic acid exhibiting auxiliary ligand-dependent dehydration-rehydration behaviours.

    PubMed

    Zhang, Kou-Lin; Zhong, Zhao-Yin; Zhang, Lei; Jing, Chu-Yue; Daniels, Luke M; Walton, Richard I

    2014-08-14

    A systematic investigation is reported of the use of the multi-functional ligand 2-amino-4-sulfobenzoate (asba(2-)) to construct lead(II)-organic frameworks in the presence and absence of N-donor auxiliary ligands phen, bipy and bix [phen = 1,10-phenanthroline, bipy = 2,2'-bipyridine and bix = 1,4-(methylene-benzene)bisimidazole]. Under ambient, aqueous conditions the assembly of asba(2-) with Pb(II) and phen or bipy leads to two iso-structural 2D double-layer frameworks, {[Pb2(asba)2(phen)2(H2O)]·2H2O}n (1) and {[Pb2(asba)2(bipy)2(H2O)]·2H2O}n (2). [Pb2(asba)2(bix)2(H2O)2]n (3) is obtained in the presence of the auxiliary ligand bix and possesses a 3D network built up from 2D Pb(II)-asba(2-)-bridged double-layer pillared by bix. A 2D (4,4) topological network [Pb(asba)(H2O)]n (4) is obtained in the absence of any second ligand or presence of some bistriazole bridging spacers. The coordination modes of the ligand asba(2-) in 1-4 are greatly dependent on the type of auxiliary ligand and the compounds exhibit auxiliary ligand-dependent dehydration-rehydration behaviours; 1 shows in situ rapid and reversible dehydration-rehydration behaviour in air, while the iso-structural compound 2 loses crystallinity in air and transforms into {[Pb2(asba)2(bipy)2(H2O)]·H2O}n (2A) verified by TGA, elemental analysis and powder X-ray diffraction analysis (PXRD). 3 also shows reversible dehydration-rehydration behaviour, but it takes around one week to rehydrate even after exposure to water vapor, while the dehydrated phase of 4 rehydrates to a new crystalline material. 1 and 3 fall within the category of the "recoverable collapsing" and "guest-induced re-formation" frameworks. The water molecules in 1 and 3 have some influence on their solid state fluorescent emission intensity.

  11. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at Geochemical Pressures.

    PubMed

    Ochoa, Gerardo; Pilgrim, Corey D; Martin, Michele N; Colla, Christopher A; Klavins, Peter; Augustine, Matthew P; Casey, William H

    2015-12-14

    Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust. PMID:26404025

  12. catena-Poly[[[diaqua-cadmium(II)]-bis-[μ-3,5-bis-(isonicotinamido)benzoato

    PubMed

    Chen, Man-Sheng; Deng, Yi-Fang; Zhang, Chun-Hua; Kuang, Dai-Zhi

    2010-01-01

    The title compound, {[Cd(C(19)H(13)N(4)O(4))(2)(H(2)O)(2)]·4H(2)O}(n) or {[Cd(BBA)(2)(H(2)O)(2)]·4H(2)O}(n), where BBA is 3,5-bis-(iso-nicotin-amido)-benzoate, is isotypic with its Mn isologue [Chen et al. (2009 ▶). J. Coord. Chem.62, 2421-2428]. The cation sits on a twofold axis and is six-coordinated in a slightly distorted octa-hedral geometry; the polyhedra are linked into zigzag chains, which are further connected by N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds as well as π-π inter-actions [centroid-centroid distance of 3.639 (2) Å], giving a three-dimensional supra-molecular framework. PMID:21587402

  13. Concepts of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kaltenegger, L.

    2012-04-01

    The HZ around a single star has been calculated by several authors. Two concepts are commonly used throughout the literature for cloud free (see Kasting et al.1993, Underwood et al.2003) and cloudy atmospheres (Selsis et al.2007) which have been derived from the same model originally proposed by Kasting et al.(1993). The main differences among studies of the HZ are the imposed climatic constraints such as a CO2/H2O/N2 atmosphere with varying CO2/H2O/N2 concentrations (e.g., Earth's), or model atmospheres with high H2 concentrations (Gaidos&Pierrehumbert 2010) or limited water supply (Abe et al.2011). We discuss the implication of these constraints on the Habitable Zone and its resulting limits as well as detectable spectral features in a planet's rocky atmosphere that could be used to test our concept of the Habitable Zone.

  14. Open framework complex constructed from polyoxometalate and dinuclear Cu phenanthroline

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Peng, Jun; Liu, Hongsheng; Zhu, Dongxia; Tian, Aixiang; Wang, Lixia

    2008-12-01

    An inorganic-organic hybrid complex, {[Cu 2(phen) 2(OH) 2(H 2O)] 2[α-SiW 12O 40]}·8H 2O 1, (phen = 1,10-phenanthroline), has been synthesized under mild reaction conditions and characterized by single-crystal X-ray diffraction, IR spectrum, thermal analyses (TG-DTA) and fluorescent measurement. The crystallographic analysis reveals that in the compound, the Keggin polyanion [α-SiW 12O 40] 4- acts as the inorganic building block, two [Cu 2(phen) 2(OH) 2(H 2O)] units covalently bond to it via terminal oxygen atoms of the Keggin anion. An open framework is formed through supramolecular interactions with solvent accessible volume of 18% in the unit-cell. Dehydration and re-adsorption of water in 1 were investigated by X-ray powder diffraction (XRPD).The compound shows thermal stability and photoluminescence property in the solid state.

