Science.gov

Sample records for 2n cross-section measurements

  1. Estimating Reaction Cross Sections from Measured (Gamma)-Ray Yields: The 238U(n,2n) and 239Pu(n,2n) Cross Sections

    SciTech Connect

    Younes, W

    2002-11-18

    A procedure is presented to deduce the reaction-channel cross section from measured partial {gamma}-ray cross sections. In its simplest form, the procedure consists in adding complementary measured and calculated contributions to produce the channel cross section. A matrix formalism is introduced to provide a rigorous framework for this approach. The formalism is illustrated using a fictitious product nucleus with a simple level scheme, and a general algorithm is presented to process any level scheme. In order to circumvent the cumbersome algebra that can arise in the matrix formalism, a more intuitive graphical procedure is introduced to obtain the same reaction cross-section estimate. The features and limitations of the method are discussed, and the technique is applied to extract the {sup 235}U (n,2n) and {sup 239}Pu(n,2n) cross sections from experimental partial {gamma}-ray cross sections, coupled with (enhanced) Hauser-Feshbach calculations.

  2. Total Cross Section Measurements and Velocity Distributions of Hyperthermal Charge Transfer in Xe2+ + N2

    NASA Astrophysics Data System (ADS)

    Hause, Michael; Prince, Benjamin; Bemish, Raymond

    Guided-ion beam measurements of the charge exchange (CEX) cross section for Xe2+ + N2 are reported for collision energies ranging from 0.3 to 100 eV in the center-of-mass frame. Measured total XS decrease from 69.5 +/-0.3 Angstroms2 (Angs.) at the lowest collision energies to 40 Angs.2at 100 eV. The product N2+CEX cross section is similar to the total CEX cross section while those of the dissociative product, N+, are less than 1Angs.2 for collision energies above 9 eV. The product N2+CEXcross section measured here are much larger than the total optical emission-excitation cross sections for the N2+(A) and (B) state products determined previously in the chemiluminescence study of Prince and Chiu suggesting that most of the N2+products are in the X state. Time-of-flight (TOF) spectra of both the Xe+ and N2+products suggest two different CEX product channels. The first leaves highly-vibrationally excited N2+products with forward scattered Xe+ (LAB frame) and releases between 0.35 to 0.6 eV translational energy for collisions below 17.6 eV. The second component decreases with collisional energy and leaves backscattered Xe+ and low-vibrational states of N2+.At collision energies above 17.6 eV, only charge exchange involving minimal momentum exchange remains in the TOF spectra. AFOSR 13RV07COR.

  3. Measurement of the ^241Am(n,2n) Reaction Cross Section with the Activation Technique

    NASA Astrophysics Data System (ADS)

    Tonchev, A.; Crowell, A.; Fallin, B.; Howell, C.; Hutcheson, A.; Tornow, W.; Kelley, J.; Angell, C.; Karwowski, H.; Pedroni, R.; Becker, J.; Dashdorj, D.; Macri, R.; Wilhelmy, J.; Bond, E.; Fitzpatrick, J.; Slemmons, A.; Vieira, D.

    2006-10-01

    High-precision measurements of the ^241Am(n,2n)^240Am reaction have been performed with neutron energies from 8.8 to 14.0 MeV. The monoenergetic neutron beams were produced via the ^2H(d,n)^3He reaction using the 10 MV Tandem accelerator at TUNL. The radioactive targets consisted of 1mg highly-enriched ^241Am sandwiched between four different thin monitor foils. They were irradiated with a neutron flux of 3x10^7 n cm-2 s-1. After each irradiation the induced activity in the targets and monitors was measured off-line with 60% HPGe detectors. Our preliminary neutron induced cross sections will be compared with recent literature results and statistical model calculations using the GNASH and EMPIRE codes.

  4. Measurement of the 187Re(n,2n)186mRe Destruction Cross-section

    NASA Astrophysics Data System (ADS)

    Casarella, C. R.; Kelley, J. H.; Raut, R.; Howell, C.; Rusev, G.; Tonchev, A. P.; Kwan, E.; Tornow, W.; Karwowski, H. J.; Hammond, S. L.; Kondev, F. G.; Zhu, S.

    2010-11-01

    We are continuing a program to measure cross sections for ^187Re(n,2nγ) reactions with particular interest in confirming a transition that has tentatively been identified as a doorway transition feeding the ^186Re Ex=149(7) keV isomeric state. The cross sections are being measured using pulsed, nearly mono-energetic neutron beams, as well as an array of planar HPGe γ-ray detectors. At present, the reaction cross sections for ^187Re(n,2nγ) are poorly known, so measuring the cross sections have positive implications, for example, on reactor physics since Re is a common fission fragment. Furthermore, refining the cross section measurements may reduce uncertainties in the Re/Os cosmochronometer. Funding provided by NSF grant NSF-PHY-08-51813.

  5. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0.

  6. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0. PMID:26894323

  7. Integral cross section measurements and product recoil velocity distributions of Xe(2+) + N2 hyperthermal charge-transfer collisions.

    PubMed

    Hause, Michael L; Prince, Benjamin D; Bemish, Raymond J

    2016-07-28

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe(2+) and N2, in particular, is known to create N2 (+) in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe(2+) + N2 reaction as well as axial recoil velocity distributions of the Xe(+) and N2 (+) product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å(2) to about 40 Å(2) with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe(2+) - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies. PMID:27475363

  8. Integral cross section measurements and product recoil velocity distributions of Xe2+ + N2 hyperthermal charge-transfer collisions

    NASA Astrophysics Data System (ADS)

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2016-07-01

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe2+ and N2, in particular, is known to create N2 + in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe2+ + N2 reaction as well as axial recoil velocity distributions of the Xe+ and N2 + product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å2 to about 40 Å2 with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe2+ - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies.

  9. Measurement of 235U(n,n'γ) and 235U(n,2nγ) reaction cross sections

    NASA Astrophysics Data System (ADS)

    Kerveno, M.; Thiry, J. C.; Bacquias, A.; Borcea, C.; Dessagne, P.; Drohé, J. C.; Goriely, S.; Hilaire, S.; Jericha, E.; Karam, H.; Negret, A.; Pavlik, A.; Plompen, A. J. M.; Romain, P.; Rouki, C.; Rudolf, G.; Stanoiu, M.

    2013-02-01

    The design of generation IV nuclear reactors and the studies of new fuel cycles require knowledge of the cross sections of various nuclear reactions. Our research is focused on (n,xnγ) reactions occurring in these new reactors. The aim is to measure unknown cross sections and to reduce the uncertainty on present data for reactions and isotopes of interest for transmutation or advanced reactors. The present work studies the 235U(n,n'γ) and 235U(n,2nγ) reactions in the fast neutron energy domain (up to 20 MeV). The experiments were performed with the Geel electron linear accelerator GELINA, which delivers a pulsed white neutron beam. The time characteristics enable measuring neutron energies with the time-of-flight (TOF) technique. The neutron induced reactions [in this case inelastic scattering and (n,2n) reactions] are identified by on-line prompt γ spectroscopy with an experimental setup including four high-purity germanium (HPGe) detectors. A fission ionization chamber is used to monitor the incident neutron flux. The experimental setup and analysis methods are presented and the model calculations performed with the TALYS-1.2 code are discussed.

  10. Partial (gamma)-Ray Cross Sections for the Reaction 239Pu(n,2n(gamma)i) and the 239Pu(n,2n) Cross Section

    SciTech Connect

    Beacker, J.A.; Bernstein, L.A.; Younes, W.; McNabb, D.P.; Garrett, P.E.; Archer, D.; McGrath, C.A.; Stoyer, M.A.; Chen, H.; Ormand, W.E.; Nelson, R.O.; Chadwick, M.B.; Johns, G.D.; Drake, D.; Young, P.G.; Devlin, M.; Fotiades, N.; Wilburn, W.S.

    2001-09-14

    Absolute partial {gamma}-ray cross sections for production of discrete {gamma} rays in the {sup 239}Pu(n,2n{gamma}i){sup 238}Pu reaction have been measured. The experiments were performed at LANSCE/WNR on the 60R flight line. Reaction {gamma}-rays were measured using the large-scale Compton-suppressed array of Ge detectors, GEANIE. The motivation for this experiment, an overview of the partial {gamma}-ray cross-section measurement, and an introduction to the main experimental issues will be presented. The energy resolution of the Ge detectors allowed identification of reaction {gamma} rays above the background of sample radioactivity and fission {gamma} rays. The use of planar Ge detectors with their reduced sensitivity to neutron interactions and improved line shape was also important to the success of this experiment. Absolute partial {gamma}-ray cross sections are presented for the 6{sub 1}{sup +} {yields} 4{sub 1}{sup +} member of the ground state rotational band in {sup 238}Pu, together with miscellaneous other {gamma}-ray partial cross sections. The n,2n reaction cross section shape and magnitude as a function of neutron energy was extracted from these partial cross sections using nuclear modeling (enhanced Hauser-Feshbach) to relate partial {gamma}-ray cross sections to the n,2n cross section. The critical nuclear modeling issue is the ratio of a partial cross section to the reaction channel cross section, and not the prediction of the absolute magnitude.

  11. Measurement of the Am241(n,2n) reaction cross section from 7.6 MeV to 14.5 MeV

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Angell, C. T.; Boswell, M.; Crowell, A. S.; Fallin, B.; Hammond, S.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Pedroni, R. S.; Tornow, W.; Becker, J. A.; Dashdorj, D.; Kenneally, J.; Macri, R. A.; Stoyer, M. A.; Wu, C. Y.; Bond, E.; Chadwick, M. B.; Fitzpatrick, J.; Kawano, T.; Rundberg, R. S.; Slemmons, A.; Vieira, D. J.; Wilhelmy, J. B.

    2008-05-01

    The (n,2n) cross section of the radioactive isotope Am241 (T1/2=432.6 y) has been measured in the incident neutron energy range from 7.6 to 14.5 MeV in steps of a few MeV using the activation technique. Monoenergetic neutron beams were produced via the H2(d,n)He3 reaction by bombarding a pressurized deuterium gas cell with an energetic deuteron beam at the TUNL 10-MV Van de Graaff accelerator facility. The induced γ-ray activity of Am240 was measured with high-resolution HPGe detectors. The cross section was determined relative to Al, Ni, and Au neutron activation monitor foils, measured in the same geometry. Good agreement is obtained with previous measurements at around 9 and 14 MeV, whereas for a large discrepancy is observed when our data are compared to those reported by Perdikakis near 11 MeV. Very good agreement is found with the END-B/VII evaluation, whereas the JENDL-3.3 evaluation is in fair agreement with our data.

  12. Measurement of the ^241Am(n,2n) reaction cross section from 7.6 to 14.5 MeV

    NASA Astrophysics Data System (ADS)

    Tonchev, A.; Angell, C.; Becker, J.; Bond, E.; Dashdorj, D.; Fallin, B.; Fitzpatrick, J.; Howell, C.; Hutcheson, A.; Karwowski, H.; Kelley, J.; Macri, R.; Pedroni, R.; Slemmons, A.; Stoyer, M.; Tornow, W.; Vieira, D.; Wilhelmy, J.; Wu, C.

    2007-10-01

    High-precision measurements of the ^241Am(n,2n)^240Am reaction have been performed with neutron energies from 7.6 to 14.5 MeV. The monoenergetic neutron beams were produced via the ^2H(d,n)^3He reaction using the 10 MV Tandem accelerator at TUNL. The radioactive targets consisted of 1mg highly-enriched ^241Am, sandwiched between three different thin monitor foils. They were irradiated with a neutron flux of 3x10^7 n cm-2s-1. After each irradiation the induced activity in the targets and monitors was measured off-line with 60% HPGe detectors. Our neutron induced cross sections will be compared with recent literature results and statistical model calculations.

  13. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  14. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  15. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  16. The 75As(n,2n) Cross Sections into the 74As Isomer and Ground State

    SciTech Connect

    Younes, W; Garrett, P E; Becker, J A; Bernstein, L A; Ormand, W E; Dietrich, F S; Nelson, R O; Devlin, M; Fotiades, N

    2003-06-30

    The {sup 75}As(n, 2n) cross section for the population of the T{sub 1/2} = 26.8-ns isomer at E{sub x} = 259.3 keV in {sup 74}As has been measured as a function of incident neutron energy, from threshold to E{sub n} = 20 MeV. The cross section was measured using the GEANIE spectrometer at LANSCE/WNR. For convenience, the {sup 75}As(n, 2n) population cross section for the {sup 74}As ground state has been deduced as the difference between the previously-known (n, 2n) reaction cross section and the newly measured {sup 75}As(n, 2n){sup 74}As{sup m} cross section. The (n, 2n) reaction, ground-state, and isomer population cross sections are tabulated in this paper.

  17. Silicon Detector System for Cross Section Measurements

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to estimate the radiation shielding effectiveness of materials it is necessary to know cosmic ray particles are broken up as they pass though these materials. The breakup of cosmic ray particles is characterized by the nuclear fragmentation cross sections, i.e. an effective geometrical cross section assigned to each target nucleus that represents its apparent size for fragmenting the incident particle. The values of these cross sections depend on the details of nuclear physics and cannot be calculated from first principles owing to the many-body nature of the interactions. The only way to determine them is to measure them. Once a sufficient number of cross sections have been measured, the systematic nature of the interactions allows other cross-sections to be estimated. The number of cross sections that contribute to the estimation of shielding effectiveness is very large 10,000. Fortunately most make minor contributions. These can be estimated from nuclear systematics. Only those who's uncertainties make significant contributions to the error in the shielding effectiveness estimations need to be measured. In the past it has proven difficult to measure light fragment production cross sections from the interactions of heavy cosmic rays owing to the size of the detectors used. We have developed a highly pixilated silicon (Si) detector system that can individually identify these light fragments while making efficient use of costly accelerator time. This system is an outgrowth of detector technology developed under a CDDF and a Code S sponsored cosmic ray experiment.

  18. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  19. Measurement of the argon-38(n,2n)argon-37 and calcium- 40(n,alpha)argon-37 cross sections, and National Ignition Facility concrete activation using the rotating target neutron source. The design of an experiment to measure the beryllium-9(n,gamma)beryllium-10 cross section at 14 MeV

    NASA Astrophysics Data System (ADS)

    Belian, Anthony Paul

    The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample

  20. New yttrium evaluated cross sections and impact on 88-Y(n,2n)87-Y radchem

    SciTech Connect

    White, M; Kawano, T; Fotiadis, N; Devlin, M; Nelson, R; Garrett, P; Chadwick, M B; Becker, J A

    2004-03-04

    We evaluate new n+{sup 89}Y radchem cross sections using recent LANSCE/GEANIE measurements and GNASH nuclear model calculations, together with previous measurements at Livermore by Dietrich et al. A quantification of margins and uncertainties (QMU) analysis leads to evaluated cross sections for the (n,2n) population of the {sup 88}Y ground state and m1, m2 isomers, together with uncertainties. Our new results agree with historic radchem database cross sections within a few percent below 15 MeV (with larger differences above 15 MeV) and they therefore provide a validation of the historic Arthur work that is used in LANL simulation codes. Since the (n,2n) cross sections to the {sup 88}Y g.s. and m1, m2 isomers impact the average {sup 88}Y(n,2n){sup 87}Y cross section at leading-order, we determine the new 14.1 MeV average {sup 88}Y(n,2n){sup 87}Y cross section (crucially important for radchem). Our new 14 MeV average {sup 88}Y(n,2n){sup 87}Y cross section is 1107 mb ({+-} 4%) which agrees with the value obtained from the historic Arthur cross section data to 0.7%.

  1. Inclusive jet cross section measurement at CDF

    SciTech Connect

    Pagliarone, C.

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  2. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  3. Investigation of the 241Am(n ,2 n )240Am cross section

    NASA Astrophysics Data System (ADS)

    Kalamara, A.; Vlastou, R.; Kokkoris, M.; Diakaki, M.; Tsinganis, A.; Patronis, N.; Axiotis, M.; Lagoyannis, A.

    2016-01-01

    The 241Am(n ,2 n )240Am reaction cross section has been measured at four energies, 10.0, 10.4, 10.8, and 17.1 MeV, by means of the activation technique, relative to the 27Al(n ,α )24Na reaction reference cross section. Quasi-monoenergetic neutron beams were produced via the 2H(d ,n )3He and the 3H(d ,n )4He reactions at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR "Demokritos". The high purity 241Am targets were provided by JRC-IRMM, Geel, Belgium. The induced γ -ray activity of 240Am was measured with high-resolution high-purity germanium (HPGe) detectors. Auxiliary Monte Carlo simulations were performed with the mcnp code. The present results are in agreement with data obtained earlier and predictions obtained with the empire code.

  4. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  5. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  6. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  7. Systematics of (n,2n) and (n,3n) Cross Sections.

    1991-10-08

    Version 00 SC2N3N can be used to calculate the (n2n) and (n3n) cross section in the energy region from threshold to about 25 MeV with the systematics parameters which well reproduce the experiment in the mass region of 23.le.A.le.238 (especially between 45 and 197.)

  8. The hadronic cross section measurement at KLOE

    NASA Astrophysics Data System (ADS)

    Valeriani, B.; KLOE Collaboration

    2004-04-01

    KLOE uses the radiative return to measure the hadronic cross section e+e- → π +- at DANE. Theemission of one or more hard photons in the initial state ( ISR) reduces the collision energy, otherwise fixed at 1020 MeV, and allows to perform an effective scan of the two pions invariant mass squared, sπ, in the whole sπ, region from threshold to mφ2. An extremely accurate knowledge of experimental systematics, background, luminosity and, on the theoretical side, a precise description of initial state radiation are needed to perform a competitive measurement. We present here the status of the analysis of 140 pb -1 collected in 2001. A preliminary evaluation of the hadronic contribution to aμ in the sπ range between 0.37 GeV 2 and 0.93 GeV 2 yields aμ = 378.4 ± 0.8 stat ± 4.5 syst ± 3.0 theo ± 3.8 FSR, consistent with the CMD-2 result and confirming the present discrepancy between e+e - and τ data.

  9. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  10. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  11. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  13. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  14. Rotational Energy Transfer Cross Sections in N2-N2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotational inelastic transitions of N2 have been studied in the coupled state (CS, also called centrifugal sudden) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigid-rotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range and for even j - even j collisions only. Both the CC and CS cross sections have been obtained with and without exchange symmetry, whereas exchange is neglected in the IOS calculations. The CS results track the CC cross sections rather well. At total energies between 113 to 219 cm(exp -1) the average deviation is 14%. The deviation decrease with increasing energy, indicating that the CS approximation can be used as a substitute at higher energies when the CC calculations become impractical. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp-1), shows significant differences between the two. In addition, the IOS results exhibits sensitivity to the amount of inelasticity and the results for large DELTA J transitions are subjected to bigger errors. At total energy 113 cm(exp -1) and above, the average deviation between state-to-state cross sections calculated with even and odd exchange symmetries is 1.5%.

  15. The 239 Pu(n,2n)238Pu cross section: preliminary calculations

    SciTech Connect

    Chen, H; Reffo, G; Ross, M A; White, R M

    1999-03-12

    The primary motivation for the present work is to provide theoretical values for the ratio of the partial 239Pu(n,2nx{gamma})238Pu to total 239 Pu(n,2n)238Pu cross section for several discrete gamma transitions. Results and conclusions of preliminary calculations from threshold to 20 MeV are presented. Calculations are based on theoretical models with parameters obtained from the literature or from our ad hoc systematics. Optical model cross sections and transmission coefficients were determined using the coupled-channels method. The calculations included a preequilibrium component followed by multiple particle and gamma-ray emissions. Fission competition was included at all stages of de-excitation. Suggestions for further verifications and possible improvements are provided.

  16. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  17. Measuring Learning through Cross Sectional Testing

    ERIC Educational Resources Information Center

    Lovett, Steve; Johnson, Jennie

    2012-01-01

    The measurement of student learning is becoming increasingly important in U.S. higher education. One way to measure learning is through longitudinal testing, but this becomes especially difficult when applied to cumulative learning within programs in situations of low persistence. In particular, many Hispanic Serving Institutions (HSIs) find…

  18. Report on 238Pu(n,x) surrogate cross section measurement

    SciTech Connect

    Burke, J T; Ressler, J J; Henderson, R A; Scielzo, N D; Escher, J E; Thompson, I J; Gostic, J; Bleuel, D; Weideking, M; Bernstein, L A

    2010-03-31

    The goal of this year's effort is to measure the {sup 238}Pu(n,f) and {sup 238}Pu(n,2n) cross section from 100 keV to 20 MeV. We designed a surrogate experiment that used the reaction {sup 239}Pu(a,a{prime}x) as a surrogate for {sup 238}Pu(n,x). The experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in January 2010. A description of the experiment and status of the data analysis is given. In order to obtain a reliable {sup 238}Pu(n,x) cross section we designed the experiment using the surrogate ratio technique. This technique allows one to measure a desired, unknown, cross section relative to a known cross section. In the present example, the {sup 238}Pu(n,x) cross section of interest is determined relative to the known {sup 235}U(n,x) cross section. To increase confidence in the results, and to reduce overall uncertainties, we are also determining the {sup 238}Pu(n,x) cross section relative to the known {sup 234}U(n,x) cross section. The compound nuclei of interest for this experiment were produced using inelastic alpha scattering. For example, {sup 236}U(a,a{prime}x) served as a surrogate for {sup 235}U(n,x); analogous reactions were considered for the other cross sections. Surrogate experiments determine the probabilities for the decay of the compound nuclei into the various channels of interest (fission, gamma decay) by measuring particle-fission (p-f) or particle?gamma (p?g) reaction spectra. By comparing the decay probabilities associated with the unknown cross section to that of a known cross section it is possible to obtain the ratio of these cross sections and thus determine the unknown, desired cross section.

  19. Dosimetry and cross section measurements at RTNS II

    SciTech Connect

    Greenwood, L.R.; Kneff, D.W.

    1987-01-01

    Numerous measurements have been conducted at TRNS-II in order to map the neutron field for materials irradiations, to measure activation cross sections, and to measure helium production cross sections. Experiments of up to two weeks duration irradiated large numbers of activation dosimetry and helium samples both close to the source and throughout the target room. Many other samples have been irradiated in piggy-back positions over periods lasting many months. All of these experiments fall into four main classes, namely, fluence-mapping, activation dosimetry, the production of long-lived isotopes, and helium generation measurements. Radiometric dosimetry and activation cross section measurements were performed at Argonne National Laboratory; helium production was measured at Rockwell International Corporation. This paper briefly summarizes the principal results of our measurements at RTNS-II; references are given for more detailed publications. 14 refs., 4 figs.

  20. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    SciTech Connect

    Elaine Schulte

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  1. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  2. Performing Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, L E

    2003-05-20

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10{sup 12} pps. Included in these isotopes are many that are important to stockpile stewardship, such as {sup 87}Y, {sup 146-50}Eu, and {sup 231}Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make {approx} 10 {micro}g targets of nuclei with a half-life of {approx}1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,{gamma}), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10{sup -9}. This is particularly problematic for (n,2n) and (n,{gamma}) reactions, whose reaction production cannot be chemically separated from the target. In either case, the

  3. Uncertainty Quantification in Fission Cross Section Measurements at LANSCE

    SciTech Connect

    Tovesson, F.

    2015-01-15

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  4. Uncertainty quantification in fission cross section measurements at LANSCE

    DOE PAGES

    Tovesson, F.

    2015-01-09

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  5. Inelastic cross sections from gamma-ray measurements

    SciTech Connect

    Nelson, Ronald Owen

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  6. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    SciTech Connect

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.; Giardina, G.; Eidelman, S.; Venanzoni, G.; Battaglieri, M.; Mandaglio, G.

    2015-06-02

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  7. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  8. Inclusive jet cross section measurement at D0

    SciTech Connect

    Voutilainen, M.; /Nebraska U. /Helsinki Inst. of Phys.

    2006-09-01

    We present a new preliminary measurement of the inclusive jet cross section in p{bar p} collisions based on a integrated luminosity of about 0.8 fb{sup -1}. The data were acquired using the D0 detector between 2002 and 2005. Jets are reconstructed using an iterative cone algorithm with radius R{sub cone} = 0.7. The inclusive jet cross section is presented as a function of transverse jet momentum and rapidity. Predictions from perturbative QCD in next-to-leading order, plus threshold corrections in 2-loop accuracy describe the shape in the transverse jet momentum.

  9. Measurement of a metastability-exchange cross section in krypton

    SciTech Connect

    Brechignac, C.; Vetter, R.

