Science.gov

Sample records for 2mass extinction maps

  1. A Galactic Plane relative extinction map from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Ray, T. P.; Murphy, G. C.; Scholz, A.

    2005-03-01

    We present three 14 400 square degree relative extinction maps of the Galactic Plane (|b| < 20°) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5 × 3.5 boxes, every 20.1° × 1° surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (β) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.

  2. 2MASS wide-field extinction maps. V. Corona Australis

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2014-05-01

    We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18

  3. Extinction Mapping of Nearby Galaxies with LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren; Walterbos, Rene A. M.; Sabbi, Elena; Thilker, David A.; Ubeda, Leonardo; LEGUS Science Team

    2016-01-01

    Using 5-band (NUV (2750 A), U, B, V, I) photometry from the Legacy ExtraGalactic Ultraviolet Survey (LEGUS), we generate extinction maps for nearby (within 10 Mpc) galaxies at resolutions of a few arcseconds. Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Our method uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012). With our 5-band photometry, which extends into the UV, we are able to trace even small amounts of extinction. These maps are then compared to HI and CO maps of the same galaxies with the goal of constraining the dust-to-gas mass ratio, which we can then correlate with the gas phase metallicity from other observations. This poster will demonstrate the technique on a few galaxies, but the project will subsequently be expanded to cover the full LEGUS sample of nearly 50 galaxies. These maps can then be used to correct massive star and cluster photometry and HII region Halpha observations for the effects of extinction in order to better characterize star formation rates and massive stellar populations for other projects, such as initial mass function studies and ionization balance studies for HII regions and the diffuse ionized gas.

  4. Deep Extinction Mapping in Molecular Cores

    NASA Astrophysics Data System (ADS)

    Hodapp, Klaus; Urban, Laurie; Rieke, Marcia

    2014-12-01

    This proposal is for preparatory observations of the targets selected for a future James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam) guaranteed time project, as well as for a more general preparation for the science of this project. Our JWST project with NIRCam, NIRSpec, and MIRI is aimed at obtaining the deepest, and therefore best sampled, extinction maps of a sample of molecular cores, selected to contain quiescent, collapsing, and star-forming cores. We will also obtain spectroscopy of suitable, selected background stars for a detailed study of both the continuum extinction law and the ice feature absorption. The proposed Spitzer IRAC observations are aimed at identifying specific background stars for these future spectroscopic observations with JWST NIRSpec or NIRCam (grism), and with MIRI. For detailed planning of the JWST observations, we need to know how many suitable background stars are available, how many NIRSpec multi-slit pointing will be required, or whether slitless NIRCam grism spectroscopy is feasible. In addition to their role in preparing future JWST observations, the proposed Spitzer observations will immediately be used, together with UKIRT data we have already obtained and together with archival imaging data from other ground-based telescopes, to compute column density maps of the target objects and compare those with JCMT continuum and CO line emission maps to study the temperature distribution and gas freeze-out effects in those dense molecular cores. This work will form the main part of L. Urban's Ph.D. thesis project.

  5. DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS

    SciTech Connect

    Roman-Zuniga, Carlos G.; Lada, Charles J.; Lombardi, Marco

    2010-12-20

    We present a new set of high-resolution dust extinction maps of the nearby and essentially starless Pipe Nebula molecular cloud. The maps were constructed from a concerted deep near-infrared imaging survey with the ESO-VLT, ESO-NTT, CAHA 3.5 m telescopes, and 2MASS data. The new maps have a resolution three times higher than the previous extinction map of this cloud by Lombardi et al. and are able to resolve structures down to 2600 AU. We detect 244 significant extinction peaks across the cloud. These peaks have masses between 0.1 and 18.4 M{sub sun}, diameters between 1.2 and 5.7 x 10{sup 4} AU (0.06 and 0.28 pc), and mean densities of about 10{sup 4} cm{sup -3}, all in good agreement with previous results. From the analysis of the mean surface density of companions we find a well-defined scale near 1.4 x 10{sup 4} AU below which we detect a significant decrease in structure of the cloud. This scale is smaller than the Jeans length calculated from the mean density of the peaks. The surface density of peaks is not uniform but instead it displays clustering. Extinction peaks in the Pipe Nebula appear to have a spatial distribution similar to the stars in Taurus, suggesting that the spatial distribution of stars evolves directly from the primordial spatial distribution of high-density material.

  6. Testing Protostellar Collapse Theory through Extinction Mapping

    NASA Astrophysics Data System (ADS)

    Wilner, David

    1997-07-01

    The identification of collapsing protostars remains a ``holy grail'' of star formation studies. The best collapse candidate is generally recognized to be B335, an isolated round globule containing a deeply embedded low luminosity young stellar object {detected only at Lambda>60 Mum}. In an influential study, Zhou et al. {1993} observed a variety of trace molecules in B335 and showed that detailed radiative transfer models based on the velocity and density fields of the ``inside-out'' collapse theory developed by Shu {1977} reproduced the spectra extremely well. Here we propose to use NICMOS to obtain near-infrared photometry of background stars shining through B335, to measure the density field in a way that suffers from none of the problems inherent in molecular line work {abundances, opacities, unknown collision rates, etc.}. Ground based data show that the projected reddening distribution at large radii {>30''} is in good agreement with an npropto r^-2 density profile. Deeper observations using NICMOS will probe into higher extinctions and smaller radii and show directly if the density field has relaxed to the npropto r^-1.5 form predicted for collapse. The proposed observations take advantage of the high sensitivity of NICMOS to sample the B335 infall zone to equivalent visual extinctions of 50 magnitudes or more, a regime that simply cannot be probed from the ground.

  7. Three-dimensional extinction mapping and selection effects

    NASA Astrophysics Data System (ADS)

    Sale, S. E.

    2015-09-01

    Selection effects can bedevil the inference of the properties of a population of astronomical catalogues, unavoidably biasing the observed catalogue. This is particularly true when mapping interstellar extinction in three dimensions: more extinguished stars are fainter and so generally less likely to appear in any magnitude limited catalogue of observations. This paper demonstrates how to account for this selection effect when mapping extinction, so that accurate and unbiased estimates of the true extinction are obtained. We advocate couching the description of the problem explicitly as a Poisson point process, which allows the likelihoods employed to be easily and correctly normalized in such a way that accounts for the selection functions applied to construct the catalogue of observations.

  8. VizieR Online Data Catalog: All-sky near-infrared extinction map (Juvela+, 2016)

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2015-10-01

    An all-sky extinction map in units of J-band extinction (magnitudes). The map is given as a Healpix FITS file (NSIDE=4096, NESTED scheme) in Galactic projection. The map has been created with the NICER method, additionally using the information of local extinction gradients. The resolution is FWHM=3.0-arcmin. (2 data files).

  9. Mapping Extinction and Star Formation Rates of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ridenour, Anthony; Takamiya, M.

    2010-01-01

    Star Formation Rate (SFR) is a physical characteristic of galaxies vital to our understanding of such problems as the evolution of the Universe. In computing SFRs obscuring dust systematically lowers them at shorter wavelengths compared to longer wavelengths. This issue of dust extinction has been handled well by multi-wavelength studies of nearby galaxies. Star Formation Rate measurements of distant galaxies are currently reliant on the emission of visible spectroscopic lines like Hα and [OII] after correction for extinction. However, if the visible light is completely obscured an incorrect assumption may be drawn; namely that there is neither SFR nor extinction. The work purposed here is to calibrate the SFR ascertained from Hα emission in nearby galaxies and compare it to radio and infrared emission. The Balmer decrement, or the ratio of Hβ to Hα emission, used to determine extinction, will also be studied and compared to infrared images. 30 nearby galaxies will be sampled and 2-D maps and Balmer decrements will be formed to do two things: measure SFRs and determine differences between Hα and infrared emission, and explore in what ways this difference corresponds with such things as the radio SFR, galaxy luminosity and morphological type. The accuracy of Hα as a SFR indicator and its determination as a sound tool in measuring SFRs of distant galaxies can both be quantified by interpreting these maps. Dr. Marianne Takamiya, the principal investigator and my mentor, secured funds through a grant to the University of Hawai'i at Hilo from The Research Corporation for Science Advancement Cottrell College Science Awards for this research.

  10. Continuation of Deep Extinction Mapping in Molecular Cores

    NASA Astrophysics Data System (ADS)

    Chu, Laurie; Hodapp, Klaus

    2015-10-01

    This proposal is a continuation for preparatory observations of the targets selected for a future James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam) guaranteed time project, as well as for a more general preparation for the science of this project. Our JWST project with NIRCam, NIRSpec, and MIRI is aimed at obtaining the deepest, and therefore best sampled, extinction maps of a sample of molecular cores, selected to contain quiescent, collapsing, and star-forming cores. We will also obtain spectroscopy of suitable, selected background stars for a detailed study of both the continuum extinction law and the ice feature absorption. The proposed Spitzer IRAC observations are aimed at identifying specific background stars for these future spectroscopic observations with JWST NIRSpec or NIRCam (grism), and with MIRI. For detailed planning of the JWST observations, we need to know how many suitable background stars are available, how many NIRSpec multi-slit pointing will be required, or whether slitless NIRCam grism spectroscopy is feasible. In addition to their role in preparing future JWST observations, the proposed Spitzer observations will immediately be used, together with UKIRT data we have already obtained and together with archival imaging data from other ground-based telescopes, to compute column density maps of the target objects and compare those with JCMT continuum and CO line emission maps to study the temperature distribution and gas freeze-out effects in those dense molecular cores. Three of our six molecular clouds were observed in Cycle 11, this is a continuation to complete our target list and observe the remaining three targets. This work will form the main part of my Ph.D. thesis project.

  11. Far-infrared Extinction Mapping of Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.

    2014-01-01

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ~100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler & Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ~1 g cm-2 in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf & Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  12. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    SciTech Connect

    Lim, Wanggi; Tan, Jonathan C.

    2014-01-10

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  13. Extinctions and Distances to Dark Clouds from 2MASS, MegaCam and IPHAS Surveys: LDN 1525 in the Direction of the Aur OB1 Association

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Drew, J. E.; Laugalys, V.

    The possibility of applying photometry from the 2MASS J, H, Ks, MegaCam u, g and IPHAS r, i, Hα surveys for determining the distance to the dark cloud LDN 1525 (TGU 1192) in the direction of the Aur OB1 association is investigated using the red clump giants. The main dust cloud, probably related to the emission nebulae Sh 2-232, Sh 2-233, Sh 2-235, the molecular cloud and the association Aur OB2, is found to be located at a distance of 1.3 kpc from the Sun. The nebula Sh 2-231 can be an object of the Perseus arm. The maximum extinction AV found in the cloud is close to 6 mag.

  14. Mapping the Inner Halo of the Galaxy with 2MASS-Selected Horizontal-Branch Candidates

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Beers, Timothy C.; Kurtz, Michael J.; Roll, John B.

    2004-03-01

    We use Two Micron All Sky Survey (2MASS) photometry to select blue horizontal-branch (BHB) candidates covering the sky, |b|>15°. A 12.52MASS catalog. We show that a -0.20<(J-H)0<0.10, -0.10<(H-K)0<0.10 color-selected sample of stars is 65% complete for BHB stars and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog and see no spatial overdensities of BHB candidates at high Galactic latitude, |b|>50°. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ~5° wide star stream with density greater than 0.33 objects deg-2 at the 95% confidence level. The absence of observed structure suggests that there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales θ<~1°. This structure is apparently associated with stars in the thick disk and has a physical scale of 10-100 pc. Interestingly, such structures are expected by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.

  15. Spatial memory extinction: a c-Fos protein mapping study.

    PubMed

    Méndez-Couz, M; Conejo, N M; Vallejo, G; Arias, J L

    2014-03-01

    While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory. PMID:24315832

  16. High-resolution mapping of dust via extinction in the M31 bulge

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Li, Zhiyuan; Wang, Q. D.; Lauer, Tod R.; Olsen, Knut A. G.; Saha, Abhijit; Dalcanton, Julianne J.; Groves, Brent A.

    2016-06-01

    We map the dust distribution in the central 180 arcsec (˜680 pc) region of the M31 bulge, based on HST WFC3 and ACS observations in ten bands from near-ultraviolet (2700 Å) to near-infrared (1.5 μm). This large wavelength coverage gives us great leverage to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (˜0.5 arcsec, i.e. ˜2 pc) and sensitivity (the extinction uncertainty, δAV ˜ 0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disc and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel. The dust masses in these two maps are consistent with each other, except in the low-extinction regions, where the mass inferred from the extinction tends to be underestimated. Further, we use simulations to show that our method can be used to measure the masses of dusty clumps in Virgo cluster early-type galaxies to an accuracy within a factor of ˜2.

  17. USING M DWARF SPECTRA TO MAP EXTINCTION IN THE LOCAL GALAXY

    SciTech Connect

    Jones, David O.; West, Andrew A.; Foster, Jonathan B.

    2011-08-15

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from the stars in the SDSS Data Release 7 M dwarf sample in low-extinction lines of sight, as determined by Schlegel et al., to other SDSS M dwarf spectra in order to derive improved distance estimates and accurate line-of-sight extinctions. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the spectral range from 5700 to 9200 A for every star in our sample. Our result is an A{sub V} map that extends from a few tens of pc to approximately 2 kpc away from the Sun. We also use a similar technique to create a map of R{sub V} values within approximately 1 kpc of the Sun and find that they are consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local Galaxy of 119 {+-} 15 pc and find evidence for a local dust cavity.

  18. Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  19. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    SciTech Connect

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  20. VizieR Online Data Catalog: All-sky extinction maps (Juvela+, 2016)

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2015-10-01

    All-sky extinction maps in units of J-band extinction (magnitudes). Data are given as Healpix FITS files (NSIDE=2048, NESTED scheme) in Galactic projection. The maps have been created either with the NICER or the NICEST method and at a resolution of either 3.0, 4.5, or 12.0-arcmin (FWHM). The different versions (M1, M2a, M2b) correspond to different assumptions of intrinsic stellar colours. These were M1 (average statistics at high latitudes, |b|>60°) and two versions, M2a and M2b, based on Besancon model of the Galactic distribution of stars with different intrinsic colours (M2a using the intrinsic colours, M2b colours further reddened by a simple model of diffuse extinction). (2 data files).

  1. VizieR Online Data Catalog: 3D reddening map for stars from 2MASS phot. (Gontcharov, 2010)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    A three-dimensional reddening map for stars within 1100pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude MKs=2.5m. The shift of this maximum toward large (J-Ks) with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0.03m for spatial cells with a side of 100pc. All of the known large absorbing clouds within 1100pc of the Sun have manifested themselves in the results obtained. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1100pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. Also the data of the Rv (2012AstL...38...12G) and Av (2012AstL...38...87G) 3D maps are added. (1 data file).

  2. Mapping fear memory consolidation and extinction-specific expression of JunB.

    PubMed

    Radwanska, Kasia; Schenatto-Pereira, Grace; Ziółkowska, Magdalena; Łukasiewicz, Kacper; Giese, K Peter

    2015-11-01

    Understanding the molecular and cellular process specifically regulated during fear memory consolidation and extinction is a critical step toward development of new strategies in the treatment of human fear disorders. Here we used inhibitory component of AP-1 transcription factor, JunB, in order to map brain regions where JunB-dependent transcription is regulated during consolidation and extinction of contextual fear memory. We found that contextual fear memory consolidation induced JunB expression in the medial nucleus and intercalated cells of the amygdala while extinction training induced JunB in the CA1 and CA3 areas of the dorsal hippocampus. JunB upregulation induced by contextual fear memory extinction was absent in alphaCaMKII autophosphorylation-deficient mice which have impaired contextual fear memory extinction. Thus, our data suggest that JunB expression in the medial nucleus and intercalated cells of the amygdala is involved in fear memory consolidation while alphaCaMKII-autophosphorylation-dependent JunB expression in the areas CA1 and CA3 of the dorsal hippocampus regulates fear memory extinction.

  3. VizieR Online Data Catalog: 3D interstellar extinct. map within nearest kpc (Gontcharov, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    The product of the previously constructed 3D maps of stellar reddening (2010AstL...36..584G) and Rv variations (2012AstL...38...12G) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. (1 data file).

  4. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    SciTech Connect

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M. E-mail: gail.zasowski@gmail.com

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  5. Three-dimensional reddening map for stars from 2MASS photometry: The method and the first results

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2010-08-01

    The first results of the construction of a three-dimensional reddening map for stars within 1600 pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the ( J-Ks)- Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude M Ks = 2{⊙/ m }5. The shift of this maximum toward large J-Ks with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E( J-Ks) has been determined with an accuracy of 0{·/ m }03 for spatial cells with a side of 100 pc. All of the known large absorbing clouds within 1600 pc of the Sun have manifested themselves in the results obtained. The distances to the near and far edges of the clouds have been determined with a relative accuracy of 15%. The cases where unknown clouds are hidden behind known ones on the same line of sight have been found. The distance dependence of reddening is considered for various Galactic latitudes and longitudes. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600 pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1600 pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. The warping of the absorbing layer in the near Galaxy apparently manifests itself in this way. A nonrandom orientation of the clouds relative to the Sun is possible. The mass of the baryonic dark matter in

  6. THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER

    SciTech Connect

    Butler, Michael J.; Tan, Jonathan C.; Kainulainen, Jouni

    2014-02-20

    We use deep 8 μm Spitzer-IRAC imaging of massive Infrared Dark Cloud (IRDC) G028.37+00.07 to construct a mid-infrared (MIR) extinction map that probes mass surface densities up to Σ ∼ 1 g cm{sup –2} (A{sub V} ∼ 200 mag), amongst the highest values yet probed by extinction mapping. Merging with an NIR extinction map of the region creates a high dynamic range map that reveals structures down to A{sub V} ∼ 1 mag. We utilize the map to: (1) measure a cloud mass ∼7 × 10{sup 4} M {sub ☉} within a radius of ∼8 pc. {sup 13}CO kinematics indicate that the cloud is gravitationally bound. It thus has the potential to form one of the most massive young star clusters known in the Galaxy. (2) Characterize the structures of 16 massive cores within the IRDC, finding they can be fit by singular polytropic spheres with ρ∝r{sup −k{sub ρ}} and k {sub ρ} = 1.3 ± 0.3. They have Σ-bar ≃0.1--0.4 g cm{sup −2}—relatively low values that, along with their measured cold temperatures, suggest that magnetic fields, rather than accretion-powered radiative heating, are important for controlling fragmentation of these cores. (3) Determine the Σ (equivalently column density or A{sub V} ) probability distribution function (PDF) for a region that is nearly complete for A{sub V} > 3 mag. The PDF is well fit by a single log-normal with mean A-bar {sub V}≃9 mag, high compared to other known clouds. It does not exhibit a separate high-end power law tail, which has been claimed to indicate the importance of self-gravity. However, we suggest that the PDF does result from a self-similar, self-gravitating hierarchy of structures present over a wide range of scales in the cloud.

  7. Mapping the inner stellar halo of the Milky Way from 2MASS and SDSS-III/APOGEE survey

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Reylé, C.

    2015-12-01

    The Besançon Galaxy model was used to compare the infrared colour distribution of synthetic stars with those from 2MASS observations taking the selection function of the data into account, in order to study the shape of the stellar halo of the Milky Way, with complemetary spectroscopic data from SDSS-III/APOGEE survey. Furthermore, we compared the generated mock metallicity distribution of the Besançon Galaxy model, to the intrinsic metallicity distribution with reliable stellar parameters from the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP). The comparison was carried accross a large volume of the inner part of the Galaxy, revealing that a metal-poor population, [M/H]<-1.2 dex, could fill an extended component of the inner galactic halo. With this data set, we are able to model a more realistic mass density distribution of the stellar halo component of the Milky Way, assuming a six-parameters double power-law model, and reconstruct the behaviour of the rotation curve in the inner part of the Galaxy.

  8. The Panchromatic Hubble Andromeda Treasury. VIII. A Wide-area, High-resolution Map of Dust Extinction in M31

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Sandstrom, Karin; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dong, Hui; Gilbert, Karoline M.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Lauer, Tod R.; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-01

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color-magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine & Li dust models overpredict the observed extinction by a factor of ˜2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ˜2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine & Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  9. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    SciTech Connect

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F.; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Gilbert, Karoline M.; Sandstrom, Karin; Bell, Eric F.; Dong, Hui; Lauer, Tod R.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-20

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  10. Synthetic extinction maps around intermediate-mass black holes in Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Pepe, C.; Pellizza, L. J.

    2016-08-01

    During the last decades, much effort has been devoted to explain the discrepancy between the amount of intracluster medium (ICM) estimated from stellar evolution theories and that emerging from observations in globular clusters (GCs). One possible scenario is the accretion of this medium by an intermediate-mass black hole (IMBH) at the centre of the cluster. In this work, we aim at modelling the cluster colour-excess profile as a tracer of the ICM density, both with and without an IMBH. Comparing the profiles with observations allows us to test the existence of IMBHs and their possible role in the cleansing of the ICM. We derive the intracluster density profiles from hydrodynamical models of accretion on to a central IMBH in a GC and we determine the corresponding dust density. This model is applied to a list of 25 Galactic GCs. We find that central IMBHs decrease the ICM by several orders of magnitude. In a subset of nine clusters, the absence of the black hole combined with a low-ICM temperature would be at odds with present gas mass content estimations. As a result, we conclude that IMBHs are an effective cleansing mechanism of the ICM of GCs. We construct synthetic extinction maps for M 62 and ωCen, two clusters in the small subset of nine with observed 2D extinction maps. We find that under reasonable assumptions regarding the model parameters, if the gas temperature in M 62 is close to 8000 K, an IMBH needs to be invoked. Further ICM observations regarding both the gas and dust in GCs could help to settle this issue.

  11. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    SciTech Connect

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro; Kayo, Issha; Nishimichi, Takahiro

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  12. THE 2MASS REDSHIFT SURVEY-DESCRIPTION AND DATA RELEASE

    SciTech Connect

    Huchra, John P.; Berlind, Perry; Calkins, Michael; Falco, Emilio; Mink, Jessica D.; Tokarz, Susan; Macri, Lucas M.; Masters, Karen L.; Jarrett, Thomas H.; Crook, Aidan C.; Cutri, Roc; Erdogdu, Pirin; Lahav, Ofer; George, Teddy; Hutcheson, Conrad M.; Mader, Jeff; Martimbeau, Nathalie; Schneider, Stephen; Skrutskie, Michael; Westover, Michael E-mail: karen.masters@port.ac.uk

    2012-04-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K{sub s} {<=} 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5 Degree-Sign for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K{sub s} {<=} 11.75 mag and |b| {>=} 5 Degree-Sign ({>=}8 Degree-Sign toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h{sup -1} Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K{sub s} {<=} 11.25 mag and |b| {>=} 10 Degree-Sign .

  13. Variation of the extinction law in the Trifid nebula

    NASA Astrophysics Data System (ADS)

    Cambrésy, L.; Rho, J.; Marshall, D. J.; Reach, W. T.

    2011-03-01

    Context. In the past few years, the extinction law has been measured in the infrared wavelengths for various molecular clouds and different laws have been obtained. Aims: In this paper we seek variations of the extinction law within the Trifid nebula region. Such variations would demonstrate local dust evolution linked to variation of the environment parameters such as the density or the interstellar radiation field. Methods: The extinction values, Aλ/AV, are obtained using the 2MASS, UKIDSS and Spitzer/GLIMPSE surveys. The technique is to inter-calibrate color-excess maps from different wavelengths to derive the extinction law and to map the extinction in the Trifid region. Results: We measured the extinction law at 3.6, 4.5, and 5.8 μm and we found a transition at AV ≈ 20 mag. Below this threshold the extinction law is as expected from models for RV = 5.5 whereas above 20 mag of visual extinction, it is flatter. Using these results the color-excess maps are converted into a composite extinction map of the Trifid nebula at a spatial resolution of 1 arcmin. A tridimensional analysis along the line-of-sight allowed us to estimate a distance of 2.7 ± 0.5 kpc for the Trifid. The comparison of the extinction with the 1.25 mm emission suggests the millimeter emissivity is enhanced in the dense condensations of the cloud. Conclusions: Our results suggest a dust transition at large extinction which has not been reported so far as well as dust emissivity variations.

  14. INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, K{sub S} BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 {mu}m IN THE SPITZER/IRAC SYSTEM

    SciTech Connect

    Nishiyama, Shogo; Nagata, Tetsuya; Tamura, Motohide; Hatano, Hirofumi; Kato, Daisuke; Tanabe, Toshihiko; Sugitani, Koji

    2009-05-10

    We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 {mu}m, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region |l | {approx}<3.{sup 0}0 and |b | {approx}<1.{sup 0}0 has been surveyed in the J, H, and K{sub S} bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made K{sub S} versus K{sub S} - {lambda} color-magnitude diagrams (CMDs) where {lambda}=3.6, 4.5, 5.8, and 8.0 {mu}m. The K{sub S} magnitudes of bulge red clump stars and the K{sub S} - {lambda} colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction A{sub K{sub S}}/E{sub K{sub S}}{sub -{lambda}} for the four IRAC bands. Combined with A{sub {lambda}}/A{sub K{sub S}} for the J and H bands derived by Nishiyama et al., we obtain A{sub J} :A{sub H} :A{sub K{sub S}}:A {sub [3.6]}:A {sub [4.5]}:A {sub [5.8]}:A {sub [8.0]} = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at {lambda} {approx}> 3 {mu}m from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and K{sub S} bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and K{sub S} is well fitted by a power law of steep decrease A {sub {lambda}} {proportional_to} {lambda}{sup -2.0} toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios

  15. Mid-infrared Extinction Mapping of Infrared Dark Clouds. II. The Structure of Massive Starless Cores and Clumps

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.

    2012-07-01

    We develop the mid-infrared extinction (MIREX) mapping technique of Butler & Tan (Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 μm images, this allows us to accurately probe mass surface densities, Σ, up to ~= 0.5 g cm-2 with 2'' resolution and mitigate one of the main sources of uncertainty associated with Galactic MIREX mapping. We then characterize the structure of 42 massive starless and early-stage cores and their surrounding clumps, selected from 10 infrared dark clouds, measuring Σcl(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M cl = 60 M ⊙. We find that these objects have a mean radius of R cl ~= 0.1 pc, mean \\bar{\\Sigma }_cl = 0.3\\:g\\:cm^{-2} and, if fitted by a power-law (PL) density profile \\rho _cl\\propto r^{-k_\\rho ,cl}, a mean value of k ρ, cl = 1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, then we find a mean core density PL index of k ρ, c = 1.6. We repeat this analysis as a function of radius and derive the best-fitting PL plus uniform clump envelope model for each of the 42 core/clumps. The cores have typical masses of Mc ~ 100 M ⊙ and \\bar{\\Sigma }_c\\sim 0.1\\:g\\:cm^{-2}, and are embedded in clumps with comparable mass surface densities. We also consider Bonnor-Ebert density models, but these do not fit the observed Σ profiles as well as PLs. We conclude that massive starless cores exist and are well described by singular polytropic spheres. Their relatively low values of Σ and the fact that they are IR dark may imply that their fragmentation is inhibited by magnetic fields rather than radiative heating. Comparing to massive star-forming cores and clumps, there is tentative evidence for an evolution toward higher densities and steeper

  16. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    SciTech Connect

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R. E-mail: gz2n@virginia.edu

    2012-08-01

    We provide new, high-resolution A(K{sub s} ) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ({sup R}JCE{sup )} method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2' Multiplication-Sign 2' pixels and span some of the most severely extinguished regions of the Galaxy-those covered with Spitzer/IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256 Degree-Sign < l < 65 Degree-Sign and, in general, for |b| {<=} 1 Degree-Sign -1.{sup 0}5 (extending up to |b| {<=} 4 Degree-Sign in the bulge). Using RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to {approx}18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a 'total Galactic extinction' map-at minimum they provide high angular resolution maps of lower limits on A(K{sub s} ). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.

  17. The FIRST-2MASS Red Quasar Survey

    SciTech Connect

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-06-28

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.

  18. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  19. Rethinking Extinction

    PubMed Central

    Dunsmoor, Joseph E.; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A.

    2015-01-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior, and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  20. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories.

  1. The SDSS-2MASS-WISE 10-dimensional stellar colour locus

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.; Ivezić, Željko; Becker, Andrew C.; Ruan, John J.; Hunt-Walker, Nicholas M.; Covey, Kevin R.; Lewis, Alexia R.; AlSayyad, Yusra; Anderson, Lauren M.

    2014-06-01

    We present the fiducial main-sequence stellar locus traced by 10 photometric colours observed by Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey (2MASS), and Wide-field Infrared Survey Explorer (WISE). Median colours are determined using 1052 793 stars with r-band extinction less than 0.125. We use this locus to measure the dust extinction curve relative to the r band, which is consistent with previous measurements in the SDSS and 2MASS bands. The WISE band extinction coefficients are larger than predicted by standard extinction models. Using 13 lines of sight, we find variations in the extinction curve in H, Ks, and WISE bandpasses. Relative extinction decreases towards Galactic anticentre, in agreement with prior studies. Relative extinction increases with Galactic latitude, in contrast to previous observations. This indicates a universal mid-IR extinction law does not exist due to variations in dust grain size and chemistry with Galactocentric position. A preliminary search for outliers due to warm circumstellar dust is also presented, using stars with high signal-to-noise ratio in the W3 band. We find 199 such outliers, identified by excess emission in Ks - W3. Inspection of SDSS images for these outliers reveals a large number of contaminants due to nearby galaxies. Six sources appear to be genuine dust candidates, yielding a fraction of systems with infrared excess of 0.12 ± 0.05 per cent.

  2. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  3. Limited diversity of the interstellar extinction law

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.

    2012-01-01

    We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with U BV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds. Data from ANS and 2MASS Tables A4-A6 are available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/60

  4. Australian Extinctions

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massive extinctions of animals and the arrival of the first humans in ancient Australia--which occurred 45,000 to 55,000 years ago--may be linked. Researchers at the Carnegie Institution, University of Colorado, Australian National University, and Bates College believe that massive fires set by the first humans may have altered the ecosystem of…

  5. High-dynamic-range extinction mapping of infrared dark clouds. Dependence of density variance with sonic Mach number in molecular clouds

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Tan, J. C.

    2013-01-01

    Context. Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. Aims: We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. Methods: We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. Results: The presented column density mapping technique provides a very capable, temperature independent tool for mapping IRDCs over the column density range equivalent to AV ≃ 1-100 mag at a resolution of 2″. Using the data provided by the technique, we present the first direct measurement of the relationship between the column density dispersion, σN/⟨N⟩, and sonic Mach number, ℳs, in molecular clouds. We detect correlation between the variables with about 3-σ confidence. We derive the relation σN/⟨N⟩ ≈ (0.047 ± 0.016)ℳs, which is suggestive of the correlation coefficient between the volume density and sonic Mach number, σρ/⟨ρ⟩ ≈ (0.20-0.22+0.37)ℳs, in which the quoted uncertainties indicate the 3-σ range. When coupled with the results of recent numerical works, the existence of the correlation supports the picture of weak correlation between the magnetic field strength and density in molecular clouds (i.e., B ∝ ρ0.5). While our results remain suggestive because of the small number of clouds in our

  6. Impossible Extinction

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2003-03-01

    Every 225 million years the Earth, and all the life on it, completes one revolution around the Milky Way Galaxy. During this remarkable journey, life is influenced by calamitous changes. Comets and asteroids strike the surface of the Earth, stars explode, enormous volcanoes erupt, and, more recently, humans litter the planet with waste. Many animals and plants become extinct during the voyage, but humble microbes, simple creatures made of a single cell, survive this journey. This book takes a tour of the microbial world, from the coldest and deepest places on Earth to the hottest and highest, and witnesses some of the most catastrophic events that life can face. Impossible Extinction tells this remarkable story to the general reader by explaining how microbes have survived on Earth for over three billion years. Charles Cockell received his doctorate from the University of Oxford, and is currently a microbiologist with rhe Search for Extraterrestrial Intelligence Institute (SETI), based at the British Antarctic Survey in Cambridge, UK. His research focusses on astrobiology, life in the extremes and the human exploration of Mars. Cockell has been on expeditions to the Arctic, Antarctic, Mongolia, and in 1993 he piloted a modified insect-collecting ultra-light aircraft over the Indonesian rainforests. He is Chair of the Twenty-one Eleven Foundation for Exploration, a charity that supports expeditions that forge links between space exploration and environmentalism.

  7. Mapping

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1978-01-01

    Geologic mapping in the United States increased by about one-quarter in the past year. Examinations of mapping trends were in the following categories: (1) Mapping at scales of 1:100, 000; (2) Metric-scale base maps; (3) International mapping, and (4) Planetary mapping. (MA)

  8. Extinctions and Distances of Dark Clouds from Ugrijhk Photometry of Red Clump Giants: the North America and Pelican Nebulae Complex

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Laugalys, V.

    A possibility of applying 2MASS J, H, Ks, IPHAS r, i and MegaCam u, g photometry of red giants for determining distances to dark clouds is investigated. Red clump giants with a small admixture of G5--K1 and M2--M3 stars of the giant branch can be isolated and used in determining distances to separate clouds or spiral arms. Interstellar extinctions of background red giants can be also used for mapping dust surface density in the cloud.

  9. Cumulative frequency distribution of past species extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45

  10. Phanerozoic Biodiversity Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Bambach, Richard K.

    2006-05-01

    Recent analyses of Sepkoski's genus-level compendium show that only three events form a statistically separate class of high extinction intensities when only post-Early Ordovician intervals are considered, but geologists have called numerous events mass extinctions. Is this a conflict? A review of different methods of tabulating data from the Sepkoski database reveals 18 intervals during the Phanerozoic have peaks of both magnitude and rate of extinction that appear in each tabulating scheme. These intervals all fit Sepkoski's definition of mass extinction. However, they vary widely in timing and effect of extinction, demonstrating that mass extinctions are not a homogeneous group of events. No consensus has been reached on the kill mechanism for any marine mass extinction. In fact, adequate data on timing in ecologic, rather than geologic, time and on geographic and environmental distribution of extinction have not yet been systematically compiled for any extinction event.

  11. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  12. Inferring modern extinction risk from fossil occupancy trajectories

    NASA Astrophysics Data System (ADS)

    Kiessling, Wolfgang; Kocsis, Adam

    2016-04-01

    Besides providing information on ancient mass extinctions and intrinsic extinction risk, the fossil record may also provide useful data for assessing the extinction risk of extant species. Here we analyse the palaeontological trajectories of geographical occupancy in extant marine species to identify species that have been declining over geological time scales and may thus be more prone to extinction than expanding species. The slopes of these occupancy trajectories are used to categorize evolutionary extinction risk. Mapping the risk at global scale we find that low to mid latitude regions are at significantly higher risk than high latitude regions. We also find a moderate correspondence between high extinction risk on geological time scales and modern extinction risk for reef corals and propose to add fossil data to the assessment of current extinction risk, especially for the notoriously data deficient marine taxa.

  13. Is extinction forever?

    PubMed

    Smith-Patten, Brenda D; Bridge, Eli S; Crawford, Priscilla H C; Hough, Daniel J; Kelly, Jeffrey F; Patten, Michael A

    2015-05-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation-extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented.

  14. Is extinction forever?

    PubMed Central

    Bridge, Eli S.; Crawford, Priscilla H. C.; Hough, Daniel J.; Kelly, Jeffrey F.; Patten, Michael A.

    2015-01-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation—extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  15. Bimodal extinction without cross-modal extinction.

    PubMed Central

    Inhoff, A W; Rafal, R D; Posner, M J

    1992-01-01

    Three patients with unilateral neurological injury were clinically examined. All showed consistent unilateral extinction in the tactile and visual modalities on simultaneous intramodal stimulation. There was virtually no evidence for cross-modal extinction, however, so that contralateral stimulation of one modality would have extinguished perception of ipsilateral stimuli in the other modality. It is concluded that the attentional system controlling the encoding of tactile and visual stimuli is not unified across the two sensory domains. PMID:1548496

  16. Gradual extinction reduces reinstatement

    PubMed Central

    Shiban, Youssef; Wittmann, Jasmin; Weißinger, Mara; Mühlberger, Andreas

    2015-01-01

    The current study investigated whether gradually reducing the frequency of aversive stimuli during extinction can prevent the return of fear. Thirty-one participants of a three-stage procedure (acquisition, extinction and a reinstatement test on day 2) were randomly assigned to a standard extinction (SE) and gradual extinction (GE) procedure. The two groups differed only in the extinction procedure. While the SE group ran through a regular extinction process without any negative events, the frequency of the aversive stimuli during the extinction phase was gradually reduced for the GE group. The unconditioned stimulus (US) was an air blast (5 bar, 10 ms). A spider and a scorpion were used as conditioned stimuli (CS). The outcome variables were contingency ratings and physiological measures (skin conductance response, SCR and startle response). There were no differences found between the two groups for the acquisition and extinction phases concerning contingency ratings, SCR, or startle response. GE compared to SE significantly reduced the return of fear in the reinstatement test for the startle response but not for SCR or contingency ratings. This study was successful in translating the findings in rodent to humans. The results suggest that the GE process is suitable for increasing the efficacy of fear extinction. PMID:26441581

  17. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  18. On the Homogeneity of the Extinction Law in our Galaxy

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Galazutdinov, G.; Patriarchi, P.; Krełowski, J.

    2006-06-01

    We analyze the extinction law towards several B1V stars -- members of our Galaxy, searching for possible discrepancies from the galactic average extinction curve. Our photometric data allow to build extinction curves in a very broad range: from extreme UV till infrared. Two--colour diagrams, based on the collected photometric data from the ANS UV satellite, published UBV measurements and on the infrared 2MASS data of the selected stars, are constructed. Slopes of the fitted straight lines are used to build the average extinction curve and to search for discrepant objects. The selected stars have also been observed spectroscopically from the Terskol and ESO Observatories; these spectra allow to check their Sp/L's. The spectra of only about 30% of the initially selected objects resemble closely that of HD144470, considered as the standard of B1 V type. Other spectra either show some emission features or belong clearly to another spectral types. They are not used to build the extinction curve. Two-colour diagrams, constructed for the selected B1 V stars, showing no emission stellar features, prove that the interstellar extinction law is homogeneous in the Galaxy. Both the shape of the curve and the total--to--selective extinction ratio do not differ from the galactic average and the canonical value (3.1) respectively. The circumstellar emissions usually cause some discrepancies from the average interstellar extinction law; the discrepancies observed in the extraterrestrial ultraviolet, usually follow some misclassifications.

  19. Beliefs about Human Extinction

    SciTech Connect

    Tonn, Bruce Edward

    2009-11-01

    This paper presents the results of a web-based survey about futures issues. Among many questions, respondents were asked whether they believe humans will become extinct. Forty-five percent of the almost 600 respondents believe that humans will become extinct. Many of those holding this believe felt that humans could become extinct within 500-1000 years. Others estimated extinction 5000 or more years into the future. A logistic regression model was estimated to explore the bases for this belief. It was found that people who describe themselves a secular are more likely to hold this belief than people who describe themselves as being Protestant. Older respondents and those who believe that humans have little control over their future also hold this belief. In addition, people who are more apt to think about the future and are better able to imagine potential futures tend to also believe that humans will become extinct.

  20. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  1. Is extinction age dependent?

    USGS Publications Warehouse

    Doran, N.A.; Arnold, A.J.; Parker, W.C.; Huffer, F.W.

    2006-01-01

    Age-dependent extinction is an observation with important biological implications. Van Valen's Red Queen hypothesis triggered three decades of research testing its primary implication: that age is independent of extinction. In contrast to this, later studies with species-level data have indicated the possible presence of age dependence. Since the formulation of the Red Queen hypothesis, more powerful tests of survivorship models have been developed. This is the first report of the application of the Cox Proportional Hazards model to paleontological data. Planktonic foraminiferal morphospecies allow the taxonomic and precise stratigraphic resolution necessary for the Cox model. As a whole, planktonic foraminiferal morphospecies clearly show age-dependent extinction. In particular, the effect is attributable to the presence of shorter-ranged species (range < 4 myr) following extinction events. These shorter-ranged species also possess tests with unique morphological architecture. The morphological differences are probably epiphenomena of underlying developmental and heterochronic processes of shorter-ranged species that survived various extinction events. Extinction survivors carry developmental and morphological characteristics into postextinction recovery times, and this sets them apart from species populations established independently of extinction events. Copyright ?? 2006, SEPM (Society for Sedimentary Geology).

  2. Extinction and near-extinction instability of non-premixed tubular flames

    SciTech Connect

    Hu, Shengteng; Pitz, Robert W.; Yu, Wang

    2009-01-15

    Tubular non-premixed flames are formed by an opposed tubular burner, a new tool to study the effects of curvature on extinction and flame instability of non-premixed flames. Extinction of the opposed tubular flames generated by burning diluted H{sub 2}, CH{sub 4} or C{sub 3}H{sub 8} with air is investigated for both concave and convex curvature. To examine the effects of curvature on extinction, the critical fuel dilution ratios at extinction are measured at various stretch rates, initial mixture strengths and flame curvature for fuels diluted in N{sub 2}, He, Ar or CO{sub 2}. In addition, the onset conditions of the cellular instability are mapped as a function of stretch rates, initial mixture strengths, and flame curvature. For fuel mixtures with Lewis numbers much less than unity, such as H{sub 2}/N{sub 2}, concave flame curvature towards the fuel suppresses cellular instabilities. (author)

  3. THE STRUCTURE OF 2MASS GALAXY CLUSTERS

    SciTech Connect

    Blackburne, Jeffrey A.; Kochanek, Christopher S.

    2012-01-01

    We use a sample of galaxies from the Two Micron All Sky Survey Extended Source Catalog to refine a matched filter method of finding galaxy clusters that takes into account each galaxy's position, magnitude, and redshift if available. The matched filter postulates a radial density profile, luminosity function, and line-of-sight velocity distribution for cluster galaxies. We use this method to search for clusters in the galaxy catalog, which is complete to an extinction-corrected K-band magnitude of 13.25 and has spectroscopic redshifts for roughly 40% of the galaxies, including nearly all brighter than K = 11.25. We then use a stacking analysis to determine the average luminosity function, radial distribution, and velocity distribution of cluster galaxies in several richness classes, and use the results to update the parameters of the matched filter before repeating the cluster search. We also investigate the correlations between a cluster's richness and its velocity dispersion and core radius using these relations to refine priors that are applied during the cluster search process. After the second cluster search iteration, we repeat the stacking analysis. We find a cluster galaxy luminosity function that fits a Schechter form, with parameters M{sub K*} - 5log h = -23.64 {+-} 0.04 and {alpha} = -1.07 {+-} 0.03. We can achieve a slightly better fit to our luminosity function by adding a Gaussian component on the bright end to represent the brightest cluster galaxy population. The radial number density profile of galaxies closely matches a projected Navarro-Frenk-White profile at intermediate radii, with deviations at small radii due to well-known cluster centering issues and outside the virial radius due to correlated structure. The velocity distributions are Gaussian in shape, with velocity dispersions that correlate strongly with richness.

  4. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  5. MID-INFRARED EXTINCTION AND ITS VARIATION WITH GALACTIC LONGITUDE

    SciTech Connect

    Gao Jian; Jiang, B. W.; Li Aigen E-mail: bjiang@bnu.edu.c

    2009-12-10

    Based on the data obtained from the Spitzer/Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIPMSE) Legacy Program and the Two Micron All Sky Survey (2MASS) project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8], and [8.0] mum, relative to the 2MASS K{sub s} band (at 2.16 mum) for 131 GLIPMSE fields along the Galactic plane within |l| <= 65 deg., using red giants and red clump giants as tracers. As a whole, the mean extinction in the IRAC bands (normalized to the 2MASS K{sub s} band), A{sub [3.6]}/A{sub K{sub s}}approx0.63+-0.01, A{sub [4.5]}/A{sub K{sub s}}approx0.57+-0.03, A{sub [5.8]}/A{sub K{sub s}}approx0.49+-0.03, A{sub [8.0]}/A{sub K{sub s}}approx0.55+-0.03, exhibits little variation with wavelength (i.e., the extinction is somewhat flat or gray). This is consistent with previous studies and agrees with that predicted from the standard interstellar grain model for R{sub V} = 5.5 by Weingartner and Draine. As far as individual sightline is concerned, however, the wavelength dependence of the mid-infrared interstellar extinction A{sub l}ambda/A{sub K{sub s}} varies from one sightline to another, suggesting that there may not exist a 'universal' IR extinction law. We, for the first time, demonstrate the existence of systematic variations of extinction with Galactic longitude which appears to correlate with the locations of spiral arms as well as with the variation of the far-infrared luminosity of interstellar dust.

  6. Extinction with multiple excitors

    PubMed Central

    McConnell, Bridget L.; Miguez, Gonzalo; Miller, Ralph R.

    2012-01-01

    Four conditioned suppression experiments with rats, using an ABC renewal design, investigated the effects of compounding the target conditioned excitor with additional, nontarget conditioned excitors during extinction. Experiment 1 showed stronger extinction, as evidenced by less renewal, when the target excitor was extinguished in compound with a second excitor, relative to when it was extinguished with associatively neutral stimuli. Critically, this deepened extinction effect was attenuated (i.e., more renewal occurred) when a third excitor was added during extinction training. This novel demonstration contradicts the predictions of associative learning models based on total error reduction, but it is explicable in terms of a counteraction effect within the framework of the extended comparator hypothesis. The attenuated deepened extinction effect was replicated in Experiments 2a and 3, which also showed that pretraining consisting of weakening the association between the two additional excitors (Experiments 2a and 2b) or weakening the association between one of the additional excitors and the unconditioned stimulus (Experiment 3) attenuated the counteraction effect, thereby resulting in a decrease in responding to the target excitor. These results suggest that more than simple total error reduction determines responding after extinction. PMID:23055103

  7. Extinction of oscillating populations

    NASA Astrophysics Data System (ADS)

    Smith, Naftali R.; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation.