  15. Complementary in situ reactivity of isomeric dipyridylamide precursors and its effect on dimensionality of cadmium 5-nitroisophthalate coordination polymers

    NASA Astrophysics Data System (ADS)

    O'Donovan, Megan E.; LaDuca, Robert L.

    2014-07-01

    Hydrothermal treatment of cadmium nitrate, 5-nitroisophthalic acid (H2nip) and one of two isomeric dipyridylamides resulted in coordination polymer crystalline solids that manifested different in situ reactivity and dimensionality, as ascertained by single crystal X-ray diffraction. Hydrolysis of 3-pyridylisonicotinamide (3-pina) afforded the 3-aminopyridine (3-ampyr) ligands observed in the 1-D ladder polymer {[Cd(nip)(3-ampyr)(H2O)]ṡ2H2O}n (1). Conversely, hydrolysis of the isomeric precursor 3-pyridylnicotinamide (3-pna) generated the monoanionic nicotinate ligands in the 2-D coordination polymer [Cd2(nip)(nic)2(H2O)2]n (2). Compound 2 displays {Cd2(OCO)2} eight-membered ring dimeric units linked into (6,3) graphite-type slab motifs. Luminescent properties of these two new materials are also presented.

  16. A Theoretical Study of the Interaction of Water and Imidazole with Iron and Nickel Dications

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschliches, Charles W., Jr.; Carroll, Carol W. (Technical Monitor)

    2001-01-01

    The structures, the harmonic frequencies, and the energies of Fe2+(H2O)n(imid)m and Ni2+(H2O)n(imid)m complexes are computed using density functional theory with the B3LYP functional. A CSOV analysis shows that the bonding is mostly electrostatic in nature. Imidazole forms a stronger bond than water with both metal dications due to its larger dipole moment and polarizability. The reactions for the exchange of one water molecule by one imidazole are exothermic and up to six water molecules can be replaced by imidazoles. The trends are very similar for both metals with the displacement reactions being slightly more favorable for Ni(2+).

  17. Behavior and products of mechano-chemical dechlorination of polyvinyl chloride and poly (vinylidene chloride).

    PubMed

    Xiao, Xiao; Zeng, Zigao; Xiao, Songwen

    2008-02-28

    The mechano-chemical (MC) dechlorination of polyvinyl chloride (PVC) and polyvinylidene chloride (PVDC) was performed by mechanical milling PVC/PVDC powder with zinc powder in a planetary ball mill, and the products of dechlorination were characterized by Infrared spectra (IR), X-ray diffraction (XRD), Raman spectroscopy, gas chromatography-mass spectrometry (GC-MS), and 13C solid-state nuclear magnetic resonance (NMR). The experimental results show that PVC/PVDC can be easily dechlorinated by milling with zinc powder, and formed various kinds of inorganic and organic products. Inorganic compounds included Zn2OCl(2).2H2O, Zn5(OH)8Cl2.H2O etc., and organic products involved diamond-like carbon, carbyne fragment, polyacetylene etc. Organic products formed following the paths of dechlorination, dehydrochlorination, crosslink, and oxidation. The mechano-chemical dechlorination process of PVC/PVDC may be an effective approach for carbyne synthesizing in the appropriate condition.

  18. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration.

  19. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    NASA Astrophysics Data System (ADS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-10-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl3˙2H2O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H2O)2] and [Fe(FAHP)Cl2(H2O)2].

  20. A simplified measurement of hydrated crystal densities of low melting points (low transition points) by solidifications of aqueous solutions.

    PubMed

    Kajiwara, Kazuhito; Yabe, Kazuyoshi; Hashitani, Takusei

    2003-01-01

    A volume change method for measuring crystal densities is described. It allows the densities of unstable hydrated crystals at room temperature to be determined, by measurements of volume changes during the solidification of aqueous solutions. NaCl x 2H2O, KCl, MgSO4 x 12H2O and K2HPO4 x 6H2O were measured by the method and their densities (SE) are 1.61+/-0.02, 1.99+/-0.05, 1.45+/-0.01 and 1.75+/-0.02 g ml(-1) respectively. Data of NaCl x 2H2O and KCl are in good agreement with the previously reported values.

  1. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    NASA Astrophysics Data System (ADS)

    Xia, Zhengqiang; Chen, Sanping; Wei, Qing; Qiao, Chengfang

    2011-07-01

    Two new energetic compounds, [ M(BTE)(H 2O) 5] n ( M=Sr(1), Ba(2)) [H 2BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr 2(H 2O) 10/Ba 2(H 2O) 10 SBUs linked up by two independent binding modes of H 2BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face π- π stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper.

  2. Synthesis and structure of cobalt(II) complexes with hydroxyl derivatives of pyridinecarboxylic acids: Conformation analysis of ligands in the solid state

    NASA Astrophysics Data System (ADS)

    Kukovec, Boris-Marko; Popović, Zora; Pavlović, Gordana; Rajić Linarić, Maša

    2008-06-01

    Cobalt(II) complexes of 6-hydroxypicolinic acid (6-OHpicH), namely [Co(6-OHpic) 2(H 2O) 2] ( 1) and [Co(6-OHpic) 2(4-pic) 2]·4-pic ( 2), and of 2-hydroxynicotinic acid (2-OHnicH), [Co(2-OHnic) 2(H 2O) 2] ( 3) were prepared. The crystal structures of free 6-hydroxypicolinic acid monohydrate 6-OHpicH·H 2O ( 4), and the novel polymorph of 2-hydroxynicotinic acid 2-OHnicH ( 5) and complex 2 were determined by X-ray crystal structure analysis. All compounds were characterized by IR-spectroscopy and thermal methods (TGA/DSC) and data are in agreement with the structure analysis. It was established that 4 and 5 exist in solid state in keto tautomeric form. For 2, structure analysis revealed N,O-chelating mode of 6-hydroxypicolinic acid.