    1980-08-01

    The metastability-exchange cross section between (/sup 3/P/sub 2/)Kr atoms and (/sup 1/S/sub 0/)Kr atoms is measured by means of a two-laser saturated-absorption experiment performed on the lambda=557-nm transition. A study of velocity changes occurring in pure /sup 86/Kr and in (/sup 86/Kr--/sup 78/Kr) discharges leads to a value for the cross section Q75=(plus-or-minus10) A/sup 2/.

  10. Measurement of proton inelastic scattering cross sections on fluorine

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Caciolli, A.; Calzolai, G.; Climent-Font, A.; Lucarelli, F.; Nava, S.

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, 19F(p,p')19F, from the first five excited levels of 19F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm2) evaporated on a self-supporting C thin film (30 μg/cm2). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF2) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  11. Measurement campaign for astrophysically relevant 36Cl production cross sections

    NASA Astrophysics Data System (ADS)

    Anderson, Tyler; Skulski, Michael; Ostdiek, Karen; Lu, Wenting; Beard, Mary; Collon, Philippe

    2015-10-01

    The short-lived radionuclide 36Cl (t1/2 = 0.301 Ma) is known to have existed in the Early Solar System (ESS), and evaluating its production sources can lead to better understanding of the processes taking place in ESS formation and their timescales. The x-wind production model is used to explain 36Cl production via solar energetic particles from the young Sun, but is lacking empirical data for many relevant reactions. Bowers et al. (2013) measured the cross section of 33S(α,p)36Cl at various energies in the range of 0.70-2.42 MeV/A, and found them to be systematically under predicted by statistical Hauser-Feshbach model codes TALYS and NON-SMOKER, highlighting the need for more empirical data for these cross sections. A recent paper by Mohr (2013) called these results in to question, prompting the re-measurement of the cross section for 33S(α,p)36Cl at new energies in the same energy range as Bowers et al. This talk will also discuss two further planned measurements of cross sections suggested by Bowers et al. to be the next most significant in 36Cl production.

  12. Neutron-Induced Cross Sections Measurements of Calcium

    SciTech Connect

    Guber, Klaus H; Kopecky, S.; Schillebeeckx, P.; Kauwenberghs, K.; Siegler, P.

    2013-01-01

    To support the US Department of Energy Nuclear Criticality Safety Program neutron induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The obtained data will be used for a new calcium evaluation, which will be submitted with its covariances to the ENDBF/B nuclear data base.

  13. Inclusive jet cross-section measurement at CDF

    SciTech Connect

    Norniella, Olga; /Barcelona, IFAE

    2007-05-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  14. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  15. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  16. Measurements of cross sections relevant to. gamma. -ray line astronomy

    SciTech Connect

    Lesko, K.T.; Norman, E.B.; Larimer, R.M.; Crane, S.G.

    1986-06-01

    Gamma-ray production cross sections have been measured for the ..gamma..-ray lines which are mostly strongly excited in the proton bombardment of C, O, Mg, Si, and Fe targets of natural isotopic composition. High resolution germanium detectors were used to collect ..gamma..-ray spectra at proton bombarding energies of 20, 30, 33, 40 and 50 MeV. 6 refs., 6 figs.

  17. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    SciTech Connect

    Winters, R. R.

    2000-08-25

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + {sup 88}Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model.

  18. Measurements of Fe and Ar fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Lau, K. H.; Mewaldt, R. A.; Stone, E. C.

    1985-01-01

    Measurements are reported of the yields of individual isotopes of Cr to Co(Z = 24 to 27) resulting from the fragmentation of Fe-56, and the isotopes of Mg to K(Z = 12 to 19) resulting from the fragmentation of Ar-40. Recent advances in the resolution and collecting power of cosmic ray instrumentation, have led to dramatic improvements in the precision of cosmic ray composition measurements, both elemental and isotopic. The interpretation of these measurements is presently limited by uncertainties in the fragmentation cross-sections needed to correct for nuclear interactions with the interstellar gas. Cosmic ray propagation codes now rely mainly on semi-empirical cross-section formulae developed by Silberberg and Tsao (S&T), which have a typical uncertainty of approximately 25%. Relative isotope yields from the fragmentation of approximately 380 MeV/nucleon Fe-56 e and approximately 210 MeV/nucleon Ar-40 r in CH2 targets, observed during the calibration of two cosmic ray spectrometers at the Lawrence Berkeley Laboratory Bevalac are reported. These are compared with calculated yeilds based on the S&T cross-section formulae.

  19. Cross-Section Measurements with the Radioactive Isotope Accelerator (ria)

    NASA Astrophysics Data System (ADS)

    Stoyer, M. A.; Moody, K. J.; Wild, J. F.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, N. J.; Harris, L. J.

    2003-10-01

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  20. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    SciTech Connect

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  1. Report on 241,242Am(n,x) surrogate cross section measurement

    SciTech Connect

    Burke, J T; Ressler, J J; Gostic, J; Henderson, R A; Bernstein, L A; Escher, J E; Bleuel, D; Kritcher, A; Matoon, C; Scielzo, N D; Stoyer, M A

    2011-02-16

    The main goal of this measurement is to determine the {sup 242}Am(n,f) and {sup 241}Am(n,f) cross sections via the surrogate {sup 243}Am. Gamma-ray data was also collected for the purpose of measuring the (n,2n) cross-sections. The experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory the first week of February 2011. A description of the experiment and status of the data analysis follow.

  2. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The

  3. ATLAS measurements of isolated photon cross-sections

    NASA Astrophysics Data System (ADS)

    Fanti, Marcello; Atlas Collaboration

    2012-09-01

    This document presents measurements of the cross-sections for the inclusive production of isolated prompt photons and di-photon events in proton-proton collisions at a centre-of-mass energy √s = 7 TeV, performed by the ATLAS experiment at the LHC. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

  4. Realizing the Opportunities of Neutron Cross Section Measurements at RIA

    SciTech Connect

    Ahle, L; Hausmann, M; Reifarth, R; Roberts, K; Roeben, M; Rusnak, B; Vieira, D

    2004-10-13

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic'', tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross-sections.

  5. Actinide Targets for Neutron Cross Section Measurements (C)

    SciTech Connect

    J. D. Baker; C. A. McGrath

    2006-04-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from “minor” actinides that currently have poorly known (n,g) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  6. Measurement of 139La(n,γ) Cross Section

    NASA Astrophysics Data System (ADS)

    Terlizzi, R.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-03-01

    We measured the neutron capture cross section of 139La relative to 197Au in the energy range of 0.6 eV to 9 keV at n_TOF, the neutron time-of-flight facility at CERN. After a description of the experimental apparatus, we discuss data analysis procedures. The data were fitted using R-matrix formalism to extract resonance parameters which, in turn, were used to calculate average level spacings D0 = 268 ± 22 eV and D1 < 250 eV, and neutron strength functions S0 = (0.79 ± 0.03)×10-4 and S1 = (0.73 ± 0.05)×10-4 for s- and p-wave resonances. The data also were used to determine Maxwellian-averaged neutron capture cross sections which, in turn, were used to calculate the 139La abundance synthesized in a stellar model of the main component of the s process.

  7. Active calibration target for bistatic radar cross-section measurements

    NASA Astrophysics Data System (ADS)

    Pienaar, M.; Odendaal, J. W.; Joubert, J.; Cilliers, J. E.; Smit, J. C.

    2016-05-01

    Either passive calibration targets are expensive and complex to manufacture or their bistatic radar cross section (RCS) levels are significantly lower than the monostatic RCS levels of targets such as spheres, dihedral, and trihedral corner reflectors. In this paper the performance of an active calibration target with relative high bistatic RCS values is illustrated as a reference target for bistatic RCS measurements. The reference target is simple to manufacture, operates over a wide frequency range, and can be configured to calibrate all four polarizations (VV, HH, HV, and VH). Bistatic RCS measurements of canonical targets, performed in a controlled environment, are calibrated with the reference target and the results are compared to simulated results using FEKO.

  8. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    SciTech Connect

    Hatarik, R.; Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine the scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.

  9. Beam maser investigation of inelastic scattering of NH3. III. Cross sections for rotational transitions induced by CO2, N2, and H2

    NASA Astrophysics Data System (ADS)

    Klaassen, D. B. M.; ter Meulen, J. J.; Dymanus, A.

    1983-01-01

    Cross sections for rotational transitions between various low-lying inversion doublets of NH3 in collisions with CO2, N2, and H2 are measured in a double-resonance beam maser setup. A modification of Anderson's theory [D. B. M. Klaassen, J. J. ter Meulen, and A. Dymanus, J. Chem. Phys. 77, 4972 (1982)] yields values for the cross sections that are in good agreement with the experimental results for CO2 and N2. For the system NH3-H2, transition probabilities are evaluated in Anderson's theory using ``bent'' trajectories. Induction and dispersion terms up to R-7 are considered in the long-range intermolecular potential. For the short-range repulsive part, two empirical potentials are proposed with parameters that are fitted to the experimental results. Integral cross sections for rotational transitions calculated with these potentials are also presented.

  10. EGAF: Measurement and Analysis of Gamma-ray Cross Sections

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Abusaleem, K.; Basunia, M. S.; Bečvář, F.; Belgya, T.; Bernstein, L. A.; Choi, H. D.; Escher, J. E.; Genreith, C.; Hurst, A. M.; Krtička, M.; Renne, P. R.; Révay, Zs.; Rogers, A. M.; Rossbach, M.; Siem, S.; Sleaford, B.; Summers, N. C.; Szentmiklosi, L.; van Bibber, K.; Wiedeking, M.

    2014-05-01

    The Evaluated Gamma-ray Activation File (EGAF) is the result of a 2000-2007 IAEA Coordinated Research Project to develop a database of thermal, prompt γ-ray cross sections, σγ, for all elemental and selected radioactive targets. No previous database of this kind had existed. EGAF was originally based on measurements using guided neutron beams from the Budapest Reactor on all elemental targets from Z=1-82, 90 and 92, except for He and Pm. The EGAF σγ data were published in the Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis [1]. An international collaboration has formed to continue the EGAF measurements with isotopically enriched targets, derive total radiative thermal neutron cross sections, σ0, extend the σγ data from thermal to 20 MeV neutrons, compile a completed activation data file, improve sections of the Reference Input Parameter Library (RIPL) with more complete and up to date level and γ-ray data, evaluate statistical γ-ray data from reaction studies, and determine recommended neutron separations energies, Sn, for atomic mass evaluations. A new guided neutron beam facility has become available at the Garching (Munich) FRM II Reactor, and high energy neutron experimental facilities are being developed by a Berkeley area collaboration where 5-33 MeV neutron beams are available at the LBNL 88” cyclotron, 2.5 and 14 MeV beams at the University of California, Berkeley neutron generator laboratory, and high flux, 10 nṡcmṡ-2 s-1, neutron pulses available from the LLNL National Ignition Facility (NIF).

  11. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  12. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has

  13. Cross section measurements at LANSCE for defense, science and applications

    DOE PAGES

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  14. Cross section measurements at LANSCE for defense, science and applications

    SciTech Connect

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  15. Cross-Section Measurements in the Fast Neutron Energy Range

    NASA Astrophysics Data System (ADS)

    Plompen, Arjan

    2006-04-01

    Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.

  16. Cross Section Measurements at LANSCE for Defense, Science and Applications

    NASA Astrophysics Data System (ADS)

    Nelson, Ronald O.

    2015-05-01

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. Highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  17. 63Ni (n ,γ ) cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  18. Extinction cross section measurements for a single optically trapped particle

    NASA Astrophysics Data System (ADS)

    Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.

    2015-08-01

    Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.

  19. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  20. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    reaction cross sections show resonance behavior or follow 1/v of the incident neutrons. In the case of odd-odd nuclei, the modeling problem is particularly difficult because degenerate states (rotational bands) present in even-even nuclei have separated in energy. Our work included interpretation of the {gamma}-ray spectra to compare with the Statistical Model and provides information on level density and statistical decay. Neutron capture cross sections are of programmatic interest to defense sciences because many elements were added to nuclear devices in order to determine various details of the nuclear detonation, including fission yields, fusion yields, and mix. Both product nuclei created by (n,2n) reactions and reactant nuclei are transmuted by neutron capture during the explosion. Very few of the (n,{gamma}) cross sections for reactions that create products measured by radiochemists have ever been experimentally determined; most are calculated by radiochemical equivalences. Our new experimentally measured capture cross sections directly impact our knowledge about the uncertainties in device performances, which enhances our capability of carrying out our stockpile stewardship program. Europium and gadolinium cross sections are important for both astrophysics and defense programs. Measurements made prior to this project on stable europium targets differ by 30-40%, which was considered to be significantly disparate. Of the gadolinium isotopes, {sup 151}Gd is important for stockpile stewardship, and {sup 153}Gd is of high interest to astrophysics, and nether of these (radioactive) gadolinium (n,{gamma}) cross sections have been measured. Additional stable gadolinium isotopes, including {sup 157,160}Gd are of interest to astrophysics. Historical measurements of gadolinium isotopes, including {sup 152,154}Gd, had disagreements similar to the 30-40% disagreements found in the historical europium data. Actinide capture cross section measurements are important for both

  1. Reexamination of cross sections of the 100Mo(p,2n)99mTc reaction

    NASA Astrophysics Data System (ADS)

    Takács, S.; Hermanne, A.; Ditrói, F.; Tárkányi, F.; Aikawa, M.

    2015-03-01

    The nuclear medicine community has been expressing concerns world wide regarding shortages of 99mTc supply based on fission production of 99Mo from highly enriched uranium (HEU) to prepare 99Mo/99mTc generators. As an alternative to reactor produced 99Mo/99mTc generator technology, the direct production of 99mTc on accelerators is considered. There are a number of methods of using accelerators to produce 99mTc and/or 99Mo. Direct production of 99mTc on highly enriched 100Mo target using cyclotrons is interesting for energies up to 20 MeV, so as to minimize the impurities from additional open reaction channels. To estimate the quality of the accelerator produced 99mTc all the possible reaction routes should be mapped which could be potentially involved in this technology. However, a well defined excitation function for the 100Mo(p,2n)99mTc primary reaction is needed, in order to achieve acceptable good results in assessing the quality of the accelerator-produced 99mTc by theoretical calculations. Most of the available experimental cross section data series for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. A large difference more than a factor of two may, indeed, be observed between the lowest and the highest datasets values. The aim of this study was therefore to get a new evaluation for the 100Mo(p,2n)99mTc cross section, through three independent experiments, aiming at a more confident estimation about the amplitude of the excitation function.

  2. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  3. Deeply virtual Compton Scattering cross section measured with CLAS

    SciTech Connect

    Guegan, Baptistse

    2014-09-01

    The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58 and 0.09 < -t < 2.0 GeV2. In this paper, we show preliminary results of unpolarized cross sections and of polarized cross section differences for the DVCS channel.

  4. Measurement of L-shell electron-impact ionization cross sections for highly charged uranium ions

    SciTech Connect

    Stoehlker, T.; Kraemer, A. |; Elliott, S.R.; Marrs, R.E.; Scofield, J.H.

    1997-10-01

    L-shell electron-impact ionization cross sections for highly charged uranium ions from fluorinelike U{sup 83+} through lithiumlike U{sup 89+} have been measured at 45-, 60-, and 75-keV electron energy. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted wave calculations. {copyright} {ital 1997} {ital The American Physical Society}

  5. Measurement of electron-impact ionization cross sections for hydrogenlike high-Z ions

    SciTech Connect

    Marrs, R.E.; Elliott, S.R.; Scofield, J.H.

    1997-08-01

    Electron-impact ionization cross sections have been measured for the hydrogenlike ions of molybdenum, dysprosium, gold, and bismuth at selected electron energies between 1.3 and 3.9 times threshold. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted-wave calculations that include both the Moeller interaction and exchange. {copyright} {ital 1997} {ital The American Physical Society}

  6. Differential scattering cross sections for collisions of 0.5-, 1.5-, and 5.0-keV helium atoms with He, H2, N2, and O2. [for atmospheric processes modeling

    NASA Technical Reports Server (NTRS)

    Newman, J. H.; Smith, K. A.; Stebbings, R. F.; Chen, Y. S.

    1985-01-01

    This paper reports the first results of an experimental program established to provide cross section data for use in modeling various atmospheric processes. Absolute cross sections, differential in the scattering angle, have been measured for collisions of 0.5-, 1.5-, and 5.0-keV helium atoms with He, H2, N2, and O2 at laboratory scattering angles between 0.1 deg and 5 deg. The results are the sums of cross sections for elastic and inelastic scattering of helium atoms; charged collision products are not detected. Integration of the differential cross section data yields integral cross sections consistent with measurements by other workers. The apparatus employs a position-sensitive detector for both primary and scattered particles and uses a short target cell with a large exit aperture to ensure a simple and well-defined apparatus geometry.

  7. Comparison of the total cross sections measurements of CDF and E811

    SciTech Connect

    Albrow, M.; Beretvas, A.; Nodulman, L.; Giromini, P.

    1999-03-03

    The total cross section at {radical}s = 1.8 TeV has been measured by three groups (CDF, E710, and E811). We think that CDF should quote results based only on our own measurement. We also indicate how to compare cross sections measured by both CDF and D0.

  8. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  9. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  10. Photon scattering cross sections of H2 and He measured with synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Ice, G. E.

    1977-01-01

    Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.

  11. Highly charged ion impact on uracil: Cross sections measurements and scaling

    NASA Astrophysics Data System (ADS)

    Agnihotri, A. N.; Kasthurirangan, S.; Champion, C.; Rivarola, R. D.; Tribedi, L. C.

    2014-04-01

    Absolute total ionization cross sections (TCS) of uracil in collisions with highly charge C, O and F ions are measured. The scaling properties of cross sections are obtained as a function of projectile charge state and energy. The measurements are compared with the CDW-EIS, CB1 and CTMC calculations. The absolute double differential cross sections (DDCS) of secondary electron emission from uracil in collisions with bare MeV energy C and O ions are also measured. Large enhancement in forward emission is observed.

  12. Cross Section Measurements Using the Zero Degree Detector

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Adams, J. H., Jr.; Heilbronn, L.; Kuznetsov, E. N.; Miller, J.; Zeitlin, C.

    2007-01-01

    The Zero Degree Detector (ZDD) is an instrument that has been used in accelerator exposures to measure the angular dependence of particles produced in heavy ion fragmentation experiments. The ZDD uses two identical layers of pixelated silicon detectors that make coincident measurements over the active area of the instrument. The angular distribution of secondary particle produced in nuclear interactions for several heavy ions: and target materials will be presented along with performance characteristic of the instrument.

  13. The State of the Art of Neutrino Cross Section Measurements

    SciTech Connect

    Harris, Deborah A.

    2015-06-08

    The study of neutrino interactions has recently experienced a renaissance, motivated by the fact that neutrino oscillation experiments depend critically on an accurate models of neutrino interactions. These models have to predict not only the signal and background populations that oscillation experiments see at near and far detectors, but they must also predict how the neutrino's energy which enters a nucleus gets transferred to energies of the particles that leave the nucleus after the neutrino interacts. Over the past year there have been a number of new results on many different neutrino (and antineutrino) interaction channels using several different target nuclei. These results are often not in agreement with predictions extraolated from charged lepton scattering measurements, or even from predictions anchored to neutrino measurements on deuterium. These new measurements are starting to give the community the handles needed to improve the theoretical description of neutrino interactions, which ultimately pave the way for precision oscillation measurements. This report briefly summarizes recent results and points out where those results differ from the predictions based on current models.

  14. Measurement of Cross-sections of Yttrium (n,xn) Threshold Reactions by Means of Gamma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chudoba, P.; Kilim, S.; Wagner, V.; Vrzalova, J.; Svoboda, O.; Majerle, M.; Stefanik, M.; Suchopar, M.; Kugler, A.; Bielewicz, M.; Strugalska-Gola, E.; Szuta, M.; Hervas, D.; Herman, T.; Geier, B.

    Neutron activation and gamma spectrometry are usable also for the determination of cross-sections of different neutron reactions. We have studied the cross-section of yttrium (n,xn) threshold reactions using quasi mono-energetic neutron source based on the reaction on 7Li target at Nuclear Physics Institute of ASCR in Rez. Yttrium (n,xn) threshold reactions are suitable candidates for fast neutron field measurement by activation detectors. Fast neutron field monitoring is necessary already today at a wide range of accelerator facilities and will gain on importance in future fast reactors of generation IV, accelerator transmutation systems or fusion reactors. The knowledge of the cross-sections is crucial for such purpose. Unfortunately, the cross-section is sufficiently known only for 89Y(n,2n)88Y reaction. For higher orders of reactions there are almost no experimental data. Special attention was paid to the 89Y(n,3n)87Y reaction. The nuclei are produced, both in the ground state with half-life 79.8 hours and in the isomeric state with half-life 13.38 hours. The isomer decays mainly through the gamma transition to the ground state, the beta decay of the excited state is negligible within our accuracy. The cross-sections of both 87Y productions were analyzed.

  15. Measurement of the inclusive jet cross section at D0 Run II

    SciTech Connect

    Agram, Jean-Laurent

    2004-12-17

    This work describes the measurement of inclusive jets cross section in the DØ experiment. This cross section is computed as a function of jet transverse momentum, in several rapidity intervals. This quantity is sensitive to the proton structure and is crucial for the determination of parton distribution functions (PDF), essentially for the gluon at high proton momentum fraction. The measurement presented here gives the first values obtained for Tevatron Run II for the cross section in several rapidity intervals, for an integrated luminosity of 143 pb-1. The results are in agreement, within the uncertainties, with theoretical Standard Model predictions, showing no evidence for new physics.

  16. Excitation and Charge Exchange Phenomena in Astronomical Objects: Measurement of Cross Sections and Lifetimes

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, S.; Lozano, J.; Cadez, I.; Greewnood, J.; Mawhovter, R.; Williams, I.; Niimura, M.

    2003-01-01

    This document addresses extreme ultraviolet radiation and X-ray emissions from comets, planets and heliospheric gases focusing on the measurement of charge-exchange cross sections and radiative lifetimes. Highly-charged heavy ions present in the solar wind, and their abundance relative to the total oxygen-ion abundance are detailed. The plan for the Jet Propulsion Laboratory high-charge ion facility is outlined detailing its ability to measure absolute collisional excitation cross sections, absolute charge-exchange cross sections, lifetimes of metastable ion levels, and X-ray emission spectra following charge changes.

  17. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  18. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  19. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  20. A Time Projection Chamber for precision 239Pu(n,f) cross section measurement

    SciTech Connect

    Heffner, M

    2008-01-14

    High precision measurements of the {sup 239}Pu(n,f) cross section have been identified as important for the Global Nuclear Energy Partnership (GNEP) and other programs. Currently the uncertainty on this cross section is of the order 2-3% for neutron energies below 14 MeV and the goal is to reduce this to less than 1%. The Time Projection Chamber (TPC) has been identified as a possible tool to make this high precision measurement.

  1. Measurement of the antineutrino neutral-current elastic differential cross section

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2015-01-01

    We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (d σν ¯N →ν ¯N/d Q2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasielastic cross sections are also presented.

  2. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  3. Measurement of the antineutrino neutral-current elastic differential cross section

    SciTech Connect

    Aguilar-Arevalo, A.  A.; Brown, B.  C.; Bugel, L.; Cheng, G.; Church, E.  D.; Conrad, J.  M.; Dharmapalan, R.; Djurcic, Z.; Finley, D.  A.; Ford, R.; Garcia, F.  G.; Garvey, G.  T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R.  A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W.  C.; Mariani, C.; Marsh, W.; Mills, G.  B.; Mirabal, J.; Moore, C.  D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C.  C.; Ray, H.; Roe, B.  P.; Russell, A.  D.; Shaevitz, M.  H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R.  G.; Wascko, M.  O.; White, D.  H.; Wickremasinghe, D.  A.; Zeller, G.  P.; Zimmerman, E.  D.

    2015-01-08

    We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσν-barN→ν-barN/dQ2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.

  4. Measurement of the antineutrino neutral-current elastic differential cross section

    DOE PAGES

    Aguilar-Arevalo, A.  A.; Brown, B.  C.; Bugel, L.; Cheng, G.; Church, E.  D.; Conrad, J.  M.; Dharmapalan, R.; Djurcic, Z.; Finley, D.  A.; Ford, R.; et al

    2015-01-08

    We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσν-barN→ν-barN/dQ2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.

  5. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  6. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method.

