Science.gov

Sample records for 2n reaction cross-sections

  1. Partial (gamma)-Ray Cross Sections for the Reaction 239Pu(n,2n(gamma)i) and the 239Pu(n,2n) Cross Section

    SciTech Connect

    Beacker, J.A.; Bernstein, L.A.; Younes, W.; McNabb, D.P.; Garrett, P.E.; Archer, D.; McGrath, C.A.; Stoyer, M.A.; Chen, H.; Ormand, W.E.; Nelson, R.O.; Chadwick, M.B.; Johns, G.D.; Drake, D.; Young, P.G.; Devlin, M.; Fotiades, N.; Wilburn, W.S.

    2001-09-14

    Absolute partial {gamma}-ray cross sections for production of discrete {gamma} rays in the {sup 239}Pu(n,2n{gamma}i){sup 238}Pu reaction have been measured. The experiments were performed at LANSCE/WNR on the 60R flight line. Reaction {gamma}-rays were measured using the large-scale Compton-suppressed array of Ge detectors, GEANIE. The motivation for this experiment, an overview of the partial {gamma}-ray cross-section measurement, and an introduction to the main experimental issues will be presented. The energy resolution of the Ge detectors allowed identification of reaction {gamma} rays above the background of sample radioactivity and fission {gamma} rays. The use of planar Ge detectors with their reduced sensitivity to neutron interactions and improved line shape was also important to the success of this experiment. Absolute partial {gamma}-ray cross sections are presented for the 6{sub 1}{sup +} {yields} 4{sub 1}{sup +} member of the ground state rotational band in {sup 238}Pu, together with miscellaneous other {gamma}-ray partial cross sections. The n,2n reaction cross section shape and magnitude as a function of neutron energy was extracted from these partial cross sections using nuclear modeling (enhanced Hauser-Feshbach) to relate partial {gamma}-ray cross sections to the n,2n cross section. The critical nuclear modeling issue is the ratio of a partial cross section to the reaction channel cross section, and not the prediction of the absolute magnitude.

  2. Estimating Reaction Cross Sections from Measured (Gamma)-Ray Yields: The 238U(n,2n) and 239Pu(n,2n) Cross Sections

    SciTech Connect

    Younes, W

    2002-11-18

    A procedure is presented to deduce the reaction-channel cross section from measured partial {gamma}-ray cross sections. In its simplest form, the procedure consists in adding complementary measured and calculated contributions to produce the channel cross section. A matrix formalism is introduced to provide a rigorous framework for this approach. The formalism is illustrated using a fictitious product nucleus with a simple level scheme, and a general algorithm is presented to process any level scheme. In order to circumvent the cumbersome algebra that can arise in the matrix formalism, a more intuitive graphical procedure is introduced to obtain the same reaction cross-section estimate. The features and limitations of the method are discussed, and the technique is applied to extract the {sup 235}U (n,2n) and {sup 239}Pu(n,2n) cross sections from experimental partial {gamma}-ray cross sections, coupled with (enhanced) Hauser-Feshbach calculations.

  3. Cross section of the 197Au(n,2n)196Au reaction

    NASA Astrophysics Data System (ADS)

    Kalamara, A.; Vlastou, R.; Kokkoris, M.; Diakaki, M.; Serris, M.; Patronis, N.; Axiotis, M.; Lagoyannis, A.

    2017-09-01

    The 197Au(n,2n)196Au reaction cross section has been measured at two energies, namely at 17.1 MeV and 20.9 MeV, by means of the activation technique, relative to the 27Al(n,α)24Na reference reaction cross section. Quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR "Demokritos", by means of the 3H(d,n)4He reaction, implementing a new Ti-tritiated target of ˜ 400 GBq activity. The induced γ-ray activity at the targets and reference foils has been measured with HPGe detectors. The cross section for the population of the second isomeric (12-) state m2 of 196Au was independently determined. Auxiliary Monte Carlo simulations were performed using the MCNP code. The present results are in agreement with previous experimental data and with theoretical calculations of the measured reaction cross sections, which were carried out with the use of the EMPIRE code.

  4. Measurement of the {sup 241}Am(n,2n) reaction cross section using the activation method

    SciTech Connect

    Perdikakis, G.; Papadopoulos, C.T.; Vlastou, R.; Kokkoris, M.; Galanopoulos, S.; Patronis, N.; Lagoyannis, A.; Spyrou, A.; Zarkadas, Ch.; Kalyva, G.; Kossionides, S.; Karamanis, D.

    2006-06-15

    In the context of the n{sub T}OF Collaboration, the measurement of the cross section of the reaction {sup 241}Am(n,2n){sup 240}Am, has been performed, for the first time at neutron energies from 8.8 to 11.4 MeV, by the activation method, relative to the {sup 27}Al(n,a){sup 24}Na reaction reference cross section. The monoenergetic neutron beam was produced at the 5.5 MV TANDEM accelerator of NCSR ''Demokritos,'' by means of the {sup 2}H(d,n){sup 3}He reaction, using a deuterium filled gas cell. The radioactive target consisted of a 37 GBq {sup 241}Am source enclosed in a Pb container. After the end of the irradiation, the activity induced by the neutron beam at the target and reference, was measured off-line by a 56% relative efficiency, HPGe detector.

  5. Study of (n,2n) reaction on 191,193Ir isotopes and isomeric cross section ratios

    NASA Astrophysics Data System (ADS)

    Vlastou, R.; Kalamara, A.; Kokkoris, M.; Patronis, N.; Serris, M.; Georgoulakis, M.; Hassapoglou, S.; Kobothanasis, K.; Axiotis, M.; Lagoyannis, A.

    2017-09-01

    The cross section of 191Ir(n,2n)190Irg+m1 and 191Ir(n,2n)190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos", using the activation method. The neutron beams were produced by means of the 3H(d,n)4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α) reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n)192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ)192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  6. Reexamination of cross sections of the 100Mo(p,2n)99mTc reaction

    NASA Astrophysics Data System (ADS)

    Takács, S.; Hermanne, A.; Ditrói, F.; Tárkányi, F.; Aikawa, M.

    2015-03-01

    The nuclear medicine community has been expressing concerns world wide regarding shortages of 99mTc supply based on fission production of 99Mo from highly enriched uranium (HEU) to prepare 99Mo/99mTc generators. As an alternative to reactor produced 99Mo/99mTc generator technology, the direct production of 99mTc on accelerators is considered. There are a number of methods of using accelerators to produce 99mTc and/or 99Mo. Direct production of 99mTc on highly enriched 100Mo target using cyclotrons is interesting for energies up to 20 MeV, so as to minimize the impurities from additional open reaction channels. To estimate the quality of the accelerator produced 99mTc all the possible reaction routes should be mapped which could be potentially involved in this technology. However, a well defined excitation function for the 100Mo(p,2n)99mTc primary reaction is needed, in order to achieve acceptable good results in assessing the quality of the accelerator-produced 99mTc by theoretical calculations. Most of the available experimental cross section data series for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. A large difference more than a factor of two may, indeed, be observed between the lowest and the highest datasets values. The aim of this study was therefore to get a new evaluation for the 100Mo(p,2n)99mTc cross section, through three independent experiments, aiming at a more confident estimation about the amplitude of the excitation function.

  7. Cross section measurements for neutron inelastic scattering and the (n, 2nγ) reaction on Pb206

    DOE PAGES

    Negret, A.; Mihailescu, L. C.; Borcea, C.; ...

    2015-06-30

    We measured excitation functions for γ production associated with the neutron inelastic scattering and the (n, 2n) reactions on 206Pb from threshold up to 18 MeV for about 40 transitions. Two independent measurements were performed using different samples and acquisition systems to check consistency of the results. Moreover, the neutron flux was determined with a 235U fission chamber and a procedure that were validated against a fluence standard. For incident energy higher than the threshold for the first excited level and up to 3.5 MeV, estimates are provided for the total inelastic and level cross sections by combining the presentmore » γ production cross sections with the level and decay data of 206Pb reported in the literature. The uncertainty common to all incident energies is 3.0% allowing overall uncertainties from 3.3% to 30% depending on transition and neutron energy. Finally, the present data agree well with earlier work, but significantly expand the experimental database while comparisons with model calculations using the talys reaction code show good agreement over the full energy range.« less

  8. Difference between interaction cross sections and reaction cross sections

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2008-12-15

    We study the validity of the substitution of interaction cross sections for total reaction cross sections for a nucleus incident on a target nucleus at relativistic energies. We show that, for incident stable nuclei, the predicted difference between interaction and total reaction cross sections is large enough to probe the nuclear structure, particularly in a mass region of less than around 40. For analyses of the difference, we construct ''pseudo data'' for the reaction cross sections because empirical data are very limited at high energies. The construction of the pseudo data is based on our assumption that empirically unknown total reaction cross sections are precisely predicted by the phenomenological black-sphere model of nuclei that we developed recently. The comparison with the empirical interaction cross sections suggests a significant difference between the reaction and interaction cross sections for stable projectiles on a carbon target, which is of the order of 0-100 mb.

  9. (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models

    SciTech Connect

    Kaplan, A.; Sarpün, İ. H.; Aydın, A.; Tel, E.; Çapalı, V.; Özdoǧan, H.

    2015-01-15

    There are several level density models that can be used to predict photo-neutron cross sections. Some of them are Constant Temperature + Fermi Gas Model (CTFGM), Back-Shifted Fermi Gas Model (BSFM), Generalized Superfluid Model (GSM), Hartree-Fock-Bogoliubov microscopic Model (HFBM). In this study, the theoretical photo-neutron cross sections produced by (γ, 2n) reactions for several eveneven lanthanide nuclei such as {sup 140,142}Ce, {sup 142,144,146,148,150}Nd, {sup 144,148,150,152,154}Sm, and {sup 160}Gd have been calculated on the different level density models as mentioned above by using TALYS 1.6 and EMPIRE 3.1 computer codes for incident photon energies up to 30 MeV. The obtained results have been compared with each other and available experimental data existing in the EXFOR database. Generally, at least one level density model cross-section calculations are in agreement with the experimental results for all reactions except {sup 144}Sm(γ, 2n){sup 142}Sm along the incident photon energy, TALYS 1.6 BSFM option for the level density model cross-section calculations can be chosen if the experimental data are not available or are improbable to be produced due to the experimental difficulty.

  10. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  11. Measurement of the Am241(n,2n) reaction cross section from 7.6 MeV to 14.5 MeV

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Angell, C. T.; Boswell, M.; Crowell, A. S.; Fallin, B.; Hammond, S.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Pedroni, R. S.; Tornow, W.; Becker, J. A.; Dashdorj, D.; Kenneally, J.; Macri, R. A.; Stoyer, M. A.; Wu, C. Y.; Bond, E.; Chadwick, M. B.; Fitzpatrick, J.; Kawano, T.; Rundberg, R. S.; Slemmons, A.; Vieira, D. J.; Wilhelmy, J. B.

    2008-05-01

    The (n,2n) cross section of the radioactive isotope Am241 (T1/2=432.6 y) has been measured in the incident neutron energy range from 7.6 to 14.5 MeV in steps of a few MeV using the activation technique. Monoenergetic neutron beams were produced via the H2(d,n)He3 reaction by bombarding a pressurized deuterium gas cell with an energetic deuteron beam at the TUNL 10-MV Van de Graaff accelerator facility. The induced γ-ray activity of Am240 was measured with high-resolution HPGe detectors. The cross section was determined relative to Al, Ni, and Au neutron activation monitor foils, measured in the same geometry. Good agreement is obtained with previous measurements at around 9 and 14 MeV, whereas for a large discrepancy is observed when our data are compared to those reported by Perdikakis near 11 MeV. Very good agreement is found with the END-B/VII evaluation, whereas the JENDL-3.3 evaluation is in fair agreement with our data.

  12. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  13. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  14. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data.

  15. Reaction cross sections of unstable nuclei

    SciTech Connect

    Ozawa, Akira

    2006-11-02

    Experimental studies on reaction cross sections are reviewed. The recent developments of radioactive nuclear beams have enabled us to measure reaction cross-sections for unstable nuclei. Using Glauber-model analysis, effective nuclear matter density distributions of unstable nuclei can be studied. Recent measurements in RIBLL at IMP and RIPS at RIKEN are introduced. The effective matter density distributions for 14-18C are also mentioned.

  16. Reduction Methods for Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  17. Reaction cross section of 22C

    NASA Astrophysics Data System (ADS)

    Togano, Yasuhiro; Samurai Collaboration

    2014-09-01

    Reaction cross section of 22C on a carbon target at an energy of 240 MeV/nucleon have been measured by using the transmission method. The most neutron-rich carbon isotopes 22C is a candidate of a two-neutron halo nucleus. Tanaka et al. [1] measured the reaction cross section of 22C on a hydrogen target at 40 MeV/nucleon. It is showed 22C to have a large matter radius of 5 . 9 +/- 0 . 9 fm, which is much larger than the ones of carbon isotopes with N <= 14 , suggesting 22C is the halo nucleus. This reported radius has a large uncertainty due to a lack of statistics. To deduce a more accurate matter radius of 22C, the measurement of reaction cross section with higher statistics at a higher beam energy are required. The experiment was performed by using the SAMURAI spectrometer at RIBF. The 22C beam at 240 MeV/nucleon was impinged on a carbon target, and the reaction product was identified by using SAMURAI spectrometer. In the present talk, the extracted reaction cross section and derived matter density distribution of 22C will be presented.

  18. Surrogate Measurements of Actinide (n,2n) Cross Sections with NeutronSTARS

    SciTech Connect

    Casperson, R. J.; Burke, J. T.; Hughes, R. O.; Akindele, O. A.; Koglin, J. D.; Wang, B.; Tamashiro, A.

    2016-09-27

    Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-­lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-­particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, which acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a 235U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of 241Pu(n,2n) and 239Pu(n,2n) cross section measurements

  19. Reliability of (γ ,1 n ), (γ ,2 n ), and (γ ,3 n ) cross-section data on 159Tb

    NASA Astrophysics Data System (ADS)

    Varlamov, V.; Ishkhanov, B.; Orlin, V.

    2017-05-01

    The majority of partial and total photoneutron cross-section data were obtained using beams of quasimonoenergetic photons produced by annihilation in the flight of fast positrons and the method of neutron multiplicity-sorting procedures at Lawrence Livermore National Laboratory (California) and Saclay (France). Significant systematic disagreements between the two sets of data were obtained by employing the new objective physical data reliability criteria. It was found that many reaction cross sections are not reliable. As an example, a significant systematic uncertainty of the 159Tb(γ ,2 n ) cross-section data measured at Livermore is presented. The (γ ,2 n ) reaction cross section was obtained as erroneous, whereas the (γ ,3 n ) reaction cross section was not obtained at all. The detailed discussion of this analysis is presented. The newly unmeasured before (γ ,3 n ) cross section is obtained from the experimental (γ ,2 n ) cross section using simple equations based on the physical criteria.

  20. Investigation of the 241Am(n ,2 n )240Am cross section

    NASA Astrophysics Data System (ADS)

    Kalamara, A.; Vlastou, R.; Kokkoris, M.; Diakaki, M.; Tsinganis, A.; Patronis, N.; Axiotis, M.; Lagoyannis, A.

    2016-01-01

    The 241Am(n ,2 n )240Am reaction cross section has been measured at four energies, 10.0, 10.4, 10.8, and 17.1 MeV, by means of the activation technique, relative to the 27Al(n ,α )24Na reaction reference cross section. Quasi-monoenergetic neutron beams were produced via the 2H(d ,n )3He and the 3H(d ,n )4He reactions at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR "Demokritos". The high purity 241Am targets were provided by JRC-IRMM, Geel, Belgium. The induced γ -ray activity of 240Am was measured with high-resolution high-purity germanium (HPGe) detectors. Auxiliary Monte Carlo simulations were performed with the mcnp code. The present results are in agreement with data obtained earlier and predictions obtained with the empire code.

  1. Capture cross sections from (p,d) reactions

    NASA Astrophysics Data System (ADS)

    Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ota, S.; Scielzo, N. D.

    2017-09-01

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have been proposed to determine neutron capture cross sections for unstable isotopes. We consider an approach that aims at constraining statistical calculations of capture cross sections with data obtained from light-ion transfer reactions such as (p,d). We discuss the theoretical descriptions that have to be developed in order to extract meaningful cross section constraints from such data and show some benchmark results.

  2. 239Pu(n,2n) 238Pu cross section inferred from IDA calculations and GEANIE measurements

    SciTech Connect

    Chen, H; Ormand, W E; Dietrich, F S

    2000-09-01

    This report presents the latest {sup 239}Pu(n,2n){sup 238}Pu cross sections inferred from calculations performed with the nuclear reaction-modeling code system, IDA, coupled with experimental measurements of partial {gamma}-ray cross sections for incident neutron energies ranging from 5.68 to 17.18 MeV. It is found that the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section peaks at E{sub inc} {approx} 11.4 MeV with a peak value of approximately 326 mb. At E{sub inc} {approx} 14 MeV, the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section is found to be in good agreement with previous radio-chemical measurements by Lockheed. However, the shape of the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section differs significantly from previous evaluations of ENDL, ENDF/B-V and ENDF/B-VI. In our calculations, direct, preequilibrium, and compound reactions are included. Also considered in the modeling are fission and {gamma}-cascade processes in addition to particle emission. The main components of physics adopted and the parameters used in our calculations are discussed. Good agreement of the inferred {sup 239}Pu(n,2n){sup 238}Pu cross sections derived separately from IDA and GNASH calculations is shown. The two inferences provide an estimate of variations in the deduced {sup 239}Pu(n,2n){sup 238}Pu cross section originating from modeling.

  3. General Constraints on Cross Sections Deduced from Surrogate Reactions

    SciTech Connect

    Younes, W

    2003-08-14

    Cross sections that cannot be measured in the laboratory, e.g. because the target lifetime is too short, can be inferred indirectly from a different reaction forming the same compound system, but with a more accessible beam/target combination (the ''surrogate-reaction'' technique). The reactions share the same compound system and a common decay mechanism, but they involve different formation processes. Therefore, an implicit constraint is imposed on the inferred cross section deduced from the measured surrogate-reaction data, through the common decay mechanism. In this paper, the mathematical consequences of this implicit constraint are investigated. General formulas are derived from upper and lower bounds on the inferred cross section, estimated from surrogate data in a procedure which does not require any modeling of the common decay process. As an example, the formulas developed here are applied to the case of the {sup 235}U(n,f) cross section, deduced from {sup 234}U(t,pf) surrogate data. The calculated bounds are not very tight in this particular case. However, by introducing a few qualitative assumptions about the physics of the fission process, meaningful bounds on the deduced cross section are obtained. Upper and lower limits for the cross-section ratio of the (n,f) reaction on the {sup 235}U isomer at E{sub x} = 77 eV relative to the (n,f) reaction on the ground state are also calculated. The generalization of this technique to other surrogate reactions is discussed.

  4. Phenomenological barrier parameters for total reaction cross section

    NASA Astrophysics Data System (ADS)

    Phookan, C. K.; Kalita, K.

    2016-01-01

    A phenomenological formula for total reaction cross section is introduced for reactions induced by three types of projectiles. The formula is based on Wong's formula in which, the barrier parameters are calculated from the Bass, Aage Winther and the Akyuz Winther potentials. For the reactions studied, we find that a uniform correction of the barrier parameters can account for the total reaction cross section satisfactorily. An unusually large deviation of the barrier parameters is noticed for the reaction {}8{B} + {}^{58}{Ni}. Arguments are given that most likely the radius of the proton halo nucleus {}8{B} is not well accounted by the above potentials and hence, an increase in the effective radius of {}^8{B} is proposed. Analysis is also presented for the reaction {}^{11}{Li} + {}^{208}{Pb} by making the assumption that its reduced total reaction cross section lies on the same trajectory as that for other halo reactions.

  5. Coulomb and nuclear effects in breakup and reaction cross sections

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Canto, L. F.; Hussein, M. S.

    2017-01-01

    We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.

  6. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0.

  7. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  8. Reaction cross sections of the deformed halo nucleus 31Ne

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    Using the Glauber theory, we calculate reaction cross sections for the deformed halo nucleus 31Ne. To this end, we assume that the 31Ne nucleus takes the 30Ne+n structure. To take into account the rotational excitation of the core nucleus 30Ne, we employ the particle-rotor model (PRM). We compare the results to those in the adiabatic limit of PRM, that is, the Nilsson model, and show that the Nilsson model works reasonably well for the reaction cross sections of 31Ne. We also investigate the dependence of the reaction cross sections on the ground-state properties of 31Ne, such as the deformation parameter and the p-wave component in the ground-state wave function.

  9. Determining (n,γ) cross sections using surrogate reactions

    NASA Astrophysics Data System (ADS)

    Scielzo, Nicholas; Escher, Jutta

    2009-10-01

    Direct measurements of neutron-reaction cross sections on unstable nuclei are extremely challenging due to the difficulties associated with radioactive targets and neutron beams. Indirect methods, such as the surrogate reaction method, are currently the only feasible way to determine many of the cross sections for radioactive nuclei that are of interest to nuclear astrophysics, nuclear energy, and other applications. We have used the surrogate reaction method to determine (n,γ) cross sections for ^153,155,157Gd nuclei at energies up to 3 MeV through inelastic proton scattering on stable targets. The STARS/LiBerACE silicon and germanium detector arrays were used to detect γ rays in coincidence with the scattered protons to determine γ-ray exit-channel probabilities. Techniques are being explored to extract reliable cross sections at energies for which the Weisskopf-Ewing limit of the Hauser-Feshbach theory is not applicable. This measurement will provide the first determination of the (n,γ) cross section for ^153Gd, an s-process branch-point nucleus with a half-life of 240 days. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Reaction cross sections of carbon isotopes incident on a proton

    SciTech Connect

    Abu-Ibrahim, B.; Horiuchi, W.; Kohama, A.; Suzuki, Y.