  3. Simplified analysis of acetaminophen glucuronide for quantifying gluconeogenesis and glycogenolysis using deuterated water.

    PubMed

    Jones, J; Kahl, S; Carvalho, F; Barosa, C; Roden, M

    2015-06-15

    Measurement of acetaminophen glucuronide (AG) (2)H enrichment from deuterated water ((2)H2O) by (2)H nuclear magnetic resonance (NMR) analysis of its monoacetone glucose (MAG) derivative provides estimation of gluconeogenic and glycogenolytic contributions to endogenous glucose production (EGP). However, AG derivatization to MAG is laborious and unsuitable for high-throughput studies. An alternative derivative, 5-O-acetyl monoacetone glucuronolactone (MAGLA), was tested. Eleven healthy subjects ingested (2)H2O to 0.5% body water enrichment and 500 mg of acetaminophen. Plasma glucose and urinary glucuronide positional (2)H enrichments were measured by (2)H NMR spectroscopy of MAG and MAGLA, respectively. A Bland-Altman analysis indicated agreement at the 95% confidence level between glucose and glucuronide estimates.

  4. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    Macrocyclic rhodium(II) complexes LRh(H2O)(2+) (L = L-1 = cyclam and L-2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)(2)OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)(2)(H2O) CoR and (dmgBF(2))(2)(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)(2+). The new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. (C) 2013 Elsevier B.V. All rights reserved.

  5. Crystal structure of bis-{μ2-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)meth-yl]-1,2,4-triazolato}bis-[aqua-nitrato-copper(II)] dihydrate.

    PubMed

    Doroschuk, Roman

    2016-04-01

    The structure of the dinuclear title complex, [Cu2(C10H8N7)2(NO3)2(H2O)2]·2H2O, consists of centrosymmetric dimeric units with a copper-copper separation of 4.0408 (3) Å. The Cu(II) ions in the dimer display a distorted octa-hedral coordination geometry and are bridged by two triazole rings, forming an approximately planar Cu2N4 core (r.m.s. deviation = 0.049 Å). In the crystal, O-H⋯O, O-H⋯N and C-H⋯O hydrogen bonds and π-π inter-actions link the mol-ecules into a three-dimensional network. PMID:27375870

  6. Bis(2-meth­oxy­benzyl­ammonium) di­aqua­bis­(di­hydrogen diphosphato-κ2 O,O′)cobaltate(II) dihydrate

    PubMed Central

    Elboulali, Adel; Selmi, Ahmed; Ratel-Ramond, Nicolas; Rzaigui, Mohamed; Akriche, Samah Toumi

    2014-01-01

    The title compound, (C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2O, crystallizes isotypically with its MnII analogue. It consists of alternating layers of organic cations and inorganic complex anions, extending parallel to (100). The complex cobaltate(II) anion exhibits -1 symmetry. Its Co2+ atom has an octa­hedral coordination sphere, defined by two water mol­ecules in apical positions and two H2P2O7 2− ligands in equatorial positions. The cohesion between inorganic and organic layers is accomplished by a set of O—H⋯O and N—H⋯O hydrogen bonds involving the organic cation, the inorganic anion and the remaining lattice water mol­ecules. PMID:24826105

  7. The Martian paleoclimate and enhanced atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Owen, T.; Ramanathan, V.

    1980-01-01

    Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, a past CO2-H2O greenhouse was modeled and global temperatures which are consistent with an earlier presence of liquid surface water are found in agreement with the extensive evidence for past fluvial erosion. An important aspect of the CO2-H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294 K, but if the hot bands are excluded, a surface temperature of only 250 K is achieved.

  8. Ferromagnetism and chirality in two-dimensional cyanide-bridged bimetallic compounds.

    PubMed

    Coronado, Eugenio; Gómez-García, Carlos J; Nuez, Alicia; Romero, Francisco M; Rusanov, Eduard; Stoeckli-Evans, Helen

    2002-09-01

    The combination of hexacyanoferrate(III) anions, [Fe(CN)(6)](3)(-), with nickel(II) complexes derived from the chiral ligand trans-cyclohexane-1,2-diamine (trans-chxn) affords the enantiopure layered compounds [Ni(trans-(1S,2S)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (1) and [Ni(trans-(1R,2R)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (2). These chiral systems behave as ferromagnets (T(c) = 13.8 K) with a relatively high coercive field (H(c) = 0.17 T) at 2 K. They also exhibit an unusual magnetic behavior at low temperatures that has been attributed to the dynamics of the magnetic domains in the ordered phase.