  8. Extinction of oscillating populations.

    PubMed

    Smith, Naftali R; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation. PMID:27078294

  9. Determining the extragalactic extinction law with SALT

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Brosch, Noah; Kniazev, Alexei Y.; Buckley, David A. H.; O'Donoghue, Darragh; Hashimoto, Yas; Loaring, Nicola; Romero-Colmenero, Encarni; Still, Martin; Sefako, Ramotholo; Väisänen, Petri

    2008-11-01

    We present CCD imaging observations of early-type galaxies with dark lanes obtained with the Southern African Large Telescope (SALT) during its performance-verification phase. The observations were performed in six spectral bands that span the spectral range from the near-ultraviolet atmospheric cut-off to the near-infrared. We derive the extinction law by the extragalactic dust in the dark lanes in the spectral range 1.11 < λ-1 < 2.94μm-1 by fitting model galaxies to the unextinguished parts of the image, and subtracting from these the actual images. This procedure allows the derivation, with reasonably high signal-to-noise ratio, of the extinction in each spectral band we used for each resolution element of the image. We also introduce an alternative method to derive the extinction values by comparing various colour-index maps under the assumption of negligible intrinsic colour gradients in these galaxies. We than compare the results obtained using these two methods. We compare the total-to-selective extinction derived for these galaxies with previously obtained results and with similar extinction values of Milky Way dust to derive conclusions about the properties of extragalactic dust in different objects and conditions. We find that the extinction curves run parallel to the Galactic extinction curve, which implies that the properties of dust in the extragalactic environment are similar to those of the Milky Way, despite our original expectations. The ratio of the total V-band extinction to the selective extinction between the V and B bands is derived for each galaxy with an average of 2.82 +/- 0.38, compared to a canonical value of 3.1 for the Milky Way. The similar values imply that galaxies with well-defined dark lanes have characteristic dust grain sizes similar to those of Galactic dust. We use total optical extinction values to estimate the dust mass for each galaxy, compare these with dust masses derived from IRAS measurements, and find them in the

  10. The Gaia-ESO Survey: Tracing interstellar extinction

    NASA Astrophysics Data System (ADS)

    Schultheis, M.; Kordopatis, G.; Recio-Blanco, A.; de Laverny, P.; Hill, V.; Gilmore, G.; Alfaro, E. J.; Costado, M. T.; Bensby, T.; Damiani, F.; Feltzing, S.; Flaccomio, E.; Lardo, C.; Jofre, P.; Prisinzano, L.; Zaggia, S.; Jimenez-Esteban, F.; Morbidelli, L.; Lanzafame, A. C.; Hourihane, A.; Worley, C.; Francois, P.

    2015-05-01

    Context. Large spectroscopic surveys have in recent years enabled computing three-dimensional interstellar extinction maps thanks to the accurate stellar atmospheric parameters and line-of-sight distances these surveys provide. Interstellar extinction maps are complementary to 3D maps extracted from photometry and allow a more thorough studying of the dust properties. Aims: Our goal is to use the high-resolution spectroscopic survey Gaia-ESO to obtain with a good distance resolution the interstellar extinction and its dependency as a function of the environment and the Galactocentric position. Methods: We used the stellar atmospheric parameters of more than 5000 stars, obtained from the Gaia-ESO survey second internal data release, and combined them with optical (SDSS) and near-infrared (VISTA) photometry as well as different sets of theoretical stellar isochrones to calculate line-of-sight extinction and distances. The extinction coefficients were then compared with the literature to discuss their dependency on the stellar parameters and position in the Galaxy. Results: Within the errors of our method, our work does not show any dependence of the interstellar extinction coefficient on the stellar atmospheric parameters. We find no evidence of a variation of E(J - H) /E(J - K) with the angle from the Galactic centre or with Galactocentric distance. This suggests that we are dealing with a uniform extinction law in the SDSS ugriz bands and the near-IR JHKs bands. Therefore, extinction maps built from mean colour-excesses that assume a constant extinction coefficient can be used without introducing any systematic errors. Based on observations collected with the FLAMES spectrograph at the VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey, programme 188.B-300.Appendix A is available in electronic form at http://www.aanda.org

  11. Hybridization and extinction.

    PubMed

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities. PMID:27468307

  12. Stress and Fear Extinction.

    PubMed

    Maren, Stephen; Holmes, Andrew

    2016-01-01

    Stress has a critical role in the development and expression of many psychiatric disorders, and is a defining feature of posttraumatic stress disorder (PTSD). Stress also limits the efficacy of behavioral therapies aimed at limiting pathological fear, such as exposure therapy. Here we examine emerging evidence that stress impairs recovery from trauma by impairing fear extinction, a form of learning thought to underlie the suppression of trauma-related fear memories. We describe the major structural and functional abnormalities in brain regions that are particularly vulnerable to stress, including the amygdala, prefrontal cortex, and hippocampus, which may underlie stress-induced impairments in extinction. We also discuss some of the stress-induced neurochemical and molecular alterations in these brain regions that are associated with extinction deficits, and the potential for targeting these changes to prevent or reverse impaired extinction. A better understanding of the neurobiological basis of stress effects on extinction promises to yield novel approaches to improving therapeutic outcomes for PTSD and other anxiety and trauma-related disorders.

  13. Biological extinction in earth history

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1986-01-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  14. Paleontological baselines for evaluating extinction risk in the modern oceans

    NASA Astrophysics Data System (ADS)

    Finnegan, Seth; Anderson, Sean C.; Harnik, Paul G.; Simpson, Carl; Tittensor, Derek P.; Byrnes, Jarrett E.; Finkel, Zoe V.; Lindberg, David R.; Liow, Lee Hsiang; Lockwood, Rowan; Lotze, Heike K.; McClain, Craig R.; McGuire, Jenny L.; O'Dea, Aaron; Pandolfi, John M.

    2015-05-01

    Marine taxa are threatened by anthropogenic impacts, but knowledge of their extinction vulnerabilities is limited. The fossil record provides rich information on past extinctions that can help predict biotic responses. We show that over 23 million years, taxonomic membership and geographic range size consistently explain a large proportion of extinction risk variation in six major taxonomic groups. We assess intrinsic risk—extinction risk predicted by paleontologically calibrated models—for modern genera in these groups. Mapping the geographic distribution of these genera identifies coastal biogeographic provinces where fauna with high intrinsic risk are strongly affected by human activity or climate change. Such regions are disproportionately in the tropics, raising the possibility that these ecosystems may be particularly vulnerable to future extinctions. Intrinsic risk provides a prehuman baseline for considering current threats to marine biodiversity.

  15. Species extinction mires ecosystem

    SciTech Connect

    Holzman, D.

    1990-03-26

    Extinction is normal in the evolution of life, but amphibians, insects, birds and mammals are vanishing at an alarming pace. While habitat destruction, overexploitation and pollution are among the main causes, some disappearances cannot be explained. The extinction problem among amphibians mirrors the general, worldwide phenomenon. A synergism of insults may be responsible. Chance events such as a dry year might occasionally clean out a pond. But a larger lake nearby would replenish it. Now acid pollution adds to the ponds' burden while stocking of amphibian-eating sport fish in the lake - which happens even in natural parks - would destroy the source of replenishment. Some fear that extinctions ultimately could destroy nature's fabric.

  16. Controversy over mass extinctions

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The notion that mass extinctions of species occur at 26-million-year (m.y.) intervals received wide attention in the scientific and popular press a little over a year ago. According to the theory, some sort of periodic extra-terrestrial event had led to the episodes of extinction; comet showers brought on by any of a variety of causes were frequently offered as one explanation.Now the idea is back in the news, this time drawing criticism. An article published in the June 20 issue of Nature criticizes the original analysis, by David Raup and John Sepkoski of the University of Chicago, on the grounds that their data base was overly pared down and that they used a biased definition for mass extinction. Raup and his supporters say that papers now in press will answer the objections.

  17. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  18. Extinction from a paleontological perspective

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.

  19. Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Kovács, András; Szapudi, István

    2015-04-01

    We combine photometric information of the Wide-Field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey (2MASS) all-sky infrared data bases, and demonstrate how to produce clean and complete galaxy catalogues for future analyses. Adding 2MASS colours to WISE photometry improves star-galaxy separation efficiency substantially at the expense of losing a small fraction of the galaxies. We find that 93 per cent of the WISE objects within W1 < 15.2 mag have a 2MASS match, and that a class of supervised machine learning algorithms, support vector machines (SVM), are efficient classifiers of objects in our multicolour data set. We constructed a training set from the Sloan Digital Sky Survey PhotoObj table with known star-galaxy separation, and determined redshift distribution of our sample from the Galaxy and Mass Assembly spectroscopic survey. Varying the combination of photometric parameters input into our algorithm we show that W1WISE - J2MASS is a simple and effective star-galaxy separator, capable of producing results comparable to the multidimensional SVM classification. We present a detailed description of our star-galaxy separation methods, and characterize the robustness of our tools in terms of contamination, completeness, and accuracy. We explore systematics of the full sky WISE-2MASS galaxy map, such as contamination from moon glow. We show that the homogeneity of the full sky galaxy map is improved by an additional J2MASS < 16.5 mag flux limit. The all-sky galaxy catalogue we present in this paper covers 21 200 deg2 with dusty regions masked out, and has an estimated stellar contamination of 1.2 per cent and completeness of 70.1 per cent among 2.4 million galaxies with zmed ≈ 0.14. WISE-2MASS galaxy maps with well controlled stellar contamination will be useful for spatial statistical analyses, including cross-correlations with other cosmological random fields, such as the cosmic microwave background. The same techniques also yield a

  20. Dark clouds in the vicinity of the emission nebula Sh2-205: interstellar extinction and distances

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.; Černis, K.

    2016-05-01

    Results of CCD photometry in the seven-colour Vilnius system for 922 stars down to V = 16-17 mag and for 302 stars down to 19.5 mag are used to investigate the interstellar extinction in an area of 1.5 square degrees in the direction of the P7 and P8 clumps of the dark cloud TGU H942, which lies in the vicinity of the emission nebula Sh2-205. In addition, we used 662 red clump giants that were identified by combining the 2MASS and WISE infrared surveys. The resulting plots of extinction versus distance were compared with previous results of the distribution and radial velocities of CO clouds and with dust maps in different passbands of the IRAS and WISE orbiting observatories. A possible distance of the front edge of the nearest cloud layer at 130 ± 10 pc was found. This dust layer probably covers all the investigated area, which results in extinction of up to 1.8 mag in some directions. A second rise of the extinction seems to be present at 500-600 pc. Within this layer, the clumps P7 and P8 of the dust cloud TGU H942, the Sh2-205 emission nebula, and the infrared cluster FSR 655 are probably located. In the direction of these clouds, we identified 88 young stellar objects and a new infrared cluster. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A21

  1. Mechanisms of fear extinction.

    PubMed

    Myers, K M; Davis, M

    2007-02-01

    Excessive fear and anxiety are hallmarks of a variety of disabling anxiety disorders that affect millions of people throughout the world. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear and anxiety is attracting increasing interest in the research community. In the laboratory, fear inhibition most often is studied through a procedure in which a previously fear conditioned organism is exposed to a fear-eliciting cue in the absence of any aversive event. This procedure results in a decline in conditioned fear responses that is attributed to a process called fear extinction. Extensive empirical work by behavioral psychologists has revealed basic behavioral characteristics of extinction, and theoretical accounts have emphasized extinction as a form of inhibitory learning as opposed to an erasure of acquired fear. Guided by this work, neuroscientists have begun to dissect the neural mechanisms involved, including the regions in which extinction-related plasticity occurs and the cellular and molecular processes that are engaged. The present paper will cover behavioral, theoretical and neurobiological work, and will conclude with a discussion of clinical implications.

  2. Context, Learning, and Extinction

    ERIC Educational Resources Information Center

    Gershman, Samuel J.; Blei, David M.; Niv, Yael

    2010-01-01

    A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…

  3. Unexpectedly many extinct hominins.

    PubMed

    Bokma, Folmer; van den Brink, Valentijn; Stadler, Tanja

    2012-09-01

    Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens. PMID:22946817

  4. Biogeography and extinction

    SciTech Connect

    Jablonski, D.

    1985-01-01

    The geographic ranges of species and clades, and the deployment of those clades among biogeographic provinces, are important determinants of rates and patterns of extinction. Studies of Late Cretaceous mollusks of the Gulf and Atlantic Coastal Plain confirm that species duration is closely correlated with geographic range during times of normal, background extinction. When species that originate in the last 2 myr of the Cretaceous, the correlation increases significantly. The fact that even these truncated species frequently attained broad geographic ranges indicates that during background times duration is a function of geographic range and not vice versa. However, during the end-Cretaceous mass extinction, it is clade geographic range and not the within-province ranges of its constituent species that determines survivorship: about 55% of the widespread genera but only 12% of the endemic genera survive, regardless of the ranges of their individual species. Thus, clade geographic range is an irreducible property, with effects decoupled from species-level or organismic traits that determine species' geographic ranges. Clades with tropical distributions suffer disproportionately, again independent of species' geographic range magnitudes. Survivorship of taxa or morphologies during mass extinctions may have little to do with adaptation at the organismic or even species level, but depends at least in part on clade-level traits that are less important during background times.

  5. Cognitive Processes in Extinction

    ERIC Educational Resources Information Center

    Lovibond, Peter F.

    2004-01-01

    Human conditioning research shows that learning is closely related to consciously available contingency knowledge, requires attentional resources, and is influenced by language. This research suggests a cognitive model in which extinction consists of changes in contingency beliefs in long-term memory. Laboratory and clinical evidence on extinction…

  6. Extinction times in experimental populations.

    PubMed

    Drake, John M

    2006-09-01

    Predicting population extinctions is a key element of quantitative conservation biology and population ecology. Although stochastic population theories have long been used to obtain theoretical distributions of population extinction times, model-based predictions have rarely been tested. Here I report results from a quantitative analysis of extinction time in 281 experimental populations of water fleas (Daphnia magna) in variable environments. To my knowledge, this is the first quantitative estimate of the shape of the distribution of population extinction times based on extinction data for any species. The finding that the distribution of population extinction times was extraordinarily peaked is consistent with theoretical predictions for density-independent populations, but inconsistent with predictions for density-dependent populations. The tail of the extinction time distribution was not exponential. These results imply that our current theories of extinction are inadequate. Future work should focus on how demographic stochasticity scales with population size and effects of nonrandom variable environments on population growth and decline.

  7. Ecology: Dynamics of Indirect Extinction.

    PubMed

    Montoya, Jose M

    2015-12-01

    The experimental identification of the mechanism by which extinctions of predators trigger further predator extinctions emphasizes the role of indirect effects between species in disturbed ecosystems. It also has deep consequences for the hidden magnitude of the current biodiversity crisis.

  8. Mass Extinctions Past and Present.

    ERIC Educational Resources Information Center

    Allmon, Warren Douglas

    1987-01-01

    Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)

  9. Protostars at Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Lada, Charles J.

    2016-07-01

    In the list of young stellar objects (YSOs) compiled by Megeath et al. for the Orion A molecular cloud, only 44 out of 1208 sources found projected onto low extinction ({A}{{K}}\\lt 0.8 mag) gas are identified as protostars. These objects are puzzling because protostars are not typically expected to be associated with extended low extinction material. Here, we use high resolution extinction maps generated from Herschel data, optical/infrared and Spitzer Space Telescope photometry and spectroscopy of the low extinction protostellar candidate sources to determine if they are likely true protostellar sources or contaminants. Out of 44 candidate objects, we determine that 10 sources are likely protostars, with the rest being more evolved YSOs (18), galaxies (4), false detections of nebulosity and cloud edges (9), or real sources for which more data are required to ascertain their nature (3). We find none of the confirmed protostars to be associated with recognizable dense cores and we briefly discuss possible origins for these orphaned objects.

  10. Herschel-Planck dust optical depth and column density maps. II. Perseus

    NASA Astrophysics Data System (ADS)

    Zari, Eleonora; Lombardi, Marco; Alves, João; Lada, Charles J.; Bouy, Hervé

    2016-03-01

    We present optical depth and temperature maps of the Perseus molecular cloud, obtained combining dust emission data from the Herschel and Planck satellites and 2MASS/NIR dust extinction maps. The maps have a resolution of 36 arcsec in the Herschel regions, and of 5 arcmin elsewhere. The dynamic range of the optical depth map ranges from 1 × 10-2 mag up to 20 mag in the equivalent K-band extinction. We also evaluate the ratio between the 2.2 μm extinction coefficient and the 850 μm opacity. The value we obtain is close to the one found in the Orion B molecular cloud. We show that the cumulative and the differential area function of the data (which is proportional to the probability distribution function of the cloud column density) follow power laws with an index of respectively ≃-2, and ≃-3. We use WISE data to improve current YSO catalogs based mostly on Spitzer data and we build an up-to-date selection of Class I/0 objects. Using this selection, we evaluate the local Schmidt law, ΣYSO ∝ Σgasβ, showing that β = 2.4 ± 0.6. Finally, we show that the area-extinction relation is important for determining the star-formation rate in the cloud, which is in agreement with other recent works. The optical depth and temperature maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A106

  11. Discreteness induced extinction

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira; da Silva, Linaena Méricy

    2015-11-01

    Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.

  12. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  13. Deriving extinction laws with O stars: from the IR to the UV

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    2015-05-01

    We have recently derived a family of extinction laws for 30 Doradus that provides better fits to the optical photometry of obscured stars in the Galaxy and the LMC. Simultaneously, we are extending our Galactic O-Star Spectroscopic Survey ({http://adsabs.harvard.edu/abs/2011hsa6.conf..467M}{GOSSS}) to fainter, more extinguished stars to obtain accurate spectral types for massive stars with more than 6 magnitudes of V-band extinction. I have combined both lines of research with 2MASS, WISE, and Spitzer photometry to obtain the 1-10 micron extinction law for O stars in the solar neighborhood. I present these results and compare them with the extinction laws in the same wavelength range derived from late-type stars and H II regions. I also discuss plans to extend the newly derived optical-IR extinction laws to the UV.

  14. Variable stars in the VVV globular clusters. I. 2MASS-GC 02 and Terzan 10

    SciTech Connect

    Alonso-García, Javier; Dékány, István; Catelan, Márcio; Ramos, Rodrigo Contreras; Gran, Felipe; Leyton, Paul; Minniti, Dante; Amigo, Pía E-mail: idekany@astro.puc.cl E-mail: rcontrer@astro.puc.cl E-mail: pia.amigo@uv.cl E-mail: dante@astrofisica.cl

    2015-03-01

    The VISTA Variables in the Vía Láctea (VVV) ESO Public Survey is opening a new window to study inner Galactic globular clusters (GCs) using their variable stars. These GCs have been neglected in the past due to the difficulties caused by the presence of elevated extinction and high field stellar densities in their lines of sight. However, the discovery and study of any present variables in these clusters, especially RR Lyrae stars, can help to greatly improve the accuracy of their physical parameters. It can also help to shed some light on the questions raised by the intriguing Oosterhoff dichotomy in the Galactic GC system. In a series of papers we plan to explore variable stars in the GCs falling inside the field of the VVV survey. In this first paper, we search for and study the variables present in two highly reddened, moderately metal-poor, faint, inner Galactic GCs: 2MASS-GC 02 and Terzan 10. We report the discovery of sizable populations of RR Lyrae stars in both GCs. We use near-infrared period–luminosity relations to determine the color excess of each RR Lyrae star, from which we obtain both accurate distances to the GCs and the ratios of the selective-to-total extinction in their directions. We find the extinction toward both clusters to be elevated, non-standard, and highly differential. We also find both clusters to be closer to the Galactic center than previously thought, with Terzan 10 being on the far side of the Galactic bulge. Finally, we discuss their Oosterhoff properties, and conclude that both clusters stand out from the dichotomy followed by most Galactic GCs.

  15. Distance and extinction determination for APOGEE stars with Bayesian method

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Shi, Jianrong; Pan, Kaike; Chen, Bingqiu; Zhao, Yongheng; Wicker, James

    2016-08-01

    Using a Bayesian technology, we derived distances and extinctions for over 100 000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from Two Micron All-Sky Survey, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC and Strömgren survey for Asteroseismology and Galactic Archaeology catalogues. These comparisons covers four orders of magnitude in the distance scale from 0.02 to 20 kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2 per cent to +3.6 per cent, and the dispersion ranges from 15 per cent to 25 per cent. The extinctions towards all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Colour Excess (RJCE) method, Gonzalez's 2D extinction map, as well as 3D extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low log g.

  16. Network model of fear extinction and renewal functional pathways.

    PubMed

    Bruchey, A K; Shumake, J; Gonzalez-Lima, F

    2007-03-16

    The objective of this study was to examine the opposite behavior responses of conditioned fear extinction and renewal and how they are represented by network interactions between brain regions. This work is a continuation of a series of brain mapping studies of various inhibitory phenomena, including conditioned inhibition, blocking and extinction. A tone-footshock fear conditioning paradigm in rats was used, followed by extinction and testing in two different contexts. Fluorodeoxyglucose autoradiography was used to compare mean regional brain activity and interregional correlations resulting from the presentation of the extinguished tone in or out of the extinction context. A confirmatory structural equation model, constructed from a neural network proposed to underlie fear extinction, showed a reversal from negative regional interactions during extinction recall to positive interactions during fear renewal. Additionally, the magnitude of direct effects was different between groups, reflecting a change in the strength of the influences conveyed through those pathways. The results suggest that the extinguished tone encountered outside of the extinction context recruits auditory and limbic areas, which in turn influence the interactions of the infralimbic cortex with the amygdala and ventrolateral periaqueductal gray. Interestingly, the results also suggest that two independent pathways influence conditioned freezing: one from the central amygdaloid nucleus and the other from the infralimbic cortex directly to the ventrolateral periaqueductal gray.

  17. Extinction in human fear conditioning.

    PubMed

    Hermans, Dirk; Craske, Michelle G; Mineka, Susan; Lovibond, Peter F

    2006-08-15

    Although most extinction research is conducted in animal laboratories, the study of extinction learning in human fear conditioning has gained increasing attention over the last decade. The most important findings from human fear extinction are reviewed in this article. Specifically, we review experimental investigations of the impact of conditioned inhibitors, conditioned exciters, context renewal, and reinstatement on fear extinction in human samples. We discuss data from laboratory studies of the extinction of aversively conditioned stimuli, as well as results from experimental clinical work with fearful or anxious individuals. We present directions for future research, in particular the need for further investigation of differences between animal and human conditioning outcomes, and research examining the role of both automatic and higher-order cognitive processes in human conditioning and extinction.

  18. Extinction events can accelerate evolution.

    PubMed

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  19. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  20. The impact of mass extinctions

    NASA Technical Reports Server (NTRS)

    Flessa, Karl W.

    1988-01-01

    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction.

  1. Periodicity in marine extinction events

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.; Raup, David M.

    1986-01-01

    The periodicity of extinction events is examined in detail. In particular, the temporal distribution of specific, identifiable extinction events is analyzed. The nature and limitations of the data base on the global fossil record is discussed in order to establish limits of resolution in statistical analyses. Peaks in extinction intensity which appear to differ significantly from background levels are considered, and new analyses of the temporal distribution of these peaks are presented. Finally, some possible causes of periodicity and of interdependence among extinction events over the last quarter billion years of earth history are examined.

  2. The pharmacology of extinction.

    PubMed

    Huxtable, R J

    1992-08-01

    It is impossible to predict what compounds of pharmacological interest may be present in an unexamined species. The extinction of such species may result, therefore, in the loss of therapeutically significant compounds. The fact that science will never know what has been lost does not lessen the significance of the loss. A number of species are discussed to exemplify the potential loss. Ginkgo biloba is an ancient plant, apparently saved from a natural extinction by human intervention. From this tree, the ginkgolides have been isolated. These are potent inhibitors of platelet activating factor and hold promise in the treatment of cerebral ischemia and brain edema. Two species, the tree Taxus brevifolia and the leech Hirudo medicinalis, are threatened as a result of human activity. Both have recently yielded complex compounds of therapeutic importance. The antitumor agent, taxol, is obtained from T. brevifolia and the thrombin inhibitor, hirudin, is found in H. medicinalis. Catharanthus roseus, source of the anticancer agents vincristine and vinblastine, although not threatened, derives from a largely unexamined but severely stressed ecosystem of some 5000 plant species. In other examples, ethnobotanical knowledge of certain plants may be lost while the species survive, as exemplified by the suppression of the Aztec ethnobotany of Mesoamerica by the invading Spanish. Finally, the fallacy of the 'snail darter syndrome', where species may be viewed as too insignificant to worry about, is exposed by consideration of the pharmacological activities of a sea hare (a shell-less marine mollusc) and various leeches.

  3. Mass Extinctions' Selectivity on the Diversity of Marine Modes of Life

    NASA Astrophysics Data System (ADS)

    Park, C.; Saux, J.; Heim, N.; Payne, J.

    2015-12-01

    A mass extinction is defined by a substantial increase in extinction rates, resulting in a loss of biological and ecological diversity. However, a mass extinction's taxonomic severity does not always correlate with its ecological severity (Droser et al. 2009). Using the fossil record, one can reconstruct the relationships between extinct biota and past environments through extrapolating evidence of an organism's feeding, tiering, and motility based on its functional morphology and analogies with its extant relatives. We used Bush, Bambach, and Daly's conceptual model of marine ecospace to study marine modes of life. We looked at the number of different ecological modes over time, and observed that this curve roughly parallels Sepkoski's generic diversity over time in that the number of ecological modes generally increases over time. Then we measured the selectivity of each mass extinction in log-odds using logistic regression. Here we compiled a "heat map" of the selectivity of 5 major mass extinctions based on the life mode of each marine genus in our dataset. Additionally, we looked at the standard deviation of the log-odds of extinction, which shows how uniform the selectivity of the mass extinction is across all life modes (i.e. a small standard deviation points to a more uniform selectivity among life modes). Ecological diversity was impacted by the mass extinctions: the end-Permian (Changhsingian) mass extinction had less variation in log-odds of extinction, whereas the other mass extinctions had a greater range of standard deviation of the log-odds of extinction. Three of the five mass extinctions (Famennian, Rhaetian, and Maastrichtian) were more ecologically selective than the others (Hirnantian and Changhsingian), which indicate that these two had factors that affected most marine life modes equally. In conclusion, not all mass extinctions had the same ecological effect.

  4. Population diversity: its extent and extinction.

    PubMed

    Hughes, J B; Daily, G C; Ehrlich, P R

    1997-10-24

    Genetically distinct populations are an important component of biodiversity. This work estimates the number of populations per area of a sample of species from literature on population differentiation and the average range area of a species from a sample of distribution maps. This yields an estimate of about 220 populations per species, or 1.1 to 6.6 billion populations globally. Assuming that population extinction is a linear function of habitat loss, approximately 1800 populations per hour (16 million annually) are being destroyed in tropical forests alone.

  5. Magellanic Clues to Spatially-Resolved Extinction Corrections for Distant Galaxies in the HST/JWST Era

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf

    Extinction by dust hampers and possibly biases our understanding of galaxies at all redshifts. Moreover, extinction is not constant within or across the face of a galaxy, nor from galaxy to galaxy. We recently presented a new, empirical, method to correct galaxy images for extinction on a pixel by pixel basis, using only rest-frame 3.6micron and V- band images. While this "beta_V" method is approximate in nature, in its first application to a nearby late-type spiral galaxy we produced extinction maps and revealed hidden coherent galaxy structures like a stellar bar and ridges of dust, while anomalous inferred central extinctions in several earlier-type disk galaxies proved powerful tracers of hidden AGN, independent of radio, optical spectroscopic, or X-ray observations. This method is particularly promising for deep mid-IR imaging surveys with the James Webb Space Telescope in fields already covered by the Hubble Space Telescope (HST) in visible light, since their angular resolutions will be well-matched. Here we propose to explore the applicability, robustness, accuracy and fidelity of the beta_V method on linear size scales from pc to kpc and in regions of varying star formation histories, metallicities, and dust content and distribution. We can do so by combining Spitzer/IRAC 3.6micron and newly released WISE 3.4micron images of both Magellanic Clouds (LMC+SMC) with ground-based 2MASS (and DENIS) near-IR images and the OGLE-III multi-year V and I reference images and photometric catalogs. The LMC and SMC are the nearest astrophysical laboratories with a range of sub-solar metallicities. Their proximity and wealth of archival space- and ground-based data provides for the overconstrained boundary conditions needed to perform the proposed analysis succesfully. Specifically, we will assess at 1" or 0.25-0.35pc (at 0.1" where HST data is available) resolution the properties of the stellar populations that contribute to the flux in each IRAC and WISE resolution

  6. Rewinding the process of mammalian extinction.

    PubMed

    Saragusty, Joseph; Diecke, Sebastian; Drukker, Micha; Durrant, Barbara; Friedrich Ben-Nun, Inbar; Galli, Cesare; Göritz, Frank; Hayashi, Katsuhiko; Hermes, Robert; Holtze, Susanne; Johnson, Stacey; Lazzari, Giovanna; Loi, Pasqualino; Loring, Jeanne F; Okita, Keisuke; Renfree, Marilyn B; Seet, Steven; Voracek, Thomas; Stejskal, Jan; Ryder, Oliver A; Hildebrandt, Thomas B

    2016-07-01

    With only three living individuals left on this planet, the northern white rhinoceros (Ceratotherium simum cottoni) could be considered doomed for extinction. It might still be possible, however, to rescue the (sub)species by combining novel stem cell and assisted reproductive technologies. To discuss the various practical options available to us, we convened a multidisciplinary meeting under the name "Conservation by Cellular Technologies." The outcome of this meeting and the proposed road map that, if successfully implemented, would ultimately lead to a self-sustaining population of an extremely endangered species are outlined here. The ideas discussed here, while centered on the northern white rhinoceros, are equally applicable, after proper adjustments, to other mammals on the brink of extinction. Through implementation of these ideas we hope to establish the foundation for reversal of some of the effects of what has been termed the sixth mass extinction event in the history of Earth, and the first anthropogenic one. Zoo Biol. 35:280-292, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.

  7. Rewinding the process of mammalian extinction.

    PubMed

    Saragusty, Joseph; Diecke, Sebastian; Drukker, Micha; Durrant, Barbara; Friedrich Ben-Nun, Inbar; Galli, Cesare; Göritz, Frank; Hayashi, Katsuhiko; Hermes, Robert; Holtze, Susanne; Johnson, Stacey; Lazzari, Giovanna; Loi, Pasqualino; Loring, Jeanne F; Okita, Keisuke; Renfree, Marilyn B; Seet, Steven; Voracek, Thomas; Stejskal, Jan; Ryder, Oliver A; Hildebrandt, Thomas B

    2016-07-01

    With only three living individuals left on this planet, the northern white rhinoceros (Ceratotherium simum cottoni) could be considered doomed for extinction. It might still be possible, however, to rescue the (sub)species by combining novel stem cell and assisted reproductive technologies. To discuss the various practical options available to us, we convened a multidisciplinary meeting under the name "Conservation by Cellular Technologies." The outcome of this meeting and the proposed road map that, if successfully implemented, would ultimately lead to a self-sustaining population of an extremely endangered species are outlined here. The ideas discussed here, while centered on the northern white rhinoceros, are equally applicable, after proper adjustments, to other mammals on the brink of extinction. Through implementation of these ideas we hope to establish the foundation for reversal of some of the effects of what has been termed the sixth mass extinction event in the history of Earth, and the first anthropogenic one. Zoo Biol. 35:280-292, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc. PMID:27142508

  8. THE MID-INFRARED EXTINCTION LAW IN THE OPHIUCHUS, PERSEUS, AND SERPENS MOLECULAR CLOUDS

    SciTech Connect

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J. II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 {mu}m in three molecular clouds-Ophiuchus, Perseus, and Serpens-by combining data from the 'Cores to Disks' Spitzer Legacy Science program with deep JHK{sub s} imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the {chi}{sup 2} deviation of the data from two extinction law models. Because our {chi}{sup 2} maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 {mu}m, we see evidence for grain growth. Below A{sub K{sub s}}= 0.5, our extinction law is well fitted by the Weingartner and Draine R{sub V} = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A{sub K{sub s}}{>=}1, the data are more consistent with the Weingartner and Draine R{sub V} = 5.5 model that uses larger maximum dust grain sizes. At 24 {mu}m, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our {chi}{sup 2} maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  9. Geography of cretaceous extinctions: Data base development

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Data bases built from the source literature are plagued by problems of data quality. Unless the data acquisition is done by experts, working slowly, the data base may contain so much garbage that true signals and patterns cannot be detected. On the other hand, high quality data bases develop so slowly that satisfactory statistical analysis may never be possible due to the small sample sizes. Results of a test are presented of the opposite strategy: rapid data acquisition by non-experts with minimal control on data quality. A published list of 186 species and genera of fossil invertibrates of the latest Cretaceous Age (Maestrichtian) were located through a random search of the paleobiological and geological literature. The geographic location for each faunal list was then transformed electronically to Maestrichtian latitude and longitude and the lists were further digested to identify the genera occurring in each ten-degree, latitude-longitude block. The geographical lists were clustered using the Otsuka similarity coefficient and a standard unweight-pair-group method. The resulting clusters are remarkably consistent geographically, indicating that a strong biogeographic signal is visible despite low-quality data. A further test evaluated the geographic pattern of end-Cretaceaous extinctions. All genera in the data base were compared with Sepkoski's compendium of time ranges of genera to determine which of the reported genera survived the Cretaceous mass extinction. In turn, extinction rates for the ten-degree, latitude-longitude blocks were mapped. The resulting distribution is readily interpretable as a robust pattern of the geography of the mass extinction. The study demonstrates that a low-quality data base, built rapidly, can provide a basis for meaningful analysis of past biotic events.

  10. Ecology: Dynamics of Indirect Extinction.

    PubMed

    Montoya, Jose M

    2015-12-01

    The experimental identification of the mechanism by which extinctions of predators trigger further predator extinctions emphasizes the role of indirect effects between species in disturbed ecosystems. It also has deep consequences for the hidden magnitude of the current biodiversity crisis. PMID:26654371

  11. Pleistocene extinctions: haunting the survivors.

    PubMed

    Hofreiter, Michael

    2007-08-01

    For many years, the megafaunal extinctions at the end of the Pleistocene have been assumed to have affected only those species that became extinct. However, recent analyses show that the surviving species may also have experienced losses in terms of genetic and ecological diversity. PMID:17686436

  12. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  13. Measuring Extinction with ALE

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G. G.; Roberts, D.; Stewart, J.; Smith, J.; Fitch, J.

    2007-12-01

    ALE (Astronomical LIDAR for Extinction) is deployed at the University of New Mexico's (UNM) Campus Observatory in Albuquerque, NM. It has begun a year-long testing phase prior deployment at McDonald Observatory in support of the CCD/Transit Instrument II (CTI-II). ALE is designed to produce a high-precision measurement of atmospheric absorption and scattering above the observatory site every ten minutes of every moderately clear night. LIDAR (LIght Detection And Ranging) is the VIS/UV/IR analog of radar, using a laser, telescope and time-gated photodetector instead of a radio transmitter, dish and receiver. In the case of ALE -- an elastic backscatter LIDAR -- 20ns-long, eye-safe laser pulses are launched 2500 times per second from a 0.32m transmitting telescope co-mounted with a 50mm short-range receiver on an alt-az mounted 0.67m long-range receiver. Photons from the laser pulse are scattered and absorbed as the pulse propagates through the atmosphere, a portion of which are scattered into the field of view of the short- and long-range receiver telescopes and detected by a photomultiplier. The properties of a given volume of atmosphere along the LIDAR path are inferred from both the altitude-resolved backscatter signal as well as the attenuation of backscatter signal from altitudes above it. We present ALE profiles from the commissioning phase and demonstrate some of the astronomically interesting atmospheric information that can be gleaned from these data, including, but not limited to, total line-of-sight extinction. This project is funded by NSF Grant 0421087.

  14. Extinction of Harrington's mountain goat.

    PubMed

    Mead, J I; Martin, P S; Euler, R C; Long, A; Jull, A J; Toolin, L J; Donahue, D J; Linick, T W

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  15. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  16. Extinction of Harrington's mountain goat

    SciTech Connect

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  17. Extinction of Harrington's Mountain Goat

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  18. The search for red AGN with 2MASS

    NASA Technical Reports Server (NTRS)

    Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.

    2001-01-01

    We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.

  19. 2MASS Extended Source Catalog: Overview and Algorithms

    NASA Technical Reports Server (NTRS)

    Jarrett, T.; Chester, T.; Cutri, R.; Schneider, S.; Skrutskie, M.; Huchra, J.

    1999-01-01

    The 2 Micron All-Sky Survey (2MASS)will observe over one-million galaxies and extended Galactic sources covering the entire sky at wavelenghts between 1 and 2 m. Most of these galaxies, from 70 to 80%, will be newly catalogued objetcs.

  20. The end-Permian mass extinction: A complex, multicausal extinction

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.

    1994-01-01

    The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.

  1. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    SciTech Connect

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang; Li Aigen E-mail: jiangao@bnu.edu.cn E-mail: cheny@bnu.edu.cn

    2013-08-10

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s} band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease of the

  2. Extinction under a behavioral microscope: isolating the sources of decline in operant response rate.

    PubMed

    Cheung, Timothy H C; Neisewander, Janet L; Sanabria, Federico

    2012-05-01

    Extinction performance is often used to assess underlying psychological processes without the interference of reinforcement. For example, in the extinction/reinstatement paradigm, motivation to seek drug is assessed by measuring responding elicited by drug-associated cues without drug reinforcement. However, extinction performance is governed by several psychological processes that involve motivation, memory, learning, and motoric functions. These processes are confounded when overall response rate is used to measure performance. Based on evidence that operant responding occurs in bouts, this paper proposes an analytic procedure that separates extinction performance into several behavioral components: (1-3) the baseline bout initiation rate, within-bout response rate, and bout length at the onset of extinction; (4-6) their rates of decay during extinction; (7) the time between extinction onset and the decline of responding; (8) the asymptotic response rate at the end of extinction; (9) the refractory period after each response. Data that illustrate the goodness of fit of this analytic model are presented. This paper also describes procedures to isolate behavioral components contributing to extinction performance and make inferences about experimental effects on these components. This microscopic behavioral analysis allows the mapping of different psychological processes to distinct behavioral components implicated in extinction performance, which may further our understanding of the psychological effects of neurobiological treatments. PMID:22425782

  3. Extinction under a behavioral microscope: isolating the sources of decline in operant response rate.

    PubMed

    Cheung, Timothy H C; Neisewander, Janet L; Sanabria, Federico

    2012-05-01

    Extinction performance is often used to assess underlying psychological processes without the interference of reinforcement. For example, in the extinction/reinstatement paradigm, motivation to seek drug is assessed by measuring responding elicited by drug-associated cues without drug reinforcement. However, extinction performance is governed by several psychological processes that involve motivation, memory, learning, and motoric functions. These processes are confounded when overall response rate is used to measure performance. Based on evidence that operant responding occurs in bouts, this paper proposes an analytic procedure that separates extinction performance into several behavioral components: (1-3) the baseline bout initiation rate, within-bout response rate, and bout length at the onset of extinction; (4-6) their rates of decay during extinction; (7) the time between extinction onset and the decline of responding; (8) the asymptotic response rate at the end of extinction; (9) the refractory period after each response. Data that illustrate the goodness of fit of this analytic model are presented. This paper also describes procedures to isolate behavioral components contributing to extinction performance and make inferences about experimental effects on these components. This microscopic behavioral analysis allows the mapping of different psychological processes to distinct behavioral components implicated in extinction performance, which may further our understanding of the psychological effects of neurobiological treatments.

  4. The learning of fear extinction.

    PubMed

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.

  5. Mass Extinctions in Earth's History

    NASA Astrophysics Data System (ADS)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  6. The learning of fear extinction.

    PubMed

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD. PMID:25452113

  7. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  8. New theories about ancient extinctions

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    But all this may be changing. Mass extinctions have been very much in the news in the last few years, triggered in large part by the proposal that the extinction of the dinosaurs and marine animals was caused by a catastrophic collision between the Earth and an extra-terrestrial body (bolide). Recently an equally contentious suggestion has been made that mass extinctions have swept the Earth every 26 to 31 million years for at least the last 250 million years-caused by encounters with some kind of extra-terrestrial object such as one of the asteroids or the comets. 

  9. EVIDENCE AGAINST AN EDGE-ON DISK AROUND THE EXTRASOLAR PLANET, 2MASS 1207 b AND A NEW THICK-CLOUD EXPLANATION FOR ITS UNDERLUMINOSITY

    SciTech Connect

    Skemer, Andrew J.; Close, Laird M.; Szucs, Laszlo; Apai, Daniel; Pascucci, Ilaria; Biller, Beth A.

    2011-05-10

    Since the discovery of the first directly imaged, planetary-mass object, 2MASS 1207 b, several works have sought to explain a disparity between its observed temperature and luminosity. Given its known age, distance, and spectral type, 2MASS 1207 b is underluminous by a factor of {approx}10 ({approx}2.5 mag) when compared to standard models of brown-dwarf/giant-planet evolution. In this paper, we study three possible sources of 2MASS 1207 b's underluminosity. First, we investigate Mohanty et al.'s hypothesis that a near edge-on disk, comprising large, gray-extincting grains, might be responsible for 2MASS 1207 b's underluminosity. After radiative transfer modeling, we conclude that the hypothesis is unlikely due to the lack of variability seen in multi-epoch photometry and unnecessary due to the increasing sample of underluminous brown dwarfs/giant exoplanets that cannot be explained by an edge-on disk. Next, we test the analogous possibility that a spherical shell of dust could explain 2MASS 1207 b's underluminosity. Models containing enough dust to create {approx}2.5 mag of extinction, placed at reasonable radii, are ruled out by our new Gemini/T-ReCS 8.7 {mu}m photometric upper limit for 2MASS 1207 b. Finally, we investigate the possibility that 2MASS 1207 b is intrinsically cooler than the commonly used AMES-DUSTY fits to its spectrum, and thus it is not, in fact, underluminous. New, thick-cloud model grids by Madhusudhan et al. fit 2MASS 1207 b's 1-10 {mu}m spectral energy distribution well, but they do not quite fit its near-infrared spectrum. However, we suggest that with some 'tuning', they might be capable of simultaneously reproducing 2MASS 1207 b's spectral shape and luminosity. In this case, the whole class of young, underluminous brown dwarfs/giant exoplanets might be explained by atmospheres that are able to suspend thick, dusty clouds in their photospheres at temperatures lower than field brown dwarfs.

  10. Species-area relationships always overestimate extinction rates from habitat loss.

    PubMed

    He, Fangliang; Hubbell, Stephen P

    2011-05-19

    Extinction from habitat loss is the signature conservation problem of the twenty-first century. Despite its importance, estimating extinction rates is still highly uncertain because no proven direct methods or reliable data exist for verifying extinctions. The most widely used indirect method is to estimate extinction rates by reversing the species-area accumulation curve, extrapolating backwards to smaller areas to calculate expected species loss. Estimates of extinction rates based on this method are almost always much higher than those actually observed. This discrepancy gave rise to the concept of an 'extinction debt', referring to species 'committed to extinction' owing to habitat loss and reduced population size but not yet extinct during a non-equilibrium period. Here we show that the extinction debt as currently defined is largely a sampling artefact due to an unrecognized difference between the underlying sampling problems when constructing a species-area relationship (SAR) and when extrapolating species extinction from habitat loss. The key mathematical result is that the area required to remove the last individual of a species (extinction) is larger, almost always much larger, than the sample area needed to encounter the first individual of a species, irrespective of species distribution and spatial scale. We illustrate these results with data from a global network of large, mapped forest plots and ranges of passerine bird species in the continental USA; and we show that overestimation can be greater than 160%. Although we conclude that extinctions caused by habitat loss require greater loss of habitat than previously thought, our results must not lead to complacency about extinction due to habitat loss, which is a real and growing threat.

  11. Stochastic models of population extinction.

    PubMed

    Ovaskainen, Otso; Meerson, Baruch

    2010-11-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on biotic and abiotic factors. Classical work showed that demographic stochasticity causes the mean time to extinction to increase exponentially with population size, whereas variation in environmental conditions can lead to a power-law scaling. Recent work has focused especially on the influence of the autocorrelation structure ('color') of environmental noise. In theoretical physics, there is a burst of research activity in analyzing large fluctuations in stochastic population dynamics. This research provides powerful tools for determining extinction times and characterizing the pathway to extinction. It yields, therefore, sharp insights into extinction processes and has great potential for further applications in theoretical biology.

  12. What Caused the Mass Extinction?

    ERIC Educational Resources Information Center

    Alvarez, Walter; And Others

    1990-01-01

    Presented are the arguments of two different points of view on the mass extinction of the dinosaurs. Evidence of extraterrestrial impact theory and massive volcanic eruption theory are discussed. (CW)

  13. Updating Martin's global extinction model

    NASA Astrophysics Data System (ADS)

    Gillespie, Richard

    2008-12-01

    Australia has been cited as a weak link in anthropogenic models of megafauna extinction, but recent work suggests instead that the evidence for rapid extinction shortly after human arrival is robust. The global model is revisited, based on the contention that late Pleistocene megafauna extinctions took place rapidly on islands, and some islands (such as Australia and the Americas) are much larger than others. Modern dating methods are increasingly able to refine chronologies, and careful scrutiny suggests that hundreds of dates should be deleted from archives. An updated summary of results from New Zealand, North America and Australia is presented, with a brief discussion on why temperate refugia offering protection from climate change ultimately did not work, strongly supporting the global extinction hypothesis pioneered by Paul Martin.

