Science.gov

Sample records for 2mass active galactic

  1. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    SciTech Connect

    Edelson, R.; Malkan, M.

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  2. A Galactic Plane relative extinction map from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Ray, T. P.; Murphy, G. C.; Scholz, A.

    2005-03-01

    We present three 14 400 square degree relative extinction maps of the Galactic Plane (|b| < 20°) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5 × 3.5 boxes, every 20.1° × 1° surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (β) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.

  3. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  4. Active Galactic Nuclei Feedback and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  5. Near-infrared photometry and spectroscopy of the low Galactic latitude globular cluster 2MASS-GC 03

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Ramírez Alegría, S.; Borissova, J.; Smith, L. C.; Kurtev, R.; Lucas, P. W.; Moni Bidin, Ch.; Alonso-García, J.; Minniti, D.; Palma, T.; Dékány, I.; Medina, N.; Moyano, M.; Villanueva, V.; Kuhn, M. A.

    2016-10-01

    We present deep near-infrared photometry and spectroscopy of the globular cluster 2MASS-GC 03 projected in the Galactic disc using MMT and Magellan Infrared Spectrograph on the Clay Telescope (Las Campanas Observatory) and VISTA Variables in the Via Lactea Survey data. Most probable cluster member candidates were identified from near-infrared photometry. Out of 10 candidates that were followed-up spectroscopically, 5 have properties of cluster members, from which we calculate <[Fe/H]>= - 0.9 ± 0.2 and a radial velocity of = - 78 ± 12 km s-1. A distance of 10.8 kpc is estimated from three likely RR Lyrae members. Given that the cluster is currently at a distance of 4.2 kpc from the Galactic Centre, the cluster's long survival time of an estimated 11.3 ± 1.2 Gyr strengthens the case for its globular-cluster nature. The cluster has a hint of elongation in the direction of the Galactic Centre.

  6. A study of RV in Galactic O stars from the 2MASS catalogue

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Morbidelli, L.; Perinotto, M.

    2003-11-01

    We present new measurements of the interstellar reddening parameter RV=AV/E(B-V) towards 185 O stars, using J, H, Ks photometry from the 2MASS project. The results are combined with data from the literature of 95 stars where RV has been derived with the same technique, 22 of which in common with our present sample from the 2MASS project catalogue. The average RV from these 258 O stars is of 3.19 +/- 0.50. All objects whose RV departs from this value by more than 2 sigma have been recognized. Ten objects have RV higher than this value and two lower. It is found that anomalous RV can scarcely be associated with anomalies in the general interstellar medium, e.g. with different behaviour in different spiral arms. They are clearly linked to local cloud effect. In the Cygnus region RV values follow the behaviour of the general interstellar medium, while in the Carina arm, in spite of the relatively larger distance, local cloud effects prevail. An explanation for this is suggested. The relatively few stars of our sample whose Hipparcos parallaxes are reliable, are found to have distances systematically smaller than the distances derived by the spectroscopic parallaxes. We argue that this effect is consistent with the recently claimed discovery of grey extinction towards OB stars. This publication makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/905

  7. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-07

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  8. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  9. Phenomenology of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Leahy, J. P.

    1999-04-01

    I review the observational data on AGN, focusing especially on results that may be relevant to sub-parsec discs. After emphasizing the essential unity of the different AGN, from LINERs to quasars, I review several observational tracers which have been claimed to be produced by accretion discs. In most cases the interpretation of these data is ambiguous, but the recent detections of redshifted Fe K alpha by ASCA provide convincing evidence for discs. I briefly review the phenomenology of jets in AGN, and emphasize that jets are detected in all classes of AGN, and in radio-loud AGN comprise a major component of the energy budget. Evidence that jets are relativistic is now compelling for all types of radio-loud AGN and is accumulating even for radio-quiet objects. Data on jets provide a long-term record of AGN activity which constrains aspects of disc history including start-up times, alignment stability and precession, lifetimes, and recurrent activity. Finally, I discuss the distinction between radio-quiet and radio loud AGN, which is broad enough to suggest two fundamentally different types of central engine, although it may not be as clear-cut as is sometimes claimed. At present there is no consensus on the nature of this difference. I draw attention to the broad absorption line (BAL) phenomenon, which signposts powerful but uncollimated outflows in radio-quiet AGN, which may correspond to the powerful jets in the radio-loud objects.

  10. Active Galactic Nuclei and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Giebels, Berrie; Aharonian, Felix; Sol, Hélène

    The supermassive black holes harboured in active galactic nuclei are at the origin of powerful jets which can emit copious amounts of γ-rays. The exact interplay between the infalling matter, the black hole and the relativistic outflow is still poorly known, and this parallel session of the 12th Marcel Grossman meeting intended to offer the most up to date status of observational results with the latest generation of ground and space-based instruments, as well as the theoretical developments relevant for the field.

  11. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  12. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  13. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  14. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  15. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  16. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  17. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  18. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  19. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Müller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  20. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  1. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  2. Testing Tests on Active Galactic Nucleus Microvariability

    NASA Astrophysics Data System (ADS)

    de Diego, José A.

    2010-03-01

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using χ2 tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and χ2 prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  3. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  4. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  5. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  6. Megamaser Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kartje, John F.; Königl, Arieh; Elitzur, Moshe

    1999-03-01

    Recent spectroscopic and VLBI-imaging observations of bright extragalactic H2O maser sources have revealed that the megamaser emission often originates in thin circumnuclear disks near the centers of active galactic nuclei (AGNs). Using general radiative and kinematic considerations and taking account of the observed flux variability, we argue that the maser emission regions are clumpy, a conclusion that is independent of the detailed mechanism (X-ray heating, shocks, etc.) driving the collisionally pumped masers. We examine scenarios in which the clumps represent discrete gas condensations (i.e., clouds) and do not merely correspond to velocity irregularities in the disk. We show that even two clouds that overlap within the velocity-coherence length along the line of sight could account (through self-amplification) for the entire maser flux of a high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and we suggest that cloud self-amplification likely contributes also to the flux of the background-amplifying ``systemic'' features in these objects. Analogous interpretations have previously been proposed for water maser sources in Galactic star-forming regions. We argue that this picture provides a natural explanation of the time-variability characteristics of extragalactic megamaser sources and of their apparent association with Seyfert 2-like galaxies. We also show that the requisite cloud space densities and internal densities are consistent with the typical values of nuclear (broad emission line region type) clouds. We examine two scenarios of clumpy disks in which the maser emission is excited by a central continuum source. This excitation mechanism was first considered in the context of megamaser disks by Neufeld & Maloney, but our proposed models are clearly distinct from their warped, homogeneous disk interpretation. In our first scenario we consider an annular disk (or ``ring'') whose inner edge corresponds to the innermost radius of the

  7. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  8. Galactic Center gamma-ray ``excess'' from an active past of the Galactic Centre?

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Dario Serpico, Pasquale; Zaharijaš, Gabrijela

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ~ 1052÷1053 erg roughly Script O(106) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ``steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  9. Galactic Center gamma-ray ''excess'' from an active past of the Galactic Centre?

    SciTech Connect

    Petrović, Jovana; Serpico, Pasquale Dario; Zaharijaš, Gabrijela E-mail: serpico@lapth.cnrs.fr

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ∼ 10{sup 52}÷10{sup 53} erg roughly O(10{sup 6}) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ''steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  10. The Physics and Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai

    2013-11-01

    Preface; 1. Observations of active galactic nuclei; 2. Nonthermal radiation processes; 3. Black holes; 4. Accretion disks; 5. Physical processes in AGN gas and dust; 6. The AGN family; 7. Main components of AGN; 8. Host galaxies of AGN; 9. Formation and evolution of AGN; 10. Outstanding questions; References; Index.

  11. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  12. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  13. Infrared-ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Malkan, M. A.; These corrected SEDs are shown.

    1987-01-01

    Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown.

  14. Active galactic nuclei activity: self-regulation from backflow

    NASA Astrophysics Data System (ADS)

    Antonuccio-Delogu, V.; Silk, Joseph

    2010-06-01

    We study the internal circulation within the cocoon carved out by the relativistic jet emanating from an active galactic nucleus (AGN) within the interstellar medium (ISM) of its host galaxy. First, we develop a model for the origin of the internal flow, noticing that a significant increase of large-scale velocity circulation within the cocoon arises as significant gradients in the density and entropy are created near the hotspot (a consequence of Crocco's vorticity generation theorem). We find simple and accurate approximate solutions for the large-scale flow, showing that a backflow towards the few inner parsec region develops. We solve the appropriate fluid dynamic equations, and we use these solutions to predict the mass inflow rates towards the central regions. We then perform a series of 2D simulations of the propagation of jets using FLASH 2.5, in order to validate the predictions of our model. In these simulations, we vary the mechanical input power between 1043 and 1045 ergs-1, and assume a Navarro-Frenk-White (NFW) density profile for the dark matter halo, within which an isothermal diffuse ISM is embedded. The backflows which arise supply the central AGN region with very low angular-momentum gas, at average rates of the order of , the exact value seen to be strongly dependent on the central ISM density (for fixed input jet power). The time-scales of these inflows are apparently weakly dependent on the jet/ISM parameters, and are of the order of . We then argue that these backflows could (at least partially) feed the AGN, and provide a self-regulatory mechanism of AGN activity, that is not directly controlled by, but instead controls, the star formation rate within the central circumnuclear disc.

  15. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  16. Active galactic nuclei and their panchromatic beauty.

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta

    2016-08-01

    The rapid development of new observational capabilities provides the ability to detect both the obscured (Type 2) and the unobscured (Type 1) flavours of active galaxies. In particular, the combination of sensitive observations from mid-IR to X-rays allows us to pierce through large columns of gas and dust hiding the Type 2 obscured AGN nuclear region. The study of the relative AGN/host-galaxy contribution over different portions of the broad-band Spectral Energy Distribution (SED) is fundamental to constrain the physical evolution of AGN and how to place them into the context of galaxy evolution.I will discuss a study of the multi-wavelength properties of an X-ray selected sample of both obscured and unobscured AGN using the XMM-Newton wide field survey in the COSMOS field. I will focus on their SEDs, the morphology of the host-galaxies, the stellar masses, the bolometric luminosities and bolometric corrections. Finally, I will briefly discuss what are the perspectives of AGN in the context of observational cosmology.

  17. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  18. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

  19. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  20. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  1. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  2. Nuclear Structure and Galactic γ-Ray Activity.

    PubMed

    Görres, J

    2000-01-01

    The observation of galactic γ lines following the decay of radioactive nuclei provides a direct link between nuclear physics experiments in earth-based laboratories and astrophysical observations with space-based observatories. Two examples are presented to illustrate this interplay: the measurement of the lifetime of (44)Ti to allow an improved determination of the (44)Ti mass of the supernova remnant Cassiopeia A from the observed γ ray activity and the measurements of excited states in (24)Si to determine the reaction rate of (23)Al(p, γ)(24)Si which might be important for a reduced production of (22)Na in novae.

  3. Physics and structure of photoionised outflows in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kaastra, Jelle

    2012-07-01

    I discuss the recent progress in the study of outflows from active galactic nuclei. Using long and deep monitoring observations, it is now possible to get a detailed view on the structure and location of the outflow, as well as its impact on the environment of the AGN. Focus will be on the nature of the outflow components in terms of number of components, and on time-dependent photoionisation modeling as a tool to constrain the location of these components. I will illustrate this using the results of a large monitoring campaign on Mrk 509 with XMM-Newton, Integral, Chandra, HST, Swift and ground-based observatories.

  4. Spatially Offset Active Galactic Nuclei. I. Selection and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2016-09-01

    We present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3″ diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.″6 (0.8 kpc) to 17.″4 (19.4 kpc), with a median value of 2.″7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to {89}-16+7% incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.

  5. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  6. Relativistic Jets in Active Galactic Nuclei and Microquasars

    NASA Astrophysics Data System (ADS)

    Romero, Gustavo E.; Boettcher, M.; Markoff, S.; Tavecchio, F.

    2017-01-01

    Collimated outflows (jets) appear to be a ubiquitous phenomenon associated with the accretion of material onto a compact object. Despite this ubiquity, many fundamental physics aspects of jets are still poorly understood and constrained. These include the mechanism of launching and accelerating jets, the connection between these processes and the nature of the accretion flow, and the role of magnetic fields; the physics responsible for the collimation of jets over tens of thousands to even millions of gravitational radii of the central accreting object; the matter content of jets; the location of the region(s) accelerating particles to TeV (possibly even PeV and EeV) energies (as evidenced by γ-ray emission observed from many jet sources) and the physical processes responsible for this particle acceleration; the radiative processes giving rise to the observed multi-wavelength emission; and the topology of magnetic fields and their role in the jet collimation and particle acceleration processes. This chapter reviews the main knowns and unknowns in our current understanding of relativistic jets, in the context of the main model ingredients for Galactic and extragalactic jet sources. It discusses aspects specific to active Galactic nuclei (especially blazars) and microquasars, and then presents a comparative discussion of similarities and differences between them.

  7. High energy neutrinos from radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Mészáros, Peter

    2004-12-01

    Most active galactic nuclei (AGN) lack prominent jets, and show modest radio emission and significant x-ray emission which arises mainly from the galactic core, very near the central black hole. We use a quantitative scenario of such core-dominated radio-quiet AGN, which attributes a substantial fraction of the x-ray emission to the presence of abortive jets involving the collision of gas blobs in the core. Here we investigate the consequences of the acceleration of protons in the shocks from such collisions. We find that protons will be accelerated up to energies above the pion photoproduction threshold on both the x rays and the UV photons from the accretion disk. The secondary charged pions decay, producing neutrinos. We predict significant fluxes of TeV-PeV neutrinos, and show that the AMANDA II detector is already constraining several important astrophysical parameters of these sources. Larger cubic kilometer detectors such as IceCube will be able to detect such neutrinos in less than one year of operation, or otherwise rule out this scenario.

  8. 2MASS 0213+3648 C: A wide T3 benchmark companion to an an active, old M dwarf binary

    NASA Astrophysics Data System (ADS)

    Deacon, N. R.; Magnier, E. A.; Liu, Michael C.; Schlieder, Joshua E.; Aller, Kimberly M.; Best, William M. J.; Bowler, Brendan P.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Sweeney, W. E.; Wainscoat, R. J.; Waters, C.

    2017-01-01

    We present the discovery of a 360 AU separation T3 companion to the tight (3.1 AU) M4.5+M6.5 binary 2MASS J02132062+3648506. This companion was identified using Pan-STARRS 1 data and, despite its relative proximity to the Sun (22.2_{-4.0}^{+6.4} pc; Pan-STARRS 1 parallax) and brightness (J=15.3), appears to have been missed by previous studies due to its position near a diffraction spike in 2MASS. The close M dwarf binary has active X-ray and Hα emission and shows evidence for UV flares. The binary's weak GALEX UV emission and strong Na I 8200 Å Na absorption leads us to an age range of ˜1-10 Gyr. Applying this age range to evolutionary models implies the wide companion has a mass of 0.063±0.009 M⊙. 2MASS J0213+3648 C provides a relatively old benchmark close to the L/T transition and acts as a key, older comparison to the much younger early-T companions HN Peg B and GU Psc b.

  9. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  10. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  11. Variability Analysis and the Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    This five-year Long-Term Space Astrophysics grant provided the support for several major steps in advancing our knowledge of the internal structure of active galactic nuclei. The single largest portion of this program had to do with the development and application of techniques for "reverberation mapping", the use of spectral monitoring of several different bands related by radiation reprocessing to infer the internal geometry of sources. Major steps were taken in this regard, particularly in establishing the distribution in radius of emission line material, and in relating the apparent reprocessing of continuum bands to the underlying structure of the accretion disk. Another major effort built directly upon these results. Once the case for continuum reprocessing was made by the monitoring, it next behooved us to understand the spectral output of AGN as a result of this reprocessing. As a result, our view of continuum production in AGN is now much better focussed on the key problems. A third focus of effort had to do with the nature of X-ray variability in AGN, and what it can tell us about the dynamics of extremely hot material in the immediate outskirts of the supermassive black holes that form the central engines of active galactic nuclei. In addition to these primary efforts, this grant also supported many other, smaller projects. Several of these were demonstrations of how the material spewed out of AGN in relativistic.ets generate the radiation by which we observe them. J Finally, the portion of this study that had to do with continuum production by accretion disks in AGN led naturally to several papers in which new developments were presented having to do with "advection-dominated accretion disks", those disks in which accretion appears to proceed at a substantial rate, but in which radiation processes are weak.

  12. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  13. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  14. Galactic Winds in Galaxies with Active Black Holes

    NASA Astrophysics Data System (ADS)

    Lee, Lin; Yesuf, Hassen Mohammed

    2017-01-01

    Post-starbursts galaxies are in a rapid transition from star-forming to quiescent, and are excellent candidates to test Active galactic nuclei (AGN) feedback models. A key physical manifestation of AGN feedback is predicted to be galactic-scale powerful winds. We study winds in stacked spectra of 375 post-starburst AGN and of a control sample of star-forming (non-AGN) galaxies, both taken from the Sloan Digital Sky Survey (SDSS). Using a two component (ISM+wind) absorption line model of the Na I 5890,5896 A doublet, after accounting for the stellar photospheric absorption, we find that the post-starburst AGN have a centroid wind velocity shift of -174 +/- 24 km/s and a wind velocity dispersion of 148 +/- 10 km/s. In comparison, the control sample, matched in redshift, stellar mass, axis-ratio, and the 4000 angstrom break index, has a centroid wind velocity shift of -132 +/- 7 km/s and a wind velocity dispersion of 86 +/- 5 km/s. The equivalent widths due to the winds are slightly higher in post-starburst AGN (0.25 +/- 0.03 A) than in the control sample (0.14 +/- 0.01 A) while the ISM contribution to the total equivalent widths is much higher in the AGN (0.62 +/- 0.05 A) than in the control sample (0.15 +/- 0.01 A). The observed winds in the post-starburst AGN are not powerful enough to sweep significant amount gas out of the halos of the host galaxies, thereby cause rapid and permanent quenching of star-formation.

  15. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called ;blazars;. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future ;Cherenkov Telescope Array;, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  16. A study of warm absorbers in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ashton, Ceri Ellen

    This thesis explores the 'warm absorber' phenomenon observed in Active Galactic Nuclei (AGN). Warm absorbers are clouds of ionised gas within AGN, that cause absorption at soft X-ray wavelengths. They are observed in half of all Type 1 AGN, hence they play an important part in the framework of our under standing of Active Galactic Nuclei. Observations with the satellite XMM-Newton have given us the highest signal-to-noise data yet. XMM-Newton observations of the quasars PG 1114+445 and PG 1309+355 are studied. Both quasars exhibit evidence for absorption by warm material in the line-of-sight. We define a 'phase' of absorption to have a single ionisation param eter and column density. From fits to the data, the absorption in PG 1114+445 is found to be in two phases, a 'hot' phase with a log ionisation parameter f of 2.57 and a column of 1022 cm-2, and a 'cooler' one with log f of 0.83 and a column of 1021 cm-2. The absorption in PG 1309+355 consists of a single phase, with log f of 1.87 and a column of 1021 cm-2. The absorbing gas lies at distances of 1019 - 1022 cm from the continuum radiation sources in these AGN, suggesting origins in a wind emanating from a molecular torus, according to the 'Standard Model' of AGN. The kinetic luminosities of the outflowing absorbers represent insignificant fractions (< 10 3) of the energy budgets of the AGN. Using data for the Seyfert 1 H 0557 385, the warm absorption is characterised by two phases, a phase with log £ of 0.48 and a column of 1021 cm-2, and a phase with log f of 1.63 and a column of 1022 cm-2. Neutral absorption is also present in the source, and possible origins for this are discussed. For a large sample, observations of warm absorbers are collated and compared with models.

  17. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  18. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  19. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  20. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  1. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  2. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  3. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  4. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  5. Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.; Kishimoto, Makoto

    2017-04-01

    This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3–5 μm bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3–5 μm near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.

  6. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  7. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  8. VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS

    SciTech Connect

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-20

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  9. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  10. Momentum Driving: Which Physical Processes Dominate Active Galactic Nucleus Feedback?

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah P.; Choi, Ena; Ciotti, Luca; Novak, Gregory S.; Proga, Daniel

    2010-10-01

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter η ={\\dot{M}_outf}/{\\dot{M}_acc}= {2 ɛ_wc^2}/{v_w^2} where epsilonw (≡ \\dot{E}_w/(\\dot{M}_accc^2)) is the efficiency with which accreted matter is turned into wind energy in the disk surrounding the central SMBH. The outflowing mass and momentum are proportional to η, and many prior treatments have essentially assumed that η = 0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to a hundred-fold increase in the mass of the SMBH to over 1010 M sun. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies that lead to the most observationally acceptable results are relatively low with epsilonw <~ 10-4.

  11. Testing Unification Models in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Muller-Sanchez, Francisco

    Dual active galactic nuclei (AGNs), which are kpc-scale separation AGN pairs in galaxy mergers, are ideal targets for testing unification models and models of galaxy evolution. By definition, the AGN nature of the two nuclei suggests that they must be consistent with standard unification models (i.e, a dusty torus obscures the central engine in type 2 AGN). At the same time, they are the result of merger-induced nuclear activity. Galaxy evolution models suggest that merger-induced AGNs are heavily obscured for long periods by the high gas densities powering them. Eventually, feedback drives away material, creating a brief window in time in which the AGN is not obscured. Therefore, in these models, there is no need for a small-scale torus. We are constructing for the first time the spectral energy distributions (SEDs) of the two AGNs in dual AGN systems using data from Hubble and Chandra telescopes, in combination with VLA, Keck and VLT data. However, a critical missing component is dust emission at 30-40 microns, which can only be achieved by SOFIA. We propose FORCAST 31.5 and 37.1 microns observations of the complete sample of 5 confirmed dual AGNs with angular separations >3.5". As suggested by current models, the best wavelength to detect thermal emission from a torus would be between 30-40 microns, where both the non-thermal core and the stellar emission sharply decline, and the torus emission peaks. Thus, FORCAST provides 1) the best angular resolution between 30-40 microns of the current suite of instruments, crucial to separate the emission from the two AGNs, and 2) the largest constraining power for torus models, crucial to characterize the properties of the torus in AGNs.

  12. The OPTX Project. V. Identifying Distant Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.; Tremonti, C.

    2011-11-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/Hβ versus [N II]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]λ3869, and [O II]λλ3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (langΓeffrang = 1.0+0.4 -0.4) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  13. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  14. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  15. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  16. IUEAGN: A database of ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.

    1993-01-01

    In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.

  17. The Evolution of Active Galactic Nuclei and their Spins

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Sikora, M.; Lasota, J.-P.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ~ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  18. Surface Photometry of Reverberation-Mapped Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bower, Gary A.

    2015-01-01

    I present a statistical analysis of the surface photometry obtained for a sample of Hubble Space Telescope (HST) archival images of the host galaxies containing active galactic nuclei (AGN), whose time-delay between continuum and broad emission line variations have been analyzed (i.e., reverberation mapping). For quiescent galaxies, strong correlations exist between central black hole mass and host galaxy structure. If there are similar correlations for AGN between central black hole masses derived from reverberation mapping and the host galaxy structure that I have derived from archival HST images, this would imply some validation of the assumptions underlying reverberation mapping concerning the structure, kinematics, and orientation of the broad line regions in AGN.The correlations for quiescent galaxies bewteen central black hole mass and host galaxy structure imply that there might be a strong causal connection between the formation and evolution of the black hole and the galaxy bulge. A current hypothesis is that bulges, black holes, and quasars formed, grew, or turned on as parts of the same process, in part because the collapse or merger of bulges might provide a rich fuel supply to a central black hole. One way of testing this hypothesis would be to plot AGN as a function of redshift on these correlations. However, two severe obstacles limit the ability to measure black hole masses in AGN using HST to analyze the central stellar and/or gas dynamics: (1) since spatial resolution becomes more limited at larger distances, only two reverberation-mapped AGN are close enough to Earth to render the analysis feasible, and (2) it isdifficult to obtain useful spectra of the stars and/or gas in the presence of the bright nonstellar nucleus. The most useful alternative is to exploit reverberation mapping, which uses the time delay in a given AGN between variations in the continuum emission and broad emission lines.

  19. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS

    SciTech Connect

    Volonteri, M.; Lasota, J.-P.; Sikora, M.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ∼ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  20. SPECTROSCOPICALLY SELECTED SPITZER 24 {mu}m ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Choi, P. I.; Yan Lin; Helou, G.; Storrie-Lombardi, L. J.; Shim, H.; Fadda, D.; Im, M.

    2011-05-01

    We investigate the active galactic nucleus (AGN) sub-population of a 24 {mu}m flux-limited galaxy sample in the Spitzer Extragalactic First Look Survey. Using deep Keck optical spectroscopy and a series of emission-line diagnostics, we identify AGN-dominated systems over broad redshift 0 < z < 3.5 and luminosity 9 < log (L{sub TIR}) < 14 ranges, with sample means of (z) = 0.85 and (log (L{sub TIR})) = 11.5. We find that down to the flux limits of our Spitzer MIPS sample (f{sub 24} > 200 {mu}Jy), 15%-20% of sources exhibit strong AGN signatures in their optical spectra. At this flux limit, the AGN population accounts for as much as 25%-30% of the integrated 24 {mu}m flux. This corresponds to an MIR AGN contribution {approx}2-3 x greater than that found in ISOCAM 15 {mu}m studies that used X-ray AGN identifications. Based on our spectroscopically selected AGN sample, we also investigate the merits of Infrared Array Camera (IRAC) color selection for AGN identification. Our comparison reveals that although there is considerable overlap, a significant fraction of spectroscopic AGNs are not identifiable based on their MIR colors alone. Both the measured completeness and reliability of the IRAC color selections are found to be strongly dependent on the MIR flux limit. Finally, our spectroscopic AGN sample implies as much as a 3 x higher AGN surface density at high redshift (z > 1.2) than that of recent optical surveys at comparable optical flux limits, suggestive of a population of heavily obscured, optical/UV reddened AGNs.

  1. On the Radio Dichotomy of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2016-12-01

    It is still a mystery why only a small fraction of active galactic nuclei (AGNs) contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation, however, the advection of the external field in a geometrically thin disk is inefficient. Gas with a small angular velocity may fall from the Bondi radius {R}{{B}} nearly freely to the circularization radius {R}{{c}}, and a thin accretion disk is formed within {R}{{c}}. We suggest that the external magnetic field is substantially enhanced in this region, and the magnetic field at {R}{{c}} can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at {R}{{B}}. The magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. We suggest that the radio dichotomy of AGNs predominantly originates from the angular velocity of the circumnuclear gas. An AGN will appear as a radio-loud (RL) one if the angular velocity of the circumnuclear gas is lower than a critical value at the Bondi radius, otherwise, it will appear as a radio-quiet (RQ) AGN. This is supported by the observations that RL nuclei are invariably hosted by core galaxies. Our model suggests that the mass growth of the black holes in RL quasars is much faster than that in RQ quasars with the same luminosity, which is consistent with the fact that the massive black holes in RL quasars are systematically a few times heavier than those in their RQ counterparts.

  2. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  3. Galaxy interactions and active galactic nuclei in the local universe

    NASA Astrophysics Data System (ADS)

    Ryan, Christopher J.

    2009-06-01

    It has been suggested that galaxy interactions may be the principal mechanism responsible for triggering non-thermal activity in galactic nuclei. This thesis investigates the possible role of interactions in the local Universe by searching for evidence of a causal relationship between major interactions and the initiation of activity in Seyfert galaxies using high-quality, multiwavelength imaging data. The connection between interacting galaxies and Seyferts is explored by comparing the clustering properties of their environments, as quantified by the spatial cross-correlation function amplitude. If a direct evolutionary relationship exists, the objects should be located in environments that are statistically similar. It was previously demonstrated that Seyferts are found in fields comparable to isolated galaxies. The analysis presented in this work reveals that interacting galaxies are preferentially situated in regions consistent with Abell Richness Classes of 0 to 1. The apparent dissimilarity of their environments provides a strong argument against a link between major interactions and Seyfert galaxies. An examination of the photometric and morphological properties of the interacting systems does not uncover any trends that could be associated with the initiation of nuclear activity. The role of major interactions in triggering low-redshift AGNs is then assessed using near-infrared imagery of a sample of Narrow-Line Seyfert 1 galaxies. It has been postulated that these objects are evolutionarily young AGNs, powered by accretion onto supermassive black holes that are considerably lower in mass than those found in typical broad-line Seyferts. By employing the correlation between black hole mass and host galaxy bulge luminosity, the mean black hole mass, [Special characters omitted.] BH , in solar units for the sample is found to be [left angle bracket]log [Special characters omitted.] ( BH )[right angle bracket] = 7.7 ± 0.1, consistent with typical broad

  4. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  5. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  6. Characterizing the population of active galactic nuclei in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  7. Bar Effects on Central Star Formation and Active Galactic Nucleus Activity

    NASA Astrophysics Data System (ADS)

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M r < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  8. A new perspective on the radio active zone at the Galactic center - feedback from nuclear activities

    NASA Astrophysics Data System (ADS)

    Zhao, J.-H.; Morris, M. R.; Goss, W. M.

    2014-05-01

    Based on our deep image of Sgr A using broadband data observed with the VLA† at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ˜1 × 104 yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.