    PubMed

    Manojlovič, Stanko; Trkov, Andrej; Žerovnik, Gašper; Snoj, Luka

    2015-07-01

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in (252)Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure (252)Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure (252)Cf spectrum were calculated for (197)Au, (232)Th, (181)Ta, (98)Mo, (65)Cu and (84)Sr. Average cross sections were also calculated with the RR_UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for (197)Au, 87.0±1.6 mb for (232)Th , 98.0±4.5 mb for (181)Ta, 21.2±0.5 mb for (98)Mo, 10.3±0.3 mb for (63)Cu, and 34.9±6.5 mb for (84)Sr.

  7. Measurements of cross section and normalized differential cross section of top quark pair production in pp collisions at SQRT(S)=7 TeV

    NASA Astrophysics Data System (ADS)

    Weng, Yao

    Two measurements are reported in this thesis. First, the cross section of the top quark pair production in proton proton collisions is measured in the electron plus jets channel, using 857.7 pb-1 of 2011 data recorded by the CMS experiment at s = 7 TeV. This measurement relies on kinematic distributions to statistically separate the signal from the Standard Model backgrounds. Data-driven methods are employed to minimize the dependence on the simulation. The measured cross section is sigmatt¯ = 166.7 +78.2-69.3 (stat. ⊕ syst.) pb, which is in agreement with NLO perturbative QCD calculation. In the second measurement, the tt¯ normalized differential cross section with respect to the jet multiplicity is determined. The data used in the later analysis amounts to 5 fb -1, which was taken during the full 2011 run by CMS. A b- tagging technique is applied to efficiently reject Standard Model backgrounds. The measured total cross section is sigmatt¯ = 161.2 +12.4-11.6 (stat. ⊕ syst.) pb, which is used for normalization. The resulting differential cross section shows good agreement with the Standard Model prediction, and provides an important input for comparisons between different Monte Carlo generators.

  8. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data.

  9. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  10. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    SciTech Connect

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  11. Measurement of the inclusive jet cross-section in pp collisions at and comparison to the inclusive jet cross-section at using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Göpfert, T.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gosselink, M.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guido, E.; Guindon, S.; Gul, U.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, M. K.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Muenstermann, D.; Müller, T. A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I. O.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perepelitsa, D. V.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shamov, A. G.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A. M.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-08-01

    The inclusive jet cross-section has been measured in proton-proton collisions at in a dataset corresponding to an integrated luminosity of collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti- k t algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum p T and jet rapidity y, covering a range of 20≤ p T<430 GeV and | y|<4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at , published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity , in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at and are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.

  12. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  13. Status update on the NIFFTE high precision fission cross section measurement program

    SciTech Connect

    Laptev, Alexander B; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D; Hertel, Nolan E; Hill, Tony; Isenhower, Donald; Klay, Jennifer L; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; Mc Grath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ({sup 235}U, {sup 239}Pu, {sup 238}U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of {sup 235}U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in {sup 235}U.

  14. Measurements of Thermal Neutron Capture Cross Sections of 136Ce, 156Dy, and 168Yb

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, Y. D.; Sun, G. M.

    2014-05-01

    For several low abundance stable nuclei, the thermal neutron capture cross sections are not well measured, while the cross sections for isotopes with high abundances are already well measured. Our experiments, different from the commonly used method of using gold foil as reference, are performed using natural foils for which we know the relative abundances of all isotopes and thermal neutron capture cross sections. Therefore, we can obtain the cross sections of low abundance isotopes, which are not known well, by comparing the yields of gammas from the neutron captures by various isotopes in the foils. The advantage of this method is the cancellation of potential systematic errors from thermal neutron flux, flux profile, foil thickness, foil size, and irradiation time. We have measured the thermal capture cross sections of 136Ce, 156Dy, and 168Yb isotopes, using the high thermal neutron flux from the reactor HANARO at KAERI, and have obtained new cross section values of 7.64±0.63 barn for 136Ce, 14.8±2.0 barn for 156Dy, and 1335±43 barn for 168Yb.

  15. Differential cross sections for scattering of 0.5-, 1.5-, and 5.0-keV hydrogen atoms by He, H2, N2, and O2

    NASA Technical Reports Server (NTRS)

    Newman, J. H.; Chen, Y. S.; Smith, K. A.; Stebbings, R. F.

    1986-01-01

    This paper reports measurements of absolute cross sections, differential in angle, for scattering of 0.5-, 1.5-, and 5.0-keV hydrogen atoms by He, H2, N2, and O2 at laboratory scattering angles between 0.1 and 5 deg. The measured cross sections are the sums of those for elastic and inelastic collisions having a fast H atom product and are needed for calculating energy transfer to the upper atmosphere from precipitating ring current particles.

  16. Evaluated Iridium, Yttrium, and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements

    SciTech Connect

    Chadwick, M.B. Frankle, S.; Trellue, H.; Talou, P.; Kawano, T.; Young, P.G.; MacFarlane, R.E.; Wilkerson, C.W.

    2007-12-15

    We describe new dosimetry (radiochemical) ENDF evaluations for yttrium, iridium, and thulium. These LANL2006 evaluations were based upon measured data and on nuclear model cross section calculations. In the case of iridium and yttrium, new measurements using the GEANIE gamma-ray detector at LANSCE were used to infer (n,xn) cross sections, the measurements being augmented by nuclear model calculations using the GNASH code. The thulium isotope evaluations were based on GNASH calculations and older measurements. The evaluated cross section data are tested through comparisons of simulations with measurements of reaction rates in critical assemblies and in Bethe sphere (sometimes called Wyman sphere) integral experiments. Two types of Bethe sphere experiments were studied - a LiD experiment that had a significant component of 14 MeV neutrons, and a LiD-U experiment that additionally had varying amounts of fission neutrons depending upon the location. These simulations were performed with the MCNP code using continuous energy Monte Carlo, and because the neutron fluences can be modeled fairly accurately by MCNP at different locations in these assemblies, the comparisons provide a valuable validation test of the accuracy of the evaluated cross sections and their energy dependencies. The MCNP integral reaction rate validation testing for the three detectors yttrium, iridium, and thulium, in the LANL2006 database is summarized as follows: (1) (n,2n)near 14 MeV: In 14 MeV-dominated locations (the LiD Bethe spheres and the outer regions of the LiD-U Bethe spheres), the (n,2n) products are modeled very well for all three detectors, suggesting that the evaluated {sup 89}Y(n,2n), {sup 191}Ir(n,2n), and {sup 169}Tm(n,2n) cross sections are accurate to better than about 5% near 14 MeV; (2) (n,2n)near threshold: In locations that have a significant number of fission spectrum neutrons or downscattered neutrons from 14 MeV inelastic scattering (the central regions of the Li

  17. Measurements of the production cross sections in association with jets with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2015-02-01

    This paper presents cross sections for the production of a boson in association with jets, measured in proton-proton collisions at with the ATLAS experiment at the large hadron collider. With an integrated luminosity of , this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of and multiplicities up to seven associated jets. The production cross sections for bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.

  18. Cross-section-constrained top-quark mass measurement from dilepton events at the Tevatron.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; DeCecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-02-15

    We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton tt event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/-2.6(syst)+/-2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/-3.1(syst) GeV/c(2).

  19. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  20. Technique for Obtaining Vertical Profiles of Backscattering and Extinction Cross Sections Using Slant Path Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Herman, B. M.

    1973-01-01

    A method is presented for solving for vertical profiles of atmospheric particulate extinction and backscattering cross-sections utilizing monostatic lidar slant path measurements. The method is an extension of work by Fernald. It is shown that the number of assumptions necessary for an iterative solution of extinction and backscattering cross sections can be reduced if lidar slant path measurements are used to solve directly for optical depths. The technique is useful only if sufficiently accurate lidar measurements are available. With highly accurate measurements it is also possible to solve directly for extinction cross sections without an iterative solution of a transcendental equation if the proper reduction scheme is used. The required accuracy is discussed and results showing the effect of errors are presented.

  1. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  2. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  3. Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

    SciTech Connect

    Group, Robert Craig

    2006-01-01

    A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb-1 of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.

  4. (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models

    SciTech Connect

    Kaplan, A.; Sarpün, İ. H.; Aydın, A.; Tel, E.; Çapalı, V.; Özdoǧan, H.

    2015-01-15

    There are several level density models that can be used to predict photo-neutron cross sections. Some of them are Constant Temperature + Fermi Gas Model (CTFGM), Back-Shifted Fermi Gas Model (BSFM), Generalized Superfluid Model (GSM), Hartree-Fock-Bogoliubov microscopic Model (HFBM). In this study, the theoretical photo-neutron cross sections produced by (γ, 2n) reactions for several eveneven lanthanide nuclei such as {sup 140,142}Ce, {sup 142,144,146,148,150}Nd, {sup 144,148,150,152,154}Sm, and {sup 160}Gd have been calculated on the different level density models as mentioned above by using TALYS 1.6 and EMPIRE 3.1 computer codes for incident photon energies up to 30 MeV. The obtained results have been compared with each other and available experimental data existing in the EXFOR database. Generally, at least one level density model cross-section calculations are in agreement with the experimental results for all reactions except {sup 144}Sm(γ, 2n){sup 142}Sm along the incident photon energy, TALYS 1.6 BSFM option for the level density model cross-section calculations can be chosen if the experimental data are not available or are improbable to be produced due to the experimental difficulty.

  5. Precision Cross Section Measurement for the ^241Am(γ,n) Reaction at HIγS

    NASA Astrophysics Data System (ADS)

    Tonchev, A.; Hutcheson, A.; Howell, C. R.; Kwan, E.; Rusev, G.; Tornow, W.; Hammond, S.; Karwowski, H. J.; Huibregtse, C.; Kelley, J. H.; Vieira, D. L.; Wilhelmy, J. B.; Stoyer, M. A.

    2008-10-01

    The photodisintegration cross section on radioactive ^241Am target has been measured for the first time using monoenergetic γ-ray beams from the HIγS facility. Induced activity from ^240Am produced via the (γ,n) reaction was measured by the activation technique using high resolution HPGe detectors. The (γ,n) cross section was determined both by measuring the absolute γ-flux and by comparison to the ^197Au(γ,n) cross section used as a standard. In the following, we report new data for the excitation function of the ^241Am(γ,n ) reaction from near threshold to 16 MeV incident γ-ray energy and we compare the data with statistical nuclear-model calculations performed with the GNASH, EMPIRE, and TALYS codes.

  6. RIA R&D for Enabling Direct Neutron Cross-Section Measurements

    SciTech Connect

    Ahle, L E; Rusnak, B; Stoyer, M

    2003-08-22

    The expected production rates at RIA imply it should be possible to collect 10-{micro}g of a one-day half-life isotope. The amount of material should be sufficient to enable direct neutron cross-section measurements for many unstable isotopes. This capability is crucial for many of the stockpile stewardship and some of the astrophysical cross-section measurements. Enabling this capability at RIA requires the ability to harvest the desired isotopes, process highly radioactive material into targets, and irradiate targets with neutrons. This paper will discuss the changes and additions to the RIA complex that are necessary in order to enable direct neutron cross-section measurements. This will include a discussion of harvesting as well as a conceptual design for a co-located experimental facility with radiochemistry capability and a variable 'mono-energetic' neutron source.

  7. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    SciTech Connect

    Katori, Teppei; /MIT, LNS

    2009-09-01

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

  8. Precision measurements of photoabsorption cross sections of Ar, Kr, Xe, and selected molecules at 58.4, 73.6, and 74.4 nm

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Yin, Lifeng

    1989-01-01

    Absolute absorption cross sections have been measured for the rare gases at 58.43, 73.59, and 74.37 nm with an accuracy of + or - 0.8 percent. For the molecules H2, N2, O2, CO, N2O, CO2, and CH4, precision measurements were made at 58.43 nm with an accuracy of + or - 0.8 percent. Molecular absorption cross sections are also reported at 73.59 and 74.37 nm. However, in the vicinity of these wavelengths most molecules exhibit considerable structure, and cross sections measured at these wavelengths may depend on the widths and the amounts of self-reversal of these resonance lines. A detailed discussion is given of the systematic errors encountered with the double-ion chamber used in the cross-sectional measurements. Details are also given of precision pressure measurements.

  9. New Measurement of the Thermal-capture Cross Section for the Minor Isotope 180W

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Révay, Zs.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Summers, N. C.; Sleaford, B. W.

    2014-05-01

    Tungsten occurs naturally in five isotopic forms; four of them, 182,183,184,186W, contribute significantly to the overall elemental abundance (with each contribution between 14 and 30 %), whereas 180W only occurs at the 0.12 % level and is a minor isotope. Given its very low abundance, a precise measurement of the thermal neutron-capture cross section is extremely challenging. This work reports a new value of the thermal neutron-capture cross section from a direct 180W(n,γ) measurement using a guided-thermal beam at the Budapest Research Reactor, incident upon an 11.35 % enriched sample to induce prompt γ-ray activation within the sample. The thermal-capture cross section was determined as the sum of experimentally observed partial neutron-capture γ-ray cross sections feeding the ground state directly, and, the modeled contribution from the (unobserved) ground-state feeding predicted from statistical-model calculations using the Monte Carlo program DICEBOX. The preliminary value of the 180W(n,γ) thermal neutron-capture cross section is 20.5(42) b.

  10. First measurement of the muon antineutrino double-differential charged-current quasielastic cross section

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.

    2013-08-01

    The largest sample ever recorded of ν¯μ charged-current quasielastic (CCQE, ν¯μ+p→μ++n) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section (d2σ)/(dTμdcos⁡θμ) for ν¯μ CCQE for a mineral oil target. This measurement exploits the large statistics of the MiniBooNE antineutrino mode sample and provides the most complete information of this process to date. In order to facilitate historical comparisons, the flux-unfolded total cross section σ(Eν) and single-differential cross section (dσ)/(dQ2) on both mineral oil and on carbon are also reported. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intranuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.

  11. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  12. Precise measurement of neutrino and anti-neutrino differential cross sections

    SciTech Connect

    Tzanov, M.; Naples, D.; Boyd, S.; McDonald, J.; Radescu, V.; Adams, T.; Alton, A.; Avvakumov, S.; deBarbaro, L.; deBarbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R.B.; Fleming, B.T.; Frey, R.; /Pittsburgh U. /Cincinnati U. /Columbia U. /Fermilab /Kansas State U. /Northwestern U. /Oregon U. /Rochester U.

    2005-09-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F{sub 2}(x,Q{sup 2}) and xF{sub 3}(x,Q{sup 2}), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

  13. Measurement of the forward W boson cross-section in pp collisions at TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-12-01

    A measurement of the inclusive W → μν production cross-section using data from pp collisions at a centre-of-mass energy of TeV is presented. The analysis is based on an integrated luminosity of about 1 .0 fb-1 recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than 20 GeV/ c and pseudorapidity between 2.0 and 4.5. The W + and W - production cross-sections are measured to be

  14. Measurements of the breakup and neutron removal cross sections for {sup 16}C

    SciTech Connect

    Ashwood, N. I.; Freer, M.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A.; Angelique, J.C.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Orr, N.A.; Timis, C.; Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T.; Catford, W.N.; Dorvaux, O.; Stuttge, L.

    2004-12-01

    Measurements of the breakup and the neutron removal reactions of {sup 16}C have been made at 46 MeV/A and the decay cross sections measured. A correlation between the cluster breakup channels and the reaction Q value suggests that the reaction mechanism is strongly linked to quasielastic processes. No enhancement of the two-body cluster breakup cross section is seen for {sup 16}C. This result would indicate that {sup 16}C does not have a well developed cluster structure in the ground state, in agreement with recent calculations.

  15. Measurement of the ZZ production cross section using the full CDF II data set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Vázquez, F.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2014-06-01

    We present a measurement of the ZZ-boson pair-production cross section in 1.96 TeV center-of-mass energy pp¯ collisions. We reconstruct final states incorporating four charged leptons or two charged leptons and two neutrinos from the full data set collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.7 fb-1 of integrated luminosity. Combining the results obtained from each final state, we measure a cross section of 1.04-0.25+0.32 pb, in good agreement with the standard model prediction at next-to-leading order in the strong-interaction coupling.

  16. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  17. First measurement of the muon neutrino charged current quasielastic double differential cross section

    SciTech Connect

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kasper, P.; Kobilarcik, T.

    2010-05-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d{sup 2{sigma}}/dT{sub {mu}d}cos{theta}{sub {mu}})) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section ((d{sigma}/dQ{sup 2})) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  18. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  19. A program to measure new energetic particle nuclear interaction cross sections

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Albergo, S.; Chen, C. X.; Costa, S.; Crawford, H. J.; Engelage, J.; Ferrando, P.; Flores, I.; Greiner, L.; Jones, F. C.

    1994-01-01

    The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.

  20. Cross sections for electron scattering from furan molecules: Measurements and calculations

    SciTech Connect

    Szmytkowski, Czeslaw; Mozejko, Pawel; Ptasinska-Denga, Elzbieta; Sabisz, Agnieszka

    2010-09-15

    Electron-scattering cross sections have been determined for the furan (C{sub 4}H{sub 4}O) molecule, both experimentally and theoretically. An absolute total cross section (TCS) has been measured over energies from 0.6 to 400 eV using a linear electron-transmission method. The TCS energy function is dominated with a very broad enhancement, between 1.2 and 9 eV; on the low-energy side, some resonant structures are visible. Integral elastic (ECS) and ionization (ICS) cross sections have been also calculated up to 4 keV in the additivity rule approximation and the binary-encounter-Bethe approach, respectively. Their sum, ECS+ICS, is in a very good agreement with the measured TCS above 70 eV.

  1. Charged current single pion cross section measurement at MiniBooNE

    SciTech Connect

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    We present MiniBooNE's preliminary {nu}{sub {mu}} CC1{pi}{sup +} cross section measurement, calculated using the ratio of CC1{pi}{sup +} to CCQE events. We find the inclusive CC1{pi}{sup +} measurement to be below the nuance [1] and NEUGEN [2] expectations.

  2. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite.

  3. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite. PMID:27653491

  4. Measurement of 181 MeV H- ions stripping cross-sections by carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Yoshimoto, M.; Yamazaki, Y.; Hotchi, H.; Harada, H.; Okabe, K.; Kinsho, M.; Irie, Y.

    2015-03-01

    The stripping cross-sections of 181 MeV H- (negative hydrogen) ions by the carbon stripper foil are measured with good accuracy. The present experiment was carried out at the 3-GeV RCS (Rapid Cycling Synchrotron) of J-PARC (Japan Proton Accelerator Research Complex). The stripping cross-sections for different charge states, also known as electron loss cross-sections of H- ion, are denoted as σ-11, σ-10 and σ01, for both electrons stripping (H- →H+), one-electron stripping (H- →H0) and the 2nd-electron stripping (H0 →H+) proceeding σ-10, respectively. We have established very unique and precise techniques for such measurements so as also to determine a foil stripping efficiency very accurately. The cross-sections σ-11, σ-10 and σ01 are obtained to be (0.002 ± 0.001) ×10-18cm2, (1.580 ± 0.034) ×10-18cm2 and (0.648 ± 0.014) ×10-18cm2, respectively. The presently given cross-sections are newly available experimental results for an incident H- energy below 200 MeV and they are also shown to be consistent with recently proposed energy (1 /β2) scaled cross-sections calculated from the previously measured data at 200 and 800 MeV. The present results have a great importance not only at J-PARC for the upgraded H- beam energy of 400 MeV but also for many new and upgrading similar accelerators, where H- beam energies in most cases are considered to be lower than 200 MeV.

  5. Photoneutron Cross Section Measurements on {sup 9}Be Using Laser-Induced Compton-Backscattered Photons

    SciTech Connect

    Utsunomiya, Hiroaki; Yonezawa, Yoriko; Akimune, Hidetoshi; Yamagata, Tamio; Ohta, Masahisa; Fujishiro, Masatoshi; Toyokawa, Hiroyuki; Ohgaki, Hideaki

    2000-12-31

    Photoneutron cross sections were measured for {sup 9}Be in the energy range from 1.77 to 3.75 MeV using quasi-monochromatic {gamma}-rays produced in laser-induced Compton backscattering. These cross sections are relevant to the reaction rate of the first step of the {alpha}-process of Type II and Type Ib supernovae, i.e. {alpha}({alpha}n,{gamma}){sup 9}Be. Results are compared to the data taken with other photon sources like radioactive isotopes and Bremsstrahlung.

  6. Double diffractive cross-section measurement in the forward region at the LHC.

    PubMed

    Antchev, G; Aspell, P; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bottigli, U; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F S; Catanesi, M G; Covault, C; Csanád, M; Csörgő, T; Deile, M; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Karev, A; Kašpar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lippmaa, J; Lokajíček, M; Losurdo, L; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Mäki, T; Mercadante, A; Minafra, N; Minutoli, S; Nemes, F; Niewiadomski, H; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Scribano, A; Smajek, J; Snoeys, W; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Vítek, M; Welti, J; Whitmore, J; Wyszkowski, P

    2013-12-27

    The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with a center-of-mass energy of sqrt[s]=7  TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |η|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we determined the cross section σDD=(116±25)  μb for events where both diffractive systems have 4.7<|η|min<6.5.

  7. Double diffractive cross-section measurement in the forward region at the LHC.

    PubMed

    Antchev, G; Aspell, P; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bottigli, U; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F S; Catanesi, M G; Covault, C; Csanád, M; Csörgő, T; Deile, M; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Karev, A; Kašpar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lippmaa, J; Lokajíček, M; Losurdo, L; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Mäki, T; Mercadante, A; Minafra, N; Minutoli, S; Nemes, F; Niewiadomski, H; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Scribano, A; Smajek, J; Snoeys, W; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Vítek, M; Welti, J; Whitmore, J; Wyszkowski, P

    2013-12-27

    The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with a center-of-mass energy of sqrt[s]=7  TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |η|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we determined the cross section σDD=(116±25)  μb for events where both diffractive systems have 4.7<|η|min<6.5. PMID:24483791

  8. Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules

    SciTech Connect

    Kitajima, M.; Shigemura, K.; Kurokawa, M.; Odagiri, T.; Kato, H.; Hoshino, M.; Tanaka, H.; Ito, K.

    2014-03-05

    A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

  9. First measurement of the antiproton-nucleus annihilation cross section at 125 keV

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; De Salvador, D.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Seiler, D.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.

    2015-08-01

    The first observation of in-flight antiproton-nucleus annihilation at ˜130 keV obtained with the ASACUSA detector has demonstrated that the measurement of the cross section of the process is feasible at such extremely low energies Aghai-Khozani, H., et al., Eur. Phys. J. Plus 127, 55 (2012). Here we present the results of the data analysis with the evaluations of the antiproton annihilation cross sections on carbon, palladium and platinum targets at ˜125 keV.

  10. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    SciTech Connect

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  11. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  12. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  13. Measuring Cross-Section and Estimating Uncertainties with the fissionTPC

    SciTech Connect

    Bowden, N.; Manning, B.; Sangiorgio, S.; Seilhan, B.

    2015-01-30

    The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.

  14. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  15. New measurement of the 242Pu(n,γ) cross section at n_TOF

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Cortés-Giraldo, M. A.; Quesada, J. M.; Mendoza, E.; Cano-Ott, D.; Eberhardt, K.; Junghans, A.

    2016-03-01

    The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  16. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  17. Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at the Collider Detector at Fermilab

    SciTech Connect

    Mathis, Mark J.

    2010-04-01

    This dissertation describes the measurement of the top pair production cross section, using data from proton–antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 ± 0.2 fb-1 of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of t$\\bar{t}$, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be σt$\\bar{t}$ = 7.64±0.57(stat + syst)±0.45(lumi) pb and the Monte Carlo simulation scale factors KWb$\\bar{b}$ = 1.57±0.25, KW$\\bar{c}$ = 0.94±0.79, KWc = 1.9 ± 0.3, and KWq$\\bar{q}$ = 1.1 ± 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.

  18. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  19. Measuring (n,f) cross sections of plutonium nuclei via the surrogate method

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Beausang, C. W.; Ross, T. J.; Gell, K.; Good, E.; Tarlow, T.; Burke, J. T.; Casperson, R. J.; McCleskey, M.; Saastamoinen, A.; Cooper, N.; Humby, P.