  14. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  15. Mass extinctions: Ecological diversity maintained

    NASA Astrophysics Data System (ADS)

    Aberhan, Martin

    2014-03-01

    The end-Permian extinction decimated marine life on an unprecedented scale. However, an analysis of the lifestyles of the surviving genera shows that very little functional diversity was lost at the sea floor.

  16. Series cell light extinction monitor

    DOEpatents

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  17. The Sixth Great Mass Extinction

    ERIC Educational Resources Information Center

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  18. A model of mass extinction.

    PubMed

    Newman, M E

    1997-12-01

    In the last few years a number of authors have suggested that evolution may be a so-called self-organized critical phenomenon, and that critical processes might have a significant effect on the dynamics of ecosystems. In particular it has been suggested that mass extinction may arise through a purely biotic mechanism as the result of "coevolutionary avalanches". In this paper we first explore the empirical evidence which has been put forward in favor of this conclusion. The data center principally around the existence of power-law functional forms in the distribution of the sizes of extinction events and other quantities. We then propose a new mathematical model of mass extinction which does not rely on coevolutionary effects and in which extinction is caused entirely by the action of environmental stress on species. In combination with a simple model of species adaption we show that this process can account for all the observed data without the need to invoke coevolution and critical processes. The model also makes some independent predictions, such as the existence of "aftershock" extinctions in the aftermath of large mass extinction events, which should in theory be testable against the fossil record.

  19. Extinction, Relapse, and Behavioral Momentum

    PubMed Central

    Podlesnik, Christopher A.; Shahan, Timothy A.

    2010-01-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral-momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  20. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  1. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior.

  2. Near-infrared extinction with discretised stellar colours

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2016-01-01

    Context. Near-infrared (NIR) extinction remains one of the most reliable methods of measuring the column density of dense interstellar clouds. Extinction can be estimated using the reddening of the light of background stars. Several methods exist (e.g., NICE, NICER, NICEST, GNICER) to combine observations of several NIR bands into extinction maps. Aims: We present a new method of estimating extinction based on NIR multiband observations and examine its performance. Methods: Our basic method uses a discretised version of the distribution of intrinsic stellar colours directly. The extinction of individual stars and the average over a resolution element are estimated with Markov chain Monte Carlo (MCMC) methods. Several variations of the basic method are tested, and the results are compared to NICER calculations. Results: In idealised settings or when photometric errors are large, the results of the new method are very close to those of NICER. Clear advantages can be seen when the distribution of intrinsic colours cannot be described well with a single covariance matrix. The MCMC framework makes it easy to consider additional effects such as those of completeness limits and contamination by galaxies or foreground stars. A priori information about relative column density variations at sub-beam scales can result in a significant increase in accuracy. For observations of high photometric precision, the results could be further improved by considering the magnitude dependence of the intrinsic colours. Conclusions: The MCMC computations are time-consuming, but the calculation of large extinction maps is already practical. The same methods can be used with direct optimisation, with significantly less computational work. Faster methods, like NICER, perform very well in many cases even when the basic assumptions no longer hold. The new methods are useful mostly when photometric errors are small, the distribution of intrinsic colours is well known, or one has prior knowledge

  3. Thermal Transgressions and Phanerozoic Extinctions

    NASA Astrophysics Data System (ADS)

    Worsley, T. R.; Kidder, D. L.

    2007-12-01

    A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as

  4. The stratigraphy of mass extinction

    NASA Astrophysics Data System (ADS)

    Holland, Steven

    2015-04-01

    The discovery of the end-Cretaceous bolide impact and the recognition of mass extinctions through taxonomic compendia triggered keen interest in the stratigraphic pattern of species extinctions. A principal question has been whether patterns of fossil occurrence indicate gradual, stepwise, pulsed, or instantaneous extinction. Based on principles of sequence stratigraphy, marine ecology, and evolution, numerical models of fossil occurrences in stratigraphic sections indicate that the last occurrence of fossils does not generally indicate the time of extinction but is instead controlled by stratigraphic architecture. These models have been confirmed in multiple field studies from different sedimentary basins of different ages. These models identify several distinct processes controlling the last occurrence of fossils. Anything that lowers the probability of collection of a species, such as peak abundance or environmental tolerance, causes the last occurrence to be shifted backward in time relative to the time of extinction. Sequence-bounding subaerial unconformities generally also force the last occurrence backward in time, except in the case of reworking, which may place fossil remains in rocks younger than the time of extinction. Unconformities also cause last occurrences of multiple species to be clustered as a result of the hiatus. Surfaces of abrupt facies change, such as flooding surfaces and surfaces of forced regression, also cause last occurrences to be clustered, with such clustering reflecting the environmental preferences of species. Stratigraphic condensation can also cause clustering of last occurrences. All of these surfaces - subaerial unconformities, flooding surfaces, surfaces of forced regression, and condensed horizons - have highly predictable positions with depositional sequences. Thus, it is the normal expectation that last occurrences should be clustered in the fossil record, that these clusters should occur in stratigraphically predictable

  5. Biostratigraphic case studies of six major extinctions

    NASA Technical Reports Server (NTRS)

    Sloan, R. E.

    1988-01-01

    Biostratigraphic case studies of six major extinctions show all are gradual save one, which is a catastrophic extinction of terrestrial origin. These extinctions show a continuum of environmental insults from major to minor. The major causes of these extinctions are positive and negative eustatic sea level changes, temperature, or ecological competition. Extraterrestrial causes should not be posited without positive association with a stratigraphically sharp extinction. The Cretaceous-Tertiary terrestrial extinction is considerably smaller in percentage of extinction than the marine extinction and is spread over 10 my of the Cretaceous and 1 my of the Tertiary. Sixty percent of the 30 dinosaurs in the northern Great Plains of the U.S. and Canada had become extinct in the 9 my before the late Maastrichtian sea level drop. The best data on the Permo-Triassic terrestrial extinction are from the Karoo basin of South Africa. This is a series of 6 extinctions in some 8 my, recorded in some 2800 meters of sediment. Precision of dating is enhanced by the high rate of accumulation of these sediments. Few data are readily available on the timing of the marine Permo-Triassic extinction, due to the very restricted number of sequences of Tatarian marine rocks. The terminal Ordovician extinction at 438 my is relatively rapid, taking place over about 0.5 my. The most significant aspect of this extinction is a eustatic sea level lowering associated with a major episode of glaciation. New data on this extinction is the reduction from 61 genera of trilobites in North America to 14, for a 77 percent extinction. Another Ordovician extinction present over 10 percent of the North American craton occurs at 454 my in the form of a catastrophic extinction due to a volcanic eruption which blanketed the U.S. east of the Transcontinental Arch. This is the only other sizeable extinction in the Ordovician.

  6. VizieR Online Data Catalog: Catalog of high extinction clouds (Rygl+, 2010)

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Wyrowski, F.; Schuller, F.; Menten, K. M.

    2010-04-01

    We made maps of the 3.6-4.5 microns color excess between the two shortest wavelength Spitzer IRAC bands (Fazio et al. 2004ApJS..154...10F). These can be converted to infrared extinction maps using the interstellar extinction law of Indebetouw et al. (2005ApJ...619..931I): one magnitude of 3.6-4.5 microns color excess corresponds to 81.8 magnitudes in visual extinction (see Eq. 2 in our article). Our maps cover -60 degree to 60 degree in Galactic longitude except for 1 degree around the Galactic center and have a resolution of 108". The color excess maps are available as fits files belonging to Fig. 1. All the unknown compact high extinction regions with a color excess above 0.25mag, which were not known as HII regions or high-mass protostellar objects, were catalogued in Table 1 as high extinction clouds (HECs). For a sample of 25 high extinction clouds in the first Galactic quadrant we observed the dust continuum emission at 1.2mm using the MAMBO-2 bolometer. These observations have a much higher angular resolution of 11", allowing to probe the clouds at subparsec scales and study the clumps with them. (10 data files).

  7. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  8. The extinction of the dinosaurs.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Barrett, Paul M; Carrano, Matthew T; Evans, David C; Lloyd, Graeme T; Mannion, Philip D; Norell, Mark A; Peppe, Daniel J; Upchurch, Paul; Williamson, Thomas E

    2015-05-01

    Non-avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long-term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long-term decline across non-avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large-bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult. PMID:25065505

  9. The extinction of the dinosaurs.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Barrett, Paul M; Carrano, Matthew T; Evans, David C; Lloyd, Graeme T; Mannion, Philip D; Norell, Mark A; Peppe, Daniel J; Upchurch, Paul; Williamson, Thomas E

    2015-05-01

    Non-avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long-term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long-term decline across non-avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large-bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult.

  10. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  11. Retrieval and Reconsolidation Accounts of Fear Extinction

    PubMed Central

    Ponnusamy, Ravikumar; Zhuravka, Irina; Poulos, Andrew M.; Shobe, Justin; Merjanian, Michael; Huang, Jeannie; Wolvek, David; O’Neill, Pia-Kelsey; Fanselow, Michael S.

    2016-01-01

    Extinction is the primary mode for the treatment of anxiety disorders. However, extinction memories are prone to relapse. For example, fear is likely to return when a prolonged time period intervenes between extinction and a subsequent encounter with the fear-provoking stimulus (spontaneous recovery). Therefore there is considerable interest in the development of procedures that strengthen extinction and to prevent such recovery of fear. We contrasted two procedures in rats that have been reported to cause such deepened extinction. One where extinction begins before the initial consolidation of fear memory begins (immediate extinction) and another where extinction begins after a brief exposure to the consolidated fear stimulus. The latter is thought to open a period of memory vulnerability similar to that which occurs during initial consolidation (reconsolidation update). We also included a standard extinction treatment and a control procedure that reversed the brief exposure and extinction phases. Spontaneous recovery was only found with the standard extinction treatment. In a separate experiment we tested fear shortly after extinction (i.e., within 6 h). All extinction procedures, except reconsolidation update reduced fear at this short-term test. The findings suggest that strengthened extinction can result from alteration in both retrieval and consolidation processes. PMID:27242459

  12. Infectious disease, endangerment, and extinction.

    PubMed

    Macphee, Ross D E; Greenwood, Alex D

    2013-01-01

    Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters. PMID:23401844

  13. Speeding up spontaneous disease extinction

    NASA Astrophysics Data System (ADS)

    Khasin, Michael

    2012-02-01

    The dynamics of epidemic in a susceptible population is affected both by the random character of interactions between the individuals and by environmental variations. As a consequence, the sizes of the population groups (infected, susceptible, etc.) fluctuate in the course of evolution of the epidemic. In a small community a rare large fluctuation in the number of infected can result in extinction of the disease. We suggest a novel paradigm of controlling the epidemic, where the control field, such as vaccination, is designed to maximize the rate of spontaneous disease extinction. We show that, for a limited-scope vaccination, the optimal vaccination protocol and its impact on the epidemics have universal features: (i) the vaccine must be applied in pulses, (ii) the spontaneous disease extinction is synchronized with the vaccination. We trace this universality to general properties of the response of large fluctuations to external perturbations.

  14. Extinction risk of soil biota

    PubMed Central

    Veresoglou, Stavros D.; Halley, John M.; Rillig, Matthias C.

    2015-01-01

    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology. PMID:26593272

  15. Extinct radionuclides. [in solar system

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Swindle, T. D.

    1988-01-01

    Extinct radionuclides, or radioactive isotopes with lifetimes of the order of 1 to 100 Myr that are now extinct in the solar system are discussed. Evidence is presented for the presence of such radionuclides in the early solar system, including Al-26, Mn-53, Pd-107, I-129, Pu-244, and Sm-146. It is suggested that the abundances of these species provide constraints on nucleosynthetic time scales and the history of solar system materials before they became the solar system. The shortest-lived species is Al-26, which may have been sufficiently abundant to be the major heat source for meteorite parent-body metamorphism or igneous differentiation.

  16. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  17. Extinction risk of soil biota.

    PubMed

    Veresoglou, Stavros D; Halley, John M; Rillig, Matthias C

    2015-01-01

    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology.

  18. Extinction risk of soil biota.

    PubMed

    Veresoglou, Stavros D; Halley, John M; Rillig, Matthias C

    2015-01-01

    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology. PMID:26593272

  19. Facets of Pavlovian and operant extinction.

    PubMed

    Lattal, K Matthew; Lattal, Kennon A

    2012-05-01

    Research on extinction is of fundamental importance in both Pavlovian and operant approaches to the experimental analysis of learning. Although these approaches are often motivated by different empirical and theoretical questions, extinction has emerged as a research area in which common themes unite the two approaches. In this review, we focus on some common considerations in the analysis of Pavlovian and operant extinction. These include methodological challenges and interpretational issues in analyzing behavior during and after extinction. We consider the different roles that theory has played in the development of research on extinction in these preparations and conclude with some attention to applications of extinction.

  20. Facets of Pavlovian and operant extinction.

    PubMed

    Lattal, K Matthew; Lattal, Kennon A

    2012-05-01

    Research on extinction is of fundamental importance in both Pavlovian and operant approaches to the experimental analysis of learning. Although these approaches are often motivated by different empirical and theoretical questions, extinction has emerged as a research area in which common themes unite the two approaches. In this review, we focus on some common considerations in the analysis of Pavlovian and operant extinction. These include methodological challenges and interpretational issues in analyzing behavior during and after extinction. We consider the different roles that theory has played in the development of research on extinction in these preparations and conclude with some attention to applications of extinction. PMID:22465468

  1. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  2. SED and Emission Line Properties of Red 2MASS AGN

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna; Wilkes, Belinda J.; Schmidt, Gary; Ghosh, Himel

    2009-09-01

    Radio and far-IR surveys, and modeling of the cosmic X-ray background suggest that a large population of obscured AGN has been missed by traditional, optical surveys. The Two Micron All-Sky Survey (2MASS) has revealed a large population (surface density comparable to that of optically selected AGN with Ks<14.5mag) of mostly nearby (median z=0.25), red, moderately obscured AGN, among which 75% are previously unidentified emission-line AGN, with 85% showing broad emission lines. We present the SED and emission line properties of 44 such red (J-Ks>2) 2MASS AGN observed with Chandra. They lie at z<0.37, span a full range of spectral types (Type 1, intermediate, Type 2),Ks-to-X-ray slopes, and polarization (<13%). Their IR-to-X-ray spectral energy distributions (SEDs) are red in the near-IR/opt/UV showing little or no blue bump. The optical colors are affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The levels of obscuration obtained from optical, X-rays, and far-IR imply N_H

  3. Infrared Extinction and the Initial Conditions For Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2003-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication.

  4. The relation between carbon monoxide emission and visual extinction in cloud L134

    NASA Technical Reports Server (NTRS)

    Tucker, K. D.; Dickman, R. L.; Encrenaz, P. J.; Kutner, M. L.

    1976-01-01

    Emission from the J = 1-0 transition of carbon monoxide has been mapped over an area of 40 by 55 arcmin in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of at least 2 K are observable down to an extinction level of about one magnitude. From observations of the J = 1-0 transition of the (C-13)O isotopic species at 18 locations in the cloud, a linear correlation is found between the local thermodynamic equilibrium (LTE) column densities of (C-13)O and magnitudes of visual extinction.

  5. Alien plant invasions and native plant extinctions: a six-threshold framework.

    PubMed

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat. PMID

  6. Alien plant invasions and native plant extinctions: a six-threshold framework

    PubMed Central

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  7. Alien plant invasions and native plant extinctions: a six-threshold framework.

    PubMed

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat.

  8. Modeling Population Growth and Extinction

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2009-01-01

    The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…

  9. The Geochemistry of Mass Extinction

    NASA Astrophysics Data System (ADS)

    Kump, L. R.

    2003-12-01

    The course of biological evolution is inextricably linked to that of the environment through an intricate network of feedbacks that span all scales of space and time. Disruptions to the environment have biological consequences, and vice versa. Fossils provide the prima facie evidence for biotic disruptions: catastrophic losses of global biodiversity at various times in the Phanerozoic. However, the forensic evidence for the causes and environmental consequences of these mass extinctions resides primarily in the geochemical composition of sedimentary rocks deposited during the extinction intervals. Thus, advancement in our understanding of mass extinctions requires detailed knowledge obtained from both paleontological and geochemical records.This chapter reviews the state of knowledge concerning the geochemistry of the "big five" extinctions of the Phanerozoic (e.g., Sepkoski, 1993): the Late Ordovician (Hirnantian; 440 Ma), the Late Devonian (an extended or multiple event with its apex at the Frasnian-Famennian (F-F) boundary; 367 Ma), the Permian-Triassic (P-Tr; 251 Ma), the Triassic-Jurassic (Tr-J; 200 Ma), and the Cretaceous-Tertiary (K-T; 65 Ma). The focus on the big five is a matter of convenience, as there is a continuum in extinction rates from "background" to "mass extinction." Although much of the literature on extinctions centers on the causes and extents of biodiversity loss, in recent years paleontologists have begun to focus on recoveries (see, e.g., Hart, 1996; Kirchner and Weil, 2000; Erwin, 2001 and references therein).To the extent that the duration of the recovery interval may reflect a slow relaxation of the environment from perturbation, analysis of the geochemical record of recovery is an integral part of this effort. In interpreting the geochemical and biological records of recovery, we need to maintain a clear distinction among the characteristics of the global biota: their biodiversity (affected by differences in origination and extinction

  10. EARTH SCIENCE: Did Volcanoes Drive Ancient Extinctions?

    PubMed

    Kerr, R A

    2000-08-18

    With the publication in recent weeks of two papers on a mass extinction 183 million years ago, researchers can add five suggestive cases to the list of extinctions with known causes. These extinctions coincide with massive outpourings of lava, accompanied by signs that global warming threw the ocean-atmosphere system out of whack. Although no one can yet pin any of these mass extinctions with certainty on the volcanic eruptions, scientists say it's unlikely that they're all coincidences.

  11. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  12. Determining Extinction Ratio Of A Laser Diode

    NASA Technical Reports Server (NTRS)

    Unger, Glenn L.

    1992-01-01

    Improved technique to determine extinction ratio of pulsed laser diode based partly on definition of extinction ratio applicable to nonideal laser pulses. Heretofore, determinations involved assumption of ideal laser pulses, and neglected optical power from background light. Because power fluctuates during real pulse, more realistic to define extinction ratio in terms of energy obtained.

  13. Further Evidence of Auditory Extinction in Aphasia

    ERIC Educational Resources Information Center

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  14. Latent extinction risk and the future battlegrounds of mammal conservation.

    PubMed

    Cardillo, Marcel; Mace, Georgina M; Gittleman, John L; Purvis, Andy

    2006-03-14

    Global conservation prioritization usually emphasizes areas with highest species richness or where many species are thought to be at imminent risk of extinction. However, these strategies may overlook areas where many species have biological traits that make them particularly sensitive to future human impact but are not yet threatened because such impact is currently low. In this article, we identify such areas for the world's mammals using latent extinction risk, the discrepancy between a species' current extinction risk and that predicted from models on the basis of biological traits. Species with positive latent risk are currently less threatened than their biology would suggest, usually because they inhabit regions or habitats still comparatively unmodified by human activity. Using large new geographic, biological, and phylogenetic databases for nearly 4,000 mammal species, we map the global geographic distribution of latent risk to reveal areas where the mammal fauna is still relatively unthreatened but has high inherent sensitivity to disturbance. These hotspots include large areas such as the Nearctic boreal forests and tundra that are unrepresented in most current prioritization schemes, as well as high-biodiversity areas such as the island arc from Indonesia to the south Pacific. Incorporating latent extinction risk patterns into conservation planning could help guard against future biodiversity loss by anticipating and preventing species declines before they begin.

  15. Fear extinction in humans: effects of acquisition-extinction delay and masked stimulus presentations.

    PubMed

    Golkar, Armita; Öhman, Arne

    2012-10-01

    Fear extinction can be viewed as an inhibitory learning process. This is supported by post-extinction phenomena demonstrating the return of fear, such as reinstatement. Recent work has questioned this account, claiming that extinction initiated immediately after fear acquisition can abolish the return of fear. In the current study, participants were fear conditioned to four different conditioned stimuli (CS) and underwent extinction either immediately or after a 24 h delay. During extinction, we manipulated CS contingency awareness by presenting two of the CSs (one CS+, one CS-) under non-masked conditions and the other two CSs under masked conditions. Compared to delayed extinction, immediate extinction of non-masked CSs promoted less extinction of fear-potentiated startle and shock expectancy ratings and less reinstatement of fear-potentiated startle without affecting shock expectancy ratings. Critically, future research should clarify how the differences between immediate and delayed extinction in within-session extinction modulate the recovery of fear.

  16. Darwin and the uses of extinction.

    PubMed

    Beer, Gillian

    2009-01-01

    We currently view extinction with dismay and even horror, but Darwin saw extinction as ordinary and as necessary to evolutionary change. Still, the degree to which extinction is fundamental to his theory is rarely discussed. This essay examines Darwin's linking of the idea of "improvement" with that of natural selection and tracks a cluster of reasons for our changed valuation of extinction now. Those reasons demonstrate how scientific information and ideological preferences have reshaped the concept. The essay challenges the reader to assess some current assumptions about extinction and concludes by considering the shift in Darwin's own understanding from the "Origin" to the late "Autobiography".

  17. Darwin and the uses of extinction.

    PubMed

    Beer, Gillian

    2009-01-01

    We currently view extinction with dismay and even horror, but Darwin saw extinction as ordinary and as necessary to evolutionary change. Still, the degree to which extinction is fundamental to his theory is rarely discussed. This essay examines Darwin's linking of the idea of "improvement" with that of natural selection and tracks a cluster of reasons for our changed valuation of extinction now. Those reasons demonstrate how scientific information and ideological preferences have reshaped the concept. The essay challenges the reader to assess some current assumptions about extinction and concludes by considering the shift in Darwin's own understanding from the "Origin" to the late "Autobiography". PMID:19824221

  18. The extinction differential induced virulence macroevolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Liufang; Wang, Jin

    2014-04-01

    We apply the potential-flux landscape theory to deal with the large fluctuation induced extinction phenomena. We quantify the most probable extinction pathway on the landscape and measure the extinction risk by the landscape topography. In this Letter, we investigate the disease extinction through an epidemic model described by a set of chemical reaction. We found the virulence-differential-dependent symbioses between mother and daughter pathogen species: mutualism and parasitism. The symbioses, whether mutualism or parasitism, benefit the higher virulence species. This implies that speciation towards lower virulence is an effective strategy for a pathogen species to reduce its extinction risk.

  19. The peculiar extinction of Herschel 36

    NASA Technical Reports Server (NTRS)

    Donn, B.; Hecht, J. H.; Helfer, H. L.; Wolf, J.; Pipher, J. L.

    1982-01-01

    The extinction of Herschel 36 was measured and found to be peculiar in the same sense as that observed in Orion. Following the treatment of Mathis and Wallenhorst, this can be explained by the presence of large silicate and graphite grains than are normally found in the interstellar medium. Correcting the stellar flux for foreground extinction results in a residual extinction curve for the associated dust cloud, with an unusually small normalized extinction (less than 1.0) at 1500 A. This low UV extinction may be due to the effects of scattering by the dust cloud material.

  20. Environmental trends in extinction during the Paleozoic

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.

    1987-01-01

    Extinction intensities calculated from 505 Paleozoic marine assemblages divided among six environmental zones and 40 stratigraphic intervals indicate that whole communities exhibit increasing extinction offshore but that genera within individual taxonomic classes tend to have their highest extinction onshore. The offshore trend at the community level results from a concentration of genera in classes with low characteristic extinction rates in nearshore environments. This finding is consistent with the ecologic expectation that organisms inhabiting unpredictably fluctuating environments should suffer more extinction than counterparts living under more predictably equitable conditions.

  1. Using holography to measure extinction.

    PubMed

    Berg, Matthew J; Subedi, Nava R; Anderson, Peter A; Fowler, Nicholas B

    2014-07-01

    This work presents a new concept to measure the extinction cross section for a single particle in situ. The concept involves recording the hologram produced by the interference of a particle's forward-scattered light with the incident light. This interference pattern is fundamentally connected to the energy flow that gives rise to extinction, and, by integrating this measured pattern, one obtains an approximation for the cross section. Mie theory is used to show that this approximation can be as little as 1% in error of the true value for many cases of practical interest. Moreover, since an image of the particle can be computationally reconstructed from a measured hologram using the Fresnel-Kirchhoff diffraction theory, one can obtain the cross section simultaneously with the particle shape and size.

  2. Neanderthal Extinction by Competitive Exclusion

    PubMed Central

    Banks, William E.; d'Errico, Francesco; Peterson, A. Townsend; Kageyama, Masa; Sima, Adriana; Sánchez-Goñi, Maria-Fernanda

    2008-01-01

    Background Despite a long history of investigation, considerable debate revolves around whether Neanderthals became extinct because of climate change or competition with anatomically modern humans (AMH). Methodology/Principal Findings We apply a new methodology integrating archaeological and chronological data with high-resolution paleoclimatic simulations to define eco-cultural niches associated with Neanderthal and AMH adaptive systems during alternating cold and mild phases of Marine Isotope Stage 3. Our results indicate that Neanderthals and AMH exploited similar niches, and may have continued to do so in the absence of contact. Conclusions/Significance The southerly contraction of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate change or a change in adaptation, but rather concurrent AMH geographic expansion appears to have produced competition that led to Neanderthal extinction. PMID:19107186

  3. Supervoids in the WISE-2MASS catalogue imprinting cold spots in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Finelli, F.; García-Bellido, J.; Kovács, A.; Paci, F.; Szapudi, I.

    2016-01-01

    The Cold Spot (CS) is a clear feature in the cosmic microwave background (CMB); it could be of primordial origin, or caused by a intervening structure along the line of sight. We identified a large projected underdensity in the recently constructed WISE-2MASS all-sky infrared galaxy catalogue aligned with the CS direction at (l, b) ≈ (209°, -57°). It has an angular size of tens of degrees, and shows a ˜20 per cent galaxy underdensity in the centre. Moreover, we find another large underdensity in the projected WISE-2MASS galaxy map at (l, b) ≈ (101°, 46°) (hereafter Draco supervoid), also aligned with a CMB decrement, although less significant than that of the CS direction. Motivated by these findings, we develop spherically symmetric Lemaitre-Tolman-Bondi (LTB) compensated void models to explain the observed CMB decrements with these two underdensities, or `supervoids'. Within our perturbative treatment of the LTB voids, we find that the integrated Sachs-Wolfe and Riess-Sciama effects due to the Draco supervoid can account for the CMB decrement observed in the same direction. On the contrary, the extremely deep CMB decrement in the CS direction is more difficult to explain by the presence of the CS supervoid only. Nevertheless, the probability of a random alignment between the CS and the corresponding supervoid is disfavoured, and thus its contribution as a secondary anisotropy cannot be neglected. We comment on how the approximations used in this paper, in particular the assumption of spherical symmetry, could change quantitatively our conclusions and might provide a better explanation for the CMB CS.

  4. A review of extinction in experimental populations.

    PubMed

    Griffen, Blaine D; Drake, John M

    2008-11-01

    1. Population extinction is a fundamental ecological process. Recent experimental work has begun to test the large body of theory that predicts how demographic, genetic and environmental factors influence extinction risk. We review empirical studies of extinction conducted under controlled laboratory conditions. Our synthesis highlights four findings. First, extinction theory largely considers individual, isolated populations. However, species interactions frequently altered or even reversed the influence of environmental factors on population extinction as compared to single-species conditions, highlighting the need to integrate community ecology into population theory. 2. While most single-species studies qualitatively agree with theoretical predictions, studies are needed that quantitatively compare observed and predicted extinction rates. A quantitative understanding of extinction processes is needed to further advance theory and to predict population extinction resulting from human activities. 3. Many stresses leading to population extinction can be assuaged by migration between subpopulations. However, too much migration increases synchrony between subpopulations and thus increases extinction risk. Research is needed to determine how to strike a balance that maximizes the benefit of migration. 4. Results from laboratory experiments often conflict with field studies. Understanding these inconsistencies is crucial for extending extinction theory to natural populations.

  5. [Extinction and Reconsolidation of Memory].

    PubMed

    Zuzina, A B; Balaban, P M

    2015-01-01

    Retrieval of memory followed by reconsolidation can strengthen a memory, while retrieval followed by extinction results in a decrease of memory performance due to weakening of existing memory or formation of a competing memory. In our study we analyzed the behavior and responses of identified neurons involved in the network underlying aversive learning in terrestrial snail Helix, and made an attempt to describe the conditions in which the retrieval of memory leads either to extinction or reconsolidation. In the network underlying the withdrawal behavior, sensory neurons, premotor interneurons, motor neurons, and modulatory for this network serotonergic neurons are identified and recordings from representatives of these groups were made before and after aversive learning. In the network underlying feeding behavior, the premotor modulatory serotonergic interneurons and motor neurons involved in motor program of feeding are identified. Analysis of changes in neural activity after aversive learning showed that modulatory neurons of feeding behavior do not demonstrate any changes (sometimes a decrease of responses to food was observed), while responses to food in withdrawal behavior premotor interneurons changed qualitatively, from under threshold EPSPs to spike discharges. Using a specific for serotonergic neurons neurotoxin 5,7-DiHT it was shown previously that the serotonergic system is necessary for the aversive learning, but is not necessary for maintenance and retrieval of this memory. These results suggest that the serotonergic neurons that are necessary as part of a reinforcement for developing the associative changes in the network may be not necessary for the retrieval of memory. The hypothesis presented in this review concerns the activity of the "reinforcement" serotonergic neurons that is suggested to be the gate condition for the choice between extinction/reconsolidation triggered by memory retrieval: if these serotonergic neurons do not respond during the

  6. Optimising Extinction of Conditioned Disgust

    PubMed Central

    Bosman, Renske C.; Borg, Charmaine; de Jong, Peter J.

    2016-01-01

    Maladaptive disgust responses are tenacious and resistant to exposure-based interventions. In a similar vein, laboratory studies have shown that conditioned disgust is relatively insensitive to Conditioned Stimulus (CS)-only extinction procedures. The relatively strong resistance to extinction might be explained by disgust’s adaptive function to motivate avoidance from contamination threats (pathogens) that cannot be readily detected and are invisible to the naked eye. Therefore, the mere visual presentation of unreinforced disgust eliciting stimuli might not be sufficient to correct a previously acquired threat value of the CS+. Following this, the current study tested whether the efficacy of CS-only exposure can be improved by providing additional safety information about the CS+. For the CSs we included two neutral items a pea soup and a sausage roll, whereas for the Unconditioned Stimulus (US) we used one video clip of a woman vomiting and a neutral one about glass blowing. The additional safety information was conveyed by allowing actual contact with the CS+ or by observing an actress eating the food items representing the CS+. When additional safety information was provided via allowing direct contact with the CS+, there was a relatively strong post-extinction increase in participants’ willingness-to-eat the CS+. This beneficial effect was still evident at one-week follow up. Also self-reported disgust was lower at one-week follow up when additional safety information was provided. The current findings help explain why disgust is relatively insensitive to CS-only extinction procedures, and provide helpful starting points to improve interventions that are aimed to reduce distress in disgust-related psychopathology. PMID:26849211

  7. Optimising Extinction of Conditioned Disgust.

    PubMed

    Bosman, Renske C; Borg, Charmaine; de Jong, Peter J

    2016-01-01

    Maladaptive disgust responses are tenacious and resistant to exposure-based interventions. In a similar vein, laboratory studies have shown that conditioned disgust is relatively insensitive to Conditioned Stimulus (CS)-only extinction procedures. The relatively strong resistance to extinction might be explained by disgust's adaptive function to motivate avoidance from contamination threats (pathogens) that cannot be readily detected and are invisible to the naked eye. Therefore, the mere visual presentation of unreinforced disgust eliciting stimuli might not be sufficient to correct a previously acquired threat value of the CS+. Following this, the current study tested whether the efficacy of CS-only exposure can be improved by providing additional safety information about the CS+. For the CSs we included two neutral items a pea soup and a sausage roll, whereas for the Unconditioned Stimulus (US) we used one video clip of a woman vomiting and a neutral one about glass blowing. The additional safety information was conveyed by allowing actual contact with the CS+ or by observing an actress eating the food items representing the CS+. When additional safety information was provided via allowing direct contact with the CS+, there was a relatively strong post-extinction increase in participants' willingness-to-eat the CS+. This beneficial effect was still evident at one-week follow up. Also self-reported disgust was lower at one-week follow up when additional safety information was provided. The current findings help explain why disgust is relatively insensitive to CS-only extinction procedures, and provide helpful starting points to improve interventions that are aimed to reduce distress in disgust-related psychopathology. PMID:26849211

  8. Converging towards the optimal path to extinction

    PubMed Central

    Schwartz, Ira B.; Forgoston, Eric; Bianco, Simone; Shaw, Leah B.

    2011-01-01

    Extinction appears ubiquitously in many fields, including chemical reactions, population biology, evolution and epidemiology. Even though extinction as a random process is a rare event, its occurrence is observed in large finite populations. Extinction occurs when fluctuations owing to random transitions act as an effective force that drives one or more components or species to vanish. Although there are many random paths to an extinct state, there is an optimal path that maximizes the probability to extinction. In this paper, we show that the optimal path is associated with the dynamical systems idea of having maximum sensitive dependence to initial conditions. Using the equivalence between the sensitive dependence and the path to extinction, we show that the dynamical systems picture of extinction evolves naturally towards the optimal path in several stochastic models of epidemics. PMID:21571943

  9. Were all extinction events caused by impacts?

    NASA Technical Reports Server (NTRS)

    Sheehan, P. M.; Coorough, P. J.

    1994-01-01

    Extraterrestrial impacts are firmly implicated in several of the five major Phanerozoic extinction events. A critical issue now is whether extraterrestrial events have been the only mechanism that produced physical changes of sufficient magnitude to cause major extinction events. While we believe the evidence is overwhelming that the KT extinction event was caused by an impact, we also find that an event of similar or larger size near the end of the Ordovician is best explained by terrestrial causes. The Ordovician extinction event (End-O extinction event) occurred near the end of the Ordovician, but the interval of extinction was completed prior to the newly established Ordovician-Silurian boundary. In spite of extensive field studies, a convincing signature of an associated impact has not been found. However, a prominent glaciation does coincide with the End-O extinction event.

  10. The Case for Extraterrestrial Causes of Extinction

    NASA Astrophysics Data System (ADS)

    Raup, D. M.

    1989-11-01

    The dramatic increase in our knowledge of large-body impacts that have occurred in Earth's history has led to strong arguments for the plausibility of meteorite impact as a cause of extinction. Proof of causation is often hampered, however, by our inability to demonstrate the synchronism of specific impacts and extinctions. A central problem is range truncation: the last reported occurrences of fossil taxa generally underestimate the true times of extinction. Range truncation, because of gaps in sedimentation, lack of preservation, or lack of discovery, can make sudden extinctions appear gradual and gradual extinctions appear sudden. Also, stepwise extinction may appear as an artefact of range truncation. These effects are demonstrated by experiments performed on data from field collections of Cretaceous ammonities from Zumaya (Spain). The challenge for future research is to develop a new calculus for treating biostratigraphic data so that fossils can provide more accurate assessments of the timing of extinctions.

  11. Phylogenetic conservatism of extinctions in marine bivalves.

    PubMed

    Roy, Kaustuv; Hunt, Gene; Jablonski, David

    2009-08-01

    Evolutionary histories of species and lineages can influence their vulnerabilities to extinction, but the importance of this effect remains poorly explored for extinctions in the geologic past. When analyzed using a standardized taxonomy within a phylogenetic framework, extinction rates of marine bivalves estimated from the fossil record for the last approximately 200 million years show conservatism at multiple levels of evolutionary divergence, both within individual families and among related families. The strength of such phylogenetic clustering varies over time and is influenced by earlier extinction history, especially by the demise of volatile taxa in the end-Cretaceous mass extinction. Analyses of the evolutionary roles of ancient extinctions and predictive models of vulnerability of taxa to future natural and anthropogenic stressors should take phylogenetic relationships and extinction history into account.

  12. A Three-dimensional Map of Milky Way Dust

    NASA Astrophysics Data System (ADS)

    Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf Peter; Magnier, Eugene; Metcalfe, Nigel; Price, Paul; Tonry, John; Wainscoat, Richard

    2015-09-01

    We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 (PS1) and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3\\buildrel{ \\prime}\\over{.} 4-13\\buildrel{ \\prime}\\over{.} 7, and a maximum distance resolution of ˜ 25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings, and classifications for 800 million stars detected by PS1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck {τ }353{GHz}-based reddening map to within 0.05 {mag} in E(B-V) to a depth of 0.5 {mag}, and explore systematics at reddenings less than E(B-V)≈ 0.08 {mag}. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both Sloan Digital Sky Survey photometry and Sloan Extension for Galactic Understanding and Exploration spectral classifications, finding per-star agreement to within 0.1 {mag} out to a stellar E(B-V) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. and Lallement et al., demonstrating our finer angular resolution, and better distance resolution compared to the former within ˜ 3 {kpc}. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps, and determining distances to

  13. Study of magnetic field geometry and extinction in Bok globule CB130

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Das, H. S.

    2016-09-01

    We trace the peripheral magnetic field structure of Bok globule CB130 by estimating the linear polarization of its field stars in the R band. The magnetic field orientation sampled by these stars, aligned on average among themselves, and the polarization produced within the cloud has a different direction from that of Galactic plane with an offset of 53°. The offset between minor axis and the mean magnetic field of CB130 is found to be 80°. The estimated strength of the magnetic field in the plane-of-the-sky is ˜116±19 μG. We constructed the visual extinction map using the Near Infrared Color Excess (NICE) method to see the dust distribution around CB130. Contours of Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) SPIRE 500 μm dust continuum emission map of this cloud is over-plotted on the visual extinction map, which shows that the regions having higher optical extinction correspond to higher densities of dust. Three distinct high dust density cores (named as C1, C2, and C3) are identified in the extinction map. It is observed that the cores C1 and C3 are located close to two previously known cores CB130-1 and CB130-2, respectively. Estimates of visual extinction of some moderately obscured stars of CB130 are made utilizing near-infrared photometry. It is observed that there is a feeble dependence of polarization on extinction, and the polarization efficiency (defined as p/AV) of the dust grains decreases with the increase in extinction.

  14. Local systematic differences in proper motions derived from 2MASS positions

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    2016-04-01

    We want to draw attention to local systematic differences that appear in the proper motions derived from 2MASS positions when they are compared with other astrometric catalogs such as UCAC4, SPM4 and USNO-B1. It is shown that 2MASS effectively causes these systematic effects in the proper motions of PPMXL and URAT1. Also it is shown that using 2MASS positions rectified with respect to UCAC4 the systematic pattern of the proper motions of URAT1 is eliminated. Therefore, we propose the use of rectified 2MASS positions in order to derive proper motions free from 2MASS systematics.

  15. Initial phases of massive star formation in high infrared extinction clouds *. I. Physical parameters

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Wyrowski, F.; Schuller, F.; Menten, K. M.

    2010-06-01

    Aims: The earliest phases of massive star formation are found in cold and dense infrared dark clouds (IRDCs). Since the detection method of IRDCs is very sensitive to the local properties of the background emission, we present here an alternative method to search for high column density in the Galactic plane by using infrared extinction maps. Using this method we find clouds between 1 and 5 kpc, of which many were missed by previous surveys. By studying the physical conditions of a subsample of these clouds, we aim at a better understanding of the initial conditions of massive star formation. Methods: We have made extinction maps of the Galactic plane based on the 3.6-4.5 μm color excess between the two shortest wavelength Spitzer IRAC bands, reaching to visual extinctions of ~100 mag and column densities of 9 × 1022 cm-2. From this we compiled a new sample of cold and compact high extinction clouds. We used the MAMBO array at the IRAM 30 m telescope to study the morphology, masses and densities of the clouds and the dense clumps within them. The latter were followed up by pointed ammonia observations with the 100 m Effelsberg telescope, to determine rotational temperatures and kinematic distances. Results: Extinction maps of the Galactic plane trace large scale structures such as the spiral arms. The extinction method probes lower column densities, NH2 ~ 4 × 1022 cm-2, than the 1.2 mm continuum, which reaches up to NH2 ~ 3 × 1023 cm-2 but is less sensitive to large scale structures. The 1.2 mm emission maps reveal that the high extinction clouds contain extended cold dust emission, from filamentary structures to still diffuse clouds. Most of the clouds are dark in 24 μm, but several show already signs of star formation via maser emission or bright infrared sources, suggesting that the high extinction clouds contain a variety of evolutionary stages. The observations suggest an evolutionary scheme from dark, cold and diffuse clouds, to clouds with a stronger 1

  16. Unravelling the structure of species extinction risk for predictive conservation science.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2011-05-01

    Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.

  17. The role of extinction in evolution.

    PubMed Central

    Raup, D M

    1994-01-01

    The extinction of species is not normally considered an important element of neodarwinian theory, in contrast to the opposite phenomenon, speciation. This is surprising in view of the special importance Darwin attached to extinction, and because the number of species extinctions in the history of life is almost the same as the number of originations; present-day biodiversity is the result of a trivial surplus of originations, cumulated over millions of years. For an evolutionary biologist to ignore extinction is probably as foolhardy as for a demographer to ignore mortality. The past decade has seen a resurgence of interest in extinction, yet research on the topic is still at a reconnaissance level, and our present understanding of its role in evolution is weak. Despite uncertainties, extinction probably contains three important elements. (i) For geographically widespread species, extinction is likely only if the killing stress is one so rare as to be beyond the experience of the species, and thus outside the reach of natural selection. (ii) The largest mass extinctions produce major restructuring of the biosphere wherein some successful groups are eliminated, allowing previously minor groups to expand and diversify. (iii) Except for a few cases, there is little evidence that extinction is selective in the positive sense argued by Darwin. It has generally been impossible to predict, before the fact, which species will be victims of an extinction event. PMID:8041694

  18. The role of extinction in evolution

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1994-01-01

    The extinction of species is not normally considered an important element of neodarwinian theory, in contrast to the opposite phenomenon, speciation. This is surprising in view of the special importance Darwin attached to extinction, and because the number of species extinctions in the history of life is almost the same as the number of originations; present-day biodiversity is the result of a trivial surplus of originations, cumulated over millions of years. For an evolutionary biologist to ignore extinction is probably as foolhardy as for a demographer to ignore mortality. The past decade has seen a resurgence of interest in extinction, yet research on the topic is still at a reconnaissance level, and our present understanding of its role in evolution is weak. Despite uncertainties, extinction probably contains three important elements. (i) For geographically widespread species, extinction is likely only if the killing stress is one so rare as to be beyond the experience of the species, and thus outside the reach of natural selection. (ii) The largest mass extinctions produce major restructuring of the biosphere wherein some successful groups are eliminated, allowing previously minor groups to expand and diversify. (iii) Except for a few cases, there is little evidence that extinction is selective in the positive sense argued by Darwin. It has generally been impossible to predict, before the fact, which species will be victims of an extinction event.

  19. The ethics of reviving long extinct species.

    PubMed

    Sandler, Ronald

    2014-04-01

    There now appears to be a plausible pathway for reviving species that have been extinct for several decades, centuries, or even millennia. I conducted an ethical analysis of de-extinction of long extinct species. I assessed several possible ethical considerations in favor of pursuing de-extinction: that it is a matter of justice; that it would reestablish lost value; that it would create new value; and that society needs it as a conservation last resort. I also assessed several possible ethical arguments against pursuing de-extinction: that it is unnatural; that it could cause animal suffering; that it could be ecologically problematic or detrimental to human health; and that it is hubristic. There are reasons in favor of reviving long extinct species, and it can be ethically acceptable to do so. However, the reasons in favor of pursuing de-extinction do not have to do with its usefulness in species conservation; rather, they concern the status of revived species as scientific and technological achievements, and it would be ethically problematic to promote de-extinction as a significant conservation strategy, because it does not prevent species extinctions, does not address the causes of extinction, and could be detrimental to some species conservation efforts. Moreover, humanity does not have a responsibility or obligation to pursue de-extinction of long extinct species, and reviving them does not address any urgent problem. Therefore, legitimate ecological, political, animal welfare, legal, or human health concerns associated with a de-extinction (and reintroduction) must be thoroughly addressed for it to be ethically acceptable.

  20. The ethics of reviving long extinct species.

    PubMed

    Sandler, Ronald

    2014-04-01

    There now appears to be a plausible pathway for reviving species that have been extinct for several decades, centuries, or even millennia. I conducted an ethical analysis of de-extinction of long extinct species. I assessed several possible ethical considerations in favor of pursuing de-extinction: that it is a matter of justice; that it would reestablish lost value; that it would create new value; and that society needs it as a conservation last resort. I also assessed several possible ethical arguments against pursuing de-extinction: that it is unnatural; that it could cause animal suffering; that it could be ecologically problematic or detrimental to human health; and that it is hubristic. There are reasons in favor of reviving long extinct species, and it can be ethically acceptable to do so. However, the reasons in favor of pursuing de-extinction do not have to do with its usefulness in species conservation; rather, they concern the status of revived species as scientific and technological achievements, and it would be ethically problematic to promote de-extinction as a significant conservation strategy, because it does not prevent species extinctions, does not address the causes of extinction, and could be detrimental to some species conservation efforts. Moreover, humanity does not have a responsibility or obligation to pursue de-extinction of long extinct species, and reviving them does not address any urgent problem. Therefore, legitimate ecological, political, animal welfare, legal, or human health concerns associated with a de-extinction (and reintroduction) must be thoroughly addressed for it to be ethically acceptable. PMID:24372907

  1. Interstellar Extinction in the Direction of the Open Cluster M29

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Vrba, F. J.; Boyle, R. P.; Milašius, K.; Černis, K.; Zdanavičius, K.; Zdanavičius, J.; Kazlauskas, A.; Macijauskas, M.; Janusz, R.