    2008-03-15

    We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies. An emphasis is put on the difference from the case of a carbon target. The calculations include the reaction cross sections of {sup 19,20,22}C at 40A MeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for {sup 16}C and {sup 22}C. We propose empirical formulas which are useful in predicting unknown cross sections.

  11. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  12. Probing neutron-skin thickness with total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Suzuki, Y.; Inakura, T.

    2014-01-01

    We analyze total reaction cross sections, σR, to explore their sensitivity to the neutron-skin thickness of nuclei. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. The cross sections are calculated in the Glauber theory using the density distributions obtained with the Skyrme-Hartree-Fock method in three-dimensional coordinate space. Defining a reaction radius, aR=√σR/π , to characterize the nuclear size and target (proton or 12C) dependence, we find an empirical formula for expressing aR with the point matter radius and the skin thickness, and assess two practical ways of determining the skin thickness from proton-nucleus σR values measured at different energies or from σR values measured for different targets.

  13. Cross sections and reaction rates of relevance to aeronomy

    SciTech Connect

    Fox, J.L. )

    1991-01-01

    Experimental and theoretical data relevant to models and measurements of the chemical and thermal structures and luminosity of the thermospheres of the earth and planets published during the last four years are surveyed. Among chemical processes, attention is given to ion-molecule reactions, dissociative recombination of molecular ions, and reactions between neutral species. Both reactions between ground state species and species in excited states are considered, including energy transfer and quenching. Measured and calculated cross sections for interactions of solar radiation with atmospheric species, such as photoabsorption, photoionization, and photodissociation and related processes are surveyed.

  14. Photoneutron reaction cross sections from various experiments - analysis and evaluation using physical criteria of data reliability

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir; Ishkhanov, Boris; Orlin, Vadim; Peskov, Nikolai; Stepanov, Mikhail

    2017-09-01

    The majority of photonuclear reaction cross sections important for many fields of science and technology and various data files (EXFOR, RIPL, ENDF, etc.) supported by the IAEA were obtained in experiments using quasimonoenergetic annihilation photons. There are well-known systematic discrepancies between the partial photoneutron reactions (γ, 1n), (γ, 2n), (γ, 3n). For analysis of the data reliability the objective physical criteria were proposed. It was found out that the experimental data for many nuclei are not reliable because of large systematic uncertainties of the neutron multiplicity sorting method used. The experimentally-theoretical method was proposed for evaluating the reaction cross sections data satisfying the reliability criteria. The partial and total reaction cross sections were evaluated for many nuclei. In many cases evaluated data differ noticeably from both the experimental data and the data evaluated before for the IAEA Photonuclear Data Library. Therefore it became evident that the IAEA Library needs to be revised and updated.

  15. Measurements of the cross sections of the 186W(n ,γ )187W , 182W(n ,p )182Ta , 154Gd(n ,2 n )153Gd , and 160Gd(n ,2 n )159Gd reactions at neutron energies of 5 to 17 MeV

    NASA Astrophysics Data System (ADS)

    Makwana, Rajnikant; Mukherjee, S.; Mishra, P.; Naik, H.; Singh, N. L.; Mehta, M.; Katovsky, K.; Suryanarayana, S. V.; Vansola, V.; Santhi Sheela, Y.; Karkera, M.; Acharya, R.; Khirwadkar, S.

    2017-08-01

    The cross sections of the 186W(n ,γ )187W , 183W(n ,p )183Ta and 154Gd(n ,2 n )153Gd , 160Gd(n ,2 n )159Gd reactions were measured at the neutron energies 5.08 ±0.165 , 8.96 ±0.77 , 12.47 ±0.825 , and 16.63 ±0.95 MeV . Standard neutron activation analysis technique and off-line γ ray spectrometry were used for the measurement and analysis of the data. Measurements were done in the energy range where few or no measured data are available. The results from the present work are compared with the literature data based on the EXFOR compilation. The experimental results are supported by theoretical predictions using nuclear modular codes TALYS 1.8 and EMPIRE 3.2.2. The predictability of different one-dimensional models available in TALYS 1.8 and Levden models in EMPIRE 3.2.2 were tested. A detailed comparison of experimental results with theoretical model calculations is made.

  16. Reaction Cross Sections for Two DSMC Models: Accuracy and Sensitivity Analysis

    DTIC Science & Technology

    2011-11-15

    trajectory (QCT) cross sections for N2+N dissociation and for N2+O endothermic exchange pro- vide a good test case. A DSMC simulation of a simple... endothermic reactions considered here, we have made the common simplifying assumption that Ea is equal to the heat of reaction. However, since some reactions...especially exothermic ones) have a non- negligible energy barrier, the QK model (like all others) in these cases would have to use an adjustable input

  17. Rotational Energy Transfer Cross Sections in N2-N2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotational inelastic transitions of N2 have been studied in the coupled state (CS, also called centrifugal sudden) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigid-rotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range and for even j - even j collisions only. Both the CC and CS cross sections have been obtained with and without exchange symmetry, whereas exchange is neglected in the IOS calculations. The CS results track the CC cross sections rather well. At total energies between 113 to 219 cm(exp -1) the average deviation is 14%. The deviation decrease with increasing energy, indicating that the CS approximation can be used as a substitute at higher energies when the CC calculations become impractical. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp-1), shows significant differences between the two. In addition, the IOS results exhibits sensitivity to the amount of inelasticity and the results for large DELTA J transitions are subjected to bigger errors. At total energy 113 cm(exp -1) and above, the average deviation between state-to-state cross sections calculated with even and odd exchange symmetries is 1.5%.

  18. Rotational Energy Transfer Cross Sections in N2-N2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotational inelastic transitions of N2 have been studied in the coupled state (CS, also called centrifugal sudden) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigid-rotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range and for even j - even j collisions only. Both the CC and CS cross sections have been obtained with and without exchange symmetry, whereas exchange is neglected in the IOS calculations. The CS results track the CC cross sections rather well. At total energies between 113 to 219 cm(exp -1) the average deviation is 14%. The deviation decrease with increasing energy, indicating that the CS approximation can be used as a substitute at higher energies when the CC calculations become impractical. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp-1), shows significant differences between the two. In addition, the IOS results exhibits sensitivity to the amount of inelasticity and the results for large DELTA J transitions are subjected to bigger errors. At total energy 113 cm(exp -1) and above, the average deviation between state-to-state cross sections calculated with even and odd exchange symmetries is 1.5%.

  19. Study of Exotic Nuclear Structures via Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Takechi, Maya

    2009-10-01

    Nuclear radius is one of the most basic physical quantities to study unknown exotic nuclei. A number of radii for unstable nuclei were studied through measurements of interaction cross sections (σI) at high energies, using the Glauber-type calculation (Optical-Limit approximation (OLA) of Glauber theory) to investigate halo and skin structures of exotic nuclei. On the other hand, it was indicated that reaction cross sections (σR) at intermediate energies (from several tens to hundreds of MeV/nucleon) were more sensitive to dilute nucleon density distribution owing to large nucleon-nucleon total cross sections (σNN) compared to high-energy region. Recently, we developed a new method to deduce nucleon density distributions from the energy dependences of σ R, through the precise measurements of σ R for various nuclei and some modifications of Glauber-type calculation. Using this method, we studied nucleon density distributions of light nuclei by measuring σ R for those nuclei at HIMAC (Heavy ion Medical Accelerator in CHIBA), NIRS (National Institute of Radiological Sciences). And very recently, we deduced nuclear radii of neutron-rich Ne isotopes (^28-32Ne) which are in the island-of-inversion region by measuring σI using BigRIPS at RIBF (RI Beam Factory) to study nuclear structures of those isotopes using our method. In this workshop, results of nucleon density distributions obtained at HIMAC and results of the studies of Ne isotopes at RIBF will be introduced and discussed.

  20. Total Cross Section Measurements and Velocity Distributions of Hyperthermal Charge Transfer in Xe2+ + N2

    NASA Astrophysics Data System (ADS)

    Hause, Michael; Prince, Benjamin; Bemish, Raymond

    Guided-ion beam measurements of the charge exchange (CEX) cross section for Xe2+ + N2 are reported for collision energies ranging from 0.3 to 100 eV in the center-of-mass frame. Measured total XS decrease from 69.5 +/-0.3 Angstroms2 (Angs.) at the lowest collision energies to 40 Angs.2at 100 eV. The product N2+CEX cross section is similar to the total CEX cross section while those of the dissociative product, N+, are less than 1Angs.2 for collision energies above 9 eV. The product N2+CEXcross section measured here are much larger than the total optical emission-excitation cross sections for the N2+(A) and (B) state products determined previously in the chemiluminescence study of Prince and Chiu suggesting that most of the N2+products are in the X state. Time-of-flight (TOF) spectra of both the Xe+ and N2+products suggest two different CEX product channels. The first leaves highly-vibrationally excited N2+products with forward scattered Xe+ (LAB frame) and releases between 0.35 to 0.6 eV translational energy for collisions below 17.6 eV. The second component decreases with collisional energy and leaves backscattered Xe+ and low-vibrational states of N2+.At collision energies above 17.6 eV, only charge exchange involving minimal momentum exchange remains in the TOF spectra. AFOSR 13RV07COR.

  1. Calculation of the Reaction Cross Section for Several Actinides

    SciTech Connect

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-05-24

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged.

  2. New yttrium evaluated cross sections and impact on 88-Y(n,2n)87-Y radchem

    SciTech Connect

    White, M; Kawano, T; Fotiadis, N; Devlin, M; Nelson, R; Garrett, P; Chadwick, M B; Becker, J A

    2004-03-04

    We evaluate new n+{sup 89}Y radchem cross sections using recent LANSCE/GEANIE measurements and GNASH nuclear model calculations, together with previous measurements at Livermore by Dietrich et al. A quantification of margins and uncertainties (QMU) analysis leads to evaluated cross sections for the (n,2n) population of the {sup 88}Y ground state and m1, m2 isomers, together with uncertainties. Our new results agree with historic radchem database cross sections within a few percent below 15 MeV (with larger differences above 15 MeV) and they therefore provide a validation of the historic Arthur work that is used in LANL simulation codes. Since the (n,2n) cross sections to the {sup 88}Y g.s. and m1, m2 isomers impact the average {sup 88}Y(n,2n){sup 87}Y cross section at leading-order, we determine the new 14.1 MeV average {sup 88}Y(n,2n){sup 87}Y cross section (crucially important for radchem). Our new 14 MeV average {sup 88}Y(n,2n){sup 87}Y cross section is 1107 mb ({+-} 4%) which agrees with the value obtained from the historic Arthur cross section data to 0.7%.

  3. Fusion, reaction, and breakup cross sections of {sup 9}Be on a light mass target

    SciTech Connect

    Marti, G.V.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Ramirez, M.; Arazi, A.; Gomes, P.R.S.; Padron, I.; Anjos, R.M.; Lubian, J.; Crema, E.

    2005-02-01

    The total fusion cross section for the {sup 9}Be+{sup 27}Al system has been measured at energies close and above the Coulomb barrier. Reaction cross sections for this system were derived from elastic scattering data, and the breakup-plus-transfer-channel cross sections were estimated from the difference between these data and measured cross-section fusion.

  4. Dissociation cross sections for N2 + N → 3N and O2 + O → 3O using the QCT method

    NASA Astrophysics Data System (ADS)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2017-05-01

    Cross sections for the homo-nuclear atom-diatom collision induced dissociations (CIDs): N2 + N and O2 + O are calculated using Quasi-Classical Trajectory (QCT) method on ab initio Potential Energy Surfaces (PESs). A number of studies for these reactions carried out in the past focused on the CID cross section values generated using London-Eyring-Polanyi-Sato PES and seldom listed the CID cross section data. A highly accurate CASSCF-CASPT2 N3 and a new O3 global PES are used for the present QCT analysis and the CID cross section data up to 30 eV relative energy are also published. In addition, an interpolating scheme based on spectroscopic data is introduced that fits the CID cross section for the entire ro-vibrational spectrum using QCT data generated at chosen ro-vibrational levels. The rate coefficients calculated using the generated CID cross section compare satisfactorily with the existing experimental and theoretical results. The CID cross section data generated will find an application in the development of a more precise chemical reaction model for Direct Simulation Monte Carlo code simulating hypersonic re-entry flows.

  5. Dissociation cross sections for N2 + N → 3N and O2 + O → 3O using the QCT method.

    PubMed

    Mankodi, Tapan K; Bhandarkar, Upendra V; Puranik, Bhalchandra P

    2017-05-28

    Cross sections for the homo-nuclear atom-diatom collision induced dissociations (CIDs): N2 + N and O2 + O are calculated using Quasi-Classical Trajectory (QCT) method on ab initio Potential Energy Surfaces (PESs). A number of studies for these reactions carried out in the past focused on the CID cross section values generated using London-Eyring-Polanyi-Sato PES and seldom listed the CID cross section data. A highly accurate CASSCF-CASPT2 N3 and a new O3 global PES are used for the present QCT analysis and the CID cross section data up to 30 eV relative energy are also published. In addition, an interpolating scheme based on spectroscopic data is introduced that fits the CID cross section for the entire ro-vibrational spectrum using QCT data generated at chosen ro-vibrational levels. The rate coefficients calculated using the generated CID cross section compare satisfactorily with the existing experimental and theoretical results. The CID cross section data generated will find an application in the development of a more precise chemical reaction model for Direct Simulation Monte Carlo code simulating hypersonic re-entry flows.

  6. Theoretical and experimental cross sections for neutron reactions on /sup 64/Zinc

    SciTech Connect

    Rutherford, D.A.

    1988-03-01

    Accurate measurements of the /sup 64/Zn (n,2n)/sup 63/Zn and /sup 64/Zn (n,p)/sup 64/Cu cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(Tl) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was ued to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to /sup 65/Cu (n,2n)/sup 64/Cu and /sup 63/Cu (n,2n)/sup 62/Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2%). The value obtained for the (n,2n) measurement was 199 +- 6 millibarns, and a value of 176 +- 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /sup 64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs.

  7. New approach to analyzing and evaluating cross sections for partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.

    2012-11-15

    The presence of substantial systematic discrepancies between the results of different experiments devoted to determining cross sections for partial photoneutron reactions-first of all, ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions-is a strong motivation for studying the reliability and authenticity of these data and for developing methods for taking into account and removing the discrepancies in question. In order to solve the first problem, we introduce objective absolute criteria involving transitional photoneutron-multiplicity functions F{sub 1}, F{sub 2}, F{sub 3}, Horizontal-Ellipsis ; by definition, their values cannot exceed 1.0, 0.5, 0.33, Horizontal-Ellipsis , respectively. With the aim of solving the second problem, we propose a new experimental-theoretical approach. In this approach, reaction cross sections are evaluated by simultaneously employing experimental data on the cross section for the total photoneutron yield, {sigma}{sup expt}({gamma}, xn) = {sigma}{sup expt}({gamma}, n) + 2{sigma}{sup expt}({gamma}, 2n) + 3{sigma}{sup expt}({gamma}, 3n) + Horizontal-Ellipsis , which are free from drawbacks plaguing experimental methods for sorting neutrons in multiplicity, and the results obtained by calculating the functions F{sub theor}{sup 1}, F{sub theor}{sup 2}, F{sub theor}{sup 3}, Horizontal-Ellipsis on the basis of the modern model of photonuclear reactions. The reliability and authenticity of data on the cross sections for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial reactions-{sigma}{sup eval}({gamma}, in) = F{sub i}{sup theor}{sigma}{sup expt}({gamma}, xn)-were evaluated for the {sup 90}Zr, {sup 115}In, {sup 112,114,116,117,118,119,120,122,124}Sn, {sup 159}Tb, and {sup 197}Au nuclei.

  8. Surrogate Nuclear Reactions - An Indirect Method for Determining Reaction Cross Sections

    SciTech Connect

    Escher, J; Ahle, L; Bernstein, L; Burke, J; Church, J A; Dietrich, F; Forssen, C; Hoffman, R; Gueorguiev, V

    2005-03-23

    An indirect method for determining cross sections of reactions proceeding through a compound nucleus is presented. Some applications of the Surrogate nuclear reaction approach are considered and challenges that need to be addressed are outlined.

  9. Experimental Study of the Cross Sections of {alpha}-Particle Induced Reactions on 209Bi

    SciTech Connect

    Hermanne, A.; Tarkanyi, F.; Takacs, S.; Szucs, Z.

    2005-05-24

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E{alpha}=39 MeV. Excitation functions for the reactions 209Bi({alpha},2n)211At, 209Bi({alpha},3n)210At, 209Bi({alpha},x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  10. Experimental Study of the Cross Sections of α-Particle Induced Reactions on 209Bi

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Szúcs, Z.

    2005-05-01

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to Eα=39 MeV. Excitation functions for the reactions 209Bi(α,2n)211At, 209Bi(α,3n)210At, 209Bi(α,x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  11. Measurement of the 23Na(n,2n) cross section in 235U and 252Cf fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Švadlenková, Marie; Baroň, Petr; Jánský, Bohumil; Novák, Evžen; Mareček, Martin; Uhlíř, Jan

    2017-09-01

    The presented paper aims to compare the calculated and experimental reaction rates of 23Na(n,2n)22Na in a well-defined reactor spectra and in the spontaneous fission spectrum of 252Cf. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination.Estimation of this cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. In the case of reactor spectrum, reasonable agreement was not achieved with any library. However, in the case of 252Cf spectrum agreement was achieved with IRDFF, JEFF-3.1 and JENDL libraries.

  12. New data on cross sections for partial and total photoneutron reactions on the isotopes {sup 91,94}Zr

    SciTech Connect

    Varlamov, V. V.; Makarov, M. A.; Peskov, N. N.; Stepanov, M. E.

    2015-07-15

    Experimental data on {sup 91,94}Zr photodisintegration that were obtained in a beam of quasimonoenergetic annihilation photons by the method of neutron multiplicity sorting are analyzed. It is found that the cross sections for the (γ, 1n), (γ, 2n), and (γ, 3n) reactions on both isotopes do not meet the objective data-reliability criteria formulated earlier. Within the experimental–theoretical method for evaluating partial-reaction cross sections that satisfy these criteria, new data on the cross sections for the aforementioned partial reactions, as well as for the (γ, sn) = (γ, 1n) + (γ, 2n) + (γ, 3n) +... total photoneutron reaction, are obtained for the isotopes {sup 91,94}Zr.

  13. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  14. Impact of Reaction Cross Section on the Unified Description of Fusion Excitation Function

    NASA Astrophysics Data System (ADS)

    Basrak, Z.; Eudes, P.; de la Mota, V.; Sébille, F.; Royer, G.

    A systematics of over 300 complete and incomplete fusion cross section data points covering energies beyond the barrier for fusion is presented. Owing to a usual reduction of the fusion cross sections by the total reaction cross sections and an original scaling of energy, a fusion excitation function common to all the data points is established. A universal description of the fusion exci- tation function relying on basic nuclear concepts is proposed and its dependence on the reaction cross section used for the cross section normalization is discussed. The pioneering empirical model proposed by Bass in 1974 to describe the complete fusion cross sections is rather successful for the incomplete fusion too and provides cross section predictions in satisfactory agreement with the observed universality of the fusion excitation function. The sophisticated microscopic transport DYWAN model not only reproduces the data but also predicts that fusion reaction mechanism disappears due to weakened nuclear stopping power around the Fermi energy.

  15. Determining neutron capture cross sections with the Surrogate Reaction Technique: Measuring decay probabilities with STARS

    SciTech Connect

    Church, J A; Ahle, L; Bernstein, L A; Cooper, J; Dietrich, F S; Escher, J; Forssen, C; Ai, H; Amro, H; Babilon, M; Beausang, C; Caggiano, J; Heinz, A; Hughes, R; McCutchan, E; Meyer, D; Plettner, C; Ressler, J; Zamfir, V

    2004-07-14

    Neutron-induced reaction cross sections are sometimes difficult to measure due to target or beam limitations. For two-step reactions proceeding through an equilibrated intermediate state, an alternate ''surrogate reaction'' technique can be applicable, and is currently undergoing investigation at LLNL. Measured decay probabilities for the intermediate nucleus formed in a light-ion reaction can be combined with optical-model calculations for the formation of the same intermediate nucleus via the neutron-induced reaction. The result is an estimation for overall (n,{gamma}/n/2n) cross sections. As a benchmark, the reaction {sup 92}Zr({alpha},{alpha}'), surrogate, for n+{sup 91}Zr, was studied at the A.W. Wright Nuclear Structure Laboratory at Yale. Particles were detected in the silicon telescope STARS (Silicon Telescope Array for Reaction Studies) and {gamma}-ray energies measured with germanium clover detectors from the YRAST (Yale Rochester Array for SpecTroscopy) ball. The experiment and preliminary observations will be discussed.

  16. Determining neutron capture cross sections with the Surrogate Reaction Technique: Measuring decay probabilities with STARS

    NASA Astrophysics Data System (ADS)

    Church, J. A.; Ahle, L.; Bernstein, L. A.; Cooper, J.; Dietrich, F. S.; Escher, J.; Forssen, C.; Ai, H.; Amro, H.; Babilon, M.; et al.

    2005-07-01

    Neutron-induced reaction cross sections are sometimes difficult to measure due to target or beam limitations. For two-step reactions proceeding through an equilibrated intermediate state, an alternate "surrogate reaction" technique [J.D. Cramer and H.C. Britt, Nucl. Sci. Eng. 41, 177 (1970), H.C. Britt and J.B. Wilhelmy, Nucl. Sci. Eng. 72, 222 (1979), W.Younes and H.C. Britt, Phys. Rev. C 67, 024610 (2003)] can be applicable, and is currently undergoing investigation at LLNL. Measured decay probabilities for the intermediate nucleus formed in a light-ion reaction can be combined with optical-model calculations for the formation of the same intermediate nucleus via the neutron-induced reaction. The result is an estimation for overall (n,γ/n/2n) cross sections. As a bench-mark, the reaction 92Zr(α, α'), surrogate for n+91Zr, was studied at the A.W. Wright Nuclear Structure Laboratory at Yale. Particles were detected in the silicon telescope STARS (Silicon Telescope Array for Reaction Studies) and γ-ray energies measured with germanium clover detectors from the YRAST (Yale Rochester Array for SpecTroscopy) ball. The experiment and preliminary observations will be discussed.