    2012-10-01

    Neutron-induced cross section measurements of exotic nuclei provide a significant experimental challenge due to the need for radioactive targets and high neutron fluxes. Over the past few years the surrogate method has been shown to provide a means of indirectly measuring certain neutron-induced cross sections. Recent results benchmarking (p,t-f) and (p,d-f) reactions as surrogates for (n,f) cross section measurements in uranium nuclei show good agreement with literature data [1]. Building on this work, the use of (p,t-f) and (p,d-f) reactions has very recently been extended to surrogate measurements of the poorly established ^236Pu(n,f) and ^237Pu(n,f) cross sections. The experiment was performed at Texas A&M University using a 30 MeV proton beam from the K150 cyclotron, incident on ^239Pu and ^235U targets. Charged particle-fission and charged particle-γ coincidence data were collected using the combined silicon telescope and γ-ray array: STARLiTe. Preliminary results will be presented. This work was supported by DoE Grant Numbers: DE-FG52-09 NA29454 and DE-FG02-05 ER41379 (UR) and DE-AC52-07 NA27344 (LLNL).[4pt] [1] R.O. Hughes et al., PRC 85, 024613 (2012).

  20. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  1. Measurement of the Drell--Yan differential cross section with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Svyatkovskiy, Alexey

    This thesis describes precision measurements of electroweak interactions in a new energy regime and the application of these measurements to improve our understanding of the structure of the proton. The results are based on proton-proton collision data at √s = 7 and 8TeV recorded with the Compact Muon Solenoid detector at the CERN Large Hadron Collider during the first years of operation. Measurements of the differential Drell-Yan cross section in the dimuon and dielectron channels covering the dilepton mass range of 15 to 2000GeV and absolute dilepton rapidity from 0 to 2.4 are presented. The Drell-Yan cross section in proton-proton collisions depends on empirical quantities known as parton distribution functions (PDFs) which parameterize the structure of the proton. In addition to the differential cross sections, the measurements of ratios of the normalized differential cross sections (double ratios) at √s = 7 and 8TeV are performed in order to provide further constraints for PDFs, substantially reducing theoretical systematic uncertainties due to correlations. These measurements are compared to predictions of perturbative QCD at the next-to-next-to-leading order computed with various sets of PDFs. The measured differential cross section and double ratio in bins of absolute rapidity are sufficiently precise to constrain the proton parton distribution functions. The inclusion of Drell-Yan data in PDF fits provides substantial constraints for the strange quark and the light sea quark distribution functions in a region of phase space which has not been accessible at hadron colliders in the past.

  2. Absolute X-ray emission cross section measurements of Fe K transitions

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν < 10 keV). The ECS has a large collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  3. Measurement of the Z → ττ cross section with the ATLAS detector

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Siegrist, James L.

    2011-12-01

    The Z → ττ cross section is measured with the ATLAS experiment at the LHC in four different final states determined by the decay modes of the {tau} leptons: muon-hadron, electron-hadron, electron-muon, and muon-muon. The analysis is based on a data sample corresponding to an integrated luminosity of 36 pb⁻¹, at a proton-proton center-of-mass energy of √s = 7 TeV. Cross sections are measured separately for each final state in fiducial regions of high detector acceptance, as well as in the full phase space, over the mass region 66-116 GeV. The individual cross sections are combined and the product of the total Z production cross section and Z → ττ branching fraction is measured to be 0.97 ± 0.07(stat) ± 0.06(syst) ± 0.03(lumi) nb, in agreement with next-to-next-to-leading order calculations.

  4. Measurement of the elastic, total and diffraction cross sections at tevatron energies

    SciTech Connect

    Belforte, S.; CDF Collaboration

    1993-11-01

    The CDF collaboration has measured the differential elastic cross section d{sigma}{sub el}/dt, the single diffraction dissociation double differential cross section d{sup 2}{sigma}{sub sd}/dM{sup 2}dt and the total inelastic cross section for antiproton-proton collisions at center of mass energies {radical}s = 546 and 1,800 GeV. Data for this measurement have been collected in short dedicated runs during the 1988--1989 data taking period of CDF. The elastic scattering slope is 15.28 {+-} 0.58 (16.98 {+-} 0.25) GeV{sup {minus}2} at {radical}s = 546 (1,800) GeV. Using the luminosity independent method (1 + {rho}{sup 2}){sigma}{sub T} is measured to be 62.64 {+-} 0.95 (81.83 {+-} 2.29) mb at {radical}s = 546 (1,800) GeV. Assuming {rho} = 0.15 the elastic, total and single diffraction cross sections are {sigma}{sub el} = 12.87 {+-} 0.30, {sigma}{sub T} = 61.26 {+-} 0.93 and {sigma}{sub sd} = 7.89 {+-} 0.33 mb ({sigma}{sub el} = 19.70 {+-} 0.85, {sigma}{sub T} = 80.03 {+-} 2.24 and {sigma}{sub sd} = 9.46 {+-} 0.44 mb) at {radical}s = 546 (1,800) GeV.

  5. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    SciTech Connect

    Anderson, Colin E.

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  6. Precision measurement of the 238Pu(n,γ) cross section

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2013-10-01

    The neutron-capture cross section for 238Pu was measured by using the detector for advanced neutron-capture experiments (DANCE) array, which is a highly segmented and highly efficient 4π γ-ray calorimeter. The neutron-capture events were recognized by the total γ-ray energy deposited in DANCE, which is equal to the reaction Q value plus the incident neutron energy. The absolute neutron-capture cross section was derived as a function of incident neutron energy from thermal to about 30 keV. The measured cross section for incident neutron energy below 18 eV was performed for the first time by using the direct method and does not support the most recently adopted changes in endf/b-vii.1 where the neutron-capture cross section was lowered by as much as a factor of ˜3 in the neighborhood of 0.3 eV from those evaluated in endf/b-vii.0.

  7. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    SciTech Connect

    Bhattacharya, Debdatta

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  8. Storage Ring Cross Section Measurements for Electron Impact Ionization of Fe7+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2015-11-01

    We have measured electron impact ionization for Fe7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  9. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 7+}

    SciTech Connect

    Hahn, M.; Novotný, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Müller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2015-11-01

    We have measured electron impact ionization for Fe{sup 7+} from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud and Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  10. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  11. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  12. Positron interactions with water-total elastic, total inelastic, and elastic differential cross section measurements.

    PubMed

    Tattersall, Wade; Chiari, Luca; Machacek, J R; Anderson, Emma; White, Ron D; Brunger, M J; Buckman, Stephen J; Garcia, Gustavo; Blanco, Francisco; Sullivan, James P

    2014-01-28

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  13. Fission cross section measurement of Cm-247, Es-254 and Cf-250: Progress report

    SciTech Connect

    Block, R.C.

    1989-03-01

    The Rensselaer Intense Neutron Spectrometer (RINS) system has been activated to measure the fission cross sections of microgram quantities of transuranic nuclei. The fast electronics have been tested with spontaneous fission pulses from the Cf-252-coated electrodes in the fission chamber used for the Cm-242 and Pu-238 measurements by Alam et al.; six chains of electronics, each consisting of a preamplifier, power filter, fast amplifier and fast discriminator, are now working and available to take data. 3 refs.

  14. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  15. Radar Cross-Section Measurements of V22 Blade Tip with and without LLNL Tipcap Reflector

    SciTech Connect

    Poland, D; Simpson, R

    2000-07-01

    It is desired to quantify the effect, in terms of radar cross-section (RCS), of the addition of a small aluminum reflector to the end of the V22 blades. This reflector was designed and manufactured in order to facilitate blade lag measurements by the 95 GHz Lawrence Livermore National Laboratory (LLNL) Radar Blade Tracker (RBT) system. The reflector used in these measurements was designed and fabricated at LLNL and is pictured in Figure 1.

  16. Evidence for WZ Production and a Measurement of the WZ Production Cross Section

    SciTech Connect

    Degenhardt, James D.

    2007-05-01

    This dissertation describes a test of the Standard Model (SM) of particle physics by measuring the probability, or cross section, of simultaneously producing a W boson and a Z boson from proton-antiproton collisions. The SM predicts the cross section of WZ production to be 3.68 ± 0.25 pb. The SM and physics of WZ production are described in Chapter 2 of this dissertation. The 1.96 TeV center-of-mass energy proton-antiproton collisions are provided by the Fermi National Accelerator Laboratory (FNAL) Tevatron Collider. The W and Z particles are detected using the D0 detector, which is described in Chapter 3. The data were collected by the detector during 2002-2006 corresponding to 1 fb-1 of p{bar p} collisions. This data set is described in Chapter 6. The measurement uses the trilepton (evee, μvee, evμμ, and μvμμ) decay channels, in which a W decays to a charged lepton plus a neutrino and a Z decays to a pair of charged leptons. The W and Z particle selection criteria, detection efficiency, and background determination are described in Chapter 7. We observe 13 candidate events in 1 fb-1 of p$\\bar{p}$ collisions. In this data set we expect to see 4.5 ± 0.6 background events, and we expect to see 9.2 ± 1.0 signal events. The probability of 4.5 ± 0.6 background events to fluctuate to 13 or more events is 1.2 x 10-3 which is a 3.0 σ deviation from the background estimate. A log likelihood method is used to determine the most likely cross section as determined by the measured signal efficiencies, the expected backgrounds, and the observed data. Presented in Chapter 8 is a measurement of the cross section for p$\\bar{p}$ → WZ + X at √s = 1.96 TeV. The WZ diboson production cross section is measured to be σWZ = 2.7$+1.7\\atop{-1.3}$ pb. This is in agreement with the predicted Standard Model cross section.

  17. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  18. CC-inclusive cross section measured with the T2K near detector

    NASA Astrophysics Data System (ADS)

    Weber, Alfons

    2015-05-01

    T2K has performed the first measurement of muon neutrino inclusive charged current interactions on carbon at neutrino energies of ˜1 GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 1.08*1020 protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is <σCC> = (6.91±0.13(stat)±0.84(syst)) 10-39 cm2/nucleon for a mean neutrino energy of 0.85 GeV.

  19. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    PubMed

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  20. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    SciTech Connect

    Zheng, Xianfeng Zhou, Xiaoyu; Cheng, Zaiqi; Jia, Dandan; Qu, Zehua; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2014-10-15

    We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF) mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV) were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  1. Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials

    NASA Astrophysics Data System (ADS)

    Körner, J.; Hein, J.; Kahle, M.; Liebetrau, H.; Lenski, M.; Kaluza, M.; Loeser, M.; Siebold, M.

    2011-06-01

    For laser performance simulations, optical properties of applied active materials have to be exactly known. Here we report on temperature dependent emission and absorption cross section measurements for Yb:YAG, Yb:CaF2 and Yb:FP15-glass. The temperature of the samples was aligned in steps of 20 K between 100 K and room temperature with a liquid nitrogen driven cryostat. Absorption spectra were obtained with a fiber coupled white light source and fluorescence spectra by excitation with a fiber coupled 10W laser diode at 970 nm. All spectral measurements were performed with a scanning spectrum analyzer, providing a spectral resolution down to 0.05 nm. By applying the McCumber relation in combination with the Fuchtbauer-Ladenburg method, we were able to obtain a valid emission cross section over the whole range of interest from the measured data.

  2. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    NASA Technical Reports Server (NTRS)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  3. Measurements of the W production cross sections in association with jets with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-02-19

    This paper presents cross sections for the production of a W boson in association with jets, measured in proton–proton collisions at \\(\\sqrt{s} = 7\\) TeV with the ATLAS experiment at the large hadron collider. With an integrated luminosity of 4.6fb-1, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jetmore » observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. As a result, the measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.« less

  4. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  5. Measurement of the production cross-section in proton-proton collisions via the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Beteta, C. Abellán; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elena, E.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sánchez, A. Martín; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Alvarez, A. Pazos; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Trigo, E. Perez; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2015-07-01

    The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range and in the meson transverse-momentum range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7 fb, and at using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be.

  6. Measurement of the 60Fe(n, gamma)61Fe Cross Section at Stellar Temperatures.

    PubMed

    Uberseder, E; Reifarth, R; Schumann, D; Dillmann, I; Pardo, C Domingo; Görres, J; Heil, M; Käppeler, F; Marganiec, J; Neuhausen, J; Pignatari, M; Voss, F; Walter, S; Wiescher, M

    2009-04-17

    Observations of galactic gamma-ray activity have challenged the current understanding of nucleosynthesis in massive stars. Recent measurements of (60)Fe abundances relative to ;{26}Al;{g} have underscored the need for accurate nuclear information concerning the stellar production of (60)Fe. In light of this motivation, a first measurement of the stellar (60)Fe(n, gamma)(61)Fe cross section, the predominant destruction mechanism of (60)Fe, has been performed by activation at the Karlsruhe Van de Graaff accelerator. Results show a Maxwellian averaged cross section at kT = 25 keV of 9.9 +/-_{1.4(stat)};{2.8(syst)}mbarn, a significant reduction in uncertainty with respect to existing theoretical discrepancies. This result will serve to significantly constrain models of (60)Fe nucleosynthesis in massive stars. PMID:19518614

  7. Cross-Section Measurements for Elastic and Inelastic Scattering of Neutrons from Noble Gases

    NASA Astrophysics Data System (ADS)

    Macmullin, Sean; Kidd, Mary; Tornow, Werner; Howell, Calvin; Brown, Michael; Henning, Reyco

    2010-11-01

    Neutron backgrounds are a significant concern to experiments that attempt to directly detect Weakly Interacting Massive Particle (WIMP) dark matter. Recoil nuclei produced by neutron elastic scattering can mimic WIMP signatures. There is insufficient experimental data available for the scattering cross-sections of neutrons with noble gases (Ne, Ar, Xe), which are candidate target materials for such experiments. Neutron elastic and inelastic scattering from neon of natural abundance was investigated at the Triangle Universities Nuclear Laboratory at neutron energies relevant to (α,n) and low-energy spallation neutron backgrounds in these experiments. The differential cross-section was measured using a time-of-flight technique at neutron energies of 8.0 and 5.0 MeV. Details of the experimental technique and current status of measurements will be presented.

  8. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    SciTech Connect

    Dorman, Mark Edward

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  9. Measurement of prompt photon cross sections in photoproduction at H1

    SciTech Connect

    Ferencei, Jozef

    2005-10-06

    Cross section measurements of isolated prompt photons, inclusively and associated with jets, have been made at the HERA ep collider with the H1 detector, using the data taken in the years 1996-2000 corresponding to an integrated luminosity of 105 pb-1. The results are compared to a perturbative QCD calculations in next to leading order and to predictions of the event generators PYTHIA and HERWIG.

  10. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  11. Beauty production cross section measurements at E(cm) = 1.96-TeV

    SciTech Connect

    D'Onofrio, Monica; /Geneva U.

    2005-05-01

    The RunII physics program at the Tevatron started in spring 2001 with protons and antiprotons colliding at an energy of {radical}s = 1.96 TeV, and it is carrying on with more than 500 pb{sup -1} of data as collected by both the CDF and D0 experiments. Recent results on beauty production cross section measurements are here reported.

  12. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  13. ^241Am(n,γ) absolute cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Macri, R. A.; Sheets, S. A.; Wu, C. Y.; Becker, J. A.

    2007-10-01

    ^241Am is present in plutonium due to the beta decay of ^241Pu (t1/2=14.38 years). As such ^241Am can be used as a detector for nuclear forensics. A precise measurement of ^241Am(n,γ) cross section is thus needed for this application. The measurement is also of interest for advanced reactor design as part of the Global Nuclear Energy Partnership (GNEP). The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^241Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14(FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The absolute ^241Am(n,γ) cross sections were obtained in the range of neutron energies from 0.02 eV to 320 keV. The results will be compared to existing evaluations in detail.

  14. Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Argonne

    2010-07-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, M{sub A}, that provides a best fit for M{sub A} = 1.39 {+-} 0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasi-elastic cross sections as a function of Q{sup 2} has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q{sup 2} = 0, {Delta}s, is found to be {Delta}s = 0.08{+-} 0.26.

  15. Total cross sections for neutron scattering from few nucleon systems. I. Measurements.

    NASA Astrophysics Data System (ADS)

    Abfalterer, W. P.; Bateman, F. B.; Dietrich, F. S.; Elster, Ch.; Finlay, R. W.; Glöckle, W.; Golak, J.; Haight, R. C.; Hüber, D.; Morgan, G. L.; Witala, H.

    1998-04-01

    We have recently measured neutron total cross sections for hydrogen and the total cross section difference for deuterium-hydrogen (d-h) over a wide energy range (approximately 10-600 MeV projectile energy). These measurements were made by an attenuation technique at the LANSCE/WNR facility using samples of D_2O, H_2O, C_8H_18, and CH2 with a technique similar to that applied in Ref. [1]. The results for d-h are in significant disagreement with previous measurements of this quantity (up to 9% near 80 MeV). The results have been used to test the Faddeev description of the n+d total cross section between 10 and 300 MeV as reported in the following abstract. [1mm] [1] R.W. Finlay et al., Phys. Rev. C47, 237 (1993) [2mm] ^ This work is supported in part by the U.S. Department of Energy under Contracts W-7405-ENG-48 (LLNL), W-7405-ENG-36 (LANL), and DE-FG02-93ER40756 (Ohio U.), the Deutsche Forschungsgemeinschaft (DFG), the Ohio Supercomputer Center (OSC) and the HLRZ Jülich.

  16. Measurement of neutrino induced charged current neutral pion production cross section at SciBooNE

    SciTech Connect

    Catala-Perez, Juan

    2014-01-01

    SciBooNE is a neutrino scattering experiment located in the Booster Neutrino Beam at Fermilab. It collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon around 1 GeV neutrino energy. In this thesis we present the results on the measurement of the muon neutrino cross section resulting in a μ- plus a single π0 final state (CC- π0 channel). The present work will show the steps taken to achieve this result: from the reconstruction improvements to the background extraction. The flux-averaged CC - π0 production cross section measurement obtained in this thesis < σCC- π0 > Φ = (5.6 ± 1.9fit ± 0.7beam ± 0.5int - 0.7det) × 10-40 cm2/N at an average energy of 0.89 GeV is found to agree well both with the expectation from the Monte Ca

  17. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  18. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE PAGES

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; et al

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  19. Ion collision cross section measurements in Fourier transform-based mass analyzers.

    PubMed

    Li, Dayu; Tang, Yang; Xu, Wei

    2016-06-01

    With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists.

  20. 238U Neutron Capture Cross Section Measurements at the GELINA Facility

    NASA Astrophysics Data System (ADS)

    Lampoudis, C.; Kopecky, S.; Becker, B.; Gunsing, F.; Schillebeeckx, P.; Wynants, R.

    2014-05-01

    A set of neutron capture experiments based on the time-of-flight technique were performed in order to determine the 238U capture cross section in the unresolved resonance region. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the uranium sample. The analysis of the experimental data is based on the total energy principle applied in combination with the pulse height weighting technique. The experimental details along with the analysis process are described. The first results in the resolved resonance region are presented and their validity provide a solid base to extend the analysis and extract the average cross section in the keV region.

  1. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  2. Combination of CDF and D0 Measurements of the Single Top Production Cross Section

    SciTech Connect

    Group, Tevatron Electroweak Working; Collaboration, for the CDF; Collaboration, the D0

    2009-08-01

    We report a combination of the CDF and D0 measurements of the inclusive single top quark production cross section in the s- and t-channels, {sigma}{sub s+t}, in p{bar p} collisions at a center of mass energy of 1.96 TeV. The total integrated luminosity included in CDF's analysis is 3.2 fb{sup -1} and D0's analysis has 2.3 fb{sup -1}. A Bayesian analysis is used to extract the cross section from the distributions of multivariate discriminants provided by the collaborations. For a top quark mass m{sub t} = 170 GeV/c{sup 2}, we measure a cross section of 2.76{sub -0.47}{sup +0.58} pb. We extract the CKM matrix element |V{sub tb}| = 0.88 {+-} 0.07 with a 95% C.L. lower limit of |V{sub tb}| > 0.77.

  3. Re-examination of a Classic Experiment to Measure the Positronium-Helium Cross Section

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.; DiRienzi, Joseph

    1998-01-01

    In 1975, before the advent of positronium beams, a clever experiment was carried out in an attempt to measure low-energy Ps-atom scattering cross-sections, especially that of Ps-He. A series of parallel thin plates was placed in the vessel containing the sample of gas, and positrons were allowed to enter the chamber from a radioactive source. The time spectrum of annihilation radiation was observed in the traditional way, and the pickoff annihilation due to thermalized Ps striking one of the plates was to be the special feature of the experiment. Using a diffusion analysis the authors derived cross- sections for several gases, and for helium the value obtained was sigma = 0.0166 pi(alpha)(sub o, sup 2). Even then this value was thought to be very much too small, while recent measurements and some calculations suggest a more reasonable value would be sigma = 3 to 13 pi(alpha)(sub o,sup 2). It has always been puzzling that an apparently well-designed experiment should give such an unsatisfactory result. We have now re-examined the analysis of the data with some interesting consequences which may explain the discrepancy. Two main observations support our re-analysis. First, we note that the mean free path for Ps-He scattering would be quite long if the cross-section were as small as that quoted above; the diffusion method itself would seem to be questionable. For the larger values, however, there would be no such problem. Second, it was assumed that when the annihilation rate had settled down and was following an exponential decay curve the asymptotic solution of the diffusion equation had been reached. We find, instead, that a superposition of exponentials can accurately represent the decay curve, consistent with the higher cross-section value.

  4. Measurement of Neutron Total Cross Sections in Support of the APT Program

    SciTech Connect

    Abfalterer, W.P.; Haight, R.C.; Morgan, G.L.; Bateman, F.B.; Dietrich, F.S.; Finlay, R.W.

    1998-11-04

    The authors have completed a new set of total cross section measurements of 37 samples spanning the periodic table. The authors employed the same technique as in a previous measurement, with refinements intended to allow measurements on separated isotopes, and with improved systematic error control. The goal of the new measurement was 1% statistical accuracy in 1% energy bins with systematic errors less than 1%. This was achieved for all but the smallest samples, for which the statistical accuracy was as large as 2% in 1% bins.

  5. Measurements of proton-induced production cross sections for Cl-36 from Ca and K

    NASA Technical Reports Server (NTRS)

    Imamura, M.; Shibata, S.; Nishiizumi, K.; Caffee, M. W.

    1998-01-01

    Production cross sections for Cl-36 (half-life= 3.01 x 10(exp 5) y) have been measured for the nat.K(p,x), 39 K(p,x), nat.Ca(p,x) and Ca-40(p,x) reactions up to 40 MeV. The results of nat.Ca(p,x) reaction are generally consistent with measurements performed at somewhat higher energies. With the completion of these measurements it is now possible to proceed with model calculations of the solar cosmic ray (SCR) flux over the last 400 ky based on measurements of lunar surface materials.

  6. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    SciTech Connect

    Loiacono, Laura Jean

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  7. Procedures for the measurement of the extinction cross section of one particle using a Gaussian beam

    NASA Astrophysics Data System (ADS)

    Bosch, Salvador; Sancho-Parramon, Jordi

    2016-09-01

    Two procedures for the measurement of the extinction cross section (ECS) of one particle using a slightly focused Gaussian beam have been introduced and numerically tested. While the first one relies on previously introduced ideas and has close connection with the optical theorem, the second procedure is new and is mostly related with light measurements where the detector collects much of the energy of the incident beam. Both procedures prove to be valid and somehow complementary up to particle sizes of the order of the beam waist, thus enlarging the capability of simple measurement set-ups based on Gaussian beams for the estimation of the ECS of one particle.

  8. Measurement of the absolute and differential cross sections for 7Li(γ, n0)6Li

    SciTech Connect

    W.A. Wurtz, R.E. Pywell, B.E. Norum, S. Kucuker, B.D. Sawatzky, H.R. Weller, M.W. Ahmed, S. Stave

    2011-10-01

    We have measured the cross section of the photoneutron reaction channel {sup 7}Li+{gamma}{yields}{sup 6}Li(g.s.)+n where the progeny nucleus is the ground state of {sup 6}Li. We obtained the absolute cross section at photon energies 10, 11, 12, 13, 15, 20, 25, 30, and 35 MeV and also the dependence of the cross section on polar angle for all but the highest photon energy. For the energies 10 to 15 MeV we were able to use linearly polarized photons to obtain the dependence of the cross section on the photon polarization.