    2015-05-01

    The interstellar extinction is investigated in a 1.5 deg2 area in the direction of the open cluster M29 (NGC 6913) in Cygnus, centered at R.A. = 20h 24m, decl. = +38° 30‧. The study is based on photometric classification of 1110 stars in spectral and luminosity classes down to V = 19 mag using photometry in the Vilnius seven-color system published in Paper I (Milašius et al. 2013). Additionally, in the same area the extinction is investigated using 1147 red clump giants (RCGs), identified by combining selected two-color diagrams of the 2MASS and Spitzer surveys. The investigated area is divided into three parts with different obscuration and in these directions the extinction versus distance plots up to 5 kpc are presented. In the whole area a steep rise of the extinction is observed at a distance of ˜800 pc; it should be related to dust clouds in the Great Cygnus Rift obscuring the stars behind it by AV = 4.0-4.7 mag. RCGs exhibit much larger extinction values, up to {{A}{{Ks}}} = 1.2-1.3 mag in the more transparent areas and 1.45 mag in the northeastern part of the area and above it, where the dust cloud TGU H466 is located. These values of {{A}{{Ks}}} correspond to AV = 10-12 mag. We do not exclude the possibility that the largest values of the extinction belong not to RCGs but to some contaminating intrinsically red AGB stars penetrated through the applied RCG selection constraints. The extinction in the TGU H466 cloud probably originates in two cloud systems—the Great Cygnus Rift at 800 pc and the Cygnus X complex of dust and molecular clouds at 1.3-1.5 kpc.

  2. Sexual selection protects against extinction.

    PubMed

    Lumley, Alyson J; Michalczyk, Łukasz; Kitson, James J N; Spurgin, Lewis G; Morrison, Catriona A; Godwin, Joanne L; Dickinson, Matthew E; Martin, Oliver Y; Emerson, Brent C; Chapman, Tracey; Gage, Matthew J G

    2015-06-25

    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through 'genic capture' could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress.

  3. Sexual selection protects against extinction.

    PubMed

    Lumley, Alyson J; Michalczyk, Łukasz; Kitson, James J N; Spurgin, Lewis G; Morrison, Catriona A; Godwin, Joanne L; Dickinson, Matthew E; Martin, Oliver Y; Emerson, Brent C; Chapman, Tracey; Gage, Matthew J G

    2015-06-25

    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through 'genic capture' could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress. PMID:25985178

  4. Light extinction in the atmosphere

    SciTech Connect

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

  5. Comment on the extinct paradox

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1983-01-01

    The extinction paradox is a contradiction between geometrical optics results which predict that at high frequencies the scattering cross section of an object should equal its geometrical cross section and rigorous scattering theory which shows that at high frequencies the scattering cross section approaches twice the geometrical cross section of the object. Confusion about the reason for this paradox persists today even though the nature of the paradox was correctly identified many years ago by Brillouin. The resolution of the paradox is restated and illustrated with an example, and then the implications to the interpretation of scattering cross sections are identified.

  6. Microwave extinction characteristics of nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Cheng, J. X.; Liu, X. X.; Wang, H. X.; Zhao, F. T.; Wen, W. W.

    2016-07-01

    Structure of nanoparticle aggregates plays an important role in microwave extinction capacity. The diffusion-limited aggregation model (DLA) for fractal growth is utilized to explore the possible structures of nanoparticle aggregates by computer simulation. Based on the discrete dipole approximation (DDA) method, the microwave extinction performance by different nano-carborundum aggregates is numerically analyzed. The effects of the particle quantity, original diameter, fractal structure, as well as orientation on microwave extinction are investigated, and also the extinction characteristics of aggregates are compared with the spherical nanoparticle in the same volume. Numerical results give out that proper aggregation of nanoparticle is beneficial to microwave extinction capacity, and the microwave extinction cross section by aggregated granules is better than that of the spherical solid one in the same volume.

  7. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  8. Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology

    NASA Astrophysics Data System (ADS)

    Nataf, David M.; Gonzalez, Oscar A.; Casagrande, Luca; Zasowski, Gail; Wegg, Christopher; Wolf, Christian; Kunder, Andrea; Alonso-Garcia, Javier; Minniti, Dante; Rejkuba, Marina; Saito, Roberto K.; Valenti, Elena; Zoccali, Manuela; Poleski, Radosław; Pietrzyński, Grzegorz; Skowron, Jan; Soszyński, Igor; Szymański, Michał K.; Udalski, Andrzej; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz

    2016-03-01

    We investigate interstellar extinction curve variations towards ˜4 deg2 of the inner Milky Way in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent measurements towards ˜2000 sightlines of AI, E(V - I), E(I - J) and E(J - Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V - I), E(I - J)/E(V - I) and E(J - Ks)/E(V - I) are large (exceeding 20 per cent), significant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of = 13.44, which is ˜60 per cent higher than the `standard' value. We show that the Wesenheit magnitude WI = I - 1.61(I - J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ˜100 per cent and lack sensitivity to extinction curve variations.

  9. Secondary extinction in Pavlovian fear conditioning.

    PubMed

    Vurbic, Drina; Bouton, Mark E

    2011-09-01

    Pavlov (1927/1960) reported that following the conditioning of several stimuli, extinction of one conditioned stimulus (CS) attenuated responding to others that had not undergone direct extinction. However, this secondary extinction effect has not been widely replicated in the contemporary literature. In three conditioned suppression experiments with rats, we further explored the phenomenon. In Experiment 1, we asked whether secondary extinction is more likely to occur with target CSs that have themselves undergone some prior extinction. A robust secondary extinction effect was obtained with a nonextinguished target CS. Experiment 2 showed that extinction of one CS was sufficient to reduce renewal of a second CS when it was tested in a neutral (nonextinction) context. In Experiment 3, secondary extinction was observed in groups that initially received intermixed conditioning trials with the target and nontarget CSs, but not in groups that received conditioning of the two CSs in separate sessions. The results are consistent with the hypothesis that CSs must be associated with a common temporal context during conditioning for secondary extinction to occur.

  10. Mass extinctions vs. uniformitarianism in biological evolution

    SciTech Connect

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  11. Lumbar lordosis of extinct hominins.

    PubMed

    Been, Ella; Gómez-Olivencia, Asier; Kramer, Patricia A

    2012-01-01

    The lordotic curvature of the lumbar spine (lumbar lordosis) in humans is a critical component in the ability to achieve upright posture and bipedal gait. Only general estimates of the lordotic angle (LA) of extinct hominins are currently available, most of which are based on the wedging of the vertebral bodies. Recently, a new method for calculating the LA in skeletal material has become available. This method is based on the relationship between the lordotic curvature and the orientation of the inferior articular processes relative to vertebral bodies in the lumbar spines of living primates. Using this relationship, we developed new regression models in order to calculate the LAs in hominins. The new models are based on primate group-means and were used to calculate the LAs in the spines of eight extinct hominins. The results were also compared with the LAs of modern humans and modern nonhuman apes. The lordotic angles of australopithecines (41° ± 4), H. erectus (45°) and fossil H. sapiens (54° ± 14) are similar to those of modern humans (51° ± 11). This analysis confirms the assumption that human-like lordotic curvature was a morphological change that took place during the acquisition of erect posture and bipedalism as the habitual form of locomotion. Neandertals have smaller lordotic angles (LA = 29° ± 4) than modern humans, but higher angles than nonhuman apes (22° ± 3). This suggests possible subtle differences in Neandertal posture and locomotion from that of modern humans. PMID:22052243

  12. LIDAR for measuring atmospheric extinction

    NASA Astrophysics Data System (ADS)

    Dawsey, M.; Gimmestad, G.; Roberts, D.; McGraw, J.; Zimmer, P.; Fitch, J.

    2006-06-01

    The Georgia Tech Research Institute and the University of New Mexico are developing a compact, rugged, eye safe lidar (laser radar) to be used specifically for measuring atmospheric extinction in support of the second generation of the CCD/Transit Instrument (CTI-II). The CTI-II is a 1.8 meter telescope that will be used to accomplish a precise timedomain imaging photometric and astrometric survey at the McDonald Observatory in West Texas. The supporting lidar will enable more precise photometry by providing real-time measurements of the amount of atmospheric extinction as well as its cause, i.e. low-lying aerosols, dust or smoke in the free troposphere, or high cirrus. The goal of this project is to develop reliable, cost-effective lidar technology for any observatory. The lidar data can be used to efficiently allocate observatory time and to provide greater integrity for ground-based data. The design is described in this paper along with estimates of the lidar's performance.

  13. Lumbar lordosis of extinct hominins.

    PubMed

    Been, Ella; Gómez-Olivencia, Asier; Kramer, Patricia A

    2012-01-01

    The lordotic curvature of the lumbar spine (lumbar lordosis) in humans is a critical component in the ability to achieve upright posture and bipedal gait. Only general estimates of the lordotic angle (LA) of extinct hominins are currently available, most of which are based on the wedging of the vertebral bodies. Recently, a new method for calculating the LA in skeletal material has become available. This method is based on the relationship between the lordotic curvature and the orientation of the inferior articular processes relative to vertebral bodies in the lumbar spines of living primates. Using this relationship, we developed new regression models in order to calculate the LAs in hominins. The new models are based on primate group-means and were used to calculate the LAs in the spines of eight extinct hominins. The results were also compared with the LAs of modern humans and modern nonhuman apes. The lordotic angles of australopithecines (41° ± 4), H. erectus (45°) and fossil H. sapiens (54° ± 14) are similar to those of modern humans (51° ± 11). This analysis confirms the assumption that human-like lordotic curvature was a morphological change that took place during the acquisition of erect posture and bipedalism as the habitual form of locomotion. Neandertals have smaller lordotic angles (LA = 29° ± 4) than modern humans, but higher angles than nonhuman apes (22° ± 3). This suggests possible subtle differences in Neandertal posture and locomotion from that of modern humans.

  14. Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction.

    PubMed

    Krug, Andrew Z; Patzkowsky, Mark E

    2015-01-01

    Mass extinctions can have dramatic effects on the trajectory of life, but in some cases the effects can be relatively small even when extinction rates are high. For example, the Late Ordovician mass extinction is the second most severe in terms of the proportion of genera eliminated, yet is noted for the lack of ecological consequences and shifts in clade dominance. By comparison, the end-Cretaceous mass extinction was less severe but eliminated several major clades while some rare surviving clades diversified in the Paleogene. This disconnect may be better understood by incorporating the phylogenetic relatedness of taxa into studies of mass extinctions, as the factors driving extinction and recovery are thought to be phylogenetically conserved and should therefore promote both origination and extinction of closely related taxa. Here, we test whether there was phylogenetic selectivity in extinction and origination using brachiopod genera from the Middle Ordovician through the Devonian. Using an index of taxonomic clustering (RCL) as a proxy for phylogenetic clustering, we find that A) both extinctions and originations shift from taxonomically random or weakly clustered within families in the Ordovician to strongly clustered in the Silurian and Devonian, beginning with the recovery following the Late Ordovician mass extinction, and B) the Late Ordovician mass extinction was itself only weakly clustered. Both results stand in stark contrast to Cretaceous-Cenozoic bivalves, which showed significant levels of taxonomic clustering of extinctions in the Cretaceous, including strong clustering in the mass extinction, but taxonomically random extinctions in the Cenozoic. The contrasting patterns between the Late Ordovician and end-Cretaceous events suggest a complex relationship between the phylogenetic selectivity of mass extinctions and the long-term phylogenetic signal in origination and extinction patterns.

  15. Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction.

    PubMed

    Krug, Andrew Z; Patzkowsky, Mark E

    2015-01-01

    Mass extinctions can have dramatic effects on the trajectory of life, but in some cases the effects can be relatively small even when extinction rates are high. For example, the Late Ordovician mass extinction is the second most severe in terms of the proportion of genera eliminated, yet is noted for the lack of ecological consequences and shifts in clade dominance. By comparison, the end-Cretaceous mass extinction was less severe but eliminated several major clades while some rare surviving clades diversified in the Paleogene. This disconnect may be better understood by incorporating the phylogenetic relatedness of taxa into studies of mass extinctions, as the factors driving extinction and recovery are thought to be phylogenetically conserved and should therefore promote both origination and extinction of closely related taxa. Here, we test whether there was phylogenetic selectivity in extinction and origination using brachiopod genera from the Middle Ordovician through the Devonian. Using an index of taxonomic clustering (RCL) as a proxy for phylogenetic clustering, we find that A) both extinctions and originations shift from taxonomically random or weakly clustered within families in the Ordovician to strongly clustered in the Silurian and Devonian, beginning with the recovery following the Late Ordovician mass extinction, and B) the Late Ordovician mass extinction was itself only weakly clustered. Both results stand in stark contrast to Cretaceous-Cenozoic bivalves, which showed significant levels of taxonomic clustering of extinctions in the Cretaceous, including strong clustering in the mass extinction, but taxonomically random extinctions in the Cenozoic. The contrasting patterns between the Late Ordovician and end-Cretaceous events suggest a complex relationship between the phylogenetic selectivity of mass extinctions and the long-term phylogenetic signal in origination and extinction patterns. PMID:26658946

  16. Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction

    PubMed Central

    Krug, Andrew Z.; Patzkowsky, Mark E.

    2015-01-01

    Mass extinctions can have dramatic effects on the trajectory of life, but in some cases the effects can be relatively small even when extinction rates are high. For example, the Late Ordovician mass extinction is the second most severe in terms of the proportion of genera eliminated, yet is noted for the lack of ecological consequences and shifts in clade dominance. By comparison, the end-Cretaceous mass extinction was less severe but eliminated several major clades while some rare surviving clades diversified in the Paleogene. This disconnect may be better understood by incorporating the phylogenetic relatedness of taxa into studies of mass extinctions, as the factors driving extinction and recovery are thought to be phylogenetically conserved and should therefore promote both origination and extinction of closely related taxa. Here, we test whether there was phylogenetic selectivity in extinction and origination using brachiopod genera from the Middle Ordovician through the Devonian. Using an index of taxonomic clustering (RCL) as a proxy for phylogenetic clustering, we find that A) both extinctions and originations shift from taxonomically random or weakly clustered within families in the Ordovician to strongly clustered in the Silurian and Devonian, beginning with the recovery following the Late Ordovician mass extinction, and B) the Late Ordovician mass extinction was itself only weakly clustered. Both results stand in stark contrast to Cretaceous-Cenozoic bivalves, which showed significant levels of taxonomic clustering of extinctions in the Cretaceous, including strong clustering in the mass extinction, but taxonomically random extinctions in the Cenozoic. The contrasting patterns between the Late Ordovician and end-Cretaceous events suggest a complex relationship between the phylogenetic selectivity of mass extinctions and the long-term phylogenetic signal in origination and extinction patterns. PMID:26658946

  17. Constraints on Enhanced Extinction Resulting from Extinction Treatment in the Presence of an Added Excitor

    ERIC Educational Resources Information Center

    Urcelay, Gonzalo P.; Lipatova, Olga; Miller, Ralph R.

    2009-01-01

    Three Pavlovian fear conditioning experiments with rats as subjects explored the effect of extinction in the presence of a concurrent excitor. Our aim was to explore this particular treatment, documented in previous studies to deepen extinction, with novel control groups to shed light on the processes involved in extinction. Relative to subjects…

  18. Extinction and the spatial dynamics of biodiversity

    PubMed Central

    Jablonski, David

    2008-01-01

    The fossil record amply shows that the spatial fabric of extinction has profoundly shaped the biosphere; this spatial dimension provides a powerful context for integration of paleontological and neontological approaches. Mass extinctions evidently alter extinction selectivity, with many factors losing effectiveness except for a positive relation between survivorship and geographic range at the clade level (confirmed in reanalyses of end-Cretaceous extinction data). This relation probably also holds during “normal” times, but changes both slope and intercept with increasing extinction. The strong geographical component to clade dynamics can obscure causation in the extinction of a feature or a clade, owing to hitchhiking effects on geographic range, so that multifactorial analyses are needed. Some extinctions are spatially complex, and regional extinctions might either reset a diversity ceiling or create a diversification debt open to further diversification or invasion. Evolutionary recoveries also exhibit spatial dynamics, including regional differences in invasibilty, and expansion of clades from the tropics fuels at least some recoveries, as well as biodiversity dynamics during normal times. Incumbency effects apparently correlate more closely with extinction intensities than with standing diversities, so that regions with higher local and global extinctions are more subject to invasion; the latest Cenozoic temperate zones evidently received more invaders than the tropics or poles, but this dynamic could shift dramatically if tropical diversity is strongly depleted. The fossil record can provide valuable insights, and their application to present-day issues will be enhanced by partitioning past and present-day extinctions by driving mechanism rather than emphasizing intensity. PMID:18695229

  19. Modulation of the extinction of fear learning.

    PubMed

    Myskiw, Jociane C; Izquierdo, Ivan; Furini, Cristiane R G

    2014-06-01

    We review recent work on extinction learning with emphasis on its modulation. Extinction is the learned inhibition of responding to previously acquired tasks. Like other forms of learning, it can be modulated by a variety of neurotransmitter systems and behavioral procedures. This bears on its use in the treatment of fear memories, particularly in posttraumatic stress disorder (PTSD), for which it is the treatment of choice, often under the name of exposure therapy. There have not been many laboratories interested in the modulation of extinction, but the available data, although not very abundant, are quite conclusive. Most studies on the nature of extinction and on its modulation have been carried out on fear motivated behaviors, possibly because of their applicability to the therapy of PTSD. A role for d-serine and the glycine site of NMDA receptors has been ascertained in two forms of extinction in the ventromedial prefrontal cortex, basolateral amygdala and dorsal hippocampus. The serine analog, d-cycloserine, has received clinical trials as an enhancer of extinction. The brain histaminergic system acting via H2 receptors, and the endocannabinoid system using CB1 receptors in the ventromedial prefrontal cortex, hippocampus and basolateral amygdala enhance extinction. Dopaminergic D1 and ß-noradrenergic receptors also modulate extinction by actions on these three structures. Isolated findings suggest roles for on serotonin-1A, dopaminergic-D2 and a- and ß-noradrenergic receptors in extinction modulation. Importantly, behavioral tagging and capture mechanisms in the hippocampus have been shown to play a major modulatory role in extinction. In addition, extinction of at least one aversive task (inhibitory avoidance) can be made state dependent on peripheral epinephrine.

  20. Context and Behavioral Processes in Extinction

    ERIC Educational Resources Information Center

    Bouton, Mark E.

    2004-01-01

    This article provides a selective review and integration of the behavioral literature on Pavlovian extinction. The first part reviews evidence that extinction does not destroy the original learning, but instead generates new learning that is especially context-dependent. The second part examines insights provided by research on several related…

  1. Periodicity of extinction: A 1988 update

    NASA Technical Reports Server (NTRS)

    Sepkowski, J. John, Jr.

    1988-01-01

    The hypothesis that events of mass extinction recur periodically at approximately 26 my intervals is an empirical claim based on analysis of data from the fossil record. The hypothesis has become closely linked with catastrophism because several events in the periodic series are associated with evidence of extraterrestrial impacts, and terrestrial forcing mechanisms with long, periodic recurrences are not easily conceived. Astronomical mechanisms that have been hypothesized include undetected solar companions and solar oscillation about the galactic plane, which induce comet showers and result in impacts on Earth at regular intervals. Because these mechanisms are speculative, they have been the subject of considerable controversy, as has the hypothesis of periodicity of extinction. In response to criticisms and uncertainties, a data base was developed on times of extinction of marine animal genera. A time series is given and analyzed with 49 sample points for the per-genus extinction rate from the Late Permian to the Recent. An unexpected pattern in the data is the uniformity of magnitude of many of the periodic extinction events. Observations suggest that the sequence of extinction events might be the result of two sets of mechanisms: a periodic forcing that normally induces only moderate amounts of extinction, and independent incidents or catastrophes that, when coincident with the periodic forcing, amplify its signal and produce major-mass extinctions.

  2. Catastrophic extinctions follow deforestation in Singapore.

    PubMed

    Brook, Barry W; Sodhi, Navjot S; Ng, Peter K L

    2003-07-24

    The looming mass extinction of biodiversity in the humid tropics is a major concern for the future, yet most reports of extinctions in these regions are anecdotal or conjectural, with a scarcity of robust, broad-based empirical data. Here we report on local extinctions among a wide range of terrestrial and freshwater taxa from Singapore (540 km2) in relation to habitat loss exceeding 95% over 183 years. Substantial rates of documented and inferred extinctions were found, especially for forest specialists, with the greatest proportion of extinct taxa (34-87%) in butterflies, fish, birds and mammals. Observed extinctions were generally fewer, but inferred losses often higher, in vascular plants, phasmids, decapods, amphibians and reptiles (5-80%). Forest reserves comprising only 0.25% of Singapore's area now harbour over 50% of the residual native biodiversity. Extrapolations of the observed and inferred local extinction data, using a calibrated species-area model, imply that the current unprecedented rate of habitat destruction in Southeast Asia will result in the loss of 13-42% of regional populations over the next century, at least half of which will represent global species extinctions.

  3. Current extinction rates of reptiles and amphibians.

    PubMed

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats.

  4. Current extinction rates of reptiles and amphibians.

    PubMed

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats. PMID:26438855

  5. Current extinction rates of reptiles and amphibians

    PubMed Central

    Alroy, John

    2015-01-01

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats. PMID:26438855

  6. Survival without recovery after mass extinctions

    PubMed Central

    Jablonski, David

    2002-01-01

    Because many survivors of mass extinctions do not participate in postrecovery diversifications, and therefore fall into a pattern that can be termed “Dead Clade Walking” (DCW), the effects of mass extinctions extend beyond the losses observed during the event itself. Analyses at two taxonomic levels provide a first-order test of the prevalence of DCWs by using simple and very conservative operational criteria. For four of the Big Five mass extinctions of the Phanerozoic, the marine genera that survived the extinction suffered ≈10–20% attrition in the immediately following geologic stage that was significantly greater than the losses sustained in preextinction stages. The stages immediately following the three Paleozoic mass extinctions also account for 17% of all order-level losses in marine invertebrates over that interval, which is, again, significantly greater than that seen for the other stratigraphic stages (no orders are lost immediately after the end-Triassic or end-Cretaceous mass extinctions). DCWs are not evenly distributed among four regional molluscan time-series following the end-Cretaceous extinction, demonstrating the importance of spatial patterns in recovery dynamics. Although biotic interactions have been invoked to explain the differential postextinction success of clades, such hypotheses must be tested against alternatives that include stochastic processes in low-diversity lineages—which is evidently not a general explanation for the ordinal DCW patterns, because postextinction fates are not related to the size of extinction bottlenecks in Paleozoic orders—and ongoing physical environmental changes. PMID:12060760

  7. Immediate extinction promotes the return of fear.

    PubMed

    Merz, Christian J; Hamacher-Dang, Tanja C; Wolf, Oliver T

    2016-05-01

    Accumulating evidence indicates that immediate extinction is less effective than delayed extinction in attenuating the return of fear. This line of fear conditioning research impacts the proposed onset of psychological interventions after threatening situations. In the present study, forty healthy men were investigated in a differential fear conditioning paradigm with fear acquisition in context A, extinction in context B, followed by retrieval testing in both contexts 24h later to test fear renewal. Differently coloured lights served as conditioned stimuli (CS): two CS (CS+) were paired with an electrical stimulation that served as unconditioned stimulus, the third CS was never paired (CS-). Extinction took place immediately after fear acquisition or 24h later. One CS+ was extinguished whereas the second CS+ remained unextinguished to control for different time intervals between fear acquisition and retrieval testing. Immediate extinction led to larger skin conductance responses during fear retrieval to both the extinguished and unextinguished CS relative to the CS-, indicating a stronger return of fear compared to delayed extinction. Taken together, immediate extinction is less potent than delayed extinction and is associated with a stronger renewal effect. Thus, the time-point of psychological interventions relative to the offset of threatening situations needs to be carefully considered to prevent relapses.

  8. Extinction-Induced Variability in Human Behavior

    ERIC Educational Resources Information Center

    Kinloch, Jennifer M.; Foster, T. Mary; McEwan, James S. A.

    2009-01-01

    Participants earned points by pressing a computer space bar (Experiment 1) or forming rectangles on the screen with the mouse (Experiment 2) under differential-reinforcement-of-low-rate schedules, followed by extinction. Variability in interresponse time (the contingent dimension) increased during extinction, as for Morgan and Lee (1996);…

  9. Survival without recovery after mass extinctions.

    PubMed

    Jablonski, David

    2002-06-11

    Because many survivors of mass extinctions do not participate in postrecovery diversifications, and therefore fall into a pattern that can be termed "Dead Clade Walking" (DCW), the effects of mass extinctions extend beyond the losses observed during the event itself. Analyses at two taxonomic levels provide a first-order test of the prevalence of DCWs by using simple and very conservative operational criteria. For four of the Big Five mass extinctions of the Phanerozoic, the marine genera that survived the extinction suffered approximately 10-20% attrition in the immediately following geologic stage that was significantly greater than the losses sustained in preextinction stages. The stages immediately following the three Paleozoic mass extinctions also account for 17% of all order-level losses in marine invertebrates over that interval, which is, again, significantly greater than that seen for the other stratigraphic stages (no orders are lost immediately after the end-Triassic or end-Cretaceous mass extinctions). DCWs are not evenly distributed among four regional molluscan time-series following the end-Cretaceous extinction, demonstrating the importance of spatial patterns in recovery dynamics. Although biotic interactions have been invoked to explain the differential postextinction success of clades, such hypotheses must be tested against alternatives that include stochastic processes in low-diversity lineages-which is evidently not a general explanation for the ordinal DCW patterns, because postextinction fates are not related to the size of extinction bottlenecks in Paleozoic orders-and ongoing physical environmental changes.

  10. Long-Term Maintenance of Immediate or Delayed Extinction Is Determined by the Extinction-Test Interval

    ERIC Educational Resources Information Center

    Johnson, Justin S.; Escobar, Martha; Kimble, Whitney L.

    2010-01-01

    Short acquisition-extinction intervals (immediate extinction) can lead to either more or less spontaneous recovery than long acquisition-extinction intervals (delayed extinction). Using rat subjects, we observed less spontaneous recovery following immediate than delayed extinction (Experiment 1). However, this was the case only if a relatively…

  11. Late Quaternary Megafaunal Extinctions in Northern Eurasia: Latest Results

    NASA Astrophysics Data System (ADS)

    Stuart, Anthony

    2010-05-01

    Anthony J. Stuart1 & Adrian M. Lister2 1 Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK. Email: tony.s@megafauna.org.uk 2 Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. Email: a.lister@nhm.ac.uk. The global extinction of many spectacular species of megafauna (large terrestrial mammals, together with a few large reptiles and birds) within the last c. 50,000 years (Late Quaternary) has been attributed on the one hand to ‘overkill' by human hunters and on the other to environmental change. However, in spite of more than half a century of active interest and research the issue remains unresolved, largely because there are insufficient dated records of megafaunal species for most parts of the world. Northern Eurasia is an especially fruitful region in which to research megafaunal extinctions as it has a wealth of megafaunal material and crucially most extinctions occurred well within the range of radiocarbon dating. Our approach, in a series of projects over the last decade funded by the UK Natural Environment Research Council (NERC), involves amassing radiocarbon dates made directly on megafaunal material from across the entire region: a) by submitting a substantial number of samples (so far c. 500 dates) for AMS dating at Oxford (ORAU); b) obtaining AMS dates from colleagues working on aDNA projects; and c) carefully screening (‘auditing') dates from the literature. The dates (calibrated using OxCal) are plotted as time-sliced maps and as chronological/geographical charts. In our previous work we targeted a range of extinct species from Northern Eurasia: woolly mammoth, woolly rhinoceros, giant deer, cave bear (in collaboration with Martina Pacher), cave lion, and spotted hyaena (which survives today only in Sub-Saharan Africa). By this means we have established a reliable chronology for these extinctions which we are able to compare with the climatic, vegetational and

  12. Synchronous extinction of North America's Pleistocene mammals.

    PubMed

    Faith, J Tyler; Surovell, Todd A

    2009-12-01

    The late Pleistocene witnessed the extinction of 35 genera of North American mammals. The last appearance dates of 16 of these genera securely fall between 12,000 and 10,000 radiocarbon years ago (approximately 13,800-11,400 calendar years B.P.), although whether the absence of fossil occurrences for the remaining 19 genera from this time interval is the result of sampling error or temporally staggered extinctions is unclear. Analysis of the chronology of extinctions suggests that sampling error can explain the absence of terminal Pleistocene last appearance dates for the remaining 19 genera. The extinction chronology of North American Pleistocene mammals therefore can be characterized as a synchronous event that took place 12,000-10,000 radiocarbon years B.P. Results favor an extinction mechanism that is capable of wiping out up to 35 genera across a continent in a geologic instant.

  13. An investigation of extinction-induced vocalizations.

    PubMed

    Valentino, Amber L; Shillingsburg, M Alice; Call, Nathan A; Burton, Britney; Bowen, Crystal N

    2011-05-01

    Children with autism have significant communication delays. Although some children develop vocalizations through shaping and differential reinforcement, others rarely exhibit vocalizations, and alternative methods are targeted in intervention. However, vocal language often remains a goal for caregivers and clinicians. Thus, strategies to increase frequency of vocalizations are needed. In the present study, the authors examined the effect of extinction of previously acquired signed mands on vocalizations in three children diagnosed with autism. Experiment 1 examined the effects of differential reinforcement of vocalizations and extinction of signed mands combined. In Experiment 1, it was unknown whether the reinforcement of vocalizations alone could have produced the effects; therefore, Experiment 2 isolated the effects of reinforcement and extinction by reinforcing vocalizations in baseline. An increase in rate of vocalizations occurred following the application of extinction of signed mands and differential reinforcement of vocalizations in Experiment 1 and following extinction of signed mands in Experiment 2. PMID:21398308

  14. Neural mechanisms of extinction learning and retrieval.

    PubMed

    Quirk, Gregory J; Mueller, Devin

    2008-01-01

    Emotional learning is necessary for individuals to survive and prosper. Once acquired, however, emotional associations are not always expressed. Indeed, the regulation of emotional expression under varying environmental conditions is essential for mental health. The simplest form of emotional regulation is extinction, in which conditioned responding to a stimulus decreases when the reinforcer is omitted. Two decades of research on the neural mechanisms of fear conditioning have laid the groundwork for understanding extinction. In this review, we summarize recent work on the neural mechanisms of extinction learning. Like other forms of learning, extinction occurs in three phases: acquisition, consolidation, and retrieval, each of which depends on specific structures (amygdala, prefrontal cortex, hippocampus) and molecular mechanisms (receptors and signaling pathways). Pharmacological methods to facilitate consolidation and retrieval of extinction, for both aversive and appetitive conditioning, are setting the stage for novel treatments for anxiety disorders and addictions.

  15. Mass extinction in poorly known taxa

    PubMed Central

    Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H.; Bouchet, Philippe; Fontaine, Benoît

    2015-01-01

    Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis. PMID:26056308

  16. Neural Mechanisms of Extinction Learning and Retrieval

    PubMed Central

    Quirk, Gregory J.; Mueller, Devin

    2009-01-01

    Emotional learning is necessary for individuals to survive and prosper. Once acquired, however, emotional associations are not always expressed. Indeed, the regulation of emotional expression under varying environmental conditions is essential for mental health. The simplest form of emotional regulation is extinction, in which conditioned responding to a stimulus decreases when the reinforcer is omitted. Two decades of research on the neural mechanisms of fear conditioning have laid the groundwork for understanding extinction. In this review, we summarize recent work on the neural mechanisms of extinction learning. Like other forms of learning, extinction occurs in three phases: acquisition, consolidation, and retrieval, each of which depends on specific structures (amygdala, prefrontal cortex, hippocampus), and molecular mechanisms (receptors and signaling pathways). Pharmacological methods to facilitate consolidation and retrieval of extinction, for both aversive and appetitive conditioning, are setting the stage for novel treatments for anxiety disorders and addictions. PMID:17882236

  17. Preventing the Next Mass Extinction: Ethical Obligations

    SciTech Connect

    Tonn, Bruce Edward

    2009-11-01

    This paper presents a framework to judge whether we are meeting our ethical responsibilities for preventing massive species extinction. The framework is a generalization from another framework, one that addresses ethical responsibilities related to preventing premature, involuntary human deaths from environmental risks and the extinction of the human race. The resulting ethical risk standards are quite stringent and it is argued that we are nowhere close to meeting any standards, except in the cases of human extinction and extinction of all life on earth, which are met by chance, not by design. Much work is needed to build the 'technology' needed to estimate probabilities associated with massive losses of human life and species extinction over the suggested 1000 year planning horizon.

  18. Extinctions in ancient and modern seas.

    PubMed

    Harnik, Paul G; Lotze, Heike K; Anderson, Sean C; Finkel, Zoe V; Finnegan, Seth; Lindberg, David R; Liow, Lee Hsiang; Lockwood, Rowan; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P

    2012-11-01

    In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean. PMID:22889500

  19. An investigation of extinction-induced vocalizations.

    PubMed

    Valentino, Amber L; Shillingsburg, M Alice; Call, Nathan A; Burton, Britney; Bowen, Crystal N

    2011-05-01

    Children with autism have significant communication delays. Although some children develop vocalizations through shaping and differential reinforcement, others rarely exhibit vocalizations, and alternative methods are targeted in intervention. However, vocal language often remains a goal for caregivers and clinicians. Thus, strategies to increase frequency of vocalizations are needed. In the present study, the authors examined the effect of extinction of previously acquired signed mands on vocalizations in three children diagnosed with autism. Experiment 1 examined the effects of differential reinforcement of vocalizations and extinction of signed mands combined. In Experiment 1, it was unknown whether the reinforcement of vocalizations alone could have produced the effects; therefore, Experiment 2 isolated the effects of reinforcement and extinction by reinforcing vocalizations in baseline. An increase in rate of vocalizations occurred following the application of extinction of signed mands and differential reinforcement of vocalizations in Experiment 1 and following extinction of signed mands in Experiment 2.

  20. Retrieval induces reconsolidation of fear extinction memory.

    PubMed

    Rossato, Janine I; Bevilaqua, Lia R; Izquierdo, Iván; Medina, Jorge H; Cammarota, Martín

    2010-12-14

    The nonreinforced expression of long-tem memory may lead to two opposite protein synthesis-dependent processes: extinction and reconsolidation. Extinction weakens consolidated memories, whereas reconsolidation allows incorporation of additional information into them. Knowledge about these two processes has accumulated in recent years, but their possible interaction has not been evaluated yet. Here, we report that inhibition of protein synthesis in the CA1 region of the dorsal hippocampus after retrieval of fear extinction impedes subsequent reactivation of the extinction memory trace without affecting its storage or that of the initial fear memory. Our results suggest that extinction memory is susceptible to a retrieval-induced process similar to reconsolidation in the hippocampus.

  1. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.

  2. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. PMID:25813749

  3. Extinction: a window into attentional competition.

    PubMed

    Riddoch, M Jane; Rappaport, Sarah J; Humphreys, Glyn W

    2009-01-01

    Extinction is an example of how stimulus selection may be affected by an imbalance in competition for attentional selection. Patients with extinction are able to process stimuli in either hemispace, but only when presented in isolation. Following brain injury, stimuli will not be processed as efficiently in the damaged hemisphere and so may fail to be detected when other stimuli are competing for selection. In this review we discuss some of the factors that contribute to the recovery from extinction, and consider their implications for functional and neural theories of selection. Work shows that extinction can be modulated by multiple bottom-up factors including: low-level visual grouping (e.g., reflecting Gestalt properties in an array) and grouping based on higher level factors (such as the lexical identity of a stimulus or action relations between objects). Top-down factors (such as holding items in working memory) can also facilitate recovery from extinction. Furthermore, the competition for selection may also be modulated by the programming of action to a given location, consistent with pre-motor feedback to perceptual processes. While often discussed in terms of spatial biases, non-spatial extinction can also be demonstrated (dictated by the coherence of stimuli). In contrast to extinction, a phenomenon of anti-extinction has also been documented where patients are better at report when two items rather than single items are presented. Although superficially distinct, evidence indicates that grouping may be important in both cases, with temporal grouping being important in generating the anti-extinction effect. Overall, the work indicates that the disorder of extinction plays an important role in the understanding of attentional selection.

  4. A sphingolipid mechanism for behavioral extinction.

    PubMed

    Huston, Joseph P; Kornhuber, Johannes; Mühle, Christiane; Japtok, Lukasz; Komorowski, Mara; Mattern, Claudia; Reichel, Martin; Gulbins, Erich; Kleuser, Burkhard; Topic, Bianca; De Souza Silva, Maria A; Müller, Christian P

    2016-05-01

    Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions. Sphingolipids are common lipids in the brain which form lipid domains at pre- and postsynaptic membrane compartments. Here we show a decline in dorsal hippocampus ceramide species together with a

  5. Histamine facilitates consolidation of fear extinction.

    PubMed

    Bonini, Juliana Sartori; Da Silva, Weber Cláudio; Da Silveira, Clarice Kras Borges; Köhler, Cristiano André; Izquierdo, Iván; Cammarota, Martín

    2011-10-01

    Non-reinforced retrieval induces memory extinction, a phenomenon characterized by a decrease in the intensity of the learned response. This attribute has been used to develop extinction-based therapies to treat anxiety and post-traumatic stress disorders. Histamine modulates memory and anxiety but its role on fear extinction has not yet been evaluated. Therefore, using male Wistar rats, we determined the effect of the intra-hippocampal administration of different histaminergic agents on the extinction of step-down inhibitory avoidance (IA), a form of aversive learning. We found that intra-CA1 infusion of histamine immediately after non-reinforced retrieval facilitated consolidation of IA extinction in a dose-dependent manner. This facilitation was mimicked by the histamine N-methyltransferase inhibitor SKF91488 and the H2 receptor agonist dimaprit, reversed by the H2 receptor antagonist ranitidine, and unaffected by the H1 antagonist pyrilamine, the H3 antagonist thioperamide and the antagonist at the NMDA receptor (NMDAR) polyamine-binding site ifenprodil. Neither the H1 agonist 2-2-pyridylethylamine nor the NMDAR polyamine-binding site agonist spermidine affected the consolidation of extinction while the H3 receptor agonist imetit hampered it. Extinction induced the phosphorylation of ERK1 in dorsal CA1 while intra-CA1 infusion of the MEK inhibitor U0126 blocked extinction of the avoidance response. The extinction-induced phosphorylation of ERK1 was enhanced by histamine and dimaprit and blocked by ranitidine administered to dorsal CA1 after non-reinforced retrieval. Taken together, our data indicate that the hippocampal histaminergic system modulates the consolidation of fear extinction through a mechanism involving the H2-dependent activation of ERK signalling.

  6. EXTINCTION AND POLYCYCLIC AROMATIC HYDROCARBON INTENSITY VARIATIONS ACROSS THE H II REGION IRAS 12063-6259

    SciTech Connect

    Stock, D. J.; Peeters, E.; Otaguro, J. N.; Tielens, A. G. G. M.; Bik, A.

    2013-07-01

    The spatial variations in polycyclic aromatic hydrocarbon (PAH) band intensities are normally attributed to the physical conditions of the emitting PAHs, however in recent years it has been suggested that such variations are caused mainly by extinction. To resolve this question, we have obtained near-infrared (NIR), mid-infrared (MIR), and radio observations of the compact H II region IRAS 12063-6259. We use these data to construct multiple independent extinction maps and also to measure the main PAH features (6.2, 7.7, 8.6, and 11.2 {mu}m) in the MIR. Three extinction maps are derived: the first using the NIR hydrogen lines and case B recombination theory; the second combining the NIR data with radio data; and the third making use of the Spitzer/IRS MIR observations to measure the 9.8 {mu}m silicate absorption feature using the Spoon method and PAHFIT (as the depth of this feature can be related to overall extinction). The silicate absorption over the bright, southern component of IRAS 12063-6259 is almost absent while the other methods find significant extinction. While such breakdowns of the relationship between the NIR extinction and the 9.8 {mu}m absorption have been observed in molecular clouds, they have never been observed for H II regions. We then compare the PAH intensity variations in the Spitzer/IRS data after dereddening to those found in the original data. It was found that in most cases, the PAH band intensity variations persist even after dereddening, implying that extinction is not the main cause of the PAH band intensity variations.

  7. An experimental study of opposed flow diffusion flame extinction over a thin fuel in microgravity. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1989-01-01

    The flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity were examined. The flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity. A new mode of flame extinction was observed, caused by either of two means: keeping the free stream velocity constant and decreasing the oxygen concentration, or keeping the oxygen concentration constant and decreasing the free stream velocity. This extinction is called quenching extinction. By combining this data together with a previous microgravity quiescent flame study and normal-gravity blowoff extinction data, a flammability map was constructed with molar percentage oxygen and characteristic relative velocity as coordinates. The Damkohler number is not sufficient to predict flame spread and extinction in the near quench limit region.

  8. Retention of perceptual generalization of fear extinction.

    PubMed

    Pappens, Meike; Schroijen, Mathias; Van den Bergh, Omer; Van Diest, Ilse

    2015-12-01

    Fear reduction obtained during a fear extinction procedure can generalize from the extinction stimulus to other perceptually similar stimuli. Perceptual generalization of fear extinction typically follows a perceptual gradient, with increasing levels of fear reduction the more a stimulus resembles the extinction stimulus. The current study aimed to investigate whether perceptual generalization of fear extinction can be observed also after a retention interval of 24h. Fear was acquired to three geometrical figures of different sizes (CS(+), CS1(+) and CS2(+)) by consistently pairing them with a short-lasting suffocation experience (US). Three other geometrical figures that were never followed by the US served as control stimuli (CS(-), CS1(-), CS2(-)). Next, only the CS(+) was extinguished by presenting it in the absence of the US. One day later, fear responses to all stimuli were assessed without any US-presentation. Outcome measures included startle blink EMG, skin conductance, US expectancy, respiratory rate and tidal volume. On day 2 spontaneous recovery of fear was observed in US expectancy and tidal volume, but not in the other outcomes. Evidence for the retention of fear extinction generalization was present in US expectancy and skin conductance, but a perceptual gradient in the retention of generalized fear extinction could not be observed.

  9. Infrared Extinction and the Initial Conditions for Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication. A description of how these goals were met are included.

  10. Infrared Extinction and the Initial Conditions for Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2002-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: (1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds; (2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds; and (3) prepare results, where appropriate, for publication.

  11. Extinction memory in the crab Chasmagnathus: recovery protocols and effects of multi-trial extinction training.

    PubMed

    Hepp, Yanil; Pérez-Cuesta, Luis María; Maldonado, Héctor; Pedreira, María Eugenia

    2010-05-01

    A decline in the frequency or intensity of a conditioned behavior following the withdrawal of the reinforcement is called experimental extinction. However, the experimental manipulation necessary to trigger memory reconsolidation or extinction is to expose the animal to the conditioned stimulus in the absence of reinforcement. Recovery protocols were used to reveal which of these two processes was developed. By using the crab contextual memory model (a visual danger stimulus associated with the training context), we investigated the dynamics of extinction memory in Chasmagnathus. Here, we reveal the presence of three recovery protocols that restore the original memory: the old memory comes back 4 days after the extinction training, or when a weak training is administered later, or once the VDS is presented in a novel context 24 h after the extinction session. Another objective was to evaluate whether the administration of multi-trial extinction training could trigger an extinction memory in Chasmagnathus. The results evince that the extinction memory appears only when the total re-exposure time is around 90 min independently of the number of trials employed to accumulate it. Thus, it is feasible that the mechanisms described for the case of the extinction memory acquired through a single training trial are valid for multi-trial extinction protocols. Finally, these results are in agreement with those reports obtained with models phylogenetically far apart from the crab. Behind this attempt is the idea that in the domain of studies on memory, some principles of behavior organization and basic mechanisms have universal validity.

  12. The circumstellar extinction of RY Sagittarii

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Wu, C.-C.; Doherty, L. R.

    1982-01-01

    In 1979-80, ultraviolet spectrophotometry of RY Sgr was obtained by the International Ultraviolet Explorer (IUE) during the star's recovery from its 1977-78 minimum. The wavelength dependence of the extinction of this R Coronae Borealis-type variable was determined by comparison of spectra obtained at different times but with nearly the same pulsational phase. The measured wavelength dependence is compatible with theoretical predictions of extinction by spherical graphite particles having a radius of 0.043 micron and with the extinction observed for amorphorus carbon smoke.

  13. Large igneous provinces and mass extinctions

    NASA Astrophysics Data System (ADS)

    Wignall, P. B.

    2001-03-01

    Comparing the timing of mass extinctions with the formation age of large igneous provinces reveals a close correspondence in five cases, but previous claims that all such provinces coincide with extinction events are unduly optimistic. The best correlation occurs for four consecutive mid-Phanerozoic examples, namely the end-Guadalupian extinction/Emeishan flood basalts, the end-Permian extinction/Siberian Traps, the end-Triassic extinction/central Atlantic volcanism and the early Toarcian extinction/Karoo Traps. Curiously, the onset of eruptions slightly post-dates the main phase of extinctions in these examples. Of the seven post-Karoo provinces, only the Deccan Traps coincide with a mass extinction, but in this case, the nature of the biotic crisis is best reconciled with the effects of a major bolide impact. Intraoceanic volcanism may also be implicated in a relatively minor end-Cenomanian extinction crisis, although once again the main phase of volcanism occurs after the crisis. The link between large igneous province formation and extinctions remains enigmatic; volume of extrusives and extinction intensity are unrelated and neither is there any apparent relationship with the rapidity of province formation. Violence of eruptions (proportions of pyroclastics) also appears unimportant. Six out of 11 provinces coincide with episodes of global warming and marine anoxia/dysoxia, a relationship that suggests that volcanic CO 2 emissions may have an important effect on global climate. Conversely, there is little, if any, geological evidence for cooling associated with continental flood basalt eruptions suggesting little long-term impact of SO 2 emissions. Large carbon isotope excursions are associated with some extinction events and intervals of flood basalt eruption but these are too great to be accounted for by the release of volcanic CO 2 alone. Thus, voluminous volcanism may in some circumstances trigger calamitous global environmental changes (runaway greenhouses

  14. New Approaches to Aerosol Optical Extinction Measurement

    NASA Astrophysics Data System (ADS)

    Strawa, A. W.; Owano, T.; Moosmuller, H.; Atkinson, D.; Covert, D.; Ahlquist, N.; Schmid, B.