  17. α scattering and α -induced reaction cross sections of 64Zn at low energies

    NASA Astrophysics Data System (ADS)

    Ornelas, A.; Mohr, P.; Gyürky, Gy.; Elekes, Z.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Somorjai, E.; Szücs, T.; Takács, M. P.; Galaviz, D.; Güray, R. T.; Korkulu, Z.; Özkan, N.; Yalçın, C.

    2016-11-01

    Background: α -nucleus potentials play an essential role for the calculation of α -induced reaction cross sections at low energies in the statistical model. Uncertainties of these calculations are related to ambiguities in the adjustment of the potential parameters to experimental elastic scattering angular distributions and to the energy dependence of the effective α -nucleus potentials. Purpose: The present work studies the total reaction cross section σreac of α -induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open nonelastic channels. Method: Elastic and inelastic 64Zn(α ,α )64Zn angular distributions were measured at two energies around the Coulomb barrier, at 12.1 and 16.1 MeV. Reaction cross sections of the (α ,γ ) , (α ,n ) , and (α ,p ) reactions were measured at the same energies using the activation technique. The contributions of missing nonelastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open nonelastic channels agree well within the uncertainties. This finding confirms the consistency of the experimental data. At the higher energy of 16.1 MeV, the predicted significant contribution of compound-inelastic scattering to the total reaction cross section is confirmed experimentally. As a by-product it is found that most recent global α -nucleus potentials are able to describe the reaction cross sections for 64Zn around the Coulomb barrier. Conclusions: Total reaction cross sections of α -induced reactions can be well determined from elastic scattering angular distributions. The present study proves experimentally that the total cross section from elastic scattering is identical to the sum of nonelastic reaction cross sections. Thus, the statistical model can reliably be used to distribute the total reaction

  18. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  19. Theoretical cross section calculations of medical 13N and 18F radioisotope using alpha induced reaction

    NASA Astrophysics Data System (ADS)

    Kılınç, F.; Karpuz, N.; ćetin, B.

    2017-02-01

    In medical physics, radionuclides are needed to diagnose functional disorders of organs and to diagnose and treat many diseases. Nuclear reactions are significant for the productions of radionuclides. It is important to analyze the cross sections for much different energy. In this study, reactional cross sections calculations on 13N, 18F radioisotopes are with TALYS 1.6 nuclear reaction simulation code. Cross sections calculated and experimental data taken from EXFOR library were compared

  20. Theoretical cross sections of tantalum on neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Siddik, Tarik

    2016-11-01

    Neutron-induced cross-sections for the stable isotope 181Ta, in the energy region up to 20 MeV have been calculated. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T = 300 K; JENDL-3.3, T = 300 K and JEFF-3.1, T = 300 K evaluated libraries.

  1. Validation of zirconium isotopes (n,g) and (n,2n) cross sections in a comprehensive LR-0 reactor operative parameters set.

    PubMed

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Burianová, Nicola; Šimon, Jan; Mareček, Martin; Uhlíř, Jan

    2017-10-01

    Zirconium is an important material used in most of reactor concepts for fuel cladding. Thus the knowledge of its cross section is important for reliable prediction of fuel operation. Also (90)Zr(n,2n) reaction, is included in IRDFF files as dosimetry cross section standard. Due to its very high threshold, 12.1MeV, it is suitable for measurement of high energy neutrons. One of possible interesting applications is also evaluation of prompt fission neutron spectra in (235)U and (238)U what is under auspices of the International Atomic Energy Agency in CIELO project. The experimental values - obtained with the LR-0 nuclear reactor - of various zirconium cross sections were compared with calculations with the MCNP6 code using IAEA CIELO, ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND- 2010, and CENDL-3.1 transport libraries combined with the dosimetry cross sections extracted from the IRDFF library. Generally, the best C/E agreement for (90)Zr(n,2n) cross section, was found with the IAEA CIELO (235)U evaluation that includes an updated prompt fission neutron spectra in the evaluated data file. The cross section of this reaction averaged over LR-0 spectra was determined being 28.9 ± 1.2 µb, corrected to spectral shift, spectral averaged cross section in (235)U was determined to be 0.107 ± 0.005mb. Notable discrepancies were reported in both (94)Zr(n,g) and (96)Zr(n,g). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    SciTech Connect

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.

  3. Cross sections of deposited layers investigated by micronuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Jet-Efda Contributors Petersson, P.; Bergsåker, H.; Possnert, G.; Coad, J. P.; Likonen, J.; Koivuranta, S.; Hakola, A.

    2011-08-01

    Cross sections of deposited layers from the divertor of the Joint European Torus (JET) have been investigated, microscopically and by ion microbeam analysis. The thickness of these layers on the studied samples varies between about 50 μm and 800 μm depending on the exposure time and poloidal location of the sample. For most of the thicker layers a laminar structure is observed. In some locations changes, such as gaps, are also observed along the laminar structure as well as more complex structures. The possibility to use the layers as historical reference was also investigated.

  4. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  5. Production cross sections of superheavy elements Z =119 and 120 in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Xie, Wen-Jie; Zhang, Feng-Shou

    2014-02-01

    The production cross sections of superheavy nuclei in hot fusion reactions are investigated systematically. In hot fusion reactions, the capture cross section can be obtained by calculating the weighted average of the transmission probability for different orientations of deformed colliding nuclei. An analytical formula for calculating the value of the fusion probability is proposed, which is suitable for both hot and cold fusion reactions. The orientation effects are considered empirically in calculating the fusion probability. The method proposed in the present work reproduces the measured evaporation residue (ER) cross sections in hot fusion reactions acceptably well. The formula also gives reasonable results for fusion probability in cold fusion reactions. Using this method the evaporation residue cross sections for synthesizing Z =119 and 120 are predicted. It is found that for hot fusion reaction's larger maximal ER cross section of the 4n channel corresponds to lower optimal incident energy.

  6. Measurement of the sup 19 F(n,2n) sup 18 F cross section from 18 to 27 MeV

    SciTech Connect

    Hartmann, C.L.; DeLuca, P.M. Jr.

    1990-01-01

    the {sup 19}F(n,2n){sup 18}F cross section was measured at neutron energies of 18, 21, 23, and 27 MeV. Nearly monoenergetic neutrons bombarded teflon (CF{sub 2}), Zr, and Au samples. {sup 19}F(n,2n){sup 18}F cross section values were determined relative to {sup nat}Zr(n,xn){sup 89}Zr and {sup 197}Au(n,2n){sup 196}Au from measurements of the {sup 18}F, {sup 89}Zr, and {sup 196}Au activities. Our results are in agreement with previous measurements below 20 MeV and extend the usefulness of this reaction to 27 MeV. 22 refs., 1 fig., 2 tabs.

  7. Cross section calculations of medical 103Pd radioisotope using α and 3He induced reactions

    NASA Astrophysics Data System (ADS)

    Demir, Bayram; Sarpün, Ismail Hakkı; Dogan, Yunus Emre

    2016-11-01

    One of the most popular radioisotopes used in the prostate brachytherapy is Palladium-103 (103Pd). The radioactive plaque is sewn onto the eye as to cover the intraocular tumor shadow with a 2-3 mm margin. These plaques are temporary and radiation is continuously delivered over 5 to 7 days. At the end of treatment, the plaque is removed from eye. In this study, production cross-section calculations of 103Pd radionuclide used in brachytherapy produced by 101Ru(α,2n), 100Ru(α,n), 102Ru(3He,2n) and 101Ru(3He,n) reactions have been investigated in the different incident energy range up to 35 MeV. Twocomponent Exciton model and Generalized Superfluid model of the TALYS 1.6 code used to perform calculations and calculation results were compared with experimental results reported in the literature.

  8. Calculation of photo-nuclear reaction cross sections for 16O

    NASA Astrophysics Data System (ADS)

    Arasoglu, Ali; Faruk Ozdemir, Omer

    2015-07-01

    Because of the high thermal expansion coefficient of uranium, the fuel used in nuclear power plants is usually in the form of UO2 which has ceramic structure and small thermal expansion coefficient. UO2 include one uranium atom and two oxygen atoms. After fission progress, total energy values of emitted gamma are about 14 MeV. This gamma energy may cause transmutation of 16O isotopes. Transmutation of 16O isotopes changes physical properties of nuclear fuel. Due to above explanations, it is very important to calculate photo-nuclear reaction cross sections of 16O. In this study; for (γ,p), (γ,np), (γ,n) and (γ,2n) reactions of 16O, photo-nuclear reaction cross-sections were calculated using different models for pre-equilibrium and equilibrium effects. Taking incident gamma energy values up to 40 MeV, Hybrid and Cascade Exciton Models were used for pre-equilibrium calculations and Weisskopf-Ewing (Equilibrium) Model was used for equilibrium model calculations. Calculation results were compared with experimental and theoretical data. While experimental results were obtained from EXFOR, TENDL-2013, JENDL/PD-2004 and ENDF/B VII.1 data base were used to get theoretical results.

  9. Experimental cross-sections for proton-induced nuclear reactions on natMo

    NASA Astrophysics Data System (ADS)

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-08-01

    In the framework of the Co-ordinated Research Project of the IAEA, we measured in detail cross-sections of the nuclear reactions natMo(p,x)93gTc, 93mTc, 93m+gTc, 94gTc, 94mTc, 95gTc, 95mTc, 96m+gTc, 97mTc, 99mTc, 90Mo, 93mMo, 99Mo, 88gNb, 88mNb, 89gNb, 89mNb, 90m+gNb, 90m+gNbcum, 91mNb, 92mNb, 95gNb, 95mNb, 95m+gNb, 96Nb, 97m+gNb, 88m+gZrcum and 89m+gZrcum in the energy range of 6.9-35.8 MeV. The data for formation of 97mTc, 88gNb, 88mNb and 89mNb are reported for the first time. The obtained results were compared to the prediction of the nuclear reaction model code TALYS adopted from the TENDL-2015 library and to the previously published cross-sections. The thick target yields for all the radionuclides were calculated from the measured data. We suggest recommended cross-sections and thick target yields for the 100Mo(p,2n)99mTc, 100Mo(p,x)99Mo and natMo(p,x)96m+gTc nuclear reactions deduced from the selected experimental data.

  10. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  11. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  12. Measurement of the 8Li( α, n) 11B reaction cross sections of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Ishikawa, T.; Kawamura, T.; Nakai, K.; Ishiyama, H.; Watanabe, Y. X.; Miyatake, H.; Tanaka, M. H.; Yoshikawa, N.; Jeong, S. C.; Fuchi, Y.; Katayama, I.; Nomura, T.; Das, S. K.; Saha, P. K.; Fukuda, T.; Nishio, K.; Mitsuoka, S.; Ikezoe, H.; Matsuda, M.; Ichikawa, S.; Furukawa, T.; Izumi, H.; Shimoda, T.; Mizoi, Y.; Terasawa, M.

    2004-12-01

    An accurate exclusive measurement of the 8Li( α, n) 11B reaction cross sections has been carried out successfully by using a highly efficient detector system and high-purity low energy 8Li-beam. The excitation function obtained with high statistics in the energy region from 0.9 to 2.7 MeV in the center-of-mass system is reported. The present cross sections show that the averaged ratio of total cross section to the inverted neutron capture cross section is 4 ˜ 5. Some details of the experimental method are also described.

  13. Estimation of the Breakup Cross-Sections in 6He + 12C Reaction Within High-Energy Approximation and Microscopic Optical Potential

    NASA Astrophysics Data System (ADS)

    Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.

    The breakup cross-sections in the reaction 6He + 12C are calculated at about 40 MeV/nucleon using the high-energy approximation (HEA) and with the help of microscopic optical potentials (OP) of interaction with the target nucleus 12C of the projectile nucleus fragments 4He and 2n. Considering the di-neutron h = 2n as a single particle the relative motion hα wave function is estimated so that to explain both the separation energy of h in 6He and the rms radius of the latter. The stripping and absorbtion total cross-sections are calculated and their sum is compared with the total reaction cross-section obtained within a double-folding microscopic OP for the 6He + 12C scattering. It is concluded that the breakup cross-sections contribute to about 50% of the total reaction cross-section.

  14. The 235U(n,2n(gamma)) Yrast Partial Gamma-Ray Cross Sections: A Report on the 1998 -- 1999 GEANIE Data and Analysis Techniques

    SciTech Connect

    Younes, W; Becker, J A; Bernstein, L A; Garret, P E; McGrath, C A; McNabb, D P; Nelson, R O; Devlin, M; Fotiades, N; Johns, G D

    2000-09-01

    Measurements of partial {sup 235}U(n,2n{gamma}) {gamma}-ray cross sections have been carried out as a function of incident neutron energy using the GEANIE spectrometer at LANSCE/WNR. The yields of {gamma} rays resulting from the population of discrete levels in the residual nucleus {sup 234}U have been measured at incident neutron energies in the 1-20-MeV range. These data provide, with the aid of nuclear reaction modeling, a measurement of the {sup 235}U(n,2n) reaction cross section and serve as a proof of principle of the y-ray technique for the parallel 23gPu(n,2n) measurement [l]. This paper presents the analysis of the {gamma}-ray data and the extraction of partial {gamma}-ray cross sections as a function of incident neutron energy. Uncertainties associated with the spectroscopic analysis of the data and validation of the results are discussed in detail.

  15. Average cross section measurement for 162Er (γ, n) reaction compared with theoretical calculations using TALYS

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.

    2017-01-01

    Bremsstrahlung photon beam delivered by a linear electron accelerator has been used to experimentally determine the near threshold photonuclear cross section data of nuclides. For the first time, (γ, n) cross section data was obtained for the astrophysical important nucleus 162Er. Moreover, theoretical calculations have been applied using the TALYS 1.6 code. The effect of the gamma ray strength function on the cross section calculations has been studied. A satisfactorily reproduction of the available experimental data of photonuclear cross section at the energy region below 20 MeV could be achieved. The photon flux was monitored by measuring the photons yield from seven well known (γ, n) reactions from the threshold energy of each reaction up to the end-point energy of the photon beam used. An integrated cross-section 87 ± 14 mb is calculated for the photonuclear reaction 162Er (γ, n) at the energy 9.2-14 MeV. The effective cross section estimated using the TALYS code range between 89 and 96 mb depending on the γ-strength function used. To validate the method for the estimation of the average cross-section data of 162Er (γ, n) reaction, the same procedure has been performed to calculate the average cross-section data of 197Au (γ, n) and 55Mn (γ, n) reactions. In this case, the photons yield from the rest well known (γ, n) reactions was used in order to monitoring the photon flux. The results for 162Er (γ, n), 197Au (γ, n) and 55Mn (γ, n) are found to be in good agreement with the theoretical values obtained by TALYS 1.6. So, the present indirect process could be a valuable tool to estimate the effective cross section of (γ, n) reaction for various isotopes using bremsstrahlung beams.

  16. Cross sections for the formation of 69Znm,g and 71Znm,g in neutron induced reactions near their thresholds: Effect of reaction channel on the isomeric cross-section ratio

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.; Sudár, S.; Qaim, S. M.

    2003-08-01

    Excitation functions were measured for the reactions 72Ge(n,α)69Znm,g, 69Ga(n,p)69Znm,g, 70Zn(n,2n)69Znm,g, 74Ge(n,α)71Znm,g, and 71Ga(n,p)71Znm,g over the neutron energy range of 6.3 12.4 MeV. Quasimonoenergetic neutrons in this energy range were produced via the 2H(d,n)3He reaction using a deuterium gas target at the Jülich variable energy compact cyclotron. Use was made of the activation technique in combination with high-resolution HPGe-detector γ-ray spectroscopy. In a few cases low-level β-counting was also applied. In order to decrease the interfering activities in those cases, either radiochemical separations were performed or isotopically enriched targets were used. For most of the reactions, the present measurements provide the first consistent sets of data near their thresholds. From the available experimental data, isomeric cross-section ratios were determined for the isomeric pair 69Znm,g in (n,α), (n,p), and (n,2n) reactions, and for the pair 71Znm,g in (n,α) and (n,p) reactions. Nuclear model calculations using the code STAPRE, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of both isomeric and ground states of the products. The calculational results on the total (n,α), (n,p), and (n,2n) cross sections agree fairly well with the experimental data. The experimental isomeric cross-section ratios, however, are reproduced only approximately by the calculation. For both the isomeric pairs investigated, the isomeric cross-section ratio in the (n,p) reaction is higher than in other reactions.

  17. Total reaction cross sections for 8Li + 90Zr at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; Keeley, N.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Torresi, D.; Trzcinska, A.; Watanabe, Y. X.; Yamaguchi, H.

    2015-05-01

    Total reaction cross sections for the radioactive nucleus 8Li on 90Zr are reported at the near-barrier energies of 18.5 and 21.5MeV, derived from quasi-elastic scattering measurements. An analysis of the quasi-elastic scattering results is performed within an optical model framework using the BDM3Y1 interaction and total reaction cross sections are deduced. These quantities, appropriately reduced, are compared with previous data obtained in elastic scattering measurements with well and weakly bound projectiles on various targets and a formula for predicting total reaction cross sections with an uncertainty of % is obtained. Further on, the ratios of direct to total reaction cross sections are estimated for 6,8Li on various targets and are compared with CDCC or CRC calculations. The energy dependence of the optical potential is also discussed.

  18. Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements

    SciTech Connect

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Diaz-Torres, A.; Gomes, P. R. S.

    2016-07-07

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle.

  19. Actinide cross sections from the reaction of sup 13 C with sup 254 Es sup g

    SciTech Connect

    Moody, K.J.; Lougheed, R.W.; Dougan, R.J.; Hulet, E.K.; Wild, J.F.; Summerer, K.; Hahn, R.L.; Aarle, J.v.; Bethune, G.R. )

    1990-01-01

    We have measured cross sections for the formation of actinide transfer products in the reaction of 72-MeV {sup 13}C projectiles with {sup 254}Es{sup {ital g}} targets. The pattern of nuclide yields is similar to those observed in the reactions of heavier ions with {sup 254}Es{sup {ital g}}. We have constructed the primary element yields from these results and show that the total cross section for transfer reactions is 58 mb. The total reaction cross section is about 300 mb. Lawrencium isotopes are formed with larger cross sections than are consistent with the trends of the transfer-product distributions; we explain this in terms of massive transfer, and model the lawrencium yields with an evaporation code.

  20. Capture cross sections for the near symmetric {sup 124}Sn+{sup 96}Zr reaction

    SciTech Connect

    Vinodkumar, A. M.; Loveland, W.; Sprunger, P. H.; Peterson, D.; Liang, J. F.; Shapira, D.; Varner, R. L.; Gross, C. J.; Kolata, J. J.

    2006-12-15

    Capture-fission cross sections were measured for the near symmetric reaction between the massive nuclei {sup 124}Sn and {sup 96}Zr for center of mass energies from 195 to 265 MeV. Coincident fission fragments were detected and separated from elastic and deep inelastic scattering products by angle/energy/mass conditions. The measured capture cross sections agree quite well with calculations using the dinuclear system (DNS) model. The DNS model also predicts the fusion cross section for this reaction with a fusion barrier height of 208.0 MeV. The deduced extra push energy, corresponding to this barrier height, differs from that deduced from evaporation residue measurements.

  1. Semiclassical calculations of observable cross sections in breakup reactions

    SciTech Connect

    Marta, H. D.; Canto, L. F.; Donangelo, R.

    2008-09-15

    We develop a semiclassical procedure to calculate breakup reaction products' angular and energy distributions in the laboratory frame of reference. The effects of the Coulomb and nuclear interaction potentials on the classical trajectories, as well as bound-bound, bound-continuum, and continuum-continuum couplings, are included. As an example we consider the {sup 8}B+{sup 58}Ni system at E{sub lab}=26 MeV and find very good agreement with the available experimental data.

  2. Heavy actinide cross sections in the /sup 238/U + /sup 248/Cm reaction

    SciTech Connect

    Kratz, J V; Bruechle, W; Gaeggeler, H

    1981-01-01

    Cross sections for the production of Cf, Es, Fm, and Md isotopes in the reactions of 7.4 MeV/u /sup 238/U-ions with /sup 248/Cm targets are presented and discussed. Cross sections for the formation of heavy actinides in the reactions of 7.5 MeV/u /sup 136/Xe and /sup 238/U-projectiles with /sup 238/U-targets are presented for comparison. (WHK)

  3. Nuclear Reaction Data from Surrogate Measurements: A Consideration of (n,f) Cross Sections

    SciTech Connect

    Escher, J E; Bernstein, L A; Burke, J T; Dietrich, F S; Lyles, B F

    2007-07-30

    A brief summary of the Surrogate reaction method, an indirect approach for determining compound-nuclear reaction cross sections, is presented. The possibilities for obtaining accurate (n,f) cross sections from Surrogate measurements that are analyzed in the Weisskopf-Ewing and Ratio approximations are considered. Theoretical studies and benchmark experiments that provide new insights into the validity and limitations of the Surrogate approach, are discussed.

  4. Calculation of evaporation residue cross sections for the synthesis of superheavy nuclei in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jinjuan; Wang, Chengbin; Ren, Zhongzhou

    2013-07-01

    A systematic calculation of the production cross sections of superheavy elements (SHEs) in hot fusion reactions is performed. First, we analyze the reactions of 48Ca + 238U, 244Pu, and 248Cm, from which the parameter values in the model for each process are determined by comparing the calculated capture, fusion, and evaporation residue (ER) cross sections, respectively, with the measured data. Then, we calculate the ER cross sections of other hot fusion reactions with the derived parameter values. The calculated results are in good agreement with the available data. Furthermore, the possible isotope production cross sections of elements 118 and 117 in the reactions of 48Ca + ACf and ABk are computed. We find that with the increase of the neutron number of the target, the production cross sections of the SHEs increase, primarily caused by the smaller neutron separation energies of the corresponding neutron-rich compound nucleus (CN). Finally, the production cross sections of elements 120 and 119 are evaluated in fusion-evaporation reactions with 50Ti as a projectile.