  9. Outflow and Accretion Physics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGraw, Sean Michael

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  10. DISCOVERY OF THE RECOMBINING PLASMA IN THE SOUTH OF THE GALACTIC CENTER: A RELIC OF THE PAST GALACTIC CENTER ACTIVITY?

    SciTech Connect

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K.; Murakami, H.; Uchiyama, H.

    2013-08-10

    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter {sup G}C South{sup )} has an angular size of {approx}42' Multiplication-Sign 16' centered at (l, b) {approx} (0. Degree-Sign 0, - 1. Degree-Sign 4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at {approx}2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density Multiplication-Sign elapsed time) of 5.3 Multiplication-Sign 10{sup 11} s cm{sup -3}. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region ({approx}8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be {approx}97 pc Multiplication-Sign 37 pc, 0.16 cm{sup -3}, and 1.6 Multiplication-Sign 10{sup 51} erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  11. Discovery of the Recombining Plasma in the South of the Galactic Center: A Relic of the Past Galactic Center Activity?

    NASA Astrophysics Data System (ADS)

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K.; Murakami, H.; Uchiyama, H.

    2013-08-01

    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter "GC South") has an angular size of ~42' × 16' centered at (l, b) ~ (0.°0, - 1.°4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at ~2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density × elapsed time) of 5.3 × 1011 s cm-3. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region (~8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be ~97 pc × 37 pc, 0.16 cm-3, and 1.6 × 1051 erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  12. Anticorrelation of Variability Amplitude with X-Ray Luminosity for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Abramowicz, Marek A.

    1996-07-01

    The bright-spot model for the short-term X-ray variability of active galactic nuclei predicts that, statistically, sources with larger luminosities should have smaller variability amplitudes. This quantitatively agrees with the analysis of the observational data from 12 high-quality EXOSAT long looks performed by Lawrence & Papadakis.

  13. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  14. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  15. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  16. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  17. Astrophysical bags - A new paradigm for active galactic nuclei?

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1992-01-01

    Active galaxies are believed to consist of a compact nucleus, the standard model for which is a massive black hole or a cluster of black holes. A different paradigm is considered here, deriving from quark confinement theory in QCD. It is an 'astrophysical bag', modelled after the 'hadron bags' of particle physics which have already been studied in astrophysics as quark stars. Another interpretation of the cosmological constant in general relativity, and possibly a new quasar redshift formula, are introduced. As a highly-energetic object, this model may resolve the baryonic matter problem for fuelling AGN accretion processes which black hole paradigms cannot account for. Here, baryons, cosmic rays, and neutrinos are free.

  18. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  19. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  20. Active Galactic Nucleus Feedback at z ~ 2 and the Mutual Evolution of Active and Inactive Galaxies

    NASA Astrophysics Data System (ADS)

    Cimatti, A.; Brusa, M.; Talia, M.; Mignoli, M.; Rodighiero, G.; Kurk, J.; Cassata, P.; Halliday, C.; Renzini, A.; Daddi, E.

    2013-12-01

    The relationship between galaxies of intermediate stellar mass and moderate luminosity active galactic nuclei (AGNs) at 1 < z < 3 is investigated with a Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) sample complemented with public data in the GOODS-South field. Using X-ray data, hidden AGNs are identified in unsuspected star-forming galaxies with no apparent signs of non-stellar activity. In the color-mass plane, two parallel trends emerge during the ~2 Gyr between the average redshifts z ~ 2.2 and z ~ 1.3: while the red sequence becomes significantly more populated by ellipticals, the majority of AGNs with L(2-10 keV) > 1042.3 erg s-1 disappear from the blue cloud/green valley where they were hosted predominantly by star-forming systems with disk and irregular morphologies. These results are even clearer when the rest-frame colors are corrected for dust reddening. At z ~ 2.2, the ultraviolet spectra of active galaxies (including two Type 1 AGNs) show possible gas outflows with velocities up to about -500 km s-1, which are observed neither in inactive systems at the same redshift, nor at lower redshifts. Such outflows indicate the presence of gas that can move faster than the escape velocities of active galaxies. These results suggest that feedback from moderately luminous AGNs (log LX < 44.5 erg s-1) played a key role at z >~ 2 by contributing to outflows capable of ejecting part of the interstellar medium and leading to a rapid decrease in star formation in host galaxies with stellar masses 10 < log({\\cal M}/M_{\\odot }) 11.

  1. Gamma-Ray Observations of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  2. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of

  3. A ∼ 3.8 hr PERIODICITY FROM AN ULTRASOFT ACTIVE GALACTIC NUCLEUS CANDIDATE

    SciTech Connect

    Lin, Dacheng; Irwin, Jimmy A.; Godet, Olivier; Webb, Natalie A.; Barret, Didier

    2013-10-10

    Very few galactic nuclei are found to show significant X-ray quasi-periodic oscillations (QPOs). After carefully modeling the noise continuum, we find that the ∼3.8 hr QPO in the ultrasoft active galactic nucleus candidate 2XMM J123103.2+110648 was significantly detected (∼5σ) in two XMM-Newton observations in 2005, but not in the one in 2003. The QPO root mean square (rms) is very high and increases from ∼25% in 0.2-0.5 keV to ∼50% in 1-2 keV. The QPO probably corresponds to the low-frequency type in Galactic black hole X-ray binaries, considering its large rms and the probably low mass (∼10{sup 5} M {sub ☉}) of the black hole in the nucleus. We also fit the soft X-ray spectra from the three XMM-Newton observations and find that they can be described with either pure thermal disk emission or optically thick low-temperature Comptonization. We see no clear X-ray emission from the two Swift observations in 2013, indicating lower source fluxes than those in XMM-Newton observations.

  4. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  5. Spectral components at visual and infrared wavelengths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Tokunaga, A. T.; Rudy, R. J.

    1984-01-01

    Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed.

  6. Diffuse gamma-ray emission from the Galactic center and implications of its past activities

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kimura, Shigeo S.; Murase, Kohta

    2017-01-01

    It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.

  7. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  8. EXPLORING THE CONNECTION BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE LOCAL UNIVERSE

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.; Schiminovich, D.; Bertincourt, B.; O'Dowd, M.

    2012-10-10

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from the Sloan Digital Sky Survey (SDSS) and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic contributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [Ne II] 12.8 {mu}m emission line is well correlated with the star formation rate measured from the SDSS spectra, and this holds for the star-forming, composite, and AGN-dominated systems. AGNs show a clear excess of [Ne III] 15.6 {mu}m emission relative to star-forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including the mid-IR spectral slope, the ratio of the [Ne V] 14.3 {mu}m to [Ne II] {mu}m 12.8 fluxes, the equivalent widths of the 7.7 {mu}m, 11.3 {mu}m, and 17 {mu}m polycyclic aromatic hydrocarbon (PAH) features, and the optical 'D' parameter which measures the distance at which a source lies from the locus of star-forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN dominance. We find that the PAH 11.3 {mu}m feature is significantly suppressed in the most AGN-dominated systems.

  9. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  10. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  11. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  12. Ensemble X-ray variability of active galactic nuclei at intermediate and long time lags

    NASA Astrophysics Data System (ADS)

    Vagnetti, Fausto; Middei, Riccardo

    2016-08-01

    We present a variability analysis for a sample of 2700 active galactic nuclei extracted from the latest release of the XMM-Newton serendipitous source catalogue. The structure function of this sample increases up to rest-frame time lags of about 5 years. Moreover, comparing observations performed by the XMM-Newton and ROSAT satellites, we are able to extend the X-ray structure function to 20 years rest-frame, showing a further increase of variability without any evidence of a plateau. Our results are compared with similar analyses in the optical band, and discussed in relation to the physical sizes of the emitting regions.

  13. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  14. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  15. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  16. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 {times} 10{sup {minus}14} cm{sup {minus}2}s{sup {minus}1}.

  17. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    Not Available

    1993-01-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 [times] 10[sup [minus]14] cm[sup [minus]2]s[sup [minus]1].

  18. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    NASA Astrophysics Data System (ADS)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  19. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  20. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed

    Miller, J S

    1995-12-05

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution.

  1. The evolution of radio-loud active galactic nuclei as a function of black hole spin

    NASA Astrophysics Data System (ADS)

    Garofalo, D.; Evans, D. A.; Sambruna, R. M.

    2010-08-01

    Recent work on the engines of active galactic nuclei jets suggests that their power depends strongly and perhaps counter-intuitively on black hole spin. We explore the consequences of this on the radio-loud population of active galactic nuclei and find that the time evolution of the most powerful radio galaxies and radio-loud quasars fits into a picture in which black hole spin varies from retrograde to prograde with respect to the accreting material. Unlike the current view, according to which jet powers decrease in tandem with a global downsizing effect, we argue for a drop in jet power resulting directly from the paucity of retrograde accretion systems at lower redshift z caused by a continuous history of accretion dating back to higher z. In addition, the model provides simple interpretations for the basic spectral features differentiating radio-loud and radio-quiet objects, such as the presence or absence of disc reflection, broadened iron lines and signatures of disc winds. We also briefly describe our models' interpretation of microquasar state transitions. We highlight our result that the most radio-loud and most radio-quiet objects both harbour highly spinning black holes but in retrograde and prograde configurations, respectively.

  2. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  3. CAN WE REPRODUCE THE X-RAY BACKGROUND SPECTRAL SHAPE USING LOCAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Gandhi, Poshak

    2013-06-20

    The X-ray background (XRB) is due to the aggregate of active galactic nuclei (AGNs), which peak in activity at z {approx} 1 and is often modeled as the sum of different proportions of unabsorbed, moderately, and heavily absorbed AGN. We present the summed spectrum of a complete sample of local AGN (the Northern Galactic Cap of the 58 month Swift/BAT catalog, z < 0.2) using 0.4-200 keV data and directly determine the different proportions of unabsorbed, moderately and heavily absorbed AGN that make up the summed spectrum. This stacked low redshift AGN spectrum is remarkably similar in shape to the XRB spectrum (when shifted to z {approx} 1), but the observed proportions of different absorption populations differ from most XRB synthesis models. AGN with Compton-thick absorption account for only {approx}12% of the sample, but produce a significant contribution to the overall spectrum. We confirm that Compton reflection is more prominent in moderately absorbed AGN and that the photon index differs intrinsically between unabsorbed and absorbed AGN. The AGN in our sample account for only {approx}1% of the XRB intensity. The reproduction of the XRB spectral shape suggests that strong evolution in individual AGN properties is not required between z {approx} 0 and 1.

  4. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  5. NGC 5252: a pair of radio-emitting active galactic nuclei?

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong; Yang, Jun; Paragi, Zsolt; Liu, Xiang; An, Tao; Bianchi, Stefano; Ho, Luis C.; Cui, Lang; Zhao, Wei; Wu, Xiaocong

    2017-01-01

    The X-ray source CXO J133815.6+043255 has counterparts in the UV, optical, and radio bands. Based on the multiband investigations, it has been recently proposed by Kim et al. as a rarely seen off-nucleus ultraluminous X-ray (ULX) source with a black hole mass of ≥104 M⊙ in the nearby Seyfert galaxy NGC 5252. To explore its radio properties at very high angular resolution, we performed very long-baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.7 GHz. We find that the radio counterpart is remarkably compact among the known ULXs. It does not show a resolved structure with a resolution of a few milliarcsecond (mas), and the total recovered flux density is comparable to that measured in earlier sub-arcsecond-resolution images. The compact radio structure, the relatively flat spectrum, and the high radio luminosity are consistent with a weakly accreting supermassive black hole in a low-luminosity active galactic nucleus. The nucleus of NGC 5252 itself has similar radio properties. We argue that the system represents a relatively rare pair of active galactic nuclei, where both components emit in the radio.

  6. Active Galactic Videos: A YouTube Channel for Astronomy Education and Outreach

    NASA Astrophysics Data System (ADS)

    Austin, Carmen; Calahan, Jenny; Resi Baucco, Alexandria; Bullivant, Christopher William; Eckley, Ross; Ekstrom, W. Haydon; Fitzpatrick, M. Ryleigh; Genovese, Taylor Fay; Impey, Chris David; Libby, Kaitlin; McCaw, Galen; Olmedo, Alexander N.; Ritter, Joshua; Wenger, Matthew; Williams, Stephanie

    2017-01-01

    Active Galactic Videos is an astronomy-focused YouTube channel run by a team at the University of Arizona. The channel has two main purposes: to produce educational content for public audiences, and to learn about astronomy and to open a window into the world of professional astronomy by showcasing the work done at Steward Observatory and in Southern Arizona. Our team consists of faculty, staff, and students from a variety of backgrounds including: astronomy, education, film, music, english, and writing. In addition to providing educational content for public audiences, this project provides opportunities for undergraduate students to learn about astronomy content, educational practice, and science communication while developing the practical skills needed to write, film, score, direct, and edit videos that effectively engage and teach viewers about topics in astronomy. The team has produced various styles of video: presentational, interviews, musical/poetic, and documentaries. In addition to YouTube, the Active Galactic Videos team maintains a social media presence on Facebook, Twitter, and Instagram. These help to widely distribute the content as well as to publicize the main Youtube channel. In addition to providing an overview of our educational work, this poster will present a year's worth of online analytics that we are using to better understand our audience, to examine what videos have been popular and successful and how people are accessing our content. We will present our experience in order to help others learn about improving astronomy education online, and astronomy communication and outreach in general.

  7. Vertical flows and structures excited by magnetic activity in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2017-01-01

    Various observations show peculiar features in the Galactic Center region, such as loops and filamentary structure. It is still unclear how such characteristic features are formed. Magnetic field is believed to play very important roles in the dynamics of gas in the Galaxy Center. Suzuki et al. (2015) performed a global magneto-hydrodynamical simulation focusing on the Galactic Center with an axisymmetric gravitational potential and claimed that non-radial motion is excited by magnetic activity. We further analyzed their simulation data and found that vertical motion is also excited by magnetic activity. In particular, fast down flows with speed of ~100 km/s are triggered near the footpoint of magnetic loops that are buoyantly risen by Parker instability. These downward flows are accelerated by the vertical component of the gravity, falling along inclined field lines. As a result, the azimuthal and radial components of the velocity are also excited, which are observed as high velocity features in a simulated position-velocity diagram. Depending on the viewing angle, these fast flows will show a huge variety of characteristic features in the position-velocity diagram.

  8. The Complete Infrared View of Active Galactic Nuclei from the 70 Month Swift/BAT Catalog

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kohei; Ricci, Claudio; Ueda, Yoshihiro; Matsuoka, Kenta; Toba, Yoshiki; Kawamuro, Taiki; Trakhtenbrot, Benny; Koss, Michael J.

    2017-01-01

    We systematically investigate the near- to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra-hard X-ray (14–195 keV) survey. Out of 606 non-blazar AGNs in the Swift/BAT 70 month catalog at high galactic latitudes of | b| > 10^\\circ , we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR luminosities over five orders of magnitude (41< {log}{L}14{--195}< 46). Informed by previous measurements of the intrinsic spectral energy distribution of AGNs, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low star-formation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent unified scheme. We also show that the completeness of the WISE color–color cut in selecting Swift/BAT AGNs increases strongly with 14–195 keV luminosity.

  9. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  10. Tracing the Physical Conditions in Active Galactic Nuclei with Time-Dependent Chemistry

    NASA Astrophysics Data System (ADS)

    Meijerink, Rowin; Spaans, Marco; Kamp, Inga; Aresu, Giambattista; Thi, Wing-Fai; Woitke, Peter

    2013-10-01

    We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+, and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+, and H3O+; and HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in the active galactic nucleus (AGN). The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 104 years. Through Atacama large millimeter array observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the supermassive black hole accretion rate. Strong evolutionary trends, on time scales of 104-108 years are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time-dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.

  11. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  12. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  13. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  14. Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Lott, B.; Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.

    2015-03-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.

  15. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  16. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  17. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068

    SciTech Connect

    Yoast-Hull, Tova M.; Zweibel, Ellen G.; Gallagher III, J. S.; Everett, John E.

    2014-01-10

    The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in γ-rays by Fermi. Previously, we developed and tested a model for cosmic-ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nucleus (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming a constant cosmic-ray acceleration efficiency by supernova remnants with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and γ-ray spectra, and compare with published measurements. We find that our models easily fit the observed γ-ray spectrum for NGC 253 while constraining the cosmic-ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed γ-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of γ-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.

  18. The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Celotti, A.; Charles, E.; Chekhtman, A.; Chen, A. W.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cotter, G.; Cutini, S.; D'Elia, V.; Dermer, C. D.; de Angelis, A.; de Palma, F.; De Rosa, A.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Healey, S. E.; Hill, A. B.; Horan, D.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lavalley, C.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Malaguti, G.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piranomonte, S.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, Ł.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Taylor, G. B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Ubertini, P.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-05-01

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>10°) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties—such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities—and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  19. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs

    2017-02-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (∼ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ∼20 such gas-induced binary mergers per year.

  20. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  1. Jet signatures of black holes: From Sgr A* to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Eckart, A.; Lämmerzahl, C.; Roland, J.; Brockamp, M.; Hackmann, E.; Kunz, J.; Macias, A.; Malchow, R.; Sabha, N.; Shahzamanian, B.

    2015-06-01

    Detailed and long-term VLBI (Very Long Baseline Interferometry) studies of the variable jets of supermassive black holes helps us to understand the emission processes of these fascinating phenomena. When observed and traced precisely, jet component kinematics reveals details about the potential motion of the jet base. Following this motion over decades with VLBI monitoring reveals - in some cases - the signatures of precession. While several processes can cause precession, the most likely cause seems to be a supermassive binary black hole in the central region of the AGN. We present examples of the analysis of high-resolution VLBI observations which provides us with insight into the physics of these objects and reveals evidence for the presence of double black hole cores. EHT (Event Horizon Telescope) observations will probably soon tell us more about the jet origin and launching mechanism at the very centers of nearby active galactic nuclei. An important question to be addressed by the EHT and related observations will be whether Sgr A\\star, the supermassive black hole in the Galactic Center, has a jet as well.

  2. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argirò, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves, P.; Gonçalves Do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Lebrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Lozano Bahilo, J.; García, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PȩKala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; de Grande, N. Smetniansky; Smiałkowski, A.; Šmída, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vázquez, R. A.; Veberič, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    2008-04-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ˜6 × 1019 eV and AGN at a distance less than ˜75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen Zatsepin Kuz’min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  3. Outflow and Metallicity in the Broad-Line Region of Low-Redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Jaejin; nagao, Tohru; Woo, Jong-Hak

    2017-01-01

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE, we investigate outflows in the broad-line region (BLR) in low-redshift AGNs (z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which is consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.

  4. Nearby active galactic nuclei seen via adaptive optics at the Keck Telescope

    NASA Astrophysics Data System (ADS)

    Max, Claire

    2004-02-01

    In recent years it has become increasingly clear that mergers between galaxies play a critical role in galaxy evolution, in the formation of central black holes, and in the phenomena of active galactic nuclei (AGNs) and quasar activity. The advent of adaptive optics on the new generation of 6-10 m telescopes is making it possible to study nearby AGNs and merging galaxies with spatial resolutions of10 - 100 pc. In this talk I will describe and discuss observations of NGC 6240 and Cygnus A, archetypes of merging disk galaxies and of powerful radiogalaxies respectively. I will make use of infrared observations using the adaptive optics system on the 10-m Keck Telescope, as well as visible-light observations from the Hubble Space Telescope.

  5. Galactic cosmic ray flux in the mid of 1700 from 44Ti activity of Agen meteorite

    NASA Astrophysics Data System (ADS)

    Taricco, Carla; Sinha, Neeharika; Bhandari, Narendra; Colombetti, Paolo; Mancuso, Salvatore; Rubinetti, Sara; Barghini, Dario

    2016-04-01

    Cosmogenic isotopes produced by galactic cosmic rays (GCR) in meteorites offer the opportunity to reveal the heliospheric magnetic field modulation in the interplanetary space between heliocentric distances of 1 and 3 AU. We present the gamma-activity measurement of Agen meteorite, a H5 chondrite that fell on September 5, 1814 in Aquitaine, France. Its 44Ti activity reflects GCR flux integrated since the mid of 1700 to the time of fall and confirms the decreasing trend of GCR flux that we previously suggested on the basis of measurements of other meteorites which fell in the last 250 years as well as the centennial modulation of GCR due to the Gleissberg solar cycle This result was obtained thanks to the high-efficiency and selective configuration of the gamma-ray spectrometer (HPGe+NaI) operating at the underground Laboratory of Monte dei Cappuccini (OATo, INAF) in Torino, Italy.

  6. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-12-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  7. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. III. EXPANDED SAMPLE AND COMPARISON WITH OPTICAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Krumpe, Mirko; Coil, Alison L.; Miyaji, Takamitsu; Aceves, Hector

    2012-02-10

    This is the third paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07 < z < 0.50 and measure the clustering amplitudes of both X-ray-selected and optically selected SDSS broad-line AGNs with and without radio detections as well as for X-ray-selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray-selected and optically selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low-redshift optically selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio detection. The typical dark matter halo masses of our broad-line AGNs are log (M{sub DMH}/[h{sup -1} M{sub Sun }]) {approx} 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray-selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a {approx}2{sigma} level. Finally, we summarize the current picture of AGN clustering to z {approx} 1.5 based on three-dimensional clustering measurements.

  8. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  9. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  10. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  11. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  12. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    NASA Astrophysics Data System (ADS)

    Marin, F.; Grosset, L.; Goosmann, R.; Gratadour, D.; Rouan, D.; Clénet, Y.; Pelat, D.; Rojas Lobos, P. A.

    2016-12-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 μm) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. tet{Gratadour2015} found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  13. The VSOP 5 GHz Active Galactic Nucleus Survey. V. Imaging Results for the Remaining 140 Sources

    NASA Astrophysics Data System (ADS)

    Dodson, R.; Fomalont, E. B.; Wiik, K.; Horiuchi, S.; Hirabayashi, H.; Edwards, P. G.; Murata, Y.; Asaki, Y.; Moellenbrock, G. A.; Scott, W. K.; Taylor, A. R.; Gurvits, L. I.; Paragi, Z.; Frey, S.; Shen, Z.-Q.; Lovell, J. E. J.; Tingay, S. J.; Rioja, M. J.; Fodor, S.; Lister, M. L.; Mosoni, L.; Coldwell, G.; Piner, B. G.; Yang, J.

    2008-04-01

    In 1997 February, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Program (VSOP) mission. Approximately 25% of the mission time was dedicated to the VSOP survey of bright compact active galactic nuclei (AGNs) at 5 GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in the third paper in the series, which contained 102 sources. For most sources, the plots of the (u,v) coverage, the visibility amplitude versus (u,v) distance, and the high-resolution image are presented. Model fit parameters to the major radio components are determined, and the brightness temperature of the core component for each source is calculated. The brightness temperature distributions for all of the sources in the VSOP AGN survey are discussed.

  14. THE EVOLUTION AND EDDINGTON RATIO DISTRIBUTION OF COMPTON THICK ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2010-06-01

    Previous studies of the active galactic nuclei (AGNs) contribution to the cosmic X-ray background (CXB) consider only observable parameters such as luminosity and absorbing column. Here, for the first time, we extend the study of the CXB to physical parameters including the Eddington ratio of the sources and the black hole mass. In order to calculate the contribution to the CXB of AGN accreting at various Eddington ratios, an evolving Eddington ratio space density model is calculated. In particular, Compton thick (CT) AGNs are modeled as accreting at specific, physically motivated Eddington ratios instead of as a simple extension of the Compton thin type 2 AGN population. Comparing against the observed CT AGN space densities and log N-log S relation indicates that CT AGNs are likely a composite population of AGNs made up of sources accreting either at >90% or <1% of their Eddington rate.

  15. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  16. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    SciTech Connect

    Wagner, Robert

    2008-12-24

    Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.

  17. RELATIVISTIC BROADENING OF IRON EMISSION LINES IN A SAMPLE OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brenneman, Laura W.; Reynolds, Christopher S.

    2009-09-10

    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K{alpha} feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.

  18. Correlation Analysis of Optical and Radio Light Curves for a Large Sample of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Smith, A. G.; Aller, H. D.; Aller, M. F.

    1995-08-01

    The Rosemary Hill Observatory has accumulated internally consistent light curves extending over as much as 26 years for a large sample of active galactic nuclei. Forty-six of these optical records have been compared with similar radio records from the University of Michigan Radio Astronomy Observatory and the Algonquin Radio Observatory. For 18 objects, pairs of records were sufficiently long and unconfused to allow reliable application of the Discrete Correlation Function analysis; this group included 8 BL Lacertids, 8 quasars, and 2 Seyfert galaxies. Nine of the 18 sources showed positive radio-optical correlations, with the radio events lagging the optical by intervals ranging from 0 to 14 months. Consistent with the relativistic beaming model of the BL Lacertids, the group displaying correlations was dominated by this type of object.

  19. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  20. The prospects of X-ray polarimetry for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, René W.

    2016-08-01

    Polarimetry at optical and other wavelength continues to play an important role in our struggle to develop (super-)unification schemes for active galactic nuclei (AGN). Therefore, radio-loud and radio-quiet AGN are important targets for the future small and medium-size X-ray polarimetry missions that are currently under phase A study at NASA and ESA. After briefly pointing out the detection principle of polarization imaging in the soft X-ray band, I am going to review the prospects of X-ray polarimetry for our understanding of AGN ejection (winds and blazar jets) and accretion flows (accretion disk and corona). The X-ray polarimetry signal between 2 and 8 keV is going to give us important new constraints on the geometry of the central engine as well as on the acceleration effects in AGN jets, in particular when combined with spectral and/or polarization information at other wavelengths.

  1. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  2. Difficulties in Estimating the Physical Parameters of Compact Radio Sources in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.

    2016-12-01

    The various factors influencing estimates of the physical parameters of compact radio sources in active galactic nuclei (AGN) using a methods based on uniform models of synchrotron radiation sources are analyzed. It is found that the form of the relativistic electron energy density distribution as a function of magnetic energy density (Ee-EH) in the radio sources is determined by the shape of the electron energy spectrum. It is shown that the very large observed deviations of the estimated energies of the field and relativistic particles from equipartition are mainly caused by nonuniformity of the radio sources. In order to obtain correct estimates of the physical parameters of nonuniform radio sources, it is necessary to know their angular sizes at low frequencies (in the opaque region) and their Doppler factors.

  3. Very-High-Energy Gamma-Ray Observations of Active Galactic Nuclei with VERITAS

    NASA Astrophysics Data System (ADS)

    Quinn, John

    2016-08-01

    VERITAS is an array of four imaging atmospheric Cherenkov telescopes for very-high-energy (VHE, E>100 GeV) gamma-ray astronomy that has been in full scientific operation since 2007. The VERITAS collaboration is conducting several key science projects, one of which is the study of active galactic nuclei (AGN). So far, VERITAS has invested more than 3000 hours in observations of AGN, with approximately 150 objects observed. The program has resulted in the successful detection of 34 AGN as VHE gamma-ray sources, with the majority belonging to the blazar AGN subclass. Significant effort is made to acquire multiwavelength data coincident with the VERITAS observations. An overview of the VERITAS AGN program and its key results will be presented.

  4. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  5. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C. E-mail: vester@dark-cosmology.dk E-mail: peterson@astronomy.ohio-state.edu

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.

  6. VizieR Online Data Catalog: Extended red(dened) regions in 2MASS (Frieswijk+, 2010)

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-04-01

    Basic parameters of 2909 extended red regions in the outer Galactic plane (1320 at 60" and 1589 at 90" resolution). The sources have been extracted from the Two Micron All Sky Survey (2MASS, Cat. ). For each source Galactic coordinates, total number of resolution cells, linear extend in longitude and latitude and number of 2MASS point sources are given. The calculated reliability of the sources is >99.9%. (1 data file).

  7. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  8. Swift/XRT detects renewed activity of the Galactic center transient CXOGC J174540.0-290005

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Reynolds, M. T.; Wijnands, R.; Miller, J. M.; Kennea, J. A.

    2017-03-01

    In our daily Swift/XRT monitoring observations of the Galactic center (Degenaar et al. 2015, JHEAp, 7, 137) we detect X-ray activity of a transient source located 20" to the north of Sgr A*, at a position consistent with that of the known X-ray transient CXOGC J174540.0-290005/Swift J174540.2-290005.

  9. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  10. A Candidate Dual Active Galactic Nucleus at z = 1.175

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Stern, Daniel; Madsen, Kristin; Harrison, Fiona; Assef, Roberto J.; Comerford, Julia M.; Cushing, Michael C.; Fassnacht, Christopher D.; Gonzalez, Anthony H.; Griffith, Roger; Hickox, Ryan; Kirkpatrick, J. Davy; Lagattuta, David J.