    2002-12-01

    Aerosols can have important influences on climate and the radiation balance of the atmosphere. However, the temporal and spatial variability of aerosols and our inadequate knowledge of aerosol optical properties have lead to large uncertainties in these effects. Thus improved in-situ measurements of aerosol optical properties, in particular measurement of their extinction coefficients, are required. Recently, the relatively new technique of cavity ring-down spectroscopy has been applied to the problem of making fast, accurate measurements of aerosol extinction coefficient. Typically, extinction measurements have been made by measuring the decrease in the intensity of a light beam that has passed through a particulate-laden cell. Often, the cell contains mirrors which reflect the beam several times increasing the optical path length thereby increasing the extinction. Path lengths of up to 400 m have been obtained, which is still insufficient to measure atmospheric extinction in the visible down to background values. In cavity ring-down, a light beam is reflected many thousands of times between two highly reflective mirrors, resulting in a path length of kilometers. The light exiting the cell decreases exponentially with time, and this exponential decay is related to the extinction of the aerosol inside the cell. The CRD instruments can routinely measure sub-Rayleigh equivalent extinction levels of a few Mm-^1 and are generally more rugged and portable than traditional extinction cells. Possible applications of CRD-based extinction cells include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellites such as MODIS, MISR, and CALYPSO. This paper will present the motivation for making improved aerosol extinction measurements and discuss the problems in making the measurement. The cavity ring-down technique will be described. In June, 2002, a calibration and methods intercomparison, the Reno Aerosol Optics Study

  15. Hospital autopsy: Endangered or extinct?

    PubMed Central

    Turnbull, Angus; Osborn, Michael; Nicholas, Nick

    2015-01-01

    Aim To determine the hospital autopsy rate for the UK in 2013. Methods A study of data from a ‘Freedom of Information’ request to all (n=186) acute NHS Trusts within England (n=160), NHS Boards in Scotland (n=14) and Wales (n=7) and Social Care Trusts in Northern Ireland (n=5). Hospital autopsy rates were calculated from the number of hospital autopsies performed in 2013 as a percentage of total inpatient deaths in the Trust that year. Results The UK response rate was 99% (n=184), yielding a mean autopsy rate of 0.69%. The mean rates were 0.51% (England), 2.13% (Scotland), 0.65% (Wales) and 0.46% (Northern Ireland). 23% (n=38) of all included respondents had a rate of 0% and 86% (n=143) a rate less than 1%. Conclusions The decline in hospital autopsy has continued relentlessly and, for better or for worse, the practice is on the verge of extinction in the UK. The study highlights to health professionals and policy makers the magnitude of this decline. Further research should investigate the impact of this on patient safety, clinical audit, public health and medical education. PMID:26076965

  16. Arenavirus extinction through lethal mutagenesis.

    PubMed

    de la Torre, Juan Carlos

    2005-02-01

    Viral hemorrhagic fevers represent serious human public health problems causing devastating and often lethal disease. Several hemorrhagic fevers are caused by arenaviruses including Lassa fever virus (LFV) and the South American viral hemorrhagic fevers (SAHF). In recent years, increased air travel between Africa and other areas has led to the importation of LFV into the US, Europe, Japan, and Canada. This has raised awareness about arenaviruses as potential emerging viruses. Moreover, because of its severe morbidity and high mortality, and transmissibility from human to human, weaponized forms of LFV poses a real threat as agent of bioterrorism. No licensed vaccine is available in the US, and currently there is not efficacious therapy to treat these infections. Therefore, the importance of developing novel effective antiviral drugs to combat HF arenaviruses, for which the prototypic Arenavirus lymphocytic choriomeningitis virus (LCMV) provides us with an excellent model system. Recent findings have shown that LCMV multiplication both in cultured cells and in vivo is highly susceptible to the mutagenic agent 5-fluorouracil (FU). FU-mediated extinction of LCMV was associated with only modest increases in virus mutation frequencies, but did not significantly affect virus replication and transcription, or virus particle formation. These findings indicate that, as with other riboviruses, lethal mutagenesis is effective also against LCMV raising the possibility of using this novel antiviral strategy to combat pathogenic arenaviruses. PMID:15649566

  17. Extinction from a rationalist perspective.

    PubMed

    Gallistel, C R

    2012-05-01

    The merging of the computational theory of mind and evolutionary thinking leads to a kind of rationalism, in which enduring truths about the world have become implicit in the computations that enable the brain to cope with the experienced world. The dead reckoning computation, for example, is implemented within the brains of animals as one of the mechanisms that enables them to learn where they are (Gallistel, 1990, 1995). It integrates a velocity signal with respect to a time signal. Thus, the manner in which position and velocity relate to one another in the world is reflected in the manner in which signals representing those variables are processed in the brain. I use principles of information theory and Bayesian inference to derive from other simple principles explanations for: (1) the failure of partial reinforcement to increase reinforcements to acquisition; (2) the partial reinforcement extinction effect; (3) spontaneous recovery; (4) renewal; (5) reinstatement; (6) resurgence (aka facilitated reacquisition). Like the principle underlying dead-reckoning, these principles are grounded in analytic considerations. They are the kind of enduring truths about the world that are likely to have shaped the brain's computations.

  18. Extinction from a Rationalist Perspective

    PubMed Central

    Gallistel, C. R.

    2012-01-01

    The merging of the computational theory of mind and evolutionary thinking leads to a kind of rationalism, in which enduring truths about the world have become implicit in the computations that enable the brain to cope with the experienced world. The dead reckoning computation, for example, is implemented within the brains of animals as one of the mechanisms that enables them to learn where they are (Gallistel, 1990, 1995). It integrates a velocity signal with respect to a time signal. Thus, the manner in which position and velocity relate to one another in the world is reflected in the manner in which signals representing those variables are processed in the brain. I use principles of information theory and Bayesian inference to derive from other simple principles explanations for: 1) the failure of partial reinforcement to increase reinforcements to acquisition; 2) the partial reinforcement extinction effect; 3) spontaneous recovery; 4) renewal; 5) reinstatement; 6) resurgence (aka facilitated reacquisition). Like the principle underlying dead-reckoning, these principles are grounded in analytic considerations. They are the kind of enduring truths about the world that are likely to have shaped the brain's computations. PMID:22391153

  19. Extinction from a rationalist perspective.

    PubMed

    Gallistel, C R

    2012-05-01

    The merging of the computational theory of mind and evolutionary thinking leads to a kind of rationalism, in which enduring truths about the world have become implicit in the computations that enable the brain to cope with the experienced world. The dead reckoning computation, for example, is implemented within the brains of animals as one of the mechanisms that enables them to learn where they are (Gallistel, 1990, 1995). It integrates a velocity signal with respect to a time signal. Thus, the manner in which position and velocity relate to one another in the world is reflected in the manner in which signals representing those variables are processed in the brain. I use principles of information theory and Bayesian inference to derive from other simple principles explanations for: (1) the failure of partial reinforcement to increase reinforcements to acquisition; (2) the partial reinforcement extinction effect; (3) spontaneous recovery; (4) renewal; (5) reinstatement; (6) resurgence (aka facilitated reacquisition). Like the principle underlying dead-reckoning, these principles are grounded in analytic considerations. They are the kind of enduring truths about the world that are likely to have shaped the brain's computations. PMID:22391153

  20. SP8 Sequencing Extinct Genomes

    PubMed Central

    Poinar, H.

    2007-01-01

    Nucleic acids, which hold clues to the evolution of various animal and hominid taxa, are comparatively weak molecules from other cellular debris, and thus evolutionary biologists are in essence time trapped. Fortunately, DNA and protein fragments do exist in fossil remains beyond what theoretical experimentation would suggest. Sequestering of DNA molecules in humic or Maillard-like complexes likely represents a rich source of DNA molecules from the past, which have yet to be tapped. These molecules were impossible to acquire due to the selective nature of the polymerase chain reaction. Recently, however, rapid parallel pyrosequencing techniques, such as those used in metagenomics-based research, which, in theory, allow for the identification of all short nucleotide sequences in a sample in a non-selective approach, have the potential to allow the identification of all nucleic acids in a sample, and thus represent the way forward for ancient DNA. In theory, this new technology will allow the completion of genomes of extinct animals, plants, and microbes. I will discuss the benefits and pitfalls of this metagenomics approach to ancient DNA, highlighting our recent efforts underway to sequence the wooly mammoth genome as well as other fossil remains.

  1. Epidemic Extinction and Control in Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2016-07-01

    We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated through optimal control strategies that leverage the dependence of finite-size fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations.

  2. Vaccine enhanced extinction in stochastic epidemic models

    NASA Astrophysics Data System (ADS)

    Billings, Lora; Mier-Y-Teran, Luis; Schwartz, Ira

    2012-02-01

    We address the problem of developing new and improved stochastic control methods that enhance extinction in disease models. In finite populations, extinction occurs when fluctuations owing to random transitions act as an effective force that drives one or more components or species to vanish. Using large deviation theory, we identify the location of the optimal path to extinction in epidemic models with stochastic vaccine controls. These models not only capture internal noise from random transitions, but also external fluctuations, such as stochastic vaccination scheduling. We quantify the effectiveness of the randomly applied vaccine over all possible distributions by using the location of the optimal path, and we identify the most efficient control algorithms. We also discuss how mean extinction times scale with epidemiological and social parameters.

  3. UV extinction properties of carina nebular dust

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  4. Biomarker Records Associated with Mass Extinction Events

    NASA Astrophysics Data System (ADS)

    Whiteside, Jessica H.; Grice, Kliti

    2016-06-01

    The history of life on Earth is punctuated by a series of mass extinction episodes that vary widely in their magnitude, duration, and cause. Biomarkers are a powerful tool for the reconstruction of historical environmental conditions and can therefore provide insights into the cause and responses to ancient extinction events. In examining the five largest mass extinctions in the geological record, investigators have used biomarkers to elucidate key processes such as eutrophy, euxinia, ocean acidification, changes in hydrological balance, and changes in atmospheric CO2. By using these molecular fossils to understand how Earth and its ecosystems have responded to unusual environmental activity during these extinctions, models can be made to predict how Earth will respond to future changes in its climate.

  5. Epidemic Extinction and Control in Heterogeneous Networks.

    PubMed

    Hindes, Jason; Schwartz, Ira B

    2016-07-01

    We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated through optimal control strategies that leverage the dependence of finite-size fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations. PMID:27447531

  6. Context and behavioral processes in extinction.

    PubMed

    Bouton, Mark E

    2004-01-01

    This article provides a selective review and integration of the behavioral literature on Pavlovian extinction. The first part reviews evidence that extinction does not destroy the original learning, but instead generates new learning that is especially context-dependent. The second part examines insights provided by research on several related behavioral phenomena (the interference paradigms, conditioned inhibition, and inhibition despite reinforcement). The final part examines four potential causes of extinction: the discrimination of a new reinforcement rate, generalization decrement, response inhibition, and violation of a reinforcer expectation. The data are consistent with behavioral models that emphasize the role of generalization decrement and expectation violation, but would be more so if those models were expanded to better accommodate the finding that extinction involves a context-modulated form of inhibitory learning.

  7. Extinction vulnerability of coral reef fishes.

    PubMed

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate.

  8. Extinction in the Lotka-Volterra model.

    PubMed

    Parker, Matthew; Kamenev, Alex

    2009-08-01

    Birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey interaction. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.

  9. Extinction coefficient determination using target reflectance measurements.

    PubMed

    Smith, R B; Carswell, A L; Ulitsky, A; Houston, J D

    1989-10-01

    Laboratory measurements are reported for optical extinction at a wavelength of 1.06 microm in water droplet clouds. The extinction coefficient, sigma(T), is determined using the two-way attenuation of a target reflected signal and comparing it to the extinction coefficient sigma determined by a single-pass transmission measurement. As well as solid targets, layers of the clouds have been used as a reflector by employing a selective chopping method to provide range-resolved backscattering information and replicate in the laboratory a lidar configu-ration. It is found that multiple scattering can lead to substantial differences between sigma(T) and sigma and that these differences depend upon the properties of the scattering medium and the target as well as on the field of view of the backscatter receiver used for the reflectance measurements. By keeping the field of view very small, the two methods of measuring the extinction coefficient give the same values.

  10. Opportunistic exploitation: an overlooked pathway to extinction.

    PubMed

    Branch, Trevor A; Lobo, Aaron S; Purcell, Steven W

    2013-07-01

    How can species be exploited economically to extinction? Past single-species hypotheses examining the economic plausibility of exploiting rare species have argued that the escalating value of rarity allows extinction to be profitable. We describe an alternative pathway toward extinction in multispecies exploitation systems, termed 'opportunistic exploitation'. In this mode, highly valued species that are targeted first by fishing, hunting, and logging become rare, but their populations can decline further through opportunistic exploitation while more common but less desirable species are targeted. Effectively, expanding exploitation to more species subsidizes the eventual extinction of valuable species at low densities. Managers need to recognize conditions that permit opportunistic depletion and pass regulations to protect highly desirable species when exploitation can expand to other species.

  11. Opportunistic exploitation: an overlooked pathway to extinction.

    PubMed

    Branch, Trevor A; Lobo, Aaron S; Purcell, Steven W

    2013-07-01

    How can species be exploited economically to extinction? Past single-species hypotheses examining the economic plausibility of exploiting rare species have argued that the escalating value of rarity allows extinction to be profitable. We describe an alternative pathway toward extinction in multispecies exploitation systems, termed 'opportunistic exploitation'. In this mode, highly valued species that are targeted first by fishing, hunting, and logging become rare, but their populations can decline further through opportunistic exploitation while more common but less desirable species are targeted. Effectively, expanding exploitation to more species subsidizes the eventual extinction of valuable species at low densities. Managers need to recognize conditions that permit opportunistic depletion and pass regulations to protect highly desirable species when exploitation can expand to other species. PMID:23562732

  12. Extinction of Viral Infectivity Through Lethal Defection

    NASA Astrophysics Data System (ADS)

    Iranzo, J.; Manrubia, S. C.

    2010-04-01

    During persistent infections, selective pressure over infectivity is relaxed. In RNA viruses this results in the appearance of "parasitic" defectives, non-infective individuals that are able to take over the population causing its extinction.

  13. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  14. Calibrating the end-Permian mass extinction.

    PubMed

    Shen, Shu-zhong; Crowley, James L; Wang, Yue; Bowring, Samuel A; Erwin, Douglas H; Sadler, Peter M; Cao, Chang-qun; Rothman, Daniel H; Henderson, Charles M; Ramezani, Jahandar; Zhang, Hua; Shen, Yanan; Wang, Xiang-dong; Wang, Wei; Mu, Lin; Li, Wen-zhong; Tang, Yue-gang; Liu, Xiao-lei; Liu, Lu-jun; Zeng, Yong; Jiang, Yao-fa; Jin, Yu-gan

    2011-12-01

    The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction. PMID:22096103

  15. The extinction properties of forest components

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Nance, C. E.

    1988-01-01

    The effect of each forest component on the extinction of electromagnetic waves is investigated by modeling the branches with finite cylinders, deciduous leaves with elliptic disks, and coniferous leaves with needles. The inner field is estimated by the field inside an infinitely long cylinder of similar properties for the branches, and by the Shifrin approximation for the leaves. For each forest component analytic expressions were derived for the extinction cross section via the forward scattering theorem and for ohmic and scattered losses. For branches, the variation of the extinction cross section obtained via the forward scattering theorem is illustrated numerically as a function of the branch radius and the imaginery part of its dielectric constant. It is compared with the measurements from a single branch. For the leaves, the forward scattering theorem gives value for the extinction cross section equal to the ohmic cross section.

  16. Possible involvement of serotonin in extinction.

    PubMed

    Beninger, R J; Phillips, A G

    1979-01-01

    In Experiment 1, rats were trained to leverpress for continuous reinforcement with food; half were then intubated with the serotonin synthesis inhibitor parachlorophenylalanine (PCPA: 400 mg/kg) and half with water. In extinction the PCPA-treated rats responded at a higher rate. In Experiment 2, rats were trained on a random interval schedule and then assigned to two groups, treated as in Experiment 1, and tested in extinction. There was no significant difference in the resistance to extinction of the two groups. In Experiment 3, the responding of rats trained in a punished stepdown response paradigm and then given an intragastric injection of PCPA took longer to recover than the responding of water-injected controls. These observations suggest that serotonergic neurons might play a role in extinction processes. PMID:155820

  17. The Cretaceous/Tertiary Extinction Controversy Reconsidered.

    ERIC Educational Resources Information Center

    McCartney, Kevin; Nienstedt, Jeffrey

    1986-01-01

    Reviews varying positions taken in the Cretaceous/Tertiary (K/Y) extinction controversy. Analyzes and contests the meteoritic impact theory known as the Alvarez Model. Presents an alternative working hypothesis explaining the K/T transition. (ML)

  18. Interoceptive conditioning with nicotine using extinction and re-extinction to assess stimulus similarity with bupropion.

    PubMed

    Charntikov, Sergios; deWit, Nicole R; Bevins, Rick A

    2014-11-01

    Bupropion is an atypical antidepressant that increases long-term quit rates of tobacco smokers. A better understanding of the relation between nicotine and this first-line medication may provide insight into improving treatment. For all experiments, rats first had nicotine (0.4 mg base/kg) and saline session intermixed; intermittent access to sucrose only occurred on nicotine session. Nicotine in this protocol comes to differentially control "anticipatory" dipper entries. To more closely examine the overlap in the interoceptive stimulus effects of nicotine and bupropion, we assessed whether subsequent prolonged and repeated non-reinforced (extinction) sessions with the bupropion stimulus could weaken responding to nicotine (i.e., transfer of extinction). We also examined whether retraining the discrimination after initial extinction and then conducting extinction again (i.e., re-extinction) with bupropion would affect responding. We found that bupropion (20 and 30 mg/kg) fully substituted for the nicotine stimulus in repeated 20-min extinction sessions. The extent of substitution in extinction did not necessarily predict performance in the transfer test (e.g., nicotine responding unchanged after extinction with 20 mg/kg bupropion). Generalization of extinction back to nicotine was not seen with 20 mg/kg bupropion even after increasing the number of extinction session from 6 to 24. Finally, there was evidence that learning in the initial extinction phase was retained in the re-extinction phase for nicotine and bupropion. These findings indicate that learning involving the nicotine stimuli are complex and that assessment approach for stimulus similarity changes conclusions regarding substitution by bupropion. Further research will be needed to identify whether such differences may be related to different facets of nicotine dependence and/or its treatment.

  19. Neural correlates of visual extinction or awareness in a series of patients with right temporoparietal damage.

    PubMed

    Sarri, Margarita; Ruff, Christian C; Rees, Geraint; Driver, Jon

    2010-03-01

    Patients with visual extinction following right-hemisphere damage can typically detect left visual field stimulation when it is presented in isolation, but tend to miss this when it is paired with competing concurrent right visual stimulation. Some single-case studies have provided preliminary evidence that right visual cortex may show residual activation for contralesional, extinguished visual stimuli. Here we go beyond prior work by using individual retinotopic mapping and online eye-tracking during fMRI to study activity in stimulus-responsive retinotopic visual cortex for a case series of four extinction patients. We found consistent activation of retinotopic right visual cortex for bilateral visual stimulation that resulted in left extinction. This residual unconscious activation included areas V1 to V3 and was not due to inadvertent eye movements. We also provide further evidence for the emerging view that awareness may require activity of frontal and parietal regions well beyond visual cortex.

  20. Dust extinction and molecular gas in the dark cloud IC 5146

    NASA Astrophysics Data System (ADS)

    Lada, Charles J.; Lada, Elizabeth A.; Clemens, Dan P.; Bally, John

    1994-07-01

    In this paper we describe a powerful method for mapping the distribution of dust through a molecular cloud using data obtained in large-scale, multiwavelength, infrared imaging surveys. This method combines direct measurements of near-infrared color excess and certain techniques of star counting to derive mean extinctions and map the dust column density distribution through a cloud at higher angular resolutions and greater optical depths than those achieved previously by optical star counting. We report the initial results of the application of this method to a dark cloud complex near the cluster IC 5146, where we have performed coordinated, near-infrared, JHK imaging and (13)CO, C(18)O, and CS millimeter-wave, molecular-line surveys of a large portion of the complex. More than 4000 stars were detected in our JHK survey of the cloud. Of these, all but about a dozen appear to be field stars not associated with the cloud. Star count maps at J band show a striking and detailed anticorrelation between the surface density of J-band sources and CO and CS molecular-line emission. We used the (H-K) colors and positions of nearly 1300 sources to directly measure and map the extinction and thus trace the dust column density through the cloud at an effective angular resolution of 1 min .5. We report an interesting correlation between the measured dispersion in our extinction determinations and the extinction. Modeling this relation indicates that effects of small-scale cloud structure dominate the uncertainties in our measurements. Moreover, we demonstrate that such observations can be used to place constraints on the nature of the spatial distribution of extinction on scales smaller than our resolution. In particular, we show that models in which the dust is distributed uniformly or in discrete high-extinction clumps on scales smaller than (1 min .5) are inconsistent with the observations. We have derived extinctions at the same positions and at the same angular resolution

  1. Dust extinction and molecular gas in the dark cloud IC 5146

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.; Lada, Elizabeth A.; Clemens, Dan P.; Bally, John

    1994-01-01

    In this paper we describe a powerful method for mapping the distribution of dust through a molecular cloud using data obtained in large-scale, multiwavelength, infrared imaging surveys. This method combines direct measurements of near-infrared color excess and certain techniques of star counting to derive mean extinctions and map the dust column density distribution through a cloud at higher angular resolutions and greater optical depths than those achieved previously by optical star counting. We report the initial results of the application of this method to a dark cloud complex near the cluster IC 5146, where we have performed coordinated, near-infrared, JHK imaging and (13)CO, C(18)O, and CS millimeter-wave, molecular-line surveys of a large portion of the complex. More than 4000 stars were detected in our JHK survey of the cloud. Of these, all but about a dozen appear to be field stars not associated with the cloud. Star count maps at J band show a striking and detailed anticorrelation between the surface density of J-band sources and CO and CS molecular-line emission. We used the (H-K) colors and positions of nearly 1300 sources to directly measure and map the extinction and thus trace the dust column density through the cloud at an effective angular resolution of 1 min .5. We report an interesting correlation between the measured dispersion in our extinction determinations and the extinction. Modeling this relation indicates that effects of small-scale cloud structure dominate the uncertainties in our measurements. Moreover, we demonstrate that such observations can be used to place constraints on the nature of the spatial distribution of extinction on scales smaller than our resolution. In particular, we show that models in which the dust is distributed uniformly or in discrete high-extinction clumps on scales smaller than (1 min .5) are inconsistent with the observations. We have derived extinctions at the same positions and at the same angular resolution

  2. Life in the Aftermath of Mass Extinctions.

    PubMed

    Hull, Pincelli

    2015-10-01

    The vast majority of species that have ever lived went extinct sometime other than during one of the great mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolutionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the aftermaths of mass extinctions might contribute to the evolutionary importance of such events. Following the mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolutionary driver - earth system succession. Earth system succession occurs when global environmental or biotic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium. As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles - and in turn, species and ecosystems - over timescales typical of the geosphere, often many thousands to millions of years. Earth system succession provides a general explanation for the pattern and timing of ecological and evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the pace of global biotic change after massive disturbance - a limit set by geosphere-biosphere interactions. For mass extinctions, earth system succession may drive the ever-changing ecological stage on which species evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do.

  3. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  4. On the prior distribution of extinction time.

    PubMed

    Solow, Andrew R

    2016-06-01

    Bayesian inference about the extinction of a species based on a record of its sightings requires the specification of a prior distribution for extinction time. Here, I critically review some specifications in the context of a specific model of the sighting record. The practical implication of the choice of prior distribution is illustrated through an application to the sighting record of the Caribbean monk seal. PMID:27277952

  5. Large extinction ratio optical electrowetting shutter.

    PubMed

    Montoya, Ryan D; Underwood, Kenneth; Terrab, Soraya; Watson, Alexander M; Bright, Victor M; Gopinath, Juliet T

    2016-05-01

    A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks.

  6. Extinction of dinosaurs: a possible novel cause.

    PubMed

    Ramadurai, S; Lloyd, D; Wallis, M; Wickramasinghe, N C

    1995-03-01

    A novel cause of mass extinction of fauna close to the (K/T) Boundary is suggested. A large amount of non-protein amino acids (AIB and ISOVAL) has been observed close to this event. It is speculated that these amino acids may be toxic and are responsible for the extinction. The toxicity level is estimated for this suggestion to be true and experimentalists are encouraged to test this level of toxicity for the amino acids. PMID:11539216

  7. A method for local rectification of 2MASS positions with UCAC4

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    2016-04-01

    We propose to locally rectify 2MASS with respect to UCAC4 in order to diminish the systematic differences between these catalogs. We develop a rectification method that starts computing the weighted mean differences 2MASS-UCAC4 on a regular grid on the sky. The corrections that are later applied to 2MASS positions are obtained by a spline interpolation of the mean values calculated on the grid. The method is tested in four 3° × 3° fields in the ecliptical zone; after rectification in all of them the systematic differences are reduced well below the random differences. The 2MASS catalog rectified with the proposed method can be regarded as an extension of UCAC4 for astrometry, with an accuracy of around 90 mas in the positions, and with negligible systematic errors, for instance for the astrometric reduction of small field CCD images.

  8. Extended variational approach to the SU(2) mass gap on the lattice

    SciTech Connect

    Akeyo, J.O. ); Jones, H.F.; Parker, C.S. )

    1995-02-01

    The linear [delta] expansion is applied to a calculation of the SU(2) mass gap on the lattice. Our results compare favorably with the strong-coupling expansion and are in good agreement with recent Monte Carlo estimates.

  9. How does climate change cause extinction?

    PubMed

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  10. Amphetamine and extinction of cued fear.

    PubMed

    Carmack, Stephanie A; Wood, Suzanne C; Anagnostaras, Stephan G

    2010-01-01

    Much research is focused on developing novel drugs to improve memory. In particular, psychostimulants have been shown to enhance memory and have a long history of safe use in humans. In prior work, we have shown that very low doses of amphetamine administered before training on a Pavlovian fear-conditioning task can dramatically facilitate the acquisition of cued fear. The current experiment sought to expand these findings to the extinction of cued fear, a well-known paradigm with therapeutic implications for learned phobias and post-traumatic stress disorder. If extinction reflects new learning, one might expect drugs that enhance the acquisition of cued fear to also enhance the extinction of cued fear. This experiment examined whether 0.005 or 0.05 mg/kg of D-amphetamine (therapeutic doses shown to enhance acquisition) also enhance the extinction of cued fear. Contrary to our hypothesis, amphetamine did not accelerate extinction. Thus, at doses that enhance acquisition of conditioned fear, amphetamine does not appear to enhance extinction.

  11. How does climate change cause extinction?

    PubMed Central

    Cahill, Abigail E.; Aiello-Lammens, Matthew E.; Fisher-Reid, M. Caitlin; Hua, Xia; Karanewsky, Caitlin J.; Yeong Ryu, Hae; Sbeglia, Gena C.; Spagnolo, Fabrizio; Waldron, John B.; Warsi, Omar; Wiens, John J.

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies. PMID:23075836

  12. Compound Stimulus Extinction Reduces Spontaneous Recovery in Humans

    ERIC Educational Resources Information Center

    Coelho, Cesar A. O.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.

    2015-01-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately…

  13. Estimating extinction risk with metapopulation models of large-scale fragmentation.

    PubMed

    Schnell, Jessica K; Harris, Grant M; Pimm, Stuart L; Russell, Gareth J

    2013-06-01

    Habitat loss is the principal threat to species. How much habitat remains-and how quickly it is shrinking-are implicitly included in the way the International Union for Conservation of Nature determines a species' risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area-weighted self-colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long-term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category.

  14. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology

    PubMed Central

    Di Marco, Moreno; Buchanan, Graeme M.; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring. PMID:24733953

  15. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology.

    PubMed

    Di Marco, Moreno; Buchanan, Graeme M; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.

  16. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.

  17. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc. PMID:27102086

  18. Extinction rates in North American freshwater fishes, 1900-2010

    USGS Publications Warehouse

    Burkhead, Noel M.

    2012-01-01

    Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). In the twentieth century, freshwater fishes had the highest extinction rate worldwide among vertebrates. The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.

  19. Expanding the Intertrial Interval During Extinction: Response Cessation and Recovery

    PubMed Central

    Orinstein, Alyssa J.; Urcelay, Gonzalo P.; Miller, Ralph R.

    2010-01-01

    We examined trial spacing during extinction following a human contingency learning task. Specifically, we assessed if an expanding retrieval practice schedule (Bjork & Bjork, 1992, 2006), in which the spacing between extinction trials was progressively increased, would result in faster immediate extinction and less recovery from extinction than uniformly spaced extinction trials. We used an ABB vs. ABA renewal design and observed that, whereas the expanding group extinguished faster during extinction treatment, the expanding and constant groups showed the same level of extinction with an immediate test in the extinction context (ABB) and the two groups showed equivalent ABA renewal at test in the training context. We conclude that the faster extinction observed in the expanding groups could be misleading in clinical treatment, if the therapist used the absence of fear during extinction as the basis for terminating treatment. PMID:20171324

  20. Extinction reveals that primary sensory cortex predicts reinforcement outcome.

    PubMed

    Bieszczad, Kasia M; Weinberger, Norman M

    2012-02-01

    Primary sensory cortices are traditionally regarded as stimulus analysers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether 'behavioral importance' specifically reflects a sound's ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains, estimated from a previously established brain-behavior quantitative function, were reversed, supporting the 'reinforcement prediction' hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, P < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal's value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior. PMID:22304434

  1. The Population Decline and Extinction of Darwin’s Frogs

    PubMed Central

    Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Collen, Ben; Rowcliffe, J. Marcus; Veloso, Alberto; Cunningham, Andrew A.

    2013-01-01

    Darwin’s frogs (Rhinoderma darwinii and R. rufum) are two species of mouth-brooding frogs from Chile and Argentina. Here, we present evidence on the extent of declines, current distribution and conservation status of Rhinoderma spp.; including information on abundance, habitat and threats to extant Darwin’s frog populations. All known archived Rhinoderma specimens were examined in museums in North America, Europe and South America. Extensive surveys were carried out throughout the historical ranges of R. rufum and R. darwinii from 2008 to 2012. Literature review and location data of 2,244 archived specimens were used to develop historical distribution maps for Rhinoderma spp. Based on records of sightings, optimal linear estimation was used to estimate whether R. rufum can be considered extinct. No extant R. rufum was found and our modelling inferred that this species became extinct in 1982 (95% CI, 1980–2000). Rhinoderma darwinii was found in 36 sites. All populations were within native forest and abundance was highest in Chiloé Island, when compared with Coast, Andes and South populations. Estimated population size and density (five populations) averaged 33.2 frogs/population (range, 10.2–56.3) and 14.9 frogs/100 m2 (range, 5.3–74.1), respectively. Our results provide further evidence that R. rufum is extinct and indicate that R. darwinii has declined to a much greater degree than previously recognised. Although this species can still be found across a large part of its historical range, remaining populations are small and severely fragmented. Conservation efforts for R. darwinii should be stepped up and the species re-classified as Endangered. PMID:23776705

  2. Extinction reveals that primary sensory cortex predicts reinforcement outcome.

    PubMed

    Bieszczad, Kasia M; Weinberger, Norman M

    2012-02-01

    Primary sensory cortices are traditionally regarded as stimulus analysers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether 'behavioral importance' specifically reflects a sound's ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains, estimated from a previously established brain-behavior quantitative function, were reversed, supporting the 'reinforcement prediction' hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, P < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal's value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior.

  3. Immediate Extinction Causes a Less Durable Loss of Performance than Delayed Extinction following Either Fear or Appetitive Conditioning

    ERIC Educational Resources Information Center

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…

  4. Elevational Distribution and Extinction Risk in Birds

    PubMed Central

    White, Rachel L.; Bennett, Peter M.

    2015-01-01

    Mountainous regions are hotspots of terrestrial biodiversity. Unlike islands, which have been the focus of extensive research on extinction dynamics, fewer studies have examined mountain ranges even though they face increasing threats from human pressures – notably habitat conversion and climate change. Limits to the taxonomic and geographical extent and resolution of previously available information have precluded an explicit assessment of the relative role of elevational distribution in determining extinction risk. We use a new global species-level avian database to quantify the influence of elevational distribution (range, maximum and midpoint) on extinction risk in birds at the global scale. We also tested this relationship within biogeographic realms, higher taxonomic levels, and across phylogenetic contrasts. Potential confounding variables (i.e. phylogenetic, distributional, morphological, life history and niche breadth) were also tested and controlled for. We show that the three measures of elevational distribution are strong negative predictors of avian extinction risk, with elevational range comparable and complementary to that of geographical range size. Extinction risk was also found to be positively associated with body weight, development and adult survival, but negatively associated with reproduction and niche breadth. The robust and consistent findings from this study demonstrate the importance of elevational distribution as a key driver of variation in extinction dynamics in birds. Our results also highlight elevational distribution as a missing criterion in current schemes for quantifying extinction risk and setting species conservation priorities in birds. Further research is recommended to test for generality across non-avian taxa, which will require an advance in our knowledge of species’ current elevational ranges and increased efforts to digitise and centralise such data. PMID:25849620

  5. Conservation Risks: When Will Rhinos be Extinct?

    PubMed

    Haas, Timothy C; Ferreira, Sam M

    2016-08-01

    We develop a risk intelligence system for biodiversity enterprises. Such enterprises depend on a supply of endangered species for their revenue. Many of these enterprises, however, cannot purchase a supply of this resource and are largely unable to secure the resource against theft in the form of poaching. Because replacements are not available once a species becomes extinct, insurance products are not available to reduce the risk exposure of these enterprises to an extinction event. For many species, the dynamics of anthropogenic impacts driven by economic as well as noneconomic values of associated wildlife products along with their ecological stressors can help meaningfully predict extinction risks. We develop an agent/individual-based economic-ecological model that captures these effects and apply it to the case of South African rhinos. Our model uses observed rhino dynamics and poaching statistics. It seeks to predict rhino extinction under the present scenario. This scenario has no legal horn trade, but allows live African rhino trade and legal hunting. Present rhino populations are small and threatened by a rising onslaught of poaching. This present scenario and associated dynamics predicts continued decline in rhino population size with accelerated extinction risks of rhinos by 2036. Our model supports the computation of extinction risks at any future time point. This capability can be used to evaluate the effectiveness of proposed conservation strategies at reducing a species' extinction risk. Models used to compute risk predictions, however, need to be statistically estimated. We point out that statistically fitting such models to observations will involve massive numbers of observations on consumer behavior and time-stamped location observations on thousands of animals. Finally, we propose Big Data algorithms to perform such estimates and to interpret the fitted model's output. PMID:26340794

  6. The extinction context enables extinction performance after a change in context

    PubMed Central

    Nelson, James Byron; Gregory, Pamela; Sanjuan, Maria del Carmen

    2012-01-01

    One experiment with human participants determined the extent to which recovery of extinguished responding with a context switch was due to a failure to retrieve contextually-controlled learning, or some other process such as participants learning that context changes signal reversals in the meaning of stimulus – outcome relationships. In a video game, participants learned to suppress mouse clicking in the presence of a stimulus that predicted an attack. Then, that stimulus underwent extinction in a different context (environment within the game). Following extinction, suppression was recovered and then extinguished again during testing in the conditioning context. In a final test, participants that were tested in the context where extinction first took place showed less of a recovery than those tested in a neutral context, but they showed a recovery of suppression nevertheless. A change in context tended to cause a change in the meaning of the stimulus, leading to recovery in both the neutral and extinction contexts. The extinction context attenuated that recovery, perhaps by enabling retrieval of the learning that took place in extinction. Recovery outside an extinction context is due to a failure of the context to enable the learning acquired during extinction, but only in part. PMID:22521549

  7. Selectivity of terrestrial gastropod extinctions on an oceanic archipelago and insights into the anthropogenic extinction process.

    PubMed

    Chiba, Satoshi; Roy, Kaustuv

    2011-06-01

    Anthropogenic impacts have led to widespread extinctions of species on oceanic islands but the nature of many of these extinctions remains poorly known. Here we investigate extinction selectivities of terrestrial gastropods from the Ogasawara archipelago in the northwest Pacific, where anthropogenic threats have changed over time, shifting primarily from the effects of habitat loss to predation by a variety of different predators. Across all of the islands, extinct species had significantly smaller geographic ranges compared with species that are still alive, but among the surviving species, ranges of those that are currently declining due to human impacts do not differ significantly from those that are not threatened. Extinctions were selective with respect to spire index (SI) of shells, a trait of potential functional importance, but the relationship between body size and extinction vulnerability varied among extinction agents, some of which were strongly size selective, whereas others were not. Overall, whereas anthropogenic impacts have resulted in nonrandom losses of phenotypic diversity, the patterns of selectivity are complex, vary among islands, and with the type of threat. As extinction agents have changed historically, so has the pattern of loss. Because of the changing nature of anthropogenic impacts, resiliency to one type of threat does not guarantee long-term survival of species and future patterns of biodiversity loss on these islands are likely to be different from those in the past.

  8. Selectivity of terrestrial gastropod extinctions on an oceanic archipelago and insights into the anthropogenic extinction process.

    PubMed

    Chiba, Satoshi; Roy, Kaustuv

    2011-06-01

    Anthropogenic impacts have led to widespread extinctions of species on oceanic islands but the nature of many of these extinctions remains poorly known. Here we investigate extinction selectivities of terrestrial gastropods from the Ogasawara archipelago in the northwest Pacific, where anthropogenic threats have changed over time, shifting primarily from the effects of habitat loss to predation by a variety of different predators. Across all of the islands, extinct species had significantly smaller geographic ranges compared with species that are still alive, but among the surviving species, ranges of those that are currently declining due to human impacts do not differ significantly from those that are not threatened. Extinctions were selective with respect to spire index (SI) of shells, a trait of potential functional importance, but the relationship between body size and extinction vulnerability varied among extinction agents, some of which were strongly size selective, whereas others were not. Overall, whereas anthropogenic impacts have resulted in nonrandom losses of phenotypic diversity, the patterns of selectivity are complex, vary among islands, and with the type of threat. As extinction agents have changed historically, so has the pattern of loss. Because of the changing nature of anthropogenic impacts, resiliency to one type of threat does not guarantee long-term survival of species and future patterns of biodiversity loss on these islands are likely to be different from those in the past. PMID:21606352

  9. Neural signals of vicarious extinction learning.

    PubMed

    Golkar, Armita; Haaker, Jan; Selbing, Ida; Olsson, Andreas

    2016-10-01

    Social transmission of both threat and safety is ubiquitous, but little is known about the neural circuitry underlying vicarious safety learning. This is surprising given that these processes are critical to flexibly adapt to a changeable environment. To address how the expression of previously learned fears can be modified by the transmission of social information, two conditioned stimuli (CS + s) were paired with shock and the third was not. During extinction, we held constant the amount of direct, non-reinforced, exposure to the CSs (i.e. direct extinction), and critically varied whether another individual-acting as a demonstrator-experienced safety (CS + vic safety) or aversive reinforcement (CS + vic reinf). During extinction, ventromedial prefrontal cortex (vmPFC) responses to the CS + vic reinf increased but decreased to the CS + vic safety This pattern of vmPFC activity was reversed during a subsequent fear reinstatement test, suggesting a temporal shift in the involvement of the vmPFC. Moreover, only the CS + vic reinf association recovered. Our data suggest that vicarious extinction prevents the return of conditioned fear responses, and that this efficacy is reflected by diminished vmPFC involvement during extinction learning. The present findings may have important implications for understanding how social information influences the persistence of fear memories in individuals suffering from emotional disorders. PMID:27278792

  10. Can extinction rates be estimated without fossils?

    PubMed

    Paradis, Emmanuel

    2004-07-01

    There is considerable interest in the possibility of using molecular phylogenies to estimate extinction rates. The present study aims at assessing the statistical performance of the birth-death model fitting approach to estimate speciation and extinction rates by comparison to the approach considering fossil data. A simulation-based approach was used. The diversification of a large number of lineages was simulated under a wide range of speciation and extinction rate values. The estimators obtained with fossils performed better than those without fossils. In the absence of fossils (e.g. with a molecular phylogeny), the speciation rate was correctly estimated in a wide range of situations; the bias of the corresponding estimator was close to zero for the largest trees. However, this estimator was substantially biased when the simulated extinction rate was high. On the other hand the estimator of extinction rate was biased in a wide range of situations. Surprisingly, this bias was lesser with medium-sized trees. Some recommendations for interpreting results from a diversification analysis are given.

  11. Mass Extinctions and Biosphere-Geosphere Stability

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel; Bowring, Samuel

    2015-04-01

    Five times in the past 500 million years, mass extinctions have resulted in the loss of greater than three-fourths of living species. Each of these events is associated with significant environmental change recorded in the carbon-isotopic composition of sedimentary rocks. There are also many such environmental events in the geologic record that are not associated with mass extinctions. What makes them different? Two factors appear important: the size of the environmental perturbation, and the time scale over which it occurs. We show that the natural perturbations of Earth's carbon cycle during the past 500 million years exhibit a characteristic rate of change over two orders of magnitude in time scale. This characteristic rate is consistent with the maximum rate that limits quasistatic (i.e., near steady-state) evolution of the carbon cycle. We identify this rate with marginal stability, and show that mass extinctions occur on the fast, unstable side of the stability boundary. These results suggest that the great extinction events of the geologic past, and potentially a "sixth extinction" associated with modern environmental change, are characterized by common mechanisms of instability.

  12. Recent fear is resistant to extinction.

    PubMed

    Maren, Stephen; Chang, Chun-hui

    2006-11-21

    In some individuals, fearful experiences (e.g., combat) yield persistent and debilitating psychological disturbances, including posttraumatic stress disorder (PTSD). Early intervention (e.g., debriefing) after psychological trauma is widely practiced and argued to be an effective strategy for limiting subsequent psychopathology, although there has been considerable debate on this point. Here we show in an animal model of traumatic fear that early intervention shortly after an aversive experience yields poor long-term fear reduction. Extinction trials administered minutes after aversive fear conditioning in rats suppressed fear acutely, but fear suppression was not maintained the next day. In contrast, delivering extinction trials 1 day after fear conditioning produced an enduring suppression of fear memory. We further show that the recent experience of an aversive event, not the timing of the extinction intervention per se, inhibits the development of long-term fear extinction. These results reveal that the level of fear present at the time of intervention is a critical factor in the efficacy of extinction. Importantly, our work suggests that early intervention may not yield optimal outcomes in reducing posttraumatic stress, particularly after severe trauma.

  13. Modelling the extinction of Steller's sea cow

    PubMed Central

    Turvey, S.T; Risley, C.L

    2005-01-01

    Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by ‘blitzkrieg’-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as ‘infinite’. PMID:17148336

  14. Extinction as the loss of evolutionary history

    PubMed Central

    Erwin, Douglas H.

    2008-01-01

    Current plant and animal diversity preserves at most 1–2% of the species that have existed over the past 600 million years. But understanding the evolutionary impact of these extinctions requires a variety of metrics. The traditional measurement is loss of taxa (species or a higher category) but in the absence of phylogenetic information it is difficult to distinguish the evolutionary depth of different patterns of extinction: the same species loss can encompass very different losses of evolutionary history. Furthermore, both taxic and phylogenetic measures are poor metrics of morphologic disparity. Other measures of lost diversity include: functional diversity, architectural components, behavioral and social repertoires, and developmental strategies. The canonical five mass extinctions of the Phanerozoic reveals the loss of different, albeit sometimes overlapping, aspects of loss of evolutionary history. The end-Permian mass extinction (252 Ma) reduced all measures of diversity. The same was not true of other episodes, differences that may reflect their duration and structure. The construction of biodiversity reflects similarly uneven contributions to each of these metrics. Unraveling these contributions requires greater attention to feedbacks on biodiversity and the temporal variability in their contribution to evolutionary history. Taxic diversity increases after mass extinctions, but the response by other aspects of evolutionary history is less well studied. Earlier views of postextinction biotic recovery as the refilling of empty ecospace fail to capture the dynamics of this diversity increase. PMID:18695248

  15. Disease and the dynamics of extinction

    PubMed Central

    McCallum, Hamish

    2012-01-01

    Invading infectious diseases can, in theory, lead to the extinction of host populations, particularly if reservoir species are present or if disease transmission is frequency-dependent. The number of historic or prehistoric extinctions that can unequivocally be attributed to infectious disease is relatively small, but gathering firm evidence in retrospect is extremely difficult. Amphibian chytridiomycosis and Tasmanian devil facial tumour disease (DFTD) are two very different infectious diseases that are currently threatening to cause extinctions in Australia. These provide an unusual opportunity to investigate the processes of disease-induced extinction and possible management strategies. Both diseases are apparently recent in origin. Tasmanian DFTD is entirely host-specific but potentially able to cause extinction because transmission depends weakly, if at all, on host density. Amphibian chytridiomycosis has a broad host range but is highly pathogenic only to some populations of some species. At present, both diseases can only be managed by attempting to isolate individuals or populations from disease. Management options to accelerate the process of evolution of host resistance or tolerance are being investigated in both cases. Anthropogenic changes including movement of diseases and hosts, habitat destruction and fragmentation and climate change are likely to increase emerging disease threats to biodiversity and it is critical to further develop strategies to manage these threats. PMID:22966138

  16. Neural signals of vicarious extinction learning.

    PubMed

    Golkar, Armita; Haaker, Jan; Selbing, Ida; Olsson, Andreas

    2016-10-01

    Social transmission of both threat and safety is ubiquitous, but little is known about the neural circuitry underlying vicarious safety learning. This is surprising given that these processes are critical to flexibly adapt to a changeable environment. To address how the expression of previously learned fears can be modified by the transmission of social information, two conditioned stimuli (CS + s) were paired with shock and the third was not. During extinction, we held constant the amount of direct, non-reinforced, exposure to the CSs (i.e. direct extinction), and critically varied whether another individual-acting as a demonstrator-experienced safety (CS + vic safety) or aversive reinforcement (CS + vic reinf). During extinction, ventromedial prefrontal cortex (vmPFC) responses to the CS + vic reinf increased but decreased to the CS + vic safety This pattern of vmPFC activity was reversed during a subsequent fear reinstatement test, suggesting a temporal shift in the involvement of the vmPFC. Moreover, only the CS + vic reinf association recovered. Our data suggest that vicarious extinction prevents the return of conditioned fear responses, and that this efficacy is reflected by diminished vmPFC involvement during extinction learning. The present findings may have important implications for understanding how social information influences the persistence of fear memories in individuals suffering from emotional disorders.