  5. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  6. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-08-01

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (∼ 50 MeV to ∼ 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are available now. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results. Our current results indicate this is, in fact, the case.

  7. Calculated differential and double differential cross section of DT neutron induced reactions on natural chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.

    2017-07-01

    Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.

  8. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  9. Measurement of the Am242m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  10. Measurement of the Amm242 neutron-induced reaction cross sections

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2017-02-01

    The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.

  11. Cross-section studies of important neutron and relativistic deuteron reactions

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Herman, T.; Svoboda, O.; Geier, B.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunikov, S.; Zavorka, L.; Vladimirova, N.; Bielewicz, M.; Kilim, S.; Szuta, M.; Strugalska-Gola, E.

    2014-09-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied by the means of activation method. The deuteron beams produced by JINR Nuclotron (Russia) with energies from 1 GeV up to 8 GeV were used. Lack of such cross-sections prevents the usage of copper foils for beam integral monitoring. The copper monitors will help us to improve the beam integral determination during ADS studies. The yttrium samples are very suitable activation detectors for monitoring of neutron fields not only in the ADS studies. But experimental cross-section data for higher energy threshold neutron reactions are still missing. This situation is the reason why we have started to study neutron reactions on yttrium by the means of quasi mono-energetic neutron source based on NPI Řež cyclotron (Czech Republic).

  12. PRECO-D2: program for calculating preequilibrium and direct reaction double differential cross sections

    SciTech Connect

    Kalbach, C.

    1985-02-01

    The code PRECO-D2 uses the exciton model for preequilibrium nuclear reactions to describe the emission of particles with mass numbers of 1 to 4 from an equilibrating composite nucleus. A distinction is made between open and closed configurations in this system and between the multi-step direct (MSD) and multi-step compound (MSC) components of the preequilibrium cross section. Additional MSD components are calculated semi-empirically to account for direct nucleon transfer reactions and direct knockout processes involving cluster degrees of freedom. Evaporation from the equilibrated composite nucleus is included in the full MSC cross section. Output of energy differential and double differential cross sections is provided for the first particle emitted from the composite system. Multiple particle emission is not considered. This report describes the reaction models used in writing PRECO-D2 and explains the organization and utilization of the code. 21 refs.

  13. Effect of pre-equilibrium spin distribution on neutron-induced reaction cross sections

    SciTech Connect

    Dashdorj, D.; Mitchell, G. E.; Becker, J. A.; Wu, C. Y.; Chadwick, M. B.; Devlin, M.; Fotiades, N.; Kawano, T.; Nelson, R. O.; Garrett, P. E.; Kunieda, S.

    2008-04-17

    Cross section measurements were made of prompt gamma-ray production as a function of neutron energy using the germanium array for neutron induced excitations (GEANIE) at LANSCE. Measuring the prompt reaction gamma rays as a function of incident neutron energy provides more precise understanding of the spins populated by the pre-equilibrium reaction. The effect of the spin distribution in pre-equilibrium reactions has been investigated using the GNASH reaction code. Widely used classical theories such as the exciton model usually assume that the spin distribution of the pre-equilibrium reaction is the same as the spin distribution of the compound nucleus reaction mechanism. In the present approach, the pre-equilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK). This pre-equilibrium spin distribution was incorporated into the GNASH code and the gamma-ray production cross sections were calculated and compared with experimental data. Spin distributions peak at lower spin when calculated with the FKK formulation than with the Compound Nuclear theory. The measured partial gamma-ray cross sections reflect this spin difference. Realistic treatment of the spin distribution improves the accuracy of calculations of gamma-ray production cross sections.

  14. Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics

    NASA Astrophysics Data System (ADS)

    Rueter, Keiti; Novikov, Ivan

    2017-01-01

    Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.

  15. Deformation effect on total reaction cross sections for neutron-rich Ne isotopes

    SciTech Connect

    Minomo, Kosho; Sumi, Takenori; Ogata, Kazuyuki; Shimizu, Yoshifumi R.; Yahiro, Masanobu; Kimura, Masaaki

    2011-09-15

    The isotope dependence of measured reaction cross sections in the scattering of {sup 28-32}Ne isotopes from a {sup 12}C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne g matrix. The density of the projectile is calculated by the mean-field model with the deformed Woods-Saxon potential. The deformation is evaluated by antisymmetrized molecular dynamics. The deformation of the projectile enhances calculated reaction cross sections to the measured values.

  16. The Glauber model and heavy ion reaction and elastic scattering cross sections

    NASA Astrophysics Data System (ADS)

    Mehndiratta, Ajay; Shukla, Prashant

    2017-05-01

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon-nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  17. Fission cross section of the 232Th(n,f)131Sb reaction induced by neutrons around 14 MeV

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lv, Tao; Pan, Xiao-dong; Wang, Qiang; Fang, Kai-hong; Lan, Chang-lin

    2017-06-01

    In order to make a more detailed study on the 232Th fission process, the cross section of 232Th(n,f)131Sb fission reaction induced by 14 MeV neutrons was measured precisely with the neutron activation method and off-line gamma ray spectrometric technique. Neutron flux was monitored on line using the accompanying α particle from T(d,n)4He reaction in the irradiation and neutron energies were given by the cross section ratio of 90Zr(n,2 n)89Zr reaction to 93Nb(n,2 n)92 mNb reaction. The experimentally determined cross sections were deduced to be 6.27±0.47, 6.19±0.54, 6.00±0.51 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively.

  18. Photodisintegration average cross sections of dysprosium p-nuclei near (γ,n) reaction threshold

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.

    2017-05-01

    First measured cross section data on (γ,n) reaction of dysprosium proton-rich nuclei 156Dy and 158Dy was experimentally determined via activation methods using a bremsstrahlung photons beam delivered by an electron medical accelerator. An integrated cross section of 144± 44 mb is calculated for the 156Dy (γ,n) reaction at the energy interval 9.4-14MeV while for the 158Dy (γ,n) reaction at the energy interval 9.1-14 MeV is estimated as 168± 42 mb. Moreover, theoretical calculations have been performed for all Dy isotopes employing the TALYS code. The effect of the nuclear-physics input parameters (γ-ray strength function, nuclear level densities) on the cross section calculations has been studied to successfully reproduce the experimental data. The effective cross section estimated using the TALYS code ranges between 115 and 206 mb for 156Dy ( γ,n) and between 124 and 206mb for 158Dy (γ,n) reaction depending on the γ-ray strength function used.

  19. Determining Cross Sections for Reactions on Unstable Nuclei: A Consideration of Indirect Approaches

    SciTech Connect

    Escher, J.; Dietrich, F.S.

    2005-10-14

    An indirect method for determining cross sections for reactions proceeding through a compound nucleus is presented. The appropriate theoretical framework for applications of this method is reviewed and theoretical and experimental challenges that need to be addressed in applications of the method are outlined. Two approximations are considered and their advantages and limitations are discussed.

  20. Determining Cross Sections for Reactions on Unstable Nuclei: A Consideration of Indirect Approaches

    SciTech Connect

    Escher, J; Dietrich, F S

    2005-05-24

    An indirect method for determining cross sections for reactions proceeding through a compound nucleus is presented. The appropriate theoretical framework for applications of this method is reviewed and theoretical and experimental challenges that need to be addressed in applications of the method are outlined. Two approximations are considered and their advantages and limitations are discussed.

  1. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  2. Total reaction cross sections of 50 and 65 MeV pions on nuclei

    NASA Astrophysics Data System (ADS)

    Meirav, O.; Friedman, E.; Altman, A.; Hanna, M.; Johnson, R. R.; Gill, D. R.

    1987-09-01

    Total reaction cross sections have been measured for 50 and 65 MeV π+/- on C, O, 18O, S, Ca, and Zr. The motivation for this experiment is to obtain cross sections to act as constraints in optical model fits to elastic scattering data. Measurements using the ``poor geometry'' transmission method were made for exceptionally small angles with the aim of improving the accuracy of the extrapolation to zero solid angle. At these small solid angles the muon cone from pion decay contributes significantly and its effects were explicitly included. The accuracies of the elastic correction are evaluated by using error matrix techniques and an additional systematic error is included.

  3. Cross section measurement of the 159Tb(n, γ)Tb160 nuclear reaction

    NASA Astrophysics Data System (ADS)

    Dzysiuk, N.; Kadenko, I.; Gressier, V.; Koning, A. J.

    2015-04-01

    The cross section of the 159Tb(n, γ)Tb160 reaction was measured in four mono-energetic neutron fields of energy 3.7, 4.3, 5.4, and 6.85 MeV, respectively, with the activation technique applied to metal discs of natural composition. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of detector efficiency, incident neutron spectrum and correction factors were performed with the Monte Carlo code (MCNPX), whereas theoretical excitation functions were calculated with the TALYS-1.2 code and compared to the experimental cross section values. This paper presents both measurements and calculation leading to the cross section values.

  4. Absolute Cross Sections for Proton Induced Reactions on 147,149Sm Below the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Gheorghe, I.; Filipescu, D.; Glodariu, T.; Bucurescu, D.; Cata-Danil, I.; Cata-Danil, G.; Deleanu, D.; Ghita, D.; Ivascu, M.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Toma, S.; Sima, O.; Sin, M.

    2014-05-01

    Cross sections for 147,149Sm(p,n)147,149Eu and 147,149Sm(p, γ)148,150Eu were measured using the activation method. The results are compared to the predictions of the Hauser-Feshbach statistical model. Different γ-ray strength functions have been tested against the experimental values. In the case of 150Eu, in order to reproduce the experimental isomeric population cross sections, various scenarios for unknown branching ratios of certain discrete states have been discussed. The results provide constraints for the optical model parameters dedicated to this insufficiently known area of isotopes. Such cross sections for (p, γ) reactions at energies below the Coulomb barrier are valuable for p-process nucleosynthesis calculations.

  5. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  6. Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data

    SciTech Connect

    Schillebeeckx, P.; Becker, B.; Danon, Y.; Guber, K.; Harada, H.; Heyse, J.; Junghans, A.R.; Kopecky, S.; Massimi, C.; Moxon, M.C.; Otuka, N.; Sirakov, I.; Volev, K.

    2012-12-15

    Cross section data in the resolved and unresolved resonance region are represented by nuclear reaction formalisms using parameters which are determined by fitting them to experimental data. Therefore, the quality of evaluated cross sections in the resonance region strongly depends on the experimental data used in the adjustment process and an assessment of the experimental covariance data is of primary importance in determining the accuracy of evaluated cross section data. In this contribution, uncertainty components of experimental observables resulting from total and reaction cross section experiments are quantified by identifying the metrological parameters involved in the measurement, data reduction and analysis process. In addition, different methods that can be applied to propagate the covariance of the experimental observables (i.e. transmission and reaction yields) to the covariance of the resonance parameters are discussed and compared. The methods being discussed are: conventional uncertainty propagation, Monte Carlo sampling and marginalization. It is demonstrated that the final covariance matrix of the resonance parameters not only strongly depends on the type of experimental observables used in the adjustment process, the experimental conditions and the characteristics of the resonance structure, but also on the method that is used to propagate the covariances. Finally, a special data reduction concept and format is presented, which offers the possibility to store the full covariance information of experimental data in the EXFOR library and provides the information required to perform a full covariance evaluation.

  7. Evaluation of the 93Nb(n,γ) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Zolotarev, Konstantin; Badikov, Sergei

    2016-02-01

    New evaluation of the 93Nb(n,γ)94Nb reaction cross-section important for retrospective reactor dosimetry was carried out. At neutron energies below 7.5 keV the evaluation is based on the experimental data. The results of measurements extracted from the EXFOR library were corrected (when necessary) to new recommended values of monitor reaction cross-sections and decay data. The resonance analysis of the 93Nb(n,γ) and the 93Nb(n,tot) reaction cross-sections was carried out within the Reich-Moore formalism. 48 new resonances were identified as compared to the Mughabghab systematics. In the energy range from 7.5 keV to 20 MeV the evaluation is based on the experimental data and theoretical model calculations. The recommended cross-sections and their covariances in this energy range were evaluated by an approximation of the experimental and calculated values with the PADE2 code. The new evaluation provides, essentially, better agreement with the experimental data and the recommended value of the resonance integral compared to other evaluations.

  8. Compound-Nuclear Reaction Cross Sections from Surrogate Measurements: Status and Challenges

    SciTech Connect

    Escher, Jutta

    2008-04-17

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-produce targets, is reviewed. The underlying formalism is outlined, the challenges involved in carrying out a complete Surrogate treatment are detailed, and the present status of the theory is summarized. The approximations employed in the analyses of Surrogate experiments are discussed and their validity is examined.

  9. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    SciTech Connect

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  10. Determininig the (n,{gamma}) cross section of {sup 153}Gd using surrogate reactions

    SciTech Connect

    Scielzo, N. D.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Lesher, S. R.; Norman, E. B.; Sheets, S. A.; Basunia, M. S.; Clark, R. M.; Fallon, P.; Gibelin, J.; Lyles, B.; McMahan, M. A.; Moretto, L. G.; Phair, L. W.; Rodriguez-Vieitez, E.; Wiedeking, M.; Allmond, J. M.; Beausang, C. W.

    2008-04-17

    The astrophysical s-process is responsible for the synthesis of many of the nuclei heavier than iron through a series of low-energy (n,{gamma}) reactions and {beta}-decays. For nuclei for which the neutron capture and {beta}-decay rates are comparable, the branching is crucial for tests of s-process models. Direct measurements of (n,{gamma}) cross sections for these nuclei are extremely challenging due to the inherent difficulties associated with radioactive targets and the low intensity of available neutron beams. The surrogate reaction technique can be used to circumvent these difficulties by creating the same compound nucleus through light-ion reactions on a stable target. The cross section can be determined by combining optical model calculations for the formation of the compound nucleus with the measured exit channel probability for {gamma}-ray emission. We have collected data to determine the low-energy (n,{gamma}) cross section for the unstable nucleus {sup 153}Gd by bombarding a stable {sup 154}Gd target with protons from the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory to create the desired {sup 154}Gd* compound nucleus. The STARS/LiBerACE silicon and clover germanium detector arrays were used to detect {gamma}-rays in coincidence with the scattered protons. Additional cross section measurements using {sup 156}Gd and {sup 158}Gd targets will be compared to direct measurements of the (n,{gamma}) cross sections for {sup 155}Gd and {sup 157}Gd. The current status of the analysis is summarized.

  11. Cross sections calculated for cold fusion reactions for producing superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Smolańczuk, Robert

    2008-08-01

    We propose a handy formula for calculating the formation cross sections for optimal bombarding energies for transactinides (superheavy elements). By means of the proposed formula the cross sections for asymmetric and symmetric cold fusion reactions (one-neutron-out reactions) are calculated. The fusion barrier and its position are calculated by using the folding heavy-ion potential that for spherical reaction partners has the form of a seventh-order polynomial of the radial coordinate with built-in dependence on the thickness of the nuclear surface, as well as on the separation energy of the least bound nucleon. Possibilities of further experimental exploitation of cold fusion in producing the superheavy nuclei are briefly discussed.

  12. Cross sections calculated for cold fusion reactions for producing superheavy nuclei

    SciTech Connect

    Smolanczuk, Robert

    2008-08-15

    We propose a handy formula for calculating the formation cross sections for optimal bombarding energies for transactinides (superheavy elements). By means of the proposed formula the cross sections for asymmetric and symmetric cold fusion reactions (one-neutron-out reactions) are calculated. The fusion barrier and its position are calculated by using the folding heavy-ion potential that for spherical reaction partners has the form of a seventh-order polynomial of the radial coordinate with built-in dependence on the thickness of the nuclear surface, as well as on the separation energy of the least bound nucleon. Possibilities of further experimental exploitation of cold fusion in producing the superheavy nuclei are briefly discussed.

  13. Cross-section studies of relativistic deuteron reactions on copper by activation method

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.

    2015-02-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the model spallation targets in the Joint Institute for Nuclear Research. The irradiation of activation samples was performed by beams in the energy range from 1 to 8 GeV. Residual nuclides were measured by the gamma spectrometry. While the EXFOR database contains sets of data for relativistic proton reactions, data for deuteron reactions in this energy range are almost missing. Lack of such experimental cross-section values prevents the use of copper foils from beam integral monitoring. For this reason our experiments focused on their measurement and completely new data were obtained in the energy region where no experimental data have been available so far. The copper monitors with their low sensitivity to fast neutrons will contribute to improvement of the beam integral determination during accelerator-driven system studies.

  14. Cross sections, momentum distributions, and neutron angular distributions for 11Be induced reactions on silicon

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Borcea, C.; Carstoiu, F.; Lewitowicz, M.; Saint-Laurent, M. G.; Anne, R.; Guillemaud-Mueller, D.; Mueller, A. C.; Pougheon, F.; Sorlin, O.; Fomitchev, A.; Lukyanov, S.; Penionzhkevich, Yu.; Skobelev, N.; Dlouhy, Z.

    1999-04-01

    The halo neutron breakup cross section for 11Be on Si has been obtained in a wide energy range by applying an integral method and separately determining the contributions of stripping and dissociation mechanisms. A new breakup mechanism, for which the core energy is strongly dumped, has also been observed. Parallel momentum distributions of 10Be resulting from breakup have been deduced for both stripping and dissociation and angular and energy distributions of the neutrons coincident with different reaction products have been measured. Charge changing cross sections for 10,11Be complemented the measurements. An extended Glauber model has been elaborated in order to provide a unitary interpretation for all the data. It takes into account both the specific structure of 11Be and the reaction mechanism, practically without free parameters. The effects of reaction mechanisms on the widths of observed momentum distributions are particularly important.

  15. Calculations of Proton Emission Cross Sections in Deuteron Induced Reactions of Some Fusion Structural Materials

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The growing demands for energy consumption have led to the increase of the research and development activities on new energy sources. Fusion energy has the highest potential to become a very safe, clean and abundant energy source for the future. To get energy from fusion are needed for development of fusion reactor technology. Particularly, the design and development of international facilities as International Thermonuclear Experimental Reactor and International Fusion Material Irradiation Facility requires for the cross-section data of deuteron induced reactions. Moreover, the selection of fusion structural materials are an indispensable component for this technology. Therefore, the cross-section data of deuteron induced reactions on fusion structural materials are of great importance for development of fusion reactor technology. In this study, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as 27Al, 59Co, 55Mn, 50Cr, 54Cr, 64Ni, 109Ag, 184W and 186W have been carried out for incident energies up to 50 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( d, p) stripping reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model and hybrid model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the literature.

  16. Cross-section measurements of neutron threshold reactions in various materials

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Svoboda, O.; Kugler, A.; Suchopár, M.; Wagner, V.

    As members of international collaboration "Energy and Transmutation of radioactive Waste" we routinely use (n,xn) threshold reactions in various materials to measure high energy neutron flux from spallation reactions. The cross-sections of many reactions important for our activation detectors are missing. To improve situation, we studied the neutron cross-sections using different quasi-monoenergetic neutron sources based on proton reaction on 7Li target. The measurements were performed in Nuclear Physics Institute of the Academy of Sciences of the Czech Republic in Řež near Prague and in The Svedberg Laboratory in Uppsala (Sweden). We used neutron energies 17, 22, 30 and 35 MeV from the quasi-monoenergetic neutron source in Řež and neutron energies 22, 47 and 94 MeV in Uppsala. The last experiment was carried out in February 2010 in Uppsala using neutron energies 59, 66, 72 and 89 MeV. The study of neutron threshold reactions in yttrium was performed first time during this irradiation. We have developed procedure for the subtraction of contribution of the background neutrons. We studied various materials in the form of thin foils and observed good agreement with the data in EXFOR database and also with the calculations performed in deterministic code TALYS. Many cross-sections were measured in the energy regions where no experimental data are available so far.

  17. Measurement of the Y87(n,g) cross section using surrogate reactions

    NASA Astrophysics Data System (ADS)

    Burke, J. T.; Casperson, R. J.; Scielzo, N. D.; Escher, J. E.; Ressler, J. J.; Thompson, I. J.; Hughes, R. O.; Austin, R. A. E.; Benstead, J.; Tostevin, J. A.; McCleskey, M.; Saastomoinen, A.; Bromeit, A.; Maguire, M.; Foley, N.; Starke, A.; Salzillo, T.; Devan, M.; Ross, T.