    2012-01-01

    The X-ray source CXOXBJ142607.6+353351 (CXOJ1426+35), which was identified in a 172 ks Chandra image in the Boötes field, shows double-peaked rest-frame optical/UV emission lines, separated by 0farcs69 (5.5 kpc) in the spatial dimension and by 690 km s-1 in the velocity dimension. The high excitation lines and emission line ratios indicate both systems are ionized by an active galactic nucleus (AGN) continuum, and the double-peaked profile resembles that of candidate dual AGNs. At a redshift of z = 1.175, this source is the highest redshift candidate dual AGN yet identified. However, many sources have similar emission line profiles for which other interpretations are favored. We have analyzed the substantial archival data available in this field as well as acquired near-infrared (NIR) adaptive optics (AO) imaging and NIR slit spectroscopy. The X-ray spectrum is hard, implying a column density of several 1023 cm-2. Though heavily obscured, the source is also one of the brightest in the field, with an absorption-corrected 2-10 keV luminosity of ~1045 erg s-1. Outflows driven by an accretion disk may produce the double-peaked lines if the central engine accretes near the Eddington limit. However, we may be seeing the narrow line regions of two AGNs following a galactic merger. While the AO image reveals only a single source, a second AGN would easily be obscured by the significant extinction inferred from the X-ray data. Understanding the physical processes producing the complex emission line profiles seen in CXOJ1426+35 and related sources is important for interpreting the growing population of dual AGN candidates.

  11. Grain physics and infrared dust emission in active galactic nucleus environments

    SciTech Connect

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 10{sup 46} erg s{sup –1}. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L {sub BH}/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ≅ 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN 'on' phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (≅ 100 K) from dense dusty gas within ≤1 kpc reradiating the AGN UV emission.

  12. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Carpenter, B.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Abrusco, R.; D'Ammando, F.; de Angelis, A.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Focke, W. B.; Franckowiak, A.; Fuhrmann, L.; Fukazawa, Y.; Furniss, A. K.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kataoka, J.; Kawano, T.; Krauss, F.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Leto, C.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Paggi, A.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romani, R. W.; Salvetti, D.; Schaal, M.; Schinzel, F. K.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Sokolovsky, K. V.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Winer, B. L.; Wood, K. S.; Zimmer, S.

    2015-09-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV with a Test Statistic greater than 25, between 2008 August 4 and 2012 July 31. The 3LAC includes 1591 AGNs located at high Galactic latitudes (| b| \\gt 10^\\circ ), a 71% increase over the second catalog based on 2 years of data. There are 28 duplicate associations, thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. Most of them (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their gamma-ray spectral properties, these sources are evenly split between flat-spectrum radio quasars (FSRQs) and BL Lacs. The most abundant detected BL Lacs are of the high-synchrotron-peaked (HSP) type. About 50% of the BL Lacs have no measured redshifts. A few new rare outliers (HSP-FSRQs and high-luminosity HSP BL Lacs) are reported. The general properties of the 3LAC sample confirm previous findings from earlier catalogs. The fraction of 3LAC blazars in the total population of blazars listed in BZCAT remains non-negligible even at the faint ends of the BZCAT-blazar radio, optical, and X-ray flux distributions, which hints that even the faintest known blazars could eventually shine in gamma-rays at LAT-detection levels. The energy-flux distributions of the different blazar populations are in good agreement with extrapolation from earlier catalogs.

  13. NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258

    SciTech Connect

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  14. A CORRELATION BETWEEN THE HIGHEST ENERGY COSMIC RAYS AND NEARBY ACTIVE GALACTIC NUCLEI DETECTED BY FERMI

    SciTech Connect

    Nemmen, Rodrigo S.; Bonatto, Charles; Storchi-Bergmann, Thaisa

    2010-10-10

    We analyze the correlation of the positions of {gamma}-ray sources in the Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) and the First LAT Active Galactic Nuclei (AGNs) Catalog (1LAC) with the arrival directions of ultra-high-energy cosmic rays (UHECRs) observed with the Pierre Auger Observatory, in order to investigate the origin of UHECRs. We find that Galactic sources and blazars identified in the 1FGL are not significantly correlated with UHECRs, while the 1LAC sources display a mild correlation (2.6{sigma} level) on an {approx}2.{sup 0}4 angular scale. When selecting only the 1LAC AGNs closer than 200 Mpc, we find a strong association (5.4{sigma}) between their positions and the directions of UHECRs on an {approx}17{sup 0} angular scale; the probability of the observed configuration being due to an isotropic flux of cosmic rays is 5 x 10{sup -8}. There is also a 5{sigma} correlation with nearby 1LAC sources on a 6.{sup 0}5 scale. We identify seven '{gamma}-ray loud' AGNs which are associated with UHECRs within {approx}17{sup 0} and are likely candidates for the production sites of UHECRs: Centaurus A, NGC 4945, ESO 323-G77, 4C+04.77, NGC 1218, RX J0008.0+1450, and NGC 253. We interpret these results as providing additional support to the hypothesis of the origin of UHECRs in nearby extragalactic objects. As the angular scales of the correlations are large, we discuss the possibility that intervening magnetic fields might be considerably deflecting the trajectories of the particles on their way to Earth.

  15. Feedback from Mass Outflows in Nearby Active Galactic Nuclei. I. Ultraviolet and X-Ray Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.

    2012-07-01

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) active galactic nuclei (AGNs). From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in the total mass outflow rate (\\dot{M}_{out}) and kinetic luminosity (L KE) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine \\dot{M}_{out} and L KE. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (L bol = 1043 - 1045 erg s-1) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have L KE in the range 0.5%-5% L bol, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have L KE >~ 0.1%L bol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  16. A CANDIDATE ACTIVE GALACTIC NUCLEUS WITH A PURE SOFT THERMAL X-RAY SPECTRUM

    SciTech Connect

    Terashima, Yuichi; Kamizasa, Naoya; Awaki, Hisamitsu; Kubota, Aya; Ueda, Yoshihiro

    2012-06-20

    We report the discovery of a candidate active galactic nucleus (AGN), 2XMM J123103.2+110648 at z = 0.13, with an X-ray spectrum represented purely by soft thermal emission reminiscent of Galactic black hole (BH) binaries in the disk-dominated state. This object was found in the second XMM-Newton serendipitous source catalog as a highly variable X-ray source. In three separate observations, its X-ray spectrum can be represented either by a multicolor disk blackbody model with an inner temperature of kT{sub in} Almost-Equal-To 0.16-0.21 keV or a Wien spectrum Comptonized by an optically thick plasma with kT Almost-Equal-To 0.14-0.18 keV. The soft X-ray luminosity in the 0.5-2 keV band is estimated to be (1.6-3.8) Multiplication-Sign 10{sup 42} erg s{sup -1}. Hard emission above {approx}2 keV is not detected. The ratio of the soft to hard emission is the strongest among AGNs observed thus far. Spectra selected in high/low-flux time intervals are examined in order to study spectral variability. In the second observation with the highest signal-to-noise ratio, the low-energy (below 0.7 keV) spectral regime flattens when the flux is high, while the shape of the high-energy part (1-1.7 keV) remains unchanged. This behavior is qualitatively consistent with being caused by strong Comptonization. Both the strong soft excess and spectral change consistent with Comptonization in the X-ray spectrum imply that the Eddington ratio is large, which requires a small BH mass (smaller than {approx}10{sup 5} M{sub Sun }).

  17. THE SECOND CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Bouvier, A.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D. E-mail: sarac@slac.stanford.edu E-mail: charles.dermer@nrl.navy.mil; and others

    2011-12-20

    The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented. The second LAT AGN catalog (2LAC) includes 1017 {gamma}-ray sources located at high Galactic latitudes (|b| > 10 Degree-Sign ) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs. However, some of these are affected by analysis issues and some are associated with multiple AGNs. Consequently, we define a Clean Sample which includes 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310 flat-spectrum radio quasars (FSRQs), 157 candidate blazars of unknown type (i.e., with broadband blazar characteristics but with no optical spectral measurement yet), 8 misaligned AGNs, 4 narrow-line Seyfert 1 (NLS1s), 10 AGNs of other types, and 2 starburst galaxies. Where possible, the blazars have been further classified based on their spectral energy distributions (SEDs) as archival radio, optical, and X-ray data permit. While almost all FSRQs have a synchrotron-peak frequency <10{sup 14} Hz, about half of the BL Lac objects have a synchrotron-peak frequency >10{sup 15} Hz. The 2LAC represents a significant improvement relative to the first LAT AGN catalog (1LAC), with 52% more associated sources. The full characterization of the newly detected sources will require more broadband data. Various properties, such as {gamma}-ray fluxes and photon power-law spectral indices, redshifts, {gamma}-ray luminosities, variability, and archival radio luminosities and their correlations are presented and discussed for the different blazar classes. The general trends observed in 1LAC are confirmed.

  18. Grain Physics and Infrared Dust Emission in Active Galactic Nucleus Environments

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 1046 erg s-1. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L BH/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ~= 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN "on" phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (sime 100 K) from dense dusty gas within <=1 kpc reradiating the AGN UV emission.

  19. Observational Evidence for Active Galactic Nuclei Feedback at the Parsec Scale

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Li, Miao

    2011-08-01

    In a hot accretion flow, the radiation from the innermost region of the flow propagates outward and heats the electrons at large radii via Compton scattering. It has been shown in previous works that if the radiation is strong enough, L >~ 2%L Edd, the electrons at the Bondi radius (rB ~ 105 rs ) will be heated to above the virial temperature; thus, the accretion will be stopped. The accretion will recover after the gas cools down. This results in the oscillation of the black hole activity. In this paper, we show that this mechanism is the origin of the intermittent activity of some compact young radio sources. Such intermittency is required to explain the population of these sources. We calculate the timescales of the black hole oscillation and find that the durations of active and inactive phases are 3 × 104(0.1/α)(M/108 M sun)(L/2%L Edd)-1/2 yr and 105(α/0.1)(M/108 M sun) yr, respectively, consistent with those required to explain observations. Such feedback occurring at the parsec scale should be common in low-luminosity active galactic nuclei and should be considered when we consider their matter and energy output.

  20. Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Gerke, Brian F.; Stern, Daniel; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 <= z <= 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky (0.2 h -1 70 kpc <Δx < 5.5 h -1 70 kpc median Δx = 1.1 h -1 70 kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58+5 - 6%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42+6 - 5%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32+8 - 6% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of

  1. KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

    SciTech Connect

    Comerford, Julia M.; Gerke, Brian F.; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 {<=} z {<=} 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with {approx}kpc projected spatial separations on the sky (0.2 h{sup -1}{sub 70} kpc <{Delta}x < 5.5 h{sup -1}{sub 70} kpc; median {Delta}x = 1.1 h{sup -1}{sub 70} kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58{sup +5}{sub -6}%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42{sup +6}{sub -5}%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32{sup +8}{sub -6}% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational

  2. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  3. ANISOTROPIC METAL-ENRICHED OUTFLOWS DRIVEN BY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Cavagnolo, K. W.

    2011-04-20

    We present an analysis of the spatial distribution of metal-rich gas in 10 galaxy clusters using deep observations from the Chandra X-ray Observatory. The brightest cluster galaxies (BCGs) have experienced recent active galactic nucleus activity in the forms of bright radio emission, cavities, and shock fronts embedded in the hot atmospheres. The heavy elements are distributed anisotropically and are aligned with the large-scale radio and cavity axes. They are apparently being transported from the halo of the BCG into the intracluster medium along large-scale outflows driven by the radio jets. The radial ranges of the metal-enriched outflows are found to scale with jet power as R{sub Fe} {proportional_to} P {sup 0.42}{sub jet}, with a scatter of only 0.5 dex. The heavy elements are transported beyond the extent of the inner cavities in all clusters, suggesting that this is a long-lasting effect sustained over multiple generations of outbursts. Black holes in BCGs will likely have difficulty ejecting metal-enriched gas beyond 1 Mpc unless their masses substantially exceed 10{sup 9} M{sub sun}.

  4. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  5. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  6. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  7. DYNAMO ACTIVITIES DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND THE PARKER INSTABILITY IN GALACTIC GASEOUS DISKS

    SciTech Connect

    Machida, Mami; Nakamura, Kenji E.; Kudoh, Takahiro; Akahori, Takuya; Sofue, Yoshiaki; Matsumoto, Ryoji

    2013-02-10

    We carried out global three-dimensional magnetohydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As the magnetorotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma {beta} (=p {sub gas}/p {sub mag}) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by the Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by the MRI drive quasi-periodic reversal of azimuthal magnetic fields on a timescale of 10 rotation periods. Since the rotation speed decreases with radius, the interval between the reversal of azimuthal magnetic fields increases with radius. The rotation measure computed from the numerical results shows symmetry corresponding to a dipole field.

  8. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  9. A Compton-thick active galactic nucleus powering the hyperluminous infrared galaxy IRAS 00182-7112

    NASA Astrophysics Data System (ADS)

    Nandra, K.; Iwasawa, K.

    2007-11-01

    We present X-ray observations of the hyperluminous infrared galaxy (HLIRG) IRAS 00182- 7112 obtained using the XMM-Newton EPIC camera. A luminous hard X-ray source coincident with the nucleus is revealed, along with weaker soft X-ray emission which may be extended or offset from the hard emission. The EPIC spectrum is extremely flat and shows Fe Kα emission with very high equivalent width: both are typical characteristics of a buried, Compton-thick active galactic nucleus (AGN) which is seen only in scattered light. Perhaps the most remarkable characteristic of the spectrum is that the Fe Kα line energy is that of He-like iron, making IRAS 00182-7112 the first hidden AGN known to be dominated by ionized, Compton-thick reflection. Taking an appropriate bolometric correction, we find that this AGN could easily dominate the far-infrared (FIR) energetics. The nuclear reflection spectrum is seen through a relatively cold absorber with column density consistent with recent Spitzer observations. The soft X-ray emission, which may be thermal in nature and associated with star-forming activity, is seen unabsorbed. The soft X-rays and weak polycyclic aromatic hydrocarbon features both give estimates of the star formation rate ~300Msolar yr-1, insufficient to power the FIR emission and supportive of the idea that this HLIRG is AGN-dominated.

  10. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Nakagawa, Takao; Matsuta, Keiko

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  11. The different neighbours around Type-1 and Type-2 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Korn, Andreas J.

    2014-06-01

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super massive black hole. To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles. This model--called AGN unification--has been successful in predicting, for example, the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged and it is debatable whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS; ref. ) Data Release 7 (DR7; ref. ) and Galaxy Zoo. We find strong differences in the colour and AGN activity of the neighbours to Type-1 and Type-2 AGN and in how the fraction of AGN residing in spiral hosts changes depending on the presence or not of a neighbour. These findings suggest that an evolutionary link between the two major AGN types might exist.

  12. Active Galactic Nuclei In Cosmological Simulations - I. Formation of black holes and spheroids through mergers

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J.; Guiderdoni, B.

    2005-12-01

    This is the first paper of a series on the methods and results of the Active Galactic Nuclei In Cosmological Simulations (AGNICS) project, which incorporates the physics of active galactic nuclei (AGNs) into Galaxies In Cosmological Simulations (GalICS), a galaxy formation model that combines large cosmological N-body simulations of dark matter hierarchical clustering and a semi-analytic approach to the physics of the baryons. The project explores the quasar-galaxy link in a cosmological perspective, in response to growing observational evidence for a close relation between supermassive black holes (SMBHs) and spheroids. The key problems are the quasar fuelling mechanism, the origin of the black hole (BH)-to-bulge mass relation, the causal and chronological link between BH growth and galaxy formation, the properties of quasar hosts and the role of AGN feedback in galaxy formation. This first paper has two goals. The first is to describe the general structure and assumptions that provide the framework for the AGNICS series. The second is to apply AGNICS to studying the joint formation of SMBHs and spheroids in galaxy mergers. We investigate under what conditions this scenario can reproduce the local distribution of SMBHs in nearby galaxies and the evolution of the quasar population. AGNICS contains two star formation modes: a quiescent mode in discs and a starburst mode in proto-spheroids, the latter triggered by mergers and disc instabilities. Here we assume that BH growth is linked to the starburst mode. The simplest version of this scenario, in which the BH accretion rate and the star formation rate in the starburst component are simply related by a constant of proportionality, does not to reproduce the cosmic evolution of the quasar population. A model in which , where ρburst is the density of the gas in the starburst and ζ~= 0.5, can explain the evolution of the quasar luminosity function in B band and X-rays (taking into account the presence of obscured AGNs

  13. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  14. THE ORIGIN OF [O II] EMISSION IN RECENTLY QUENCHED ACTIVE GALACTIC NUCLEUS HOSTS

    SciTech Connect

    Kocevski, Dale D.; Lemaux, Brian C.; Lubin, Lori M.; Shapley, Alice E.; Gal, Roy R.; Squires, Gordon K.

    2011-08-20

    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z {approx} 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to H{alpha} lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their H{alpha} line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and H{alpha} line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift.

  15. THE CONNECTION BETWEEN 3.3 {mu}m POLYCYCLIC AROMATIC HYDROCARBON EMISSION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Woo, Jong-Hak; Park, Dawoo; Kim, Ji Hoon; Imanishi, Masatoshi

    2012-02-15

    We investigate the connection between starburst and active galactic nucleus (AGN) activity by comparing 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) emission with AGN properties. Utilizing the slitless spectroscopic capability of the AKARI space telescope, we observe a moderate-luminosity Type I AGN at z {approx} 0.4 to measure global starburst activity. The 3.3 {mu}m PAH emissions are detected for 7 out of 26 target galaxies. We find no strong correlation between the 3.3 {mu}m PAH emission and AGN luminosity in the limited range of the observed AGN luminosity, suggesting that global star formation may not be closely related to AGN activity. Combining our measurements with previous 3.3 {mu}m measurements of low-redshift Type I AGNs in the literature, we investigate the connection between nuclear starburst and AGN activity. In contrast to global star formation, the 3.3 {mu}m PAH luminosity measured from the central part of galaxies correlates with AGN luminosity, implying that starburst activity and AGN activity are directly connected in the nuclear region.

  16. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    SciTech Connect

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A.; Maciejewski, W.; Hicks, E. K. S.; Emsellem, E.; Dumas, G.; Malkan, M. A.; Müller-Sánchez, F.; Tran, A.

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  17. The origins of active galactic nuclei obscuration: the 'torus' as a dynamical, unstable driver of accretion

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Hayward, Christopher C.; Narayanan, Desika; Hernquist, Lars

    2012-02-01

    Recent multiscale simulations have made it possible to follow gas inflows responsible for high-Eddington ratio accretion on to massive black holes (BHs) from galactic scales to the BH accretion disc. When sufficient gas is driven towards a BH, gravitational instabilities generically form lopsided, eccentric discs that propagate inwards from larger radii. The lopsided stellar disc exerts a strong torque on the gas, driving inflows that fuel the growth of the BH. Here, we investigate the possibility that the same disc, in its gas-rich phase, is the putative 'torus' invoked to explain obscured active galactic nuclei (AGN) and the cosmic X-ray background. The disc is generically thick and has characteristic ˜1-10 pc sizes and masses resembling those required of the torus. Interestingly, the scale heights and obscured fractions of the predicted torii are substantial even in the absence of strong stellar feedback providing the vertical support. Rather, they can be maintained by strong bending modes and warps/twists excited by the inflow-generating instabilities. A number of other observed properties commonly attributed to 'feedback' processes may in fact be explained entirely by dynamical, gravitational effects: the lack of alignment between torus and host galaxy, correlations between local star formation rate (SFR) and turbulent gas velocities and the dependence of obscured fractions on AGN luminosity or SFR. We compare the predicted torus properties with observations of gas surface density profiles, kinematics, scale heights and SFR densities in AGN, and find that they are consistent in all cases. We argue that it is not possible to reproduce these observations and the observed column density distribution without a clumpy gas distribution, but allowing for simple clumping on small scales the predicted column density distribution is in good agreement with observations from NH˜ 1020-1027 cm-2. We examine how the NH distribution scales with galaxy and AGN properties

  18. Piecing together the X-ray background: bolometric corrections for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.

    2007-11-01

    The X-ray background can be used to constrain the accretion history of supermassive black holes (SMBHs) in active galactic nuclei (AGN), with the SMBH mass density related to the energy density due to accretion. A knowledge of the hard X-ray bolometric correction, κ2-10keV, is a vital input into these studies, as it allows us to constrain the parameters of the accretion responsible for SMBH growth. Earlier studies assumed a constant bolometric correction for all AGN, and more recent work has suggested accounting for a dependence on AGN luminosity. Until recently, the variations in the disc emission in the ultraviolet (UV) have not been taken into account in this calculation; we show that such variations are important by construction of optical-to-X-ray spectral energy distributions for 54 AGN. In particular, we use Far Ultraviolet Spectroscopic Explorer (FUSE) UV and X-ray data from the literature to constrain the disc emission as well as possible. We find evidence for very significant spread in the bolometric corrections, with no simple dependence on luminosity being evident. Populations of AGN such as narrow-line Seyfert 1 nuclei, radio-loud and X-ray-weak AGN may have bolometric corrections which differ systematically from the rest of the AGN population. We identify other sources of uncertainty including intrinsic extinction in the optical-UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between the bolometric correction and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15-25, and above which it is typically 40-70. We consider the potential-implied parallels with the low/hard and high/soft states in Galactic black hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multistate description of AGN

  19. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 10{sup 9} M {sub ☉}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ≲ 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10{sup –3} M {sub ☉} yr{sup –1}. We find a shallow density profile n∝r {sup –β} with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ≲ 1'', and (4) the outflow at r ≳ 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  20. X-ray color analysis of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai; Turner, T. J.; George, Ian M.

    1994-01-01

    The identification and detection of X-ray absorption and emission features depends on the resolution and the signal-to-noise ratio (S/N) of the observation, the understanding of the instrument response, and the Galactic line-of-sight absorption. Since many of the active galactic nucleus (AGN) data sets are limited in their S/N and full modeling of the physical conditions is rather complicated, we suggest a new analysis method based on 'X-ray colors.' The two sets of X-ray colors, defined for low (ROSAT Position Sensitive Proportional Counter (PSPC)) and medium (Broad Band X-Ray Telescope (BBXRT)) and ASCA Solid-State Imaging Spectrometers (SIS) resolution experiments, are used to separate regions of different physical conditions in a two-dimensional color-color plane. They are similar but superior to previous methods using the X-ray 'hardness ratio' in being able to reveal more of the physical properties of the source. We illustrate the use of such diagrams by studying a number of AGNs suspected of showing absorption features. A sample of 14 AGNs observed by the ROSAT PSPC is presented which includes several objects with suspected 'warm absorbers' along the line-of-sight to the nucleus, several others exhibiting intrinsic continuum variations, and a number of control objects thought to be featureless. Our new observations show, for the first time, the color variation as a function of time for three of the Seyfert 1 sources: NGC 4051, Mrk 335, and Mrk 766. The variations suggest that in two sources we are witnessing real changes in continuum shape, while one (NGC 4051) is consistent with having a warm absorber. Four of the objects observed by BBXRT are reanalyzed using our X-ray colors. Out of these, we discuss in detail the case of NGC 4151 and show that the color-color analysis agrees very well with previous, detailed spectral fitting methods. In particular, we confirm that the observed BBXRT observation of this source is not consistent with the warm absorber

  1. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  2. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  3. THE MICROARCSECOND STRUCTURE OF AN ACTIVE GALACTIC NUCLEUS JET VIA INTERSTELLAR SCINTILLATION

    SciTech Connect

    Macquart, J.-P.; Godfrey, L. E. H.; Bignall, H. E.

    2013-03-10

    We describe a new tool for studying the structure and physical characteristics of ultracompact active galactic nucleus (AGN) jets and their surroundings with {mu}as precision. This tool is based on the frequency dependence of the light curves observed for intra-day variable radio sources, where the variability is caused by interstellar scintillation. We apply this method to PKS 1257-326 to resolve the core-shift as a function of frequency on scales well below {approx}12 {mu}as. We find that the frequency dependence of the position of the scintillating component is r{proportional_to}{nu}{sup -0.1{+-}0.24} (99% confidence interval) and the frequency dependence of the size of the scintillating component is d{proportional_to}{nu}{sup -0.64{+-}0.006}. Together, these results imply that the jet opening angle increases with distance along the jet: d{proportional_to}r{sup n{sub d}} with n{sub d} > 1.8. We show that the flaring of the jet, and flat frequency dependence of the core position is broadly consistent with a model in which the jet is hydrostatically confined and traversing a steep pressure gradient in the confining medium with p{proportional_to}r{sup -n{sub p}} and n{sub p} {approx}> 7. Such steep pressure gradients have previously been suggested based on very long baseline interferometry studies of the frequency dependent core shifts in AGNs.

  4. Signatures of large-scale magnetic fields in active galactic nuclei jets: transverse asymmetries

    NASA Astrophysics Data System (ADS)

    Clausen-Brown, E.; Lyutikov, M.; Kharb, P.

    2011-08-01

    We investigate the emission properties that a large-scale helical magnetic field imprints on active galactic nuclei (AGN) jet synchrotron radiation. A cylindrically symmetric relativistic jet and large-scale helical magnetic field produce significant asymmetrical features in transverse profiles of fractional linear polarization, intensity, the Faraday rotation and spectral index. The asymmetrical features of these transverse profiles correlate with one another in ways specified by the handedness of the helical field, the jet viewing angle (θob) and the bulk Lorentz factor of the flow (Γ). Thus, these correlations may be used to determine the structure of the magnetic field in the jet. In the case of radio galaxies (θob˜ 1 rad) and a subclass of blazars with particularly small viewing angles (θob≪ 1/Γ), we find an edge-brightened intensity profile that is similar to that observed in the radio galaxy M87. We present observations of the AGNs 3C 78 and NRAO 140 that display the type of transverse asymmetries that may be produced by large-scale helical magnetic fields.

  5. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-11-10

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate.

  6. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  7. A multizone model for composite disk-corona structure and spectral formation in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shimura, Toshiya; Mineshige, Shin; Takahara, Fumio

    1995-01-01

    We study a composite disk-corona structure in active galactic nuclei (AGN) by solving for radiative transfer, hydrostatic balance, and energy balance at each layer with a different vertical height. A key assumption is that a fraction f of total energy is dissipated in a corona with a Thomson optical depth of tauC, and a remaining fraction, 1-f, within a main body of the disk. As f increases, a two-phased structure grows with an abrupt temperature jump at the interface. As a result, the emergent spectrum varies from a blackbody-like spectrum to a power-law spectrum with a high-energy cutoff. The power-law index is insensitive to a mass of a central black hole, accretion rate, and tauC, and decreases with an increase of f, reaching approximately 0.9 for f approximately = 1. The cutoff energy (Ecutoff) is, on the other hand, related to tauC as tauC Ecutoff approximately = 90 keV. The radiative field is a blackbody at the midplane of the disk, but has a power-law energy distribution near the surface due to a reflection of high-energy photons emanating from the corona. The resultant spectra thus produce litle UV bumps. To account for the observed AGN spectra, therefore, we should consider more complicated situations such as a partial coverage of hot corona and an effect of absorption by heavy elements.

  8. First direct comparison of high and low ionization line kinematics in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.

    1995-01-01

    We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.

  9. Long-term variability of active galactic nuclei from the "Planck" catalog

    NASA Astrophysics Data System (ADS)

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-07-01

    A complete sample of 104 bright active galactic nuclei (AGNs) from the "Planck" catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.

  10. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  11. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  12. Obscured active galactic nuclei triggered in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; Le Floc'h, Emeric; Juneau, Stéphanie; da Cunha, Elisabete; Salvato, Mara; Civano, Francesca; Marchesi, Stefano; Gabor, J. M.; Ilbert, Olivier; Laigle, Clotilde; McCracken, H. J.; Hsieh, Bau-Ching; Capak, Peter

    2017-03-01

    We present a structural study of 182 obscured active galactic nuclei (AGNs) at z ≤ 1.5, selected in the Cosmic Evolution Survey field from their extreme infrared to X-ray luminosity ratio and their negligible emission at optical wavelengths. We fit optical to far-infrared spectral energy distributions and analyse deep Hubble Space Telescope imaging to derive the physical and morphological properties of their host galaxies. We find that such galaxies are more compact than normal star-forming sources at similar redshift and stellar mass, and we show that it is not an observational bias related to the emission of the AGN. Based on the distribution of their UVJ colours, we also argue that this increased compactness is not due to the additional contribution of a passive bulge. We thus postulate that a vast majority of obscured AGNs reside in galaxies undergoing dynamical compaction, similar to processes recently invoked to explain the formation of compact star-forming sources at high redshift.

  13. The effects of irradiation on cloud evolution in active galactic nuclei

    SciTech Connect

    Proga, Daniel; Smith, Daniel; Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-01-01

    We report on the first phase of a study of cloud irradiation. We study irradiation by means of numerical, two-dimensional, time-dependent radiation hydrodynamic simulations of a strongly irradiated cloud. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and focus instead on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole; instead, they undergo very rapid and major evolution in shape, size, and physical properties. In particular, the cloud and its remnants become optically thin in less than 1 sound-crossing time and before they can travel a significant distance (a few initial-cloud radii). We also find that a cloud can be accelerated as a whole under quite extreme conditions, i.e., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small, and unless the cloud is optically thin, it quickly undergoes changes in size and shape. We discuss implications for the modeling and interpretation of the broad-line regions of active galactic nuclei.