  9. Diaqua­dimethano­lbis[4-(1H-tetra­zol-1-yl)benzoato]zinc(II) dihydrate

    PubMed Central

    Zhang, Shu-Ming

    2008-01-01

    In the title compound, [Zn(C8H5N4O2)2(CH3OH)2(H2O)2]·2H2O, the ZnII ion lies on an inversion centre and is coordinated by two O atoms from two 4-(tetra­zol-1-yl)benzoate ligands, two O atoms from two methanol mol­ecules and two O atoms from two water mol­ecules in a slightly distorted octa­hedral geometry. In addition, there are two uncoordinated water mol­ecules in the crystal structure. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds. PMID:21202179

  10. Studies on the mechanism, selectivity, and synthetic utility of lactone reduction using SmI(2) and H(2)O.

    PubMed

    Parmar, Dixit; Duffy, Lorna A; Sadasivam, Dhandapani V; Matsubara, Hiroshi; Bradley, Paul A; Flowers, Robert A; Procter, David J

    2009-10-28

    Although simple aliphatic esters and lactones have long been thought to lie outside the reducing range of SmI(2), activation of the lanthanide reagent by H(2)O allows some of these substrates to be manipulated in an unprecedented fashion. For example, the SmI(2)-H(2)O reducing system shows complete selectivity for the reduction of 6-membered lactones over other classes of lactones and esters. The kinetics of reduction has been studied using stopped-flow spectrophotometry. Experimental and computational studies suggest that the origin of the selectivity lies in the initial electron-transfer to the lactone carbonyl. The radical intermediates formed during lactone reduction with SmI(2)-H(2)O can be exploited in cyclizations to give cyclic ketone (or ketal) products with high diastereoselectivity. The cyclizations constitute the first examples of ester-alkene radical cyclizations in which the ester carbonyl acts as an acyl radical equivalent.

  11. catena-Poly[[[diaqua­cadmium(II)]-bis­[μ-3,5-bis­(isonicotinamido)benzoato

    PubMed Central

    Chen, Man-Sheng; Deng, Yi-Fang; Zhang, Chun-Hua; Kuang, Dai-Zhi

    2010-01-01

    The title compound, {[Cd(C19H13N4O4)2(H2O)2]·4H2O}n or {[Cd(BBA)2(H2O)2]·4H2O}n, where BBA is 3,5-bis­(iso­nicotin­amido)­benzoate, is isotypic with its Mn isologue [Chen et al. (2009 ▶). J. Coord. Chem. 62, 2421–2428]. The cation sits on a twofold axis and is six-coordinated in a slightly distorted octa­hedral geometry; the polyhedra are linked into zigzag chains, which are further connected by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds as well as π–π inter­actions [centroid-centroid distance of 3.639 (2) Å], giving a three-dimensional supra­molecular framework. PMID:21587402

  12. One-step synthesis and flame retardancy of sheaf-like microcrystal antimony oxychloride.

    PubMed

    Zhou, Jing; Zhao, Hewei; Li, Lidong; Tian, Ming; Han, Jibing; Zhang, Liqun; Guo, Lin

    2011-10-01

    A mild and facile solution route has been developed for large-scale synthesis of sheaf-like antimony oxychloride Sb8O11CI2 (H2O)6 microcrystal at room temperature. The morphologies and structures of the as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A mechanism for the formation of the sheaf-like microstructure was tentatively proposed. The shape regulation was attributed to the capping mode of the PVP-directed antimony oxychloride crystal. The thermogravimetric and differential thermal analysis (TG/DTA) were employed to investigate thermal decomposition mechanism and temperature-dependent phase transition of antimony oxychloride Sb8O11CI2 (H2O)6 in the air. The flammable property determined by the cone calorimeter showed excellent flame retardancy when applied this antimony oxychloride in poly (vinyl chloride) (PVC) polymer. PMID:22400215

  13. [Reactive oxygen species are triggers and mediators of an increase in cardiac tolerance to impact of ischemia-reperfusion].

    PubMed

    Maslov, L N; Naryzhnaia, N V; Podoksenov, Iu K; Prokudina, E S; Gorbunov, A S; Zhang, I; Peĭ, Zh-M

    2015-01-01

    Reactive oxygen species (ROS) are triggers of ischemic preconditioning (IP). On the role of intracellular messengers of such cardioprotective effect of preconditioning claim: O2*, H2O2, OH*. However, we cannot exclude the possibility that other reactive oxygen metabolites also involved in the IP. Presented data suggest that IP enhances the production of ROS. The source of ROS may be mitochondrial respiratory chain and NADPH oxidase. Exogenous reactive oxygen species (O2*, H2O2) mimic the cardioprotective effect of preconditioning. Preconditioning prevents free radical damage of the heart during ischemia-reperfusion. The protective effect of IP is the consequence of reducing the production of ROS or the result of increased formation of endogenous antioxidants. Antioxidant enzymes are not involved in the protective effect of IP. Cardioprotective effect of many compounds (bradykinin, opioids, acetylcholine, phenylephrine, tumor necrosis factor-α, volatile anesthetics, protonophores, diazoxide, angiotensin II) depends on the increased production of ROS. PMID:25868322

  14. Vibrational spectra of ammine sulfito complexes of rhodium

    NASA Astrophysics Data System (ADS)

    Breitinger, D. K.; Meinberg, H.; Bogner, A.