  9. Measurement of the top quark pair production cross section with ATLAS detector

    NASA Astrophysics Data System (ADS)

    Abi, Babak

    This thesis describes two measurement of the tt¯ production cross-section, the inclusive sigmatt¯j and sigmatt¯j in association with at least one jet in lepton + jets channel with ATLAS detector. The measurements employ multivariate technique with a binned maximum likelihood template fit. Several kinematic variables of the reconstructed collision events are selected to discriminate tt¯ signal events from the various background sources. The inclusive sigmatt¯ measurement uses approximately 35.3 pb-1 of ATLAS data collected in 2010 and selecting events with one isolated high-pT electron or muon, large missing transverse energy and two jet bins of 3 or at least 4 high-pT jets. The measured tt¯ cross section assuming the top quark mass of 172.5 GeV yields: stt¯=173+/- 17stat.+20 -17syst.+/- 6lumi.pb The measured value is in a good agreement with the Standard Model prediction. The second measurement is performed on ATLAS data collected in 2011 corresponding to an integrated luminosity of 4.7 fb-1. The same analysis technique and event selection employed as the first measurement but in 4th and 5th jet bins. The cross-section for sigmatt¯ with at least one additional jet is found to be: stt¯j=102+/- 2stat.+/-6 ISR/FSR+22-25 syst.pb Finally the results of study on PiN diodes radiation hardness are presented. Results were performed with several irradiation beams to investigate the proper optical components for ATLAS Pixel upgrade.

  10. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    SciTech Connect

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  11. Nuclear matrix elements from direct lifetime or cross-section measurements

    SciTech Connect

    Werner, V.; Cooper, N.; Hinton, M.; Ilie, G.; Radeck, D.

    2012-11-20

    The method of simultaneous lifetime and g factor measurements using a plunger device and the RDDS and TDRIV techniques is introduced. Results on lifetimes and hyperfine-interaction parameters for 2{sup +}{sub 1} states in {sup 104-108}Pd, {sup 96,98,104}Ru, and {sup 92,94}Zr, using a plunger device. Another method to obtain electromagnetic matrix elements is direct cross section measurements using NRF. The method is outlined, and some recent results on {sup 76}Se are shown.

  12. Measurement of the differential dijet production cross section in proton–proton collisions at

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-06-01

    A measurement of the double-differential inclusive dijet production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented as a function of the dijet invariant mass and jet rapidity. The data correspond to an integrated luminosity of 36 inverse picobarns, recorded with the CMS detector at the LHC. The measurement covers the dijet mass range 0.2 TeV to 3.5 TeV and jet rapidities up to |y|=2.5. It is found to be in good agreement with next-to-leading-order QCD predictions.

  13. Cross section measurement of 14N(p ,γ )15O in the CNO cycle

    NASA Astrophysics Data System (ADS)

    Li, Q.; Görres, J.; deBoer, R. J.; Imbriani, G.; Best, A.; Kontos, A.; LeBlanc, P. J.; Uberseder, E.; Wiescher, M.

    2016-05-01

    Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the 14N(p ,γ )15O reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest. Purpose: The total cross section of the 14N(p ,γ )15O reaction has large contributions from the transitions to the Ex=6.79 MeV excited state and the ground state of 15O. The Ex=6.79 MeV transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation. Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from Ep=0.7 to 3.6 MeV for both the ground state and the Ex=6.79 MeV transitions at θlab=0∘ , 45∘, 90∘, 135∘, and 150∘. Both TiN and implanted-14N targets were utilized. γ rays were detected by using an array of high-purity germanium detectors. Results: The excitation function as

  14. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  15. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  16. Neutron-Induced Partial Gamma-Ray Cross-Section Measurements on Actinides at TUNL using a segmented Clover detector

    NASA Astrophysics Data System (ADS)

    Wolter, C.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Macri, R. A.; Tonchev, A. P.; Tornow, W.; Walter, R. L.; Pedroni, R. S.; Weisel, G. J.; Becker, J. A.; Nelson, R. O.

    2004-10-01

    An experimental program is being developed at TUNL to study (n,2n) excitation functions on actinide nuclei using monoenergetic and pulsed neutron beams in the 5 to 18 MeV energy range. Measurements have been performed on a 238U target with incident neutron energies of 6 and 10 MeV using a segmented Clover detector. A study of the detector involving the photopeak efficiency, energy and timing resolution has been performed with radioactive sources and in-beam experiments. Experimental techniques and results for neutron-induced partial gamma-ray cross-section measurements will be presented. Supported by the NNSA under the Stewardship Science Academic Alliances Program through DOE Research grant # DE-FG03-02NA00057 and NSF REU grant # NSF-0243776

  17. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  18. The design of equipment for optical power measurement in FSO link beam cross-section

    NASA Astrophysics Data System (ADS)

    Latal, Jan; David, Tomas; Wilfert, Otakar; Kolka, Zdenek; Koudelka, Petr; Hanacek, Frantisek; Vitasek, Jan; Siska, Petr; Skapa, Jan; Vasinek, Vladimir

    2012-06-01

    The free space optical links have found their major application in today's technological society. The demand for quality broadband is a must for all types of end users in these times. Because of the large jamming from wireless radio networks in non-licensed ISM bands, the free space optical links provide bridging of some densely populated urban areas. Their advantage is the high transmission rate for relatively long distances. However, the disadvantage is the dependence of free space optical links on atmospheric influences. Aired collimated optical beam passes through the atmospheric transmission environment and by its influence cause the deformation of the optical beam. Author's team decided to construct a special measuring device for measurement of optical power in FSO link beam cross-section. The equipment is mobile and can be rearranged and adjust according to the given location and placement of the FSO link at any time. The article describes the individual structural elements of the measuring equipment, its controlling and application for evaluation and adjustment of measuring steps. The graphs from optical power measurements in the beam cross-section of professional FSO links are presented at the end.

  19. Measurement of low $p_{T}$ $D^{0}$ meson production cross section at CDF II

    SciTech Connect

    Mussini, Manuel

    2011-05-01

    In this thesis we present a study of the production of D0 meson in the low transverse momentum region. In particular the inclusive differential production cross section of the D0 meson (in the two-body decay channel D0 → K-π+) is obtained extending the published CDF II measurement to pT as low as 1.5 GeV/c. This study is performed at the Tevatron Collider at Fermilab with the CDF II detector.

  20. A Fission Time Projection Chamber for High Precision Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Snyder, Lucas; Greife, Uwe

    2010-11-01

    The design of next generation nuclear reactors and other nuclear applications are increasingly dependent on advanced simulations. Sensitivity studies have shown a need for high precision nuclear data to improve the predictive capabilities of these simulations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has constructed and is currently testing a prototype Time Projection Chamber (TPC) designed to measure fission cross sections to a higher accuracy than is capable with existing technology. In this talk, I will discuss the status of the fission TPC and progress on collecting the first set of data from ^252Cf spontaneous fission.

  1. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  2. Coincidence measurement of the fully differential cross section for atomic-field bremsstrahlung

    NASA Technical Reports Server (NTRS)

    Faulk, J. D.; Quarles, C. A.

    1974-01-01

    A coincidence measurement was made of the absolute cross section for electron-atomic-field bremsstrahlung, differential in photon energy, photon-emission angle, and electron scattering angle. The incident electron energy was 140 keV and the scattering materials were thin films of aluminum and gold. The data are compared to the theoretical calculations of Elwert and Haug and of Bethe and Heitler. Both theories give generally satisfactory agreement for aluminum. The Elwert-Haug theory is somewhat more accurate for gold.

  3. Measurements of proton radiative capture cross sections relevant to the astrophysical rp- and γ-processes

    NASA Astrophysics Data System (ADS)

    Chloupek, F. R.; Murphy, A. St J.; Boyd, R. N.; Cole, A. L.; Görres, J.; Guray, R. T.; Raimann, G.; Zach, J. J.; Rauscher, T.; Schwarzenberg, J. V.; Tischhauser, P.; Wiescher, M. C.

    1999-06-01

    Measurements have been made of the 96Zr(p,γ)97Nb, 112Sn(p,γ)113Sb, and 119Sn(p,γ)120Sb cross section excitation functions. Incident proton energies ranged from 2.8 MeV to 8.5 MeV. These reactions are relevant to several processes of stellar nucleosynthesis. The resulting astrophysical S-factors are compared to those from theoretical statistical model calculations using the SMOKER, and the more recent NON-SMOKER, codes to judge their applicability to these reactions.

  4. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  5. Probing dynamics of fusion reactions through cross-section and spin distribution measurement

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Behera, B. R.; Singh, Gulzar; Singh, Varinderjit; Madhavan, N.; Muralithar, S.; Nath, S.; Gehlot, J.; Mohanto, G.; Mukul, Ish; Siwal, D.; Thakur, M.; Kapoor, K.; Sharma, P.; Banerjee, T.; Jhingan, A.; Varughese, T.; Bala, Indu; Nayak, B. K.; Saxena, A.; Chatterjee, M. B.; Stevenson, P. D.

    2016-05-01

    Present work aims to explicate the effect of entrance channel mass asymmetry on fusion dynamics for the Compound Nucleus 80Sr populated through two different channels, 16O+64Zn and 32S+48Ti, using cross-section and spin distribution measurements as probes. The evaporation spectra studies for these systems, reported earlier indicate the presence of dynamical effects for mass symmetric 32S+48Ti system.The CCDEF and TDHF calculations have been performed for both the systems and an attempt has been made to explain the reported deviations in the α-particle spectrum for the mass symmetric system.

  6. Measurement of the absolute differential cross section for np elastic scattering at 194 MeV

    SciTech Connect

    Sarsour, M.; Peterson, T.; Planinic, M.; Vigdor, S. E.; Allgower, C.; Hossbach, T.; Jacobs, W. W.; Klyachko, A. V.; Rinckel, T.; Stephenson, E. J.; Wissink, S. W.; Zhou, Y.; Bergenwall, B.; Blomgren, J.; Johansson, C.; Klug, J.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.; Pomp, S.

    2006-10-15

    A tagged medium-energy neutron beam was used in a precise measurement of the absolute differential cross section for np backscattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with {+-}1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with the evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.

  7. New precision measurements of the 235U(n,γ) cross section.

    PubMed

    Jandel, M; Bredeweg, T A; Bond, E M; Chadwick, M B; Couture, A; O'Donnell, J M; Fowler, M; Haight, R C; Kawano, T; Reifarth, R; Rundberg, R S; Ullmann, J L; Vieira, D J; Wouters, J M; Wilhelmy, J B; Wu, C Y; Becker, J A

    2012-11-16

    The neutron capture cross section of (235)U was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to determine neutron capture and neutron-induced fission rates simultaneously. In the second measurement, a fission tagging detector was used with a thin actinide sample and detailed characteristics of the prompt-fission gamma rays were obtained. In the third measurement, the neutron scattering background was characterized using a sample of (208)Pb. The relative capture cross section was obtained from the experiment with the thick (235)U sample using a ratio method after the subtraction of the fission and neutron scattering backgrounds. Our result indicates errors that are as large as 30% in the 0.5-2.5 keV region, in the current knowledge of neutron capture as embodied in major nuclear data evaluations. Future modifications of these databases using the improved precision data given herein will have significant impacts in neutronics calculations for a variety of nuclear technologies.

  8. New Precision Measurements of the U235(n,γ) Cross Section

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.

    2012-11-01

    The neutron capture cross section of U235 was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to determine neutron capture and neutron-induced fission rates simultaneously. In the second measurement, a fission tagging detector was used with a thin actinide sample and detailed characteristics of the prompt-fission gamma rays were obtained. In the third measurement, the neutron scattering background was characterized using a sample of Pb208. The relative capture cross section was obtained from the experiment with the thick U235 sample using a ratio method after the subtraction of the fission and neutron scattering backgrounds. Our result indicates errors that are as large as 30% in the 0.5-2.5 keV region, in the current knowledge of neutron capture as embodied in major nuclear data evaluations. Future modifications of these databases using the improved precision data given herein will have significant impacts in neutronics calculations for a variety of nuclear technologies.

  9. Measurement of the $WW+WZ$ production cross section in a semileptonic decay mode at CDF

    SciTech Connect

    Hurwitz, Martina

    2010-03-01

    The measurement of the WW + WZ production cross section in a semileptonic decay mode is presented. The measurement is carried out with 4.6 fb-1 of integrated luminosity collected by the CDF II detector in √s = 1.96 TeV proton-antiproton collisions at the Tevatron. The main experimental challenge is identifying the signal in the overwhelming background from W+jets production. The modeling of the W+jets background is carefully studied and a matrix element technique is used to build a discriminant to separate signal and background. The cross section of WW + WZ production is measured to be σ(p$\\bar{p}$ → WW + WZ) = 16.5-3.0+3.3 pb, in agreement with the next-to-leading order theoretical prediction of 15.1 ± 0.9 pb. The significance of the signal is evaluated to be 5.4σ. This measurement is an important milestone in the search for the Standard Model Higgs boson at the Tevatron.

  10. Realizing the Opportunities of Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, Larry; Roberts, Kevin; Roeben, Martin; Rusnak, Brian; Hausmann, Marc; Reifarth, Rene; Vieira, Dave

    2005-05-24

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first-time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic,'' tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross sections.

  11. Direct measurement of the 22Ne(p,γ)23Na reaction cross section at LUNA

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico; LUNA Collaboration

    2016-06-01

    The 22Ne(p, γ)23Na reaction takes part in the NeNa cycle of hydrogen burning, influencing the production of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical novae. The 22Ne(p,γ)27Na reaction rate is very uncertain because of a large number of tentative resonances in the Gamow window, where only upper limits were quoted in literature. A direct measurement of the 22Ne(p, γ)23Na reaction cross section has been carried out at LUNA using a windowless differential-pumping gas target with two high- purity germanium (HPGe) detectors. A new measurement with a 4π bismuth germanate (BGO) summing detector is ongoing. During the HPGe phase of the experiment the strengths of the resonances at 156.2 keV, 189.5 keV and 259.7 keV have been directly measured for the first time and their contribution to the reaction rate has been calculated. The decay scheme of the newly discovered resonances has been established as well and some improved upper limits on the unobserved resonances have been put. The BGO detector with its 70% γ-detection efficiency allows to measure the cross section at lower energy. In order to further investigate the resonances at 71 keV and 105 keV and the direct-capture component, the data taking is ongoing.

  12. Reanalysis of radioisotope measurements of the 9Be(γ ,n )8Be cross section

    NASA Astrophysics Data System (ADS)

    Robinson, Alan E.

    2016-08-01

    The 9Be(γ ,n )8Be reaction is enhanced by a near-threshold 1 /2+ state. Contradictions between existing measurements of this reaction cross section affect calculations of astrophysical r -process yields, dark matter detector calibrations, and the theory of the nuclear structure of 9Be. Select well-documented radioisotope 9Be(γ ,n ) source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections without the large systematic errors from recent beamline experiments [Arnold, Clegg, Iliadis, Karwowski, Rich, Tompkins, and Howell, Phys. Rev. C 85, 044605 (2012), 10.1103/PhysRevC.85.044605; Utsunomiya, Katayama, Gheorghe, Imai, Yamaguchi, Kahl, Sakaguchi, Shima, Takahisa, and Miyamoto, Phys. Rev. C 92, 064323 (2015), 10.1103/PhysRevC.92.064323]. A single-level Breit-Wigner fit of these corrected measurement yields are ER=1736.8 (18 ) keV, Γγ=0.742 (25 ) eV, and Γn=252 (17 ) keV for the 1 /2+ state, excluding a virtual state solution.

  13. A Measurement of Inclusive Quasielastic Electron Cross Sections at X > 1 and High Q{sup 2}

    SciTech Connect

    Thomas Petitjean

    2002-07-01

    Experiment E89-008 measured inclusive electron scattering cross sections from different nuclei in Hall C at Jefferson Laboratory. Cross sections on the low energy loss side of the quasi-elastic peak (x{sub Bj} > 1) are extracted for carbon, aluminum, iron and gold. The data cover four-momentum transfers squared of 0:97 to 5:73 GeV 2 =c 2 . The measured cross sections are compared to cross sections calculated using a microscopic spectral function. The cross section results are also analyzed in terms of the two scaling functions F (y) and f( psi ). For both the data is found to be independent of the momentum transfer (scaling of the first kind). For f( psi ) the data is in addition independent of the mass number A (scaling of the second kind) and thus exhibits superscaling properties.

  14. Partial gamma-ray cross section measurements in 109Ag(n, x n y p gamma) reactions

    SciTech Connect

    Fotiadis, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; Carroll, James

    2015-06-02

    We report on absolute partial cross sections for production of discrete γ-rays using 109Ag(n, xnypγ) reactions with x ≤ 7 and y ≤ 1 in a total of 12 reaction channels. The data were taken using the GEANIE spectrometer comprised of 20 high-purity Ge detectors with 20 BGO escape-suppression shields. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center’s (LANSCE) WNR facility provided neutrons in the energy range from 0.2 to 300 MeV. The time-of- flight technique was used to determine the incident neutron energies. Partial γ-ray cross sections have been measured for a total of 109 transitions and for neutron energies 0.8 MeV< En<300 MeV. An estimate of the population of isomers in the (n, n'), (n, 2n) and (n, 3n) channels was made.

  15. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    NASA Astrophysics Data System (ADS)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  16. A new method for measuring absolute total electron-impact cross sections with forward scattering corrections

    SciTech Connect

    Ma, C.; Liescheski, P.B.; Bonham, R.A. )

    1989-12-01

    In this article we describe an experimental technique to measure the total electron-impact cross section by measurement of the attenuation of an electron beam passing through a gas at constant pressure with the unwanted forward scattering contribution removed. The technique is based on the different spatial propagation properties of scattered and unscattered electrons. The correction is accomplished by measuring the electron beam attenuation dependence on both the target gas pressure (number density) and transmission length. Two extended forms of the Beer--Lambert law which approximately include the contributions for forward scattering and for forward scattering plus multiple scattering from the gas outside the electron beam were developed. It is argued that the dependence of the forward scattering on the path length through the gas is approximately independent of the model used to describe it. The proposed methods were used to determine the total cross section and forward scattering contribution from argon (Ar) with 300-eV electrons. Our results are compared with those in the literature and the predictions of theory and experiment for the forward scattering and multiple scattering contributions. In addition, Monte Carlo simulations were performed as a further test of the method.

  17. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  18. (α ,γ ) cross section measurements in the region of light p nuclei

    NASA Astrophysics Data System (ADS)

    Quinn, S. J.; Spyrou, A.; Simon, A.; Battaglia, A.; Bowers, M.; Bucher, B.; Casarella, C.; Couder, M.; DeYoung, P. A.; Dombos, A. C.; Görres, J.; Kontos, A.; Li, Q.; Long, A.; Moran, M.; Paul, N.; Pereira, J.; Robertson, D.; Smith, K.; Smith, M. K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.

    2015-10-01

    The 90Zr(α ,γ )94Mo,92Zr(α ,γ )96Mo, and 74Ge(α ,γ )78Se reaction cross sections were measured for the first time in an effort to expand the existing experimental database for (α ,γ ) reactions relevant for the production of p nuclei in the universe. In particular, the 90Zr(α ,γ )94Mo reaction was identified by a sensitivity study for its potential impact on the γ -process mass flow in the region of light p nuclei. The measurements were performed for energies Eα=9.5 - 12.0 MeV at the University of Notre Dame using the SuN detector and the γ -summing technique. The results are compared to theoretical calculations from the talys and non-smoker nuclear reaction codes, and it is shown that the data greatly reduce the uncertainty in the cross section for the measured energies. The talys parameters that provide the best description of the experimental data are reported.

  19. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  20. CC-inclusive cross section measured with the T2K near detector

    SciTech Connect

    Weber, Alfons

    2015-05-15

    T2K has performed the first measurement of muon neutrino inclusive charged current interactions on carbon at neutrino energies of ∼1 GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 1.08*10{sup 20} protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is <σ{sub CC}> = (6.91±0.13(stat)±0.84(syst)) 10{sup −39} cm{sup 2}/nucleon for a mean neutrino energy of 0.85 GeV.

  1. Measurement of the hadronic cross section in electron-positron annihilation

    SciTech Connect

    Clearwater, S.

    1983-11-01

    This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given.

  2. 232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.

    2008-07-01

    The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.

  3. Measurement of the Single Top Quark Production Cross Section at CDF

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    We report a measurement of the single top quark production cross section in 2.2 fb{sup -1} of p{bar p} collision data collected by the Collider Detector at Fermilab at {radical}s = 1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2{sub -0.6}{sup +0.7}(stat+sys) pb, extract the CKM matrix element value |V{sub tb}| = 0.88{sub -0.12}{sup +0.13}(stat + sys) {+-} 0.07(theory), and set the limit |V{sub tb}| > 0.66 at the 95% C.L.

  4. Measurements of the $ZZ$ production cross sections in the $$2\\ell2\

    DOE PAGES

    Khachatryan, Vardan

    2015-10-29

    Measurements of the ZZ production cross sections in proton–proton collisions at center-of-mass energies of 7 and 8 TeV are presented. We found that candidate events for the leptonic decay mode ZZ → 2l2ν, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)fb-1 at 7 (8) TeV collected with the CMS experiment. The measured cross sections, σ(pp → ZZ)=5.1+1.5-1.4(stat)+1.4-1.1(syst)±0.1(lumi)pb at 7 TeV, and 7.2+0.8-0.8(stat)+1.9-1.5(syst)±0.2(lumi)pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. Furthermore, the selected data are analyzed to search formore » anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. As a result, these limits are then combined with the previously published CMS results for ZZ in 4l final states, yielding the most stringent constraints on the anomalous couplings.« less

  5. Measurement of the single-top-quark production cross section at CDF.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schall, I; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-12-19

    We report a measurement of the single-top-quark production cross section in 2.2 fb;{-1} of pp collision data collected by the Collider Detector at Fermilab at sqrt[s]=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2(-0.6)(+0.7)(stat+syst) pb, extract the Cabibbo-Kobayashi-Maskawa matrix-element value |V(tb)|=0.88(-0.12)(+0.13)(stat+syst)+/-0.07(theory), and set the limit |V(tb)|>0.66 at the 95% C.L.

  6. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    SciTech Connect

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-02

    The cross sections of the {sup 162}Er(α,γ){sup 166}Yb and {sup 162,164,166}Er(α,n){sup 165,167,169}Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between E{sub c.m.} = 11.21 MeV and E{sub c.m.} = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T{sub 9} = 3 GK). The {sup 162}Er(α,n){sup 165}Yb, {sup 164}Er(α,n){sup 167}Yb and {sup 166}Er(α,n){sup 169}Yb reactions were studied between E{sub c.m.} = 12.19 and 16.09 MeV, E{sub c.m.} = 13.17 and 16.59 MeV and E{sub c.m.} = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  7. Excitation Cross Section Measurement for n=3 to n=2 Line Emission in Fe17+ to Fe23+

    SciTech Connect

    Chen, H; Gu, M F; Beiersdorfer, P; Boyce, K R; Brown, G V; Kahn, S M; Kelley, R L; Kilbourne, C A; Porter, F S; Scofield, J H

    2006-02-08

    The authors report the measurement of electron impact excitation cross sections for the strong iron L-shell 3 {yields} 2 lines of Fe XVIII through Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and a 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture through a sophisticated model analysis which results in the excitation cross section for 48 lines at multiple electron energies. They also studied the electron density dependent nature of the emission lines, which is demonstrated by the effective excitation cross section of the 3d {yields} 2p transition in Fe XXI.

  8. Measurement of the forward Z boson production cross-section in pp collisions at TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcìa Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A measurement of the production cross-section for Z bosons that decay to muons is presented. The data were recorded by the LHCb detector during pp collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb-1. The cross-section is measured for muons in the pseudorapidity range 2 .0 < η < 4 .5 with transverse momenta p T > 20 GeV /c. The dimuon mass is restricted to 60 < M μ + μ - < 120 GeV /c 2. The measured cross-section is

  9. Two-photon absorption cross section measurement in the gamma band system of nitric oxide

    SciTech Connect

    Burris, J.F. Jr.

    1982-01-01

    A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.

  10. Measurement of 173Lu(n,γ) Cross Sections at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.

    2014-05-01

    A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.

  11. The First Measurement of the Left-Right Cross Section Asymmetry in Z Boson Production

    SciTech Connect

    Ben-David, R

    2004-01-06

    The first measurement of the left-right cross section asymmetry (A{sub LR}) in Z{sup 0} boson production has been made with the SLAC Large Detector (SLD) at the SLAC Linear Collider (SLC). The measurement was performed at a center-of-mass energy (E{sub cm}) of 91.55 GeV with a longitudinally polarized electron beam. The average beam polarization was (22.4 {+-} 0.6)%. Using a sample of 10,224 Z{sup 0} decays, A{sub LR} is measured to be 0.102 {+-} 0.O44(stat) {+-} 0.003(syst), which determines the effective electroweak mixing angle to be sin{sup 2} {theta}{sub W}{sup eff} = 0.2375 {+-} 0.0056(stat) {+-} 0.0004(syst).