  14. Upper Limits to the Diffuse Neutrino Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bolesta, Jeffery W.

    1997-07-01

    In November of 1987 a muon detector dubbed the Short Prototype String (SPS) was successfully operated for about 30 hours in the deep ocean approximately 35 km west of the big island of Hawaii. The original purpose of the experiment was to demonstrate the technical feasibility of conducting neutrino astronomy in the deep ocean, and to serve as the prototype to the DUMAND experiment. Hence, the data were originally analyzed to measure the deep ocean flux of atmospheric muons as a proof of concept. The more recent theoretical investigations of neutrino production in Active Galactic Nuclei (AGN) has motivated a search of the data for the unique signature of neutrino-induced particle cascades. The optical properties of the deep ocean allows for surprisingly large detection volumes that grow with incident neutrino energy. It is found through Monte Carlo simulation that the fiducial mass for this type of search is ~7 × 106 tons of water at incident neutrino energies of 1 PeV (1015eV). This results in an exposure of 19.2 kton-years (kty) at this energy for 24 hours of operation. No evidence for neutrino-induced cascades was found in ~20 hours of detector livetime. This leads to the most stringent limits of AGN neutrino fluxes above the PeV scale yet published.

  15. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  16. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    SciTech Connect

    Franca, Fabio La; Bianchi, Stefano; Branchini, Enzo; Matt, Giorgio; Ponti, Gabriele

    2014-05-20

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the Hβ or the Paβ line widths. In the best case, when the Paβ is used, the relationship has an intrinsic dispersion of ∼0.6 dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1 mag up to z ∼ 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs.

  17. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    SciTech Connect

    Dong, X. Y.; De Robertis, M. M.

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  18. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  19. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.-Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L.

    2016-12-01

    We provide a novel, unifying physical interpretation on the origin, average shape, scatter, and cosmic evolution for the main sequences of star-forming galaxies and active galactic nuclei (AGNs) at high redshift z≳ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent star formation rate functions based on the latest UV/far-IR data from HST/Herschel, and related statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time-coordinated processes.

  20. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  1. Ultraviolet and X-ray variability of active galactic nuclei with Swift

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Fabian, A. C.

    2017-01-01

    We analyse a sample of 21 active galactic nuclei using data from the Swift satellite to study the variability properties of the population in the X-ray, UV and optical band. We find that the variable part of the UV-optical emission has a spectrum consistent with a power law, with an average index of -2.21 ± 0.13, as would be expected from central illumination of a thin disc (index of -7/3). We also calculate the slope of a power law from UV to X-ray variable emission, αOX, Var; the average for this sample is αOX, Var = -1.06 ± 0.04. The anticorrelation of αOX with the UV luminosity, LUV, previously found in the average emission is also present in the variable part: αOX, Var = ( - 0.177 ± 0.083)log (Lν, Var(2500 Å)) + (3.88 ± 2.33). Correlated variability between the emission in X-rays and UV is detected significantly for 9 of the 21 sources. All these cases are consistent with the UV lagging the X-rays, as would be seen if the correlated UV variations were produced by the reprocessing of X-ray emission. The observed UV lags are tentatively longer than expected for a standard thin disc.

  2. A SEARCH FOR FAST X-RAY VARIABILITY FROM ACTIVE GALACTIC NUCLEI USING SWIFT

    SciTech Connect

    Pryal, Matthew; Falcone, Abe; Stroh, Michael

    2015-03-20

    Blazars are a class of active galactic nuclei (AGNs) known for their very rapid variabilty in the high energy regions of the electromagnetic spectrum. Despite this known fast variability, X-ray observations have generally not revealed variability in blazars with rate doubling or halving timescales less than approximately 15 minutes. Since its launch, the Swift X-ray Telescope has obtained 0.2–10 keV X-ray data on 143 AGNs, including blazars, through intense target of opportunity observations that can be analyzed in a multiwavelength context and used to model jet parameters, particularly during flare states. We have analyzed this broad Swift data set in a search for short timescale variability in blazars that could limit the size of the emission region in the blazar jet. While we do find several low-significance possible flares with potential indications of rapid variability, we find no strong evidence for rapid (<15 minutes) doubling or halving times in flares in the soft X-ray energy band for the AGNs analyzed.

  3. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  4. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  5. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  6. EVIDENCE FOR ACTIVE GALACTIC NUCLEUS DRIVEN OUTFLOWS IN YOUNG RADIO QUASARS

    SciTech Connect

    Kim, Minjin; Ho, Luis C.; Lonsdale, Carol J.; Lacy, Mark; Kimball, Amy E.; Blain, Andrew W.

    2013-05-01

    We present near-infrared spectra of young radio quasars (P{sub 1.4GHz} Almost-Equal-To 26-27 W Hz{sup -1}) selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z Almost-Equal-To 1.6-2.5 and bolometric luminosities {approx}10{sup 47} erg s{sup -1}. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, A{sub V} Almost-Equal-To 0-1.3 mag. The observed [O III] {lambda}5007 luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range {approx}10{sup 8.9}-10{sup 9.7} M{sub Sun }. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of {approx}10{sup 11.3}-10{sup 12.2} M{sub Sun }. The [O III] line is exceptionally broad, with FWHM {approx}1300-2100 km s{sup -1}, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback.

  7. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  8. Black hole mass estimation from X-ray variability measurements in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nikolajuk, M.; Papadakis, I. E.; Czerny, B.

    2004-05-01

    We propose a new method of estimation of the black hole masses in active galactic nuclei (AGN) based on the normalized excess variance, σ2nxs. We derive a relation between σ2nxs, the length of the observation, T, the light-curve bin size, Δt, and the black hole mass, assuming that (i) the power spectrum above the high-frequency break, νbf, has a slope of -2, (ii) the high-frequency break scales with black hole mass, (iii) the power-spectrum amplitude (in frequency-power space) is universal and (iv) σ2nxs is calculated from observations of length T < 1/νbf. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the MBH-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass, but the use of σ2nxs has the big advantage of being applicable to relatively low-quality data.

  9. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  10. Measurements of M-Shell Dielectronic Recombination for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D.; Schnell, M.; Savin, D. W.; Mueller, A.; Schippers, S.; Schmidt, E. W.; Brandau, C.; Lestinsky, M.; Sprenger, F.; Wolf, A.

    2005-05-01

    XMM-Newton and Chandra spectroscopy of active galactic nuclei (AGNs) shows a rich spectrum of X-ray absorption lines. These AGN observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner shell photoexcitation of M-shell iron. Modeling these UTA features is currently limited by uncertainties in the low temperature DR data for M-shell iron. In order to resolve this issue and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Other commonly used laboratory methods for studying DR (e.g., electron beam ion traps [EBITs]) are unable to measure the relevant low energy DR resonances. Storage rings are currently the only laboratory method capable of studying low temperature DR. We are also providing our data to atomic theorist to benchmark their modern DR calculations. Our initial results indicate that state-of-the-art theory cannot reliably predict the needed low temperature M-shell DR rate coefficients. Here we will report our recent results for DR of Fe XIV and Fe XIII and plans for future work. This work is supported part by NASA, the German Federal Ministry for Education and Research, and the German Research Council.

  11. Changing-Look Active Galactic Nuclei With The Time Domain Spectroscopic Survey (TDSS)

    NASA Astrophysics Data System (ADS)

    Runnoe, J.

    2015-09-01

    Changing-look active galactic nuclei (CL-AGNs) present a unique opportunity to study AGN unification and physics. They are observed to transformation between the Type 1 and 2 classifications, supporting a picture in which both orientation to the observer and intrinsic spectral and luminosity evolution can play important roles in unification. In the same spirit, CL-AGNs also offer a way to study behavior brought about by abrupt changes in the accretion rate and may represent a previously unappreciated mode of quasar variability: prolonged "on-" and "off-states". CL-AGNs are uncommon, with only a handful identified to date, but several have been discovered in the Time Domain Spectroscopic Survey (TDSS), and these are likely just the tip of the iceberg. The TDSS offers a promising way of discovering substantial numbers of CL-AGN because it will revisit several thousand objects with previous spectra from the SDSS, many of which are selected based on substantial photometric variability. A statistical sample of these objects will allow us to move beyond the detailed case studies and start to understand the underlying physical mechanisms responsible for these dramatic spectral changes. I will describe our systematic search for CL-AGN in the TDSS and discuss what we have learned from a growing sample of these objects.

  12. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  13. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  14. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-11-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific subclass of AGN for which an increased neutrino production is expected. This subclass contains AGN for which their high-energy jet is pointing toward Earth. Furthermore, we impose the condition that the jet is obscured by gas or dust surrounding the AGN. A method is presented to determine the total column density of the obscuring medium, which is probed by determining the relative x-ray attenuation with respect to the radio flux as obtained from the AGN spectrum. The total column density allows us to probe the interaction of the jet with the surrounding matter, which leads to additional neutrino production. Finally, starting from two different source catalogs, this method is applied to specify a sample of low redshift radio galaxies for which an increased neutrino production is expected.

  15. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  16. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  17. Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Greene, J. E.; Ho, L. C.; Ulvestad, J. S.

    2008-10-01

    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 M⊙. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically thin synchrotron spectrum with a spectral index α = - 0.76 +/- 0.05 (Sν propto ν+ α), is less than 11% linearly polarized, and is steady—although poorly sampled—on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 M⊙ yr-1, is inconsistent with the rate of less than 2 M⊙ yr-1 derived from narrow Hα and [O II] λ3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those galaxies, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher linear resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black hole growth.

  18. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  19. LOW-MASS ACTIVE GALACTIC NUCLEI WITH RAPID X-RAY VARIABILITY

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2016-04-10

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median M{sub BH} = 1.2 × 10{sup 6} M{sub ⊙} and median L{sub bol}/L{sub Edd} = 0.44. The sample follows the M{sub BH}–σ{sub *} relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  20. Study of torus structure of low-luminosity active galactic nuclei with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, T.

    2015-09-01

    We investigate the nature of the torus structure of eight low-luminosity active galactic nuclei (LLAGNs; NGC 1566, NGC 2655, NGC 3718, NGC 3998, NGC 4138, NGC 4941, NGC 5273 and NGC 5643) based on the broad band X-ray spectra (0.5-200 keV) obtained with Suzaku and Swift/BAT. Their X-ray luminosities are smaller than 1e 42 erg/s, while the Eddington ratios span a range from 1e-4 to 1e-2. No significant iron- Kalpha line is detected in the spectra of two LLAGNs with the lowest Eddington ratios (<3e-4) in our sample (NGC 3718 and NGC 3998), suggesting that their tori are little developed. The others show the iron-Kalpha equivalent widths larger than 100 eV. For these six LLAGNs, we utilize the Monte-Carlo based simulation code by Ikeda 09 to constrain the torus parameters by assuming a nearly spherical geometry. The torus solid- angles in three sources (NGC 2655, NGC 4138, and NGC 4941) are constrained to be Omega/2pi > 0.34, and the rest are found to have torus column-densities of logNrmH > 22.7. These results suggest that there are two types of LLAGNs, (1) those where the torus is very small and little mass accretion takes place, and (2) those where the torus is moderately developed and a sufficient amount of gas is supplied to the black hole.

  1. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  2. X-ray refelection from photoionized media in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Krolik, Julian H.; Zdziarski, Andrzej A.; Kallman, Timothy R.

    1994-01-01

    We calculate the spectrum of X-ray radiation and reprocessed by a partly ionized optically thick medium in an active galactic nucleus. We self-consistently calculate the ionization balance and thermal balance in the medium along with the distribution of X-ray intensity with optical depth. In addition to absorption or scattering of the incident X-rays, we also compute the spectrum of X-rays emitted by the material, including lines, edges, and bremsstrahlung. The albedo of the medium depends primarily on the X-ray ionization parameter (ratio of incident flux to gas density, zeta(sub Chi), and secondarily on the UV flux generated by dissipation inside the disk; we locate the critical range of zeta(sub Chi) over which the albedo increases from small to nearly unity. While the continuum reflection is very weak below 10 keV when zeta(sub Chi) is small, significnat fluxes are emitted in atomic lines and edges in this energy range. In the limit of large zeta(sub Chi), the albedo below 10 keV increases, but reflection in this band is never gray: some photoelectric absorption remains up to rather large values of zeta(sub Chi), while at still higher values, inverse Compton scattering amplifies the soft X-ray flux. These features are sufficiently sharp that current and near-future X-ray experiments should permit diagnostic measures of zeta(sub Chi).

  3. The SAMI Galaxy Survey: unveiling the nature of kinematically offset active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Schaefer, A. L.; Scott, N.; Fogarty, L. M. R.; Ho, I.-T.; Medling, A. M.; Leslie, S. K.; Bland-Hawthorn, J.; Bryant, J. J.; Croom, S. M.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Owers, M. S.; Richards, S. N.; Sharp, R.

    2015-08-01

    We have observed two kinematically offset active galactic nuclei (AGN), whose ionized gas is at a different line-of-sight velocity to their host galaxies, with the Sydney-AAO Multi-object Integral field spectrograph (SAMI). One of the galaxies shows gas kinematics very different from the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionized gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but integral field spectroscopy or other data are required to determine their true nature.

  4. Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Algaba, J. C.; Nakamura, M.; Asada, K.; Lee, S. S.

    2017-01-01

    In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.

  5. Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-01

    We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.

  6. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    SciTech Connect

    Scoville, N.; Murchikova, L.

    2013-12-10

    We examine the use of submillimeter (submm) recombination lines of H, He, and He{sup +} to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He{sup +} are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM{sub ION} = n{sub e} × n {sub ion} × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  7. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  8. The optical polarization signatures of fragmented equatorial dusty structures in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Stalevski, M.

    2015-12-01

    If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal structure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 -- 8000 Å polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (˜ 10 % at best) together with highly variable polarization position angles.

  9. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    SciTech Connect

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  10. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  11. Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.; Beskin, V. S.; Kovalev, Y. Y.; Zheltoukhov, A. A.

    2015-03-01

    The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich-Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.

  12. Multi-wavelength polarimetry: a powerful tool to study the physics of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.

    2009-11-01

    Accreting supermassive black holes reside in a very complex environment and the inner structure and dynamics of active galactic nuclei (AGN) are not well understood yet. In this note, I point out the important role that multi-wavelength polarimetry can play in understanding AGN. In addition to spectroscopy, the measurement of the polarization percentage and position angle provides two more observables that are sensitive to the geometry and kinematics of emission and scattering regions. Furthermore, time-dependent polarimetry allows to measure spatial distances between emission regions and scattering mirrors by applying a reverberation technique. For radiation coming from the direct vicinity of the black hole, the polarization also contains information about the space-time metric. Spectropolarimetry observations of AGN are obtained in the radio, the infrared, the optical, and the ultraviolet wave bands and in the future they are going be available also in the X-ray range. To interpret these observations in a coherent way, it is necessary to study models that do not only reproduce the broad-band spectroscopy properties of AGN but also their multi-wavelength polarization signature. I present a first step towards such models for the case of radio-quiet AGN. The modeling reveals the optical/UV and X-ray polarization properties of the reprocessed radiation coming from the obscuring torus. The discussion about the implications of such models includes prospects for the up-coming technique of X-ray (spectro-)polarimetry.

  13. Physical properties of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ilić, Dragana; Popović, Luka Č.; Ciroi, Stefano; La Mura, Giovanni; Rafanelli, Piero

    2010-11-01

    We present here the study of the plasma in the broad line region (BLR) of active galactic nuclei (AGN). In order to probe the physical properties of the emitting plasma in the BLR we analyze the fluxes of the following broad emission lines (BELs): the hydrogen Balmer lines (Hα to Hɛ) and the helium lines from two subsequent ionization levels (He II λ4686 and He I λ5876). The BELs are obtained from the spectral synthesis photoionization code CLOUDY. We investigate these BELs in order to find conditions in the BLR where so-called Boltzmann-plot (BP) can be applied, and we found that in a number of modeled spectra it is working. We used these spectra to explore the dependence between plasma parameters (e.g. the averaged temperature, hydrogen density, etc.) and the ratio of He II λ4686 and He I λ5876 lines. In this progress report we present our investigation of the emitting plasma in the BLR using the most intensive broad spectral lines in AGN spectra.

  14. Discovery of five low-luminosity active galactic nuclei at the centre of the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Park, Songyoun; Yang, Jun; Oonk, J. B. Raymond; Paragi, Zsolt

    2017-03-01

    According to optical stellar kinematics observations, an overmassive black hole candidate has been reported by van den Bosch et al. in the normal early-type galaxy NGC 1277. This galaxy is located in the central region of the Perseus cluster. Westerbork Synthesis Radio Telescope observations have shown that NGC 1277 and other early-type galaxies in the neighbourhood have radio counterparts. These nuclear radio sources have stable flux densities on a time-scale of years. In order to investigate the origin of the radio emission from these normal galaxies, we selected five sources (NGC 1270, NGC 1272, NGC 1277, NGC 1278 and VZw 339) residing in the central 10-arcmin region of the Perseus cluster and requested to re-correlate the data of an existing very long baseline interferometry (VLBI) experiment at these new positions. With the re-correlation data provided by the European VLBI Network (EVN), we imaged the five sources with a resolution of about 8 mas and detected all of them with a confidence level above 5σ at 1.4 GHz. They show compact structure and brightness temperatures above 107 K, which implies that the radio emission is non-thermal. We rule out ongoing nuclear star formation and conclude that these VLBI-detected radio sources are parsec-scale jet activity associated with the supermassive black holes in low-luminosity active galactic nuclei, although there are no clear signs of nuclear activity observed in the optical and infrared bands. Using the Fundamental Plane relation in black holes, we find no significant evidence for or against an extremely massive black hole hiding in NGC 1277.

  15. An Expanding Plasma Model for the X-ray/radio knots in KPC-scale Jets of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sahayanathan, S.; Misra, R.; Kembhavi, A. K.; Kaul, C. L.

    2003-03-01

    We model the observed X-ray/radio knots in Active Galactic Nuclei (AGN) as isotropically expanding spherical plasma clouds fed continously by non-thermal electrons. The time-dependent electron distribution and the emitted photon spectrum are computed using the standard kinetic equation considering synchrotron, adiabatic and inverse Compton cooling processes. We use this model to study the knots of 1136 - 135 and 1150 + 497, recenly observed by Chandra. 29

  16. SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS OF MAGNETIC ACTIVITY IN ULTRACOOL DWARFS. IV. THE ACTIVE, YOUNG BINARY NLTT 33370 AB (= 2MASS J13142039+1320011)

    SciTech Connect

    Williams, P. K. G.; Berger, E.; Irwin, J.; Charbonneau, D.; Berta-Thompson, Z. K.

    2015-02-01

    We present multi-epoch simultaneous radio, optical, Hα, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 ± 0.0001 and 3.7130 ± 0.0002 hr. While these differ by only ∼2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present a spectral energy distribution of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components' radii and temperatures potentially altered by ∼+20% and ∼–10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this system's nature.

  17. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * < 3 × 109 M ⊙, z < 0.055) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages, and large specific star formation rates. These results indicate that great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  18. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-12-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, i.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the Fundamental Plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when LX ≳ 1.5 × 1042 erg s- 1. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  19. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    SciTech Connect

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 1043 ergs s-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  20. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2017-03-01

    The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s-1 in non-central, host galaxies with luminosity greater than 0.5L* from a total sample of 432 clusters in the redshift range of 0.1 < z < 0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ∼8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6σ. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  1. Binary Active Galactic Nuclei in Stripe 82: Constraints on Synchronized Black Hole Accretion in Major Mergers

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Wrobel, J. M.; Myers, A. D.; Djorgovski, S. G.; Yan, Lin

    2015-12-01

    Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method for identifying a large and uniform sample of binary AGNs because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kiloparsec-scale binaries over the 92 deg2 of the Sloan Digital Sky Survey Stripe 82 area with 2″-resolution Very Large Array (VLA) images. Here we present 0.″3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line of sight projections of radio structures from single AGNs. The four binary AGNs at z ˜ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between 10.3\\lt {{log}}({M}\\star /{M}⊙ )\\lt 11.5 and velocity dispersions between 120\\lt {σ }\\star \\lt 320 km s-1. The radio emission is compact (≲0.″4) and shows a steep spectrum (-1.8\\lt α \\lt -0.5) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs ≥slant {23}-8+15% of the time when a kiloparsec-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.

  2. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  3. COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD

    SciTech Connect

    Smolcic, V.; Salvato, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Ciliegi, P.; Schinnerer, E.; Bondi, M.; BIrzan, L.; Carilli, C. L.; Elvis, M.; Impey, C. D.; Trump, J. R.; Koekemoer, A. M.; Merloni, A.; Scodeggio, M.; Paglione, T

    2009-05-01

    We explore the cosmic evolution of radio luminous active galactic nuclei (AGNs) with low radio powers (L {sub 1.4GHz} {approx}< 5 x 10{sup 25} W Hz{sup -1}) out to z = 1.3 using to date the largest sample of {approx}600 low-luminosity radio AGN at intermediate redshift drawn from the VLA-COSMOS survey. We derive the radio-luminosity function for these AGNs, and its evolution with cosmic time assuming two extreme cases: (1) pure luminosity and (2) pure density evolution. The former and latter yield L {sub *} {proportional_to} (1 + z){sup 0.8} {sup {+-}} {sup 0.1}, and {phi}{sub *} {proportional_to} (1 + z){sup 1.1} {sup {+-}} {sup 0.1}, respectively, both implying a fairly modest change in properties of low-radio-power AGNs since z = 1.3. We show that this is in stark contrast with the evolution of powerful (L {sub 1.4GHz} > 5 x 10{sup 25} W Hz{sup -1}) radio AGN over the same cosmic time interval, constrained using the 3CRR, 6CE, and 7CRS radio surveys by Willot et al. We demonstrate that this can be explained through differences in black hole fueling and triggering mechanisms, and a dichotomy in host galaxy properties of weak and powerful AGNs. Our findings suggest that high- and low-radio-power AGN activities are triggered in different stages during the formation of massive red galaxies. We show that weak radio AGN occur in the most massive galaxies already at z {approx} 1, and they may significantly contribute to the heating of their surrounding medium and thus inhibit gas accretion onto their host galaxies, as recently suggested for the 'radio mode' in cosmological models.

  4. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  5. NEAR-INFRARED REVERBERATION BY DUSTY CLUMPY TORI IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kawaguchi, Toshihiro; Mori, Masao

    2011-08-20

    According to recent models, the accretion disk and black hole in active galactic nuclei (AGNs) are surrounded by a clumpy torus. We investigate the NIR flux variation of the torus in response to a UV flash for various geometries. Anisotropic illumination by the disk and the torus self-occultation contrast our study with earlier works. Both the waning effect of each clump and the torus self-occultation selectively reduce the emission from the region with a short delay. Therefore, the NIR delay depends on the viewing angle (where a more inclined angle leads to a longer delay), and the time response shows an asymmetric profile with negative skewness, opposing the results for optically thin tori. The range of the computed delay coincides with the observed one, suggesting that the viewing angle is primarily responsible for the scatter of the observed delay. We also propose that the red NIR-to-optical color of type 1.8/1.9 objects is caused not only by the dust extinction but also the intrinsically red color. Compared with the modest torus thickness, both a thick and a thin tori display weaker NIR emission. A selection bias is thus expected such that NIR-selected AGNs tend to possess moderately thick tori. A thicker torus shows a narrower and more heavily skewed time profile, while a thin torus produces a rapid response. A super-Eddington accretion rate leads to much weaker NIR emission due to the disk self-occultation and the disk truncation by self-gravity. A long delay is expected from an optically thin and/or a largely misaligned torus. Very weak NIR emission, such as in hot-dust-poor active nuclei, can arise from a geometrically thin torus, a super-Eddington accretion rate, or a slightly misaligned torus.

  6. A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wu Qingwen; Wang Dingxiong; Cao Xinwu; Ho, Luis C. E-mail: dxwang@hust.edu.cn E-mail: lho@obs.carnegiescience.edu

    2013-06-10

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of {approx}1%, the radio emission-a measure of the jet power-varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L{sub R} {proportional_to} L{sub X}{sup 0.6-0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  7. The relationship of active galactic nuclei & quasars with their local galaxy environment

    NASA Astrophysics Data System (ADS)

    Strand, Natalie Erin

    We explore how the local environment is related to properties of active galactic nuclei (AGNs) of various luminosities. Recent simulations and observations are converging on the view that the extreme luminosity of quasars, the brightest of AGNs, is fueled in major mergers of gas-rich galaxies. In such a picture, quasars, the highest luminosity AGNs, are expected to be located in regions with a higher density of galaxies on small scales where mergers are more likely to take place. However, in this picture, the activity observed in low-luminosity AGNs is due to secular processes that are less dependent on the local galaxy density. To test this hypothesis, we compare the local photometric galaxy density on kiloparsec scales around spectroscopic type I and type II quasars to the local density around lower-luminosity spectroscopic type I and type II AGNs. To minimize projection effects and evolution in the photometric galaxy sample we use to characterize AGN environments, we place our random control sample at the same redshift as our AGNs and impose a narrow redshift window around both the AGNs and control targets. Our results support these merger models for bright AGN origins. We find that the brightest sources have overdensities that increase on the smallest scales compared to dimmer sources. In addition, we investigate the nature of the quasar and AGN environments themselves and find that the increased overdensity of early-type galaxies in the environments of bright type I sources suggests that they are located in richer cluster environments than dim sources. We measure increased environment overdensity with increased quasar black hole mass, consistent with the well- known M DMH - M BH relationship, and find evidence for quenching in the environments of high accretion efficiency type I quasars.

  8. HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Treister, Ezequiel; Sanders, David B.; Urry, C. Megan; Cardamone, Carolin N.; Schawinski, Kevin

    2010-10-20

    We take advantage of the rich multiwavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Ms Chandra observations (the deepest X-ray data to date), in order to search for heavily obscured low-luminosity active galactic nuclei (AGNs) among infrared-luminous galaxies. In particular, we obtained a stacked rest-frame X-ray spectrum for samples of galaxies binned in terms of their IR luminosity or stellar mass. We detect a significant signal at E {approx} 1-8 keV, which we interpret as originating from a combination of emission associated with star formation processes at low energies combined with a heavily obscured AGN at E > 5 keV. We further find that the relative strength of this AGN signal decays with decreasing IR luminosity, indicating a higher AGN fraction for more luminous IR sources. Together, these results strongly suggest the presence of a large number of obscured AGNs in IR-luminous galaxies. Using samples binned in terms of stellar mass in the host galaxy, we find a significant excess at E = 6-7 keV for sources with M > 10{sup 11} M {sub sun}, consistent with a large obscured AGN population in high mass galaxies. In contrast, no strong evidence of AGN activity was found for less-massive galaxies. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, {approx}22%, occurs in heavily obscured systems that are not individually detected in even the deepest X-ray observations. There are also indications that the number of low-luminosity, heavily obscured AGNs does not evolve significantly with redshift, in contrast to the strong evolution seen in higher luminosity sources.

  9. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  10. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    SciTech Connect

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  11. How Complete is Mid-Infrared Selection of Active Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Diamond-Stanic, Aleks

    2015-01-01

    Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.

  12. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role

    SciTech Connect

    Denney, K. D.; De Rosa, G.; Croxall, K.; Gupta, A.; Fausnaugh, M. M.; Grier, C. J.; Martini, P.; Mathur, S.; Peterson, B. M.; Pogge, R. W.; Shappee, B. J.; Bentz, M. C.

    2014-12-01

    We present multiwavelength observations that trace more than 40 yr in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from Hubble Space Telescope, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long-baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a 'changing-look' AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9–2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line-of-sight viewing angle toward the nucleus in the presence of a geometrically flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.

  13. Probing the active galactic nucleus unified model torus properties in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Audibert, Anelise; Riffel, Rogério; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel

    2017-01-01

    We studied the physical parameters of a sample comprising of all Spitzer/Infrared Spectrograph public spectra of Seyfert galaxies in the mid-infrared (5.2-38 μm range) under the active galactic nucleus (AGN) unified model. We compare the observed spectra with ˜106 CLUMPY model spectral energy distributions, which consider a torus composed of dusty clouds. We find a slight difference in the distribution of line-of-sight inclination angle, i, requiring larger angles for Seyfert 2 (Sy 2) and a broader distribution for Seyfert 1 (Sy 1). We found small differences in the torus angular width, σ, indicating that Sy 1 may host a slightly narrower torus than Sy 2. The torus thickness, together with the bolometric luminosities derived, suggests a very compact torus up to ˜6 pc from the central AGN. The number of clouds along the equatorial plane, N, as well the index of the radial profile, q, is nearly the same for both types. These results imply that the torus cloud distribution is nearly the same for type 1 and type 2 objects. The torus mass is almost the same for both types of activity, with values in the range of Mtor ˜ 104-107 M⊙. The main difference appears to be related to the clouds' intrinsic properties: type 2 sources present higher optical depths τV. The results presented here reinforce the suggestion that the classification of a galaxy may also depend on the intrinsic properties of the torus clouds rather than simply on their inclination. This is in contradiction with the simple geometric idea of the unification model.

  14. Physical properties of FeII emission in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marinello, M. A. O.; Rodríguez-Ardila, A.; Garcia-Rissman, A.

    2014-10-01

    Among the spectral lines emitted by the broad line region (BLR) in active galactic nuclei (AGN) the FeII emission is the most prominent one and therefore constitutes one of the most important contributors to the cooling of that region. In the near infra-red (NIR) the FeII emission is intense but free of blending effects opening a window to a more consistent analysis of that emission. With the aim of studying the FeII in the range 0.8-1.2 μ m in a sample of 21 AGNs we utilize a semi-empirical template obtained from IZw1, which is considered the prototype of FeII active galaxy emitter. That particular template reproduces accurately the FeII in IZw1 and it is now applied, by the first time in other AGNs. In this work we made a analysis of the width and intensity of the FeII lines in order to derive the most probable location of the emitting region and to study the formation mechanisms of that ion, respectively. We compare the width of the individual FeII lines with that of other lines emitted in BLR. Our results show that the FWHM of iron systematically approaches to that of OI and CaII and is considerably smaller than that of Hydrogen, confirming previous assumptions that the gas responsible for the FeII emission is the outer portion of the BLR. We correlate the strength of the NIR and optical iron lines to derive the relative contribution of the different mechanisms that produces that emission. We found that in all cases the Lyα fluorescence plays an important role.