    1999-05-01

    Ambient and low temperature vibrational spectra of the known complex trans-Na[Rh(SO 3) 2(NH 3) 4]·2H 2O ( 1) and the newly prepared fac-Na 3[Rh(SO 3) 3(NH 3) 3]·2H 2O ( 2) (both also in the deuterated form ( 1D) and ( 2D)) were measured and discussed. In both cases the spectra clearly show the effects of the real crystallographic symmetry of the complex entities. In accordance with the results of X-ray structure analyses of 1 and 2 the spectra reveal S-coordination of the sulfite ligands and consequently their trans-influence on the Rh-N bonds, also in terms of both valence vibration v(RhN 4) and v(RhN 3), respectively, and force constants f(Rh-N) derived from them.

  15. Experimental study of evaporation of horizontal films of water-salt solutions

    NASA Astrophysics Data System (ADS)

    Elistratov, S. L.; Morozov, V. S.

    2015-01-01

    The present studies were carried out for the horizontal films (thin layers) of water and water solutions of NaCl, CaCl2, LiCl, and LiBr with different solubility characteristics, as well as with specific features of formation and decay of water hydrates. Required volume of solution Vo of given weight concentration ξo, preliminary heated to the working surface temperature, was put in one step on the horizontal bottom of the bowl, heated to working temperature tCT, by means of volume batchers Thermo Scientific. After evaporation completion, the final mass of solution and form of their residue were registered. At the final stage of evaporation formation of NaCl crystals and water hydrates of CaCl2 · 2H2O, LiCl · H2O, and LiBr · 2H2O occurred.

  16. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage.

    PubMed

    Pathak, Amar Deep; Nedea, Silvia; van Duin, Adri C T; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-06-21

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl2 hydrates to study the dehydration and hydrolysis kinetics of MgCl2·H2O and MgCl2·2H2O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl2 hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl2·H2O and MgCl2·2H2O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol(-1) for the proton transfer in MgCl2·2H2O is obtained, which is in good agreement with the barrier (19.55 kcal mol(-1)) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl2·H2O and MgCl2·2H2O show that the dehydration rate increases more rapidly with temperature in MgCl2·H2O than in MgCl2·2H2O, in the temperature range 300-500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl2·H2O, which is in agreement with experiments. The HCl formation is not observed for MgCl2·2H2O. The diffusion coefficient of H2O through MgCl2·H2O is lower than through MgCl2·2H2O, and can

  17. Electrodeposition of nanostructured Sn-Zn coatings

    NASA Astrophysics Data System (ADS)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  18. Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.

    2016-07-01

    We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 ​is determined for the Yang-Lee edge singularity exponents.

  19. Crystal structure of bis­{μ2-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)meth­yl]-1,2,4-triazolato}bis­[aqua­nitrato­copper(II)] dihydrate

    PubMed Central

    Doroschuk, Roman

    2016-01-01

    The structure of the dinuclear title complex, [Cu2(C10H8N7)2(NO3)2(H2O)2]·2H2O, consists of centrosymmetric dimeric units with a copper–copper separation of 4.0408 (3) Å. The CuII ions in the dimer display a distorted octa­hedral coordination geometry and are bridged by two triazole rings, forming an approximately planar Cu2N4 core (r.m.s. deviation = 0.049 Å). In the crystal, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and π–π inter­actions link the mol­ecules into a three-dimensional network. PMID:27375870

  20. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration. PMID:27236842

  1. Synthesis and spectroscopic studies of novel Cu(II), Co(II), Ni(II) and Zn(II) mixed ligand complexes with saccharin and nicotinamide

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Bulut, İ.; Naumov, P.; Biçer, E.; Çakır, O.

    2001-01-01

    Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV-Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO 2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA) 2(Sac) 2(H 2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA) 2(H 2O) 4](Sac) 2).

  2. Synthesis, characterizations and catalytic studies of a new two-dimensional metal-organic framework based on Co-carboxylate secondary building units

    NASA Astrophysics Data System (ADS)

    Bagherzadeh, Mojtaba; Ashouri, Fatemeh; Đaković, Marijana

    2015-03-01

    A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected.

  3. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage.

    PubMed

    Pathak, Amar Deep; Nedea, Silvia; van Duin, Adri C T; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-06-21

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl2 hydrates to study the dehydration and hydrolysis kinetics of MgCl2·H2O and MgCl2·2H2O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl2 hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl2·H2O and MgCl2·2H2O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol(-1) for the proton transfer in MgCl2·2H2O is obtained, which is in good agreement with the barrier (19.55 kcal mol(-1)) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl2·H2O and MgCl2·2H2O show that the dehydration rate increases more rapidly with temperature in MgCl2·H2O than in MgCl2·2H2O, in the temperature range 300-500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl2·H2O, which is in agreement with experiments. The HCl formation is not observed for MgCl2·2H2O. The diffusion coefficient of H2O through MgCl2·H2O is lower than through MgCl2·2H2O, and can

  4. Bis(μ-5-carboxyl­ato-1-carboxyl­ato­methyl-2-oxidopyridinium)-κ2 O 5:O 1;κ2 O 1:O 5-[diaqua­(phenan­throline-κ2 N,N′)manganese(II)] dihydrate

    PubMed Central

    Jiang, Mei-Xiang; Feng, Yun-Long

    2009-01-01

    The centrosymmetric binuclear title complex, [Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O, was obtained by the reaction of manganese chloride with 5-carb­oxy-1-carboxy­methyl-2-oxidopyridinium and 1,10-phenanthroline. The MnII atom is coordinated by two N atoms from the 1,10-phenanthroline ligand, two O atoms from two 5-carboxyl­ato-1-carboxyl­atomethyl-2-oxidopyridinium ligands and two water mol­ecules, leading to a distorted octahedral MnN2O4 environment. Inter­molecular O—H⋯O hydrogen bonds link neighbouring mol­ecules into a layer structure parallel to (001). PMID:21583018