    2013-10-01

    The direct reaction Y89(p,dg)Y88* was used as a surrogate reaction for Y87(n,g). A 28.5 MeV beam of protons induced reactions on Y89, Zr90, Zr91, Zr92, Zr94, Zr96 targets. The (p,d) and (p,t) reactions on these targets were measured using the STARLiTe array at the Texas A&M Cyclotron Institute. Particle singles events were measured for each target over an angle range of 32 to 60 degrees w.r.t. the beam. Gamma rays in coincidence with the particles were measured using 5 HPGe clover detectors. The results of the (p,t) particle angular distributions were compared to direct reaction theory to determine the spin imparted to the excited nucleus. The surrogate cross section of the Zr nuclei are compared to the known Zr(n,g) cross sections. Progress on the surrogate Y87(n,g) cross section measurement will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  18. Evaporation residue cross-section measurements for 48Ti-induced reactions

    NASA Astrophysics Data System (ADS)

    Sharma, Priya; Behera, B. R.; Mahajan, Ruchi; Thakur, Meenu; Kaur, Gurpreet; Kapoor, Kushal; Rani, Kavita; Madhavan, N.; Nath, S.; Gehlot, J.; Dubey, R.; Mazumdar, I.; Patel, S. M.; Dhibar, M.; Hosamani, M. M.; Khushboo, Kumar, Neeraj; Shamlath, A.; Mohanto, G.; Pal, Santanu

    2017-09-01

    Background: A significant research effort is currently aimed at understanding the synthesis of heavy elements. For this purpose, heavy ion induced fusion reactions are used and various experimental observations have indicated the influence of shell and deformation effects in the compound nucleus (CN) formation. There is a need to understand these two effects. Purpose: To investigate the effect of proton shell closure and deformation through the comparison of evaporation residue (ER) cross sections for the systems involving heavy compound nuclei around the ZCN=82 region. Methods: A systematic study of ER cross-section measurements was carried out for the 48Ti+Nd,150142 , 144Sm systems in the energy range of 140 -205 MeV . The measurement has been performed using the gas-filled mode of the hybrid recoil mass analyzer present at the Inter University Accelerator Centre (IUAC), New Delhi. Theoretical calculations based on a statistical model were carried out incorporating an adjustable barrier scaling factor to fit the experimental ER cross section. Coupled-channel calculations were also performed using the ccfull code to obtain the spin distribution of the CN, which was used as an input in the calculations. Results: Experimental ER cross sections for 48Ti+Nd,150142 were found to be considerably smaller than the statistical model predictions whereas experimental and statistical model predictions for 48Ti+144Sm were of comparable magnitudes. Conclusion: Though comparison of experimental ER cross sections with statistical model predictions indicate considerable non-compound-nuclear processes for 48Ti+Nd,150142 reactions, no such evidence is found for the 48Ti+144Sm system. Further investigations are required to understand the difference in fusion probabilities of 48Ti+142Nd and 48Ti+144Sm systems.

  19. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  20. The effect of halo nuclear density on reaction cross-section for light ion collision

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.

    2015-08-01

    In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.

  1. 207Pb(n,2n{gamma})206Pb Cross-Section Measurements by In-Beam Gamma-Ray Spectroscopy

    SciTech Connect

    Baumann, P.; Kerveno, M.; Rudolf, G.; Borcea, C.; Jericha, E.; Jokic, S.; Lukic, S.; Mihailescu, L. C.; Plompen, A. J. M.; Pavlik, A.

    2006-03-13

    207Pb(n,2n{gamma})206Pb cross section were measured for incident neutron energies between 6 and 20 MeV with the white neutron beam produced at GELINA. The {gamma}-ray production cross section for the main transition (803 keV, 2+{yields} 0+) in 206Pb is compared to results obtained at Los Alamos and to the TALYS and EMPIRE-II code predictions.

  2. Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn

    SciTech Connect

    Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.; Lepine-Szily, A.; Guimaraes, V.; Mendes, D. R. Jr.; Barioni, A.; Morcelle, V.; Morais, M. C.; Camargo, O. Jr.; Alcantara Nunez, J.; Moro, A. M.; Arazi, A.; Rodriguez-Gallardo, M.; Assuncao, M.

    2010-04-15

    The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.

  3. Cross Section Measurements for the 23Na(p,γ)24Mg Reaction at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, Axel; LUNA Collaboration

    2016-02-01

    LUNA, the Laboratory for Underground Nuclear Astrophysics, is an accelerator facility for measurements of nuclear cross sections of astrophysical interest. The greatly reduced cosmic ray background at LUNA's underground location in the Gran Sasso National Laboratory (LNGS) allows direct measurements of weak reactions at low energies. One of the reactions currently under study at LUNA is 23Na(p,γ)24Mg, which links the NeNa and MgAl cycles in stellar burning. The LUNA facility is presented, with a focus on the current experimental efforts to study the reaction 23Na(p,γ)24Mg.

  4. Fusion-Evaporation Cross Sections in Reactions Leading to Production of Super-Heavy Nuclei

    SciTech Connect

    Siwek-Wilczynska, K.; Skwira-Chalot, I.; Wilczynski, J.

    2006-08-14

    Fusion-evaporation cross sections were calculated for the 48Ca+204-208Pb and 50Ti+206,208Pb reactions and compared with the existing experimental data of the Dubna and GSI groups. The survival probabilities of the compound Z 102 and Z = 104 nuclei formed in these reactions were calculated using a Monte Carlo program based on the conventional Bohr-Wheeler theory of fission and statistical model of particle evaporation with Reisdorf-Ignatyuk prescription for the level densities and Strutinsky shell corrections of Moeller et al. 'Empirical' magnitudes of the dynamical hindrance of fusion have been deduced for these reactions.

  5. Measurements of the 169Tm(n,2n)168Tm cross section between 9.0 and 17.5 MeV

    NASA Astrophysics Data System (ADS)

    Soter, J.; Bhike, Megha; Krishichayan, Fnu; Finch, S. W.; Tornow, W.

    2016-09-01

    Measurements of the 169Tm(n,2n)168Tm cross section have been performed in 0.5 MeV intervals for neutron energies ranging from 9.0 MeV to 17.5 MeV in order to resolve discrepancies in the current literature data. The neutron activation technique was used with 90Zr and 197Au as monitor foils. After irradiation, de-excitation gamma rays were recorded off-line with High-Purity Germanium (HPGE) detectors in TUNL's Low-Background Counting Facility. In addition, data for the 169Tm(n,3n)167Tm reaction have also been obtained from 15.5 MeV to 17.5 MeV. The results of these measurements provide the basis for investigating properties of the interial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory.

  6. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yang, Bin; Cool, Terrill A.; Hansen, Nils; Kasper, Tina

    2008-02-01

    The use of photoionization mass spectrometry for the development of quantitative kinetic models for the complex combustion chemistry of both conventional hydrocarbon fuels and oxygenated biofuels requires near-threshold measurements of absolute photoionization cross-sections for numerous reaction intermediates. Near-threshold absolute cross-sections for molecular and dissociative photoionization for 20 stable reaction intermediates (methane, ethane, propane, n-butane, cyclopropane, methylcyclopentane, 1-butene, cis-2-butene, isobutene, 1-pentene, cyclohexene, 3,3-dimethyl-1-butene, 1,3-hexadiene, 1,3-cyclohexadiene, methyl acetate, ethyl acetate, tetrahydrofuran, propanal, 1-butyne, 2-butyne) are presented. Previously measured total photoionization cross-sections for 9 of these molecules are in good agreement with the present results. The measurements are performed with photoionization mass spectrometry (PIMS) using a monochromated VUV synchrotron light source with an energy resolution of 40 meV (fwhm) comparable to that used for flame-sampling molecular beam PIMS studies of flame chemistry and reaction kinetics.

  7. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  8. Compound-nuclear reaction cross sections via the Surrogate method: considering the underlying assumptions

    NASA Astrophysics Data System (ADS)

    Escher, Jutta; Dietrich, Frank

    2006-10-01

    The Surrogate Nuclear Reactions approach makes it possible to determine compound-nuclear reaction cross sections indirectly. The method has been employed to determine (n,f) cross sections for various actinides, including unstable species [1-4]; other, primarily neutron- induced, reactions are being considered also [5,6]. The extraction of the sought-after cross sections typically relies on approximations to the full Surrogate formalism [7]. This presentation will identify and critically examine the most significant assumptions underlying the experimental work carried out so far. Calculations that test the validity of the approximations employed will be presented. [1] J.D. Cramer and H.C. Britt, Nucl. Sci. and Eng. 41, 177(1970); H.C. Britt and J.B. Wilhelmy, ibid. 72, 222(1979) [2] M. Petit et al, Nucl. Phys. A735, 345(2004) [3] C. Plettner et al, Phys. Rev. C 71, 051602(2005); J. Burke et al, Phys. Rev. C. 73, 054604(2006) [4] W. Younes and H.C. Britt, Phys. Rev. C 67, 024610(2003); 68, 034610(2003) [5] L.A. Bernstein et al, AIP Conf. Proc. 769, 890(2005) [6] J. Escher et al, Nucl. Phys. A758, 43c(2005) [7] J. Escher and F.S. Dietrich, submitted (2006)

  9. Investigation of the pairing effect using newly evaluated empirical studies for 14-15 MeV neutron reaction cross sections

    SciTech Connect

    Tel, E.; Tanir, G.; Aydin, A.

    2007-03-15

    The asymmetry term effects for the cross sections of (n, charged particle) and (n,2n) reactions at 14-15 MeV neutron incident energy have been investigated. The effects of pairing and odd-even nucleon numbers in new data and in the formula of Tel et al. [J. Phys. G. 29, 2169 (2003)] are discussed. We have determined three different parameters groups by the classification of nuclei into even-even, even-odd, and odd-even (n,d) reactions. In addition, since there are not enough experimental data available, we have considered two different parameters groups by the classification of nuclei into odd-A and even-A (n,t) reaction cross sections. The empirical formulas with two parameters for the evaluation of the (n,d) and (n,t) reactions cross sections are discussed in the present study.

  10. Cross sections and low temperature rate coefficients for the H + CH+ reaction: a quasiclassical trajectory study.

    PubMed

    Halvick, Philippe; Stoecklin, Thierry; Larrégaray, Pascal; Bonnet, Laurent

    2007-02-07

    The H + CH(+) reaction is studied by quasiclassical trajectory (QCT) calculations, along with phase space theory (PST) and quantum rigid rotor calculations, employing a global single-valued potential energy surface recently derived by our group. We report QCT total cross sections for each of the three channels, for low collision energies and different reactant rotational quantum numbers. At the lowest collision energies, all cross sections exhibit a capture-like behaviour, as expected from a barrierless reaction. At higher energies, there are important dynamical effects coming from the opening of new channels in the inelastic and reactive exchange collisions. The inelastic cross sections turn out to largely increase, while the reactive abstraction cross sections are declining faster than predicted by the capture theory. A large value of the reactant rotational quantum number tends to suppress these dynamical effects. The QCT rate coefficients are reported for a temperature range from 1-700 K. Below 20 K, the abstraction and exchange QCT rate coefficients are almost constant, as predicted by the capture theory. Above this temperature, the abstraction rate coefficient declines, while the exchange and inelastic rate coefficients are increasing, due to the opening of new channels. A good agreement is observed between the experimental abstraction rate coefficient and the QCT and PST ones. The QCT inelastic results are also compared with those obtained from rigid rotor close coupling (CCRR) calculations in order to check the ability of this approach to provide a reliable estimate of the inelastic rate coefficients for a reactive system without a barrier. The laws of variation as a function of temperature are found to be very similar and the curves are parallel above 20 K. However, reaction is not allowed in the rigid rotor approximation, therefore the CCRR results are about twice as large as their QCT counterparts.

  11. Reaction cross sections for proton scattering from stable and unstable nuclei based on a microscopic approach

    SciTech Connect

    Arellano, H. F.; Girod, M.

    2007-09-15

    Reaction cross sections for proton-nucleus elastic scattering are investigated within a nonrelativistic microscopic approach for the nucleon-nucleus optical model potential. Applications were made for nucleon energy ranging between 10 MeV and 1 GeV, considering both stable and unstable target nuclei. The study is based on an in-medium g-matrix folding optical model approach in momentum space, with the appropriate relativistic kinematic corrections needed for the higher energy applications. The effective interactions are based on realistic NN potentials supplemented with a separable non-Hermitian term to allow optimum agreement with current NN phase-shift analyses, particularly the inelasticities above pion production threshold. The target ground-state densities are obtained from Hartree-Fock-Bogoliubov calculations based on the finite range, density-dependent Gogny force. The evaluated reaction cross sections for proton scattering are compared with measurements and their systematics is analyzed. A simple function of the total cross sections in terms of the atomic mass number is observed at high energies. At low energies, however, discrepancies with the available data are observed, being more pronounced in the lighter systems.

  12. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  13. Studies of combustion reactions at the state-resolved differential cross section level

    SciTech Connect

    Houston, P.L.; Suits, A.G.; Bontuyan, L.S.; Whitaker, B.J.

    1993-12-01

    State-resolved differential reaction cross sections provide perhaps the most detailed information about the mechanism of a chemical reaction, but heretofore they have been extremely difficult to measure. This program explores a new technique for obtaining differential cross sections with product state resolution. The three-dimensional velocity distribution of state-selected reaction products is determined by ionizing the appropriate product, waiting for a delay while it recoils along the trajectory imparted by the reaction, and finally projecting the spatial distribution of ions onto a two dimensional screen using a pulsed electric field. Knowledge of the arrival time allows the ion position to be converted to a velocity, and the density of velocity projections can be inverted mathematically to provide the three-dimensional velocity distribution for the selected product. The main apparatus has been constructed and tested using photodissociations. The authors report here the first test results using crossed beams to investigate collisions between Ar and NO. Future research will both develop further the new technique and employ it to investigate methyl radical, formyl radical, and hydrogen atom reactions which are important in combustion processes. The authors intend specifically to characterize the reactions of CH{sub 3} with H{sub 2} and H{sub 2}CO; of HCO with O{sub 2}; and of H with CH{sub 4}, CO{sub 2}, and O{sub 2}.

  14. Cross sections for reactions in explosive H burning from indirect methods

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Al-Abdullah, T.; Banu, A.; Fu, C.; Gagliardi, C. A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Tribble, R. E.; Zhai, Y.

    2006-10-01

    We present results for the cross sections of radiative proton capture reactions relevant for explosive H burning in stars, extracted from a number of indirect techniques using stable or radioactive nuclear beams. We use or combine proton transfer reactions above the Coulomb barrier, breakup of loosely bound proton rich nuclei at intermediate energies, and beta-decay studies to extract nuclear information needed to determine capture cross sections at very low energies. The extraction of ANC from proton transfer reactions around 10 MeV/u will be briefly discussed with examples from the latest measurements at the K500 superconducting cyclotron. Studies of the breakup of ^9C and ^23Al will be used to exemplify the method and its spectroscopic power, and to assess the astrophysical S-factors for the ^8B(p,γ)^9C and % ^22Mg(p,γ)^23Al reactions, respectively. Finally, we will show how the results of a β-decay study of pure samples of ^23Al separated with MARS can be used to constrain the direct contribution to the reaction rate for ^22Mg(p,γ)^23Al and to determine resonant contributions for the ^22Na(p,γ)^23Mg. These reactions are considered candidates to explain why space-based gamma-ray telescopes do not observe γ-rays from the decay of long-lived ^22Na formed in ONe novae explosions: flux is diverted from the A=22 into the A=23 mass chain.

  15. Cross Section of Isomeric States Produced in Photo-Neutron Reactions

    NASA Astrophysics Data System (ADS)

    Oprea, C.; Oprea, A.; Mihul, A.

    In this work the cross sections of the isomeric states production in (γ,n) reactions and the corresponding isomeric ratios for some isotopes of Cd, Sn, Mo, Sm in the great dipole resonance region with Talys codes using a standard input including Hauser-Feshbach model were evaluated. For the isomeric ratio calculation two methods were proposed, by using the description of incident gamma flux and experimental isomeric ratio. The obtained results are compared with experimental data from nuclear reactions induced by photons obtained by bremsstrahlung.

  16. Halo and Core Parameters Extracted from a Data on Reaction Cross-section in the Glauber Model

    NASA Astrophysics Data System (ADS)

    Novikov, Ivan; Rueter, Keiti; Shabelski, Yuli

    2017-01-01

    Core and halo radii for various exotic nuclei were extracted from the experimental data on the interaction cross-section using exact expressions obtained in the Glauber theory using Markov Chain Monte Carlo approach. Here, the difference between reaction and interaction cross-sections were taken into account The results of the experimental data analyzes on interaction cross-section of 11Li, 16C, 31Ne and 37Mg nuclei on 12C target are presented.

  17. Measurement of (n, xnγ) reaction cross sections in W isotopes

    NASA Astrophysics Data System (ADS)

    Henning, Greg; Bacquias, Antoine; Borcea, Catalin; Capote, Roberto; Dessagne, Philippe; Drohé, Jean-Claude; Kawano, Toshihiko; Kerveno, Maëlle; Negret, Alexandru; Nyman, Markus; Olacel, Adina; Plompen, Arjan; Romain, Pascal; Scholtes, Pol; Rudolf, Gérard

    2017-09-01

    Evaluated nuclear data bases currently used for numerical simulation for the development of nuclear reactors still present large uncertainties. Their improvement is necessary, in particular through better reaction models and nuclear data. Among the reactions of interest, (n, xn) reactions are of great importance for the operation of a reactor as they modify the neutron spectrum, the neutron population, and produce radioactive species. Experimental data on (n, xnγ) reaction provide strong constraints on nuclear reaction mechanism theories. Tungsten isotopes - which are deformed like actinides but do not fission - are of interest to test the models. 182,184,186W(n, xnγ) cross sections are measured; results are compared with model calculations by TALYS, EMPIRE and CoH codes.

  18. Cross sections of proton- and neutron-induced reactions by the Liège intranuclear cascade model

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dong, Tiekuang; Ren, Zhongzhou

    2016-06-01

    The purpose of the paper is mainly to test the validity of the Liège intranuclear cascade (INCL) model in calculating the cross sections of proton-induced reactions for cosmogenic nuclei using the newly compiled database of proton cross sections. The model calculations of 3He display the rising tendency of cross sections with the increase of energy, in accordance with the experimental data. Meanwhile, the differences between the theoretical results and experimental data of production cross sections (10Be and 26Al) are generally within a factor of 3, meaning that the INCL model works quite well for the proton-induced reactions. Based on the good agreement, we predict the production cross sections of 26Al from reactions n + 27Al, n + 28Si, and n + 40Ca and those of 10Be from reactions n + 16O and n + 28Si. The results also show a good agreement with a posteriori excitation functions.

  19. Statistical model analysis of α -induced reaction cross sections of 64Zn at low energies

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Gyürky, Gy.; Fülöp, Zs.

    2017-01-01

    Background: α -nucleus potentials play an essential role in the calculation of α -induced reaction cross sections at low energies in the statistical model. Uncertainties of these calculations are related to ambiguities in the adjustment of the potential parameters to experimental elastic scattering angular distributions (typically at higher energies) and to the energy dependence of the effective α -nucleus potentials. Purpose: The present work studies cross sections of α -induced reactions for 64Zn at low energies and their dependence on the chosen input parameters of the statistical model calculations. The new experimental data from the recent Atomki experiments allow for a χ2-based estimate of the uncertainties of calculated cross sections at very low energies. Method: Recently measured data for the (α ,γ ), (α ,n ), and (α ,p ) reactions on 64Zn are compared to calculations in the statistical model. A survey of the parameter space of the widely used computer code talys is given, and the properties of the obtained χ2 landscape are discussed. Results: The best fit to the experimental data at low energies shows χ2/F ≈7.7 per data point, which corresponds to an average deviation of about 30% between the best fit and the experimental data. Several combinations of the various ingredients of the statistical model are able to reach a reasonably small χ2/F , not exceeding the best-fit result by more than a factor of 2. Conclusions: The present experimental data for 64Zn in combination with the statistical model calculations allow us to constrain the astrophysical reaction rate within about a factor of 2. However, the significant excess of χ2/F of the best fit from unity demands further improvement of the statistical model calculations and, in particular, the α -nucleus potential.

  20. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe; Fleming, Michael; Gilbert, Mark R.

    2017-09-01

    The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding

  1. Direct measurement of the 22Ne(p,γ)23Na reaction cross section at LUNA

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico; LUNA Collaboration

    2016-06-01

    The 22Ne(p, γ)23Na reaction takes part in the NeNa cycle of hydrogen burning, influencing the production of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical novae. The 22Ne(p,γ)27Na reaction rate is very uncertain because of a large number of tentative resonances in the Gamow window, where only upper limits were quoted in literature. A direct measurement of the 22Ne(p, γ)23Na reaction cross section has been carried out at LUNA using a windowless differential-pumping gas target with two high- purity germanium (HPGe) detectors. A new measurement with a 4π bismuth germanate (BGO) summing detector is ongoing. During the HPGe phase of the experiment the strengths of the resonances at 156.2 keV, 189.5 keV and 259.7 keV have been directly measured for the first time and their contribution to the reaction rate has been calculated. The decay scheme of the newly discovered resonances has been established as well and some improved upper limits on the unobserved resonances have been put. The BGO detector with its 70% γ-detection efficiency allows to measure the cross section at lower energy. In order to further investigate the resonances at 71 keV and 105 keV and the direct-capture component, the data taking is ongoing.

  2. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  3. Influence of projectile neutron number on cross section in cold fusion reactions

    SciTech Connect

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  4. Partial gamma-ray cross section measurements in 109Ag(n, x n y p gamma) reactions

    SciTech Connect

    Fotiadis, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; Carroll, James

    2015-06-02

    We report on absolute partial cross sections for production of discrete γ-rays using 109Ag(n, xnypγ) reactions with x ≤ 7 and y ≤ 1 in a total of 12 reaction channels. The data were taken using the GEANIE spectrometer comprised of 20 high-purity Ge detectors with 20 BGO escape-suppression shields. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center’s (LANSCE) WNR facility provided neutrons in the energy range from 0.2 to 300 MeV. The time-of- flight technique was used to determine the incident neutron energies. Partial γ-ray cross sections have been measured for a total of 109 transitions and for neutron energies 0.8 MeV< En<300 MeV. An estimate of the population of isomers in the (n, n'), (n, 2n) and (n, 3n) channels was made.

  5. Reaction cross-section calculations using new experimental and theoretical level structure data for deformed nuclei

    SciTech Connect

    Hoff, R.W.; Gardner, D.G.; Gardner, M.A.

    1985-05-01

    A technique for modeling level structures of odd-odd nuclei has been used to construct sets of discrete states with energies in the range 0 to 1.5 MeV for several nuclei in the rare-earth and actinide regions. The accuracy of the modeling technique was determined by comparison with experimental data. Examination was made of what effect the use of these new, more complete sets of discrete states has on the calculation of level densities, total reaction cross sections, and isomer ratios. 9 refs.