  15. A Physical Link between Jet Formation and Hot Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Cao, Xinwu; Ho, Luis C.; Wang, Ding-Xiong

    2013-06-01

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of ~1%, the radio emission—a measure of the jet power—varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L_R \\propto L_X^{0.6{--}0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  16. INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, K{sub S} BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 {mu}m IN THE SPITZER/IRAC SYSTEM

    SciTech Connect

    Nishiyama, Shogo; Nagata, Tetsuya; Tamura, Motohide; Hatano, Hirofumi; Kato, Daisuke; Tanabe, Toshihiko; Sugitani, Koji

    2009-05-10

    We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 {mu}m, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region |l | {approx}<3.{sup 0}0 and |b | {approx}<1.{sup 0}0 has been surveyed in the J, H, and K{sub S} bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made K{sub S} versus K{sub S} - {lambda} color-magnitude diagrams (CMDs) where {lambda}=3.6, 4.5, 5.8, and 8.0 {mu}m. The K{sub S} magnitudes of bulge red clump stars and the K{sub S} - {lambda} colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction A{sub K{sub S}}/E{sub K{sub S}}{sub -{lambda}} for the four IRAC bands. Combined with A{sub {lambda}}/A{sub K{sub S}} for the J and H bands derived by Nishiyama et al., we obtain A{sub J} :A{sub H} :A{sub K{sub S}}:A {sub [3.6]}:A {sub [4.5]}:A {sub [5.8]}:A {sub [8.0]} = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at {lambda} {approx}> 3 {mu}m from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and K{sub S} bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and K{sub S} is well fitted by a power law of steep decrease A {sub {lambda}} {proportional_to} {lambda}{sup -2.0} toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios

  17. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Ohsuga, K.

    2017-03-01

    In order to reveal the origin of the ultrafast outflows (UFOs) that are frequently observed in active galactic nuclei (AGNs), we perform two-dimensional radiation hydrodynamics simulations of the line-driven disc winds, which are accelerated by the radiation force due to the spectral lines. The line-driven winds are successfully launched for the range of MBH = 106-9 M⊙ and ε = 0.1-0.5, and the resulting mass outflow rate (dot{M_w}), momentum flux (dot{p_w}), and kinetic luminosity (dot{E_w}) are in the region containing 90 per cent of the posterior probability distribution in the dot{M}_w-Lbol plane, dot{p}_w-Lbol plane, and dot{E}_w-Lbol plane shown in Gofford et al., where MBH is the black hole mass, ε is the Eddington ratio, and Lbol is the bolometric luminosity. The best-fitting relations in Gofford et al., d log dot{M_w}/d log {L_bol}˜ 0.9, d log dot{p_w}/d log {L_bol}˜ 1.2, and d log dot{E_w}/d log {L_bol}˜ 1.5, are roughly consistent with our results, d log dot{M_w}/d log {L_bol}˜ 9/8, d log dot{p_w}/d log {L_bol}˜ 10/8, and d log dot{E_w}/d log {L_bol}˜ 11/8. In addition, our model predicts that no UFO features are detected for the AGNs with ε ≲ 0.01, since the winds do not appear. Also, only AGNs with MBH ≲ 108 M⊙ exhibit the UFOs when ε ∼ 0.025. These predictions nicely agree with the X-ray observations. These results support that the line-driven disc wind is the origin of the UFOs.

  18. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  19. Active Galactic Nuclei Selected from GALEX Spectroscopy: The Ionizing Source Spectrum at z ~ 1

    NASA Astrophysics Data System (ADS)

    Barger, Amy J.; Cowie, Lennox L.

    2010-08-01

    We use a complete sample of Lyα-emission-line-selected active galactic nuclei (AGNs) obtained from nine deep blank fields observed with the grism spectrographs on the Galaxy Evolution Explorer (GALEX) satellite to measure the normalization and the spectral shape of the AGN contribution to the ionizing background (rest-frame wavelengths 700-900 Å) at z ~ 1. Our sample consists of 139 sources selected in the redshift range z = 0.65-1.25 in the near-ultraviolet (NUV; 2371 Å central wavelength) channel. The area covered is 8.2 deg2 to a NUV magnitude of 20.5 (AB) and 0.92 deg2 at the faintest magnitude limit of 21.8. The GALEX AGN luminosity function agrees well with those obtained using optical and X-ray AGN samples, and the measured redshift evolution of the ionizing volume emissivity is similar to that previously obtained by measuring the GALEX far-ultraviolet (FUV; 1528 Å central wavelength) magnitudes of an X-ray-selected sample. For the first time, we are able to construct the shape of the ionizing background at z ~ 1 in a fully self-consistent way. Based in part on data obtained from the Multimission Archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for Multimission Archive at STScI (MAST) for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  20. LINE SHIFTS, BROAD-LINE REGION INFLOW, AND THE FEEDING OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Gaskell, C. Martin; Goosmann, Rene W. E-mail: rene.goosmann@astro.unistra.fr

    2013-05-20

    Velocity-resolved reverberation mapping suggests that the broad-line regions (BLRs) of active galactic nuclei (AGNs) can have significant net inflow. We use the STOKES radiative transfer code to show that electron and Rayleigh scattering off the BLR and torus naturally explains the blueshifted profiles of high-ionization lines and the ionization dependence of the blueshifts. This result is insensitive to the geometry of the scattering region. If correct, then this model resolves the long-standing conflict between the absence of outflow implied by velocity-resolved reverberation mapping and the need for outflow if the blueshifting is the result of obscuration. The accretion rate implied by the inflow is sufficient to power the AGN. We suggest that the BLR is part of the outer accretion disk and that similar magnetohydrodynamic processes are operating. In the scattering model, the blueshifting is proportional to the accretion rate so high-accretion-rate AGNs will show greater high-ionization line blueshifts, as is observed. Scattering can lead to systematically too high black hole mass estimates from the C IV line. We note many similarities between narrow-line region (NLR) and BLR blueshiftings, and suggest that NLR blueshiftings have a similar explanation. Our model explains the higher blueshifts of broad absorption line QSOs if they are more highly inclined. Rayleigh scattering from the BLR and torus could be more important in the UV than electron scattering for predominantly neutral material around AGNs. The importance of Rayleigh scattering versus electron scattering can be assessed by comparing line profiles at different wavelengths arising from the same emission-line region.

  1. Chandra Discovery of a Binary Active Galactic Nucleus in Mrk 739

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, Richard; Treister, Ezequiel; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Sanders, D. B.; Schawinski, Kevin; Trippe, Margaret

    2011-07-01

    We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L 2-10 keV = 1.1 × 1043 and 1.0 × 1042 erg s-1), unresolved nuclei with a projected separation of 3.4 kpc (5farcs8 ± 0farcs1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (× 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L [O III]/L 2-10 keV ratio cause the AGN to be missed in optical observations. 12CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M BH = 7.05 ± 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.

  2. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    NASA Astrophysics Data System (ADS)

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  3. RADIO-SELECTED BINARY ACTIVE GALACTIC NUCLEI FROM THE VERY LARGE ARRAY STRIPE 82 SURVEY

    SciTech Connect

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-20

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg{sup 2} covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ∼60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.

  4. The MOSDEF Survey: Optical Active Galactic Nucleus Diagnostics at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.; Aird, James; Reddy, Naveen; Shapley, Alice E.; Kriek, Mariska; Siana, Brian; Mobasher, Bahram; Freeman, William R.; Price, Sedona H.; Shivaei, Irene

    2015-03-01

    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on rest-frame optical active galactic nucleus (AGN) identification and completeness at z ~ 2.3. With our sample of 50 galaxies and 10 X-ray and IR-selected AGNs with measured Hβ, [O III], Hα, and N II emission lines, we investigate the location of AGNs in the BPT, MEx (mass-excitation), and CEx (color-excitation) diagrams. We find that th BPT diagram works well to identify AGNs at z ~ 2.3 and that the z ~ 0 AGN/star-forming galaxy classifications do not need to shift substantially at z ~ 2.3 to robustly separate these populations. However, the MEx diagram fails to identify all of the AGN identified in the BPT diagram, and the CEx diagram is substantially contaminated at high redshift. We further show that AGN samples selected using the BPT diagram have selection biases in terms of both host stellar mass and stellar population, in that AGNs in low mass and/or high specific star formation rate galaxies are difficult to identify using the BPT diagram. These selection biases become increasingly severe at high redshift, such that optically selected AGN samples at high redshift will necessarily be incomplete. We also find that the gas in the narrow-line region appears to be more enriched than gas in the host galaxy for at least some MOSDEF AGNs. However, AGNs at z ~ 2 are generally less enriched than local AGNs with the same host stellar mass.

  5. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  6. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  7. Offset Active Galactic Nuclei as Tracers of Galaxy Mergers and Supermassive Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-01

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s-1 < |Δv| < 410 km s-1. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L bol) [erg s-1] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  8. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-01-01

    We perform polarimetry analysis of 20 active galactic nuclei (AGN) jets using the Very Long Baseline Array (VLBA) at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4, and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec-scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength-dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16,900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2 . Significant transverse rotation measure gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magnetoionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  9. Polarization of Rayleigh scattered Lyα in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Chang, Seok-Jun; Lee, Hee-Won; Yang, Yujin

    2017-02-01

    The unification scheme of active galactic nuclei invokes an optically thick molecular torus component hiding the broad emission line region. Assuming the presence of a thick neutral component in the molecular torus characterized by a H I column density >1022 cm-2, we propose that far-UV radiation around Lyα can be significantly polarized through Rayleigh scattering. Adopting a Monte Carlo technique, we compute polarization of Rayleigh scattered radiation near Lyα in a thick neutral region in the shape of a slab and a cylindrical shell. It is found that radiation near Lyα Rayleigh reflected from a very thick slab can be significantly polarized in a fairly large range of wavelength Δλ ˜ 50 Å exhibiting a flux profile similar to the incident one. Rayleigh transmitted radiation in a slab is characterized by the central dip with a complicated polarization behaviour. The optically thick part near Lyα centre is polarized in the direction perpendicular to the slab normal, which is in contrast to weakly polarized wing parts in the direction parallel to the slab normal. A similar polarization flip phenomenon is also found in the case of a tall cylindrical shell, in which the spatial diffusion along the vertical direction near the inner cylinder wall for core photons leads to a tendency of the electric field aligned to the direction perpendicular to the vertical axis. Observational implications are briefly discussed including spectropolarimetry of the quasar PG 1630+377 by Koratkar et al. in 1990 where Lyα is strongly polarized with no other emission lines polarized.

  10. The Fe II Emission in Active Galactic Nuclei: Excitation Mechanisms and Location of the Emitting Region

    NASA Astrophysics Data System (ADS)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  11. Identifying Luminous Active Galactic Nuclei in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L 2-10 keV(erg s-1) >=44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N H (cm-2) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  12. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    SciTech Connect

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  13. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  14. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.

    2015-01-01

    Context. A fraction of active galactic nuclei (AGN) show dramatic X-ray spectral changes on the day-to-week time scales associated with variation in the line of sight of the cold absorber. Aims: We intend to model the polarization fluctuations arising from an obscuration event, thereby offering a method of determining whether flux variations are due to occultation or extreme intrinsic emission variability. Methods: Undertaking 1-100 keV polarimetric simulations with the Monte Carlo code Stokes, we simulated the journey of a variety of cold gas clouds in front of an extended primary source. We varied the hydrogen column density nH and size of the absorber, as well as the initial polarization state of the emitting source, to cover a wide range of scenarios. Results: Simulations indicate that different results are expected according to the initial polarization of the extended continuum source. For unpolarized primary fluxes, large (~50°) variations of the polarization position angle ψ are expected before and after an occultation event, which is associated with very low residual polarization degrees (P ≪ 1%). In the case of an emitting disk with intrinsic, position-independent polarization, and for a given range of parameters, X-ray eclipses significantly alter the observed polarization spectra, with most of the variations seen in ψ. Finally, non-uniformly polarized emitting regions produce very distinctive polarization variations due to the successive covering and uncovering of different portions of the disk. Plotted against time, variations in P and ψ form detectable P Cygni type profiles that are distinctive signatures of non-axisymmetric emission. Conclusions: We find that X-ray polarimetry is particularly adapted to probing X-ray eclipses due to Compton-thin and Compton-thick gas clouds. Polarization measurements would distinguish between intrinsic intensity fluctuations and external eclipsing events, constrain the geometry of the covering medium, and test

  15. Evidence of Parsec-scale Jets in Low-luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.

    2014-05-01

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q jet) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q jet > 1042 erg s-1, while the lowest Q jet correspond to those LLAGNs with parsec-scale (<=100 pc) jets. The Q jet is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10-4) when adding the Q jet to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  16. THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Huchra, John P.; Civano, Francesca; Hao, Heng; McCarthy, Patrick J.; Scoville, Nick Z.; Smolcic, Vernesa; Brusa, Marcella; Cappelluti, Nico; Hasinger, Gunther; Salvato, Mara; Capak, Peter; Comastri, Andrea; Jahnke, Knud; Schinnerer, Eva; Lilly, Simon J.

    2009-05-10

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg{sup 2} Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f {sub 0.5-10keV} > 8 x 10{sup -16} erg cm{sup -2} s{sup -1} and i {sup +} {sub AB} < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i {sup +} {sub AB} < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L {sub 0.5-10keV} > 3 x 10{sup 42} erg s{sup -1}) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity.

  17. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  18. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M. E-mail: max@ucolick.org E-mail: shields@lfastro.org

    2015-09-20

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  19. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Allevato, V.; Paolillo, M.; Papadakis, I.; Pinto, C.

    2013-07-01

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  20. Evidence of parsec-scale jets in low-luminosity active galactic nuclei

    SciTech Connect

    Mezcua, M.; Prieto, M. A.

    2014-05-20

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q {sub jet}) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q {sub jet} > 10{sup 42} erg s{sup –1}, while the lowest Q {sub jet} correspond to those LLAGNs with parsec-scale (≤100 pc) jets. The Q {sub jet} is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10{sup –4}) when adding the Q {sub jet} to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  1. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sakata, Yu; Minezaki, Takeo; Yoshii, Yuzuru; Uchimoto, Yuka Katsuno; Sugawara, Shota; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Tomita, Hiroyuki; Enya, Keigo; Suganuma, Masahiro

    2010-03-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region ({approx}4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  2. CHANDRA DISCOVERY OF A BINARY ACTIVE GALACTIC NUCLEUS IN Mrk 739

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Trippe, Margaret; Ezequiel Treister; Sanders, D. B.; Schawinski, Kevin

    2011-07-10

    We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L{sub 2-10 keV} = 1.1 x 10{sup 43} and 1.0 x 10{sup 42} erg s{sup -1}), unresolved nuclei with a projected separation of 3.4 kpc (5.''8 {+-} 0.''1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (x 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L{sub [O{sub III}]/L{sub 2-10 keV}} ratio cause the AGN to be missed in optical observations. {sup 12}CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M{sub BH} = 7.05 {+-} 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.

  3. A Spitzer Spectral Atlas of Low-mass Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hood, Carol E.; Barth, Aaron J.; Ho, Luis C.; Greene, Jenny E.

    2017-03-01

    We present Spitzer low-resolution Infrared Spectrograph (IRS) spectra (5 μm ≲ λ ≲ 40 μm) of a sample of 41 Type 1 and Type 2 active galactic nuclei (AGNs) with estimated black hole masses of {M}{BH} ≲ {10}6 {M}ȯ , in order to probe the validity of unification models in this mass regime. We find that the Type 2 objects tend to have redder continuum shapes than Type 1 objects and slightly stronger polycyclic aromatic hydrocarbon (PAH) emission, and attribute these differences to a larger contribution from the host galaxies in the spectra of the Type 2 objects. Examination of emission-line ratios, such as [Ne iii]/[Ne v], [O iv]/[Ne v], and [Ne v] at 14 μm/24 μm, for a combination of our sample and higher {M}{BH} comparison samples, shows no evidence for structural changes over the range of black hole masses examined. Analysis of the IR to X-ray spectral energy distributions provides further evidence that low-mass AGNs are scaled down versions of more massive AGNs, with no evidence of significant differences in broadband spectral properties. We estimate the star formation rates of the host galaxies with detected PAH features from the PAH luminosities, finding average star formation rates of 0.13 {M}ȯ yr {}-1 for Type 1 objects and 0.20 {M}ȯ yr {}-1 for Type 2 objects. No silicate features, either in absorption or emission, were detected in any objects. Finally, we confirm that both the [O iv] and [Ne v] luminosities are better indicators than {L}[{{O}{{III}}]} of an object’s bolometric luminosity, regardless of {M}{BH}.

  4. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  5. Radio-selected Binary Active Galactic Nuclei from the Very Large Array Stripe 82 Survey

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-01

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg2 covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  6. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  7. THE INTEGRAL HIGH-ENERGY CUT-OFF DISTRIBUTION OF TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-20

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E {sub c} of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT {sub e} from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  8. WHAT GOVERNS THE BULK VELOCITY OF THE JET COMPONENTS IN ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Chai Bo; Cao Xinwu; Gu Minfeng E-mail: cxw@shao.ac.cn

    2012-11-10

    We use a sample of radio-loud active galactic nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. Based on Koenigl's inhomogeneous jet model, the jet parameters, such as the bulk motion Lorentz factor, magnetic field strength, and electron density in the jet, can be estimated with the very long baseline interferometry and X-ray data.. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. The massive black holes will be spun up through accretion, as the black holes acquire mass and angular momentum simultaneously through accretion. Recent investigation indeed suggested that most supermassive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies, where random, small accretion episodes (e.g., tidally disrupted stars, accretion of molecular clouds) might have played a more important role. If this is true, then the correlation between black hole mass and the bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. No correlation is found between the magnetic field strength at 10R {sub S} (R {sub S} = 2GM/c {sup 2} is the Schwarzschild radius) in the jets and the bulk Lorentz factor of the jet components for this sample. This is consistent with the black hole spin scenario, i.e., the faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes. The results imply that the Blandford-Znajek mechanism may dominate over the Blandford-Payne mechanism for the jet acceleration, at least in these radio-loud AGNs.

  9. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    SciTech Connect

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  10. Revealing a strongly reddened, faint active galactic nucleus population by stacking deep co-added images

    NASA Astrophysics Data System (ADS)

    Varga, József; Csabai, István.; Dobos, László

    2012-10-01

    More than half of the sources identified by recent radio sky surveys have not been detected by wide-field optical surveys. We present a study, based on our co-added image stacking technique, in which our aim is to detect the optical emission from unresolved, isolated radio sources of the Very Large Array (VLA) Faint Images of the Radio Sky at Twenty-cm (FIRST) survey that have no identified optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82 co-added data set. From the FIRST catalogue, 2116 such radio point sources were selected, and cut-out images, centred on the FIRST coordinates, were generated from the Stripe 82 images. The already co-added cut-outs were stacked once again to obtain images of high signal-to-noise ratio, in the hope that optical emission from the radio sources would become detectable. Multiple stacks were generated, based on the radio luminosity of the point sources. The resulting stacked images show central peaks similar to point sources. The peaks have very red colours with steep optical spectral energy distributions. We have found that the optical spectral index αν falls in the range -2.9 ≤ αν ≤ -2.2 (Sν∝ναν), depending only weakly on the radio flux. The total integration times of the stacks are between 270 and 300 h, and the corresponding 5σ detection limit is estimated to be about mr ≃ 26.6 mag. We argue that the detected light is mainly from the central regions of dust-reddened Type 1 active galactic nuclei. Dust-reddened quasars might represent an early phase of quasar evolution, and thus they can also give us an insight into the formation of massive galaxies. The data used in the paper are available on-line at http://www.vo.elte.hu/doublestacking.

  11. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  12. Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Duţan, Ioana; Caramete, Laurenţiu I.

    2015-03-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ⩽1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ⩾ 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.

  13. Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724

    NASA Astrophysics Data System (ADS)

    Efstathiou, A.; Christopher, N.; Verma, A.; Siebenmorgen, R.

    2013-12-01

    We present a revised model for the infrared emission of the hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first present and discuss a grid of smooth active galactic nucleus (AGN) torus models computed with the method of Efstathiou & Rowan-Robinson and demonstrate that the combination of these models and the starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of Seyfert 2s and spectra of individual type 2 quasars measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the νSν distribution of the galaxy falls very steeply with increasing frequency (a characteristic that is usually indicative of heavy absorption by dust) but shows a silicate feature in emission. Such emission features are not expected in sources with optical/near-infrared type 2 AGN spectral signatures. The Herschel data show that there is more power emitted in the rest-frame 20-50 μm wavelength range compared with the model presented by Efstathiou which assumes three components of emission: an edge-on torus, clouds (at a temperature of 610 and 200 K) that are associated with the narrow-line region (NLR) and a highly obscured starburst that dominates in the submillimetre. We present a revised version of that model that assumes an additional component of emission which we associate with NLR clouds at a temperature of 100 K. The 100 K dust component could also be explained by a highly obscured hot starburst. The model suggests that the NLR of IRAS F10214+4724 has an unusually high covering factor (≥17 per cent) or more likely the magnification of the emission from the NLR clouds is significantly higher than that of the emission from the torus.

  14. Obscuring Fraction of Active Galactic Nuclei: Implications from Radiation-driven Fountain Models

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi

    2015-10-01

    Active galactic nuclei (AGNs) are believed to be obscured by an optical thick “torus” that covers a large fraction of solid angles for the nuclei. However, the physical origin of the tori and the differences in the tori among AGNs are not clear. In a previous paper based on three-dimensional radiation-hydorodynamic calculations, we proposed a physics-based mechanism for the obscuration, called “radiation-driven fountains,” in which the circulation of the gas driven by central radiation naturally forms a thick disk that partially obscures the nuclear emission. Here, we expand this mechanism and conduct a series of simulations to explore how obscuration depends on the properties of AGNs. We found that the obscuring fraction fobs for a given column density toward the AGNs changes depending on both the AGN luminosity and the black hole mass. In particular, fobs for NH ≥ 1022 cm-2 increases from ˜0.2 to ˜0.6 as a function of the X-ray luminosity LX in the LX = 1042-44 erg s-1 range, but fobs becomes small (˜0.4) above a luminosity (˜1045 erg s-1). The behaviors of fobs can be understood by a simple analytic model and provide insight into the redshift evolution of the obscuration. The simulations also show that for a given LAGN, fobs is always smaller (˜0.2-0.3) for a larger column density (NH ≥ 1023 cm-2). We also found cases that more than 70% of the solid angles can be covered by the fountain flows.

  15. DIRECT MEASUREMENT OF THE X-RAY TIME-DELAY TRANSFER FUNCTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Legg, E.; Miller, L.; Turner, T. J.; Giustini, M.; Reeves, J. N.; Kraemer, S. B.

    2012-11-20

    The origin of the observed time lags, in nearby active galactic nuclei (AGNs), between hard and soft X-ray photons is investigated using new XMM-Newton data for the narrow-line Seyfert I galaxy Ark 564 and existing data for 1H 0707-495 and NGC 4051. These AGNs have highly variable X-ray light curves that contain frequent, high peaks of emission. The averaged light curve of the peaks is directly measured from the time series, and it is shown that (1) peaks occur at the same time, within the measurement uncertainties, at all X-ray energies, and (2) there exists a substantial tail of excess emission at hard X-ray energies, which is delayed with respect to the time of the main peak, and is particularly prominent in Ark 564. Observation (1) rules out that the observed lags are caused by Comptonization time delays and disfavors a simple model of propagating fluctuations on the accretion disk. Observation (2) is consistent with time lags caused by Compton-scattering reverberation from material a few thousand light-seconds from the primary X-ray source. The power spectral density and the frequency-dependent phase lags of the peak light curves are consistent with those of the full time series. There is evidence for non-stationarity in the Ark 564 time series in both the Fourier and peaks analyses. A sharp 'negative' lag (variations at hard photon energies lead soft photon energies) observed in Ark 564 appears to be generated by the shape of the hard-band transfer function and does not arise from soft-band reflection of X-rays. These results reinforce the evidence for the existence of X-ray reverberation in type I AGN, which requires that these AGNs are significantly affected by scattering from circumnuclear material a few tens or hundreds of gravitational radii in extent.

  16. Study of Swift/Bat Selected Low-luminosity Active Galactic Nuclei Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Terashima, Yuichi; Mushotzky, Richard

    2016-11-01

    We systematically analyze the broadband (0.5-200 keV) X-ray spectra of hard X-ray (>10 keV) selected local low-luminosity active galactic nuclei (LLAGNs) observed with Suzaku and Swift/BAT. The sample consists of 10 LLAGNs detected with Swift/BAT with intrinsic 14-195 keV luminosities smaller than 1042 erg s-1 available in the Suzaku archive, covering a wide range of the Eddington ratio from 10-5 to 10-2. The overall spectra can be reproduced with an absorbed cut-off power law, often accompanied by reflection components from distant cold matter, and/or optically thin thermal emission from the host galaxy. In all of the objects, relativistic reflection components from the innermost disk are not required. Eight objects show a significant narrow iron-Kα emission line. Comparing their observed equivalent widths with the predictions from the Monte-Carlo-based torus model by Ikeda et al. (2009), we constrain the column density in the equatorial plane to be {log} {N}{{H}}{{eq}}\\gt 22.7, or the torus half-opening angle θ oa < 70°. We infer that the Eddington ratio (λ Edd) is a key parameter that determines the torus structure of LLAGNs: the torus becomes large at λ Edd ≳ 2 × 10-4, whereas at lower accretion rates it is little developed. The luminosity correlation between the hard X-ray and mid-infrared (MIR) bands of the LLAGNs follows the same correlation as for more luminous AGNs. This implies that mechanisms other than AGN-heated dust are responsible for the MIR emission in low Eddington ratio LLAGNs.

  17. The Active Galactic Nuclei Population through the eyes of X-ray surveys

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.

    2015-08-01

    For more than 30 years, X-ray surveys have provided a unique and powerful tool to find and study accreting super- massive black holes (SMBHs) in the distant Universe. In the past decade alone, dozens of surveys in the 0.5-10 keV band with XMM-Newton and Chandra have covered a wide range in area and X-ray flux, corresponding to a similarly wide range in luminosity and redshift. The luminosity function of Active Galactic Nuclei (AGN) has thus been sampled over three decades or more in X-ray luminosity and up to redshifts z=5, defining the evolution of unobscured and obscured (up to column densities of 1023 cm-2) sources and reaching fainter luminosities than optical surveys. The advent of the NuSTAR telescope, with its 3-20 keV energy range, allows us to now complement the "soft" surveys, providing the ability to characterize the whole population, including highly obscured sources.Moreover, the availability of extremely deep multiwavelength data (from radio to UV) for most of the X-ray surveys allows a full understanding of the relationship between the nuclear engine and its host up to very high redshift, not only when the engine is obscured but also when it is bright and shining.In this talk, I will present the XMM-Newton, Chandra and NuSTAR surveys in the 2deg2 of the COSMOS field, focusing on new results from the 4.6 Ms Chandra COSMOS Legacy survey. This new sample includes more than 4000 X-ray detected sources with multiwavelength information, including photometric redshifts for 97% of the sample, and a spectroscopic completeness of 40%. I will present the properties of the detected Chandra sources, in particular those at high redshift, and I will highlight the connection to the NuSTAR detected ones, including the discovery of a new Compton Thick AGN.

  18. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 active galactic nuclei (AGNs) detected in the Chandra Cosmic Evolution Survey. The sample comprises 81 X-ray-detected sources with available spectroscopic (31) and photometric (50) redshifts plus 20 sources with a formal z{sub phot} < 3 but with a broad photometric redshift probability distribution, such that z{sub phot} + 1{sigma} > 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  19. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  20. The INTEGRAL High-energy Cut-off Distribution of Type 1 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-01

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E c of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT e from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  1. Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED

    SciTech Connect

    Gliozzi, M.; Satyapal, S.; Panessa, F.; Franca, F. La; Saviane, I.; Monaco, L.; Foschini, L.; Kedziora-Chudczer, L.; Sambruna, R. M.

    2010-12-20

    Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a {approx}40 ks XMM-Newton observation of Q2122-444 carried out to shed light on the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.

  2. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  3. An X-ray spectral model for clumpy tori in active galactic nuclei

    SciTech Connect

    Liu, Yuan; Li, Xiaobo E-mail: lixb@ihep.ac.cn

    2014-05-20

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N {sub H} = 10{sup 23} cm{sup –2}), whereas it is much more evident in the high column density case (N {sub H} = 10{sup 25} cm{sup –2}). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  4. A Growth-rate Indicator for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Masini, A.; Ballantyne, D. R.; Baloković, M.; Brandt, W. N.; Chen, C.-T.; Comastri, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Ricci, C.; Stern, D.; Walton, D. J.