  12. First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Antonello, M.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fleming, B.; Greenlee, H.; Guenette, R.; Haug, S.; Horton-Smith, G.; James, C.; Klein, E.; Lang, K.; Laurens, P.; Linden, S.; McKee, D.; Mehdiyev, R.; Page, B.; Palamara, O.; Partyka, K.; Patch, A.; Rameika, G.; Rebel, B.; Rossi, B.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G.

    2012-04-01

    The ArgoNeuT Collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beam line at Fermilab, the flux-integrated results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, 0°<θμ<36° and 0measurements allow tests of low-energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.

  13. First measurements of inclusive muon neutrino charged current differential cross sections on argon.

    PubMed

    Anderson, C; Antonello, M; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Guenette, R; Haug, S; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Linden, S; McKee, D; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Patch, A; Rameika, G; Rebel, B; Rossi, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G

    2012-04-20

    The ArgoNeuT Collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beam line at Fermilab, the flux-integrated results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, 0°<θ(μ)<36° and 0measurements allow tests of low-energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.

  14. A precise measurement of the left-right cross section asymmetry in Z boson production

    SciTech Connect

    Lath, A.

    1994-09-01

    The thesis presents a measurement of the left-right asymmetry, A{sub LR}, n the production cross section of Z Bosons produced by e{sup +}e{sup -} annihilations, using polarized electrons, at a center of mass energy of 91.26 Gev. The data presented was recorded by the SLD detector at the SLAC Linear Collider during the 1993 run. The mean luminosity-weighted polarization of the electron beam was {rho}{sup lum} = (63.0{+-}1.1)%. Using a sample of 49,392 Z events, we measure A{sub LR} to be 0.1626{+-}0.0071(stat){+-}0.0030(sys.), which determined the effective weak mixing angle to be sin{sup 2} {theta}{sub W}{sup eff} = 0.2292{+-}0.0009(stat.){+-}0.0004(sys.). This result differs from that expected by the Standard Model of Particles and Fields by 2.5 standard deviations.

  15. Measurement of the ratio σ{tt}/σ{Z/γ{*}→ll} and precise extraction of the tt cross section.

    PubMed

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-07-01

    We report a measurement of the ratio of the tt to Z/γ{*} production cross sections in sqrt[s]=1.96  TeV pp collisions using data corresponding to an integrated luminosity of up to 4.6  fb{-1}, collected by the CDF II detector. The tt cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ{*}→ll cross section predicted by the standard model, the extracted tt cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σ{tt}=7.70±0.52  pb, for a top-quark mass of 172.5  GeV/c{2}.

  16. Measured Total Cross Sections of Slow Neutrons Scattered by Solid Deuterium and Implications for Ultracold Neutron Sources

    SciTech Connect

    Atchison, F.; Blau, B.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kirch, K.; Kohlbrecher, J.; Kuehne, G.; Konter, J.A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuzniak, M.; Geltenbort, P.; Zmeskal, J.

    2005-10-28

    The total scattering cross sections for slow neutrons with energies in the range 100 neV to 3 meV for solid ortho-{sup 2}H{sub 2} at 18 and 5 K, frozen from the liquid, have been measured. The 18 K cross sections are found to be in excellent agreement with theoretical expectations and for ultracold neutrons dominated by thermal up scattering. At 5 K the total scattering cross sections are found to be dominated by the crystal defects originating in temperature induced stress but not deteriorated by temperature cycles between 5 and 10 K.

  17. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  18. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  19. 232Th(n,{gamma})233Th Thermal Reaction Cross-Section Measurement

    SciTech Connect

    Maidana, Nora L.; Vanin, Vito R.; Pascholati, Paulo R.; Helene, Otaviano; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2005-05-24

    The 232Th(n,{gamma})233Th thermal neutron-capture reaction cross section was measured using targets of {approx} 1.5 mg of high-purity metallic thorium irradiated in the IPEN IEA-R1m 5 MW pool research reactor. The 197Au(n,{gamma})198Au reaction was used to monitor the thermal and epithermal neutron fluxes in the irradiation position, which was found using the Westcott formalism. The residual gamma-ray activity was followed with an HPGe detector. The detector efficiency curve was fitted by the least-squares method applying covariance analysis to all uncertainties involved. The experimental result is {sigma}0 =7.20{+-}0.20 b, in agreement with previous published values.

  20. New measurement of the 3He(α,γ)7Be cross section at medium energies

    NASA Astrophysics Data System (ADS)

    Carmona-Gallardo, M.; Nara Singh, B. S.; Borge, M. J. G.; Briz, J. A.; Cubero, M.; Fulton, B. R.; Fynbo, H.; Gordillo, N.; Hass, M.; Haquin, G.; Maira, A.; Nácher, E.; Nir-El, Y.; Kumar, V.; McGrath, J.; Muñoz-Martín, A.; Perea, A.; Pesudo, V.; Ribeiro, G.; Sánchez del Rio, J.; Tengblad, O.; Yaniv, R.; Yungreis, Z.

    2012-09-01

    We report on a new cross-section measurement for the 3He(α, γ)7Be reaction at three medium energies of Ec.m. between 1 and 3 MeV. The interest stems from the significant role played by the reaction in calculating an accurate solar neutrino flux and the primordial 7Li abundance. The energy dependence of the astrophysical S34 factor observed in the present work, especially above 1 MeV, highlights the need to constrain theories in order to obtain a precise extrapolated value for S34(0). In this context, a comparison with the recent theoretical work in a fully microscopic fermionic molecular dynamics approach and a few other representative calculations emphasize the need for further experimental as well as theoretical work to resolve the existing conflicts.

  1. Cross section measurements for γ-process studies using a LEPS detector

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, GG; Rauscher, T.; Török, Zs; Halász, Z.; Fülöp, Zs; Gyürky, Gy; Somorjai, E.

    2016-01-01

    In this paper we present the ongoing experiments at ATOMKI related to our systematic γ-process studies. These studies are intended to enlarge the limited experimental database from α-induced reactions on nuclei in the heavier mass range of the γ -process. In all presented cases the activation method was used. The details of the cross section measurements and preliminary results on115In(α,n)118mSb, 115In(α,γ)119Sb 162Er(α,n)165Yb, 162Er(α,γ)166Yb, 164Er(α,n)167Yb, 166Er(α,n)169Yb 191Ir(α,n)194Au, 191Ir(α,γ)195Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions are presented.

  2. Initial Measurement of the Inclusive Jet Cross Section at 10 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Rose, Keith

    2010-02-01

    A plan for the measurement of the differential inclusive jet production cross section at the Compact Muon Solenoid experiment (CMS) assuming 10/pb of integrated luminosity from proton-proton collisions at a center of mass energy of 10 TeV is presented. The reach in transverse jet momentum is beyond any previous collider experiment and the TeV scale of jet physics can be probed. The analysis is performed on fully simulated CMS events which are adopted as pseudo data. Jets are reconstructed from calorimeter energy depositions with two different algorithms; Inclusive kT and Seedless Infrared-Safe Cone. The steps for the spectrum construction from triggered events are described in detail and the major experimental and theoretical uncertainties are discussed. A simple noise rejection cut is also proposed for the purpose of event cleanup. )

  3. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  4. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  5. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect

    Russo, A.

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  6. Measurements of the $ZZ$ production cross sections in the $2\\ell2\

    SciTech Connect

    Khachatryan, Vardan

    2015-10-29

    Measurements of the ZZ production cross sections in proton–proton collisions at center-of-mass energies of 7 and 8 TeV are presented. We found that candidate events for the leptonic decay mode ZZ → 2l2ν, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)fb-1 at 7 (8) TeV collected with the CMS experiment. The measured cross sections, σ(pp → ZZ)=5.1+1.5-1.4(stat)+1.4-1.1(syst)±0.1(lumi)pb at 7 TeV, and 7.2+0.8-0.8(stat)+1.9-1.5(syst)±0.2(lumi)pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. Furthermore, the selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. As a result, these limits are then combined with the previously published CMS results for ZZ in 4l final states, yielding the most stringent constraints on the anomalous couplings.

  7. Absolute Rb one-color two-photon ionization cross-section measurement near a quantum interference

    SciTech Connect

    Takekoshi, T.; Brooke, G.M.; Patterson, B.M.; Knize, R.J.

    2004-05-01

    We observe destructive interference in the ground-state Rb two-photon ionization cross section when the single photon energy is tuned between the 5S{yields}5P and 5S{yields}6P transition energies. The minimum cross section is 5.9(1.5)x10{sup -52} cm{sup 4} s and it occurs at a wavelength of 441.0(3) nm (in vacuo). Relative measurements of these cross sections are made at various wavelengths by counting ions produced when magneto-optically trapped Rb atoms are exposed to light from a tunable pulsed laser. This relative curve is calibrated to an absolute cross-section measurement at 532 nm using the trap loss method. A simple calculation agrees reasonably with our results.

  8. Electron Impact Excitation Cross Section Measurement for n=3 to n=2 Line Emission in Fe(17+) to Fe(23+)

    NASA Technical Reports Server (NTRS)

    Chen, H.; Beiersdorfer, P.; Brown, G. V.; Scofield, J. H.; Gu, M. F.; Kahn, S. M.; Boyce, K. R.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2006-01-01

    We have measured the electron impact excitation cross sections for the strong iron L-shell 3 --> 2 lines of Fe XVIII to Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Centers 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture through a sophisticated model analysis which results in the excitation cross section for the strong Fe L-shell lines at multiple electron energies. This measurement is part of a laboratory X-ray astrophysics program utilizing the Livermore electron beam ion traps EBIT-I and EBIT-II.

  9. Electron Impact Excitation Cross Section Measurement for n=3 to n=2 Line Emission in Fe17+ to Fe23+

    SciTech Connect

    Chen, H; Beiersdorfer, P; Brown, G V; Scofield, J; Gu, M F; Kahn, S M; Boyce, K; Kelley, R; Kilbourne, C; Porter, F S

    2006-04-20

    We have measured the electron impact excitation cross sections for the strong iron L-shell 3 {yields} 2 lines of Fe XVIII to Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Centers 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture through a sophisticated model analysis which results in the excitation cross section for the strong Fe L-shell lines at multiple electron energies. This measurement is part of a laboratory X-ray astrophysics program utilizing the Livermore electron beam ion traps EBIT-I and EBIT-II.

  10. Measurement of the Proton-Air Cross Section at s=57TeV with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almeda, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-08-01

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)-36+28(syst)]mb is found.

  11. A study of the ability of the D0 detector to measure the single jet inclusive cross section

    SciTech Connect

    Astur, R.V.

    1992-12-31

    The D0 experiment began accumulating data at the Fermilab Tevatron in May of 1992. Protons are collided with antiprotons at {radical}s = 1.8 TeV and an expected peak luminosity of 5 {times} 10{sup 30} cm{sup {minus}2} sec{sup {minus}1}. The D0 detector is an all-purpose detector that will have exceptional jet reconstruction capabilities derived from superior calorimetry and nearly 4{pi} angular coverage. One of the many physics measurements that will be made at D0 is the inclusive jet cross section. Comparison of this cross section with theoretical predictions allows us to test the accuracy of the standard model of Quantum Chromodynamics (QCD). This comparison is usually in the form of a measurement of the differential cross section with respect to the transverse energy of the jet. The extended angular coverage of the D0 detector allows measurements of the differential cross section as a function of jet rapidity as well. Recently completed calculations of the next-to-leading-order contribution to the inclusive cross section result in predictions with reduced theoretical errors. In addition, recent fits to data from deep inelastic scattering and single photon experiments further restrict the quark and gluon structure functions of the proton which are necessary in the theoretical predictions of the cross section. It may be that an experimental measurement of the inclusive cross section would favor some of these fits over others. We have studied extensive computer simulations of both the Tevatron and the D0 detector in order to determine D0`s ability to reconstruct the inclusive cross section. We present a discussion of this analysis as presently understood.

  12. Optical coherent tomography: promising in vivo measurement of hair shaft cross section

    NASA Astrophysics Data System (ADS)

    Garcia Bartels, Natalie; Stieler, Karola; Richter, Heike; Patzelt, Alexa; Lademann, Jürgen; Blume-Peytavi, Ulrike

    2011-09-01

    Variations in hair shaft morphology reflect ethnical diversity, but may also indicate internal diseases, nutritional deficiency, or hair and scalp disorders. The measurement and the follow-up of the hair shaft thickness over a defined period of time would be a valuable diagnostic tool in clinical practice. Standard light microscopy (LM) measurements require the epilation of hair shafts and frequently yield inaccurate values caused by the elliptic geometry of human hair shafts. Optical coherence tomography (OCT) is a noninvasive investigation method based on the principles of Michelson interferometry with a detection depth of approximately 1 mm in human skin. Two-dimensional images of the cross sections of tissue samples at a resolution of approximately 10 μm are produced, which allows convenient calculation of hair shaft thickness. To evaluate this new methodology for hair shaft thickness measurements, hair shafts taken from 28 healthy volunteers were analyzed by in vivo OCT and compared to standard in vitro LM measurements of hair shaft thickness. OCT yielded highly reproducible measurements of hair shaft thickness with a distinctly reduced variation compared to standard LM. This technique offers a unique opportunity for in vivo measurement and a follow-up of the kinetics of hair shaft thickness in humans during medical therapy.

  13. Cross section measurements of deuteron induced nuclear reactions on natural titanium up to 34 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-09-01

    Experimental cross sections for deuteron induced nuclear reactions on natural titanium were measured, using the stacked-foil technique and gamma spectrometry, up to 34 MeV with beams provided by the ARRONAX cyclotron. The experimental cross section values were monitored using the (nat)Ti(d,x)(48)V reaction, recommended by the IAEA. The excitation functions for (nat)Ti(d,x)(44m,46,47,48)Sc are presented and compared with the existing ones and with the TALYS 1.6 code calculations using default models. Our experimental values are in good agreement with data found in the literature. TALYS 1.6 is not able to give a good estimation of the production cross sections investigated in this work. These production cross sections of scandium isotopes fit with the new Coordinated Research Project (CRP) launched by the International Atomic Energy Agency (IAEA) to expand the database of monitor reactions. PMID:26103622

  14. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect

    Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  15. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  16. Methods for obtaining true particle size distributions from cross section measurements

    SciTech Connect

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  17. Measurements of top quark pair production cross section and search for resonances at Tevatron

    SciTech Connect

    Rossin, Roberto; /Florida U. /Fermilab

    2006-01-01

    We present the measurement of the top pair production cross-section at Tevatron in p-pbar collisions at 1.96 TeV. We also compare selected kinematical distributions with the predictions of the Standard Model. In the dilepton mode, we select events with two charged leptons, high missing transverse energy and at least 2 jets. In the lepton+jets mode, we select events with one charged lepton, high missing transverse energy and at least 3 jets. We present several complementary measurements using kinematic discrimination and/or b-tagging. In the all-hadronic channel, we select events with {ge}6 jets and {le}8 jets. We present a measurement using an optimized kinematic selection and events with one or more displaced secondary vertices. We also report on the search for non-standard model resonance states in the invariant mass spectrum of top pairs in lepton+jets events. We present two complementary measurements, one adopts an event reconstruction technique that uses matrix element information to increase the sensitivity for discovery, the other performs a constrained kinematic fit and requires b-tagging.

  18. Measurement of the top pair production cross section at CDF using neural networks

    NASA Astrophysics Data System (ADS)

    Marginean, Radu

    In the Tevatron accelerator at Fermilab protons and antiprotons are collided at a 1.96 TeV center of mass energy. CDF and DO are the two experiments currently operating at the Tevatron. At these energies top quark is mostly produced via strong interactions as a top anti-top pair ( tt¯). The top quark has an extremely short lifetime and according to the Standard Model it decays with ˜100% probability into a b quark and a W boson. In the "lepton + jets" channel, the signal from top pair production is detected for those events where one of the two W bosons decays hadronically in two quarks which we see as jets in the detector, and the other W decays into a electrically charged lepton and a neutrino. A relatively unambiguous identification in the detector is possible when we require that the charged lepton must be an electron or muon of either charge. The neutrino does not interact in the detector and its presence is inferred from an imbalance in the transverse energy of the event. We present a measurement of the top pair production cross section in pp¯ collisions at 1.96 TeV, from a data sample collected at CDF between March 2002 and September 2003 with an integrated luminosity of 193.5 pb-1 . In order to bring the signal to background ratio at manageable levels, measurements in this channel traditionally use precision tracking information to identify at least one secondary vertex produced in the decay of a long lived b hadron. A different approach is taken here. Because of the large mass of the top quark, tt¯ events tend to be more spherical and more energetic than most of the background processes which otherwise mimic the tt¯ signature in the "lepton + jets" channel. A number of energy based and event shape variables can be used to statistically discriminate between signal and background events. Monte Carlo simulation is used to model the kinematics of tt¯ and most of the background processes. A neural network technique is employed to combine multiple

  19. Determination of the Strong Coupling Constant and Multijet Cross Section Ratio Measurements

    SciTech Connect

    Wobisch, M.

    2011-06-01

    Concepts and results of determinations of the strong coupling in hadron collisions are discussed. A recent {alpha}{sub s} result from the inclusive jet cross section in p{bar p} collisions at {radical}s = 1.96 TeV is presented which is based on perturbative QCD calculations beyond next-to-leading order. Emphasis is put on the consistency of the conceptual approach. Conceptual limitations in the approach of extracting as from cross section data are discussed and how these can be avoided by using observables that are defined as ratios of cross sections. For one such observable, the multijet cross section ratio R{sub 3/2}, preliminary results are presented.

  20. Measurement of Deeply Virtual Compton Scattering (DVCS) cross sections with CLAS

    SciTech Connect

    Hyon-Suk Jo

    2012-04-01

    Extraction of DVCS unpolarized and polarized cross sections in the largest kinematic domain ever explored in the valence region. Results are in good agreement with GPD model (VGG) predictions. Extraction of Compton Form Factors (M. Guidal) by fitting simultaneously these unpolarizedand polarized cross sections gives a large set of results in a very large kinematic domain for Re(H ) and Im(H ). Analysis of the data from the second part of the e1-DVCS experiment underway.

  1. Radar cross-section measurements of ice particles using vector network analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Ge, Junxiang; Zhang, Qilin; Li, Xiangchao; Wei, Ming; Yang, Zexin; Liu, Yan-An

    2016-09-01

    We carried out radar cross-section (RSC) measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates) and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  2. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  3. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  4. Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique

    SciTech Connect

    Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.; DeSimone, David J.; McKittrick, Thomas M.; Ji, Chuncheng; Tremblay, Steven E.; Roldan, Carlos; Chen Xudong; Kim, Don S.

    2005-05-24

    The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van de Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.

  5. The T2K CCQE selection and prospects for CCQE, NCE cross-section measurements

    SciTech Connect

    Ruterbories, Daniel

    2015-05-15

    A better understanding of the charge current quasi-elastic (CCQE) interaction channel will lead to a more precise ν{sub e} appearance and ν{sub μ} disappearance measurement at T2K. Measurements looking at the CCQE interaction using the near detector complex (ND280) help constrain cross-section uncertainties as well as the flux prediction at the far detector, Super-Kamiokande. The presented CCQE analysis is derived from a CC-inclusive selection using the tracking portion of ND280. The inclusive sample is broken into a CCQE-enhanced and CC non-QE like sample and each sample is used to constrain various parameters used for the far detector prediction. Future CCQE analyses using the tracker will either use the current selection or investigate newer selections for 2 track topologies. The neutral current equivalent to CCQE, neutral current elastic scattering (NCE), is being investigated using the pi-zero detector (POD). The NCE analysis selects a contained single track sample using muon/proton particle identification.

  6. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  7. Measuring the acute cardiovascular effects of shisha smoking: a cross-sectional study

    PubMed Central

    Jaffery, Ali; Haq, Adnaan; Bacon, Jenny; Madden, Brendan

    2014-01-01

    Objectives To investigate the acute cardiovascular effects of smoking shisha. Design A cross-sectional study was carried out in six shisha cafes. Participants smoked shisha for a period between 45 min (minimum) and 90 min (maximum). The same brand of tobacco and coal was used. Setting London, UK. Participants Participants were those who had ordered a shisha to smoke and consented to have their blood pressure, heart rate and carbon monoxide levels measured. Excluded subjects were those who had smoked shisha in the previous 24 h, who smoke cigarettes or who suffered from cardiorespiratory problems. Main outcome measures Blood pressure was measured using a sphygmomanometer. Pulse was measured by palpation of the radial artery. Carbon monoxide levels were obtained via a carbon monoxide monitor. These indices were measured before the participants began to smoke shisha and after they finished or when the maximum 90 min time period was reached. Results Mean arterial blood pressure increased from 96 mmHg to 108 mmHg (p < 0.001). Heart rate increased from 77 to 91 bpm (p < 0.001). Carbon monoxide increased from an average of 3 to 35 ppm (p < 0.001). A correlation analysis showed no relationship between carbon monoxide and the other indices measured. Conclusion The acute heart rate, blood pressure and carbon monoxide levels were seen to rise significantly after smoking shisha. The weak correlation between carbon monoxide levels and the other variables suggests that carbon monoxide levels had not contributed to their significant increase. PMID:25057403

  8. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  9. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  10. Report on 240Am(n,x) surrogate cross section test measurement

    SciTech Connect

    Ressler, J J; Burke, J T; Gostic, J; Bleuel, D; Escher, J E; Henderson, R A; Koglin, J; Reed, T; Scielzo, N D; Stoyer, M A

    2012-02-01

    The main goal of the test measurement was to determine the feasibility of the {sup 243}Am(p,t) reaction as a surrogate for {sup 240}Am(n,f). No data cross section data exists for neutron induced reactions on {sup 240}Am; the half-life of this isotope is only 2.1 days making direct measurements difficult, if not impossible. The 48-hour experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in August 2011. A description of the experiment and results is given. The beam energy was initially chosen to be 39 MeV in order to measure an equivalent neutron energy range from 0 to 20 MeV. However, the proton beam was not stopped in the farady cup and the beam was deposited in the surrounding shielding material. The shielding material was not conductive, and a beam current, needed for proper tuning of the beam as well as experimental monitoring, could not be read. If the {sup 240}Am(n,f) surrogate experiment is to be run at LBNL, simple modifications to the beam collection site will need to be made. The beam energy was reduced to 29 MeV, which was within an energy regime of prior experiments and tuning conditions at STARS/LIBERACE. At this energy, the beam current was successfully tuned and measured. At 29 MeV, data was collected with both the {sup 243}Am and {sup 238}U targets. An example particle identification plot is shown in Fig. 1. The triton-fission coincidence rate for the {sup 243}Am target and {sup 238}U target were measured. Coincidence rates of 0.0233(1) cps and 0.150(6) cps were observed for the {sup 243}Am and {sup 238}U targets, respectively. The difference in count rate is largely attributed to the available target material - the {sup 238}U target contains approximately 7 times more atoms than the {sup 243}Am. A proton beam current of {approx}0.7 nA was used for measurements on both targets. Assuming a full experimental run under similar conditions, an estimate for the

  11. Measurement of proton production cross sections of {sup 10}Be and {sup 26}Al from elements found in lunar rocks

    SciTech Connect

    Sisterson, J.M.; Kim, K.; Englert, P.A.J.

    1996-07-01

    Cosmic rays penetrate the lunar surface and interact with the lunar rocks to produce both radionuclides and stable nuclides. Production depth profiles for long-lived radionuclides produce in lunar rocks are measured using Accelerator Mass Spectrometry (AMS). For a particular radionuclide these production depth profiles can be interpreted to give an estimate for the solar proton flux over a time period characterized by the half life of the radionuclide under study. This analysis is possible if and only if all the cross sections for the interactions of all cosmic ray particles with all elements found in lunar rocks are well known. In practice, the most important cross sections needed are the proton production cross sections, because 98% of solar cosmic rays and {similar_to}87% of galactic cosmic rays are protons. The cross sections for the production of long-lived radionuclides were very difficult to measure before the development of AMS and only in recent years has significant progress been made in determining these essential cross sections. Oxygen and silicon are major constituents of lunar rocks. We have reported already {sup 14}C production cross sections from O and Si for proton energies 25-500 MeV, and O(p,x){sup 10}Be from 58 160 MeV[6]. Here we present new measurements for the cross sections O(p,x){sup 10}Be,O(p,x){sup 7}Be, Si(p,x){sup 7}Be,Si(p,x){sup 26}Al, and Si(p,x){sup 22}Na from {approximately}30 - 500 MeV.