  5. Bis[2-(2-pyridylmethyl­eneamino)benzene­sulfonato-κ3 N,N′,O]cadmium(II) dihydrate

    PubMed Central

    Ou-Yang, Miao; Huang, Xue-Ren; Zhang, Yun-Liang; Jiang, Yi-Min

    2008-01-01

    The title complex, [Cd(Paba)2]·2H2O or [Cd(C12H9N2O3S)2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid (PabaK) with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. There are extensive hydrogen bonds of the type O—H⋯O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001). PMID:21580899

  6. Gaseous sodium sulfate formation in flames and flowing gas environments

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Miller, R. A.; Kohl, F. J.; Fryburg, G. C.

    1977-01-01

    Formation of Na2SO4(g) in flames and hot flowing gas systems was studied by high pressure, free-jet expansion, modulated molecular beam mass spectrometric sampling. Fuel-lean CH4-O2 flames doped with SO2, H2O and NaCl yielded the gaseous Na2SO4 molecule in residence times of less than one millisecond. Intermediate species NaSO2(g) and NaSO3(g) were also observed and measured. Composition profiles were obtained for all reaction products. Nonflame flowing gas experiments showed that Na2SO4 and NaSO3 gaseous molecules were formed at 1140 C in mixtures of O2, H2O(g), SO2 and NaCl(g). Experimental results are compared with calculated equilibrium thermodynamic predictions.

  7. [Intramolecular hygrogen bonds in conformers of 2'-deoxycytidine: results of quantum-chemical analysis of electron density topology].

    PubMed

    Zhurakivs'kyĭ, R O; Hovorun, D M

    2006-01-01

    As many as 13 types of intramolecular hygrogen bonds are determined in 89 conformers of 2'-deoxycytidine nucleoside by means of quantum-chemical analysis (at DFT B3LYP/6-31G(d,p) theory level) of electron density topology with Atoms-in-Molecules (AIM) theory. The total number of H-bonds is 168 and their types are C1'H...O2, C2'H2...O5', C2'H2...O2, C3'H...O2, C5'H1...O2, C5'H2...O2, C6H...O4', C6H...O5', C3'H...HC6, O3'H...O5', O5'H...O3', O5'H...O4' and O5'H...O2. Conformational, geometric and electron-topological properties of H-bonds are presented.

  8. Removing Al and regenerating caustic soda from the spent washing liquor of Al etching

    NASA Astrophysics Data System (ADS)

    Barakat, M. A.; El-Sheikh, S. M.; Farghly, F. E.

    2005-08-01

    Spent liquor from washing of aluminum section materials after etching with caustic soda (NaOH) has been treated. Aluminum was removed from the liquor and caustic soda was regenerated by adding precipitating agents to hydrolyze sodium aluminate (Na2AlO2), separating the aluminumprecipitate, and concentrating free NaOH in the resulting solution for reuse in the etching process. Four systems were investigated: hydrated lime [Ca(OH)2], hydrogen peroxide (H2O2), H2O2/Ca(OH)2 mixture, and dry lime (CaO). Results revealed that CaO was more efficient in the removal of aluminum from the spent liquor with a higher hydrolyzing rate of Na2AlO2 than Ca(OH)2, H2O2, or their mixture.

  9. Isotope effects in far-infrared spectra of bis(theophyllinato)copper(II)-complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    1998-07-01

    Far-infrared spectra have been measured for 63Cu and 65Cu isotope substituted theophylline (Tp)-metal ion complexes: Cu(Tp) 2(NH 3) 2 · 2H 2O, Cu(Tp) 2(NH 3) 2, Cu(Tp) 2 · 2H 2O and Cu(Tp) 2. In addition, spectrum of Cu(Tp) 2(ND 3) 2 · 2D 2O has been recorded. Metal-theophylline, metal-ammine and water librational and translational modes have been assigned based on observed isotope shifts and complex dehydration effects. The copper-ammine vibrations have been found at 453 and 224 cm -1, whereas the bis(theophyllinato)copper(II) modes have been detected at 192 cm -1 for Cu(Tp) 2(NH 3) 2 and presumably at about 170 cm -1 for Cu(Tp) 2.

  10. 21 CFR 184.1801 - Sodium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium tartrate. 184.1801 Section 184.1801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1801 Sodium tartrate. (a) Sodium tartrate (C4H4Na2O6·2H2O,...

  11. 21 CFR 184.1801 - Sodium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium tartrate. 184.1801 Section 184.1801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1801 Sodium tartrate. (a) Sodium tartrate (C4H4Na2O6·2H2O,...

  12. 21 CFR 184.1801 - Sodium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium tartrate. 184.1801 Section 184.1801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1801 Sodium tartrate. (a) Sodium tartrate (C4H4Na2O6·2H2O,...

  13. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  14. An artificial CO-releasing metalloprotein built by histidine-selective metallation.

    PubMed

    Albuquerque, Inês S; Jeremias, Hélia F; Chaves-Ferreira, Miguel; Matak-Vinkovic, Dijana; Boutureira, Omar; Romão, Carlos C; Bernardes, Gonçalo J L

    2015-03-01

    We report the design and synthesis of an aquacarbonyl Ru(II) dication cis-[Ru(CO)2(H2O)4](2+) reagent for histidine (His)-selective metallation of interleukin (IL)-8 at site 33. The artificial, non-toxic interleukin (IL)-8-Ru(II)(CO)2 metalloprotein retained IL-8-dependent neutrophil chemotactic activity and was shown to spontaneously release CO in live cells.