  17. Modelling the extinction of Steller's sea cow.

    PubMed

    Turvey, S T; Risley, C L

    2006-03-22

    Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by 'blitzkrieg'-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as 'infinite'.

  18. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids

    PubMed Central

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-01-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders. PMID:26514583

  19. The transition from memory retrieval to extinction.

    PubMed

    Cammarota, Martín; Barros, Daniela M; Vianna, Mónica R M; Bevilaqua, Lia R M; Coitinho, Adriana; Szapiro, Germán; Izquierdo, Luciana A; Medina, Jorge H; Izquierdo, Iván

    2004-09-01

    Memory is measured by measuring retrieval. Retrieval is often triggered by the conditioned stimulus (CS); however, as known since Pavlov, presentation of the CS alone generates extinction. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response is to stay in the safe area. In IA, retrieval is measured without the US, as latency to step-down from the safe area (i.e., a platform). Extinction is installed at the moment of the first unreinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is behaviorally and biochemically necessary for the generation of extinction, this last process constitutes a new learning secondary to the unreinforced expression of the original trace.

  20. Retrieval and the extinction of memory.

    PubMed

    Cammarota, Martín; Bevilaqua, Lia R M; Barros, Daniela M; Vianna, Mônica R M; Izquierdo, Luciana A; Medina, Jorge H; Izquierdo, Iván

    2005-06-01

    1. Memory is assessed by measuring retrieval which is often elicited by the solely presentation of the conditioned stimulus (CS). However, as known since Pavlov, presentation of the CS alone generates extinction. 2. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response (CR) is to stay in the safe area. Retrieval of the memory for the step-down version of this task is measured in the absence of the US, as latency to step-down from the safe area (i.e., a platform). 3. Extinction of the IA response is installed at the moment of the first non-reinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. 4. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is necessary for the generation of extinction this last process constitutes a new learning secondary to the non-reinforced expression of the original trace.

  1. Extinction rates in North American freshwater fishes, 1900-2010

    USGS Publications Warehouse

    Burkhead, Noel M.

    2012-01-01

    Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.

  2. Exploring the total Galactic extinction with SDSS BHB stars

    NASA Astrophysics Data System (ADS)

    Tian, Hai-Jun; Liu, Chao; Hu, Jing-Yao; Xu, Yang; Chen, Xue-Lei

    2014-01-01

    Aims: We used 12 530 photometrically-selected blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey (SDSS) to estimate the total extinction of the Milky Way at the high Galactic latitudes, RV and AV in each line of sight. Methods: A Bayesian method was developed to estimate the reddening values in the given lines of sight. Based on the most likely values of reddening in multiple colors, we were able to derive the values of RV and AV. Results: We selected 94 zero-reddened BHB stars from seven globular clusters as the template. The reddening in the four SDSS colors for the northern Galactic cap were estimated by comparing the field BHB stars with the template stars. The accuracy of this estimation is around 0.01 mag for most lines of sight. We also obtained ⟨ RV ⟩ to be around 2.40 ± 1.05 and AV map within an uncertainty of 0.1 mag. The results, including reddening values in the four SDSS colors, AV, and RV in each line of sight, are released on line. In this work, we employ an up-to-date parallel technique on GPU card to overcome time-consuming computations. We plan to release online the C++ CUDA code used for this analysis. Conclusions: The extinction map derived from BHB stars is highly consistent with that from Schlegel et al. (1998, ApJ, 500, 525). The derived RV is around 2.40 ± 1.05. The contamination probably makes the RV be larger. Tables 1-4 (excerpt) are available in electronic form at http://www.aanda.orgFull Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A142

  3. The neurochemistry and pharmacology of extinction behavior.

    PubMed

    Mason, S T

    1983-01-01

    The role of various neurotransmitter systems in the brain in extinction behavior is examined. An attempt is made to suggest psychological mechanisms (such as attention, secondary reinforcement or internal inhibition) by which the neurotransmitter systems or drugs act to produce the observed alteration in extinction behavior. The putative neurotransmitters acetylcholine, noradrenaline, dopamine, serotonin, endorphins and the peptides are reviewed, as are pharmacological agents such as the benzodiazepines, the barbiturates, the psychodelics, the neuroleptics, the psychomotor stimulants and cannabinoids. Other treatments and factors are considered such as peripheral hormones and the adrenal-pituitary axis. It is suggested that the noradrenergic system may be involved in the expression of extinction behavior by a role in selective attention, the dopamine system via an involvement with secondary reinforcement, the cholinergic system by a mechanism of response inhibition and the barbiturates and benzodiazepines by a block of nonreward.

  4. Palaeontological data and identifying mass extinctions.

    PubMed

    Benton, M J

    1994-05-01

    It is often assumed that mass extinctions may be read directly from the fossil record. However, recent work on the Cretaceous-Tertiary (K-T) boundary has shown the difficulty of doing this. For example, it is hard to tell whether the stratigraphic ranges of taxa are complete or not, and what the shape of an extinction really is. Range completeness may be assessed by (1) a statistical approach to the relative completeness of ranges of taxa, and (2) tests based on collecting effort near the ends of ranges. Tests carried out recently suggest that the record is good in parts and getting better. Hence, palaeontologists ought to be able to document the nature of extinction events ever more precisely.

  5. Mass extinction caused by large bolide impacts

    NASA Technical Reports Server (NTRS)

    Alvarez, Luis W.

    1987-01-01

    A history and development status assessment is presented for the hypothesis that the great extinction of living species 65 million years ago, at the boundary between the Tertiary and Cretaceous geological ages, was due to the collision of a meteoroid, asteroid, or comet with the earth. The initial, deeply suggestive indication of the extraterrestial origin of the extinction-initiating mechanism was the detection of an exceptionally high concentration of iridium at the stratigraphic position of the extinction. Detailed computer modeling of the atmospheric effect of such a bolide impact has shown that the earth would have first grown intensely cold during a period of darkness due to particulate debris clouds in the upper atmosphere, followed by an enormous increase in global temperatures as the debris cleared, created by the persistence of greenhouse-effect gases; this heating would have been especially lethal to numerous forms of life.

  6. Mammal extinctions, body size, and paleotemperature

    USGS Publications Warehouse

    Bown, T.M.; Holroyd, P.A.; Rose, K.D.

    1994-01-01

    There is a general inverse relationship between the natural logarithm of tooth area (a body size indicator) of some fossil mammals and paleotemperature during approximately 2.9 million years of the early Eocene in the Bighorn Basin of northwest Wyoming. When mean temperatures became warmer, tooth areas tended to become smaller. During colder times, larger species predominated; these generally became larger or remained the same size. Paleotemperature trends also markedly affected patterns of local (and, perhaps, regional) extinction and immigration. New species appeared as immigrants during or near the hottest (smaller forms) and coldest (larger forms) intervals. Paleotemperature trend reversals commonly resulted in the ultimate extinction of both small forms (during cooling intervals) and larger forms (during warming intervals). These immigrations and extinctions mark faunal turnovers that were also modulated by sharp increases in sediment accumulation rate.

  7. Does supplementary reinforcement of stereotypy facilitate extinction?

    PubMed

    Dozier, Claudia L; Iwata, Brian A; Wilson, David M; Thomason-Sassi, Jessica L; Roscoe, Eileen M

    2013-01-01

    Results of several studies suggest that delivery of supplemental (social) reinforcement for stereotypy might facilitate its subsequent extinction. We examined this possibility with 9 subjects who engaged in stereotypy by including methodological refinements to ensure that (a) subjects' stereotypy was maintained in the absence of social consequences, (b) supplementary reinforcers were highly preferred and were shown to be reinforcers for some behavior, and (c) subjects were exposed to lengthy reinforcement and extinction conditions. In spite of these modifications, only 4 subjects' stereotypy increased when supplementary reinforcement was delivered contingent on stereotypy, and no subject's stereotypy decreased below initial baseline levels when social reinforcement was subsequently withheld. Decreases in stereotypy occurred with the implementation of noncontingent reinforcement. Thus, delivery of supplementary reinforcers either did not increase stereotypy or did not facilitate extinction of stereotypy maintained by automatic reinforcement. We discuss the practical and conceptual bases of these results with respect to our current understanding of function-based interventions.

  8. The end-triassic mass extinction event

    NASA Technical Reports Server (NTRS)

    Hallam, A.

    1988-01-01

    The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.

  9. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  10. Photometric analysis of the eclipsing binary 2MASS 19090585+4911585

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Vaňko, M.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Koeltzsch, A.; Ginski, Ch.; Marka, C.; Moualla, M.; Tetzlaff, N.; Broeg, Ch.; Neuhäuser, R.

    2009-05-01

    We report on observations of the eclipsing binary 2MASS 19090585+4911585 with the 25 cm auxiliary telescope of the University Observatory Jena. We show that a nearby brighter star (2MASS 19090783+4912085) was previously misclassified as the eclipsing binary and find 2MASS 19090585+4911585 to be the true source of variation. We present photometric analysis of V RI light curves. The system is an overcontact binary of W UMa type with an orbital period of (0.288374 ± 0.000010) d. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University Jena.

  11. Geometry of the LMC Disk: Results from MACHO and 2MASS

    SciTech Connect

    Nikolaev, S; Drake, A; Keller, S; Cook, K; Dalal, N; Griest, K; Welch, D; Kanbur, S

    2003-11-04

    We have cross-correlated MACHO LMC Cepheids with 2MASS Second Incremental Release Catalog. The resulting database is considerably larger than the set of OGLE Cepheids in the LMC bar, and has significantly better areal coverage, allowing more accurate determination of LMC geometry. Random-phase correction is applied to 2MASS J, H, and Ks magnitudes, using the knowledge of V-band light curve and the ephemeris of 2MASS observations, to produce mean magnitudes. The improvement of phase-corrected PL relations over random-phase PL relations is clearly demonstrated. Reddening is estimated for each star individually, further improving the accuracy of the method. The orientation parameters of the LMC are derived by a Maximum Likelihood approach which solves for viewing angles and PL coefficients simultaneously, providing an unbiased estimation. The results of the analysis are used to place limits on warping of the LMC disk. Implications for the microlensing optical depth are also discussed.

  12. Mass extinctions: Persistent problems and new directions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.

    1994-01-01

    Few contest that mass extinctions have punctuated the history of life, or that those events were so pervasive environmentally, taxonomically, and geographically that physical forcing factors were probably involved. However, consensus remains elusive on the nature of those factors, and on how a given perturbation - impact, volcanism, sea-level change, or ocean anoxic event - could actually generate the observed intensity and selectivity of biotic losses. At least two basic problems underlie these long-standing disagreements: difficulties in resolving the fine details of taxon ranges and abundances immediately prior to and after an extinction boundary and the scarcity of simple, unitary cause-and-effect relations in complex biological systems.

  13. Large extinction ratio optical electrowetting shutter.

    PubMed

    Montoya, Ryan D; Underwood, Kenneth; Terrab, Soraya; Watson, Alexander M; Bright, Victor M; Gopinath, Juliet T

    2016-05-01

    A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks. PMID:27137579

  14. Extinction rate fragility in population dynamics.

    PubMed

    Khasin, M; Dykman, M I

    2009-08-01

    Population extinction is of central interest for population dynamics. It may occur from a large rare fluctuation. We find that, in contrast to related large-fluctuation effects like noise-induced interstate switching, quite generally extinction rates in multipopulation systems display fragility, where the height of the effective barrier to be overcome in the fluctuation depends on the system parameters nonanalytically. We show that one of the best-known models of epidemiology, the susceptible-infectious-susceptible model, is fragile to total population fluctuations.

  15. Compound stimulus extinction reduces spontaneous recovery in humans.

    PubMed

    Coelho, Cesar A O; Dunsmoor, Joseph E; Phelps, Elizabeth A

    2015-12-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately paired with an electric shock. The target CS (CSA) was extinguished alone followed by compound presentations of the extinguished CSA and nonextinguished CSB. Recovery of conditioned skin conductance responses to CSA was reduced 24 h after compound extinction, as compared with a group who received an equal number of extinction trials to the CSA alone. PMID:26572649

  16. Compound stimulus extinction reduces spontaneous recovery in humans.

    PubMed

    Coelho, Cesar A O; Dunsmoor, Joseph E; Phelps, Elizabeth A

    2015-12-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately paired with an electric shock. The target CS (CSA) was extinguished alone followed by compound presentations of the extinguished CSA and nonextinguished CSB. Recovery of conditioned skin conductance responses to CSA was reduced 24 h after compound extinction, as compared with a group who received an equal number of extinction trials to the CSA alone.

  17. Extinction space--a method for the quantification and classification of changes in morphospace across extinction boundaries.

    PubMed

    Korn, Dieter; Hopkins, Melanie J; Walton, Sonny A

    2013-10-01

    Three main modes of extinction are responsible for reductions in morphological disparity: (1) random (caused by a nonselective extinction event); (2) marginal (a symmetric, selective extinction event trimming the margin of morphospace); and (3) lateral (an asymmetric, selective extinction event eliminating one side of the morphospace). These three types of extinction event can be distinguished from one another by comparing changes in three measures of morphospace occupation: (1) the sum of range along the main axes; (2) the sum of variance; and (3) the position of the centroid. Computer simulations of various extinction events demonstrate that the pre-extinction distribution of taxa (random or normal) in the morphospace has little influence on the quantification of disparity changes, whereas the modes of the extinction events play the major role. Together, the three disparity metrics define an "extinction-space" in which different extinction events can be directly compared with one another. Application of this method to selected extinction events (Frasnian-Famennian, Devonian-Carboniferous, and Permian-Triassic) of the Ammonoidea demonstrate the similarity of the Devonian events (selective extinctions) but the striking difference from the end-Permian event (nonselective extinction). These events differ in their mode of extinction despite decreases in taxonomic diversity of similar magnitude. PMID:24094334

  18. Distribution and Extinction of Ungulates during the Holocene of the Southern Levant

    PubMed Central

    Tsahar, Ella; Izhaki, Ido; Lev-Yadun, Simcha; Bar-Oz, Guy

    2009-01-01

    Background The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. Methodology Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. Conclusions The first major ungulate extinction occurred during the local Iron Age (1,200–586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene. PMID:19401760

  19. The biology of mass extinction: a palaeontological view

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M. (Principal Investigator)

    1989-01-01

    Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.

  20. The biology of mass extinction: a palaeontological view.

    PubMed

    Jablonski, D

    1989-01-01

    Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.

  1. LIFTING THE VEIL OF DUST FROM NGC 0959: THE IMPORTANCE OF A PIXEL-BASED TWO-DIMENSIONAL EXTINCTION CORRECTION

    SciTech Connect

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.; Eskridge, P. B.; Cohen, S. H.

    2010-06-15

    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 {mu}m images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 {mu}m) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.

  2. Part I: The Evidence Cycles of Extinction.

    ERIC Educational Resources Information Center

    Brownlee, Shannon

    1984-01-01

    Discusses a theory suggesting that large-scale extinctions of marine animal families occur in cycles of 26 million years. Research methodology consisted of analyzing and charting fossil records showing the decline and disappearance of these animals over the past 250 million years. Other theories are considered. (BC)

  3. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    SciTech Connect

    Peek, J. E. G.; Schiminovich, David

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  4. On uncertain sightings and inference about extinction.

    PubMed

    Solow, Andrew R; Beet, Andrew R

    2014-08-01

    The extinction of many species can only be inferred from the record of sightings of individuals. Solow et al. (2012, Uncertain sightings and the extinction of the Ivory-billed Woodpecker. Conservation Biology 26:180-184) describe a Bayesian approach to such inference and apply it to a sighting record of the Ivory-billed Woodpecker (Campephilus principalis). A feature of this sighting record is that all uncertain sightings occurred after the most recent certain sighting. However, this appears to be an artifact. We extended this earlier work in 2 ways. First, we allowed for overlap in time between certain and uncertain sightings. Second, we considered 2 plausible statistical models of a sighting record. In one of these models, certain and uncertain sightings that are valid arise from the same process whereas in the other they arise from independent processes. We applied both models to the case of the Ivory-billed Woodpecker. The result from the first model did not favor extinction, whereas the result for the second model did. This underscores the importance, in applying tests for extinction, of understanding what could be called the natural history of the sighting record.

  5. Future Student Support Programs: Distinction or Extinction?

    ERIC Educational Resources Information Center

    Johnson, Sharon K.; Johnson, C. D.

    This chapter reviews changes for the future of student support programs identified and addressed by other contributing authors. It is proposed that without a blueprint of how the fields of school counseling, psychology, nursing, social work, and other student support programs will change to address the future, extinction is guaranteed. Changes…

  6. Mass extinctions caused by large bolide impacts

    SciTech Connect

    Alvarez, L.W.

    1987-07-01

    Evidence indicates that the collision of Earth and a large piece of Solar System derbris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.

  7. Mass extinctions caused by large bolide impacts.

    PubMed

    Alvarez, L W

    1987-07-01

    Evidence indicates that the collisions of Earth and a large piece of Solar System debris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.

  8. Stressor controllability modulates fear extinction in humans

    PubMed Central

    Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.

    2014-01-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646

  9. Self-extinction through optimizing selection.

    PubMed

    Parvinen, Kalle; Dieckmann, Ulf

    2013-09-21

    Evolutionary suicide is a process in which selection drives a viable population to extinction. So far, such selection-driven self-extinction has been demonstrated in models with frequency-dependent selection. This is not surprising, since frequency-dependent selection can disconnect individual-level and population-level interests through environmental feedback. Hence it can lead to situations akin to the tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing. Together, all published studies of evolutionary suicide have created the impression that evolutionary suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and analyzing an example in which optimizing selection causes self-extinction. We then take this line of argument one step further by showing, in a further example, that selection-driven self-extinction can occur even under frequency-independent selection. PMID:23583808

  10. Stressor controllability modulates fear extinction in humans.

    PubMed

    Hartley, Catherine A; Gorun, Alyson; Reddan, Marianne C; Ramirez, Franchesca; Phelps, Elizabeth A

    2014-09-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans.

  11. Hibernation and daily torpor minimize mammalian extinctions

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Turbill, Christopher

    2009-10-01

    Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.

  12. Self-extinction through optimizing selection.

    PubMed

    Parvinen, Kalle; Dieckmann, Ulf

    2013-09-21

    Evolutionary suicide is a process in which selection drives a viable population to extinction. So far, such selection-driven self-extinction has been demonstrated in models with frequency-dependent selection. This is not surprising, since frequency-dependent selection can disconnect individual-level and population-level interests through environmental feedback. Hence it can lead to situations akin to the tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing. Together, all published studies of evolutionary suicide have created the impression that evolutionary suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and analyzing an example in which optimizing selection causes self-extinction. We then take this line of argument one step further by showing, in a further example, that selection-driven self-extinction can occur even under frequency-independent selection.

  13. Methylphenidate Enhances Extinction of Contextual Fear

    ERIC Educational Resources Information Center

    Abraham, Antony D.; Cunningham, Christopher L.; Lattal, K. Matthew

    2012-01-01

    Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show…

  14. Attentional, Associative, and Configural Mechanisms in Extinction

    ERIC Educational Resources Information Center

    Larrauri, Jose A.; Schmajuk, Nestor A.

    2008-01-01

    The participation of attentional and associative mechanisms in extinction, spontaneous recovery, external disinhibition, renewal, reinstatement, and reacquisition was evaluated through computer simulations with an extant computational model of classical conditioning (N. A. Schmajuk, Y. Lam, & J. A. Gray, 1996; N. A. Schmajuk & J. A. Larrauri,…

  15. The Cretaceous/Tertiary Extinction Controversy.

    ERIC Educational Resources Information Center

    McCartney, Kevin

    1984-01-01

    The cause of the Cretaceous/Tertiary extinction has become a major geologic controversy. Current evidence for the two opposing views is reviewed to provide an introduction to the controversy and to form the basis for a seminar of discussion topic. (Author/JN)

  16. 2MASS J06164006-6407194: THE FIRST OUTER HALO L SUBDWARF

    SciTech Connect

    Cushing, Michael C.; Looper, Dagny; Burgasser, Adam J.; Sanderson, Robyn E.; Kirkpatrick, J. Davy; Cruz, Kelle L.; Sweet, Anne

    2009-05-01

    We present the serendipitous discovery of an L subdwarf in the Two Micron All Sky Survey (2MASS) J06164006-6407194, in a search of the 2MASS for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressure-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H{sub 2}O, and enhanced collision induced absorption of H{sub 2}. We assign 2MASS J0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion ({mu} = 1.''405 {+-} 0.008 yr{sup -1}), large radial velocity (V {sub rad} = 454 {+-} 15 km s{sup -1}), estimated u, v, w velocities (94, -573, 125) km s{sup -1} and Galactic orbit with an apogalacticon at {approx}29 kpc are indicative of membership in the outer halo making 2MASS J0616-6407 the first ultracool member of this population.

  17. Optical atmospheric extinction over Cerro Paranal

    NASA Astrophysics Data System (ADS)

    Patat, F.; Moehler, S.; O'Brien, K.; Pompei, E.; Bensby, T.; Carraro, G.; de Ugarte Postigo, A.; Fox, A.; Gavignaud, I.; James, G.; Korhonen, H.; Ledoux, C.; Randall, S.; Sana, H.; Smoker, J.; Stefl, S.; Szeifert, T.

    2011-03-01

    Aims: The present study was conducted to determine the optical extinction curve for Cerro Paranal under typical clear-sky observing conditions, with the purpose of providing the community with a function to be used to correct the observed spectra, with an accuracy of 0.01 mag airmass-1. Additionally, this work was meant to analyze the variability of the various components, to derive the main atmospheric parameters, and to set a term of reference for future studies, especially in view of the construction of the Extremely Large Telescope on the nearby Cerro Armazones. Methods: The extinction curve of Paranal was obtained through low-resolution spectroscopy of 8 spectrophotometric standard stars observed with FORS1 mounted at the 8.2 m Very Large Telescope, covering a spectral range 3300-8000 Å. A total of 600 spectra were collected on more than 40 nights distributed over six months, from October 2008 to March 2009. The average extinction curve was derived using a global fit algorithm, which allowed us to simultaneously combine all the available data. The main atmospheric parameters were retrieved using the LBLRTM radiative transfer code, which was also utilised to study the impact of variability of the main molecular bands of O2, O3, and H2O, and to estimate their column densities. Results: In general, the extinction curve of Paranal appears to conform to those derived for other astronomical sites in the Atacama desert, like La Silla and Cerro Tololo. However, a systematic deficit with respect to the extinction curve derived for Cerro Tololo before the El Chichón eruption is detected below 4000 Å. We attribute this downturn to a non standard aerosol composition, probably revealing the presence of volcanic pollutants above the Atacama desert. An analysis of all spectroscopic extinction curves obtained since 1974 shows that the aerosol composition has been evolving during the last 35 years. The persistence of traces of non meteorologic haze suggests the effect of

  18. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.

  19. Repeated valproate treatment facilitates fear extinction under specific stimulus conditions.

    PubMed

    Heinrichs, Stephen C; Leite-Morris, Kimberly A; Rasmusson, Ann M; Kaplan, Gary B

    2013-09-27

    Single dose treatment with histone deacetylase inhibitor (HDACi) agents has been shown to enhance extinction learning in rodent models under certain conditions. The present novel studies were designed to examine the effects of repeated HDACi treatment, with valproate or sodium butyrate, on the extinction of conditioned fear. In Experiments 1 and 2, short duration CS exposure (30s) in combination with vehicle administration progressively attenuated conditioned fear responses over 40 or more sessions. This effective extinction training was not augmented by HDACi treatments. In Experiment 3, we used a long duration CS exposure (120 s) to weaken extinction training. With these extinction parameters, repeated valproate treatment substantially facilitated the acquisition and retention of fear extinction. Results of this study extend previous work suggesting that HDACi's have utility in augmenting the efficiency of fear extinction, although their apparent benefits are critically dependent upon specific parameters of extinction training.

  20. A retrieval cue for extinction attenuates spontaneous recovery.

    PubMed

    Brooks, D C; Bouton, M E

    1993-01-01

    Four experiments with rats in an appetitive conditioned magazine entry preparation examined spontaneous recovery after extinction. Spontaneous recovery was obtained 6 days but not 5 hr following extinction; recovery depended on the passage of time but not on the removal of a cue that was featured in extinction or on the reintroduction of early-session cues. A cue featured in extinction attenuated recovery when presented on the test. The attenuation effect depended on the cue's correlation with extinction; a cue featured in conditioning did not attenuate recovery. The extinction cue did not evoke responding on its own, suggesting that it was not a conditioned excitor. Retardation tests and a summation test did not reveal that it was a conditioned inhibitor. The cue might work by retrieving a memory of extinction. Spontaneous recovery thus occurs because the subject fails to retrieve an extinction memory. Other accounts of spontaneous recovery are discussed.

  1. Mammoth 2.0: will genome engineering resurrect extinct species?

    PubMed

    Shapiro, Beth

    2015-01-01

    It is impossible to 'clone' species for which no living cells exist. Genome editing may therefore provide the only means to bring extinct species--or, more accurately, extinct traits--back to life. PMID:26530525

  2. D-cycloserine facilitates context-specific fear extinction learning.

    PubMed

    Bouton, Mark E; Vurbic, Drina; Woods, Amanda M

    2008-10-01

    D-cycloserine (DCS) may facilitate fear extinction learning, but the behavioral consequences and mechanisms behind this effect are not well understood at present. In this paper, we re-analyze data from previously reported null result experiments and find that rats showing above-median extinction learning during DCS treatment benefited from the drug, whereas rats showing below-median (and in this case little) extinction learning did not. Two additional experiments found that DCS facilitated extinction learning when specifically combined with a moderate, but not a small, number of extinction trials. DCS thus facilitates extinction learning only if the behavioral procedure first engages the extinction learning process. The benefits of the drug, however, were specific to the context in which extinction was learned--i.e., DCS did not prevent or influence the renewal of fear observed when the extinguished cue was tested in the original conditioning context.

  3. Preservation of Natural Diversity: The Problem of Extinction Prone Species

    ERIC Educational Resources Information Center

    Terborgh, John

    1974-01-01

    Examines threatened extinction of birds and recommends agencies adopt policies which minimize the pace of extinctions through the setting aside of large preserves which protect natural vegetation formation and the animal life. (BR)

  4. Deviations of interstellar extinctions from the mean R-dependent extinction law

    NASA Technical Reports Server (NTRS)

    Mathis, John S.; Cardelli, Jason A.

    1992-01-01

    An analysis is conducted of the deviations from the mean extinction law A(lambda)/A(V) over UV wavelengths emphasizing sightlines through bright nebulosities vs dark clouds. The stellar sample is subdivided into sight lines with defined properties, and different behavior is noted for the deviations in the dark-cloud and bright-nebula sight lines. The deviations are correlated within the same wavenumber interval, but unique shapes for the FUV rise in the deviations are observed. Distributions of silicate grains are considered to account for the extinctions at certain wavenumbers that would explain the observations. The FUV rise in the extinctions is theorized to be related to the UV extinction of polycyclic aromatic hydrocarbons.

  5. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning.

    PubMed

    Woods, Amanda M; Bouton, Mark E

    2008-12-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both fear and appetitive conditioning, immediate extinction (beginning 10 min after conditioning) caused a faster loss of responding than delayed extinction (beginning 24 h after conditioning). However, immediate extinction was less durable than delayed extinction: There was stronger spontaneous recovery during the final retention test. There was also substantial renewal of responding when the physical context was changed between immediate extinction and testing (Experiment 1). The results suggest that, in these two widely used conditioning preparations, immediate extinction does not erase or depotentiate the original learning, and instead creates a less permanent reduction in conditioned responding. Results did not support the possibility that the strong recovery after immediate extinction was due to a mismatch in the recent "context" provided by the presence or absence of a recent conditioning experience. Several other accounts are considered.

  6. The "terminal Triassic catastrophic extinction event" in perspective: a review of carboniferous through Early Jurassic terrestrial vertebrate extinction patterns

    USGS Publications Warehouse

    Weems, R.E.

    1992-01-01

    A catastrophic terminal Triassic extinction event among terrestrial vertebrates is not supported by available evidence. The current model for such an extinction is based on at least eight weak or untenable assumptions: (1) a terminal Triassic extinction-inducing asteroid impact occurred, (2) a terminal Triassic synchronous mass extinction of terrestrial vertebrates occurred, (3) a concurrent terminal Triassic marine extinction occurred, (4) all terrestrial vertebrate families have similar diversities and ecologies, (5) changes in familial diversity can be gauged accurately from the known fossil record, (6) extinction of families can be compared through time without normalizing for changes in familial diversity through time, (7) extinction rates can be compared without normalizing for differing lengths of geologic stages, and (8) catastrophic mass extinctions do not select for small size. These assumptions have resulted in unsupportable and (or) erroneous conclusions. Carboniferous through Early Jurassic terrestrial vertebrate families mostly have evolution and extinction patterns unlike the vertebrate evolution and extinction patterns during the terminal Cretaceous event. Only the Serpukhovian (mid Carboniferous) extinction event shows strong analogy to the terminal Cretaceous event. Available data suggest no terminal Triassic extinction anomaly, but rather a prolonged and nearly steady decline in the global terrestrial vertebrate extinction rate throughout the Triassic and earliest Jurassic. ?? 1992.

  7. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  8. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  9. Geography of end-Cretaceous marine bivalve extinctions.

    PubMed

    Raup, D M; Jablonski, D

    1993-05-14

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  10. Geography of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Jablonski, David

    1993-01-01

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  11. Alien species as a driver of recent extinctions.

    PubMed

    Bellard, Céline; Cassey, Phillip; Blackburn, Tim M

    2016-02-01

    We assessed the prevalence of alien species as a driver of recent extinctions in five major taxa (plants, amphibians, reptiles, birds and mammals), using data from the IUCN Red List. Our results show that alien species are the second most common threat associated with species that have gone completely extinct from these taxa since AD 1500. Aliens are the most common threat associated with extinctions in three of the five taxa analysed, and for vertebrate extinctions overall. PMID:26888913

  12. The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.; Monreal-Ibero, A.; Barlow, M. J.; Ueta, T.; Wesson, R.; Zijlstra, A. A.

    2016-04-01

    Context. Dust plays a significant role in planetary nebulae. Dust ejected with the gas in the asymptotic giant branch (AGB) phase is subject to the harsh environment of the planetary nebula (PN) while the star is evolving towards a white dwarf. Dust surviving the PN phase contributes to the dust content of the interstellar medium. Aims: The morphology of the internal dust extinction has been mapped for the first time in a PN, the bright nearby Galactic nebula NGC 7009. The morphologies of the gas, dust extinction and dust-to-gas ratio are compared to the structural features of the nebula. Methods: Emission line maps in H Balmer and Paschen lines were formed from analysis of MUSE cubes of NGC 7009 observed during science verification of the instrument. The measured electron temperature and density from the same cube were employed to predict the theoretical H line ratios and derive the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal AV/NH has been mapped for the first time in a PN. Results: The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. The dust-to-gas ratio, AV/NH, increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated AV/NH is about 2× the mean ISM value. A large-scale feature in the extinction map is a wave, consisting of a crest and trough, at the rim of the inner shell. The nature of this feature is investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than AGB mass loss variations. Conclusions: Extinction mapping from H emission line imaging of PNe with MUSE provides a powerful tool for revealing the properties of internal dust and the dust-to-gas ratio. Based on observations collected at the European Organisation for Astronomical Research in the Southern

  13. Extinction of chained instrumental behaviors: Effects of consumption extinction on procurement responding.

    PubMed

    Thrailkill, Eric A; Bouton, Mark E

    2016-03-01

    Operant behavior is typically organized into sequences of responses that eventually lead to a reinforcer. Response elements can be categorized as those that directly lead to reward consumption (i.e., a consumption response) and those that lead to the opportunity to make the consumption response (i.e., a procurement response). These responses often differ topographically and in terms of the discriminative stimuli that set the occasion for them. We have recently shown that extinction of the procurement response acts to weaken the specific associated consumption response, and that active inhibition of the procurement response is required for this effect. To expand the analysis of the associative structure of chains, in the present experiments we asked the reverse question: whether extinction of consumption behavior results in a decrease in the associated procurement response in a discriminated heterogeneous chain. In Experiment 1, extinction of consumption alone led to an attenuation of the associated procurement response only when rats were allowed to make the consumption response in extinction. Exposure to the consumption stimulus alone was not sufficient to produce weakened procurement responding. In Experiment 2, rats learned two distinct heterogeneous chains, and extinction of one consumption response specifically weakened the procurement response associated with it. The results add to the evidence suggesting that rats learn a highly specific associative structure in behavior chains, emphasizing the role of learning response inhibition in extinction.

  14. Glutamate Receptors in Extinction and Extinction-Based Therapies for Psychiatric Illness

    PubMed Central

    Myers, Karyn M; Carlezon, William A; Davis, Michael

    2011-01-01

    Some psychiatric illnesses involve a learned component. For example, in posttraumatic stress disorder, memories triggered by trauma-associated cues trigger fear and anxiety, and in addiction, drug-associated cues elicit drug craving and withdrawal. Clinical interventions to reduce the impact of conditioned cues in eliciting these maladaptive conditioned responses are likely to be beneficial. Extinction is a method of lessening conditioned responses and involves repeated exposures to a cue in the absence of the event it once predicted. We believe that an improved understanding of the behavioral and neurobiological mechanisms of extinction will allow extinction-like procedures in the clinic to become more effective. Research on the role of glutamate—the major excitatory neurotransmitter in the mammalian brain—in extinction has led to the development of pharmacotherapeutics to enhance the efficacy of extinction-based protocols in clinical populations. In this review, we describe what has been learned about glutamate actions at its three major receptor types (N-methyl--aspartate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and metabotropic glutamate receptors) in the extinction of conditioned fear, drug craving, and withdrawal. We then discuss how these findings have been applied in clinical research. PMID:20631689

  15. Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas.

    PubMed

    Smith, Kevin G; Lips, Karen R; Chase, Jonathan M

    2009-10-01

    Studying the patterns in which local extinctions occur is critical to understanding how extinctions affect biodiversity at local, regional and global spatial scales. To understand the importance of patterns of extinction at a regional spatial scale, we use data from extirpations associated with a widespread pathogenic agent of amphibian decline, Batrachochytrium dendrobatidis (Bd) as a model system. We apply novel null model analyses to these data to determine whether recent extirpations associated with Bd have resulted in selective extinction and homogenization of diverse tropical American amphibian biotas. We find that Bd-associated extinctions in this region were nonrandom and disproportionately, but not exclusively, affected low-occupancy and endemic species, resulting in homogenization of the remnant amphibian fauna. The pattern of extirpations also resulted in phylogenetic homogenization at the family level and ecological homogenization of reproductive mode and habitat association. Additionally, many more species were extirpated from the region than would be expected if extirpations occurred randomly. Our results indicate that amphibian declines in this region are an extinction filter, reducing regional amphibian biodiversity to highly similar relict assemblages and ultimately causing amplified biodiversity loss at regional and global scales.

  16. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction.

    PubMed

    Finnegan, Seth; Rasmussen, Christian M Ø; Harper, David A T

    2016-04-27

    The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician-Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse-icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. PMID:27122567

  17. A study of the fundamental characteristics of 2175A extinction

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Savage, Blair D.

    1987-01-01

    The characteristics of interstellar extinction were studied in the region of the 2175 A feature for lines of sight which appear to exhibit unusually weak ultraviolet extinction. The analysis was based upon a parameterization of the observed extinction via fitting specific mathematical functions in order to determine the position and width of the 2175 A feature. The data are currently being analyzed.

  18. Psychological and neural mechanisms of experimental extinction: a selective review.

    PubMed

    Delamater, Andrew R; Westbrook, R Frederick

    2014-02-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes). PMID:24104049

  19. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  20. Inhibition of Estradiol Synthesis Impairs Fear Extinction in Male Rats

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Milad, Mohammed R.

    2014-01-01

    Emerging research has demonstrated that the sex hormone estradiol regulates fear extinction in female rodents and women. Estradiol may also regulate fear extinction in males, given its role in synaptic plasticity in both sexes. Here we report that inhibition of estradiol synthesis during extinction training, via the aromatase inhibitor fadrozole,…

  1. Psychological and neural mechanisms of experimental extinction: a selective review.

    PubMed

    Delamater, Andrew R; Westbrook, R Frederick

    2014-02-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes).

  2. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  3. Impacts of incentives to reduce emissions from deforestation on global species extinctions

    NASA Astrophysics Data System (ADS)

    Strassburg, Bernardo B. N.; Rodrigues, Ana S. L.; Gusti, Mykola; Balmford, Andrew; Fritz, Steffen; Obersteiner, Michael; Kerry Turner, R.; Brooks, Thomas M.

    2012-05-01

    Deforestation is a major source of anthropogenic greenhouse gas emissions, and the greatest single driver of species extinctions. The reduction of emissions from deforestation and forest degradation (REDD) has been formally recognized as a climate change mitigation option. REDD might have important co-benefits for biodiversity conservation, yet the extent of these benefits will depend on as-yet untested associations between fine-scale spatial patterns of deforestation, species distributions and carbon stocks. Here we combine a global land-use model and spatial data on species distributions to explore scenarios of future deforestation within REDD-eligible countries, to quantify and map the potential impacts on species extinctions as increased by forest loss and decreased by carbon conservation. We found that the continuation of historical deforestation rates is likely to result in large numbers of species extinctions, but that an adequately funded REDD programme could substantially reduce these losses. Under our deforestation scenarios, the projected benefits of REDD were remarkably consistent across the four methods used to estimate extinctions, but spatially variable, and highly dependent on the level of carbon payments. Our results indicate that, if well designed, adequately funded and broadly implemented, carbon-based forest conservation could play a major role in biodiversity conservation as well as climate change mitigation.

  4. Extinction in a hyperdiverse endemic Hawaiian land snail family and implications for the underestimation of invertebrate extinction.

    PubMed

    Régnier, Claire; Bouchet, Philippe; Hayes, Kenneth A; Yeung, Norine W; Christensen, Carl C; Chung, Daniel J D; Fontaine, Benoît; Cowie, Robert H

    2015-12-01

    The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4-14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.

  5. Gradients of Fear Potentiated Startle During Generalization, Extinction, and Extinction Recall--and Their Relations With Worry.

    PubMed

    Dunning, Jonathan P; Hajcak, Greg

    2015-09-01

    It is well established that fear conditioning plays a role in the development and maintenance of anxiety disorders. Moreover, abnormalities in fear generalization, extinction, and extinction recall have also been associated with anxiety. The present study used a generalization paradigm to examine fear processing during phases of generalization, extinction, and extinction recall. Specifically, participants were shocked following a CS+ and were also presented with stimuli that ranged in perceptual similarity to the CS+ (i.e., 20%, 40%, or 60% smaller or larger than the CS+) during a fear generalization phase. Participants were also presented with the same stimuli during an extinction phase and an extinction recall phase 1week later; no shocks were presented during extinction or recall. Lastly, participants completed self-report measures of worry and trait anxiety. Results indicated that fear potentiated startle (FPS) to the CS+ and GS±20% shapes was present in generalization and extinction, suggesting that fear generalization persisted into extinction. FPS to the CS+ was also evident 1 week later during extinction recall. Higher levels of worry were associated with greater FPS to the CS+ during generalization and extinction phases. Moreover, individuals high in worry had fear response gradients that were steeper during both generalization and extinction. This suggests that high levels of worry are associated with greater discriminative fear conditioning to threatening compared to safe stimuli and less fear generalization to perceptually similar stimuli.

  6. Map accuracy

    USGS Publications Warehouse

    ,

    1981-01-01

    An inaccurate map is not a reliable map. "X" may mark the spot where the treasure is buried, but unless the seeker can locate "X" in relation to known landmarks or positions, the map is not very useful.

  7. Extinction Risks and the Conservation of Madagascar's Reptiles

    PubMed Central

    Jenkins, Richard K. B.; Tognelli, Marcelo F.; Bowles, Philip; Cox, Neil; Brown, Jason L.; Chan, Lauren; Andreone, Franco; Andriamazava, Alain; Andriantsimanarilafy, Raphali R.; Anjeriniaina, Mirana; Bora, Parfait; Brady, Lee D.; Hantalalaina, Elisoa F.; Glaw, Frank; Griffiths, Richard A.; Hilton-Taylor, Craig; Hoffmann, Michael; Katariya, Vineet; Rabibisoa, Nirhy H.; Rafanomezantsoa, Jeannot; Rakotomalala, Domoina; Rakotondravony, Hery; Rakotondrazafy, Ny A.; Ralambonirainy, Johans; Ramanamanjato, Jean-Baptiste; Randriamahazo, Herilala; Randrianantoandro, J. Christian; Randrianasolo, Harison H.; Randrianirina, Jasmin E.; Randrianizahana, Hiarinirina; Raselimanana, Achille P.; Rasolohery, Andriambolantsoa; Ratsoavina, Fanomezana M.; Raxworthy, Christopher J.; Robsomanitrandrasana, Eric; Rollande, Finoana; van Dijk, Peter P.; Yoder, Anne D.; Vences, Miguel

    2014-01-01

    Background An understanding of the conservation status of Madagascar's endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island's mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises. Methodology/Principal Findings Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas. Conclusions/Significance With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and

  8. Synergies among extinction drivers under global change.

    PubMed

    Brook, Barry W; Sodhi, Navjot S; Bradshaw, Corey J A

    2008-08-01

    If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species.

  9. Theories of the dorsal bundle extinction effect.

    PubMed

    Mason, S T; Iversen, S D

    1979-07-01

    Selective destruction of the noradrenaline systems in the rat brain using the neurotoxin 6-hydroxydopamine has been found to cause resistance to extinction in a number of behavioural situations. Several theories concerning the behavioural mechanism altered by the lesion, and hence about the role of noradrenaline in normal brain functioning, are proposed and evaluated. Theories suggesting a role for noradrenaline in activity, perseveration, internal inhibition, frustrative non-reward, motivation, or secondary reinforcement, fail to explain all the available evidence and direct tests of each theory fails to support its predictions. A model which suggests that noreadrenaline is involved in attentional behaviour, specifically in filtering out or learning to ignore irrelevant environmental stimuli, is successful in explaining all available data and direct tests of the lesioned rats' attentional capacity serve to confirm many of the predictions of an attentional theory of the dorsal bundle extinction effect.

  10. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  11. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  12. Visuomotor links in awareness: evidence from extinction.

    PubMed

    Ricci, Raffaella; Genero, Rosanna; Colombatti, Simona; Zampieri, Daniela; Chatterjee, Anjan

    2005-05-31

    In patients with extinction, ipsilesional stimuli may abolish awareness of contralesional stimuli. Explanations of extinction often assume a serial model of processing in which sensory competition and identification precedes the selection of responses. We tested the adequacy of this assumption by examining the effects of response variables on visual awareness in six patients using signal detection analysis. Ipsilesional stimuli modulated patients' response criteria in deciding whether a contralesional stimulus was a target, and response modality (verbal or motor) modulated patients' abilities to discriminate between contralesional targets and distractors. This pattern of input variables modulating response criteria and output variables modulating discriminability indicates the extent to which attentional and intentional systems are tightly intertwined, with bi-directional effects in producing visual awareness.

  13. Periodic extinction of families and genera

    NASA Technical Reports Server (NTRS)

    Raup, D. M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1986-01-01

    Eight major episodes of biological extinction of marine families over the past 250 million years stand significantly above local background (P < 0.05). These events are more pronounced when analyzed at the level of genus, and generic data exhibit additional apparent extinction events in the Aptian (Cretaceous) and Pliocene (Tertiary) Stages. Time-series analysis of these records strongly suggests a 26-million-year periodicity. This conclusion is robust even when adjusted for simultaneous testing of many trial periods. When the time series is limited to the four best-dated events (Cenomanian, Maestrichtian, upper Eocene, and middle Miocene), the hypothesis of randomness is also rejected for the 26-million-year period (P < 0.0002).

  14. Periodic extinction of families and genera

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Sepkoski, J. John, Jr.

    1987-01-01

    Eight major episodes of biological extinction of marine families over the past 250 million years stand significantly above local background (P less than 0.05). These events are more pronounced when analyzed at the level of genus, and generic data exhibit additional apparent extinction events in the Aptian (Cretaceous) and Pliocene (Tertiary) Stages. Time-series analysis of these records strongly suggests a 26-million-year periodicity. This conclusion is robust even when adjusted for simultaneous testing of many trial periods. When the time series is limited to the four best-dated events (Cenomanian, Maestrichtian, upper Eocene, and middle Miocene), the hypothesis of randomness is also rejected for the 26-million-year period (P less than 0.0002).