    2016-07-01

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, λ Edd, and the X-ray power-law index, Γ, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Γ is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Γ values and X-ray luminosities, L X. With a simple bolometric correction to L X to calculate λ Edd, we find a statistically significant correlation between Γ and λ Edd (p = 0.007). A linear fit to the data yields Γ = (0.41 ± 0.18)log10 λ Edd + (2.38 ± 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M BH ≈ 106-107 M ⊙) and are highly inclined, our results extend the Γ-λ Edd relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Γ as a growth-rate indicator for accreting black holes, even for CT AGNs.

  5. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  6. Long-term X-Ray Variability of Typical Active Galactic Nuclei in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Yang, G.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Bauer, F. E.; Sun, M. Y.; Kim, S.; Schulze, S.; Zheng, X. C.; Paolillo, M.; Shemmer, O.; Liu, T.; Schneider, D. P.; Vignali, C.; Vito, F.; Wang, J.-X.

    2016-11-01

    We perform long-term (≈15 years, observed-frame) X-ray variability analyses of the 68 brightest radio-quiet active galactic nuclei (AGNs) in the 6 Ms Chandra Deep Field-South survey; the majority are in the redshift range of 0.6-3.1, providing access to penetrating rest-frame X-rays up to ≈10-30 keV. Of the 68 sources, 24 are optical spectral type I AGNs, and the rest (44) are type II AGNs. The timescales probed in this work are among the longest for X-ray variability studies of distant AGNs. Photometric analyses reveal widespread photon flux variability: 90% of AGNs are variable above a 95% confidence level, including many X-ray obscured AGNs and several optically classified type II quasars. We characterize the intrinsic X-ray luminosity ({L}{{X}}) and absorption ({N}{{H}}) variability via spectral fitting. Most (74%) sources show {L}{{X}} variability; the variability amplitudes are generally smaller for quasars. A Compton-thick candidate AGN shows variability of its high-energy X-ray flux, indicating the size of reflecting material to be ≲0.3 pc. {L}{{X}} variability is also detected in a broad absorption line quasar. The {N}{{H}} variability amplitude for our sample appears to rise as time separation increases. About 16% of sources show {N}{{H}} variability. One source transitions from an X-ray unobscured to obscured state, while its optical classification remains type I; this behavior indicates the X-ray eclipsing material is not large enough to obscure the whole broad-line region.

  7. The systematic search for z ≳ 5 active galactic nuclei in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Urry, C. Megan; Koss, Michael; Trakhtenbrot, Benny

    2015-04-01

    We investigate early black hole (BH) growth through the methodical search for z ≳ 5 active galactic nuclei (AGN) in the Chandra Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1 × 10-18 (soft, 0.5-2 keV) and 5.5 × 10-17 erg s-1 cm-2 (hard, 2-8 keV). At z ˜ 5, this corresponds to luminosities as low as ˜1042 (˜1043) erg s-1 in the soft (hard) band and should allow us to detect Compton-thin AGN with MBH > 107 M⊙ and Eddington ratios >0.1. Our field (0.03 deg2) contains over 600z ˜ 5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ˜20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z ≳ 5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z ≳ 5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenarios.

  8. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  9. On the Anisotropy of Nuclei Mid-Infrared Radiation in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Wang, JunXian; Liu, Teng

    2015-01-01

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  10. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    SciTech Connect

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Salvato, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Sanders, D. B.; Trump, J. R.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L{sub 2-10keV}(erg s{sup -1}) {>=}44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N{sub H} (cm{sup -2}) = 23.5 {+-} 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  11. The Broad-Line Region and Dust Torus Structure of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, Francisco

    2014-06-01

    I present the results from optical and infrared multi-month monitoring campaigns at the Universitätssternwarte Bochum (USB) in Chile to explore the structure of the central engine in active galactic nuclei (AGN). I apply and test photometric reverberation mapping (PRM) for measuring the time delay between variations in the continuum and Hbeta, Halpha emission lines. This time delay is used to infer the size of the broad-line region (BLR) for three Seyfert 1 galaxies. I place the results in context of the known BLR size luminosity relationship from spectroscopic reverberation mapping (SRM) and discuss its potential application to constrain cosmological parameters. The BLR size and the velocity dispersion of the emission line are used to calculate the virial mass of the supermassive black hole (SMBH). Through the direct modelling of PRM data, I infer the geometry type of the BLR allowing the determination of the geometry scaling factor used to constrain the real black hole mass. I find strong evidence for a disk-like BLR geometry. If this result holds for Seyfert galaxies in general, then the determination of the geometry scaling factor and the black hole mass can be remarkably improved. I discuss deviations of Seyfert-1 galaxies from the SMBH-bulge velocity dispersion relation MBH - sigma* for quiescent galaxies. Finally, I perform dust-reverberation mapping to determine the dust-torus size for the Seyfert 1 galaxy WPVS48. The light curves in the optical and near-infrared revealed unexpected variations which allow to solve an old puzzle on the geometry of the dusttorus.

  12. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  13. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  14. Physical Properties Of The Broad Line Region In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ilic, D.; Popovic, L.; Ciroi, S.; Mura, G. L.; Rafanelli, P.

    2010-07-01

    One of the most intriguing objects in the Universe are active galactic nuclei (AGN), being the brightest and the most distant objects. The most accepted scenario of the structure of AGN is the one in which AGN are powered by the accretion of matter from the host galaxy on to super-massive black hole. One of the ways to study the inner emitting region of an AGN, one that is closest to the black hole, is by analyzing its broad emission lines (BELs). These lines originate in the broad line region (BLR), which physics is still not fully understood. In order to probe the physical properties of the emitting plasma in the BLR we analyze the ratios of the following BELs: the hydrogen Balmer lines (Ha to He) and the helium lines from two subsequent ionization levels (He II ?4686 and He I ?5876). We used two samples of the BELs, one obtained from the spectral synthesis photoionization code and the other taken from the Sloan Digital Sky Survey database. We investigate the above BELs in order to find conditions in the BLR where so-called Boltzmann-plot (BP) method might be applicable. For these special cases, we found relations between the average temperature, hydrogen density and He II/He I line ratio. We estimated the physical parameters in the BLR, the average temperature and hydrogen density, to be in the range Tav=5700-18700 K and nH=10^8.2 -10^11.1 cm-3. Moreover, we found relations between the BLR physical parameters and gas velocities, indicating that there should be some connection between the physics and kinematics in the BLR.

  15. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  16. Models of the Optical/Ultraviolet Continuum Polarization in Active Galactic Nuclei: Implications for Unification Schemes

    NASA Astrophysics Data System (ADS)

    Kartje, John F.

    1995-10-01

    I have computed the 1200-8000 A thermal continuum polarization induced by gas and dust arranged in configurations compatible with current active galactic nuclei (AGNs) unification schemes. Both uniform- density tori and stratified-density disk-driven winds were considered. A Monte Carlo radiative transfer code was developed which includes the polarization mechanisms of electron and dust scattering as well as dichroic extinction by aligned grains. A Galactic-type grain population was assumed. Based on these calculations, I propose a new interpretation of many of the observed polarization traits of Seyfert galaxies and QSOs: namely, that the polarization in these sources is induced by the same optically thick material which is assumed to obscure the central engine in unification schemes. In particular, I suggest that stratified-density winds could provide a natural explanation (and one consistent with unification models) of the polarization trends observed in Seyfert galaxies. Such winds can display polarizations (P ≲ 20%) oriented perpendicular to the axis along viewing angles inclined to the axis by θ0 ≳ 45° in well-collimated winds, this polarization shifts to smaller magnitudes (P ≲ 2%) and parallel orientations for more face-on viewing, consistent with the patterns observed in Seyfert 2 and Seyfert 1 sources, respectively. In less-collimated winds, scattering alone tends to produce parallel orientations for all viewing angles; perpendicular polarization at large θ0 can result if there is a high degree of magnetic grain alignment. The simplest torus models (i.e., uniform-density, opaque gas and dust) do not reproduce this flip in polarization position angle. Furthermore, they generally display high polarization magnitudes (P ≳ 10%) along most viewing angles θ0 > θ∞ (where θ is the torus half-opening angle) and negligible polarization along θ0 > θ∞. Unlike previous models for AGN polarization which invoke scattering by optically thin electron

  17. New active galactic nuclei detected in ROSAT All Sky Survey galaxies. II. The complete dataset

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Kotulla, R.; Pietsch, W.; Bischoff, K.; Zetzl, M.

    2008-06-01

    Aims: The ROSAT ALL Sky Survey Bright Source Catalogue (RASS-BSC) has been correlated with the Catalogue of Principal Galaxies (PGC) to identify new extragalactic counterparts. 550 reliable optical counterparts have been detected. However there existed no optical spectra for about 200 Active Galactic Nuclei (AGN) candidates before the ROSAT ALL Sky Survey (RASS) was completed. Methods: We took optical spectra of 176 X-ray candidates and companions at ESO, Calar Alto observatory and McDonald observatory. When necessary we used a line profile decomposition to measure line fluxes, widths and centers to classify their type of activity. Results: We discuss the redshift-, linewidth-, as well as optical and X-ray luminosity distribution of our ROSAT selected sample. 139 galaxies of our 166 X-ray counterparts have been identified as AGN with 93 being Seyfert 1 galaxies (61%). Eighteen of them (20%) are Narrow Line Seyfert 1 galaxies. 34 X-ray candidates (21%) are LINERs and only eight candidates (5%) are Seyfert 2. The ratio of the number of Seyfert 1 galaxies to Seyfert 2 galaxies is about 11/1. Optical surveys result in ratios of 1/1.4. The high fraction of detected Seyfert 1 galaxies is explained by the sensitivity of the ROSAT to soft X-rays which are heavily absorbed in type 2 AGN. Two X-ray candidates are HII-galaxies and 25 candidates (15%) show no signs of spectral activity. The AGN in our RASS selected sample exhibit slightly higher optical luminosities (MB = (-20.71 ± 1.75) mag) and similar X-ray luminosities (log(LX [ erg s-1] ) = 42.9 ± 1.7) compared to other AGN surveys. The Hα line width distribution (FWHM) of our newly identified ROSAT AGN sample is similar to the line widths distribution based on SDSS AGN. However, our newly identified RASS AGN have rather reddish colors explaining why they have not been detected before in ultraviolet or blue excess surveys.

  18. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    SciTech Connect

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post

  19. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  20. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    SciTech Connect

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara; Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn; Kramer, Carsten; Moran, Sean; Heckman, Timothy M.; Schiminovich, David; Schuster, Karl

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  1. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  2. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  3. XMM FOLLOW-UP OBSERVATIONS OF THREE SWIFT BAT-SELECTED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Trippe, M. L.; Reynolds, C. S.; Koss, M.; Mushotzky, R. F.; Winter, L. M.

    2011-08-01

    We present XMM-Newton observations of three active galactic nuclei (AGNs) taken as part of a hunt to find very heavily obscured Compton-thick AGNs. For obscuring columns greater than 10{sup 25} cm{sup -2}, AGNs are only visible at energies below 10 keV via reflected/scattered radiation, characterized by a flat power law. We therefore selected three objects (ESO 417-G006, IRAS 05218-1212, and MCG -01-05-047) from the Swift Burst Alert Telescope (BAT) hard X-ray survey catalog with Swift X-ray Telescope (XRT) 0.5-10 keV spectra with flat power-law indices as candidate Compton-thick sources for follow-up observations with the more sensitive instruments on XMM-Newton. The XMM spectra, however, rule out reflection-dominated models based on the weakness of the observed Fe K{alpha} lines. Instead, the spectra are well fit by a model of a power-law continuum obscured by a Compton-thin absorber plus a soft excess. This result is consistent with previous follow-up observations of two other flat-spectrum BAT-detected AGNs. Thus, out of the six AGNs in the 22 month BAT catalog with apparently flat Swift XRT spectra, all five that have had follow-up observations are not likely Compton thick. We also present new optical spectra of two of these objects, IRAS 05218-1212 and MCG -01-05-047. Interestingly, though both the AGNs have similar X-ray spectra, their optical spectra are completely different, adding evidence against the simplest form of the geometric unified model of AGNs. IRAS 05218-1212 appears in the optical as a Seyfert 1, despite the {approx}8.5 x 10{sup 22} cm{sup -2} line-of-sight absorbing column indicated by its X-ray spectrum. MCG -01-05-047's optical spectrum shows no sign of AGN activity; it appears as a normal galaxy.

  4. A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Eckart, Megan E.; Harrison, Fiona A.; McGreer, Ian D.; Helfand, David J.; Stern, Daniel

    2010-01-01

    We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN 'wedge' selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep ((t{sub exp}) approx 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete

  5. Active galactic nuclei mergers and outflows: Observations from optical and ultraviolet emission lines

    NASA Astrophysics Data System (ADS)

    Barorws, Robert Scott

    I have investigated the nature of a subset of active galactic nuclei (AGN) which show double peaks in their characteristic optical and ultraviolet emission lines. I have performed this investigation through studies of the broad emission line regions (BLRs), which are produced less than 1 pc from the central supermassive black hole (SMBH), and the narrow emission line regions (NLRs), which originate at larger (kpc) distances. The BLR studies consist of detailed line modeling of two individual quasars with double-peaked broad emission line profiles. The modeling suggests there are two primary interpretations of the complex broad line profiles. The first possiblity is line emission from the surface of an asymmetric and/or non-uniform accretion disk of a low-accretion rate AGN; these sources are known as double-peaked emitters and account for only about 3% of the quasar population. The second possibility is line emission from the BLRs of two actively accreting SMBHs in a close (<1 pc) binary system. Such binaries are an inevitable outcome following the merger of two galaxies. The NLR studies consist of three separate projects. The first is an analysis of a candidate AGN pair (dual AGN), with a separation of ~5.5 kpc, in a galaxy at a redshift of z=1.175; this scenario would be the result of a galaxy merger and represent the stage prior to the formation of a binary SMBH. The second is the identification of similar candidate dual AGN sources in a systematic study of quasars at redshifts z=0.8-1.6. The final project analyzes follow-up long-slit spectroscopy of two quasars found through the systematic search which are most likely to host AGN-driven outflows. Overall, the combined results for these NLR studies show that a significant fraction of the double-peaked narrow emission lines are produced by AGN-driven outflows. Furthermore, diagnostics based upon ionization potentials can effectively select sources most likely to possess these outflows, and those which are more

  6. ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES

    SciTech Connect

    Cimatti, A.; Brusa, M.; Talia, M.; Rodighiero, G.; Kurk, J.; Cassata, P.; Halliday, C.; Renzini, A.; Daddi, E.

    2013-12-10

    The relationship between galaxies of intermediate stellar mass and moderate luminosity active galactic nuclei (AGNs) at 1 < z < 3 is investigated with a Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) sample complemented with public data in the GOODS-South field. Using X-ray data, hidden AGNs are identified in unsuspected star-forming galaxies with no apparent signs of non-stellar activity. In the color-mass plane, two parallel trends emerge during the ∼2 Gyr between the average redshifts z ∼ 2.2 and z ∼ 1.3: while the red sequence becomes significantly more populated by ellipticals, the majority of AGNs with L(2-10 keV) > 10{sup 42.3} erg s{sup –1} disappear from the blue cloud/green valley where they were hosted predominantly by star-forming systems with disk and irregular morphologies. These results are even clearer when the rest-frame colors are corrected for dust reddening. At z ∼ 2.2, the ultraviolet spectra of active galaxies (including two Type 1 AGNs) show possible gas outflows with velocities up to about –500 km s{sup –1}, which are observed neither in inactive systems at the same redshift, nor at lower redshifts. Such outflows indicate the presence of gas that can move faster than the escape velocities of active galaxies. These results suggest that feedback from moderately luminous AGNs (log L{sub X} < 44.5 erg s{sup –1}) played a key role at z ≳ 2 by contributing to outflows capable of ejecting part of the interstellar medium and leading to a rapid decrease in star formation in host galaxies with stellar masses 10 < log(M/M{sub ⊙})< 11.

  7. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook; Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon; Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu; Oyabu, Shinki; Ohyama, Youichi E-mail: mim@astro.snu.ac.kr

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  8. UNCOVERING THE DEEPLY EMBEDDED ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE NUCLEAR REGIONS OF THE INTERACTING GALAXY Arp 299

    SciTech Connect

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; Colina, L.; González-Martín, O.; Ramos Almeida, C.; Asensio Ramos, A.; Rodríguez Espinosa, J. M.; Alvarez, C.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Mason, R. E.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-10

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (∼0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 10{sup 44} erg s{sup –1}. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (A{sub V} ∼ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  9. Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.

  10. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  11. A new method to measure the virial factors in the reverberation mapping of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Feng, H. C.; Bai, J. M.

    2017-04-01

    Based on the gravitational red shift, which is a prediction of Einstein's general relativity theory, of broad optical emission lines in active galactic nuclei (AGNs), a new method is proposed to estimate the virial factors f in measuring black hole masses MRM by the reverberation mapping of AGNs. The factors f can be measured based on two physical quantities, i.e. the gravitational red shifts zg and the full widths at half maxima vFWHM of broad lines. In the past, it has been difficult to determine the factors f for individual AGNs. We apply this new method to several reverberation-mapped type 1 Seyfert galaxies. There is a correlation between f and the radius of the broad-line region (BLR) rBLR, f=5.4 r_{BLR}^{0.3}, for the gravitationally red-shifted broad lines He II, He I, Hβ and Hα in the narrow-line type 1 Seyfert galaxy (NLS1) Mrk 110. This correlation results from the influence of the radiation pressure of the accretion disc on the BLR clouds. This influence seems to be more important than usually thought so in AGNs. Mrk 110 has f ≈ 8-16, distinctly larger than the mean ≈ 1 usually used to estimate MRM for vFWHM. NGC 4593 and NLS1 Mrk 486 have f ≈ 3 and f ≈ 9, respectively. Higher f values of several tens are derived for three other NLS1s. There is a correlation between f and accretion rate dot{M}_{f=1}, f=6.8dot{M}^{0.4}_{f=1} for five objects, where dot{M}_{f=1}=dot{M}_{bullet }/L_{Edd}c^{-2} as f = 1 is assumed when estimating MRM used in the Eddington luminosity LEdd, dot{M}_{bullet } is the mass accretion rate, and c is the speed of light. These larger f values will produce higher MRM values and lower Eddington ratios.

  12. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  13. Exploring the Geometry of Circumnuclear Material in Active Galactic Nuclei through X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth

    I have studied the X-ray spectral properties of active galactic nuclei (AGN) in order to gain a better understanding of the nature of the circumnuclear material surrounding the central black hole in these objects. From the RXTE archive I constructed two survey samples of broad band X-ray spectra. The first was a bright sample of 23 AGN that had high quality spectra up to at least 100 keV, which provided constraints on the high energy rollover expected by models of inverse Comptonization of low energy photons. The average lower limit to Eroll was ˜225 keV for the majority of objects, implying a coronal electron temperature of kB Te ≳ 75 keV for these models. The second sample was an expanded survey of ˜100 AGN for which spectral parameters could be well-determined. I compared Fe line equivalent widths with measured Compton reflection hump strengths and found that on average ˜40% of the Fe line emission comes from reflection off Compton-thick material, with the remainder likely arising in isotropic emission from Compton-thin gas. In the full sample, the distributions of photon indices for Seyfert 1's and 2's were consistent with the idea that Seyferts share a common central engine, however the distributions of Compton reflection hump strengths did not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. I have concluded that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. I have performed additional analyses of individual objects. An occultation event in Cen A, discovered through RXTE monitoring, revealed the clumpy nature of its torus and placed constraints on the amount of material in the vicinity of the black hole in this object. A Suzaku long-look observation of MCG-2-58-22 provided constraints on the location of Fe line emitting material to ≳ 1200RS, likely associated

  14. IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    SciTech Connect

    Argüelles, C.A.; Bustamante, M.; Gago, A.M. E-mail: mbustamante@pucp.edu.pe

    2010-12-01

    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers and Tinyakov (KT) and another by Becker and Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10{sup 5} ≤ E{sub ν}/GeV ≤ 10{sup 8}. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γ{sub ν}/Γ{sub CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, z{sub CR}{sup max}. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.

  15. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.

    2016-10-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  16. Effects of Shocks on Emission from Central Engines of Active Galactic Nuclei. I

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Caditz, D.; Tsuruta, S.

    1996-01-01

    In this paper we show that perturbations of the accretion flow within the central engines of some active galactic nuclei (AGNS) are likely to form shock waves in the accreting plasma. Such shocks, which may be either collisional or collisionless, can contribute to the observed high-energy temporal and spectral variability. Our rationale is the following: Observations show that the continuum emission probably originates in an optically thin, hot plasma in the AGN central engine. The flux and spectrum from this hot plasma varies significantly over light crossing timescales. Several authors have suggested that macroscopic perturbations contained within this plasma are the sources of this variability. In order to produce the observed emission the perturbations must be radiatively coupled with the optically thin hot matter and must also move with high velocities. We suggest that shocks, which can be very effective in randomizing the bulk motion of the perturbations, are responsible for this coupling. Shocks should form in the central engine, because the temperatures and magnetic fields are probably reduced below their virial values by radiative dissipation. Perturbations moving at Keplerian speeds, or strong non-linear excitations, result in supersonic and super-Alfvenic velocities leading to shock waves within the hot plasma. We show that even a perturbation smaller than the emitting region can form a shock that significantly modifies the continuum emission in an AGN, and that the spectral and temporal variability from such a shock generally resembles those of radio-quiet AGNS. As an example, the shock inducing perturbation in our model is a small main-sequence star, the capturing and eventual accretion of which are known to be a plausible process. We argue that shocks in the central engine may also provide a natural triggering mechanism for the "cold" component of Guilbert & Rees two-phase medium and an efficient mecha- nism for angular momentum transfer. Current and

  17. An expanded Mbh-σ diagram, and a new calibration of active galactic nuclei masses

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Onken, Christopher A.; Athanassoula, E.; Combes, F.

    2011-04-01

    We present an updated and improved Mbh-σ diagram containing 64 galaxies for which Mbh measurements (not just upper limits) are available. Because of new and increased black hole masses at the high-mass end, and a better representation of barred galaxies at the low-mass end, the 'classical' (all morphological type) Mbh-σ relation for predicting black hole masses is log (Mbh/M⊙) = (8.13 ± 0.05) + (5.13 ± 0.34)log [σ/200 km s-1], with an rms scatter of 0.43 dex. Modifying the regression analysis to correct for a hitherto overlooked sample bias in which black holes with masses <106 M⊙ are not (yet) detectable, the relation steepens further to give log (Mbh/M⊙) = (8.15 ± 0.06) + (5.95 ± 0.44)log [σ/200 km s-1]. We have also updated the 'barless' and 'elliptical-only'Mbh-σ relations introduced by Graham and Hu in 2008 due to the offset nature of barred galaxies. These relations have a total scatter as low as 0.34 dex and currently define the upper envelope of points in the Mbh-σ diagram. They also have a slope consistent with a value 5, in agreement with the prediction by Silk & Rees based on feedback from massive black holes in bulges built by monolithic collapse. Using updated virial products and velocity dispersions from 28 active galactic nuclei, we determine that the optimal scaling factor f- which brings their virial products in line with the 64 directly measured black hole masses - is 2.8+0.7-0.5. This is roughly half the value reported by Onken et al. and Woo et al., and consequently halves the mass estimates of most high-redshift quasars. Given that barred galaxies are, on average, located ˜0.5 dex below the 'barless' and 'elliptical-only'Mbh-σ relations, we have explored the results after separating the samples into barred and non-barred galaxies, and we have also developed a preliminary corrective term to the velocity dispersion based on bar dynamics. In addition, given the recently recognized coexistence of massive black holes and nuclear

  18. DETERMINING THE COVERING FACTOR OF COMPTON-THICK ACTIVE GALACTIC NUCLEI WITH NuSTAR

    SciTech Connect

    Brightman, M.; Baloković, M.; Fuerst, F.; Harrison, F. A.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Hickox, R. C.; Koss, M.; LaMassa, S.; and others

    2015-05-20

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N{sub H} > 1.5 × 10{sup 24} cm{sup −2}) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N{sub H} measured from 10{sup 24} to 10{sup 26} cm{sup −2}, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f{sub c}, is a strongly decreasing function of the intrinsic 2–10 keV luminosity, L{sub X}, where f{sub c} = (−0.41 ± 0.13)log{sub 10}(L{sub X}/erg s{sup −1})+18.31 ± 5.33, across more than two orders of magnitude in L{sub X} (10{sup 41.5}–10{sup 44} erg s{sup −1}). The covering factors measured here agree well with the obscured fraction as a function of L{sub X} as determined by studies of local AGNs with L{sub X} > 10{sup 42.5} erg s{sup −1}.

  19. Active galactic nucleus X-ray variability in the XMM-COSMOS survey

    SciTech Connect

    Lanzuisi, G.; Ponti, G.; Salvato, M.; Brusa, M.; Nandra, P. K.; Merloni, A.; Rosario, D.; Hasinger, G.; Sanders, D.; Cappelluti, N.; Comastri, A.; Gilli, R.; Bongiorno, A.; Lusso, E.; Steinhardt, C.; Silverman, J.; Schramm, M.; Trump, J.; and others

    2014-02-01

    We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measure it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.

  20. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes

    NASA Technical Reports Server (NTRS)

    Konigl, Arieh; Kartje, John F.

    1994-01-01

    Centrifugally driven winds from the surfaces of magnetized accretion disks have been recognized as an attractive mechanism of removing the angular momentum of the accreted matter and of producing the bipolar outflows and jets that are often associated with compact astronomical objects. As previously suggested in the context of young stellar objects, such winds have unique observational manifestations stemming from their highly stratified density and velocity structure and from their exposure to the strong continuum radiation field of the compact object. We have applied this scenario to active galactic nuclei (AGNs) and investigated the properties of hydromagnetic outflows that originate within approximately 10(M(sub 8)) pc of the central 10(exp 8)(M(sub 8)) solar mass black hole. On the basis of our results, we propose that hydromagnetic disk-driven winds may underlie the classification of broad-line and narrow-line AGNs (e.g., the Seyfert 1/Seyfert 2 dichotomy) as well as the apparent dearth of luminous Seyfert 2 galaxies. More generally, we demonstrate that such winds could strongly influence the spectral characteristics of Seyfert galaxies, QSOs, and BL Lac objects (BLOs). In our picture, the torus is identified with the outer regions of the wind where dust uplifted from the disk surfaces by gas-grain collisions is embedded in the outflow. Using an efficient radiative transfer code, we show that the infrared emission of Seyfert galaxies and QSOs can be attributed to the reprocessing of the UV/soft X-ray AGN continuum by the dust in the wind and the disk. We demonstrate that the radiation pressure force flattens the dust distribution in objects with comparatively high (but possibly sub-Eddington) bolometric luminosities, and we propose this as one likely reason for the apparent paucity of narrow-line objects among certain high-luminosity AGNs. Using the XSTAR photoionization code, we show that the inner regions of the wind could naturally account for the warm

  1. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dekel, Avishai; Dickinson, Mark

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of

  2. The Discovery of X-ray Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2013-01-01

    Back in 1974 the UHURU catalog (3U) had been published with many UHGLS - unidentified high galactic latitude sources. Identifications were hampered by the square degree sized error boxes (positional uncertainties). Could these explain the cosmic X-ray background? Could UHGLS be "X-ray galaxies"? Only three active galaxies (AGNs) had been found as X-ray sources: 3C273, Cen A and NGC 4151, while others had upper limits. What was the difference between X-ray and non-X-ray AGNs? It turned out that the slightly better positioning capability and slightly deeper sensitivity of the Ariel V Sky Survey Instrument (SSI), launched in October 1974, were just enough to show that the UHGLS were Seyfert galaxies. And I was lucky enough that I'd joined the Leicester X-ray group and had taken on the UHGLS for my PhD thesis, with Ken Pounds as my supervisor. With the SSI we made a catalog of high latitude sources, the "2A" catalog, including about a dozen known Seyfert galaxies (lowish luminosity nearby AGNs) and, with Mike Penston and Martin Ward, we went on to identify many of them with both newly discovered normal broad emission line AGNs and a few new "narrow emission line galaxies", or NELGs, as we called them. We are now convinced that it is summation of many obscured NELGs that produce the flat spectrum of the X-ray background, and we are still searching for them in Chandra deep surveys and at higher energies with NuSTAR. There was an obvious connection between the X-ray obscuration and the optical reddening, which must lie outside the region emitting the broad optical spectral lines. Andy Lawrence and I, following a clue from Bill Keel, put this together into what we now call the Unified Scheme for AGN structure. This idea of a flattened torus obscuring the inner regions of the AGN was so dramatically confirmed a few years later -- by Ski Antonucci and Joe Miller's discovery of polarized broad emission lines in NGC1068 -- that the precursor papers became irrelevant. But Ariel

  3. A 3.5 mm POLARIMETRIC SURVEY OF RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Agudo, I.; Thum, C.; Wiesemeyer, H.; Krichbaum, T. P. E-mail: thum@iram.f E-mail: tkrichbaum@mpifr-bonn.mpg.d

    2010-07-15

    We present the results from the first large (>100 sources) 3.5 mm polarimetric survey of radio-loud active galactic nuclei (AGNs). This wavelength is favorable within the radio-millimeter range for measuring the intrinsic linearly polarized emission from AGNs, since in general it is only marginally affected by Faraday rotation of the electric vector position angle and depolarization. The I, Q, U, and V Stokes parameter observations were performed with the XPOL polarimeter at the IRAM 30 m Telescope on different observing epochs from 2005 July (when most of the measurements were made) to 2009 October. Our sample consists of 145 flat-radio-spectrum AGNs with declination >-30{sup 0} (J2000.0) and flux density {approx}>1 Jy at {approx}86 GHz, as measured at the IRAM 30 m Telescope from 1978 to 1994. This constraint on the radio spectrum causes our sample to be dominated by blazars, which allows us to conduct new statistical studies on this class of high-luminosity, relativistically beamed emitters. We detect linear and circular polarization (above minimum 3{sigma} levels of {approx}1.5% and {approx}0.3%) for 76% and 6% of the sample, respectively. We find a clear excess in degree of linear polarization detected at 86 GHz with regard to that at 15 GHz by a factor of {approx}2. Over our entire source sample, the luminosity of the jets is anticorrelated with the degree of linear polarization. Consistent with previous findings claiming larger Doppler factors for brighter {gamma}-ray blazars, quasars listed in our sample, and in the Fermi Large Area Telescope Bright Source Catalog (LBAS), show larger luminosities than non-LBAS ones, but our data do not allow us to confirm the same for BL Lac objects. We do not find a clear relation between the linear polarization angle and the jet structural position angle for any source class in our sample. We interpret this as the consequence of a markedly non-axisymmetric character of the 3 mm emitting region in the jets. We find that

  4. The COSMOS Active Galactic Nucleus Spectroscopic Survey. I. XMM-Newton Counterparts

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Chris D.; Elvis, Martin; McCarthy, Patrick J.; Huchra, John P.; Brusa, Marcella; Salvato, Mara; Capak, Peter; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Gabor, Jared; Hao, Heng; Hasinger, Gunther; Jahnke, Knud; Kelly, Brandon C.; Lilly, Simon J.; Schinnerer, Eva; Scoville, Nick Z.; Smolčić, Vernesa

    2009-05-01

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg2 Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f 0.5-10 keV > 8 × 10-16 erg cm-2 s-1 and i + AB < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i + AB < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L 0.5-10 keV > 3 × 1042 erg s-1) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the Magellan Telescope, which is operated by the Carnegie Observatories; and the MMT, operated by the MMT Observatory, a joint venture of the

  5. Iron Kα emission in type-I and type-II active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Ueda, Y.; Paltani, S.; Ichikawa, K.; Gandhi, P.; Awaki, H.