  6. Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    SciTech Connect

    M. Williams, D. Applegate, M. Bellis, C.A. Meyer

    2009-12-01

    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

  7. The cross section functions for neutron induced reactions with Rhenium in the energy range 13.0-19.5 MeV

    NASA Astrophysics Data System (ADS)

    Jovančević, N.; Daraban, L.; Stroh, H.; Oberstedt, S.; Hult, M.; Bonaldi, C.; Geerts, W.; Hambsch, F.-J.; Lutter, G.; Marissens, G.; Vidali, M.

    2017-09-01

    The technique for measuring neutron activation cross-sections using wide energy neutron beams (NAXSUN) was recently developed at JRC-Geel . This method is based on the detection of the gamma activity induced by the activation of the samples in different but overlapping neutron fields and following an unfolding procedure. In the present work, measurements of the cross-section functions by the NAXSUN technique for the (n,a), (n,2n), (n,p) and (n,3n) reactions on rhenium isotopes 185Re and 187Re were performed. The results are the first experimental data for the mentioned reaction cross-sections in the energy range 13.0-19.5 MeV. The obtained data are of interest for possible applications of Re in nuclear technology and medicine.

  8. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-01

    The cross sections of the 162Er(α,γ)166Yb and 162,164,166Er(α,n)165,167,169Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between Ec.m. = 11.21 MeV and Ec.m. = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T9 = 3 GK). The 162Er(α,n)165Yb, 164Er(α,n)167Yb and 166Er(α,n)169Yb reactions were studied between Ec.m. = 12.19 and 16.09 MeV, Ec.m. = 13.17 and 16.59 MeV and Ec.m. = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  9. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    SciTech Connect

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-02

    The cross sections of the {sup 162}Er(α,γ){sup 166}Yb and {sup 162,164,166}Er(α,n){sup 165,167,169}Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between E{sub c.m.} = 11.21 MeV and E{sub c.m.} = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T{sub 9} = 3 GK). The {sup 162}Er(α,n){sup 165}Yb, {sup 164}Er(α,n){sup 167}Yb and {sup 166}Er(α,n){sup 169}Yb reactions were studied between E{sub c.m.} = 12.19 and 16.09 MeV, E{sub c.m.} = 13.17 and 16.59 MeV and E{sub c.m.} = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  10. Spin distributions and cross sections of evaporation residues in the 28Si+176Yb reaction

    NASA Astrophysics Data System (ADS)

    Sudarshan, K.; Tripathi, R.; Sodaye, S.; Sharma, S. K.; Pujari, P. K.; Gehlot, J.; Madhavan, N.; Nath, S.; Mohanto, G.; Mukul, I.; Jhingan, A.; Mazumdar, I.

    2017-02-01

    Background: Non-compound-nucleus fission in the preactinide region has been an active area of investigation in the recent past. Based on the measurements of fission-fragment mass distributions in the fission of 202Po, populated by reactions with varying entrance channel mass asymmetry, the onset of non-compound-nucleus fission was proposed to be around ZpZt˜1000 [Phys. Rev. C 77, 024606 (2008), 10.1103/PhysRevC.77.024606], where Zp and Zt are the projectile and target proton numbers, respectively. Purpose: The present paper is aimed at the measurement of cross sections and spin distributions of evaporation residues in the 28Si+176Yb reaction (ZpZt=980 ) to investigate the fusion hindrance which, in turn, would give information about the contribution from non-compound-nucleus fission in this reaction. Method: Evaporation-residue cross sections were measured in the beam energy range of 129-166 MeV using the hybrid recoil mass analyzer (HYRA) operated in the gas-filled mode. Evaporation-residue cross sections were also measured by the recoil catcher technique followed by off-line γ -ray spectrometry at few intermediate energies. γ -ray multiplicities of evaporation residues were measured to infer about their spin distribution. The measurements were carried out using NaI(Tl) detector-based 4π-spin spectrometer from the Tata Institute of Fundamental Research, Mumbai, coupled to the HYRA. Results: Evaporation-residue cross sections were significantly lower compared to those calculated using the statistical model code pace2 [Phys. Rev. C 21, 230 (1980), 10.1103/PhysRevC.21.230] with the coupled-channel fusion model code ccfus [Comput. Phys. Commun. 46, 187 (1987), 10.1016/0010-4655(87)90045-2] at beam energies close to the entrance channel Coulomb barrier. At higher beam energies, experimental cross sections were close to those predicted by the model. Average γ -ray multiplicities or angular momentum values of evaporation residues were in agreement with the

  11. Parameters of Density Distribution of Exotic Nuclei Extracted from a Data on Reaction Cross-section in the Glauber Model

    NASA Astrophysics Data System (ADS)

    Novikov, Ivan; Rueter, Keiti

    2016-09-01

    Parameters of density distribution of exotic nuclei with halo structure were extracted from the experimental data on the interaction cross-section using exact expressions obtained in the Glauber theory. Generally, to do so measured interaction cross-section is compared with a reaction cross-section calculated in optical approximation or using exact expressions of the Glauber theory. It was shown before that the parameters of nuclear density distribution depends on chosen density model (Gaussian, harmonic oscillator or Woods-Saxon) and on the used approximation of the Glauber theory (i.e. optical or rigid target). In the presented paper, we discuss the difference between reaction and interaction cross-sections calculated in various approximations, and how this difference affects the accuracy of the nuclear density parameters determination. As an example, we provide results of the analyzes of experimental data on interaction cross-section of 11Li, 16C and 31Ne nuclei on 12C target.

  12. M1 and E1 transition cross sections in D(y->,n) reactions near reaction threshold

    SciTech Connect

    Iwamoto, C.; Akimune, H.; Utsunomiya, H.; Yamagata, T.; Kondo, T.; Kamata, M.; Toyokawa, H.; Harano, H.; Matsumoto, T.; Lui, Y.-W.

    2010-06-01

    M1 and E1 transition cross sections in the D(y->, n) reaction were separately determined by measuring the analyzing power for emitted neutrons with linearly-polarized gamma rays at four energies between 2.26 MeV and 3.70 MeV near reaction threshold at 2.224 MeV. We compared the experimental result with the JENDL evaluated data.

  13. Cross Section Measurements of 12C+16O Fusion Reaction at Stellar Energies

    NASA Astrophysics Data System (ADS)

    Tan, Wanpeng; Fang, X.; Beard, M.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X.; Uberseder, E.

    2016-09-01

    12C+16O is one of the three fusion reactions (12C+12C, 12C+16O, and 16O+16O) that play an important role at the late stage of stellar evolution in massive stars. The previous meassurements of its cross section at low energies rely on the singles measurements of either gamma rays or charged particles. New measurement was conducted for the 12C+16O reaction at Ecm = 3.64 - 4.93 MeV with the detection of both gammas and charged particles using the high intensity St ANA accelerator at the University of Notre Dame. The protons and alphas from the fusion evaporation were measured by a large area silicon strip detector array (SAND) while the gamma rays were detected by one large volume HPGe detector right after the target. Statistical model calculation were employed to interpret the experimental results. This provided a more reliable extrapolation for the 12C+16O fusion cross section, reducing substantially the uncertainty for stellar model simulations. This work was supported by the National Science Foundation through Grant Numbers PHY-1068192 and PHY-1419765 and the Joint Institute for Nuclear Astrophysics under Grant No. PHY-0822648.

  14. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    SciTech Connect

    Henning, Greg; Bacquias, A.; Capdevielle, O.; Dessagne, P.; Kerveno, M.; Rudolf, G.; Borcea, C.; Negret, A.; Olacel, A.; Drohe, J.C.; Plompen, A.J.M.; Nyman, M.

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {sup nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)

  15. Investigation of activation cross-section data of proton induced nuclear reactions on rhenium.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Yamazaki, H; Baba, M; Mohammadi, A; Ignatyuk, A V

    2013-07-01

    In the frame of systematic investigations of activation cross-section data for different applications the excitation functions of (nat)Re(p,x)(185)Os, (183m)Os, (183g)Os, (182)Os, (181m)Os, (186g)Re, (184m)Re, (184g)Re, (183)Re, (182m)Re, (182g)Re and (181g)Re reactions were measured up to 70MeV. The data for the (nat)Re(p,x) (183m)Os, (183g)Os, (182)Os, (181g)Os,(186g)Re, (184m)Re,(182m)Re, (182g)Re, and (181)Re reactions are reported for the first time. The activation method, the stacked foil irradiation technique and γ-spectroscopy for activity detection were used. The experimental data were compared with predictions of three theoretical codes. From the measured cross-section thick target integral yields were also calculated and presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  17. Neutron production cross sections for (d,n) reactions at 55 MeV

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Goto, S.; Matsuno, M.; Mitsumoto, S.; Okada, T.; Oshiro, H.; Sakaguchi, S.

    2017-08-01

    The cross sections for (d,n) reactions on natC-197Au have been measured at a bombarding energy of 55 MeV and a laboratory scattering angle of θ_lab = 9.5°. The angular distributions for the natC(d,n) reaction have also been obtained at θ_lab = 0°-40°. The neutron energy spectra are dominated by deuteron breakup contributions and their peak positions can be reasonably reproduced by considering the Coulomb force effects. The data are compared with the TENDL-2015 nuclear data and Particle and Heavy Ion Transport code System (PHITS) calculations. Both calculations fail to reproduce the measured energy spectra and angular distributions.

  18. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  19. Alpha capture reaction cross section measurements on Sb isotopes by activation method

    NASA Astrophysics Data System (ADS)

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Fülöp, Zs; Güray, R. T.; Gyürky, Gy; Halász, Z.; Somorjai, E.; Török, Zs; Yalçin, C.

    2016-01-01

    Alpha induced reactions on natural and enriched antimony targets were investigated via the activation technique in the energy range from 9.74 MeV to 15.48 MeV, close to the upper end of the Gamow window at a temperature of 3 GK relevant to the γ-process. The experiments were carried out at the Institute for Nuclear Research, the Hungarian Academy of Sciences (MTA Atomki). 121Sb(α,γ)125I, 121Sb(α,n)124I and 123Sb(α,n)126I reactions were measured using a HPGe detector. In this work, the 121Sb(α,n)124 cross section results and the comparison with the theoretical predictions (obtained with standard settings of the statistical model codes NON-SMOKER and TALYS) were presented.

  20. 232Th(n,γ)233Th Thermal Reaction Cross-Section Measurement

    NASA Astrophysics Data System (ADS)

    Maidana, Nora L.; Vanin, Vito R.; Castro, Ruy M.; Pascholati, Paulo R.; Helene, Otaviano; Dias, Mauro S.; Koskinas, Marina F.

    2005-05-01

    The 232Th(n,γ)233Th thermal neutron-capture reaction cross section was measured using targets of ˜ 1.5 mg of high-purity metallic thorium irradiated in the IPEN IEA-R1m 5 MW pool research reactor. The 197Au(n,γ)198Au reaction was used to monitor the thermal and epithermal neutron fluxes in the irradiation position, which was found using the Westcott formalism. The residual gamma-ray activity was followed with an HPGe detector. The detector efficiency curve was fitted by the least-squares method applying covariance analysis to all uncertainties involved. The experimental result is σ0 =7.20±0.20 b, in agreement with previous published values.

  1. Cross Sections for (gamma)-ray Production in the 191Ir (n,xn(gamma)) Reactions

    SciTech Connect

    Fotiades, N; Nelson, R O; Devlin, M; Chadwick, M B; Talou, P; Becker, J A; Garrett, P E; Younes, W

    2005-01-11

    Discrete {gamma}-ray spectra have been measured for nuclei populated in {sup 191}Ir(n{sub 4}xn{gamma}) with x{<=}11, as a function of incident neutron energy using neutrons from the 'white' neutron source at the Los Alamos Neutron Science Center's WNR facility. The energy of the neutrons was determined using the time-of-flight technique. The data were taken using the GEANIE spectrometer. The cross sections for emission of 202 {gamma} rays of {sup 181-191}Ir were determined for neutron energies 0.2 MeV < E{sub n} < 300 MeV. Comparison with model calculations, using the GNASH reaction model, and with GEANIE results from the similar {sup 193}Ir(n{sub 4}xn{gamma}) reactions is made.

  2. Underground Cross Section Measurements of Stellar Reactions at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Formicola, A.; Gugliemetti, A.

    Accurate knowledge of thermonuclear reaction rates is important to understand the generation of energy, the luminosity of neutrinos, and the synthesis of elements in stars and in the primordial nucleosynthesis. An innovative experimental approach for the study of nuclear fusion reactions based on an accelerator installed in a low background underground laboratory (the LUNA experiment at the Gran Sasso Laboratory) was able to give breaktrough results in this field over the last 25 years. By going underground and by using the typical techniques of low background physics, it is possible to measure nuclear cross sections down to the energy of stellar interest. In this proceeding, the experimental techniques adopted in underground nuclear astrophysics and an overwiev of present and proposed future facilities and of their major scientific drivers are reported.

  3. 232Th(n,{gamma})233Th Thermal Reaction Cross-Section Measurement

    SciTech Connect

    Maidana, Nora L.; Vanin, Vito R.; Pascholati, Paulo R.; Helene, Otaviano; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2005-05-24

    The 232Th(n,{gamma})233Th thermal neutron-capture reaction cross section was measured using targets of {approx} 1.5 mg of high-purity metallic thorium irradiated in the IPEN IEA-R1m 5 MW pool research reactor. The 197Au(n,{gamma})198Au reaction was used to monitor the thermal and epithermal neutron fluxes in the irradiation position, which was found using the Westcott formalism. The residual gamma-ray activity was followed with an HPGe detector. The detector efficiency curve was fitted by the least-squares method applying covariance analysis to all uncertainties involved. The experimental result is {sigma}0 =7.20{+-}0.20 b, in agreement with previous published values.

  4. Elastic Scattering and Reaction Cross Section of the 6He+27Al System Close to the Coulomb Barrier

    SciTech Connect

    Lepine-Szily, A.; Benjamim, E. A.; Lichtenthaeler, R.; Guimaraes, V.; Chamon, L. C.; Hussein, M. S.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O. Jr.; Denke, R. Z.; Faria, P. N. de; Mendes Junior, D. R.; Pires, K. C. C.; Gomes, P. R. S.; Arazi, A.; Padron, I.

    2006-08-14

    The RIBRAS (Radioactive Ion Beams Brazil) facility recently installed at the Pelletron Laboratory of the University of Sao Paulo consists of two superconducting solenoids used to produce and focalize beams of light radioactive nuclei, as 6He, 7Be,8Li etc. The low energy, light, radioactive beams available are used to study reactions close to the Coulomb barrier. The elastic scattering of the radioactive halo nucleus 6He on 27Al target was measured at four energies close to the Coulomb barrier. Reaction cross sections were extracted from the optical model fits, using the Sao Paulo Potential (SPP). The reduced reaction cross sections of 6He on 27Al were compared to reduced reaction cross sections for other projectiles as 6,7Li, 9Be and 16O on 27Al and they are larger than those for stable projectiles by an amount similar to the calculated nuclear break-up cross section for this system.

  5. Oscillatory reaction cross sections caused by normal mode sampling in quasiclassical trajectory calculations

    SciTech Connect

    Nagy, Tibor; Vikár, Anna; Lendvay, György

    2016-01-07

    The quasiclassical trajectory (QCT) method is an efficient and important tool for studying the dynamics of bimolecular reactions. In this method, the motion of the atoms is simulated classically, and the only quantum effect considered is that the initial vibrational states of reactant molecules are semiclassically quantized. A sensible expectation is that the initial ensemble of classical molecular states generated this way should be stationary, similarly to the quantum state it is supposed to represent. The most widely used method for sampling the vibrational phase space of polyatomic molecules is based on the normal mode approximation. In the present work, it is demonstrated that normal mode sampling provides a nonstationary ensemble even for a simple molecule like methane, because real potential energy surfaces are anharmonic in the reactant domain. The consequences were investigated for reaction CH{sub 4} + H → CH{sub 3} + H{sub 2} and its various isotopologs and were found to be dramatic. Reaction probabilities and cross sections obtained from QCT calculations oscillate periodically as a function of the initial distance of the colliding partners and the excitation functions are erratic. The reason is that in the nonstationary ensemble of initial states, the mean bond length of the breaking C–H bond oscillates in time with the frequency of the symmetric stretch mode. We propose a simple method, one-period averaging, in which reactivity parameters are calculated by averaging over an entire period of the mean C–H bond length oscillation, which removes the observed artifacts and provides the physically most reasonable reaction probabilities and cross sections when the initial conditions for QCT calculations are generated by normal mode sampling.

  6. Capture Cross Sections for the Near Symmetric 124Sn + 96Zr Reaction

    SciTech Connect

    Vinodkumar, A. M.; Loveland, Walter; Sprunger, Peter H; Peterson, Don; Liang, Junjien; Shapira, Dan; Varner Jr, Robert L; Gross, Carl J; Kolata, Jim J

    2006-12-01

    Capture-fission cross sections were measured for the near symmetric reaction between the massive nuclei {sup 124}Sn and {sup 96}Zr for center of mass energies from 195 to 265 MeV. Coincident fission fragments were detected and separated from elastic and deep inelastic scattering products by angle/energy/mass conditions. The measured capture cross sections agree quite well with calculations using the dinuclear system (DNS) model. The DNS model also predicts the fusion cross section for this reaction with a fusion barrier height of 208.0 MeV. The deduced extra push energy, corresponding to this barrier height, differs from that deduced from evaporation residue measurements.

  7. Capture Cross Sections for the Near Symmetric 124Sn+96Zr Reaction

    SciTech Connect

    Vinodkumar, A. M.; Loveland, Walter; Sprunger, Peter H; Peterson, Don; Liang, J Felix; Shapira, Dan; Varner Jr, Robert L; Gross, Carl J; Kolata, Jim J

    2006-12-01

    Capture-fission cross sections were measured for the near symmetric reaction between the massive nuclei 124Sn and 96Zr for center of mass energies from 195 to 265 MeV. Coincident fission fragments were detected and separated from elastic and deep inelastic scattering products by angle/energy/mass conditions. The measured capture cross sections agree quite well with calculations using the dinuclear system (DNS) model. The DNS model also predicts the fusion cross section for this reaction with a fusion barrier height of 208.0 MeV. The deduced extra push energy, corresponding to this barrier height, differs from that deduced from evaporation residue measurements.

  8. Alpha-induced reaction cross-section for Sm, U, Np targets: influence of hexadecapole deformation and deformed surface diffuseness

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Dehghani, V.

    2017-06-01

    Alpha-induced reactions on 154Sm, 233,235,236,238U, and 237Np deformed nuclei are studied theoretically. The effects of hexadecapole deformation, deformed surface diffuseness parameter, and orientation on barrier height and position, fusion cross-section at any angle, and fusion cross-section have been investigated. Both hexadecapole deformation and deformed surface diffuseness can affect barrier characteristics and enhance fusion cross-section. Good agreement between experimental data and theoretical calculations with quadrupole and hexadecapole deformation and deformed surface diffuseness were observed for the 4He+154Sm, 235U, 237Np reactions.

  9. Thermonuclear Reaction Bibliography with Cross Section Data for Four Advanced Reactions

    DTIC Science & Technology

    1989-03-01

    J ., Santarius , J . F ., and Kulcinski, G. L...Nuclear Engineering, Urbana IL, February 1986.. 35) Uittenberg, L. J ., Santarius , J . F ., and Kutcinski, 0. L., Lunar . . _ - He for Commercial Fusion Pow-r...0.1 Energy (MeV) Fig. 4. B1(p,3He4) Cross Section 23 Xx to XRef. 3 SRef. 3 Rof. 3 10 f ig. 𔃿. -B11,(p,n4Cl C0ro-s Somtion 24 o 00 o0 0 0L 0 C~ j 0

  10. K+ nucleus reaction and total cross sections: New analysis of transmission experiments

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.; Weiss, R.; Aclander, J.; Alster, J.; Mardor, I.; Mardor, Y.; May-Tal Beck, S.; Piasetzky, E.; Yavin, A. I.; Bart, S.; Chrien, R. E.; Pile, P. H.; Sawafta, R.; Sutter, R. J.; Barakat, M.; Johnston, K.; Krauss, R. A.; Seyfarth, H.; Stearns, R. L.

    1997-03-01

    The attenuation cross sections measured in transmission experiments at the alternating-gradient synchrotron for K+ on 6Li, C, Si, and Ca at pL = 488, 531, 656, and 714 MeV/c are reanalyzed in order to derive total (σT) and reaction (σR) cross sections. The effect of plural (Molière) scattering is properly accounted for, leading to revised values of σT. We demonstrate the model dependence of these values, primarily due to the choice of K+ nuclear optical potential used to generate the necessary Coulomb-nuclear and nuclear elastic corrections. Values of σR are also derived, for the first time, from the same data and exhibit a remarkable degree of model independence. The derived values of σT and σR exceed those calculated by the first-order tρ optical potential for C, Si, and Ca, but not for 6Li, particularly at 656 and 714 MeV/c where the excess is 10-25%. Relative to 6Li, this excess is found to be nearly energy independent and its magnitude of 15-25% is not reproduced by any nuclear medium effect studied so far.