  15. Exposing Sgr tidal debris behind the Galactic disc with M giants selected in WISE∩2MASS

    NASA Astrophysics Data System (ADS)

    Koposov, S. E.; Belokurov, V.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Olszewski, E. W.; López-Sánchez, Á. R.; Hyde, E. A.

    2015-01-01

    We show that a combination of infrared photometry from WISE and 2MASS surveys can yield highly pure samples of M giant stars. We take advantage of the new WISE∩2MASS M giant selection to trace the Sagittarius (Sgr) trailing tail behind the Galactic disc in the direction of the anticentre. The M giant candidates selected via broad-band photometry are confirmed spectroscopically using AAOmega on the Anglo-Australian Telescope in three fields around the extremity of the Sgr trailing tail in the Southern Galactic hemisphere. We demonstrate that at the Sgr longitude tilde{Λ }_{{⊙}} = 204°, the line-of-sight velocities of the trailing tail starts to deviate from the track of the Law & Majewski model, confirming the prediction of Belokurov et al. This discovery serves to substantiate the measurement of low differential orbital precession of the Sgr stream which in turn may imply diminished dark matter content within 100 kpc.

  16. Inferring Milky Way Structure from 2MASS-selected Carbon Stars

    NASA Astrophysics Data System (ADS)

    Skrutskie, M. F.; Reber, T. J.; Murphy, N. W.; Weinberg, M. D.

    2001-12-01

    We present a reconstructed view of the Milky Way disk using 40,000 carbon star candidates extracted from the Two Micron All Sky Survey (2MASS). These candidates can be selected with high reliability using a technique which distinguishes the intrinsically red colors of carbon stars (and other extreme AGB) from reddened stars in the Galactic plane using 2MASS photometry alone. The extracted sources serve as crude standard candles with a dispersion of 0.3 mag. The complete stellar bar and the far edge of the Galactic disk are evident in this analysis. We further infer parameters for the central bar and for disk scale lengths and scale heights using this population.

  17. Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates

    NASA Technical Reports Server (NTRS)

    Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.

    2008-01-01

    The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.

  18. Predicting extinction risk of Brazilian Atlantic forest angiosperms.

    PubMed

    Leão, Tarciso C C; Fonseca, Carlos R; Peres, Carlos A; Tabarelli, Marcelo

    2014-10-01

    Understanding how plant life history affects species vulnerability to anthropogenic disturbances and environmental change is a major ecological challenge. We examined how vegetation type, growth form, and geographic range size relate to extinction risk throughout the Brazilian Atlantic Forest domain. We used a database containing species-level information of 6,929 angiosperms within 112 families and a molecular-based working phylogeny. We used decision trees, standard regression, and phylogenetic regression to explore the relationships between species attributes and extinction risk. We found a significant phylogenetic signal in extinction risk. Vegetation type, growth form, and geographic range size were related to species extinction risk, but the effect of growth form was not evident after phylogeny was controlled for. Species restricted to either rocky outcrops or scrub vegetation on sandy coastal plains exhibited the highest extinction risk among vegetation types, a finding that supports the hypothesis that species adapted to resource-limited environments are more vulnerable to extinction. Among growth forms, epiphytes were associated with the highest extinction risk in non-phylogenetic regression models, followed by trees, whereas shrubs and climbers were associated with lower extinction risk. However, the higher extinction risk of epiphytes was not significant after correcting for phylogenetic relatedness. Our findings provide new indicators of extinction risk and insights into the mechanisms governing plant vulnerability to extinction in a highly diverse flora where human disturbances are both frequent and widespread.

  19. Extinction of a classically conditioned response: red nucleus and interpositus.

    PubMed

    Robleto, Karla; Thompson, Richard F

    2008-03-01

    It is well established that the cerebellum and its associated circuitry are essential for classical conditioning of the eyeblink response and other discrete motor responses (e.g., limb flexion, head turn, etc.) learned with an aversive unconditioned stimulus. However, brain mechanisms underlying extinction of these responses are still relatively unclear. Behavioral studies have demonstrated extinction to be an active learning process distinct from acquisition. Accordingly, this current understanding of extinction has guided neural studies that have tried to identify possible brain structures that could support this new learning. However, whether extinction engages the same brain sites necessary for acquisition is not yet clear. This poses an overriding problem for understanding brain mechanisms necessary for extinction because such analysis cannot be done without first identifying brain sites and pathways involved in this phenomenon. Equally elusive is the validity of a behavioral theory of extinction that can account for the properties of extinction. In this study, we looked at the involvement of the interpositus and the red nucleus in extinction. Results show that, although inactivation of both nuclei blocks response expression, only inactivation of the interpositus has a detrimental effect on extinction. Moreover, this detrimental effect was completely removed when inactivation of the interpositus was paired with electrical stimulation of the red nucleus. These findings speak to the important role of cerebellar structures in the extinction of discrete motor responses and provide important insight as to the validity of a particular theory of extinction.

  20. Extinction of a classically conditioned response: red nucleus and interpositus.

    PubMed

    Robleto, Karla; Thompson, Richard F

    2008-03-01

    It is well established that the cerebellum and its associated circuitry are essential for classical conditioning of the eyeblink response and other discrete motor responses (e.g., limb flexion, head turn, etc.) learned with an aversive unconditioned stimulus. However, brain mechanisms underlying extinction of these responses are still relatively unclear. Behavioral studies have demonstrated extinction to be an active learning process distinct from acquisition. Accordingly, this current understanding of extinction has guided neural studies that have tried to identify possible brain structures that could support this new learning. However, whether extinction engages the same brain sites necessary for acquisition is not yet clear. This poses an overriding problem for understanding brain mechanisms necessary for extinction because such analysis cannot be done without first identifying brain sites and pathways involved in this phenomenon. Equally elusive is the validity of a behavioral theory of extinction that can account for the properties of extinction. In this study, we looked at the involvement of the interpositus and the red nucleus in extinction. Results show that, although inactivation of both nuclei blocks response expression, only inactivation of the interpositus has a detrimental effect on extinction. Moreover, this detrimental effect was completely removed when inactivation of the interpositus was paired with electrical stimulation of the red nucleus. These findings speak to the important role of cerebellar structures in the extinction of discrete motor responses and provide important insight as to the validity of a particular theory of extinction. PMID:18322108

  1. Predicting extinction risk of Brazilian Atlantic forest angiosperms.

    PubMed

    Leão, Tarciso C C; Fonseca, Carlos R; Peres, Carlos A; Tabarelli, Marcelo

    2014-10-01

    Understanding how plant life history affects species vulnerability to anthropogenic disturbances and environmental change is a major ecological challenge. We examined how vegetation type, growth form, and geographic range size relate to extinction risk throughout the Brazilian Atlantic Forest domain. We used a database containing species-level information of 6,929 angiosperms within 112 families and a molecular-based working phylogeny. We used decision trees, standard regression, and phylogenetic regression to explore the relationships between species attributes and extinction risk. We found a significant phylogenetic signal in extinction risk. Vegetation type, growth form, and geographic range size were related to species extinction risk, but the effect of growth form was not evident after phylogeny was controlled for. Species restricted to either rocky outcrops or scrub vegetation on sandy coastal plains exhibited the highest extinction risk among vegetation types, a finding that supports the hypothesis that species adapted to resource-limited environments are more vulnerable to extinction. Among growth forms, epiphytes were associated with the highest extinction risk in non-phylogenetic regression models, followed by trees, whereas shrubs and climbers were associated with lower extinction risk. However, the higher extinction risk of epiphytes was not significant after correcting for phylogenetic relatedness. Our findings provide new indicators of extinction risk and insights into the mechanisms governing plant vulnerability to extinction in a highly diverse flora where human disturbances are both frequent and widespread. PMID:24665927

  2. Late Cretaceous stepwise mass extinction of planktonic foraminifera

    SciTech Connect

    D'Hondt, S.L.; Keller, G.

    1985-01-01

    Quantitative populations analysis of planktonic foraminifera from DSDP sites 10, 21, 528, 577 and the El Kef section of Tunisia indicates that the terminal Cretaceous mass extinction did not occur as a simple catastrophic event. Rather, the final Cretaceous extinction was heralded by a series of earlier extinction events, indicating a changing paleoenvironment during the late Cretaceous. Extinction events appear stepwise marked by periods of rapid faunal turnover during which dominant faunal elements decline in abundance. Generally, weakened surviving populations are subsequently annihilated during the next stepwise ecologic perturbation. Little or no faunal change appears between these stepwise events. Significantly, extinctions generally affect species which are numerically low in abundance (<3% of the total population). This indicates that the number of taxa going extinct is in itself a poor measure of the extent of ecologic perturbations. Thus, species extinctions and changes in populations dynamics must be viewed together in order to gain an understanding of the complex nature of mass extinctions. The observed stepwise extinction events can potentially be explained by geotectonically induced changes in ocean circulation accompanied by temperature and salinity fluctuations. However, it cannot be ruled out at this time that at least some of the extinction events maybe related to impact events. Further studies will be necessary to find evidence of between extinction events and impacts.

  3. Colloquium paper: extinction and the spatial dynamics of biodiversity.

    PubMed

    Jablonski, David

    2008-08-12

    The fossil record amply shows that the spatial fabric of extinction has profoundly shaped the biosphere; this spatial dimension provides a powerful context for integration of paleontological and neontological approaches. Mass extinctions evidently alter extinction selectivity, with many factors losing effectiveness except for a positive relation between survivorship and geographic range at the clade level (confirmed in reanalyses of end-Cretaceous extinction data). This relation probably also holds during "normal" times, but changes both slope and intercept with increasing extinction. The strong geographical component to clade dynamics can obscure causation in the extinction of a feature or a clade, owing to hitchhiking effects on geographic range, so that multifactorial analyses are needed. Some extinctions are spatially complex, and regional extinctions might either reset a diversity ceiling or create a diversification debt open to further diversification or invasion. Evolutionary recoveries also exhibit spatial dynamics, including regional differences in invasibilty, and expansion of clades from the tropics fuels at least some recoveries, as well as biodiversity dynamics during normal times. Incumbency effects apparently correlate more closely with extinction intensities than with standing diversities, so that regions with higher local and global extinctions are more subject to invasion; the latest Cenozoic temperate zones evidently received more invaders than the tropics or poles, but this dynamic could shift dramatically if tropical diversity is strongly depleted. The fossil record can provide valuable insights, and their application to present-day issues will be enhanced by partitioning past and present-day extinctions by driving mechanism rather than emphasizing intensity.

  4. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  5. Opportunities and costs for preventing vertebrate extinctions.

    PubMed

    Conde, Dalia A; Colchero, Fernando; Güneralp, Burak; Gusset, Markus; Skolnik, Ben; Parr, Michael; Byers, Onnie; Johnson, Kevin; Young, Glyn; Flesness, Nate; Possingham, Hugh; Fa, John E

    2015-03-16

    Despite an increase in policy and management responses to the global biodiversity crisis, implementation of the 20 Aichi Biodiversity Targets still shows insufficient progress [1]. These targets, strategic goals defined by the United Nations Convention on Biological Diversity (CBD), address major causes of biodiversity loss in part by establishing protected areas (Target 11) and preventing species extinctions (Target 12). To achieve this, increased interventions will be required for a large number of sites and species. The Alliance for Zero Extinction (AZE) [2], a consortium of conservation-oriented organisations that aims to protect Critically Endangered and Endangered species restricted to single sites, has identified 920 species of mammals, birds, amphibians, reptiles, conifers and reef-building corals in 588 'trigger' sites [3]. These are arguably the most irreplaceable category of important biodiversity conservation sites. Protected area coverage of AZE sites is a key indicator of progress towards Target 11 [1]. Moreover, effective conservation of AZE sites is essential to achieve Target 12, as the loss of any of these sites would certainly result in the global extinction of at least one species [2]. However, averting human-induced species extinctions within AZE sites requires enhanced planning tools to increase the chances of success [3]. Here, we assess the potential for ensuring the long-term conservation of AZE vertebrate species (157 mammals, 165 birds, 17 reptiles and 502 amphibians) by calculating a conservation opportunity index (COI) for each species. The COI encompasses a set of measurable indicators that quantify the possibility of achieving successful conservation of a species in its natural habitat (COIh) and by establishing insurance populations in zoos (COIc). PMID:25784036

  6. Opportunities and costs for preventing vertebrate extinctions.

    PubMed

    Conde, Dalia A; Colchero, Fernando; Güneralp, Burak; Gusset, Markus; Skolnik, Ben; Parr, Michael; Byers, Onnie; Johnson, Kevin; Young, Glyn; Flesness, Nate; Possingham, Hugh; Fa, John E

    2015-03-16

    Despite an increase in policy and management responses to the global biodiversity crisis, implementation of the 20 Aichi Biodiversity Targets still shows insufficient progress [1]. These targets, strategic goals defined by the United Nations Convention on Biological Diversity (CBD), address major causes of biodiversity loss in part by establishing protected areas (Target 11) and preventing species extinctions (Target 12). To achieve this, increased interventions will be required for a large number of sites and species. The Alliance for Zero Extinction (AZE) [2], a consortium of conservation-oriented organisations that aims to protect Critically Endangered and Endangered species restricted to single sites, has identified 920 species of mammals, birds, amphibians, reptiles, conifers and reef-building corals in 588 'trigger' sites [3]. These are arguably the most irreplaceable category of important biodiversity conservation sites. Protected area coverage of AZE sites is a key indicator of progress towards Target 11 [1]. Moreover, effective conservation of AZE sites is essential to achieve Target 12, as the loss of any of these sites would certainly result in the global extinction of at least one species [2]. However, averting human-induced species extinctions within AZE sites requires enhanced planning tools to increase the chances of success [3]. Here, we assess the potential for ensuring the long-term conservation of AZE vertebrate species (157 mammals, 165 birds, 17 reptiles and 502 amphibians) by calculating a conservation opportunity index (COI) for each species. The COI encompasses a set of measurable indicators that quantify the possibility of achieving successful conservation of a species in its natural habitat (COIh) and by establishing insurance populations in zoos (COIc).

  7. Light extinction in polydisperse particulate systems.

    PubMed

    Casperson, L W

    1977-12-01

    Analytic methods are developed for determining the attenuation characteristics of light beams propagating through ensembles of scattering particles including those with complex index of refraction. The methods are applicable to a wide range of practical particulate systems, and the results are expressed explicitly in terms of elementary functions. Propagation through fog and clouds is considered as an example, and it is found that absorption by the liquid lengths. water in such ensembles affects strongly the extinction for ir wave-lengths.

  8. Effects of broken affordance on visual extinction

    PubMed Central

    Wulff, Melanie; Humphreys, Glyn W.

    2015-01-01

    Previous studies have shown that visual extinction can be reduced if two objects are positioned to “afford” an action. Here we tested if this affordance effect was disrupted by “breaking” the affordance, i.e., if one of the objects actively used in the action had a broken handle. We assessed the effects of broken affordance on recovery from extinction in eight patients with right hemisphere lesions and left-sided extinction. Patients viewed object pairs that were or were not commonly used together and that were positioned for left- or right-hand actions. In the unrelated pair conditions, either two tools or two objects were presented. In line with previous research (e.g., Riddoch et al., 2006), extinction was reduced when action-related object pairs and when unrelated tool pairs were presented compared to unrelated object pairs. There was no significant difference in recovery rate between action-related (object-tool) and unrelated tool pairs. In addition, performance with action-related objects decreased when the tool appeared on the ipsilesional side compared to when it was on the contralesional side, but only when the tool handle was intact. There were minimal effects of breaking the handle of an object rather than a tool, and there was no effect of breaking the handle on either tools or objects on single item trials. The data suggest that breaking the handle of a tool lessens the degree to which it captures attention, with this attentional capture being strongest when the tool appears on the ipsilesional side. The capture of attention by the ipsilesional item then reduces the chance of detecting the contralesional stimulus. This attentional capture effect is mediated by the affordance to the intact tool. PMID:26441612

  9. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  10. Reflections on the extinction-explosion dichotomy.

    PubMed

    Steel, Mike

    2015-05-01

    A wide range of stochastic processes that model the growth and decline of populations exhibit a curious dichotomy: with certainty either the population goes extinct or its size tends to infinity. There is an elegant and classical theorem that explains why this dichotomy must hold under certain assumptions concerning the process. In this note, I explore how these assumptions might be relaxed further in order to obtain the same, or a similar conclusion, and obtain both positive and negative results.

  11. Effects of broken affordance on visual extinction.

    PubMed

    Wulff, Melanie; Humphreys, Glyn W

    2015-01-01

    Previous studies have shown that visual extinction can be reduced if two objects are positioned to "afford" an action. Here we tested if this affordance effect was disrupted by "breaking" the affordance, i.e., if one of the objects actively used in the action had a broken handle. We assessed the effects of broken affordance on recovery from extinction in eight patients with right hemisphere lesions and left-sided extinction. Patients viewed object pairs that were or were not commonly used together and that were positioned for left- or right-hand actions. In the unrelated pair conditions, either two tools or two objects were presented. In line with previous research (e.g., Riddoch et al., 2006), extinction was reduced when action-related object pairs and when unrelated tool pairs were presented compared to unrelated object pairs. There was no significant difference in recovery rate between action-related (object-tool) and unrelated tool pairs. In addition, performance with action-related objects decreased when the tool appeared on the ipsilesional side compared to when it was on the contralesional side, but only when the tool handle was intact. There were minimal effects of breaking the handle of an object rather than a tool, and there was no effect of breaking the handle on either tools or objects on single item trials. The data suggest that breaking the handle of a tool lessens the degree to which it captures attention, with this attentional capture being strongest when the tool appears on the ipsilesional side. The capture of attention by the ipsilesional item then reduces the chance of detecting the contralesional stimulus. This attentional capture effect is mediated by the affordance to the intact tool.

  12. Large-body impact and extinction in the Phanerozoic

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1992-01-01

    The kill curve for Phanerozoic marine species is used to investigate large-body impact as a cause of species extinction. Current estimates of Phanerozoic impact rates are combined with the kill curve to produce an impact-kill curve, which predicts extinction levels from crater diameter, on the working assumption that impacts are responsible for all "pulsed" extinctions. By definition, pulsed extinction includes the approximately 60% of Phanerozoic extinctions that occurred in short-lived events having extinction rates greater than 5%. The resulting impact-kill curve is credible, thus justifying more thorough testing of the impact-extinction hypothesis. Such testing is possible but requires an exhaustive analysis of radiometric dating of Phanerozoic impact events.

  13. Reactivated memories compete for expression after Pavlovian extinction.

    PubMed

    Laborda, Mario A; Miller, Ralph R

    2012-05-01

    We view the response decrement resulting from extinction treatment as an interference effect, in which the reactivated memory from acquisition competes with the reactivated memory from extinction for behavioral expression. For each of these memories, reactivation is proportional to both the strength of the stimulus-outcome association and the quality of the facilitatory cues for that association which are present at test. Here we review basic extinction and recovery-from-extinction phenomena, showing how these effects are explicable in this associative interference framework. Moreover, this orientation has and continues to dictate efficient manipulations for minimizing recovery from extinction. This in turn suggests procedures that might reduce relapse from exposure therapy for a number of psychological disorders. Some of these manipulations enhance the facilitatory cues from extinction that are present at test, others strengthen the extinction association (i.e., CS-no outcome), and yet others seem to work by a combination of these two processes.

  14. Statistical inference for extinction rates based on last sightings.

    PubMed

    Nakamura, Miguel; Del Monte-Luna, Pablo; Lluch-Belda, Daniel; Lluch-Cota, Salvador E

    2013-09-21

    Rates of extinction can be estimated from sighting records and are assumed to be implicitly constant by many data analysis methods. However, historical sightings are scarce. Frequently, the only information available for inferring extinction is the date of the last sighting. In this study, we developed a probabilistic model and a corresponding statistical inference procedure based on last sightings. We applied this procedure to data on recent marine extirpations and extinctions, seeking to test the null hypothesis of a constant extinction rate. We found that over the past 500 years extirpations in the ocean have been increasing but at an uncertain rate, whereas a constant rate of global marine extinctions is statistically plausible. The small sample sizes of marine extinction records generate such high uncertainty that different combinations of model inputs can yield different outputs that fit the observed data equally well. Thus, current marine extinction trends may be idiosyncratic.

  15. IUE observations of lines of sight with peculiar ultraviolet extinction

    NASA Technical Reports Server (NTRS)

    Massa, D.; Fitzpatrick, E. L.; Savage, B. D.

    1982-01-01

    Low resolution IUE data were used to derive UV extinction curves for a group of stars known to have peculiar extinction parameters from ANS data. The resulting curves have a wide range of appearances. Although the ratio E(BUMP)/E(B-V) differs by a factor of three in the extreme cases, the wavelength of maximum absorption does not appear to change. No evidence for new fine structure in UV extinction was found. The structure near 62 micrometers in the existing mean extinction curves appears to be the result of luminosity mismatch errors. The new extinction curves have shapes that separate into two distinct classes; those associated with clear field extinction and those associated with extinction in dense nebular environments. The range of variation in the curves is so large, the common practice of ironing out the bump can produce enormous errors in the resultant UV energy distributions when E(B-V) 0.3.

  16. Reactivated memories compete for expression after Pavlovian extinction.

    PubMed

    Laborda, Mario A; Miller, Ralph R

    2012-05-01

    We view the response decrement resulting from extinction treatment as an interference effect, in which the reactivated memory from acquisition competes with the reactivated memory from extinction for behavioral expression. For each of these memories, reactivation is proportional to both the strength of the stimulus-outcome association and the quality of the facilitatory cues for that association which are present at test. Here we review basic extinction and recovery-from-extinction phenomena, showing how these effects are explicable in this associative interference framework. Moreover, this orientation has and continues to dictate efficient manipulations for minimizing recovery from extinction. This in turn suggests procedures that might reduce relapse from exposure therapy for a number of psychological disorders. Some of these manipulations enhance the facilitatory cues from extinction that are present at test, others strengthen the extinction association (i.e., CS-no outcome), and yet others seem to work by a combination of these two processes. PMID:22326812

  17. Dynamics of extinction debt across five taxonomic groups.

    PubMed

    Halley, John M; Monokrousos, Nikolaos; Mazaris, Antonios D; Newmark, William D; Vokou, Despoina

    2016-01-01

    Species extinction following habitat loss is well documented. However, these extinctions do not happen immediately. The biodiversity surplus (extinction debt) declines with some delay through the process of relaxation. Estimating the time constants of relaxation, mainly the expected time to first extinction and the commonly used time for half the extinction debt to be paid off (half-life), is crucial for conservation purposes. Currently, there is no agreement on the rate of relaxation and the factors that it depends on. Here we find that half-life increases with area for all groups examined in a large meta-analysis of extinction data. A common pattern emerges if we use average number of individuals per species before habitat loss as an area index: for mammals, birds, reptiles and plants, the relationship has an exponent close to a half. We also find that the time to first determined extinction is short and increases slowly with area. PMID:27452815

  18. Dynamics of extinction debt across five taxonomic groups

    PubMed Central

    Halley, John M.; Monokrousos, Nikolaos; Mazaris, Antonios D.; Newmark, William D.; Vokou, Despoina

    2016-01-01

    Species extinction following habitat loss is well documented. However, these extinctions do not happen immediately. The biodiversity surplus (extinction debt) declines with some delay through the process of relaxation. Estimating the time constants of relaxation, mainly the expected time to first extinction and the commonly used time for half the extinction debt to be paid off (half-life), is crucial for conservation purposes. Currently, there is no agreement on the rate of relaxation and the factors that it depends on. Here we find that half-life increases with area for all groups examined in a large meta-analysis of extinction data. A common pattern emerges if we use average number of individuals per species before habitat loss as an area index: for mammals, birds, reptiles and plants, the relationship has an exponent close to a half. We also find that the time to first determined extinction is short and increases slowly with area. PMID:27452815

  19. 2MASS J20261584-2943124: AN UNRESOLVED L0.5 + T6 SPECTRAL BINARY

    SciTech Connect

    Gelino, Christopher R.; Burgasser, Adam J.

    2010-07-15

    We identify the L dwarf 2MASS J20261584-2943124 as an unresolved spectral binary, based on low-resolution, near-infrared spectroscopy from IRTF/SpeX. The data reveal a peculiar absorption feature at 1.6 {mu}m, previously noted in the spectra of other very low-mass spectral binaries, which likely arises from overlapping FeH and CH{sub 4} absorption bands in the blended light of an L dwarf/T dwarf pair. Spectral template matching analysis indicates component types of L0.5 and T6, with relative brightness {Delta}H = 4.2 {+-} 0.6. Laser guide star adaptive optics imaging observations with Keck/NIRC2 fail to resolve the source, indicating a maximum separation at the observing epoch of 0.''25, or a projected separation of 9 AU assuming a distance of 36 {+-} 5 pc. With an age that is likely to be relatively older ({approx}>5 Gyr) based on the system's large V{sub tan} and mass ratio arguments, the relative motion of the potentially 'massive' (0.06-0.08 M{sub sun}) components of 2MASS J2026-2943 may be detectable through radial velocity variations, like its earlier-type counterpart 2MASS J03202839-0446358 (M8+T5), providing dynamical mass measurements that span the hydrogen burning limit.

  20. Analytic approximation to randomly oriented spheroid extinction

    NASA Astrophysics Data System (ADS)

    Evans, B. T. N.; Fournier, G. R.

    1993-12-01

    The estimation of electromagnetic extinction through dust or other nonspherical atmospheric aerosols and hydrosols is an essential first step in the evaluation of the performance of all electro-optic systems. Investigations were conducted to reduce the computational burden in calculating the extinction from nonspherical particles. An analytic semi-empirical approximation to the extinction efficiency Q(sub ext) for randomly oriented spheroids, based on an extension of the anomalous diffraction formula, is given and compared with the extended boundary condition or T-matrix method. This will allow for better and more general modeling of obscurants. Using this formula, Q(sub ext) can be evaluated over 10,000 times faster than with previous methods. This approximation has been verified for complex refractive indices m=n-ik, where n ranges from one to infinity and k from zero to infinity, and aspect ratios of 0.2 to 5. It is believed that the approximation is uniformly valid over all size parameters and aspect ratios. It has the correct Rayleigh, refractive index, and large particle asymptotic behaviors. The accuracy and limitations of this formula are extensively discussed.

  1. Reddening and extinction towards H II regions

    NASA Technical Reports Server (NTRS)

    Caplan, James; Deharveng, Lise

    1989-01-01

    The light emitted by the gas in H II regions is attenuated by dust. This extinction can be measured by comparing H alpha, H beta, and radio continuum fluxes, since the intrinsic ratios of the Balmer line and thermal radio continuum emissivities are nearly constant for reasonable conditions in H II regions. In the case of giant extragalactic H II regions, the extinction was found to be considerably greater than expected. The dust between the Earth and the emitting gas may have an optical thickness which varies. The dust may be close enough to the source that scattered light contributes to the flux, or the dust may be actually mixed with the emitting gas. It is difficult to decide which configuration is correct. A rediscussion of this question in light of recent observations, with the Fabry-Perot spectrophotometers, of the large Galactic H II region is presented. The color excesses are compared for stars embedded in these H II regions with those derived (assuming the standard law) from the nebular extinction and reddening.

  2. Inferring extinction risks from sighting records.

    PubMed

    Thompson, C J; Lee, T E; Stone, L; McCarthy, M A; Burgman, M A

    2013-12-01

    Estimating the probability that a species is extinct based on historical sighting records is important when deciding how much effort and money to invest in conservation policies. The framework we offer is more general than others in the literature to date. Our formulation allows for definite and uncertain observations, and thus better accommodates the realities of sighting record quality. Typically, the probability of observing a species given it is extant/extinct is challenging to define, especially when the possibility of a false observation is included. As such, we assume that observation probabilities derive from a representative probability density function. We incorporate this randomness in two different ways ("quenched" versus "annealed") using a framework that is equivalent to a Bayes formulation. The two methods can lead to significantly different estimates for extinction. In the case of definite sightings only, we provide an explicit deterministic calculation (in which observation probabilities are point estimates). Furthermore, our formulation replicates previous work in certain limiting cases. In the case of uncertain sightings, we allow for the possibility of several independent observational types (specimen, photographs, etc.). The method is applied to the Caribbean monk seal, Monachus tropicalis (which has only definite sightings), and synthetic data, with uncertain sightings.

  3. How species respond to multiple extinction threats.

    PubMed Central

    Isaac, Nick J. B.; Cowlishaw, Guy

    2004-01-01

    It is well established that different species vary in their vulnerability to extinction risk and that species biology can underpin much of this variation. By contrast, very little is known about how the same species responds to different threat processes. The purpose of this paper is therefore twofold: to examine the extent to which a species' vulnerability to different types of threat might covary and to explore the biological traits that are associated with threat-specific responses. We use an objective and quantitative measure of local extinction risk to show that vulnerability to local population decline in primates varies substantially among species and between threat types. Our results show that a species' response to one threat type does not predict its response to others. Multivariate analyses also suggest that different mechanisms of decline are associated with each type of threat, since different biological traits are correlated with each threat-specific response. Primate species at risk from forestry tend to exhibit low ecological flexibility, while those species vulnerable to agriculture tend to live in the canopy and eat low-fruit diets; in further contrast, primates at risk from hunting tend to exhibit large body size. Our analyses therefore indicate that a species' vulnerability to local extinction can be highly variable and is likely to depend on both threat type and biology. PMID:15306363

  4. Glucocorticoids enhance extinction-based psychotherapy

    PubMed Central

    de Quervain, Dominique J.-F.; Bentz, Dorothée; Michael, Tanja; Bolt, Olivia C.; Wiederhold, Brenda K.; Margraf, Jürgen; Wilhelm, Frank H.

    2011-01-01

    Behavioral exposure therapy of anxiety disorders is believed to rely on fear extinction. Because preclinical studies have shown that glucocorticoids can promote extinction processes, we aimed at investigating whether the administration of these hormones might be useful in enhancing exposure therapy. In a randomized, double-blind, placebo-controlled study, 40 patients with specific phobia for heights were treated with three sessions of exposure therapy using virtual reality exposure to heights. Cortisol (20 mg) or placebo was administered orally 1 h before each of the treatment sessions. Subjects returned for a posttreatment assessment 3–5 d after the last treatment session and for a follow-up assessment after 1 mo. Adding cortisol to exposure therapy resulted in a significantly greater reduction in fear of heights as measured with the acrophobia questionnaire (AQ) both at posttreatment and at follow-up, compared with placebo. Furthermore, subjects receiving cortisol showed a significantly greater reduction in acute anxiety during virtual exposure to a phobic situation at posttreatment and a significantly smaller exposure-induced increase in skin conductance level at follow-up. The present findings indicate that the administration of cortisol can enhance extinction-based psychotherapy. PMID:21444799

  5. Glucocorticoids enhance extinction-based psychotherapy.

    PubMed

    de Quervain, Dominique J-F; Bentz, Dorothée; Michael, Tanja; Bolt, Olivia C; Wiederhold, Brenda K; Margraf, Jürgen; Wilhelm, Frank H

    2011-04-19

    Behavioral exposure therapy of anxiety disorders is believed to rely on fear extinction. Because preclinical studies have shown that glucocorticoids can promote extinction processes, we aimed at investigating whether the administration of these hormones might be useful in enhancing exposure therapy. In a randomized, double-blind, placebo-controlled study, 40 patients with specific phobia for heights were treated with three sessions of exposure therapy using virtual reality exposure to heights. Cortisol (20 mg) or placebo was administered orally 1 h before each of the treatment sessions. Subjects returned for a posttreatment assessment 3-5 d after the last treatment session and for a follow-up assessment after 1 mo. Adding cortisol to exposure therapy resulted in a significantly greater reduction in fear of heights as measured with the acrophobia questionnaire (AQ) both at posttreatment and at follow-up, compared with placebo. Furthermore, subjects receiving cortisol showed a significantly greater reduction in acute anxiety during virtual exposure to a phobic situation at posttreatment and a significantly smaller exposure-induced increase in skin conductance level at follow-up. The present findings indicate that the administration of cortisol can enhance extinction-based psychotherapy.

  6. Mathematical Modeling of Extinction of Inhomogeneous Populations

    PubMed Central

    Karev, G.P.; Kareva, I.

    2016-01-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  7. Instabilities of diffusion flames near extinction

    NASA Astrophysics Data System (ADS)

    Papas, Paul; Rais, Redha M.; Monkewitz, Peter A.; Tomboulides, Ananias G.

    2003-12-01

    The linear spatio-temporal stability of a diffusion flame, represented by a simplified one-dimensional model, located in a mixing layer is investigated. The analysis focuses on recently discovered `heat release' or combustion modes reported for flames near the extinction limit, i.e. for low Damköhler number. Numerical simulations of the two-dimensional linearized impulse response are performed to uncover the convective versus absolute nature of these combustion modes. To complement these two-dimensional simulations, the convective absolute transitions of these modes are confirmed with spatio-temporal linear stability calculations. The effects of initial reactant temperature, flow shear Reynolds number, as well as low fuel Lewis number, are explored. In addition to the Kelvin Helmholtz mode, the generalized model predicts a variety of instabilities near the extinction state, such as travelling and stationary cellular modes, zero wavenumber instabilities or `pulsations', and coupled hydrodynamic-combustion modes. The results elucidate the fundamental destabilizing mechanisms for these near-extinction flames and their relationship to previous work.

  8. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  9. Inferring extinction risks from sighting records.

    PubMed

    Thompson, C J; Lee, T E; Stone, L; McCarthy, M A; Burgman, M A

    2013-12-01

    Estimating the probability that a species is extinct based on historical sighting records is important when deciding how much effort and money to invest in conservation policies. The framework we offer is more general than others in the literature to date. Our formulation allows for definite and uncertain observations, and thus better accommodates the realities of sighting record quality. Typically, the probability of observing a species given it is extant/extinct is challenging to define, especially when the possibility of a false observation is included. As such, we assume that observation probabilities derive from a representative probability density function. We incorporate this randomness in two different ways ("quenched" versus "annealed") using a framework that is equivalent to a Bayes formulation. The two methods can lead to significantly different estimates for extinction. In the case of definite sightings only, we provide an explicit deterministic calculation (in which observation probabilities are point estimates). Furthermore, our formulation replicates previous work in certain limiting cases. In the case of uncertain sightings, we allow for the possibility of several independent observational types (specimen, photographs, etc.). The method is applied to the Caribbean monk seal, Monachus tropicalis (which has only definite sightings), and synthetic data, with uncertain sightings. PMID:23999285

  10. AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW

    SciTech Connect

    Fitzpatrick, E. L.; Massa, D. E-mail: massa@derckmassa.net

    2009-07-10

    We combine new observations from the Hubble Space Telescope's Advanced Camera of Survey with existing data to investigate the wavelength dependence of near-IR (NIR) extinction. Previous studies suggest a power law form for NIR extinction, with a 'universal' value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model for the NIR extinction provides an excellent fit to most extinction curves, but that the value of the power, {beta}, varies significantly from sight line to sight line. Therefore, it seems that a 'universal NIR extinction law' is not possible. Instead, we find that as {beta} decreases, R(V) {identical_to} A(V)/E(B - V) tends to increase, suggesting that NIR extinction curves which have been considered 'peculiar' may, in fact, be typical for different R(V) values. We show that the power-law parameters can depend on the wavelength interval used to derive them, with the {beta} increasing as longer wavelengths are included. This result implies that extrapolating power-law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only two free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power-law model, it gives R(V)s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/(E(B-V)) - 0.79 can estimate R(V) to {+-}0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations, and demonstrate how large samples of observational quantities can provide useful constraints on the grain properties.

  11. Extinction of chained instrumental behaviors: Effects of procurement extinction on consumption responding.

    PubMed

    Thrailkill, Eric A; Bouton, Mark E

    2015-07-01

    Instrumental behavior often consists of sequences or chains of responses that minimally include procurement behaviors that enable subsequent consumption behaviors. In such chains, behavioral units are linked by access to one another and eventually to a primary reinforcer, such as food or a drug. The present experiments examined the effects of extinguishing procurement responding on consumption responding after training of a discriminated heterogeneous instrumental chain. Rats learned to make a procurement response (e.g., pressing a lever) in the presence of a distinctive discriminative stimulus; making that response led to the presentation of a second discriminative stimulus that set the occasion for a consumption response (e.g., pulling a chain), which then produced a food-pellet reinforcer. Experiment 1 showed that extinction of either the full procurement-consumption chain or procurement alone weakened the consumption response tested in isolation. Experiment 2 replicated the procurement extinction effect and further demonstrated that the opportunity to make the procurement response, as opposed to simple exposure to the procurement stimulus alone, was required. In Experiment 3, rats learned 2 distinct discriminated heterogeneous chains; extinction of 1 procurement response specifically weakened the consumption response that had been associated with it. The results suggest that learning to inhibit the procurement response may produce extinction of consumption responding through mediated extinction. The experiments suggest the importance of an associative analysis of instrumental behavior chains. (PsycINFO Database Record

  12. Extinction of Chained Instrumental Behaviors: Effects of Procurement Extinction on Consumption Responding

    PubMed Central

    Thrailkill, Eric A.; Bouton, Mark E.

    2015-01-01

    Instrumental behavior often consists of sequences or chains of responses that minimally include procurement behaviors that enable subsequent consumption behaviors. In such chains, behavioral units are linked by access to one another and eventually to a primary reinforcer, such as food or a drug. The present experiments examined the effects of extinguishing procurement responding on consumption responding after training of a discriminated heterogeneous instrumental chain. Rats learned to make a procurement response (e.g., pressing a lever) in the presence of a distinctive discriminative stimulus; making that response led to the presentation of a second discriminative stimulus that set the occasion for a consumption response (e.g., pulling a chain), which then produced a food-pellet reinforcer. Experiment 1 showed that extinction of either the full procurement-consumption chain or procurement alone weakened the consumption response tested in isolation. Experiment 2 replicated the procurement extinction effect and further demonstrated that the opportunity to make the procurement response, as opposed to simple exposure to the procurement stimulus alone, was required. In Experiment 3, rats learned 2 distinct discriminated heterogeneous chains; extinction of 1 procurement response specifically weakened the consumption response that had been associated with it. The results suggest that learning to inhibit the procurement response may produce extinction of consumption responding through mediated extinction. The experiments suggest the importance of an associative analysis of instrumental behavior chains. PMID:25915751

  13. Extinction Criteria for Opposed-Flow Flame Spread in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Paolini, Chris; Wakai, Kazunori; Takahashi, Shuhei

    2003-01-01

    A simplified analysis is presented to extend a previous work on flame extinction in a quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been developed that are qualitatively verified with experiments conducted at the MGLAB in Japan. Flammability maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the theory that explains the well-established trends in the existing experimental data.

  14. Crisis of Japanese vascular flora shown by quantifying extinction risks for 1618 taxa.

    PubMed

    Kadoya, Taku; Takenaka, Akio; Ishihama, Fumiko; Fujita, Taku; Ogawa, Makoto; Katsuyama, Teruo; Kadono, Yasuro; Kawakubo, Nobumitsu; Serizawa, Shunsuke; Takahashi, Hideki; Takamiya, Masayuki; Fujii, Shinji; Matsuda, Hiroyuki; Muneda, Kazuo; Yokota, Masatsugu; Yonekura, Koji; Yahara, Tetsukazu

    2014-01-01

    Although many people have expressed alarm that we are witnessing a mass extinction, few projections have been quantified, owing to limited availability of time-series data on threatened organisms, especially plants. To quantify the risk of extinction, we need to monitor changes in population size over time for as many species as possible. Here, we present the world's first quantitative projection of plant species loss at a national level, with stochastic simulations based on the results of population censuses of 1618 threatened plant taxa in 3574 map cells of ca. 100 km2. More than 500 lay botanists helped monitor those taxa in 1994-1995 and in 2003-2004. We projected that between 370 and 561 vascular plant taxa will go extinct in Japan during the next century if past trends of population decline continue. This extinction rate is approximately two to three times the global rate. Using time-series data, we show that existing national protected areas (PAs) covering ca. 7% of Japan will not adequately prevent population declines: even core PAs can protect at best <60% of local populations from decline. Thus, the Aichi Biodiversity Target to expand PAs to 17% of land (and inland water) areas, as committed to by many national governments, is not enough: only 29.2% of currently threatened species will become non-threatened under the assumption that probability of protection success by PAs is 0.5, which our assessment shows is realistic. In countries where volunteers can be organized to monitor threatened taxa, censuses using our method should be able to quantify how fast we are losing species and to assess how effective current conservation measures such as PAs are in preventing species extinction. PMID:24922311

  15. Exploring maps

    USGS Publications Warehouse

    ,

    1993-01-01

    Exploring Maps is an interdisciplinary set of materials on mapping for grades 7-12. Students will learn basic mapmaking and map reading skills and will see how maps can answer fundamental geographic questions: "Where am I?" "What else is here?" "Where am I going?"

  16. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  17. Cortisol modifies extinction learning of recently acquired fear in men.

    PubMed

    Merz, Christian Josef; Hermann, Andrea; Stark, Rudolf; Wolf, Oliver Tobias

    2014-09-01

    Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS-) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS- than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS- differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear. PMID:23945999

  18. Concurrent extinction does not render appetitive conditioning context specific.

    PubMed

    Nelson, James Byron; Lombas, Sebastián; Léon, Samuel P

    2011-03-01

    In an experiment with rats, an appetitive conditioning method was used to investigate the generality of the hypothesis that extinction should arouse attention to contextual cues, resulting in all learning in that context becoming context specific. Rats received appetitive conditioning with a tone either while extinction of a flasher occurred (Group With Extinction) or while it did not (Group No Extinction). Half of each group was subsequently tested in extinction in the context in which training had taken place or in a different context. The results revealed a three-way interaction of extinction and context with trials, in a direction opposite to the one the hypothesis would suggest. When rats were tested in a different context, there was generally better responding in Group With Extinction than in Group No Extinction. In the same context, there was generally lower responding in Group With Extinction than in Group No Extinction. Subsequent testing showed an ABA recovery effect. Results are discussed in terms of the challenges they pose for the revised retrieval theory presented by Callejas-Aguilera and Rosas (2011).

  19. Concurrent extinction does not render appetitive conditioning context specific.

    PubMed

    Nelson, James Byron; Lombas, Sebastián; Léon, Samuel P

    2011-03-01

    In an experiment with rats, an appetitive conditioning method was used to investigate the generality of the hypothesis that extinction should arouse attention to contextual cues, resulting in all learning in that context becoming context specific. Rats received appetitive conditioning with a tone either while extinction of a flasher occurred (Group With Extinction) or while it did not (Group No Extinction). Half of each group was subsequently tested in extinction in the context in which training had taken place or in a different context. The results revealed a three-way interaction of extinction and context with trials, in a direction opposite to the one the hypothesis would suggest. When rats were tested in a different context, there was generally better responding in Group With Extinction than in Group No Extinction. In the same context, there was generally lower responding in Group With Extinction than in Group No Extinction. Subsequent testing showed an ABA recovery effect. Results are discussed in terms of the challenges they pose for the revised retrieval theory presented by Callejas-Aguilera and Rosas (2011). PMID:21287312

  20. A window of vulnerability: impaired fear extinction in adolescence.

    PubMed

    Baker, Kathryn D; Den, Miriam L; Graham, Bronwyn M; Richardson, Rick

    2014-09-01

    There have been significant advances made towards understanding the processes mediating extinction of learned fear. However, despite being of clear theoretical and clinical significance, very few studies have examined fear extinction in adolescence, which is often described as a developmental window of vulnerability to psychological disorders. This paper reviews the relatively small body of research examining fear extinction in adolescence. A prominent finding of this work is that adolescents, both humans and rodents, exhibit a marked impairment in extinction relative to both younger (e.g., juvenile) and older (e.g., adult) groups. We then review some potential mechanisms that could produce the striking extinction deficit observed in adolescence. For example, one neurobiological candidate mechanism for impaired extinction in adolescence involves changes in the functional connectivity within the fear extinction circuit, particularly between prefrontal cortical regions and the amygdala. In addition, we review research on emotion regulation and attention processes that suggests that developmental changes in attention bias to threatening cues may be a cognitive mechanism that mediates age-related differences in extinction learning. We also examine how a differential reaction to chronic stress in adolescence impacts upon extinction retention during adolescence as well as in later life. Finally, we consider the findings of several studies illustrating promising approaches that overcome the typically-observed extinction impairments in adolescent rodents and that could be translated to human adolescents.

  1. Impact as a general cause of extinction: A feasibility test

    NASA Technical Reports Server (NTRS)

    Raup, David M.

    1988-01-01

    Large body impact has been implicated as the possible cause of several extinction events. This is entirely plausible if one accepts two propositions: (1) that impacts of large comets and asteroids produce environmental effects severe enough to cause significant species extinctions and (2) that the estimates of comet and asteroid flux for the Phanerozoic are approximately correct. A resonable next step is to investigate the possibility that impact could be a significant factor in the broader Phanerozoic extinction record, not limited merely to a few events of mass extinction. Monte Carlo simulation experiments based on existing flux estimates and reasonable predictions of the relationship between bolide diameter and extinction are discussed. The simulation results raise the serious possibility that large body impact may be a more pervasive factor in extinction than has been assumed heretofore. At the very least, the experiments show that the comet and asteroid flux estimates combined with a reasonable kill curve produces a reasonable extinction record, complete with occasional mass extinctions and the irregular, lower intensity extinctions commonly called background extinction.