  12. Measurement of proton production cross sections of (sup 10)Be and (sup 26)Al from elements found in lunar rocks

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K.; Englert, P. A. J.; Caffee, M.; Jull, A. J. T.; Donahue, D. J.; McHargue, L.; Castaneda, C.; Vincent, J.; Reedy, R. C.

    1996-01-01

    Cosmic rays penetrate the lunar surface and interact with the lunar rocks to produce both radionuclides and stable nuclides. Production depth profiles for long-lived radionuclides produce in lunar rocks are measured using Accelerator Mass Spectrometry (AMS). For a particular radionuclide these production depth profiles can be interpreted to give an estimate for the solar proton flux over a time period characterized by the half life of the radionuclide under study. This analysis is possible if and only if all the cross sections for the interactions of all cosmic ray particles with all elements found in lunar rocks are well known. In practice, the most important cross sections needed are the proton production cross sections, because 98% of solar cosmic rays and (similar to)87% of galactic cosmic rays are protons. The cross sections for the production of long-lived radionuclides were very difficult to measure before the development of AMS and only in recent years has significant progress been made in determining these essential cross sections. Oxygen and silicon are major constituents of lunar rocks. We have reported already C-14 production cross sections from O and Si for proton energies 25-500 MeV, and O(p,x)(sup 10)Be from 58 160 MeV[6]. Here we present new measurements for the cross sections O(p,x)Be-10,O(p,x)Be-7, Si(p,x)Be-7,Si(p,x)Al-26, and Si(p,x)Na-22 from approximately 30 - 500 MeV.

  13. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  14. Design status of KOBRA for rare isotope production and direct measurements of radiative capture cross sections

    NASA Astrophysics Data System (ADS)

    Tshoo, K.; Chae, H.; Park, J.; Moon, J. Y.; Kwon, Y. K.; Souliotis, G. A.; Hashimoto, T.; Akers, C.; Berg, G. P. A.; Choi, S.; Jeong, S. C.; Kato, S.; Kim, Y. K.; Kubono, S.; Lee, K. B.; Moon, C.-B.

    2016-06-01

    KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus) facility being designed at Rare Isotope Science Project in Korea will be utilized to produce rare isotope beams by employing multi-nucleon transfer reactions at about 20 MeV/nucleon for studies of nuclear structure. KOBRA will also provide high suppression of beam induced background for direct measurements of radiative-capture cross sections in the astrophysical energy range. The present design status of the KOBRA facility is reported along with a brief introduction to the facility. We have studied the feasibility of production of 44Ti based on the present design of KOBRA as an example, and calculated the intensity of 44Ti secondary beam, to be about 105 particles per second, for 1 pnA 46Ti primary beam with a carbon target for a beam energy of 25 MeV/nucleon. A Monte Carlo simulation with a ray-tracing code has been performed to show that recoil products 66Se are well separated from a 65As beam by KOBRA for the 65As (p, γ)66Se reaction at a beam energy of 1 MeV/nucleon.

  15. Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, V. N.; Farrington, S.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ranjan, N.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; CDF Collaboration

    2014-04-01

    We combine six measurements of the inclusive top-quark pair (tt ¯) production cross section (σtt ¯) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at √s =1.96 TeV. The data correspond to integrated luminosities of up to 8.8 fb-1. We obtain a value of σtt ¯=7.60±0.41 pb for a top-quark mass of mt=172.5 GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35-0.33+0.28 pb at next-to-next-to-leading order and next-to-next-to leading logarithms in perturbative QCD.

  16. Measurements of partial cross sections and photoelectron angular distributions for the photodetachment of Fe- and Cu- at visible photon wavelengths

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.

    2007-02-01

    Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe- and Cu- have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1nm (2.71-1.92eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe- to those of Cu- and C- , which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare’s dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].

  17. Integral cross section measurement of the U 235 ( n , n ' ) U 235 m reaction in a pulsed reactor

    DOE PAGES

    Bélier, G.; Bond, E. M.; Vieira, D. J.; Authier, N.; Becker, J. A.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legendre, J.; Macri, R.; et al

    2015-04-08

    The integral measurement of the neutron inelastic cross section leading to the 26-minute half-life 235mU isomer in a fission-like neutron spectrum is presented. The experiment has been performed at a pulsed reactor, where the internal conversion decay of the isomer was measured using a dedicated electron detector after activation. The sample preparation, efficiency measurement, irradiation, radiochemistry purification, and isomer decay measurement will be presented. We determined the integral cross section for the ²³⁵U(n,n')235mU reaction to be 1.00±0.13b. This result supports an evaluation performed with TALYS-1.4 code with respect to the isomer excitation as well as the total neutron inelastic scatteringmore » cross section.« less

  18. Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV

    SciTech Connect

    Chatrchyan, S.; et al.,

    2011-09-01

    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.

  19. Measurement of the B+ Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2011-03-01

    Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.

  20. Objectively measured sedentary time and physical activity in women with fibromyalgia: a cross-sectional study

    PubMed Central

    Ruiz, Jonatan R; Segura-Jiménez, Víctor; Ortega, Francisco B; Álvarez-Gallardo, Inmaculada C; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Carbonell-Baeza, Ana; Femia, Pedro; Munguía-Izquierdo, Diego; Delgado-Fernández, Manuel

    2013-01-01

    Objectives To characterise levels of objectively measured sedentary time and physical activity in women with fibromyalgia. Design Cross-sectional study. Setting Local Association of Fibromyalgia (Granada, Spain). Participants The study comprised 94 women with diagnosed fibromyalgia who did not have other severe somatic or psychiatric disorders, or other diseases that prevent physical loading, able to ambulate and to communicate and capable and willing to provide informed consent. Primary outcome measures Sedentary time and physical activity were measured by accelerometry and expressed as time spent in sedentary behaviours, average physical activity intensity (counts/minute) and amount of time (minutes/day) spent in moderate intensity and in moderate-to-vigorous-intensity physical activity (MVPA). Results The proportion of women meeting the physical activity recommendations of 30 min/day of MVPA on 5 or more days a week was 60.6%. Women spent, on average, 71% of their waking time (approximately 10 h/day) in sedentary behaviours. Both sedentary behaviour and physical activity levels were similar across age groups, waist circumference and percentage body fat categories, years since clinical diagnosis, marital status, educational level and occupational status, regardless of the severity of the disease (all p>0.1). Time spent on moderate-intensity physical activity and MVPA was, however, lower in those with greater body mass index (BMI) (−6.6 min and −7 min, respectively, per BMI category increase, <25, 25–30, >30 kg/m2; p values for trend were 0.056 and 0.051, respectively). Women spent, on average, 10 min less on MVPA (p<0.001) and 22 min less on sedentary behaviours during weekends compared with weekdays (p=0.051). Conclusions These data provide an objective measure of the amount of time spent on sedentary activities and on physical activity in women with fibromyalgia. PMID:23794573

  1. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 <--> N2O5 at atmospherically relevant conditions.

    PubMed

    Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S

    2007-11-21

    The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).

  2. Measurement of the Inclusive Jet Cross Section in pp Collisions at √s=7 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-09-19

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb⁻¹. The measurement is made for jet transverse momenta in the range 18–1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  3. Measurement of the inclusive jet cross section in pp collisions at √s = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Suarez, R Gonzalez; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Gil, E Cortina; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Choudhary, B C; Gomber, B; Gupta, P; Jain, S; Jain, S; Khurana, R; Kumar, A; Naimuddin, M; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Montoya, C A Carrillo; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Rovelli, C; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Pereira, A Vilela; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jeong, M S; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Seo, E; Shin, S; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Villalba, R Magaña; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Moreno, S Carrillo; Valencia, F Vazquez; Ibarguen, H A Salazar; Linares, E Casimiro; Pineda, A Morelos; Reyes-Santos, M A; Krofcheck, D; Tam, J; Yiu, C H; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Musella, P; Nayak, A; Ribeiro, P Q; Seixas, J; Varela, J; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Peris, A Delgado; Pardos, C Diez; Vázquez, D Domínguez; Bedoya, C Fernandez; Ramos, J P Fernández; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Lopez, O Gonzalez; Lopez, S Goy; Hernandez, J M; Josa, M I; Merino, G; Pelayo, J Puerta; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Menendez, J Fernandez; Folgueras, S; Caballero, I Gonzalez; Iglesias, L Lloret; Garcia, J M Vizan; Cifuentes, J A Brochero; Cabrillo, I J; Calderon, A; Chuang, S H; Campderros, J Duarte; Felcini, M; Fernandez, M; Gomez, G; Sanchez, J Gonzalez; Jorda, C; Pardo, P Lobelle; Virto, A Lopez; Marco, J; Marco, R; Rivero, C Martinez; Matorras, F; Sanchez, F J Munoz; Gomez, J Piedra; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sanudo, M Sobron; Vila, I; Cortabitarte, R Vilar; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Garrido, R Gomez-Reino; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Racz, A; Antunes, J Rodrigues; Rolandi, G; Rommerskirchen, T; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tadel, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Ruiz del Arbol, P Martinez; Meridiani, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguiló, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, M Ivova; Mejias, B Millan; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Dutta, S; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Yilmaz, S; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; MacEvoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Liu, H; Bose, T; Jarrin, E Carrera; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Sierra, R Vasquez; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hamdan, S; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Ceballos, G Gomez; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Pegna, D Lopes; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Vargas, J E Ramirez; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-09-23

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb(-1). The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet p(T) ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  4. Measurement of the Inclusive Jet Cross Section in pp Collisions at sqrt[s]=7 TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-09-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the LHC using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 inverse picobarns. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  5. Measurement of the inclusive jet cross section in pp collisions at √s = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Suarez, R Gonzalez; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Gil, E Cortina; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya

    2011-09-23

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb(-1). The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet p(T) ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions. PMID:22026843

  6. Surrogate measurement of the {sup 238}Pu(n,f) cross section

    SciTech Connect

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-05-15

    The neutron-induced fission cross section of {sup 238}Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic {alpha}-induced fission reactions on {sup 239}Pu, with {sup 235}U({alpha},{alpha}{sup '}f) and {sup 236}U({alpha},{alpha}{sup '}f) used as references. These reference reactions reflect {sup 234}U(n,f) and {sup 235}U(n,f) yields, respectively. The deduced {sup 238}Pu(n,f) cross section agrees well with standard data libraries up to {approx}10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  7. Measurement of the absolute Raman cross section of the optical phonon in silicon

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Saikin, S. K.; Aspuru-Guzik, A.; Stopa, M.; Polla, D. L.

    2011-04-01

    The absolute Raman cross section σ of the first-order 519 cm -1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10 -27, 3.6±0.7×10 -28, and 1.1±0.2×10 -29 cm 2 were determined for σ for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10 -6, 1.4±0.3×10 -6, and 4.4±0.8×10 -8 cm -1 sr -1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10 -15, 5.1±0.5×10 -15, and 1.9±0.2×10 -15 cm 2, respectively. The values of 4.4±0.4×10 -15 and 5.1±0.5×10 -15 cm 2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10 -15 and 2.5×10 -15 cm 2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel's model.

  8. Direct Measurement of the 4He(12C, 16O)γ Total Cross Section Near Stellar Energies

    NASA Astrophysics Data System (ADS)

    Fujita, Kunihiro; Yamaguchi, Hiroyuki; Ban, Tadahiko; Hamamoto, Kenichi; Narikiyo, Yoshihiro; Tao, Nariaki; Sagara, Kenshi

    2015-05-01

    A cross section measurement employing a direct 16O detection method for the reaction energies from Ecm = 2.4 to 0.7 MeV is planned at Kyushu University Tandem Laboratory (KUTL). To perform this experiment and to obtain quantitative information about the cross section to within an error of 10%, we have developed several instruments, including a blow-in type windowless gas target, a recoil mass separator and a RF-deflector. The measurements at Ecm = 2.4 and 1.5 MeV have been performed with these instruments. For measuring at Ecm < 1.2 MeV, a hybrid detector employing both, an ionization chamber and a silicon detector was developed to reduce the carbon backgrounds more efficiently. The oxygen ions were clearly separated from carbon background by using the energy deposit in the ionization chamber. Experiment of Ecm = 1.2 MeV was performed and the cross section was obtained.

  9. Measurement of the B0 production cross section in pp collisions at sqrt[s] = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H

    2011-06-24

    Measurements of the differential production cross sections dσ/dpTB and dσ/dyB for B0 mesons produced in pp collisions at sqrt[s] = 7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb-1. The production cross section is measured from B0 meson decays reconstructed in the exclusive final state J/ψKS0, with the subsequent decays J/ψ → μ + μ - and KS0 → π+}π-. The total cross section for pTB>5 GeV and |yB|<2.2 is measured to be 33.2 ± 2.5 ± 3.5 μb, where the first uncertainty is statistical and the second is systematic. PMID:21770632

  10. The differential production cross section of the (1020) meson in = 7 TeV collisions measured with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, C. W.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guido, E.; Guindon, S.; Gul, U.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Loevschall-Jensen, A. E.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, M. K.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, DJ.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, H. S.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2014-07-01

    A measurement is presented of the production cross section at = 7 TeV using collision data corresponding to an integrated luminosity of 383 , collected with the ATLAS experiment at the LHC. Selection of (1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, , and rapidity, , of the (1020) meson in the fiducial region 500 1200 MeV, 0.8, kaon 230 MeV and kaon momentum 800 MeV. The integrated -meson production cross section in this fiducial range is measured to be = 570 8 (stat) 66 (syst) 20 (lumi).

  11. 13C(n,α0)10Be cross section measurement with sCVD diamond detector

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Griesmayer, E.; Belloni, F.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.

    2016-06-01

    This paper presents 13C(n, α0)10Be cross section measurements performed at the Van de Graaff facility of the Joint Research Centre Geel. The 13C(n, α0)10Be cross section was measured relative to the 12C(n, α0)9Be cross section at 14.3 MeV and 17.0 MeV neutron energies. The measurements were performed with an sCVD (single-crystal chemical vapor deposition) diamond detector which acted as sample and as sensor simultaneously. A novel analysis technique was applied, which is based on the pulse-shape analysis of the detector's ionization current. This technique resulted in an efficient separation of background events and consequently in a well-determined selection of the nuclear reaction channels 12C(n, α0)9Be and 13C(n, α0)10Be.

  12. Measurement of the B⁰ Production Cross Section in pp Collisions at √s=7 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-06-20

    Measurements of the differential production cross sections dσ/dpBT and dσ/dyB for B⁰ mesons produced in pp collisions at √s=7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb⁻¹. The production cross section is measured from B⁰ meson decays reconstructed in the exclusive final state J/ψK0S, with the subsequent decays J/ψ→μ⁺μ⁻ and K0S→π⁺π⁻. The total cross section for pBT>5 GeV and |yB|<2.2 is measured to be 33.2±2.5±3.5 μb, where the first uncertainty is statistical and the second is systematic.

  13. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  14. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  15. Measurement of the top pair production cross section at CDF using neural networks

    SciTech Connect

    Marginean, Radu

    2004-01-01

    In the Tevatron accelerator at Fermilab protons and antiprotons are collided at a 1.96 TeV center of mass energy. CDF and D0 are the two experiments currently operating at the Tevatron. At these energies top quark is mostly produced via strong interactions as a top anti-top pair (t$\\bar{t}$). The top quark has an extremely short lifetime and according to the Standard Model it decays with ~ 100% probability into a b quark and a W boson. In the ''lepton+jets'' channel, the signal from top pair production is detected for those events where one of the two W bosons decays hadronically in two quarks which we see as jets in the detector, and the other W decays into an electrically charged lepton and a neutrino. A relatively unambiguous identification in the detector is possible when we require that the charged lepton must be an electron or muon of either charge. The neutrino does not interact in the detector and its presence is inferred from an imbalance in the transverse energy of the event. They present a measurement of the top pair production cross section in p$\\bar{p}$ collisions at 1.96 TeV, from a data sample collected at CDF between March 2002 and September 2003 with an integrated luminosity of 193.5 pb-1. In order to bring the signal to background ratio at manageable levels, measurements in this channel traditionally use precision tracking information to identify at least one secondary vertex produced in the decay of a long lived b hadron. A different approach is taken here. Because of the large mass of the top quark, t$\\bar{t}$ events tend to be more spherical and more energetic than most of the background processes which otherwise mimic the t$\\bar{t}$ signature in the ''lepton+jets'' channel. A number of energy based and event shape variables can be used to statistically discriminate between signal and background events. Monte Carlo simulation is used to model the kinematics of t$\\bar{t}$ and most of the background processes. A neural network

  16. Measurement of the Inclusive Upsilon production cross section in pp collisions at sqrt(s)=7 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2011-06-01

    The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

  17. Measuring the adequacy of antenatal health care: a national cross-sectional study in Mexico

    PubMed Central

    Heredia-Pi, Ileana; Darney, Blair G; Reyes-Morales, Hortensia; Lozano, Rafael

    2016-01-01

    Abstract Objective To propose an antenatal care classification for measuring the continuum of health care based on the concept of adequacy: timeliness of entry into antenatal care, number of antenatal care visits and key processes of care. Methods In a cross-sectional, retrospective study we used data from the Mexican National Health and Nutrition Survey (ENSANUT) in 2012. This contained self-reported information about antenatal care use by 6494 women during their last pregnancy ending in live birth. Antenatal care was considered to be adequate if a woman attended her first visit during the first trimester of pregnancy, made a minimum of four antenatal care visits and underwent at least seven of the eight recommended procedures during visits. We used multivariate ordinal logistic regression to identify correlates of adequate antenatal care and predicted coverage. Findings Based on a population-weighted sample of 9 052 044, 98.4% of women received antenatal care during their last pregnancy, but only 71.5% (95% confidence interval, CI: 69.7 to 73.2) received maternal health care classified as adequate. Significant geographic differences in coverage of care were identified among states. The probability of receiving adequate antenatal care was higher among women of higher socioeconomic status, with more years of schooling and with health insurance. Conclusion While basic antenatal care coverage is high in Mexico, adequate care remains low. Efforts by health systems, governments and researchers to measure and improve antenatal care should adopt a more rigorous definition of care to include important elements of quality such as continuity and processes of care. PMID:27274597

  18. 57Co (n,γ) 58Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    NASA Astrophysics Data System (ADS)

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The 57Co (n,γ) 58Co thermal and resonance integral cross section were measured as 51 (5) b and 20.0 (19) b , respectively, by irradiating aliquots of 57Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  19. Measurement of the ZZ production cross section in pp¯ collisions at s=1.96TeV

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al

    2011-07-01

    The authors present a new measurement of the production cross section σ(pp = ZZ) at a center-of-mass energy √s = 1.96 TeV, obtained from the analysis of the four charged lepton final state ℓ+ℓ-ℓ`+ℓ`-(ℓ, ℓ` = e or μ). They observe ten candidate events with an expected background of 0.37 ± 0.13 events. The measured cross section σ(pp =ZZ) = 1.26-0.37+0.47 (stat) ± 0.14 (syst) pb is in agreement with NLO QCD predictions. This result is combined with a previous result from the ZZ = ℓ+ℓ- νν channel resulting in a combined cross section of σ(pp = ZZ) = 1.40-0.37-0.43more » (stat) ±0.14 (syst) pb.« less

  20. {sup 57}Co(n,{gamma}){sup 58}Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    SciTech Connect

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The {sup 57}Co(n,{gamma}){sup 58}Co thermal and resonance integral cross section were measured as 51(5) b and 20.0(19) b, respectively, by irradiating aliquots of {sup 57}Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  1. A Novel Approach for Computing Cross-Sections in Ion-Mobility Measurements

    NASA Astrophysics Data System (ADS)

    Larini, Luca; Marin, Oscar

    Mass spectrometry allows the identification of molecules based on their mass to charge ratio. One of the advantages of this technique is that it is able to distinguish molecules that differ for a small value of the mass. In addition, once the molecule of interest has been selected by the mass spectrometer, it can be further analyzed in an ion mobility tube that can characterize the conformations adopted by the molecule. This is extremely useful when dealing with unstructured proteins that populate multiple conformations. However, ion mobility distinguishes structures based on their cross-section. In order to associate a well-defined tridimensional structure to a specific cross-section, molecular dynamics simulations must be performed first, and then the theoretical cross-section compared to the experimental one. Computing a cross-section starting from molecular dynamics data is extremely computationally expensive. For this reason, we have developed a software that takes advantage on the multicore and multimode architecture of modern computer clusters.

  2. Measurements of the top quark pair production cross section and an estimate of the D0 silicon detector lifetime

    SciTech Connect

    Strandberg, Sara

    2007-03-01

    This thesis presents two measurements of the top quark pair production cross section at √s = 1.96 TeV using data from the D0 experiment. Both measurements are performed in the dilepton final state and make use of secondary vertex b-tagging.

  3. Fast neutron cross section measurements. Final technical report, March 1, 1987--September 30, 1995

    SciTech Connect

    Knoll, G.F.

    1997-06-01

    The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14 MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering included were: the 1.43 MeV and 4.56 MeV levels of {sup 52}Cr, the 0.85 MeV level, and (2.94-3.12) MeV and (4.46-4.51) MeV level groups of {sup 56}Fe, the 1.33 MeV level of {sup 60}Ni combined with the 1.45 MeV level of {sup 58}Ni, and the 4.48 MeV level of {sup 58}Ni. Pulses of neutrons with time width of 0.9-1.1 ns were produced via the {sup 3}H(d,n){sup 4}He reaction in a 150 keV Cockcroft-Walton linear accelerator, with average intensities of 9x10{sup 8} n/s. The energy of the incident neutrons was between 14.75 MeV (at 16{degree}) and 13.48 MeV (at 160{degree}). High purity scattering ring samples were used. The scattering angles ranged from {approx}16{degree} to {approx}150{degree}, for iron, chromium, and nickel, and from {approx}16{degree} to {approx}160{degree} for niobium, with a typical step of {approx}10{degree}. High purity ring samples were used.

  4. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH{sub 3}CFCl{sub 2}

    SciTech Connect

    Fahr, A.; Braun, W.; Kurylo, M.J.

    1993-11-20

    Ultraviolet absorption cross sections of CH{sub 3}CFCl{sub 2} (HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in these experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b. 8 refs., 3 figs., 1 tab.

  5. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; Wynants, R.

    2014-08-01

    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt γ-rays, originating from neutron-induced capture events, were detected by two C6 D6 liquid scintillators. The sample was placed at about 13m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,α) reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n, γ) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.

  6. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  7. Measurement of Effective Cross Section of Th-233(n,γ)Th-234 Reaction Using the KUR

    NASA Astrophysics Data System (ADS)

    Chatani, Hiroshi

    2005-05-01

    Thorium nitrate was irradiated together with Au and Co neutron fluence monitors in the Kyoto University Reactor (KUR). The thorium was chemically purified using the solvent extraction and ion-exchange methods. The γ-rays in the decay of Th-234 were measured using high-purity Ge detectors (HPGes). Thermal neutron fluxes and epithermal indexes, i.e., the relative strength of the epithermal dE/E component, were determined using the Westcott convention. Five effective cross sections were determined for epithermal indexes from 0.01 to 0.04 using three irradiation facilities. The cross section for 2200 m/s neutrons and the resonance integral were deduced to be (1270±50) b and (1680±930) b, respectively, from the results of the five effective cross sections.

  8. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions. PMID:15524972

  9. Determination of the effective inelastic p anti-p cross-section for the D0 Run II luminosity measurement

    SciTech Connect

    Edwards, T.; Yacoob, S.; Andeen, T.; Begel, M.; Casey, B.C.K.; Partridge, R.; Schellman, H.; Sznajder, A.; /Rio de Janeiro State U.

    2004-11-01

    The authors determine the effective inelastic p{bar p} cross-section into the D0 Luminosity Monitor for all run periods prior to September 2004. This number is used to relate the measured inelastic collision rate to the delivered luminosity. The key ingredients are the inelastic p{bar p} cross-section, the Luminosity Monitor efficiency, and the modeling of kinematic distributions for various inelastic processes used to determine the detector acceptance. The resulting value is {sigma}{sub p{bar p},eff} = 46 {+-} 3 mb.

  10. Measurement of the photoionization cross section of the 5S{sub 1/2} state of rubidium

    SciTech Connect

    Lowell, J.R.; Northup, T.; Patterson, B.M.; Takekoshi, T.; Knize, R.J.