  11. Characterization of microfluidic mixing and reaction in microchannels via analysis of cross-sectional patterns

    PubMed Central

    Fang, Wei-Feng; Hsu, Miao-Hsing; Chen, Yu-Tzu; Yang, Jing-Tang

    2011-01-01

    For the diagnosis of biochemical reactions, the investigation of microflow behavior, and the confirmation of simulation results in microfluidics, experimentally quantitative measurements are indispensable. To characterize the mixing and reaction of fluids in microchannel devices, we propose a mixing quality index (Mqi) to quantify the cross-sectional patterns (also called mixing patterns) of fluids, captured with a confocal-fluorescence microscope (CFM). The operating parameters of the CFM for quantification were carefully tested. We analyzed mixing patterns, flow advection, and mass exchange of fluids in the devices with overlapping channels of two kinds. The mixing length of the two devices derived from the analysis of Mqi is demonstrated to be more precise than that estimated with a commonly applied method of blending dye liquors. By means of fluorescence resonance-energy transfer (FRET), we monitored the hybridization of two complementary oligonucleotides (a FRET pair) in the devices. The captured patterns reveal that hybridization is a progressive process along the downstream channel. The FRET reaction and the hybridization period were characterized through quantification of the reaction patterns. This analytical approach is a promising diagnostic tool that is applicable to the real-time analysis of biochemical and chemical reactions such as polymerase chain reaction (PCR), catalytic, or synthetic processes in microfluidic devices. PMID:21503162

  12. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, Marcus Johannes Jacobus

    1992-11-01

    The hydrogen exchange reaction H + H2 → H2 + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H2 reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H2 molecules. DH molecules formed in the D + H2 reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 103 molecules/cc. This thesis does not contain experimental results for the D + H2 reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  13. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  14. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at

  15. Measurement of fission cross section for 232Th (n,f) 131 ZX ( Z = 50 , 51, 52, 53) reaction induced by neutrons around 14 MeV

    NASA Astrophysics Data System (ADS)

    Lan, Chang-lin; Qiu, Yi-jia; Wang, Qiang; Zhang, Zheng-wei; Zhang, Qian; Tan, Jun-cai; Lai, Cai-feng; Fang, Kai-hong

    2017-06-01

    The fission cross sections of 232Th (n,f) 131m, gSn , 232Th (n,f) 131Sb , 232Th (n,f) 131m, gTe , 232Th (n,f) 131I fission reactions induced by 14MeV neutrons were measured precisely with the neutron activation technique. The neutron flux was monitored by accompanying α particle in the irradiation and the neutron energies were determined by the cross section ratio of 90Zr (n,2n) 89Zr to 93Nb (n,2n) 92mNb reaction. The values of the cross sections of 232Th (n,f) 131m, gSn were analyzed, and the cross sections of 232Th (n,f) 131Sb were deduced to be 6.5± 0.7 , 6.3± 0.6 , 6.1± 0.6 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively. The values of the cross sections of 232Th (n,f) 131gTe were deduced to be 1.8± 0.1 , 1.5± 0.1 and 1.4± 0.1 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively. The values of the cross sections of 232Th (n,f) 131I were given as 1.8± 0.2 , 1.6± 0.2 , 1.5± 0.1 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively.

  16. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.

    2011-09-01

    In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103Rh(d,x) 100,101,103Pd, 100g,101m,101g,102m,102gRh and 103gRu reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  17. Measurements of Cross Sections for Neutron-induced Reactions on Chromium and Yttrium Targets at 197 MeV

    NASA Astrophysics Data System (ADS)

    Sekimoto, S.; Suzuki, H.; Yashima, H.; Ninomiya, K.; Kasamatsu, Y.; Shima, T.; Takahashi, N.; Shinohara, A.; Matsumura, H.; Hagiwara, M.; Nishiizumi, K.; Caffee, M. W.; Shibata, S.

    2014-05-01

    Reaction cross sections for Cr and Y induced by neutrons at 197 MeV were measured by using 7Li(p,n) reaction at N0 beam line in the Research Center for Nuclear Physics (RCNP), Osaka University. To estimate quasi-monoenergetic neutron cross sections, Cr and Y samples were irradiated on the two angles of 0∘ and 25∘ relative to the axis of the primary proton beam. The measured cross section data in the natCr(n,x) and 89Y(n,x) reactions are compared to the JENDL high-energy file and the literature proton values, respectively. The results obtained are also compared to the cross section data for the same target materials with 287 and 386 MeV neutrons in our previous work.

  18. Reaction cross section for solar flare neutrinos with Cl-37 and O-16 targets

    SciTech Connect

    Fukugita, M.; Kohyama, Y.; Kubodera, K.; Kuramoto, T.

    1989-02-01

    Neutrino reaction cross sections are calculated for Cl-37 (electron neutrino, electron) Ar-37 and electron neutrino + O-16 yields electron + anything for the neutrino energy range 50-200 MeV. If the excess neutrino captures observed in the Davis experiment, which seem to correspond to the period during which large solar flares were recorded, are ascribed to the solar-flare neutrinos, 5000 (300) recoil electron events are expected in a 1000-ton water Cerenkov detector, if neutrino energy is 100 (50) MeV. Such detectors have a sensitivity to monitor the solar-flare neutrino event to the level of the maximum theoretical estimate for the flare neutrino flux. 22 refs.

  19. Structure of 8Li from a reaction cross-section measurement

    NASA Astrophysics Data System (ADS)

    Fan, G. W.; Fukuda, M.; Nishimura, D.; Cai, X. L.; Fukuda, S.; Hachiuma, I.; Ichikawa, C.; Izumikawa, T.; Kanazawa, M.; Kitagawa, A.; Kuboki, T.; Lantz, M.; Mihara, M.; Nagashima, M.; Namihira, K.; Ohkuma, Y.; Ohtsubo, T.; Ren, Zhongzhou; Sato, S.; Shen, Z. Q.; Sugiyama, M.; Suzuki, S.; Suzuki, T.; Takechi, M.; Yamaguchi, T.; Xu, B. J.; Xu, W.

    2014-10-01

    We have precisely measured reaction cross sections (σR) for 8Li using 9Be, 12C , 27Al, and proton targets at intermediate energies by the transmission method. From the energy dependence of the σR including the high energy data, the density distribution of 8Li was deduced through a modified Glauber model. It is shown that 8Li has a shorter tail structure in the density as compared with that of 8B and the matter radius of 8Li is similar to those of the other nonhalo Li isotopes. The result is consistent with the previous experiments that there is a tendency for 8Li to be a skin nucleus.

  20. (n,p), (n,2n), (n,d), and (n,α) cross-section calculations of 16O with 0-40 MeV energy neutrons

    NASA Astrophysics Data System (ADS)

    Faruk Ozdemir, Omer; Arasoglu, Ali

    2015-07-01

    Oxygen is one of the elements which interacts with emitted neutrons after fission reactions. Oxygen exists abundantly both in nuclear fuel (UO2) and moderators (H2O). Nuclear reactions of oxygen with neutrons are important in terms of stability of nuclear fuel and neutron economy. In this study, equilibrium and pre-equilibrium models have been used to calculate (n,p), (n,d), (n,2n) and (n,α) nuclear reaction cross-sections of 16O. In these calculations, neutron incident energy has been taken up to 40 MeV. Hybrid and Standard Weisskopf-Ewing Models in ALICE-2011 program, Weisskopf-Ewing and Full Exciton Models in PCROSS program, and Cascade Exciton Model in CEM03.01 program have been utilized. The calculated results have been compared with experimental and theroretical cross-section data which are obtained from libraries of EXFOR and ENDF/B VII.1.

  1. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  2. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  3. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    NASA Astrophysics Data System (ADS)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  4. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  5. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  6. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  7. Comprehensive Amm242 neutron-induced reaction cross sections and resonance parameters

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.

    2017-06-01

    The 242Am metastable isomer's neutron-induced destruction mechanisms were studied at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array with a compact parallel-plate avalanche counter. New Amm242 neutron-capture cross sections were determined from 100 meV to 10 keV, and the absolute scale was set with respect to a concurrent measurement of the well-known Amm242 neutron-induced-fission cross section. The new fission cross section spans an energy range from 100 meV to 1 MeV and was normalized to the ENDF/B-VII.1 evaluated cross section to set the absolute scale. Our Amm242(n ,f ) cross section agrees well with the cross section of Browne et al. [Phys. Rev. C 29, 2188 (1984)], 10.1103/PhysRevC.29.2188 over this large energy interval. The new neutron-capture cross section measurement complements and agrees well with our recent results reported below 1 eV in Buckner et al. [Phys. Rev. C 95, 024610 (2017)], 10.1103/PhysRevC.95.024610. This new work comprises the most comprehensive study of Amm242(n ,γ ) above thermal energy. Neutron-induced resonance energies and parameters were deduced with the sammy R -matrix code for incident neutron energies up to 45 eV, and the new average Γγ is 13 % higher than the evaluated average γ width.

  8. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  9. Theoretical cross section calculation of the 112Sn(α,γ)116Te reaction for the astrophysical P process

    NASA Astrophysics Data System (ADS)

    Yalçin, C.

    2017-02-01

    The theoretical cross section calculations for the astrophysical p process are very crucial due to the most of the related reactions are technically very difficult to measure at the laboratory. On the other hand, the theoretical cross sections are not in agreement with the experimental results, especially for the (α,γ) reactions. One of the main reason of the difference between theoretical and experimental cross section is description of the α+nucleus optical model potential. In order to understand current situation and improvement of the theoretical calculations, the 112Sn(α,γ)116Te reaction were investigated for different global optical model potentials at the astrophysically interested energies. Astrophysical S factors were also calculated and compared with experimental data available at EXFOR database.

  10. The First Measurement of Cross Section for the 7Be(n, α)4He Reaction at the Cosmological Energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tomoya; Kawabata, Takahiro; Furono, Tatsuya; Ichikawa, Masaya; Iwasa, Naohito; Kanada-En'yo, Yoshiko; Koshikawa, Ami; Kubono, Shigeru; Miyawaki, Eisuke; Morimoto, Takahiro; Murata, Motoki; Nanamura, Takuya; Nishimura, Shunji; Shikata, Yuki; Takahashi, Yu; Tsumura, Miho; Watanabe, Ken

    The cross section for the 4He(α, n)7Be reaction was measured at low energies between Eα = 38.50 and 39.64 MeV to solve the cosmological lithium problem. On the basis of the detailed balance principle, the cross section for the 7Be(n, α)4He reaction was obtained at Ec.m. = 0.20-0.81 MeV close to the Big Bang nucleosynthesis (BBN) energy window for the first time. The obtained cross sections are significantly smaller than the theoretical estimation used in the BBN calculations. The present results suggest the 7Be(n, α)4He reaction rate is not large enough to solve the cosmological lithium problem.

  11. Cross section limits for the Cm248(Mg25,4n-5n)Hs268,269 reactions

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Brüchle, W.; Düllmann, Ch. E.; Dvorakova, Z.; Eberhardt, K.; Eichler, R.; Jäger, E.; Nagame, Y.; Qin, Z.; Schädel, M.; Schausten, B.; Schimpf, E.; Schuber, R.; Semchenkov, A.; Thörle, P.; Türler, A.; Wegrzecki, M.; Yakushev, A.

    2009-03-01

    We report on an attempt to produce and detect Hs268 and Hs269 in the nuclear fusion reaction Mg25+Cm248 using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of Hs269 we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction Cm248(Mg25,4n)Hs269 at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the Cm248(Mg25,5n)Hs268 reaction depends on the assumed half-life of unknown Hs268. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb.

  12. Vibrational state-resolved differential cross sections for the D + H sub 2 yields DH + H reaction

    SciTech Connect

    Continetti, R.E.

    1989-11-01

    In this thesis, crossed-molecular-beams studies of the reaction D + H{sub 2} {yields} DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H{sub 2} reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H{sub 3} potential energy surface, particularly the bending potential, is in order.

  13. Development for the study of a Cross Sectional Measurement of 3He-3He Solar Reaction

    NASA Astrophysics Data System (ADS)

    Kudomi, N.; Itahashi, T.; Kume, K.; Takahisa, K.; Yoshida, S.; Ejiri, H.; Toki, H.; Nagai, Y.; Komori, M.; Ohsumi, H.

    2003-04-01

    The design and construction of a low-energy, high current accelerator for the study of fusion reactions are reported. The accelerator can produce an intense beam of 3He1+ and 3He2+ ions of more than 1mA. It enables us to provide extremely fine cross-section measurements of the 3He(3He,2p)α at 40 to 50 keV. A detection efficiency for proposed detector assembly of ΔE-E counter telescope is simulated with GEANT program and it expects a detection efficiency about 10% for the two proton coincidence for 3He+3He→2p+α. Deuter contaminations in target chamber is estimated to be less than ppm by quadrupole mass spectrometer. To further develop the study of nuclear astrophysics, a plasma target as an experimental apparatus for electron screening effects is proposed. Some parts of such apparatus are assembled. A combination ECR plasma target with a high current ion generator is under construction. The facility will be installed in the underground laboratory, Oto Cosmo Observatory. The facility has just started to operate and, as explained here, it already has been used for the double beta decay measurement and dark matter search programs. The present status of the experimental apparatus and its development are described.

  14. Experimental and theoretical differential cross sections for the N(2D) + H2 reaction.

    PubMed

    Balucani, Nadia; Casavecchia, Piergiorgio; Bañares, Luis; Aoiz, F Javier; Gonzalez-Lezana, Tomás; Honvault, Pascal; Launay, Jean-Michel

    2006-01-19

    In this paper, we report a combined experimental and theoretical study on the dynamics of the N(2D) + H2 insertion reaction at a collision energy of 15.9 kJ mol(-1). Product angular and velocity distributions have been obtained in crossed beam experiments and simulated by using the results of quantum mechanical (QM) scattering calculations on the accurate ab initio potential energy surface (PES) of Pederson et al. (J. Chem. Phys. 1999, 110, 9091). Since the QM calculations indicate that there is a significant coupling between the product angular and translational energy distributions, such a coupling has been explicitly included in the simulation of the experimental results. The very good agreement between experiment and QM calculations sustains the accuracy of the NH2 ab initio ground state PES. We also take the opportunity to compare the accurate QM differential cross sections with those obtained by two approximate methods, namely, the widely used quasiclassical trajectory calculations and a rigorous statistical method based on the coupled-channel theory.

  15. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; Schoeffler, Markus; Schmidt, Lothar; Prior, Michael; Doerner, Reinhard

    2017-08-01

    We studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kinetic energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Traces of a possible breakdown of the Born-Oppenheimer approximation are observed near threshold.

  16. Quantum state-to-state cross sections for atom-diatom reactions: A Chebyshev real wave-packet approach

    SciTech Connect

    Lin Shiying; Guo Hua

    2006-08-15

    We describe the implementation of a quantum mechanical method to calculate state-to-state differential cross sections for atom-diatom reactive scattering processes. The key ingredient of this approach is the efficient and accurate propagation of a real scattering wave packet in the Chebyshev order domain, from which the S-matrix elements can be extracted. This approach is implemented with Open MP and applied to compute differential and integral cross sections for the direct H+H{sub 2} abstraction reaction and the more challenging N({sup 2}D)+H{sub 2} insertion reaction.

  17. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    NASA Astrophysics Data System (ADS)

    Leong, L. S.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Le Naour, C.; Stéphan, C.; Paradela, C.; Tarrío, D.; Duran, I.

    2014-04-01

    The 237Np neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n_TOF facility at CERN. When compared to previous measurements the n_TOF fission cross section appears to be higher by 5-7% beyond the fission threshold. To check the relevance of the n_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np, surrounded by uranium highly enriched in 235U so as to approach criticality with fast neutrons. The multiplication factor keff of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII.0 evaluation of the 237Np fission cross section by the n_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that the νbar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n_TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np.

  18. Constipation and diarrhoea - common adverse drug reactions? A cross sectional study in the general population

    PubMed Central

    2011-01-01

    Background Constipation and diarrhoea are common complaints and often reported as adverse drug reactions. This study aimed at finding associations between drugs and constipation and diarrhoea in a general population. Methods A selection of inhabitants in Oppland County, Norway participated in a cross-sectional survey. Information about demographics, diseases including gastrointestinal complaints classified according to the Rome II criteria and use of drugs were collected on questionnaires. Constipation was defined as functional constipation and constipation predominant Irritable Bowel Syndrome (IBS), and diarrhoea as functional diarrhoea and diarrhoea predominant IBS. Associations between drugs and constipation and diarrhoea were examined with multivariable logistic regression models. Based on the multivariable model, the changes in prevalence (risk difference) of the abdominal complaints for non-users and users of drugs were calculated. Results In total 11078 subjects were invited, 4622 completed the questionnaires, 640 (13.8%) had constipation and 407 (8.8%) had diarrhoea. To start using drugs increased the prevalence of constipation and diarrhoea with 2.5% and 2.3% respectively. Polypharmacy was an additional risk factor for diarrhoea. Use of furosemide, levothyroxine sodium and ibuprofen was associated with constipation, and lithium and carbamazepine with diarrhoea. The excess drug related prevalence varied from 5.3% for the association between ibuprofen and constipation to 27.5% for the association between lithium and diarrhoea. Conclusions Use of drugs was associated with constipation and diarrhoea in the general population. The associations are most likely adverse drug reactions and show that drug-induced symptoms need to be considered in subjects with these complaints. PMID:21332973

  19. (65)Cu isomeric cross sections for (n,α) reaction using approximately 14MeV neutrons.

    PubMed

    Durusoy, Ayşe; Reyhancan, Iskender Atilla; Akçalı, Özgür

    2015-05-01

    In this paper, activation cross-section measurements for the (65)Cu(n,α)(62m)Co (T1/2=13.86min.) reaction at six different neutron energies ranging from 13.6 and 14.9MeV are presented. The fast neutrons were produced via (3)H(d, n)(4)He reactions from an SAMES T-400 neutron generator. An activation technique was used to measure induced gamma activities. A high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector was used to acquire the data. The measured cross section data were corrected for gamma-ray attenuations, pulse pile-up effects, dead time, variations in neutron flux, and contributions from scattered low-energy neutrons. The measured cross sections were compared with statistical model calculations (TALYS 1.6 code), the experimental data available in the literature and the data obtained from TENDL.

  20. Nucleon Density Distribution of the Proton Drip-Line Nucleus 12N Studied via Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsunori; Morita, Yusuke; Nishimura, Daiki; Takechi, Maya; Iwamoto, Kodai; Wakabayashi, Masaru; Kamisho, Yasuto; Ohno, Junichi; Tanaka, Masaomi; Kanbe, Ryosuke; Yamaoka, Shintaro; Mihara, Mototsugu; Matsuta, Kensaku; Yoshinaga, Kenta; Zhu, Ifan; Khono, Junpei; Yamaki, Sayaka; Suzuki, Takeshi; Yamaguchi, Takayuki; Suzuki, Shinji; Nagashima, Masayuki; Abe, Kohsuke; Tashiro, Keisuke; Honma, Akira; Ohtsubo, Takashi; Izumikawa, Takuji; Sato, Shinji; Fukuda, Shigekazu; Kitagawa, Atsushi

    Reaction cross sections for the proton drip-line nucleus 12N on Be, C, and Al targets have been measured at intermediate energies from 60A to 200A MeV. The results are compared with the systematics for stable nuclei and also with the experimental reaction cross section data for 12C to show 5-20% enhancement of the present 12N data. The nucleon density distribution of 12N has been extracted through the χ2-fitting procedure, which is consistent with a single particle nature of the loosely-bound valence proton in the p orbital though the error of the density is still large. The large one-proton removal cross sections observed at the same time also supports the long proton tail in the density distribution.

  1. Measurement and modeling of the cross sections for the reaction 230Th(3He,3n)230U

    NASA Astrophysics Data System (ADS)

    Morgenstern, A.; Abbas, K.; Simonelli, F.; Capote, R.; Sin, M.; Zielinska, B.; Bruchertseifer, F.; Apostolidis, C.

    2013-06-01

    230U and its daughter nuclide 226Th are promising therapeutic nuclides for application in targeted α therapy of cancer. We investigated the feasibility of producing 230U/226Th via irradiation of 230Th with 3He particles according to the reaction 230Th(3He,3n)230U. The experimental excitation function for this reaction is reported here. Cross sections were measured by using thin targets of 230Th prepared by electrodeposition, and 230U yields were analyzed by using α spectrometry. Beam intensities were obtained via monitor reactions on aluminum foils by using high-resolution γ spectrometry and International Atomic Energy Agency recommended cross sections. Incident particle energies were calculated by using the srim-2003 code. The experimental cross sections for the reaction 230Th(3He,3n)230U are in good agreement with model calculations by the empire-3 code once breakup and transfer reactions are properly considered in the incident channel. The obtained cross sections are too low to allow for the production of 230U/226Th in clinically relevant levels.

  2. Measurement of the argon-38(n,2n)argon-37 and calcium- 40(n,alpha)argon-37 cross sections, and National Ignition Facility concrete activation using the rotating target neutron source. The design of an experiment to measure the beryllium-9(n,gamma)beryllium-10 cross section at 14 MeV

    NASA Astrophysics Data System (ADS)

    Belian, Anthony Paul

    The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample

  3. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  4. Quantum state-resolved differential cross sections for complex-forming chemical reactions: Asymmetry is the rule, symmetry the exception

    SciTech Connect

    Larrégaray, Pascal Bonnet, Laurent

    2015-10-14

    We argue that statistical theories are generally unable to accurately predict state-resolved differential cross sections for triatomic bimolecular reactions studied in beam experiments, even in the idealized limit where the dynamics are fully chaotic. The basic reason is that quenching of interferences between partial waves is less efficient than intuitively expected, especially around the poles.

  5. Universal trend for heavy-ion total reaction cross-sections at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Tavares, O. A. P.; Medeiros, E. L.; Morcelle, V.

    2010-08-01

    Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range 6Li-238U and 158 projectile nuclei from 2H to 84Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty. Dedicated to CBPF—Centro Brasileiro de Pesquisas Físicas in its celebration of the 60th anniversary of its foundation.

  6. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  7. Total reaction cross sections for 20-30 MeV pions and the anomaly of pionic atoms

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Goldring, A.; Johnson, R. R.; Meirav, O.; Vetterli, D.; Weber, P.; Altman, A.

    1991-03-01

    Total reaction cross sections of 20 MeV π- and 30 MeV π+ and π- have been measured for carbon and nickel targets. The experimental results are in very good agreement with calculations based on commonly accepted pion-nucleus potentials but disagree with calculations based on the potentials associated with the so-called pionic atom anomaly.