  2. Cold pressor test improves fear extinction in healthy men.

    PubMed

    Antov, Martin I; Melicherová, Ursula; Stockhorst, Ursula

    2015-04-01

    Fear extinction is an important paradigm to study the neural basis of anxiety and trauma- and stressor-related disorders and for modeling features of extinction learning and exposure-based psychotherapy. To date the effects of acute stress on extinction learning in humans are not well understood. Models of stress effects on emotional memory suggest that learning during the so-called first wave of the stress response will be enhanced. The first wave includes (among others) increases of noradrenaline in the brain and increased sympathetic tone, adrenaline and noradrenaline in the periphery while the second wave includes genomic glucocorticoid-actions. The cold pressor test (CPT) is a valid way to induce the first wave of the stress response. We thus hypothesized that the CPT will facilitate extinction. In a 2-day fear-conditioning procedure with 40 healthy men, using differential skin conductance responses as a measure of conditioned fear, we placed the CPT versus a control procedure prior to extinction training on Day 1. We tested for extinction learning on Day 1 and extinction retrieval on Day 2. During extinction training (Day 1) only the CPT-group showed a significant reduction in differential responding. This was still evident on Day 2, where the CPT group had less differential responding during early trials (retrieval) and a higher extinction retention index. This is the first human study to show that a simple procedure, triggering the first-wave stress response--the CPT--can effectively enhance fear extinction in humans.

  3. Community stability and selective extinction during the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  4. Community stability and selective extinction during the Permian-Triassic mass extinction.

    PubMed

    Roopnarine, Peter D; Angielczyk, Kenneth D

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives. PMID:26430120

  5. DETECTION OF RADIO EMISSION FROM THE HYPERACTIVE L DWARF 2MASS J13153094-2649513AB

    SciTech Connect

    Burgasser, Adam J.; Melis, Carl; Zauderer, B. Ashley; Berger, Edo

    2013-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370 {+-} 50 {mu}Jy, corresponding to a radio luminosity of L{sub rad} = {nu}L{sub {nu}} = (9 {+-} 3) Multiplication-Sign 10{sup 23} erg s{sup -1} and log{sub 10} L{sub rad}/L{sub bol} = -5.44 {+-} 0.22. No detection is made at 9.0 GHz to a 5{sigma} limit of 290 {mu}Jy, consistent with a power-law spectrum S{sub {nu}}{proportional_to}{nu}{sup -{alpha}} with {alpha} {approx}> 0.5. The emission is quiescent, with no evidence of variability or bursts over three hours of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent H{alpha} and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, make 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.

  6. Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Melis, Carl; Zauderer, B. Ashley; Berger, Edo

    2013-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370 ± 50 μJy, corresponding to a radio luminosity of L rad = νL ν = (9 ± 3)×1023 erg s-1 and log10 L rad/L bol = -5.44 ± 0.22. No detection is made at 9.0 GHz to a 5σ limit of 290 μJy, consistent with a power-law spectrum S νvpropν-α with α >~ 0.5. The emission is quiescent, with no evidence of variability or bursts over three hours of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Hα and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, make 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.

  7. Surveying the Galactic Halo with 2MASS-Selected Horizontal Branch Candidates

    NASA Astrophysics Data System (ADS)

    Brown, W. R.; Geller, M. J.; Kenyon, S. J.; Beers, T. C.; Kurtz, M. J.; Roll, J. B.

    2003-12-01

    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b| > 15o. A 12.5 < J0 < 15.5 sample of BHB stars traces the thick disk and inner halo to d⊙ ≃ 9 kpc, with a density 3-5 times that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20 < (J-H)0 < 0.10, -0.10 < (H-K)0 < 0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b| > 50o. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ˜ 5o wide star stream with density greater than 0.33 objects deg-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales θ ≲ 1o. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. One possible explanation for this structure is provided by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.

  8. Iridium abundance patterns across extinction boundaries

    SciTech Connect

    Orth, C.J.; Gilmore, J.S.; Oliver, P.Q.; Quintana, L.R.

    1985-01-01

    The authors are measuring elemental abundances, with emphasis on high sensitivity Ir assay, across biological crisis zones in the fossil record. Samples are measured in an automated neutron activation analysis system, with radiochemical separations for the heavy Pt-group elements and Au. They are collaborating with paleontologic and stratigraphic experts to home-in on the boundaries, and to date they have performed at least one set of measurements across the following transition and extinction boundaries: Precambrian/Cambrian(Pc/C); 2 U. Cambrian biomere boundaries; the basal Ordovician; Ordovician;/Silurian; U. Devonian Frasnian/Famennian (F/F); Devonian/Miss.; Miss./Penn.; Permian/Triassic (P/Tr); Triassic/Jurassic; L. Jurassic Toarcian; Cretaceous/Tertiary (K/T); and the U. Eocene. The authors work on K/T sequences that were deposited under freshwater conditions in the western interior of North America supports the Alvarez asteroid impact hypothesis. The Earth has been struck many times in the Phanerozoic by large impactors that probably have done tremendous damage to the local environment. However, to day scientists have not found any firm chemical evidence for the association of impacts with global extinctions older than the massive terminal Cretaceous event, which might have been unique in the Phanerozoic. Although they have measured a moderate Ir and Pt anomaly in the F/F boundary zone in NW Australia, their evidence indicates that these and several other elements were enriched from seawater by bacteria. Although the authors data, except for the U. Eocene, do not support the periodic comet swarm-global extinction arguments, much more work is needed to resolve this issue.

  9. Extinct 244Pu in Ancient Zircons

    NASA Astrophysics Data System (ADS)

    Turner, Grenville; Harrison, T. Mark; Holland, Greg; Mojzsis, Stephen J.; Gilmour, Jamie

    2004-10-01

    We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.

  10. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel

  11. Stellar ultraviolet colors and interstellar extinction

    NASA Technical Reports Server (NTRS)

    Peytremann, E.; Davis, R. J.

    1972-01-01

    A sample of celescope results is studied. Most of the sample stars belong to the Orion and Vela regions. Stars with visual excess E(B-V) less than 0.05 are selected in order to derive relationships of intrinsic color index versus spectral type. The resulting intrinsic color-color relations are compared with existing blanketed and unblanketed model calculations. Finally, the preceding intrinsic relations are utilized to derive some results on interstellar extinction. Owing to the rather large scatter in the celescope data, the Vela stars give the more significant results because their visible excess E(B-V) is, in general, larger than that for the Orion stars.

  12. Immigration-extinction dynamics of stochastic populations

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Ovaskainen, Otso

    2013-07-01

    How high should be the rate of immigration into a stochastic population in order to significantly reduce the probability of observing the population become extinct? Is there any relation between the population size distributions with and without immigration? Under what conditions can one justify the simple patch occupancy models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.

  13. Assessing the causes of late Pleistocene extinctions on the continents.

    PubMed

    Barnosky, Anthony D; Koch, Paul L; Feranec, Robert S; Wing, Scott L; Shabel, Alan B

    2004-10-01

    One of the great debates about extinction is whether humans or climatic change caused the demise of the Pleistocene megafauna. Evidence from paleontology, climatology, archaeology, and ecology now supports the idea that humans contributed to extinction on some continents, but human hunting was not solely responsible for the pattern of extinction everywhere. Instead, evidence suggests that the intersection of human impacts with pronounced climatic change drove the precise timing and geography of extinction in the Northern Hemisphere. The story from the Southern Hemisphere is still unfolding. New evidence from Australia supports the view that humans helped cause extinctions there, but the correlation with climate is weak or contested. Firmer chronologies, more realistic ecological models, and regional paleoecological insights still are needed to understand details of the worldwide extinction pattern and the population dynamics of the species involved.

  14. Modeling extinction risk of endemic birds of mainland china.

    PubMed

    Chen, Youhua

    2013-01-01

    The extinction risk of endemic birds of mainland China was modeled over evolutionary time. Results showed that extinction risk of endemic birds in mainland China always tended to be similar within subclades over the evolutionary time of species divergence, and the overall evolution of extinction risk of species presented a conservatism pattern, as evidenced by the disparity-through-time plot. A constant-rate evolutionary model was the best one to quantify the evolution of extinction risk of endemic birds of mainland China. Thus, there was no rate shifting pattern for the evolution of extinction risk of Chinese endemic birds over time. In a summary, extinction risk of endemic birds of mainland China is systematically quantified under the evolutionary framework in the present work.

  15. Ecological selectivity of the emerging mass extinction in the oceans.

    PubMed

    Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J

    2016-09-16

    To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events.

  16. Resistance to extinction in the steady state and in transition.

    PubMed

    Nevin, John A; Grace, Randolph C

    2005-04-01

    Three experiments with pigeons explored the constancy of reinforcer omission during extinction conjectured by rate estimation theory. Experiment 1 arranged 3-component multiple variable-interval (VI) schedules with a mixture of food and extinction trials within each session. Reinforcers omitted to an extinction criterion increased with food-trial reinforcer rate. Experiment 2 arranged 3-component multiple VI schedules where components differed in rate or number of reinforcers. Resistance to extinction depended on the training reinforcer rate but not on the number of reinforcers omitted. Experiment 3 replicated the partial-reinforcement extinction effect within subjects in a discrete-trial procedure and found that more reinforcers were omitted in continuous- than in partial-reinforcement trials. A model of extinction based on behavioral momentum theory accounted for all the data.

  17. Ecological selectivity of the emerging mass extinction in the oceans.

    PubMed

    Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J

    2016-09-16

    To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events. PMID:27629258

  18. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  19. Reintroducing resurrected species: selecting DeExtinction candidates.

    PubMed

    Seddon, Philip J; Moehrenschlager, Axel; Ewen, John

    2014-03-01

    Technological advances have raised the controversial prospect of resurrecting extinct species. Species DeExtinction should involve more than the production of biological orphans to be scrutinized in the laboratory or zoo. If DeExtinction is to realize its stated goals of deep ecological enrichment, then resurrected animals must be translocated (i.e., released within suitable habitat). Therefore, DeExtinction is a conservation translocation issue and the selection of potential DeExtinction candidates must consider the feasibility and risks associated with reintroduction. The International Union for the Conservation of Nature (IUCN) Guidelines on Reintroductions and Other Conservation Translocations provide a framework for DeExtinction candidate selection. We translate these Guidelines into ten questions to be addressed early on in the selection process to eliminate unsuitable reintroduction candidates. We apply these questions to the thylacine, Yangtze River Dolphin, and Xerces blue butterfly.

  20. Extinction of low-stretched diffusion flame in microgravity

    SciTech Connect

    Maruta, Kaoru; Yoshida, Masaharu; Guo, Hongsheng; Ju, Yiguang; Niioka, Takashi

    1998-01-01

    Extinction of counterflow diffusion flames of air and methane diluted with nitrogen is studied by drop tower experiments and numerical calculation using detailed chemistry and transport properties. Radiative heat loss from the flame zone is taken into consideration. Experimental results identified two kinds of extinction at the same fuel concentration, that is, in addition to the widely known stretch extinction, another type of extinction is observed when the stretch rate is sufficiently low. Consequently, plots of stretch rates versus fuel concentration limits exhibit a C-shaped extinction curve. Numerical calculation including radiative heat loss from the flame zone qualitatively agreed with the experimental results and indicated that the mechanism of counterflow diffusion flame extinction at low stretch rates was radiative heat loss.

  1. Magnitude and variation of prehistoric bird extinctions in the Pacific

    PubMed Central

    Duncan, Richard P.; Boyer, Alison G.; Blackburn, Tim M.

    2013-01-01

    The largest extinction event in the Holocene occurred on Pacific islands, where Late Quaternary fossils reveal the loss of thousands of bird populations following human colonization of the region. However, gaps in the fossil record mean that considerable uncertainty surrounds the magnitude and pattern of these extinctions. We use a Bayesian mark-recapture approach to model gaps in the fossil record and to quantify losses of nonpasserine landbirds on 41 Pacific islands. Two-thirds of the populations on these islands went extinct in the period between first human arrival and European contact, with extinction rates linked to island and species characteristics that increased susceptibility to hunting and habitat destruction. We calculate that human colonization of remote Pacific islands caused the global extinction of close to 1,000 species of nonpasserine landbird alone; nonpasserine seabird and passerine extinctions will add to this total. PMID:23530197

  2. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability.

  3. Selectivity of end-Cretaceous marine bivalve extinctions.

    PubMed

    Jablonski, D; Raup, D M

    1995-04-21

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  4. Selectivity of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M.

    1995-01-01

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  5. [GABA-Receptors in Modulation of Fear Memory Extinction].

    PubMed

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors. PMID:27538279

  6. On the Pleistocene extinctions of Alaskan mammoths and horses.

    PubMed

    Solow, Andrew R; Roberts, David L; Robbirt, Karen M

    2006-05-01

    The fossil record has been used to shed light on the late Pleistocene megafaunal extinctions in North America and elsewhere. It is therefore important to account for variability due to the incompleteness of the fossil record and error in dating fossil remains. Here, a joint confidence region for the extinction times of horses and mammoths in Alaska is constructed. The results suggest that a prior claim that the extinction of horses preceded the arrival of humans cannot be made with confidence.

  7. The Effect of Size and Ecology on Extinction Susceptibility

    NASA Astrophysics Data System (ADS)

    Huynh, C.; Yuan, A.; Heim, N.; Payne, J.

    2015-12-01

    Although life on Earth first emerged as prokaryotic organisms, it eventually evolved into billions of different species. However, extinctions on Earth, especially the five mass extinctions, have decimated species. So what leads to a species survival or demise during a mass extinction? Are certain species more susceptible to extinctions based on their size and ecology? For this project, we focused on the data of marine animals. To examine the impact of size and ecology on a species's likelihood of survival, we compared the sizes and ecologies of the survivors and victims of the five mass extinctions. The ecology, or life mode, of a genus consists of the combination of tiering, motility, and feeding mechanism. Tiering refers to the animal's typical location in the water column and sediments, motility refers to its ability to move, and feeding mechanism describes the way the organism eats; together, they describe the animal's behavior. We analyzed the effect of ecology on survival using logistic regression, which compares life mode to the success or failure of a genus during each mass extinction interval. For organism size, we found the extinct organisms' mean size (both volume and length) and compared it with the average size of survivors on a graph. Our results show that while surviving genera of mass extinctions tended to be slightly larger than those that went extinct, there was no significant difference. Even though the Permian (Changhsingian) and Triassic (Rhaetian) extinctions had larger surviving species, likewise the difference was small. Ecology had a more obvious impact on the likelihood of survival; fast-moving, predatory pelagic organisms were the most likely to go extinct, while sedentary, infaunal suspension feeders had the greatest chances of survival. Overall, ecology played a greater role than size in determining the survival of a species. With this information, we can use ecology to predict which species would survive future extinctions.

  8. Mapping the Frozen Void

    NASA Astrophysics Data System (ADS)

    Suutarinen, Aleksi; Fraser, Helen

    2013-07-01

    Reactions on the surfaces of dust grains play a vital role in the overall chemistry of interstellar matter. These grains become covered by icy layers, which are the largest molecular reservoir in the interstellar medium. Given this, it is surprising that the effect ice has on the overall chain of reactions is poorly characterized. One step on the path of gaining better understanding here is to develop methods of figuring out how much ice is present in these clouds, the links between ice components, and synergy between the ices and gas phase molecules. We do this by examining the absorption spectra of ices on lines of sight towards several stars behind clouds of interstellar matter. From these we can reconstruct spatial maps of the ice distribution on scales of as little as 1000 AU, as a test of the chemical variation within a cloud. By overlapping the ice data with other maps of the same region (gas emission, temperature, density etc) we create combined maps to reveal the astrochemistry of star-forming regions and pre-stellar cores. In this poster we present the continuing results of our ice mapping programme, using data from the AKARI satellite, specifically in slitless spectroscopy observations in the NIR. In this region the key ice features encompass H2O, CO and CO2. The maps illustrate the power of our dedicated AKARI data reduction pipeline, and the novelty of our observing programme. We also detail the next steps' in our ice mapping research. The method is being expanded to include the full 10'x10' AKARI field of view, taking account of image distortion induced by the dispersing optics. These maps are then combined with exiting gas-phase observations and SCUBA maps. The latest attempts at this are shown here. What is clear already is that it is difficult to predict ice abundances from factors such as extinction or gas density alone, and that ice formation and evolution can vary hugely over even very small astronomical scales.

  9. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass.

    PubMed

    Matthews, Luke J; Arnold, Christian; Machanda, Zarin; Nunn, Charles L

    2011-04-22

    Body mass is thought to influence diversification rates, but previous studies have produced ambiguous results. We investigated patterns of diversification across 100 trees obtained from a new Bayesian inference of primate phylogeny that sampled trees in proportion to their posterior probabilities. First, we used simulations to assess the validity of previous studies that used linear models to investigate the links between IUCN Red List status and body mass. These analyses support the use of linear models for ordinal ranked data on threat status, and phylogenetic generalized linear models revealed a significant positive correlation between current extinction risk and body mass across our tree block. We then investigated historical patterns of speciation and extinction rates using a recently developed maximum-likelihood method. Specifically, we predicted that body mass correlates positively with extinction rate because larger bodied organisms reproduce more slowly, and body mass correlates negatively with speciation rate because smaller bodied organisms are better able to partition niche space. We failed to find evidence that extinction rates covary with body mass across primate phylogeny. Similarly, the speciation rate was generally unrelated to body mass, except in some tests that indicated an increase in the speciation rate with increasing body mass. Importantly, we discovered that our data violated a key assumption of sample randomness with respect to body mass. After correcting for this bias, we found no association between diversification rates and mass.

  10. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass.

    PubMed

    Matthews, Luke J; Arnold, Christian; Machanda, Zarin; Nunn, Charles L

    2011-04-22

    Body mass is thought to influence diversification rates, but previous studies have produced ambiguous results. We investigated patterns of diversification across 100 trees obtained from a new Bayesian inference of primate phylogeny that sampled trees in proportion to their posterior probabilities. First, we used simulations to assess the validity of previous studies that used linear models to investigate the links between IUCN Red List status and body mass. These analyses support the use of linear models for ordinal ranked data on threat status, and phylogenetic generalized linear models revealed a significant positive correlation between current extinction risk and body mass across our tree block. We then investigated historical patterns of speciation and extinction rates using a recently developed maximum-likelihood method. Specifically, we predicted that body mass correlates positively with extinction rate because larger bodied organisms reproduce more slowly, and body mass correlates negatively with speciation rate because smaller bodied organisms are better able to partition niche space. We failed to find evidence that extinction rates covary with body mass across primate phylogeny. Similarly, the speciation rate was generally unrelated to body mass, except in some tests that indicated an increase in the speciation rate with increasing body mass. Importantly, we discovered that our data violated a key assumption of sample randomness with respect to body mass. After correcting for this bias, we found no association between diversification rates and mass. PMID:20943699

  11. The dark cloud TGU H994 P1 (LDN 1399, LDN 1400, and LDN 1402): Interstellar extinction and distance

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Munari, U.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.

    2016-01-01

    The results of CCD photometry in the seven-colour Vilnius system, for about 1000 stars down to V = 20 mag and their two-dimensional spectral types, are used to investigate the interstellar extinction in a 1.5 square degree area in the direction of the dark cloud TGU H994 P1 (LDN 1399, LDN 1400 and LDN 1402) in Camelopardalis. Photometric classification of 18 brightest stars down to V = 12 mag was verified by the spectra obtained with the 1.22 m telescope of the Asiago Observatory. The interstellar extinction run with distance is investigated with the results of photometry in the Vilnius system, and 504 red clump giants, identified by combining the results of infrared photometry from the 2MASS and WISE surveys. A possible distance of 140 ± 11 pc to the TGU H994 P1 cloud seems to be acceptable. Alternative distances of the cloud are discussed. The complex of the Camelopardalis clouds probably has a considerable depth along the line of sight, similar to that observed in the Taurus-Auriga complex. The maximum extinction AV in the dark filaments is found to be about 6.5 mag. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A31

  12. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    PubMed Central

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  13. Experience with dynamic reinforcement rates decreases resistance to extinction.

    PubMed

    Craig, Andrew R; Shahan, Timothy A

    2016-03-01

    The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. PMID:26813330

  14. Genetic disruptions of Drosophila Pavlovian learning leave extinction learning intact

    PubMed Central

    Qin, Hongtao; Dubnau, Josh

    2009-01-01

    Individuals that experience traumatic events may develop persistent post-traumatic stress disorder (PTSD). Patients with this disorder are commonly treated with exposure therapy, which has had limited long-term success. In experimental neurobiology, fear extinction is a model for exposure therapy. In this behavioral paradigm, animals are repeatedly exposed in a safe environment to the fearful stimulus, which leads to greatly reduced fear. Studying animal models of extinction already has lead to better therapeutic strategies and development of new candidate drugs. Lack of a powerful genetic model of extinction, however, has limited progress in identifying underlying molecular and genetic factors. In this study, we established a robust behavioral paradigm to study the short term effect (acquisition) of extinction in Drosophila melanogaster. We focused on the extinction of olfactory aversive one-day memory with a task that has been the main workhorse for genetics of memory in flies. Using this paradigm, we demonstrate that extinction can inhibit each of two genetically distinct forms of consolidated memory. We then used a series of single-gene mutants with known impact on associative learning, to examine effects on extinction. We find that extinction is intact in each of these mutants, suggesting that extinction learning relies on different molecular mechanisms than does Pavlovian learning. PMID:20015341

  15. Extinction and the optical theorem. Part I. Single particles.

    PubMed

    Berg, Matthew J; Sorensen, Christopher M; Chakrabarti, Amitabha

    2008-07-01

    We study the extinction caused by a single particle and present a conceptual phase-based explanation for the related optical theorem. Simulations of the energy flow caused by a particle's presence in a collimated beam of light demonstrate how the extinction process occurs. It is shown that extinction does not necessarily cause a reduction of the energy flow along the exact forward direction. Implications regarding the measurement of the single-particle extinction cross section are discussed. This work is extended to noninteracting and interacting multiparticle groups in Part II [J. Opt. Soc. Am. A25, pp. 1514 (2008)].

  16. Rnu-dependent optical and near-ultraviolet extinction

    NASA Astrophysics Data System (ADS)

    O'Donnell, James E.

    1994-02-01

    We have derived extinctions A(lambda)/A(V) at the wavelengths of the uvby filters for 22 stars, with a range of values of Rnu, from the sample of Cardelli, Clayton, & Mathis (1989, hereafter CCM). We have fit these extinctions, and also UBVRIJHKL, IUE and ANS extinction measurements, with linear relations A(lambda)/A/(V) = a+b/Rnu and fit a and b as a function of x(=1/lambda) with polynomials to obtain an Rnu-dependent mean extinction law (A(x)/A(V) = a(x) + b(x)/Rnu)in the optical and near-ultraviolet (1.1/micrometer less than or equal to 3.3/micrometer). This law is virtually identical to the CCM extinction law for large values of Rnu(Rnu approximately 5) but is slightly lower in the near-ultraviolet for smaller Rnu (Rnu approximately 3). The extinction law presented here agrees much better with a high-resolution extinction curve for the diffuse interstellar medium (Rnu approximately 3.1), presented by Bastiaansen (1992), than CCM. The deviations of individual extinction curves from the mean are dominated by observational errors. The wavelength resolution of this work is not high enough to show evidence for or against the existence of very broad structure in optical extinction curves.

  17. Hypoxia, global warming, and terrestrial late Permian extinctions.

    PubMed

    Huey, Raymond B; Ward, Peter D

    2005-04-15

    A catastrophic extinction occurred at the end of the Permian Period. However, baseline extinction rates appear to have been elevated even before the final catastrophe, suggesting sustained environmental degradation. For terrestrial vertebrates during the Late Permian, the combination of a drop in atmospheric oxygen plus climate warming would have induced hypoxic stress and consequently compressed altitudinal ranges to near sea level. Our simulations suggest that the magnitude of altitudinal compression would have forced extinctions by reducing habitat diversity, fragmenting and isolating populations, and inducing a species-area effect. It also might have delayed ecosystem recovery after the mass extinction.

  18. Neural consequences of somatosensory extinction: an fMRI study.

    PubMed

    Kobayashi, Michiko; Takeda, Katsuhiko; Kaminaga, Tatsuro; Shimizu, Teruo; Iwata, Makoto

    2005-11-01

    There are currently two main interpretations proposing mechanisms underlying tactile extinction: sensory and attention deficit hypotheses. Kinsbourne proposed an opponent processor model to support the attention deficit hypothesis. He insisted that bilateral hemispheres interact reciprocally through contralaterally oriented vectors, and in patients presenting extinction, balance is impaired, causing inattention. From Kinsbourne's point of view, extinction is not caused by sensory disturbance but inattention, therefore even in extinction patients, simultaneous bilateral stimuli should reach the bilateral primary sensory cortices (SI). Using functional magnetic resonance imaging (fMRI), tactile stimuli were administered to both hands of healthy subjects as well as a tactile extinction patient. The patient with tactile extinction extinguished right palm stimuli following simultaneous palm stimulation. During the fMRI study, we gave tactile stimuli to the right palm, the left palm, and simultaneously to both palms. In normal subjects, simultaneous bilateral stimuli activated the bilateral SI and bilateral secondary sensory cortices (SII). In the patient with right tactile extinction, simultaneous bilateral stimuli activated the bilateral SI along with the bilateral SII and right superior parietal lobule. Our study suggests that activation of SI is insufficient to engender an awareness of sensory stimuli. From the view point of Kinsbourne, stimulus driven activity in one hemisphere suppresses activity in the other hemisphere via callosal connections. Our results support the notion that an undamaged superior parietal lobule in the patient with tactile extinction suppresses the damaged parietal lobe function and causes extinction.

  19. Lessons from the past: Biotic recoveries from mass extinctions

    PubMed Central

    Erwin, Douglas H.

    2001-01-01

    Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions. PMID:11344285

  20. Dynamics of origination and extinction in the marine fossil record

    PubMed Central

    Alroy, John

    2008-01-01

    The discipline-wide effort to database the fossil record at the occurrence level has made it possible to estimate marine invertebrate extinction and origination rates with much greater accuracy. The new data show that two biotic mechanisms have hastened recoveries from mass extinctions and confined diversity to a relatively narrow range over the past 500 million years (Myr). First, a drop in diversity of any size correlates with low extinction rates immediately afterward, so much so that extinction would almost come to a halt if diversity dropped by 90%. Second, very high extinction rates are followed by equally high origination rates. The two relationships predict that the rebound from the current mass extinction will take at least 10 Myr, and perhaps 40 Myr if it rivals the Permo-Triassic catastrophe. Regardless, any large event will result in a dramatic ecological and taxonomic restructuring of the biosphere. The data also confirm that extinction and origination rates both declined through the Phanerozoic and that several extinctions in addition to the Permo-Triassic event were particularly severe. However, the trend may be driven by taxonomic biases and the rates vary in accord with a simple log normal distribution, so there is no sharp distinction between background and mass extinctions. Furthermore, the lack of any significant autocorrelation in the data is inconsistent with macroevolutionary theories of periodicity or self-organized criticality. PMID:18695240

  1. Measurement of the extinction coefficients of magnetic fluids

    PubMed Central

    2011-01-01

    A novel spectral transmittance approach for measuring the extinction coefficient of magnetic fluids is proposed. The measuring principle and accuracy of the approach are analysed. Experiments are conducted to measure the extinction coefficient of magnetic fluids with different particle volume fractions. The relative uncertainty of experimental data is less than 1.8%. The experimental results indicate that the extinction coefficient of magnetic fluids increases with increase of the volume fraction of suspended magnetic nanoparticles and the optical properties of the particle material have a significant effect on the extinction coefficient of the magnetic fluids. PMID:21711742

  2. Cortisol disrupts the neural correlates of extinction recall.

    PubMed

    Kinner, Valerie L; Merz, Christian J; Lissek, Silke; Wolf, Oliver T

    2016-06-01

    The renewal effect describes the recovery of extinguished responses that may occur after a change in context and indicates that extinction memory retrieval is sometimes prone to failure. Stress hormones have been implicated to modulate extinction processes, with mostly impairing effects on extinction retrieval. However, the neurobiological mechanisms mediating stress effects on extinction memory remain elusive. In this functional magnetic resonance imaging study, we investigated the effects of cortisol administration on the neural correlates of extinction memory retrieval in a predictive learning task. In this task, participants were required to predict whether certain food stimuli were associated with stomach trouble when presented in two different contexts. A two-day renewal paradigm was applied in which an association was acquired in context A and subsequently extinguished in context B. On the following day, participants received either cortisol or placebo 40min before extinction memory retrieval was tested in both contexts. Behaviorally, cortisol impaired the retrieval of extinguished associations when presented in the extinction context. On the neural level, this effect was characterized by a reduced context differentiation for the extinguished stimulus in the ventromedial prefrontal cortex, but only in men. In the placebo group, ventromedial prefrontal cortex was functionally connected to the left cerebellum, the anterior cingulate and the right anterior parahippocampal gyrus to express extinction memory. This functional crosstalk was reduced under cortisol. These findings illustrate that the stress hormone cortisol disrupts ventromedial prefrontal cortex functioning and its communication with other brain regions implicated in extinction memory. PMID:26973167

  3. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping.

    PubMed

    Wang, Melissa E; Yuan, Robin K; Keinath, Alexander T; Ramos Álvarez, Manuel M; Muzzio, Isabel A

    2015-06-17

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation.

  4. Requirement for BDNF in the reconsolidation of fear extinction.

    PubMed

    Radiske, Andressa; Rossato, Janine I; Köhler, Cristiano A; Gonzalez, Maria Carolina; Medina, Jorge H; Cammarota, Martín

    2015-04-22

    Therapies based on the impairment of reconsolidation or the enhancement of extinction offer the possibility of decreasing the persistent recollection of distressing memories. However, the direct interplay between reconsolidation and extinction has rarely been considered. Previously, we reported that reactivation induces reconsolidation of fear extinction memory. Here, using a step-down inhibitory avoidance learning paradigm in rats, we show that intrahippocampus infusion of function-blocking anti-BDNF antibody immediately or 6 h after extinction memory reactivation impairs the reconsolidation of extinction. Extinction memory reactivation increases proBDNF, BDNF, and tropomyosin receptor kinase B (TrkB) phosphorylation levels in dorsal CA1, while blocking BDNF maturation in the hippocampus with plasminogen activator inhibitor 1 hinders the persistence of extinction and induces the recurrence of fear. Moreover, coinfusion of recombinant BDNF (0.25 μg/side) after extinction memory reactivation impedes the recovery of the avoidance response induced by inhibiting gene expression and protein synthesis in the dorsal hippocampus. Our findings unravel a new role for BDNF, suggesting that this neurotrophin is necessary and sufficient to maintain the reactivated fear extinction engram.

  5. Diversification and extinction in the history of life.

    PubMed

    Benton, M J

    1995-04-01

    Analysis of the fossil record of microbes, algae, fungi, protists, plants, and animals shows that the diversity of both marine and continental life increased exponentially since the end of the Precambrian. This diversification was interrupted by mass extinctions, the largest of which occurred in the Early Cambrian, Late Ordovician, Late Devonian, Late Permian, Early Triassic, Late Triassic, and end-Cretaceous. Most of these extinctions were experienced by both marine and continental organisms. As for the periodicity of mass extinctions, no support was found: Seven mass extinction peaks in the last 250 million years are spaced 20 to 60 million years apart.

  6. Diversification and extinction in the history of life.

    PubMed

    Benton, M J

    1995-04-01

    Analysis of the fossil record of microbes, algae, fungi, protists, plants, and animals shows that the diversity of both marine and continental life increased exponentially since the end of the Precambrian. This diversification was interrupted by mass extinctions, the largest of which occurred in the Early Cambrian, Late Ordovician, Late Devonian, Late Permian, Early Triassic, Late Triassic, and end-Cretaceous. Most of these extinctions were experienced by both marine and continental organisms. As for the periodicity of mass extinctions, no support was found: Seven mass extinction peaks in the last 250 million years are spaced 20 to 60 million years apart. PMID:7701342

  7. Resistance of spiders to Cretaceous-Tertiary extinction events.

    PubMed

    Penney, David; Wheater, C Philip; Selden, Paul A

    2003-11-01

    Throughout Earth history a small number of global catastrophic events leading to biotic crises have caused mass extinctions. Here, using a technique that combines taxonomic and numerical data, we consider the effects of the Cenomanian-Turonian and Cretaceous-Tertiary mass extinctions on the terrestrial spider fauna in the light of new fossil data. We provide the first evidence that spiders suffered no decline at the family level during these mass extinction events. On the contrary, we show that they increased in relative numbers through the Cretaceous and beyond the Cretaceous-Tertiary extinction event. PMID:14686534

  8. Hypoxia, global warming, and terrestrial late Permian extinctions.

    PubMed

    Huey, Raymond B; Ward, Peter D

    2005-04-15

    A catastrophic extinction occurred at the end of the Permian Period. However, baseline extinction rates appear to have been elevated even before the final catastrophe, suggesting sustained environmental degradation. For terrestrial vertebrates during the Late Permian, the combination of a drop in atmospheric oxygen plus climate warming would have induced hypoxic stress and consequently compressed altitudinal ranges to near sea level. Our simulations suggest that the magnitude of altitudinal compression would have forced extinctions by reducing habitat diversity, fragmenting and isolating populations, and inducing a species-area effect. It also might have delayed ecosystem recovery after the mass extinction. PMID:15831755

  9. Increased threat of disease as species move towards extinction

    PubMed Central

    Ripp, Kelsey; Berger, Melanie; Chen, Jane; Dittmeier, Justin; Goter, Maggie; McGarvey, Stephen T.; Ryan, Elizabeth

    2015-01-01

    In the midst of global biodiversity loss and rising disease incidence in wildlife, there has been growing interest in the role of infectious disease in species extinction. At local scales infectious disease is a common driver of population declines but globally it is an infrequent driver of species extinction and endangerment. For those unfortunate species threatened by disease questions remain, including when, along the pathway to extinction, do pathogens become a threat? We used the 2011 IUCN Red List, focusing on amphibians, birds, and mammals to test the null hypothesis that the proportion of species threatened by disease is the same in each status category (least concern to extinct). Overall, we found that pathogens appear to increase in importance as species move towards extinction though this varies with host taxonomy. We compare this finding to other threats (e.g. land-use change and invasive species) and discuss the role of potential ecological and artifactual drivers. Furthermore, we identify what other threats most frequently co-occur with infectious disease to examine the specific role of disease in driving extinction. We determined that infectious disease is rarely the sole driver of extinction and that being affected by other threats increases the odds of infectious disease co-occurring as a driver of extinction. Ultimately, our conclusions echo previous calls for baseline data on the presence of pathogens in species when they show the first signs of extinction risk and arguably before. PMID:24033873

  10. The IC 5146 star forming complex and its surroundings with 2MASS, WISE and Spitzer

    NASA Astrophysics Data System (ADS)

    Nunes, N. A.; Bonatto, C.; Bica, E.

    2016-02-01

    Throughout the last decade sensitive infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of YSOs associated with nearby molecular clouds. With such a census recent studies have characterized pre-main sequence stars (PMS) and determined parameters from different wavelengths. Given the restricted Spitzer coverage of some of these clouds, relative to their extended regions, these YSO populations may represent a limited view of star formation in these regions. We are taking advantage of mid-infrared observations from the NASA Wide Field Infrared Survey Explorer (WISE), which provides an all sky view and therefore full coverage of the nearby clouds, to assess the degree to which their currently known YSO population may be representative of a more complete population. We extend the well established classification method of the Spitzer Legacy teams to archived WISE observations. We have adopted 2MASS photometry as a "standard catalogue" for comparisons. Besides the massive embedded cluster IC 5146 we provide a multiband view of five new embedded clusters in its surroundings that we discovered with WISE. In short, the analysis involves the following for the presently studied cluster sample: (i) extraction of 2MASS/WISE/Spitzer photometry in a wide circular region; (ii) field-star decontamination to enhance the intrinsic Colour-magnitude diagram (CMD) morphology (essential for a proper derivation of reddening, age, and distance from the Sun); and (iii) construction of Colour-magnitude filters, for more contrasted stellar radial density profiles (RDPs).

  11. Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa

    1994-01-01

    We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.

  12. EXTINCTION OF SPECIES BY PERIODIC COMET SHOWERS

    SciTech Connect

    Davis, M.; Hut, P.; Muller, R.A.

    1984-01-01

    A 26-Myr periodicity has recently been seen in the fossil record of extinction in the geological past. At least two of these extinctions are known to be associated with the impact on the Earth of a comet or asteroid with a diameter of a few kilometres. We propose that the periodic events are triggered by an unseen companion to the Sun, travelling in a moderately eccentric orbit, which at its closest approach (perihelion) passes through the 'Oort cloud' of comets which surrounds the Sun. During each passage this unseen solar companion perturbs the orbits of these comets, sending a large number of them (over 1 x 10{sup 9}) into paths which reach the inner Solar System. Several of these hit the Earth, on average, in the following million years. At present the unseen companion should be approximately at its maximum distance from the Sun, {approx}2.4 light yr, and it will present no danger to the Earth until approximately AD 15,000,000.

  13. Classification and properties of UV extinction curves

    NASA Astrophysics Data System (ADS)

    Barbaro, G.; Mazzei, P.; Morbidelli, L.; Patriarchi, P.; Perinotto, M.

    2001-01-01

    The catalog of Savage et al. (\\cite{ref27}) reporting colour excesses of 1415 stars from ANS photometry offers the opportunity to deeply investigate the characteristics of UV extinction curves which differ from the standard extinction of the diffuse interstellar medium. To this aim we have selected a sample of 252 curves, which have been compared with the relations derived by Cardelli et al. (\\cite{ref4}; CCM in the following) for a variety of R_V values in the range 2.4-5 and have been classified as normal if they fit at least one of the CCM curves or anomalous otherwise. We find that normal curves with small R_V are just as numerous as those with large R_V. The anomalous objects are arranged into two groups according to the strength of the bump at 0.217 mu . For a given value of c_2 this increases along the sequence: type A anomalous, normals and type B anomalous, suggesting that this sequence should correspond to an increase of the amount of small grains along the sightline. Considerations concerning the environmental characteristics indicate that the anomalous behaviour is not necessarily tied to the existence of dense gas clouds along the line of sight.

  14. A molecular phylogeny of two extinct sloths.

    PubMed

    Greenwood, A D; Castresana, J; Feldmaier-Fuchs, G; Pääbo, S

    2001-01-01

    Xenarthra (Edentata) is an extremely diverse mammalian order whose modern representatives are the armadillos, anteaters, and sloths. The phylogeny of these groups is poorly resolved. This is particularly true for the sloths (phyllophagans), originally a large and diverse group now reduced to two genera in two different families. Both morphological analyses and molecular analyses of rDNA genes of living and extinct sloths have been used with limited success to elucidate their phylogeny. In an attempt to clarify relationships among the sloths, DNA was extracted and mitochondrial cytochrome b gene sequences were determined from representatives of two extinct groups of sloths (Mylodontidae and Megatheriidae), their two living relatives (two-toed sloths [Megalonychidae], three-toed sloths [Bradypodidae]), anteaters and armadillos. A consistent feature of the latter two species was the nuclear copies of cytochrome b gene sequences. Several methods of phylogenetic reconstruction were applied to the sequences determined, and the results were compared with 12S rDNA sequences obtained in previous studies. The cytochrome b gene exhibited a phylogenetic resolving power similar to that of the 12S rDNA sequences. When both data sets were combined, they tended to support the grouping of two-toed sloths with mylodontids and three-toed sloths with megatheriids. The results strengthen the view that the two families of living sloths adapted independently to an arboreal life-style.

  15. Science observed: The mass-extinction debates

    NASA Technical Reports Server (NTRS)

    Glen, W.

    1994-01-01

    The upheaval triggered in 1980 by the Alvarez-Berkeley group impact hypothesis transformed the literature of mass extinctions from an unfocused, sporadic collection of papers that virtually ignored extraterrestrial causes and treated endogenous ones only sparingly better to an integrated, diverse body of literature. Research programs organized seemingly overnight spawned collaborative teams whose members, often from distant, isolated disciplines, redirected their careers in order to address the captivating, high-stakes issues. The initial, generally skeptical, cool reception of the impact hypothesis might have been predicted for any of a number of reasons: such an instantaneous catastrophe contravened earth science's reigning philosophy of uniformitarianism; it was formulated from a form of evidence - siderophile element anomalies - alien to the community charged with its appraisal; it advanced a causal mechanism that was improbable in terms of canonical knowledge; and it was proffered mainly by specialists alien to earth and biological science, especially paleobiology. Early on it became clear that irrespective of which causal hypothesis was chosen, the chosen one would be the strongest predictor of how the chooser would select and apply standards in assessing evidence bearing on all such hypothesis. Less strong correlation also appeared between disciplinary speciality and the assessment of evidence. Such correlations varied with the level of specialization; the most robust correlations appeared in the broadest areas of science practice. The gestalt (mindset) seemingly engendered by the embrace of an extinction hypothesis overrode, or was stronger than, the intellectual predispositions attributable to disciplinary specialty.

  16. Science observed: The mass-extinction debates

    NASA Astrophysics Data System (ADS)

    Glen, W.

    The upheaval triggered in 1980 by the Alvarez-Berkeley group impact hypothesis transformed the literature of mass extinctions from an unfocused, sporadic collection of papers that virtually ignored extraterrestrial causes and treated endogenous ones only sparingly better to an integrated, diverse body of literature. Research programs organized seemingly overnight spawned collaborative teams whose members, often from distant, isolated disciplines, redirected their careers in order to address the captivating, high-stakes issues. The initial, generally skeptical, cool reception of the impact hypothesis might have been predicted for any of a number of reasons: such an instantaneous catastrophe contravened earth science's reigning philosophy of uniformitarianism; it was formulated from a form of evidence - siderophile element anomalies - alien to the community charged with its appraisal; it advanced a causal mechanism that was improbable in terms of canonical knowledge; and it was proffered mainly by specialists alien to earth and biological science, especially paleobiology. Early on it became clear that irrespective of which causal hypothesis was chosen, the chosen one would be the strongest predictor of how the chooser would select and apply standards in assessing evidence bearing on all such hypothesis. Less strong correlation also appeared between disciplinary speciality and the assessment of evidence. Such correlations varied with the level of specialization; the most robust correlations appeared in the broadest areas of science practice. The gestalt (mindset) seemingly engendered by the embrace of an extinction hypothesis overrode, or was stronger than, the intellectual predispositions attributable to disciplinary specialty.

  17. Evolutionary Catastrophes: The Science of Mass Extinction

    NASA Astrophysics Data System (ADS)

    Hames, Willis

    The stories behind the greatest scientific controversies are more than entertaining. They provide windows into the evolution of scientific thought, scientific method, technological achievements and their research applications, and the influence of individuals and personalities on a community's acceptance of a theory Epic controversies surround the theories for Earth's mass extinction events, and none is more spectacular than the continuing polemic over the Cretaceous-Tertiary (K/T) mass extinctions and ultimate demise of the dinosaurs.In contrast to other great scientific debates, we tend to view the K/T event in the context of a crime scene, where the spectacularly diverse flora and fauna of a primordial Eden were unwittingly slain by one or more ruthless and efficient killers. A “foreign” suspect has been fingered; an intruder that killed suddenly and randomly has become the principal suspect. The main clues uncovered in the case include a global K/T iridium anomaly; shock-deformed minerals in K/T boundary sediments; the ˜6 5 m.y-old Deccan flood-basalt province, which covered an area roughly the size of France; and the ˜6 5 m.y-old Chicxulub impact crater in the Yucatan peninsula, which seems to be among the largest to have formed in the inner solar system over the past billion years.

  18. Studies of droplet burning and extinction

    NASA Technical Reports Server (NTRS)

    Williams, Forman A.

    1993-01-01

    A project on droplet combustion, pursued jointly with F.L. Dryer of Princeton University, has now been in progress for many years. The project involves experiments on the burning of single droplets in various atmospheres, mainly at normal atmosperic pressure and below, performed in drop towers and designed to be performed aboard space-based platforms such as the Space Shuttle or the Space Station. It also involves numerical computations on droplet burning, performed mainly at Princeton, and asymptotic analyses of droplet burning, performed mainly at UCSD. The focus of the studies rests primarily on time-dependent droplet-burning characteristics and on extinction phenomena. The presentation to be given here concerns the recent research on application of asymptotic methods to investigation of the flame structure and extinction of hydrocarbon droplets. These theoretical studies are investigating the extent to which combustion of higher hydrocarbons - heptane, in particular - can be described by four-step reduced chemistry of the kind that has achieved a good degree of success for methane flames. The studies have progressed to a point at which a number of definite conclusions can now be stated. These conclusions and the reasoning that led to them are outlined here.

  19. Studies of droplet burning and extinction

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1995-01-01

    A project on droplet combustion, pursued jointly with F. L. Dryer of Princeton University, has now been in progress for many years. The project involves experiments on the burning of single droplets in various atmospheres, mainly at normal atmospheric pressure and below, performed in drop towers and designed to be performed aboard space-based platforms such as the Space Shuttle or the Space Station and currently manifest for Spacelab in the MSL-1 flight of the Space Shuttle in April of 1997. It also involves numerical computations on droplet burning, performed mainly at Princeton, and asymptotic analyses of droplet burning, performed mainly at UCSD. The focus of the studies rests primarily on time-dependent droplet-burning characteristics and on extinction phenomena. The presentation to be given here concerns the recent research on application of asymptotic methods to investigation of the flame structure and extinction of alcohol droplets. These theoretical studies are relevant to the second of the proposed space-flight tests and are currently investigating the extent to which combustion of alcohols can be described by four-step reduced chemistry similar to that which has achieved a good degree of success for alkane flames. These studies have progressed to a point at which a number of definite conclusions can now be stated. These conclusions and the reasoning that led to them are outlined.

  20. RICH MAPS

    EPA Science Inventory

    Michael Goodchild recently gave eight reasons why traditional maps are limited as communication devices, and how interactive internet mapping can overcome these limitations. In the past, many authorities in cartography, from Jenks to Bertin, have emphasized the importance of sim...