  15. trans,trans,trans-Diaqua-bis(nicotin-amide-κN)bis-(2-nitro-benzoato-κO)copper(II).

    PubMed

    Zhang, Kou-Lin; Xie, Qiu-Lan; Ng, Seik Weng

    2009-01-01

    The water-coordinated metal atom in the title compound, [Cu(C(7)H(4)NO(4))(2)(C(6)H(6)N(2)O)(2)(H(2)O)(2)], lies on a center of inversion in an all-trans octa-hedral environment with slight distortions. The mol-ecule inter-acts with adjacent mol-ecules through O-H⋯O and N-H⋯O hydrogen bonds, forming a layered network parallel to (010). PMID:21582368

  16. POM species, temperature and counterions modulated the various dimensionalities of POM-based metal-organic frameworks.

    PubMed

    Sun, Jing-Wen; Yan, Peng-Fei; An, Guang-Hui; Sha, Jing-Quan; Wang, Cheng; Li, Guang-Ming

    2016-01-28

    To investigate the influence of POM species, temperature and counterions on the structures of POM-MOFs containing Cu-tda second building units (SBUs), six new complexes with various dimensionalities, e.g. three dimensional (3D) [Cu(H2tda)(H2O)2]4[SiW12O40]·12H2O (), two dimensional (2D) [Cu2(H2tda)2(H2O)3]·[Cu(H2tda)(H2O)2]·[PMo12O40]·5H2O (), H-bond 2D [Cu(H2tda)(H2O)2]3·[PMo12O40]·[Cu(Htda)(H2O)3]·8H2O (), one dimensional (1D) [Cu2(H2tda)2(H2O)4]2·[Cu2(tda)2(H2O)4]·[HPW12O40]·5H2O (), 1D [Cu2(H2tda)2(H2O)4][SiW12O40]·(TMA)2·3H2O (), and zero dimensional (0D) [Cu(H2tda)(H2O)3][SiW12O40]·(TMA)3·H2O (), were isolated depending on the reaction conditions. It is observed that the POM species, temperature and counterions exhibit an essential effect on the structures, which results in the formation of various dimensional POM-MOF complexes . In addition, photocatalytic degradation of RhB by complexes , and under UV irradiation was also investigated. PMID:26693646

  17. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese gluconate. 184.1452 Section 184.1452... GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14·2H2O, CAS Reg. No. 648-0953-0998) is a slightly pink colored powder. It is obtained by reacting manganese carbonate with...

  18. Giant Zn14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake.

    PubMed

    Mondal, Suvendu Sekhar; Bhunia, Asamanjoy; Kelling, Alexandra; Schilde, Uwe; Janiak, Christoph; Holdt, Hans-Jürgen

    2014-01-01

    In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn14(L2)12(O)(OH)2(H2O)4] molecular building block (MBB) with a Zn6 octahedron inscribed in a Zn8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N2, CO2, CH4, and H2 gas sorption.

  19. Syntheses, structures, thermal stabilities and luminescence of two new lead sulfonates with phosphonate, carboxylate and pyridine

    NASA Astrophysics Data System (ADS)

    Fu, Ruibiao; Hu, Shengmin; Wu, Xintao

    2014-05-01

    Hydrothermal reactions of Pb2+ ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na2L1), 4-pyridyl-CH2N(CH2COOH)(CH2PO3 H2) (H3L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb4(L1)2(HL2)2(H2O)

  20. Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: Insights provided by uranium and neptunium diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D; Bray, Travis H; Zhang, Wei; Haire, Richard G.; Sayler, Todd S.; Albrecht-Schmitt, Thomas E

    2008-01-01

    In situ hydrothermal reduction of Np(VI) to Np(IV) in the presence of methylenediphosphonic acid (C1P2) results in the crystallization of Np[CH2(PO3)2](H2O)2 (NpC1P2-1). Similar reactions have been explored with U(VI) resulting in the isolation of the U(IV) diphosphonate U[CH2(PO3)2](H2O) (UC1P2-1), and the two U(VI) diphosphonates (UO2)2[CH2(PO3)2](H2O)3 H2O (UC1P2-2) and UO2[CH2(PO3H)2](H2O) (UC1P2-3). Single crystal diffraction studies of NpC1P2-1 reveal that it consists of eight-coordinate Np(IV) bound by diphosphonate anions and two coordinating water molecules to create a polar three-dimensional framework structure wherein the water molecules reside in channels. The structure of UC1P2-1 is similar to that of NpC1P2-1 in that it also adopts a three-dimensional structure. However, the U(IV) centers are seven-coordinate with only a single bound water molecule. UC1P2-2 and UC1P2-3 both contain U(VI). Nevertheless, their structures are quite distinct with UC1P2-2 being composed of corrugated layers containing UO6 and UO7 units bridged by C1P2; whereas, UC1P2-3 is found as a polar three-dimensional network structure containing only pentagonal bipyramidal U(VI). Fluorescence measurements on UC1P2-2 and UC1P2-3 exhibit emission from the uranyl moieties with classical vibronic fine-structure.