    2014-07-01

    The narrow Fe Kα line is one of the main signatures of the reprocessing of X-ray radiation from the material surrounding supermassive black holes, and it has been found to be omnipresent in the X-ray spectra of active galactic nuclei (AGN). In this work, we study the characteristics of the narrow Fe Kα line in different types of AGN. Using the results of a large Suzaku study, we find that Seyfert 2s have on average lower Fe Kα luminosities than Seyfert 1s for the same 10-50 keV continuum luminosity. Simulating dummy Seyfert 1s and Seyfert 2s populations using physical torus models of X-ray reflected emission, we find that this difference can be explained by means of different average inclination angles with respect to the torus, as predicted by the unified model. Alternative explanations include differences in the intensities of Compton humps, in the photon index distributions or in the average iron abundances. We show that the ratio between the flux of the broad and narrow Fe Kα line in the 6.35-6.45 keV range depends on the torus geometry considered, and is on average <25 per cent and <15 per cent for type-I and type-II AGN, respectively. We find evidence of absorption of the narrow Fe Kα line flux in Compton-thick AGN, which suggests that part of the reflecting material is obscured. We estimate that on average in obscured AGN the reflected radiation from neutral material is seen through a column density which is 1/4 of that absorbing the primary X-ray emission. This should be taken into account in synthesis models of the CXB and when studying the luminosity function of heavily obscured AGN. We detect the first evidence of the X-ray Baldwin effect in Seyfert 2s, with the same slope as that found for Seyfert 1s, which suggests that the mechanism responsible for the decrease of the equivalent width with the continuum luminosity is the same in the two classes of objects.

  6. MOJAVE: Monitoring of jets in active galactic nuclei with VLBA experiments. XI. Spectral distributions

    SciTech Connect

    Hovatta, Talvikki; Aller, Margo F.; Aller, Hugh D.; Clausen-Brown, Eric; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas; Homan, Daniel C.; Lister, Matthew L.

    2014-06-01

    We have obtained milliarcsecond-scale spectral index distributions for a sample of 190 extragalactic radio jets through the Monitoring of Jets in Active Galactic Nuclei with the VLBA Experiments (MOJAVE) project. The sources were observed in 2006 at 8.1, 8.4, 12.1, and 15.4 GHz, and we have determined spectral index maps between 8.1 and 15.4 GHz to study the four-frequency spectrum in individual jet features. We have performed detailed simulations to study the effects of image alignment and (u, v)-plane coverage on the spectral index maps to verify our results. We use the spectral index maps to study the spectral index evolution along the jet and determine the spectral distributions in different locations of the jets. The core spectral indices are on average flat with a mean value of +0.22 ± 0.03 for the sample, while the jet spectrum is in general steep with a mean index of –1.04 ± 0.03. A simple power-law fit is often inadequate for the core regions, as expected if the cores are partially self-absorbed. The overall jet spectrum steepens at a rate of about –0.001 to –0.004 per deprojected parsec when moving further out from the core with flat spectrum radio quasars having significantly steeper spectra (mean –1.09 ± 0.04) than the BL Lac objects (mean –0.80 ± 0.05). However, the spectrum in both types of objects flattens on average by ∼0.2 at the locations of the jet components indicating particle acceleration or density enhancements along the jet. The mean spectral index at the component locations of –0.81 ± 0.02 corresponds to a power-law index of ∼2.6 for the electron energy distribution. We find a significant trend that jet components with linear polarization parallel to the jet (magnetic field perpendicular to the jet) have flatter spectra, as expected for transverse shocks. Compared to quasars, BL Lacs have more jet components with perpendicular magnetic field alignment, which may explain their generally flatter spectra. The overall

  7. Ensemble X-ray variability of active galactic nuclei. II. Excess variance and updated structure function

    NASA Astrophysics Data System (ADS)

    Vagnetti, F.; Middei, R.; Antonucci, M.; Paolillo, M.; Serafinelli, R.

    2016-09-01

    Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims: We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ~0.1 and ~5, and X-ray luminosities in the 0.5-4.5 keV band between ~1042 erg/s and ~1047 erg/s. Methods: We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results: We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ LX-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν-0.15, corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (≲15%) shift upwards (V-correction). Conclusions: Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent

  8. A multi-frequency study of an X ray selected sample of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Grossan, Bruce Alan

    1992-01-01

    The LASS (Large Area Sky Survey) experiment, which flew aboard the HEAO-1 spacecraft, carried out a 2-20 keV survey of the sky during 1977-1978. The X-ray sources from this survey make up the LASS catalog (Wood et al. 1979). Optical counterparts have been identified for greater than 86 percent of the LASS sources above a flux of approx. 0.95 microns (mu)Jy Q 5 keV (Remillard 1992b). The LASS error boxes, along with the more precise positions from the Modulation Collimator (MC) X-ray experiment (also aboard HEAO-1), subsequent X-ray imaging, and optical search techniques were all used to identify the LASS sources. From these identifications, a high-latitude (absolute value of b greater than 20 deg.), flux limited (greater than or equal to 0.95 (mu)Jy) sample of 96 emission line Active Galactic Nuclei (AGN) have been selected for study. The sample is referred to as the LMA (for the LASS/MC identified sample of AGN). The objective of this work is to produce multi-frequency spectra of this sample of objects, in order to determine and interpret the statistical properties of the sample over nearly the full range of observable wavelengths. Data were obtained for as much of the radio through hard X-ray (less than 20 keV) spectrum as possible for each object in the LMA. Radio, near infrared, and other measurements were taken from the literature, far IR fluxes were extracted from co-added observations from IRAS, UV spectra were obtained from the IUE archives, and original observations were performed (with the help of collaborators) in the radio, near IR, optical, UV, and X-ray to fulfill this goal. Correlation studies of the continuum bands found poor correlations of X-ray and radio flux, good correlations for 12 and 26 micron flux with X-ray flux, excellent correlations for optical and near IR fluxes with X-rays, and poor correlations of UV and X-ray fluxes. Correlation studies of the line and X-ray continuum flux yield a good correlation between the flux of (OIII), the

  9. INDICATORS OF INTRINSIC ACTIVE GALACTIC NUCLEUS LUMINOSITY: A MULTI-WAVELENGTH APPROACH

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, Tim M.; Sonnentrucker, Paule; Ptak, Andrew; Martins, Lucimara; Wild, Vivienne

    2010-09-01

    Active galactic nuclei (AGNs) consist of an accretion disk around a supermassive black hole which in turn is surrounded by an obscuring torus of dust and gas. As the resulting geometry of this system affects the observable properties, quantifying isotropic indicators of intrinsic AGN luminosity is important in selecting unbiased samples of AGNs. In this paper, we consider five such proxies: the luminosities of the [O III]{lambda}5007 line, the [O IV]25.89 {mu}m line, the mid-infrared (MIR) continuum emission by the torus, and the radio and hard X-ray (E > 10 keV) continuum emission. We compare these different proxies using two complete samples of low-redshift Type 2 AGNs selected in a homogeneous way based on different indicators: an optically selected [O III] sample and an MIR-selected 12 {mu}m sample. To assess the relative merits of these proxies, we have undertaken two analyses. First, we examine the correlations between all five different proxies, and find better agreement for the [O IV], MIR, and [O III] luminosities than for the hard X-ray and radio luminosities. Next, we compare the ratios of the fluxes of the different proxies to their values in unobscured Type 1 AGNs. The agreement is best for the ratio of the [O IV] and MIR fluxes, while the ratios of the hard X-ray to [O III], [O IV], and MIR fluxes are systematically low by about an order of magnitude in the Type 2 AGNs, indicating that hard X-ray-selected samples do not represent the full Type 2 AGN population. In a similar spirit, we compare different optical and MIR diagnostics of the relative energetic contributions of AGN and star formation processes in our samples of Type 2 AGNs. We find good agreement between the various diagnostic parameters, such as the equivalent width of the MIR polycyclic aromatic hydrocarbon features, the ratio of the MIR [O IV]/[Ne II] emission lines, the spectral index of the MIR continuum, and the commonly used optical emission-line ratios. Finally, we test whether the

  10. THE 2MASS REDSHIFT SURVEY-DESCRIPTION AND DATA RELEASE

    SciTech Connect

    Huchra, John P.; Berlind, Perry; Calkins, Michael; Falco, Emilio; Mink, Jessica D.; Tokarz, Susan; Macri, Lucas M.; Masters, Karen L.; Jarrett, Thomas H.; Crook, Aidan C.; Cutri, Roc; Erdogdu, Pirin; Lahav, Ofer; George, Teddy; Hutcheson, Conrad M.; Mader, Jeff; Martimbeau, Nathalie; Schneider, Stephen; Skrutskie, Michael; Westover, Michael E-mail: karen.masters@port.ac.uk

    2012-04-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K{sub s} {<=} 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5 Degree-Sign for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K{sub s} {<=} 11.75 mag and |b| {>=} 5 Degree-Sign ({>=}8 Degree-Sign toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h{sup -1} Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K{sub s} {<=} 11.25 mag and |b| {>=} 10 Degree-Sign .

  11. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger; Scott, Douglas; Magnelli, Benjamin; Popesso, Paola; Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan; Dannerbauer, Helmut; Dickinson, Mark; Kartaltepe, Jeyhan; Magdis, Georgios

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  12. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  13. A search of new samples of active galactic nuclei with low-mass black holes from SDSS

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yuan, W.; Zhou, H.; Dong, X.-B.

    2016-02-01

    We report on the progress of our on-going work to search for low-mass black holes (LMBHs) in active galactic nuclei. The masses of black holes are estimated using the broad line width and luminosity obtained from one-epoch optical spectra. As the first step, we fitted the spectra of 1263 objects in the quasar catalog of the SDSS DR10 and obtained accurate measurement of the emission lines. Two AGNs are found to have M BH ~ 106 M⊙. The next step is to analyze the spectra of the DR10 galaxy sample, from which a much larger sample of low-mass AGNs is expected to be obtained.

  14. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter; Sternberg, Amiel; Gnat, Orly; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Shapiro Griffin, Kristen; Hicks, Erin K. S.; and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  15. Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Nicholas Andrew

    The large-scale structure (LSS) of the universe provides scientists with one of the best laboratories for studying Lambda Cold Dark Matter (LambdaCDM) cosmology. Especially at high redshift, we see increased rates of galaxy cluster and galaxy merging in LSS relative to the field, which is useful for studying the hierarchical merging predicted by LambdaCDM. The largest identified bound structures, superclusters, have not yet virialized. Despite the wide range of dynamical states of their constituent galaxies, groups, and clusters, they are all still actively evolving, providing an ideal laboratory in which to study cluster and galaxy evolution. In this dissertation, I present original research on several aspects of LSS and LambdaCDM cosmology. Three separate studies are included, each one focusing on a different aspect. In the first study, we use X-ray and optical observations from nine galaxy clusters at high redshift, some embedded in larger structures and some isolated, to study their evolutionary states. We extract X-ray gas temperatures and luminosities as well as optical velocity dispersions. These cluster properties are compared using low-redshift scaling relations. In addition, we employ several tests of substructure, using velocity histograms, Dressler-Shectman tests, and centroiding offsets. We conclude that two clusters out of our sample are most likely unrelaxed, and find support for deviations from self-similarity in the redshift evolution of the Lx-T relation. Our numerous complementary tests of the evolutionary state of clusters suggest potential under-estimations of systematic error in studies employing only a single such test. In the second study, we use multi-band imaging and spectroscopy to study active galactic nuclei (AGN) in high-redshift LSS. The AGN were identified using X-ray imaging and matched to optical catalogs that contained spectroscopic redshifts to identify members of the structures. AGN host galaxies tended to be associated with the

  16. Emission-line diagnostics for the existence of thermal accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1988-01-01

    The use of the relative strengths of optical and UV emission lines to infer information about the EUV continuum shape is demonstrated. The FeII/H-beta line ratio is strongly dependent on spectral shape, making it a good indicator of the UV spectrum. It is shown how the gravitational influence of a massive black hole may be seen in the nature of gas streaming motions and the orbits of gas clouds in the region where the black hole potential is comparable to the stellar galactic potential.

  17. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  18. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  19. Unifying Spectral and Timing Studies of Relativistic Reflection in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    X-ray observations of active galactic nuclei (AGN) contain a wealth of information relevant for understanding the structure of AGN, the process of accretion, and the gravitational physics of supermassive black holes. A particularly exciting development over the past four years has been the discovery and subsequent characterization of time delays between variability of the X-ray power-law continuum and the inner disk reflection spectrum including the broad iron line. The fact that the broad iron line shows this echo, or reverberation, in XMM-Newton, Suzaku and NuSTAR data is a strong confirmation of the disk reflection paradigm and has already been used to place constraints on the extent and geometry of the X-ray corona. However, current studies of AGN X-ray variability, including broad iron line reverberation, are only scratching the surface of the available data. At the present time, essentially all studies conduct temporal analyzes in a manner that is largely divorced from detailed spectroscopy - consistency between timing results (e.g., conclusions regarding the location of the primary X-ray source) and detailed spectral fits is examined after the fact. We propose to develop and apply new analysis tools for conducting a truly unified spectraltiming analysis of the X-ray properties of AGN. Operationally, this can be thought of as spectral fitting except with additional parameters that are accessing the temporal properties of the dataset. Our first set of tools will be based on Fourier techniques (via the construction and fitting of the energy- and frequency-dependent cross-spectrum) and most readily applicable to long observations of AGN with XMM-Newton. Later, we shall develop more general schemes (of a more Bayesian nature) that can operate on irregularly sampled data or quasi-simultaneous data from multiple instruments. These shall be applied to the long joint XMM-Newton/NuSTAR and Suzaku/NuSTAR AGN campaigns as well as Swift monitoring campaigns. Another

  20. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  1. Multi-wavelength polarimetric studies of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Casadio, Carolina

    This Thesis is focussed on the study of relativistic jets, commonly present in multiple astrophysical sites, from active galactic nuclei (AGN), to micro- quasars or gamma-ray bursts (GRBs). In the case of AGN, huge amounts of energy across the whole electromagnetic spectrum are released as a conse- quence of the accretion of material onto a supermassive back hole (SMBH) lurking at their centers. The accretion leads to the formation of a pair of very powerful and highly collimated jets extending far beyond the size of the host galaxy. We analyzed the correlation between the multi-wavelength emission and the radio jet in three powerful AGN, the radio galaxies 3C 120 and M 87, and the quasar CTA 102. The main goal of this Thesis is to obtain a better understanding of the jet dynamics and the role played by the magnetic field, and to determine what are the sites and mechanisms for the production of the γ-ray emission observed in these sources. We have performed multi-wavelength studies of the radio galaxy 3C 120 and the blazar CTA 102 during unprecedented γ-ray flares for both sources. The NASA satellite Fermi registered in September-October 2012 a bright γ-ray flare in CTA 102, and between December 2012 and October 2014 a prolonged γ-ray activity in the radio galaxy 3C 120. In both studies, to determine where the γ-ray emission is produced, the analysis of Fermi data has been compared with a detailed study of the morphology and evolution of the parsec scale jet through a series of extremely-high angular resolution Very Long Baseline Array (VLBA) images at 43 GHz from the Boston University blazar monitoring program, in which our research group is actively participating. In the case of 3C 120 we have also collected 15 GHz VLBA data from the MOJAVE monitoring program, extending our study of the radio jet from June 2008 to May 2014. For the study of CTA 102 a total of 80 VLBA images at 43 GHz have been analyzed and compared with observations across the whole

  2. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  3. A Closer View of the Radio-FIR Correlation: Disentangling the Contributions of Star Formation and Active Galactic Nucleus Activity

    NASA Astrophysics Data System (ADS)

    Morić, I.; Smolčić, V.; Kimball, A.; Riechers, D. A.; Ivezić, Ž.; Scoville, N.

    2010-11-01

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F 1.4 GHz >~ 2.5 mJy) selected sample, matched to the SDSS spectroscopic ("main" galaxy and quasar) catalogs and IRAS data (0.04 < z <~ 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars. Based on observations with the National Radio Astronomy

  4. Physical Properties, Star Formation, and Active Galactic Nucleus Activity in Balmer Break Galaxies at 0 < z < 1

    NASA Astrophysics Data System (ADS)

    Díaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Hanami, H.; Yoshikawa, T.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density (ΣSFR) and stellar mass surface density per time unit (\\Sigma _{M_{\\ast }/\\tau }) as a function of redshift was investigated using the [O II] λ3727, 3729, Hα λ6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder galaxies and for a given

  5. SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE

    SciTech Connect

    Elvis, M.; Hao, H.; Civano, F.; Brusa, M.; Salvato, M.; Bongiorno, A.; Cappelluti, N.; Capak, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Jahnke, K.; Lusso, E.; Cisternas, M.; Mainieri, V.; Trump, J. R.; Ho, L. C.; Aussel, H.; Frayer, D.; Hasinger, G. E-mail: hhao@cfa.harvard.edu; and others

    2012-11-01

    The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.

  6. Magnetically elevated accretion discs in active galactic nuclei: broad emission-line regions and associated star formation

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Silk, Joseph

    2017-01-01

    We propose that the accretion discs fueling active galactic nuclei (AGN) are supported vertically against gravity by a strong toroidal (φ-direction) magnetic field that develops naturally as the result of an accretion disc dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ≳ 0.1R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disc model leads naturally to the formation of a broad emission-line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disc models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disc models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission-line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disc of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ≳ 0.1 of the Eddington limit.

  7. Regional and temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere circulation

    NASA Astrophysics Data System (ADS)

    Veretenenko, S.; Ogurtsov, M.

    2012-02-01

    In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.

  8. High Energy Gamma Rays and Neutrinos from Star-forming Activities in the Galactic and Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur

    2017-01-01

    The origin of the IceCube astrophysical neutrinos is an outstanding question. Star-forming activities which can accelerate particles to very high energies have been suggested as possible origin of these neutrinos. I will present a scenario where a subset of the neutrino events originate from the Galactic center region and Fermi Bubbles, resulting from star-forming activities. Multi-messenger signal in high energy gamma rays and neutrinos can probe this scenario. I will also present an analysis of the statistical association of the star-forming sources in our Galaxy and outside, with astrophysical neutrinos, as well as expected neutrino signal from these sources by fitting gamma-ray data.

  9. The ultraviolet emission properties of five low-redshift active galactic nuclei at high signal-to-noise ratio and spectral resolution

    NASA Technical Reports Server (NTRS)

    Laor, Ari; Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Green, Richard F.; Hartig, George F.

    1994-01-01

    We analyze the ultraviolet (UV) emission line and continuum properties of five low-redshift active galactic nuclei (four luminous quasars: PKS 0405-123, H1821 + 643, PG 0953 + 414, and 3C 273, and one bright Seyfert 1 galaxy: Mrk 205). The HST spectra have higher signal-to-noise ratios (typically approximately 60 per resolution element) and spectral resolution (R = 1300) than all previously published UV spectra used to study the emission characteristics of active galactic nuclei. We include in the analysis ground-based optical spectra covering H beta and the narrow (O III) lambda lambda 4959, 5007 doublet. New results are obtained and presented.

  10. Observation of Weak Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at z ~1

    NASA Astrophysics Data System (ADS)

    Yesuf, Hassen; David C. Koo, S. M. Faber, J. Xavier Prochaska, Yicheng Guo, F. S. Liu, Emily C. Cunningham, Alison L. Coil, Puragra Guhathakurta

    2017-01-01

    A key physical manifestation of active galactic nuclei (AGN) feedback is predicted to be powerful galactic winds. However, the relative roles between AGN activity and star formation in driving such winds remain largely unexplored at high redshifts, near the peak of cosmic activity for both. We study winds in 12 X-ray AGN host galaxies at z ~ 1 in the CANDELS fields using deep Keck rest-frame UV spectroscopy. We find, using the low-ionization Fe II 2586 absorption in the stacked spectra, that the AGN show a median centroid velocity shift of -137 km/s and a median velocity dispersion of 103 km/ s. The centroid velocity and the velocity dispersions are obtained from a two component (ISM+wind) absorption line model. For comparison, a star-forming and X-ray undetected galaxies at a similar redshift, matched roughly in stellar mass and galaxy inclination, show the outflows to have a median centroid velocity of -135 km/s and a median velocity dispersion of 140 km/s. Thus, winds in the AGN are similar in velocities to those found in star-formation-driven winds, and are weak to escape and expel substantial cool gas from galaxies. A joint reanalysis of the z ~ 0.5 AGN sample and our sample yields a centroid velocity of -139 (+48, -87) km/s and a velocity dispersion of 82 (+47,-37) km/s. For the combined sample, about half the total equivalent width of the Fe II 2586 absorption is due to the wind. We do not observe winds with bulk velocities greater than 500 km/s predicted by some AGN feedback models.

  11. DISCOVERY OF CANDIDATE H{sub 2}O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    SciTech Connect

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti; Kondratko, Paul T.

    2009-12-10

    Based on spectroscopic signatures, about one-third of known H{sub 2}O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v {sub sys} < 20, 000 km s{sup -1}). The remaining three disk maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s{sup -1}. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10{sup 7} M {sub sun}) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s{sup -1} galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not

  12. Search for Gamma-ray-emitting Active Galactic Nuclei in the Fermi-LAT Unassociated Sample Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Doert, M.; Errando, M.

    2014-02-01

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.

  13. Search for gamma-ray-emitting active galactic nuclei in the Fermi-LAT unassociated sample using machine learning

    SciTech Connect

    Doert, M.; Errando, M. E-mail: errando@astro.columbia.edu

    2014-02-10

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.

  14. NEW CLASS OF VERY HIGH ENERGY {gamma}-RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Kino, Motoki; Kawakatu, Nozomu; Orienti, Monica

    2013-02-20

    We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobe and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.

  15. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry I : MontAGN - STOKES comparison

    NASA Astrophysics Data System (ADS)

    Grosset, L.; Marin, F.; Gratadour, D.; Goosmann, R.; Rouan, D.; Clénet, Y.; Pelat, D.; Rojas Lobos, P. A.

    2016-12-01

    In this first research note of a series of two, we present a comparison between two Monte Carlo radiative transfer codes: MontAGN and STOKES. Both were developed in order to better understand the observed polarisation of Active Galactic Nuclei (AGN). Our final aim is to use these radiative transfer codes to simulate the polarisation maps of a prototypical type-2 radio-quiet AGN on a wide range of wavelengths, from the infrared band with MontAGN to the X-ray energies with STOKES. Doing so, we aim to analyse in depth the recent SPHERE/IRDIS polarimetric observations conducted on NGC 1068. In order to validate the codes and obtain preliminary results, we set for both codes a common and simple AGN model, and compared their polaro-imaging results.

  16. The effect of anisotropic emission from thick accretion disks on the luminosity functions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Marziani, P.; Calvani, M.

    1991-01-01

    High-luminosity active galactic nuclei (AGNs) powered by accretion onto a massive black hole (or other compact object) may have bolometric luminosities dominated by thermal emission from a geometrically thick accretion disk. Radiation from these disks is strongly anisotropic, which has important consequences for the observed luminosity distribution, and therefore for systematic biases in flux-limited samples. The effect of anisotropic emission from an ensemble of AGNs with random oriented thick disks radiating at or near the Eddington limit is calculated. Because of their higher luminosities, it is predicted face-on disks should constitute an increasing fraction of observed high-redshift, high-luminosity AGNs. Comparison of the results with observed quasar luminosity functions suggests a narrow mass distribution with an upper limit of about a billion solar masses for high-redshift quasars.

  17. The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei

    SciTech Connect

    EL-Labany, S. K.; Khedr, D. M.; El-Shamy, E. F.; Sabry, R.

    2013-01-15

    In the present research paper, the effect of bounded nonplanar (cylindrical and spherical) geometry on the interaction between two nonplanar electrostatic solitary waves (NESWs) in electron-positron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain nonplanar phase shifts after the interaction of the two NESWs. This study is a first attempt to investigate nonplanar phase shifts and trajectories for NESWs in a two-fluid plasma (a pair-plasma) consisting of electrons and positrons, as well as immobile background positive ions in nonplanar geometry. The change of phase shifts and trajectories for NESWs due to the effect of cylindrical geometry, spherical geometry, the physical processes (either isothermal or adiabatic), and the positions of two NESWs are discussed. The present investigation may be beneficial to understand the interaction between two NESWs that may occur in active galactic nuclei.

  18. Active galactic nuclei — the physics of individual sources and the cosmic history of formation and evolution

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Treister, Ezequiel

    2013-12-01

    In this paper we give a brief review of the astrophysics of active galactic nuclei (AGNs). After a general introduction motivating the study of AGNs, we discuss our present understanding of the inner workings of the central engines, most likely accreting black holes with masses between 106 and 1010 M ⊙. We highlight recent results concerning the jets (collimated outflows) of AGNs derived from X-ray observations (Chandra) of kpc-scale jets and γ-ray observations of AGNs (Fermi, Cherenkov telescopes) with jets closely aligned with the lines of sight (blazars), and discuss the interpretation of these observations. Subsequently, we summarize our knowledge about the cosmic history of AGN formation and evolution. We conclude with a description of upcoming observational opportunities.

  19. Polycyclic Aromatic Hydrocarbons in Galaxies at z ~ 0.1: The Effect of Star Formation and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 μm-to-11.3 μm feature ratio, are strongly correlated with the star formation diagnostics Dn (4000) and Hα equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 μm emission. A hard radiation field as measured by [O III]/Hβ and [Ne III]_{15.6 μm}/[Ne II]_{12.8 μm} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  20. POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES AT z approx 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 mum-to-11.3 mum feature ratio, are strongly correlated with the star formation diagnostics D{sub n} (4000) and Halpha equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 mum emission. A hard radiation field as measured by [O{sub III}]/Hbeta and [Ne{sub III}]{sub 15.6m}u{sub m}/[Ne{sub II}]{sub 12.8m}u{sub m} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  1. Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke

    2017-01-01

    By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.

  2. SDSS J14584479+3720215: A BENCHMARK JHK{sub S} BLAZAR LIGHT CURVE FROM THE 2MASS CALIBRATION SCANS

    SciTech Connect

    Davenport, James R. A.; Ruan, John J.; Becker, Andrew C.; Macleod, Chelsea L.; Cutri, Roc M.

    2015-04-10

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR (NIR) variability of the most luminous AGNs, we conduct a search for variability using well sampled JHK{sub s}-band light curves from the Two Micron All Sky Survey (2MASS) calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSS J14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for active galactic nucleus (AGN) candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only seven candidates. All seven were young stellar objects within the ρ Ophiuchus star forming region, five with previous X-ray detections. A significant γ-ray detection (5σ) for the known blazar using 4.5 yr of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSS J14584479+3720215, can be used as an efficient method of identifying previously unidentified γ-ray blazars, with low contamination from other AGNs.