    2002-12-01

    We report the measurement of the photoionization cross section for the 5S{sub 1/2} state of rubidium, using atoms confined in a magneto-optical trap. A single-photon rate at {lambda}=266 nm was found by monitoring the decay of trap fluorescence after exposure to ionizing radiation from a quadrupled Nd:YVO{sub 4} laser. In order to eliminate excited-state ionization, the photoionization and trapping lasers were alternately chopped, so that only ground-state atoms were ionized. We determine that the photoionization cross section at {lambda}=266 nm is {sigma}=1.7(2)x10{sup -20} cm{sup 2}.

  11. Measurement of the differential cross-section of B + meson production in pp collisions at TeV at ATLAS

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, S. w.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Gaponenko, A.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S. J.; Hillier, S.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Agatonovic-Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. K.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. V.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, H. S.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C. J. S.; Young, C.; Youssef, S.; Yu, D. R.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-10-01

    The production cross-section of B + mesons is measured as a function of transverse momentum p T and rapidity y in proton-proton collisions at centre-of-mass energy TeV, using 2.4 fb-1 of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9 GeV < p T < 120 GeV and | y| < 2 .25, are compared to next-to-leading-order theoretical predictions. [Figure not available: see fulltext.

  12. Parent-child interactions and objectively measured child physical activity: a cross-sectional study

    PubMed Central

    2010-01-01

    Background Parents influence their children's behaviors directly through specific parenting practices and indirectly through their parenting style. Some practices such as logistical and emotional support have been shown to be positively associated with child physical activity (PA) levels, while for others (e.g. monitoring) the relationship is not clear. The objectives of this study were to determine the relationship between parent's PA-related practices, general parenting style, and children's PA level. Methods During the spring of 2007 a diverse group of 99 parent-child dyads (29% White, 49% Black, 22% Hispanic; 89% mothers) living in low-income rural areas of the US participated in a cross-sectional study. Using validated questionnaires, parents self-reported their parenting style (authoritative, authoritarian, permissive, and uninvolved) and activity-related parenting practices. Height and weight were measured for each dyad and parents reported demographic information. Child PA was measured objectively through accelerometers and expressed as absolute counts and minutes engaged in intensity-specific activity. Results Seventy-six children had valid accelerometer data. Children engaged in 113.4 ± 37.0 min. of moderate-vigorous physical activity (MVPA) per day. Children of permissive parents accumulated more minutes of MVPA than those of uninvolved parents (127.5 vs. 97.1, p < 0.05), while parents who provided above average levels of support had children who participated in more minutes of MVPA (114.2 vs. 98.3, p = 0.03). While controlling for known covariates, an uninvolved parenting style was the only parenting behavior associated with child physical activity. Parenting style moderated the association between two parenting practices - reinforcement and monitoring - and child physical activity. Specifically, post-hoc analyses revealed that for the permissive parenting style group, higher levels of parental reinforcement or monitoring were associated with higher

  13. Reliability and Validity of Ultrasound Cross Sectional Area Measurements for Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Scott, Jessica M.; Martin, David S.; Cunningham, David; Matz, Timothy; Caine, Timothy; Hackney, Kyle J.; Arzeno, Natalia; Ploutz-Snyder, Lori

    2010-01-01

    Limb muscle atrophy and the accompanying decline in function can adversely affect the performance of astronauts during mission-related activities and upon re-ambulation in a gravitational environment. Previous characterization of space flight-induced muscle atrophy has been performed using pre and post flight magnetic resonance imaging (MRI). In addition to being costly and time consuming, MRI is an impractical methodology for assessing in-flight changes in muscle size. Given the mobility of ultrasound (US) equipment, it may be more feasible to evaluate changes in muscle size using this technique. PURPOSE: To examine the reliability and validity of using a customized template to acquire panoramic ultrasound (US) images for determining quadriceps and gastrocnemius anatomical cross sectional area (CSA). METHODS: Vastus lateralis (VL), rectus femoris (RF), medial gastrocnemius (MG), and lateral gastrocnemius (LG) CSA were assessed in 10 healthy individuals (36+/-2 yrs) using US and MRI. Panoramic US images were acquired by 2 sonographers using a customized template placed on the thigh and calf and analyzed by the same 2 sonographers (CX50 Philips). MRI images of the leg were acquired while subjects were supine in a 1.5T scanner (Signa Horizon LX, General Electric) and were analyzed by 3 trained investigators. The average of the 2 US and 3 MRI values were used for validity analysis. RESULTS: High inter-experimenter reliability was found for both the US template and MRI analysis as coefficients of variation across muscles ranged from 2.4 to 4.1% and 2.8 to 3.8%, respectively. Significant correlations were found between US and MRI CSA measures (VL, r = 0.85; RF, r = 0.60; MG, r = 0.86; LG, r = 0.73; p < 0.05). Furthermore, the standard error of measurement between US and MRI ranged from 0.91 to 2.09 sq cm with high limits of agreement analyzed by Bland-Altman plots. However, there were significant differences between absolute values of MRI and US for all muscles

  14. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  15. Dissociative recombination study of N{sub 3}{sup +}: Cross section and branching fraction measurements

    SciTech Connect

    Zhaunerchyk, V.; Geppert, W. D.; Vigren, E.; Hamberg, M.; Danielsson, M.; Larsson, M.; Thomas, R. D.; Kaminska, M.; Oesterdahl, F.

    2007-07-07

    We report an investigation into the dissociative recombination of the azide radical cation, N{sub 3}{sup +}. The reaction rate constant has been measured to be 6.47x10{sup -7} cm{sup 3} s{sup -1} at room temperature. This value is smaller than those reported earlier for the ion-electron neutralization of N{sub 3}{sup +} at nitrogen atmospheric pressure. A strong propensity to dissociate through the N{sub 2}+N channel has been observed.

  16. Charge-changing cross section measurement of neutron-rich carbon isotopes at 50 AMeV

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Nguyen, T. T.; Tanihata, I.; Ong, H. J.; Fukuda, M.; Aoi, N.; Ayyad, Y.; Sakaguchi, H.; Tanaka, J.; Chan, P. Y.; Hoang, T. H.; Hashimoto, T.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Ozawa, A.; Ren, P. P.; Terashima, S.; Wada, R.; Lin, W. P.; Yamamoto, T.

    2016-05-01

    Charge Changing Cross Sections (CCCS or σCC) of neutron-rich carbon isotopes on carbon target were measured at low energy (50A MeV) for the first time. The consistency between Glauber calculation and experimental σCC of 12C isotope at low energy region shows that proton distribution radii can be derived from CCCS at low energy.

  17. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    SciTech Connect

    Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.

    1994-04-01

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values.

  18. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-01

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  19. Measurements of cross sections for production of light nuclides by 120 GeV proton bombardment of Ni and Au

    NASA Astrophysics Data System (ADS)

    Okumura, Shintaro; Sekimoto, Shun; Yashima, Hiroshi; Matsushi, Yuki; Matsuzaki, Hiroyuki; Shibata, Seiichi; Ohtsuki, Tsutomu

    2014-09-01

    Production cross sections for long-lived cosmogenic nuclides, such as Be-10 and Al-26 have a very practical benefit for health and safety in radiation protection; they serve as a comprehensive nuclear database that can be used to estimate residual radioactivities in accelerator facilities. Cross sections are also indispensable for studying the specific formation mechanisms of these nuclides, where spallation, fission, or fragmentation is a dominant process. The fragmentation process is usually studied by production cross sections of light nuclides which are best measured by AMS. For energies above 100 MeV few measurements have been made and published. We have measured and report the first Be-10 and Al-26 production cross sections from Ni and Au produced by 120 GeV protons. The proton irradiation at 120 GeV was performed at Fermi National Accelerator Laboratory. The AMS measurements were performed at MALT, University of Tokyo. We will discuss the production mechanism of Be-10 and Al-26 by spallation and fragmentation.

  20. Measurement of the Upsilon(NS) Cross Sections in pp Collisions at √(s) = 7 TeV

    SciTech Connect

    Zheng, Yu

    2012-12-01

    The Υ(nS) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 ± 1.4 pb-1 of proton-proton collisions at √s = 7 TeV, collected with the CMS detector at the CERN LHC.

  1. Effectiveness Measures for Cross-Sectional Studies: A Comparison of Value-Added Models and Contextualised Attainment Models

    ERIC Educational Resources Information Center

    Lenkeit, Jenny

    2013-01-01

    Educational effectiveness research often appeals to "value-added models (VAM)" to gauge the impact of schooling on student learning net of the effect of student background variables. A huge amount of cross-sectional studies do not, however, meet VAM's requirement for longitudinal data. "Contextualised attainment models (CAM)" measure the influence…

  2. Simultaneous ocean cross-section and rainfall measurements from space with a nadir-pointing radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Atlas, D.

    1984-01-01

    A method to determine simultaneously the rainfall rate and the normalized backscattering cross section of the surface was evaluated. The method is based on the mirror reflected power, p sub m which corresponds to the portion of the incident power scattered from the surface to the precipitation, intercepted by the precipitation, and again returned to the surface where it is scattered a final time back to the antenna. Two approximations are obtained for P sub m depending on whether the field of view at the surface is either much greater or much less than the height of the reflection layer. Since the dependence of P sub m on the backscattering cross section of the surface differs in the two cases, two algorithms are given by which the path averaged rain rate and normalized cross section are deduced. The detectability of P sub m, the relative strength of other contributions to the return power arriving simultaneous with P sub m, and the validity of the approximations used in deriving P sub m are discussed.

  3. A First measurement of the interaction cross-section of the tau neutrino

    SciTech Connect

    Kodama, K.; Ushida, N.; Andreopoulos, Constantinos V.; Tzanakos, George S.; Yager, Philip M.; Baller, Bruce R.; Boehnlein, David J.; Freeman, William S.; Lundberg, B.; Morfin, Jorge G.; Rameika, R.; /Fermilab /Gyeongsang Natl. U.

    2007-11-01

    The DONuT experiment collected data in 1997 and published first results in 2000 based on four observed {nu}{sub {tau}} charged-current (CC) interactions. The final analysis of the data collected in the experiment is presented in this paper, based on 3.6 x 10{sup 17} protons on target using the 800 GeV Tevatron beam at Fermilab. The number of observed {nu}{sub {tau}} CC interactions is 9, from a total of 578 observed neutrino interactions. We calculated the energy-independent part of the tau-neutrino CC cross section ({nu} + {bar {nu}}), relative to the well-known {nu}{sub e} and {nu}{sub {mu}} cross sections. The ratio {sigma}({nu}{sub {tau}})/{sigma}({nu}{sub e,{mu}}) was found to be 1.37 {+-} 0.35 {+-} 0.77. The {nu}{sub {tau}} CC cross section was found to be 0.72 {+-} 0.24 {+-} 0.36 x 10{sup -38} cm{sup 2} GeV{sup -1}. Both results are in agreement with expectations from the Standard Model.

  4. Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-12-12

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³⁸ cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³⁸ cm²/nucleon and the GENIE prediction is 1.08×10⁻³⁸ cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment. PMID:25541766

  5. Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at E$_{\

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Alabama U.

    2010-11-01

    MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 664 MeV for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1{pi}{sup 0} production corrected for the effects of final state interactions to compare to prior results.

  6. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  7. Neutron-Induced Partial Gamma-Ray Cross-Section Measurements on 238U Using a Monoenergetic and Pulsed Beam at TUNL

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Pedroni, R. S.; Weisel, G. J.; Becker, J. A.; Fotiades, N.; Lantuejoul, I.

    2005-04-01

    An experimental program is being developed at TUNL to study (n,2n) excitation functions on actinide nuclei using monoenergetic neutrons in the 5 to 18 MeV energy range with the goal of improving the partial cross-section data for the NNSA Stockpile Stewardship Program. Measurements have been performed on a ^238U target in the TUNL shielded neutron source area using a pulsed neutron beam with incident neutron energies of 6, 8, 10, and 14 MeV. The emitted gamma rays were measured using different types of HPGe detectors. The pulsed beam permitted the use of time-of-flight techniques to distinguish (n,2n) events from background events. Experimental techniques and analysis of the measurements will be presented.

  8. Measurements of the infrared absorption cross-sections of HCFC-141b (CH3CFCl2)

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; McDowell, James; Strong, Kimberly

    2012-10-01

    Detection of atmospheric trace gases by optical remote sensing techniques relies on the availability of molecular absorption spectra over a range of relevant temperatures. Absorption cross-sections of a pure vapour of the hydrochlorofluorocarbon HCFC-141b are reported at a resolution of 0.02 cm-1 for a range of temperatures between 223 and 283 K and a spectral range of 570-3100 cm-1. The integrated intensities of the nine main harmonic bands compare well with the data available from previous experimental studies and with theoretical calculations by ab initio and density functional theories.

  9. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    NASA Astrophysics Data System (ADS)

    Venot, O.; Fray, N.; Bénilan, Y.; Gazeau, M.-C.; Hébrard, E.; Larcher, G.; Schwell, M.; Dobrijevic, M.; Selsis, F.

    2013-03-01

    Context. Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Aims: Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We also investigate the influence of these new data on the photochemistry of some exoplanets. Methods: We performed these measurements with synchrotron radiation as a tunable VUV light source for the 115-200 nm range at 300, 410, 480, and 550 K. In the 195-230 nm range, we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer and we worked at seven temperatures between 465 and 800 K. We implemented the measured cross section into a 1D photochemical model. Results: For λ > 170 nm, the wavelength dependence of ln(σCO2(λ,T) × 1/(Qv(T))) can be parametrized with a linear law. Thus, we can interpolate σCO2(λ,T) at any temperature between 300 and 800 K. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. Conclusions: The absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot

  10. Precision measurements of the e+e- →π+π- (γ) cross section with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Babusci, D.; Badoni, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bini, C.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Capon, G.; Ceradini, F.; Ciambrone, P.; Czerwiński, E.; Danè, E.; De Lucia, E.; De Robertis, G.; De Santis, A.; Di Domenico, A.; Di Donato, C.; Di Salvo, R.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Fantini, A.; Felici, G.; Fiore, S.; Franzini, P.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Gonnella, F.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Höistad, B.; Iafolla, L.; Jacewicz, M.; Johansson, T.; Kupsc, A.; Lee-Franzini, J.; Leverington, B.; Loddo, F.; Loffredo, S.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Nguyen, F.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Redmer, C. F.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Silarski, M.; Taccini, C.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.; Zdebik, J.

    2014-08-01

    The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics and a persistent discrepancy of about 3 σ between standard model (SM) prediction and the experimental measurement has been observed. The leading order contribution aμhlois actually the main source of uncertainty in the theoretical evaluation of the muon anomaly. It is obtained by a dispersion integral using the precision measurement of hadronic cross section. The KLOE experiment at the DAΦNE ϕ-factory in Frascati was the first to exploit Initial State Radiation (ISR) processes to obtain the e+e- →π+π- (γ) cross section below 1 GeV, that accounts for most (70%) of the leading order contribution to the muon anomaly. In year 2005 and 2008 the KLOE-collaboration has published two measurements of the π+π- cross section with the photon in the initial state emitted at small angle, and an independent measurement with the photon emitted at large angle was finalized in year 2011. These measurements were normalized using luminosity from Bhabha. In the last years, a new analysis of KLOE data has been performed for obtaining the pion form factor directly from the bin-by-bin π+π- γ to μ+μ- γ ratio. We present the results of this new measurement, showing the comparison with our previous measurements, and its impact on the hadronic contribution to the muon anomaly.

  11. Fission cross-section measurements on 233U and minor actinides at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Calviani, M.; Colonna, N.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Sesura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Kerveno, M.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2009-10-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n_TOF at CERN, Geneva. The studied isotopes include 233U, interesting for Th/U based nuclear fuel cycles, 241,243Am and 245Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n_TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ~30 meV to around 1 MeV neutron enegy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235U fission reaction, measured simultaneously with the same detector. Results are here reported.

  12. A reanalysis of radioisotope measurements of the $^9$Be$$(\\gamma,n)^8$$Be cross-section

    DOE PAGES

    Robinson, Alan E.

    2016-02-18

    Themore » $^9$Be$$(\\gamma,n)^8$$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$$(\\gamma,n)$$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $$E_R=1738.8\\pm1.9$$ keV, $$\\Gamma_\\gamma=0.771\\pm0.021$$ eV, and $$\\Gamma_n=268\\pm15$$ keV for the $1/2^+$ state. A virtual $1/2^+$ state is excluded with 99.3\\% confidence.« less

  13. Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV

    NASA Astrophysics Data System (ADS)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-04-01

    Cross-section measurements for neutron-induced reactions on GaAs have been carried out at twelve different neutron energies from 7.5 to 15 MeV using the activation technique. The monoenergetic neutron beams were produced via the H2(d,n)He3 reaction. GaAs samples were activated along with Au and Al monitor foils to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ-ray spectroscopy. Cross sections for five reaction channels, viz., Ga69(n,2n)Ga68, Ga69(n,p)Zn69m, Ga71(n,p)Zn71m, As75(n,2n)As74, and As75(n,p)Ge75, are reported. The results are compared with the previous measurements and available data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and the COH3 codes and are compared with the experimental results.

  14. Cross Section Measurements of Neutron Induced Reactions on GaAs using Monoenergetic Beams from 7.5 to 15 MeV

    NASA Astrophysics Data System (ADS)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-09-01

    Cross section measurements for the neutron induced reactions on GaAs have been carried out at ten different neutron energies from 7.5 to 15 MeV, using the activation technique. The monoenergetic neutron beams were produced via the 2H(d,n)3He reaction, known for it's high neutron yield in the chosen energy regime. GaAs samples were activated along with the Au and Al monitor foils, for estimating the incident neutron flux. The induced activiy was measured using high resolution γ-ray spectroscopy. Five reaction channels viz., 69Ga(n, 2n) Ga, 69Ga(n,p)69mZn, 71Ga(n,p)71mZn, 75As(n, 2n)74As and 75As(n,p)75Ge, have been reported for the comprehensive cross section measurements. The results are compared with the existing literature data and the available evaluations. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and EMPIRE codes and are compared with the experimental values.

  15. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  16. Measurement of the cross section of charmed hadrons and the nuclear dependence alpha

    SciTech Connect

    Blanco-Covarrubias, Ernesto Alejandro

    2009-12-03

    With data from the SELEX experiment we study charm hadro-production. We report the differential production cross sections as function of the longitudinal and transverse momentum, as well as for two different target materials, of 14 charmed hadron and/or their decay modes. This is the most extensive study to date. SELEX is a fixed target experiment at Fermilab with high forward acceptance; it took data during 1996-1997 with 600 GeV/c Σ- and π-, and 540 GeV/c proton and π+ beams. It used 5 target foils (two copper and three diamond). We use the results to determine α, used in parametrizing the production cross section as ∞ Aα, where A is the mass number of the target nuclei. We found within our statistics that α is independent of the longitudinal momentum fraction xF in the interval 0.1 < xF < 1.0, with α = 0.778 ± 0.014. The average value of α} for charm production by pion beams is α meson = 0.850 ± 0.028. This is somewhat larger than the corresponding average αbaryon = 0.755 ± 0.016 for charm production by baryon beams (Σ- and protons).

  17. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  18. Alternative method for estimating the cross-sectional interpolation errors of discharge measurements using the velocity-area method

    NASA Astrophysics Data System (ADS)

    Despax, Aurélien; Perret, Christian; Garçon, Rémy; Hauet, Alexandre; Belleville, Arnaud; Le Coz, Jérôme; Favre, Anne-Catherine

    2016-04-01

    Quantifying the quality of discharge measurements by uncertainty analysis is a challenge in the hydrometric community. Discharge measurements are the first step to produce hydrometric data which are used in many hydrological studies like design of hydraulic structures or calibration of hydrological models for flood forecasting and warning. Thus associated uncertainty has to be estimated carefully. The velocity-area method is a common approach for estimating river discharge. It consists in integrating depths and point velocities through the cross-section. Due to the limited number of point measurements, the quality of the measurement depends mainly on the sampling strategy. Different methods of uncertainty estimation are available in the literature (ISO 748, Q+ and IVE). The main uncertainty component, noted um, is often related to the cross-sectional interpolation errors. However the computation of this term according to these approaches does not evaluate both the sampling strategy and the complexity of the cross-section. The FLAURE method (FLow Analog UnceRtainty Estimation) includes a new methodology to estimate this term. It is based on the study of high-resolution stream-gaugings (i.e. reference stream-gaugings made with a high number of verticals). The high-resolution measurements are first subsampled by reducing the number of verticals to generate a sample of realistic stream-gaugings. A statistical analysis is performed to estimate the um component and then a sampling quality index is defined. For each reference stream-gauging, it leads to a curve of um component as a function of the sampling quality index. This set of curves is finally used to compute the um component of any routine stream-gauging. Curves are then selected according to the similitude between the routine stream-gauging and reference stream-gaugings. The similitude between the routine stream-gauging and reference stream-gaugings is evaluated thanks to the Nash criteria computed on lateral

  19. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  20. Measurement of the doubly differential cross section for. pi. /sup -/p. -->. pi. /sup +/. pi. /sup -/n near threshold

    SciTech Connect

    Walter, J.B.

    1980-05-01

    The doubly differential cross sections for the ..pi../sup +/ from the reaction ..pi../sup -/p ..-->.. ..pi../sup +/..pi../sup -/n were measured at about twenty points for each of five energies between 245 MeV and 356 MeV. The experiment was carried out at the Clinton P. Anderson Meson Physics Facility, where a double focusing magnetic spectrometer detected the ..pi../sup +/ mesons produced in a liquid hydrogen target. The measurements were normalized by comparison with ..pi../sup -/p elastic scattering measured with the same apparatus. These are the first such measurements in this energy range, and have an accuracy between 4.7% and 39%. The integrated reaction cross section was determined at each energy with an accuracy of about 5%. These agree with but are an improvement over previous measurements in this energy range. Comparison of the extrapolated threshold value of the mean square modulus of the matrix element with the soft pion calculations favors the symmetry breaking mechanism of Weinberg (xi = 0). It also demonstrates the futility of attempting to determine the symmetry breaking parameter xi from a single measurement of the integrated reaction cross section.

  1. Measurement of the inclusive differential jet cross section in pp collisions at √{ s} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, K.; Das, S.; Das, I.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, R.; Gupta, A.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanová-Tóthová, Z.; Harris, J. W.; Hartig, M.; Harton, A.; Hasegan, D.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, M.; Ivanov, A.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jang, H. J.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, P.; Khan, S. A.; Khan, K. H.; Khan, M. M.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, S.; Kim, D. J.; Kim, B.; Kim, T.; Kim, M.; Kim, M.; Kim, J. S.; Kim, J. H.; Kim, D. W.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, K. S.; Lee, G. R.; Lee, S. C.; Legrand, I.; Lehnert, J.; Lenhardt, M.; Lenti, V.; León, H.; Leoncino, M.; León Monzón, I.; León Vargas, H.; Lévai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, Ludmila; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Milano, L.; Milosevic, Jovan; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymański, M.; Takahashi, J.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wan, R.; Wang, M.; Wang, Y.; Wang, D.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, S.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, X.; Zhang, H.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, J.; Zhu, J.; Zhu, X.; Zhu, H.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-05-01

    The ALICE Collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at √{ s} = 2.76 TeV, with integrated luminosity of 13.6 nb-1. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii R = 0.2 and R = 0.4 is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

  2. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    SciTech Connect

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-07-07

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.

  3. Measurement of the Top Pair Production Cross Section in the Lepton + Jets Channel Using a Jet Flavor Discriminant

    SciTech Connect

    Aaltonen, T.

    2011-08-01

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from pp¯ collisions at √s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scale with integrated luminosity. We measure a top cross section of σtt¯ = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.

  4. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    SciTech Connect

    Whitehouse, Benjamin Eric

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  5. Measurement of the inclusive jet cross section in pp collisions at √{s} = 2.76 {TeV}

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Yonamine, R.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Miniello, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, R.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; da Cruz E Silva, C. Beir Ao; di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, L.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; de La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, L. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Bierwagen, K.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2016-05-01

    The double-differential inclusive jet cross section is measured as a function of jet transverse momentum pTand absolute rapidity |y |, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of √{s} = 2.76 {TeV} and corresponding to an integrated luminosity of 5.43 {pb}^{-1}. Jets are reconstructed within the pTrange of 74 to 592 {GeV}and the rapidity range |y |<3.0. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

  6. Measurement of the cross section for prompt isolated diphoton production using the full CDF run II data sample.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-03-01

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy sqrt[s] = 1.96 TeV using data corresponding to 9.5 fb(-1) integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with a parton shower model, a next-to-leading order calculation, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  7. Measurement of the Cross Section for Prompt Isolated Diphoton Production Using the Full CDF Run II Data Sample

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M