  1. A comparative study on the binding of single and double chain surfactant-cobalt(III) complexes with bovine serum albumin.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R

    2013-09-01

    The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3·2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2·2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3·2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2·2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 10(4)-10(5) M(-1). The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms.

  2. Photoinduced Cleavage of N–N Bonds of Aromatic Hydrazines and Hydrazides by Visible Light

    PubMed Central

    Zhu, Mingzhao

    2012-01-01

    A photocatalytic system involving [Ru(bpyrz)3](PF6)2·2H2O, visible light, and air has been developed for cleavage of the N–N bonds of hydrazines and hydrazides. This catalytic system is generally effective for N,N-disubstituted hydrazine and hydrazide derivatives, including arylhydrazides, N-alkyl-N-arylhydrazines, and N,N-diarylhydrazines. The utility of this cleavage reaction has been demonstrated by synthesizing a variety of secondary aromatic amines. PMID:23543799

  3. Transmission at lambda = 10.6-mum wavelength through the upper atmosphere.

    PubMed

    Douglas-Hamilton, D H

    1978-08-01

    An analytic model of atmospheric bleaching at 10.6 umicrom is derived from analysis of the kinetic equations for the CO(2)-N(2)-H(2)O system. The case of upward-directed CO(2) laser beams is of particular interest, and values of local absorptance and total absorption integrated along beam path are given. At intensities 10(6)-10(7) W cm(-2) thermal blooming of the laser beam is greatly reduced due to bleached absorption.

  4. mer-Triaqua­(1,10-phenanthroline-κ2 N,N′)(sulfato-κO)magnesium(II)

    PubMed Central

    Zhu, Ling; Huang, Jing; Han, Si-Ying; An, Zhe

    2008-01-01

    In the title compound, [Mg(SO4)(C12H8N2)(H2O)3], the MgII centre exhibits a slightly distorted octa­hedral coordination environment defined by two N atoms from a 1,10-phenanthroline mol­ecule, one O atom from a sulfate dianion and three meridionally arranged O atoms from coordinated water mol­ecules. The crystal structure involves intra- and intermolecular O—H⋯O hydrogen bonds. PMID:21202220

  5. Bis(dimethyl sulfoxide-κO)bis­(mercapto­acetato-κ2 O,S)tin(IV)

    PubMed Central

    Song, Li

    2009-01-01

    In the title compound, [Sn(C2H2O2S)2(C2H6OS)2], the mercaptoacetato ligands chelate to SnIV through S and one O atoms. The metal centre is also coordinated by two dimethyl sulfoxide (DMSO) ligands through the O atom, leading to an overall distorted octahedral coordination environment for the SnIV atom. The mol­ecular adduct lies on a twofold rotation axis. PMID:21578179

  6. Crystal-to-crystal transformation from a chain compound to a layered coordination polymer.

    PubMed

    Shi, Jinbiao; Zhang, Yan; Zhang, Bin; Zhu, Daoben

    2016-01-01

    A crystal-to-crystal transformation was observed from a green chain compound CuBr2(1,4-dioxane)2(H2O)2 (1) to a brown layered compound (CuBr2)3(1,4-dioxane)2 (2). The hydrogen bond connecting chains in were replaced by a μ-Br bridge in and the antiferromagnetic interaction between the metal atoms in became stronger than in 1. PMID:26600206

  7. Real gas properties and Space Shuttle Main Engine fuel turbine performance prediction

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1987-01-01

    The H2/H2O mixture thermodynamic and transport properties variations for the Space Shuttle Main Engine (SSME) fuel turbine over a range of temperatures and pressures are examined. The variation of molecular viscosity, specific heat at constant pressure, and Prandtl number for the hydrogen/steam mixture are fitted using polynominal relationships for future turbine performance use. The mixture property variations are calculated using GASP and WASP computer programs. The air equivalent performance of the SSME fuel turbine is computed.

  8. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole.

    PubMed

    López-Viseras, Marta E; Fernández, Belén; Hilfiker, Sabine; González, Cristina Sánchez; González, Juan Llopis; Calahorro, Antonio J; Colacio, Enrique; Rodríguez-Diéguez, Antonio

    2014-02-01

    A novel Zn mononuclear complex with 3-carboxy-pyrazole ligand has been prepared using conventional routes and characterized by X-ray diffraction. The structure consists of discrete neutral [Zn(C6H3N2O2)2(H2O)2] molecules held together by hydrogen interactions. This compound exhibits a potential in vivo antidiabetic activity and the in vitro toxicity can be considered negligible. PMID:24252384

  9. Piperazine as counter ion for insulin-enhancing anions [VO2(dipic-OH)]-: Synthesis, characterization and X-ray crystal structure

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Graiff, Claudia

    2016-01-01

    The new complex [H2Pipz][VO2(dipic-OH)]2·2H2O (1), where H2dipic-OH = 4-hydroxypyridine-2,6-dicarboxylic acid and Pipz = piperazine, was synthesized and characterized by elemental analysis, FTIR, 1H NMR, 13C NMR and UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal system is triclinic with space group Pī. In this compound, piperazine is diprotonated and acts as counter ion.

  10. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  11. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No. 7778-18-9 or CaSO4·2H2O,...

  12. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  13. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  14. Dehydration of uranyl nitrate hexahydrate to the trihydrate under ambient conditions as observed via dynamic infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-01

    Uranyl nitrate is a key species in the nuclear fuel cycle, but is known to exist in different states of hydration, including the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating it. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the h