  3. Peculiar objects towards 3FGL J0133.3+5930: an eclipsing Be star and an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Paredes, Josep M.; Iwasawa, Kazushi; Galindo, Daniel; Ribó, Marc; Marín-Felip, Víctor

    2017-02-01

    Aims: We aim to contribute to the identification of unassociated gamma-ray sources in the galactic plane to enlarge the currently known population of gamma-ray binaries and related systems, such as radio-emitting X-ray binaries and microquasars. These objects are currently regarded as excellent test beds for the understanding of high-energy phenomena in stellar systems. Methods: Potential targets of study are selected based on cross-identification of the third Fermi Large Area Telescope catalogue with historical catalogues of luminous stars that have often been found as optical counterparts in known cases. Follow-up observations and analysis of multi-wavelength archival data are later used to seek further proofs of association beyond the simple positional agreement. Results: Current results enable us to present here the case of the Fermi source 3FGL J0133.3+5930 where two peculiar objects have been discovered inside its region of uncertainty. One of them is the star TYC 3683-985-1 (LS I +59 79) whose eclipsing binary nature is reported in this work. The other is the X-ray source Swift J0132.9+5932, which we found to be a likely low-power active galactic nucleus at z = 0.1143 ± 0.0002. If this second object is of blazar type, it could easily account for the observed gamma-ray photon flux. However, this is not confirmed at present, thus rendering the star system TYC 3683-985-1 as a still possible alternative counterpart candidate to the Fermi source.

  4. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    SciTech Connect

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  5. Optical Counterparts of Undetermined Type γ-Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    La Mura, Giovanni; Chiaro, Graziano; Ciroi, Stefano; Rafanelli, Piero; Salvetti, David; Berton, Marco; Cracco, Valentina

    2015-12-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 γ-ray sources above a 4 σ significance level. Although most of the extra-galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (˜30%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN γ-ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet, which, in the case of blazars, is oriented very close to our line-of-sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with γ-rays, providing a much better source localization potential, we focused our attention on a sample of γ-ray Blazar Candidates of Undetermined type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to γ-ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which γ-ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. Here we report on the instruments and techniques used to identify the optical counterparts of γ-ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of γ-ray emitting AGNs.

  6. A CHANDRA STUDY OF THE RADIO GALAXY NGC 326: WINGS, OUTBURST HISTORY, AND ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Hodges-Kluck, Edmund J.; Reynolds, Christopher S.

    2012-02-20

    NGC 326 is one of the most prominent 'X'- or 'Z'-shaped radio galaxies (XRGs/ZRGs) and has been the subject of several studies attempting to explain its morphology through either fluid motions or reorientation of the jet axis. We examine a 100 ks Chandra X-Ray Observatory exposure and find several features associated with the radio galaxy: a high-temperature front that may indicate a shock, high-temperature knots around the rim of the radio emission, and a cavity associated with the eastern wing of the radio galaxy. A reasonable interpretation of these features in light of the radio data allows us to reconstruct the history of the active galactic nucleus (AGN) outbursts. The active outburst was likely once a powerful radio source which has since decayed, and circumstantial evidence favors reorientation as the means to produce the wings. Because of the obvious interaction between the radio galaxy and the intracluster medium and the wide separation between the active lobes and wings, we conclude that XRGs are excellent sources in which to study AGN feedback in galaxy groups by measuring the heating rates associated with both active and passive heating mechanisms.

  7. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    SciTech Connect

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized

  8. Dynamo Dominated Accretion and Energy Flow: The Mechanism of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.; Li, H.

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. We suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. We believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-α clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. We believe we have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described here are: 1) the Rossby vortex mechanism of the accretion disk viscosity, and 2) the mechanism of the α - Ω dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the α - Ω dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity. The predicted form of the emission of both the flux and the magnetic energy density is a force-free magnetic helix extending axially from the disk a distance depending upon its winding number and radius of its flux surfaces, a distance of Mpc's. This

  9. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or

  10. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    SciTech Connect

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  11. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  12. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  13. HARD X-RAY LAGS IN ACTIVE GALACTIC NUCLEI: TESTING THE DISTANT REVERBERATION HYPOTHESIS WITH NGC 6814

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Zoghbi, A.; Reynolds, C. S.; Cackett, E. M.; Uttley, P.; Fabian, A. C.; Kara, E.; Miller, J. M.; Reis, R. C.

    2013-11-10

    We present an X-ray spectral and temporal analysis of the variable active galaxy NGC 6814, observed with Suzaku during 2011 November. Remarkably, the X-ray spectrum shows no evidence for the soft excess commonly observed amongst other active galaxies, despite its relatively low level of obscuration, and is dominated across the whole Suzaku bandpass by the intrinsic powerlaw-like continuum. Despite this, we clearly detect the presence of a low-frequency hard lag of ∼1600 s between the 0.5-2.0 and 2.0-5.0 keV energy bands at greater than 6σ significance, similar to those reported in the literature for a variety of other active galactic nuclei (AGNs). At these energies, any additional emission from, e.g., a very weak, undetected soft excess, or from distant reflection must contribute less than 3% of the observed countrates (at 90% confidence). Given the lack of any significant continuum emission component other than the powerlaw, we can rule out models that invoke distant reprocessing for the observed lag behavior, which must instead be associated with this continuum emission. These results are fully consistent with a propagating fluctuation origin for the low-frequency hard lags, and with the interpretation of the high-frequency soft lags—a common feature seen in the highest quality AGN data with strong soft excesses—as reverberation from the inner accretion disk.

  14. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  15. A possible influence on standard model of quasars and active galactic nuclei in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-He; Liu, Jing-Jing; Chou, Chi-Kang

    2016-12-01

    Recent observational evidence indicates that the center of our Milky Way galaxy harbors a super-massive object with ultra-strong radial magnetic field (Eatough et al. in Nature 591:391, 2013). Here we demonstrate that the radiations observed in the vicinity of the Galactic Center (GC) (Falcke and Marko in arXiv:1311.1841v1, 2013) cannot be emitted by the gas of the accretion disk since the accreting plasma is prevented from approaching to the GC by the abnormally strong radial magnetic field. These fields obstruct the infalling accretion flow from the inner region of the disk and the central massive black hole in the standard model. It is expected that the observed radiations near the GC can not be generated by the central black hole. We also demonstrate that the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013) can not be generated by the generalized α-turbulence type dynamo mechanism since preliminary qualitative estimate in terms of this mechanism gives a magnetic field strength six orders of magnitude smaller than the observed field strength at r=0.12 pc. However, both these difficulties or the dilemma of the standard model can be overcome if the central black hole in the standard model is replaced by a model of a super-massive star with magnetic monopoles (SMSMM) (Peng and Chou in Astrophys. J. Lett. 551:23, 2001). Five predictions about the GC have been proposed in the SMSMM model. Especially, three of them are quantitatively consistent with the observations. They are: (1) Plenty of positrons are produced, the production rate is 6×10^{42} e+ s^{-1} or so, this prediction is confirmed by the observation (Kn ödlseder et al. 2003); (2) The lower limit of the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013), is just good agreement with the predicted estimated radial magnetic field from the SMSMM model, which really is an exclusive and a key prediction; (3) The

  16. Radiation environment due to galactic and solar cosmic rays during manned mission to Mars in the periods between maximum and minimum solar activity cycles.

    PubMed

    Pissarenko, N F

    1994-10-01

    A possibility of a manned mission to Mars without exceeding the current radiation standards is very doubtful during the periods of minimum solar activity since the dose equivalent due to galactic cosmic rays exceeds currently recommended standards even inside a radiation shelter with an equivalent of 30 g cm-2 aluminum. The radiation situation at the time of maximum solar activity is determined by the occurrence of major solar proton events which are exceedingly difficult to forecast. This paper discusses the radiation environment during a manned mission to Mars in the years between minimum and maximum solar activity when the galactic cosmic ray intensity is considerably reduced, but the solar flare activity has not yet maximized.

  17. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  18. INEFFICIENT DRIVING OF BULK TURBULENCE BY ACTIVE GALACTIC NUCLEI IN A HYDRODYNAMIC MODEL OF THE INTRACLUSTER MEDIUM

    SciTech Connect

    Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A.

    2015-12-10

    Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.

  19. Searching for Short Term Variable Active Galactic Nuclei: A Vital Step Towards Using AGN as Standard Candles

    NASA Astrophysics Data System (ADS)

    Kilts, Kelly; Gorjian, Varoujan; Rutherford, Thomas; Kohrs, Russell; Urbanowski, Vincent; Bellusci, Nina; Horton, Savannah; Jones, Dana; Jones, Kaytlyn; Pawelski, Peter; Tranum, Haley; Zhang, Emily

    2017-01-01

    Current models for accretion disk sizes of active galactic nuclei (AGN) do not match the limited observational data available, so there is an active need from the modeling community for many more accretion disk/dusty torus reverberation mapping campaigns with which to better calibrate models. Since short term variable AGN can be more easily monitored for reverberation mapping than long term variable AGN, they can begin to provide data more quickly. This project looked for short term variable AGN in the Young Stellar Object Variability (YSOVAR) survey conducted using the Spitzer Space Telescope. The YSOVAR survey targeted 12 nearby star forming regions for repeated observations. Potential AGN from the YSOVAR data were first selected by color ([3.6] - [4.5] > 0.4) and then by magnitude (m < 14) based on previous Spitzer surveys of known AGN. Since AGN share some similar color characteristics with young stars, images of each YSOVAR region were viewed to remove potential objects near concentrations of known young stellar objects since these were likely also YSOs. The spectral energy distribution (SED) for each remaining potential AGN was then examined for AGN like characteristics. Several potential short term variable AGN were found.

  20. DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT z {approx} 1

    SciTech Connect

    Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel; Schawinski, Kevin; Treister, Ezequiel; Gawiser, Eric

    2010-09-20

    Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population, {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.

  1. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  2. SCATTERED X-RAYS IN OBSCURED ACTIVE GALACTIC NUCLEI AND THEIR IMPLICATIONS FOR GEOMETRICAL STRUCTURE AND EVOLUTION

    SciTech Connect

    Noguchi, Kazuhisa; Terashima, Yuichi; Awaki, Hisamitsu; Ishino, Yukiko; Ueda, Yoshihiro; Hashimoto, Yasuhiro; Koss, Michael

    2010-03-01

    We construct a new sample of 32 obscured active galactic nuclei (AGNs) selected from the Second XMM-Newton Serendipitous Source Catalogue to investigate their multiwavelength properties in relation to the 'scattering fraction', the ratio of the soft X-ray flux to the absorption-corrected direct emission. The sample covers a broad range of the scattering fraction ({approx}0.1%-10%). A quarter of the 32 AGNs have a very low scattering fraction (<= 0.5%), which suggests that they are buried in a geometrically thick torus with a very small opening angle. We investigate correlations between the scattering fraction and multiwavelength properties. We find that AGNs with a small scattering fraction tend to have low [O III]lambda5007/X-ray luminosity ratios. This result agrees with the expectation that the extent of the narrow-line region is small because of the small opening angle of the torus. There is no significant correlation between scattering fraction and far-infrared luminosity. This implies that a scale height of the torus is not primarily determined by starburst activity. We also compare scattering fraction with black hole mass or Eddington ratio and find a weak anti-correlation between the Eddington ratio and scattering fraction. This implies that more rapidly growing supermassive black holes tend to have thicker tori.

  3. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. V. MULTI-EPOCH VLBA IMAGES

    SciTech Connect

    Lister, M. L.; Aller, H. D.; Aller, M. F. E-mail: haller@umich.edu

    2009-03-15

    We present images from a long-term program (MOJAVE: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz Very Long Baseline Array (VLBA) images of a complete flux-density-limited sample of 135 AGNs above declination -20{sup 0}, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample-selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond.

  4. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    SciTech Connect

    Toba, Y.; Matsuhara, H.; Oyabu, S.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K.; Ohyama, Y.; Yamauchi, C.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  5. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Silk, Joseph; Babul, Arif

    2006-12-01

    Existing models invoking active galactic nucleus (AGN) activity to resolve the cooling flow conundrum in galaxy clusters focus exclusively on the role of the central galaxy. Such models require fine-tuning of highly uncertain microscopic transport properties to distribute the thermal over the entire cluster cooling core. We propose that the intracluster medium (ICM) is instead heated by multiple, spatially distributed AGN. The central regions of galaxy clusters are rich in spheroidal systems, all of which are thought to host black holes and could participate in the heating of the ICM via AGN activity of varying strengths, and they do. There is mounting observational evidence for multiple AGN in cluster environments. AGN drive bubbles into the ICM. We identify three distinct interactions between the bubble and the ICM: (1) upon injection, the bubbles expand rapidly in situ to reach pressure equilibrium with their surroundings, generating shocks and waves whose dissipation is the principal source of ICM heating; (2) once inflated, the bubbles rise buoyantly at a rate determined by a balance with the viscous drag force, which itself results in some additional heating; and (3) rising bubbles expand and compress their surroundings. This process is adiabatic and does not contribute to any additional heating; rather, the increased ICM density due to compression enhances cooling. Our model sidesteps the `transport' issue by relying on the spatially distributed galaxies to heat the cluster core. We include self-regulation in our model by linking AGN activity in a galaxy to cooling characteristics of the surrounding ICM. We use a spherically symmetric one-dimensional hydrodynamical code to carry out a preliminary study illustrating the efficacy of the model. Our self-regulating scenario predicts that there should be enhanced AGN activity of galaxies inside the cooling regions compared to galaxies in the outer parts of the cluster. This prediction remains to be confirmed or

  6. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    SciTech Connect

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  7. MILLIMETER RADIO CONTINUUM EMISSIONS AS THE ACTIVITY OF SUPERMASSIVE BLACK HOLES IN NEARBY EARLY-TYPE GALAXIES AND LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Doi, Akihiro; Nakanishi, Kouichiro; Nagai, Hiroshi; Kohno, Kotaro; Kameno, Seiji

    2011-11-15

    We conducted millimeter continuum observations for samples of nearby early-type galaxies (21 sources) and nearby low-luminosity active galactic nuclei (LLAGNs; 16 sources) at 100 GHz ({lambda}3 mm) using the Nobeyama Millimeter Array (NMA). In addition, we performed quasi-simultaneous observations at 150 GHz ({lambda}2 mm) and 100 GHz for five LLAGNs. Compact nuclear emissions showing flat or inverted spectra at centimeter-to-millimeter wavelengths were found in many LLAGNs and several early-type galaxies. Moreover, significant flux variability was detected in three LLAGNs. These radio properties are similar to Sgr A*. The observed radio luminosities are consistent with the fundamental plane of black hole activity that was suggested on the basis of samples with black hole masses ranging from 10 to 10{sup 10} M{sub Sun }. This implies nuclear jets powered by radiatively inefficient accretion flows onto black holes.

  8. X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, Omaira; Vaughan, Simon; de la Cierva, Juan

    2012-09-01

    Active galactic nuclei (AGN), powered by accretion onto supermassive black holes (SMBHs), are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-cales scaling with mass. We have characterized the X-ray temporal properties of a sample of AGN to study the connection among different classes of AGN and their connection with BH-XRBs. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) AGN using 209 XMM-Newton/pn observations (Gonzalez-Martin & Vaughan 2012, A&A accepted). Among the entire sample, ~70% show significant variability in at least one of the three bands tested. A high percentage of low-luminosity AGN do not show any significant variability (~90% of LINERs). The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of ~2. In 15 sources we found that the bending power law model was preferred with a mean slope of 2.8 and a mean bend frequency of nu(break) = 2x 10E-04 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The "fundamental plane" relating variability timescale, black hole mass, and luminosity is studied using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature. Both quantitative (i.e. scaling with BH mass) and qualitative (overall PSD shapes) found in this sample of AGN are in agreement with the expectations for the SMBHs and BH-XRBs being the same phenomenon scaled-up with the size of the BH. The steep PSD slopes above the high frequency bend bear a closer resemblance to those of the "soft/thermal dominated" BH- XRB states than other states.

  9. The Most Massive Active Galactic Nuclei at 1 ≲ z ≲ 2

    NASA Astrophysics Data System (ADS)

    Jun, Hyunsung D.; Im, Myungshin; Kim, Dohyeong; Stern, Daniel

    2017-03-01

    We obtained near-infrared spectra of 26 Sloan Digital Sky Survey quasars at 0.7< z< 2.5 with reported rest-frame ultraviolet M BH ∼ 1010 M ⊙ to critically examine the systematic effects involved with their mass estimations. We find that active galactic nuclei (AGNs) heavier than 1010 M ⊙ often display double-peaked Hα emission, extremely broad Fe ii complex emission around Mg ii, and highly blueshifted and broadenedC iv emission. The weight of this evidence, combined with previous studies, cautions against the use of M BH values based on any emission line with a width over 8000 km s‑1. Also, the M BH estimations are not positively biased by the presence of ionized narrow line outflows, anisotropic radiation, or the use of line FWHM instead of σ for our sample, and unbiased with variability, scatter in broad line equivalent width, or obscuration for general type-1 quasars. Removing the systematically uncertain M BH values, ∼1010 M ⊙ black holes (BHs) in 1 ≲ z ≲ 2 AGNs can still be explained by anisotropic motion of the broad line region from ∼109.5 M ⊙ BHs, although current observations support that they are intrinsically most massive, and overmassive to the host’s bulge mass.

  10. Does the Iron K and Alpha: Line of Active Galactic Nuclei Arise from the Cerenkov Line-like Radiation?

    NASA Technical Reports Server (NTRS)

    You, J. H.; Liu, D. B.; Chen, W. P.; Chen, L.; Zhang, S. N.

    2003-01-01

    When thermal relativistic electrons with isotropic distribution of velocities move in a gas region or impinge upon the surface of a cloud that consists of a dense gas or doped dusts, the Cerenkov effect produces peculiar atomic or ionic emission lines, which is known as the Cerenkov line - like radiation. This newly recognized emission mechanism may find wide applications in high-energy astrophysics. In this paper we tentatively adopt this new line emission mechanism to discuss the origin of the iron Kα feature of active galactic nuclei (AGNs). The motivation of this research is to attempt a solution to a problem encountered by the "disk fluorescence line" model, i.e. , the lack of temporal response of the observed iron Kα line flux to the changes of the X-ray continuum flux. If the Cerenkov line emission is indeed responsible significant ly for the iron Kα feature, the conventional scenario around the central supermassive black holes of AGNs would need to be modified to accomodate more energetic, more violent, and much denser environments than previously thought.

  11. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Johnathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  12. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Duenner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, EriK D.; Wollack, Edward

    2013-01-01

    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218GHz in the 2008 Southern survey. Flux densities span 14-1700mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148GHz, with the trend continuing to 218GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7+0.62 or -0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  13. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 - 1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7 +0.62/-0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  14. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  15. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Ramos Almeida, C.; Alonso-Herrero, A.

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  16. Identification of Outflows and Candidate Dual Active Galactic Nuclei in SDSS Quasars at z=0.8-1.6

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.; Lacy, C. H.; Kennefick, J. D.; Comerford, J. M.; Kennefick, D.; Berrier, J. C.

    2013-01-01

    We present a sample of quasars from the Sloan Digital Sky Survey at redshifts 0.8active galactic nuclei (AGN) with double-peaked [OIII] lines, which might represent AGN outflows or dual AGN. Emission lines of high-ionization potential are believed to originate in the inner, more highly photoionized portion of the narrow line region, and we exploit this assumption to investigate the possible kinematic origins of the double-peaked emission lines. For comparison, we also measure the [NeV] and [NeIII] double peaks in Type 1 AGN from the low-redshift [OIII]-selected samples. We find that [NeV] and [NeIII] show a correlation between velocity-splitting and line-width similar to [OIII], and the velocity-splittings are strongly correlated with the quasar Eddington ratio. These results suggest an outflow origin for the double-peaks, and may represent cases of AGN feedback. However, we cannot rule out alternative scenarios for individual sources. For example, the dual AGN scenario is particularly attractive given the increased frequency of galaxy mergers at higher redshift. Interestingly, 40% of our sample shows no evidence for an ionization stratification, leaving open the possibility of dual AGN for those sources.

  17. BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION

    SciTech Connect

    Wiebe, Donald V.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Bock, James J.; Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    Over the course of two flights, the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) made resolved maps of seven nearby (<25 Mpc) galaxies at 250, 350, and 500 mum. During its 2005 June flight from Sweden, BLAST observed a single nearby galaxy, NGC 4565. During the 2006 December flight from Antarctica, BLAST observed the nearby galaxies NGC 1097, NGC 1291, NGC 1365, NGC 1512, NGC 1566, and NGC 1808. We fit physical dust models to a combination of BLAST observations and other available data for the galaxies observed by Spitzer. We fit a modified blackbody to the remaining galaxies to obtain total dust mass and mean dust temperature. For the four galaxies with Spitzer data, we also produce maps and radial profiles of dust column density and temperature. We measure the fraction of BLAST detected flux originating from the central cores of these galaxies and use this to calculate a 'core fraction', an upper limit on the 'active galactic nucleus fraction' of these galaxies. We also find our resolved observations of these galaxies give a dust mass estimate 5-19 times larger than an unresolved observation would predict. Finally, we are able to use these data to derive a value for the dust mass absorption coefficient of kappa = 0.29 +- 0.03 m{sup 2} kg{sup -1} at 250 mum. This study is an introduction to future higher-resolution and higher-sensitivity studies to be conducted by Herschel and SCUBA-2.

  18. Interaction of ultraviolet and X-ray radiation with gamma rays produced by a jet in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zbyszewska, Magda

    1994-01-01

    Recent observations by the Compton Gamma-Ray Observatory give evidence for the existence of a type of blazar with strong gamma-ray emission. Data obtained by EGRET for the quasar 3C 279 show a spectrum between 100 MeV and 10 GeV. Photons of such energies should interact with the X-rays and produce positron/electron pairs. If the optical depth against pair production for the gamma rays is large (tau(gamma gamma) greater than 1), the gamma-ray spectrum should be affected. The importance of this process has been pointed out by, e.g., Maraschi, Ghisellini, & Celotti (1992). Several works (e.g., Dermer 1993; Zbyszewska 1993; Sikora, Begelman, & Rees 1993) concerning gamma-ray radiation from quasar 3C 279 have proposed a model in which the gamma rays are produced via interaction between a moving cloud of relativistic electrons and external soft photons. The presence of gamma rays in active galactic nuclei spectra gives constraints on the localization and the luminosity of the medium which produces ultraviolet/X-ray photons. We investigate what conditions should be fulfilled in the above model to avoid the absorption of the gamma rays due to pair production.

  19. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  20. Bulgeless Galaxies at Intermediate Redshift: Sample Selection, Color Properties, and the Existence of Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bizzocchi, Luca; Filho, Mercedes E.; Leonardo, Elvira; Grossi, Marco; Griffith, Roger L.; Afonso, José; Fernandes, Cristina; Retrê, João; Anton, Sonia; Bell, Eric F.; Brinchmann, Jarle; Henriques, Bruno; Lobo, Catarina; Messias, Hugo

    2014-02-01

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 <= z <= 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M sstarf/M ⊙) > 10.5] bulgeless galaxies contribute to ~30% of the total galaxy population number density at z >= 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  1. Dependence of the Spin of Supermassive Black Holes on the Eddington Factor for Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Buliga, S. D.; Gnedin, Yu. N.; Mikhailov, A. G.; Natsvlishvili, T. M.

    2016-12-01

    An equation relating the spin of supermassive black holes (SMBH) to the Eddington factor, i.e., the ratio of the bolometric and Eddington luminosities for accretion disks in active galactic nuclei (AGN), is presented. This equation also depends on the relationship between the magnetic field pressure and the flux of accreted matter at the radius of the event horizon for a black hole. When the pressures of the magnetic field and of the accreted matter are equal, there is a direct relationship between the spin of the black hole and the Eddington factor. Based on available data on the bolometric luminosity and mass of black holes, it is possible to determine the spin of a black hole. The spins of the central SMBH are given for a number of AGN. The proposed method can also be used to determine the ratio of the magnetic field pressure and the pressure of the accreted gas at the event horizon of SMBH for AGN for which the spin of the black hole has been determined reliably.

  2. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Kusenko, Alexander

    2010-10-01

    Intergalactic magnetic fields (IGMFs) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGNs) in the 11 month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over the point-spread function in the surface brightness profile is statistically significant at 3.5σ (99.95% confidence level), for the nearby, hard population of AGNs. The halo size and brightness are consistent with IGMF, B IGMF ≈ 10-15 G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMFs are likely to originate from the primordial seed fields created shortly after the big bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early universe.

  3. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P.; Hickox, R. C.; Coil, A. L.; Cooper, M. C.; Newman, J. A.; Weiner, B. J.

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  4. THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Packham, Christopher; Lopez-Rodriguez, Enrique; Alsip, Crystal D.; Almeida, Cristina Ramos; Ramos, Andrés Asensio; González-Martín, Omaira; Díaz-Santos, Tanio; Elitzur, Moshe; Hönig, Sebastian F.; Imanishi, Masatoshi; Levenson, Nancy A.; Perlman, Eric S.

    2015-04-20

    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.

  5. Dielectronic recombination measurements of iron M-shell ions motivated by active galactic nuclei X-ray absorption features

    NASA Astrophysics Data System (ADS)

    Lukic, V. D.; Schnell, M.; Savin, D. W.; Brandau, C.; Schmidt, E. W.; Bohm, S.; Muller, A.; Schippers, S.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2008-07-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients. Here we report our recent experimental results for DR of Mg-like Fe XV forming Al-like Fe XIV.

  6. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wang Huiyuan; Wang Tinggui; Zhou Hongyan; Liu Bo; Dong Xiaobo; Wang Jianguo

    2011-09-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  7. A CORRELATION BETWEEN THE IONIZATION STATE OF THE INNER ACCRETION DISK AND THE EDDINGTON RATIO OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ballantyne, D. R.; McDuffie, J. R.; Rusin, J. S.

    2011-06-20

    X-ray reflection features observed from the innermost regions of accretion disks in active galactic nuclei (AGNs) allow important tests of accretion theory. In recent years, it has been possible to use the Fe K{alpha} line and reflection continuum to parameterize the ionization state of the irradiated inner accretion disk. Here, we collect 10 measurements of {xi}, the disk ionization parameter, from eight AGNs with strong evidence for reflection from the inner accretion disk and good black hole mass estimates. We find strong statistical evidence (98.56% confidence) for a nearly linear correlation between {xi} and the AGN Eddington ratio. Moreover, such a correlation is predicted by a simple application of {alpha}-disk accretion theory, albeit with a stronger dependence on the Eddington ratio. The theory shows that there will be intrinsic scatter to any correlation as a result of different black hole spins and radii of reflection. There are several possibilities to soften the predicted dependence on the Eddington ratio to allow a closer agreement with the observed correlation, but the current data do not allow for a unique explanation. The correlation can be used to estimate that MCG-6-30-15 should have a highly ionized inner accretion disk, which would imply a black hole spin of {approx}0.8. Additional measurements of {xi} from a larger sample of AGNs are needed to confirm the existence of this correlation, and will allow investigation of the accretion disk/corona interaction in the inner regions of accretion disks.

  8. Theoretical Emission-Line Profiles of Active Galactic Nuclei and the Unified Model. I. The Face-on Torus

    NASA Astrophysics Data System (ADS)

    Quintilio, R.; Viegas, S. M.

    1997-01-01

    Theoretical emission-line profiles are obtained for active galactic nuclei (AGNs) taking into account the presence of an obscuring torus around the central energy source. For the sake of simplicity, the torus is represented by a cylindrical shell characterized by the inner and outer radius and the opening angle. In this paper we discuss the results with angle of sight equal to 0, i.e., for a face-on torus. Different line profiles are obtained following the torus parameters. The line profiles may show more than one peak and bumps, depending on the torus dimensions. The main parameter determining the number of peaks or bumps is the opening angle. Thus, the observed line shape may be a good indicator of the torus characteristics. As an example, the fit to the observed [O III] λ5007 emission line of NGC 4151 is presented. The model reproduces the FWHM and the asymmetrical bumps observed. Partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant 92/4335-9.

  9. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxes and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.

  10. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Di Mauro, Mattia; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M.

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  11. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. II. OUTFLOWS IN THE NARROW-LINE REGION OF NGC 4151

    SciTech Connect

    Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R. E-mail: fischer@astro.gsu.edu E-mail: schmitt.henrique@gmail.com

    2015-01-20

    We present a detailed study of active galactic nucleus feedback in the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151. We illustrate the data and techniques needed to determine the mass outflow rate ( M-dot {sub out}) and kinetic luminosity (L {sub KE}) of the outflowing ionized gas as a function of position in the NLR. We find that M-dot {sub out} peaks at a value of 3.0 M {sub ☉} yr{sup –1} at a distance of 70 pc from the central supermassive black hole (SMBH), which is about 10 times the outflow rate coming from inside 13 pc, and 230 times the mass accretion rate inferred from the bolometric luminosity of NGC 4151. Thus, most of the outflow must arise from in situ acceleration of ambient gas throughout the NLR. L {sub KE} peaks at 90 pc and drops rapidly thereafter, indicating that most of the kinetic energy is deposited within about 100 pc from the SMBH. Both values exceed the M-dot {sub out} and L {sub KE} determined for the UV/X-ray absorber outflows in NGC 4151, indicating the importance of NLR outflows in providing feedback on scales where circumnuclear star formation and bulge growth occur.

  12. The NuSTAR X-ray spectrum of the low-luminosity active galactic nucleus in NGC 7213

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Marinucci, A.; Matt, G.; Bianchi, S.; Tortosa, A.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Fabian, A. C.; Harrison, F. A.; Lohfink, A. M.; Reynolds, C. S.; Walton, D. J.

    2015-09-01

    We present an analysis of the 3-79 keV NuSTAR spect