  8. Scaling of differential cross section ratios in inelastic (p, p') reaction with nuclei at 1 GeV

    NASA Astrophysics Data System (ADS)

    Miklukho, O. V.; Kisselev, A. Yu.; Amalsky, G. M.; Andreev, V. A.; Gavrilov, G. E.; Ilyin, D. S.; Izotov, A. A.; Kravchenko, P. V.; Maysuzenko, D. A.; Murzin, V. I.; Prokofiev, A. N.; Shvedchikov, A. V.; Trush, S. I.; Zhdanov, A. A.

    2017-07-01

    The differential cross sections of the (p, p') inelastic reaction on nuclei 12C, 28Si, 40Ca, and 56Fe at the initial proton energy of 1 GeV were measured over a wide range of the scattered proton momenta at a laboratory angle of Θ = 21°. Scattered protons were detected by means of the magnetic spectrometer equipped with a polarimeter based on multiwire proportional chambers. Momentum intervals were observed in which the ratios of the scattering cross sections off the nuclei do not depend on the scattered proton momentum (i.e., scaling).

  9. Astrophysical reaction rates for {sup 58,60}Ni(n,{gamma}) from new neutron capture cross section measurements

    SciTech Connect

    Guber, K. H.; Derrien, H.; Leal, L. C.; Arbanas, G.; Wiarda, D.; Koehler, P. E.; Harvey, J. A.

    2010-11-15

    New neutron capture cross sections of {sup 58,60}Ni were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator. The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture cross sections were included in the analyses. From these resonance parameters and the direct capture contribution, new (n,{gamma}) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models describing the so-called weak s process.

  10. Cross section and analyzing power for quasifree (p,n) reactions

    SciTech Connect

    Taddeucci, T.N.; Byrd, R.C.; Carey, T.A.; McClelland, J.B.; Rybarcyk, L.J.; Sailor, W.C. ); Ciskowski, D.E. ); Goodman, C.D.; Huang, W. ); Gulmez, E. ); Marchlenski, D.; Sugarbaker, E. ); Prout, D. (Colorado Univ., Boulder, CO

    1990-01-01

    Cross sections and analyzing powers have been measured for {sup 12}C(p,n) at 494 MeV and 795 MeV and for Pb(p,n) at 795 MeV. The data span an energy loss range of at least 200 MeV, which is sufficient to clearly reveal the large peak associated with quasifree neutron knockout. The kinematics, cross section, and analyzing power for this peak are compared to the corresponding observables for free nucleon-nucleon scattering and to the observables calculated with a relativistic Fermi-gas model. 15 refs., 3 figs.

  11. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  12. Integral cross section measurement of the U 235 ( n , n ' ) U 235 m reaction in a pulsed reactor

    DOE PAGES

    Bélier, G.; Bond, E. M.; Vieira, D. J.; ...

    2015-04-08

    The integral measurement of the neutron inelastic cross section leading to the 26-minute half-life 235mU isomer in a fission-like neutron spectrum is presented. The experiment has been performed at a pulsed reactor, where the internal conversion decay of the isomer was measured using a dedicated electron detector after activation. The sample preparation, efficiency measurement, irradiation, radiochemistry purification, and isomer decay measurement will be presented. We determined the integral cross section for the ²³⁵U(n,n')235mU reaction to be 1.00±0.13b. This result supports an evaluation performed with TALYS-1.4 code with respect to the isomer excitation as well as the total neutron inelastic scatteringmore » cross section.« less

  13. Exact quantum cross sections for a three dimensional angle dependent model for three body reactions.

    NASA Technical Reports Server (NTRS)

    Baer, M.; Kouri, D. J.

    1971-01-01

    Exact quantum mechanical reactive cross sections are reported for a three dimensional angle dependent model surface. The surface simulates an atom-heteronuclear diatom system A + BC leading to AB + C where atom B is much heavier than A or C. The molecules BC and AB are taken to be rotating vibrators which can dissociate. Results for two angle dependent potentials are given.

  14. Exact quantum cross sections for a three dimensional angle dependent model for three body reactions.

    NASA Technical Reports Server (NTRS)

    Baer, M.; Kouri, D. J.

    1971-01-01

    Exact quantum mechanical reactive cross sections are reported for a three dimensional angle dependent model surface. The surface simulates an atom-heteronuclear diatom system A + BC leading to AB + C where atom B is much heavier than A or C. The molecules BC and AB are taken to be rotating vibrators which can dissociate. Results for two angle dependent potentials are given.

  15. Measurements of 89Y(n,2n)88Y and 89Y(n,3n)87Y, 87mY cross sections for fast neutrons at KIRAMS

    NASA Astrophysics Data System (ADS)

    In, Eun Jin; Bak, Sang-In; Ham, Cheolmin; Kim, Do Yoon; Myung, Hyunjeong; Shim, Chungbo; Shin, Jae Won; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2017-09-01

    A proton cyclotron MC-50 in Korea Institute of Radiological & Medical Science (KIRAMS) is used to carry out neutron activation experiments with Y2O3 targets irradiated with neutron beams of a continuous spectrum produced by proton beams on a thick beryllium target. Neutrons are generated by 9Be (p, n) reaction with an incident proton intensity of 20 μA. The neutron spectra generated by proton beams of 30, 35, and 40 MeV are calculated by GEANT4 simulations. Nb powders are used for neutron flux monitoring by measuring the activities of 92mNb through the reaction 93Nb (n, 2n). By using a subtraction method, the average cross section of 89Y(n,2n) and 89Y(n,3n) reactions at the neutron energies of 29.8 ± 1.8 MeV and 34.8 ± 1.8 MeV are extracted and are found to be close to the existing cross sections from the EXFOR data and the evaluated nuclear data libraries such as TENDL-2015 or EAF-2010.

  16. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  17. Absolute state-selected and state-to-state total cross sections for the Ar sup + ( sup 2 P sub 3/2,1/2 )+CO reactions

    SciTech Connect

    Flesch, G.D.; Nourbakhsh, S.; Ng, C.Y. . Ames Laboratory Iowa State University, Ames, Iowa . Department of Chemistry)

    1991-09-01

    Absolute spin--orbit state-selected total cross sections for the reactions, Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO{r arrow}CO{sup +}+Ar (reaction (1)), C{sup +}+O+Ar (reaction (2)), O{sup +}+C+Ar (reaction (3)), and ArC{sup +}+O (reaction (4)), have been measured in the center-of-mass collision energy ({ital E}{sub c.m.}) range of 0.04--123.5 eV. Absolute spin--orbit state transition total cross sections for the Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO reactions at {ital E}{sub c.m.} have also been obtained. The appearance energies (AE) for C{sup +}({ital E}{sub c.m.}=6.6{plus minus}0.4 eV) and O{sup +}({ital E}{sub c.m.}=8.6{plus minus}0.4 eV) are in agreement with the thermochemical thresholds for reactions (2) and (3), respectively. The observed AE for reaction (4) yields a lower bound of 0.5 eV for the ArC{sup +} bond dissociation energy. The kinetic energy dependence of the absolute cross sections and the retarding potential analysis of the product ions support that ArC{sup +}, C{sup +}, and O{sup +} are formed via a charge transfer predissociation mechanism, similar to that proposed to be responsible for the formation of O{sup +} (N{sup +}) and ArO{sup +} (ArN{sup +}) in the collisions of Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+O{sub 2}(N{sub 2}).

  18. 87Y(n,γ) and 89,90Zr(n,γ) cross sections from a surrogate reaction approach

    NASA Astrophysics Data System (ADS)

    Ota, Shuya; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Hughes, R. O.; Ressler, J. J.; Scielzo, N. D.; Thompson, I.; Austin, R. A. E.; McCleskey, E.; McCleskey, M.; Saastamoinen, A.; Ross, T.

    2015-05-01

    The surrogate reaction approach is an indirect method for determining nuclear reaction cross sections which cannot be measured directly or predicted reliably. While recent studies demonstrated the validity of the surrogate reaction approach for studying fission cross sections for short-lived actinides, its applicability for radiative neutron capture reactions ((n,γ)) is still under investigation. We studied the γ decay of excited 88Y and 90,91Zr nuclei produced by 89Y(p,d), 91Zr(p,d), and 92Zr(p,d) reactions, respectively, in order to infer the 87Y(n,γ) and 89, 90Zr(n,γ) cross sections. The experiments were carried out at the K150 Cyclotron facility at Texas A&M University with a 28.5-MeV proton beam. The reaction deuterons were measured at forward angles of 25-60° with the array of three segmented Micron S2 silicon detectors. The compound nuclei with energies up to a few MeV above the neutron separation thresholds were populated. The coincident γ-rays were measured with the array of five Compton-suppressed HPGe clover detectors.

  19. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemsitry in the region of Thulium, Lutetium, and Tantalum I. Results of Built in Spherical Symmetry in a Deformed Region

    SciTech Connect

    Hoffman, R. D.

    2013-09-06

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.

  20. Differential cross section measurement of the 12C(e,e'pp)10Beg.s. reaction

    NASA Astrophysics Data System (ADS)

    Makek, M.; Achenbach, P.; Ayerbe Gayoso, C.; Barbieri, C.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Denig, A.; Distler, M. O.; Friščić, I.; Giusti, C.; Merkel, H.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Sanches Majos, S.; Schlimme, B. S.; Schwamb, M.; Walcher, Th.

    2016-09-01

    The differential cross section was measured for the 12C(e,e'pp)10Be g.s. reaction at energy and momentum transfers of 163MeV and 198MeV/ c, respectively. The measurement was performed at the Mainz Microtron by using two high-resolution magnetic spectrometers of the A1 Collaboration and a newly developed silicon detector telescope. The overall resolution of the detector system was sufficient to distinguish the ground state from the first excited state in 10 Be. We chose a super-parallel geometry that minimizes the effect of two-body currents and emphasizes the effect of nucleon-nucleon correlations. The obtained differential cross section is compared to the theoretical results of the Pavia reaction code in which different processes leading to two-nucleon knockout are accounted for microscopically. The comparison shows a strong sensitivity to nuclear-structure input and the measured cross section is seen to be dominated by the interplay between long- and short-range nucleon-nucleon correlations. Microscopic calculations based on the ab initio self-consistent Green's function method give a reasonable description of the experimental cross section.

  1. Production cross section of At radionuclides from 7Li+natPb and 9Be+natTl reactions

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Lahiri, Susanta

    2011-12-01

    Earlier we reported theoretical studies on the probable production of astatine radionuclides from 6,7Li- and 9Be-induced reactions on natural lead and thallium targets, respectively. The production of astatine radionuclides were investigated experimentally with two heavy-ion-induced reactions: 9Be + natTl and 7Li + natPb. Formation cross sections of the evaporation residues, 207,208,209,210At, produced in the (HI,xn) channel, were measured by the stacked-foil technique followed by off-line γ spectrometry at low incident energies (<50 MeV). Measured excitation functions were interpreted in terms of a compound nuclear reaction mechanism using Weisskopf-Ewing and Hauser-Feshbach models. Measured cross-section values are lower than the respective theoretical predictions.

  2. Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu

    2015-08-01

    A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)

  3. Activation cross sections of deuteron induced reactions on silver in the 33-50MeV energy range.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2017-02-01

    Excitation functions were measured for the (nat)Ag(d,x)(105,104)Cd, (110)(m,108m,106m,105g,104g)Ag and (101)Pd, (105,101m)Rh reactions over the energy range 33-50MeV by using the stacked foil activation technique and subsequent high-resolution gamma-spectrometry. We present the first experimental cross section data above 40MeV for all of these reactions and the first experimental cross section data for (nat)Ag(d,x)(108m,104g)Ag and (105,103)Rh. The experimental data are compared with results of the model calculations performed with the ALICE-D, EMPIRE-D theoretical nuclear reaction model codes and with the TALYS code results as available in the TENDL-2014 and -2015 on-line libraries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In-beam measurements of 13C+12C fusion reaction cross section at energies around and below Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Chilug, A.; Tudor, D.; Trache, L.; Straticiuc, M.; Burducea, I.; Focsa, I. M.; Ghita, D. G.; Zhang, N.; Tang, X.; Chen, H.

    2017-06-01

    The reaction cross section of the 12C+12C system is difficult to measure because of the presence of the resonances in the Gamow energy window. It has been proved that the 13C+12C reaction is a good alternative to study the behavior of the reaction cross section at energies relevant for astrophysics. We have measured it with activation and online techniques. During online measurements we were interested to determine the relative contributions of the open channels of the 13C+12C reaction. These determinations are necessary to evaluate the total fusion reaction cross section. Therefore, we have measured the γ-ray yields of proton, neutron and alpha particle evaporation channels from the resulting 25Mg compound nucleus using prompt γ-rays measurements. This complements the activation method. The irradiations took place at the 3 MV Tandetron Accelerator at IFIN-HH [1], Bucharest and the prompt gamma-rays were measured using a hyper-pure germanium detector with 100% relative efficiency, shielded with lead bricks. The energy range for the irradiation was from 4.6 up to 11 MeV (in laboratory frame), in steps of 0.2 MeV and the online measurements were performed from 6.4 up to 11 MeV.

  5. Neutral current reaction cross sections for the stable 100 Mo isotope

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.; Ejiri, H.

    2010-01-01

    Motivated by the ongoing MOON neutrino experiment at Japan aiming to search for double beta and neutrinoless double beta decay events, we investigate inelastic neutrino scattering cross sections for the stable 100Mo isotope by performing state-by-state calculations. The required many body nuclear wave functions are constructed within the context of the quasi-particle random phase approximation (QRPA) tested in the reproducibility of the low-lying spectrum of the 100Mo isotope.

  6. (n,xnγ) cross sections on actinides versus reaction code calculations

    NASA Astrophysics Data System (ADS)

    Kerveno, Maëlle; Bacquias, Antoine; Belloni, Francesca; Borcea, Catalin; Capote, Roberto; Dessagne, Philippe; Dupuis, Marc; Henning, Greg; Hilaire, Stéphane; Kawano, Toshihiko; Nankov, Nicolas; Negret, Alexandru; Nyman, Markus; Party, Eliot; Plompen, Arjan; Romain, Pascal; Rouki, Charoula; Rudolf, Gérard; Stanoiu, Mihai

    2017-09-01

    The experimental setup GRAPhEME (GeRmanium array for Actinides PrEcise MEasurements) has been used at GELINA (EC-JRC, Geel, Belgium) to perform (n,xn γ) cross sections measurements. GRAPhEME has been especially designed to take into account the specific difficulties generated by the use of actinides samples. This work takes place in the context of new nuclear data measurements for nuclear reactor applications. Considering the very tight accuracy requested for new experimental data, special care has been paid to quantify as accurately as possible all the uncertainties from the instruments and the analysis procedure. From the precise (n,xn γ) cross sections produced with GRAPhEME, the use of model calculations is required to obtain (n,xn) cross sections. Beyond the measurements, extensive work on theoretical models is necessary to achieve a better evaluation of the (n,xn) processes. In this paper, we will discuss the final step of the 238U data analysis and present some recent results obtained on 232Th compared to TALYS modellings. A new measurement campaign on 233U has started recently, a first assessment of the recorded data will be presented.

  7. Thulium-169 neutron inelastic scattering cross section measurements via the (169)Tm(n,n'gamma) reaction

    NASA Astrophysics Data System (ADS)

    Ko, Young June

    1999-11-01

    A neutron inelastic scattering study for low-lying states of thulium-169 below 1 MeV has been pursued by the detection of gamma rays from the 169Tm(n,n'γ) reaction. The inelastic level cross sections, which are important to obtain nuclear potential parameters and to understand reaction mechanisms, were obtained in this study. Incident neutrons were generated by bombarding a metallic lithium target with protons from the Lowell Van de Graaff accelerator. A germanium detector was used for gamma-ray observation. Excitation functions were measured from 0.2 to 1 MeV in 50 keV intervals at a scattering angle of 125°. Gamma-ray production cross sections were obtained for 37 observed transitions from 16 levels. Gamma-ray angular distributions from 35° to 135°, in 10° steps were measured at a neutron energy of 750 keV. The angular distributions were fitted with Legendre polynomials of even (up to fourth) order. Neutron inelastic level cross sections were inferred from the excitation functions and the angular distributions. Because cross-section data from previous experimental or theoretical work were not available, no direct comparison with previous work was made. A comparison of the magnitude and behavior of the (n,inelastic) cross section for thulium with those of neighboring odd-A nuclei indicated reasonable agreement. A classical model for angular momentum transfer indicates that states with spin >=/(+) may be excited only through the compound nucleus process, but for states with spin <=/(-) compound nucleus and direct interaction processes may both participate in the excitation.

  8. Activation evaluation and isotopic effects in the (n, p) reaction cross section on A-180 target nuclei

    SciTech Connect

    Avrigeanu, M.; Forrest, R. A.; Roman, F. L.; Avrigeanu, V.

    2006-07-01

    The fast-neutron nuclear data for the stable isotopes of tungsten, tantalum and hafnium, which are important in nuclear technology applications, have been consistently analyzed by means of the nuclear model computer codes TALYS, EMPIRE-II and STAPRE-H. The latter code uses a unique parameter set. The long-lived Hf isomers, which could be produced after a few reactions on W and Ta in the first-wall material of fusion power plants, need special consideration. The analysis, making use of global as well as local parameters within different model assumptions, aims to increase the predictive power of the models, which is of interest to basic as well as applied questions. This work suggests a physical reason for some of the discrepancies between experimental and calculated cross sections for (n, p) and (n, {alpha}) reactions on {sup 181}Ta. Thus, the rather similar Q-values for the (n, p) reaction on the {sup 179}Hf, {sup 181}Ta, and {sup 183}W odd-A target nuclei, also with similar asymmetry-parameter values, support the comparable cross sections which are predicted by all three computer code calculations at variance with the lower measured cross sections of the {sup 181}Ta(n, p) {sup 181}Hf reaction. (authors)

  9. The Study of ( n,d) Reaction Cross Sections for Some Medium Weight Targets up to 30 MeV

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Şahan, M.; Tel, E.; Şahan, H.; Uğur, F. A.

    2011-08-01

    In this study, neutron incident reaction cross sections for some medium target nuclei ( 44 Ca, 65 Cu, 54 Fe, 56 Fe, 57 Fe, 58 Ni, 60 Ni and 67 Zn) have been investigated for the ( n,d) reaction cross sections. These new calculations on the excitation functions of 44 Ca(n,d) 43 K, 65 Cu(n,d) 44 Ni, 54 Fe(n,d) 53 Mn, 56 Fe(n,d) 55 Mn, 57 Fe(n,d) 56 Mn, 58 Ni(n,d) 57 Co, 60 Ni(n,d) 59 Co and 67 Zn(n,d) 66 Cu reactions have been carried out up to 30 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The PEQ calculations involve the new evaluated the Geometry Dependent Hybrid model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. By using the new cross sections formulae for ( n,d) reactions developed by Aydin et al., the obtained results have been discussed and compared with the available experimental data taken from EXFOR database.

  10. Differential cross section measurements for the 6Li(n,t)alpha reaction in the few MeV region

    SciTech Connect

    Devlin, Matthew J; Taddeucci, Terence N; Hale, Gerald M; Haight, Robert C; O' Donnell, Johhn M

    2008-01-01

    New measured differential cross sections of tritons and alpha particles following the {sup 6}Li(n,t){alpha} reaction are reported for incident neutron energies between 0.2 and approximately 20 MeV. The neutrons were produced by spallation at the WNR facility at the Los Alamos Neutron Science CEnter (LANSCE), with the incident neutron energy determined by the time-of-flight method. Four E-{Delta}E telescopes were used at eight laboratory angles. These data have been incorporated into a prior R-matrix fit for the compound {sup 7}Li system, and result in an (n,t) reaction cross section that is 4% to 10% higher than previous evaluations in the 1-3 MeV incident neutron energy region.

  11. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE PAGES

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; ...

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  12. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    NASA Astrophysics Data System (ADS)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2013-11-01

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  13. Probing dynamics of fusion reactions through cross-section and spin distribution measurement

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Behera, B. R.; Singh, Gulzar; Singh, Varinderjit; Madhavan, N.; Muralithar, S.; Nath, S.; Gehlot, J.; Mohanto, G.; Mukul, Ish; Siwal, D.; Thakur, M.; Kapoor, K.; Sharma, P.; Banerjee, T.; Jhingan, A.; Varughese, T.; Bala, Indu; Nayak, B. K.; Saxena, A.; Chatterjee, M. B.; Stevenson, P. D.

    2016-05-01

    Present work aims to explicate the effect of entrance channel mass asymmetry on fusion dynamics for the Compound Nucleus 80Sr populated through two different channels, 16O+64Zn and 32S+48Ti, using cross-section and spin distribution measurements as probes. The evaporation spectra studies for these systems, reported earlier indicate the presence of dynamical effects for mass symmetric 32S+48Ti system.The CCDEF and TDHF calculations have been performed for both the systems and an attempt has been made to explain the reported deviations in the α-particle spectrum for the mass symmetric system.

  14. Influence of collision energy and reagent rotation on the cross sections and product polarizations of the reaction F+ HCl

    NASA Astrophysics Data System (ADS)

    Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui

    2012-04-01

    Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 12A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ⩽ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.

  15. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  16. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.

  17. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  18. Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M G

    2006-06-13

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).

  19. Absorption cross sections for HF laser lines due to traces of CO/sub 2/, N/sub 2/O, and CH/sub 4/ in air

    SciTech Connect

    Agroskin, V.Ya.; Vasil'ev, G.K.; Gur'ev, V.I.; Tatarinova, E.E.

    1986-12-01

    The emission from an HF (DF) laser is spread over a large number of vibrational-rotational lines in the range 2.7-4.2 ..mu..m, which contains absorption bands of virtually all substances of interesting quantitative gas analysis, and in particular, detecting atmospheric pollutants, determining discharges from industrial plants, locating deposits of certain minerals, forecasting volcanic activity, and so on. Pulsed chemical HF (DF) lasers can be based on the chain reaction of fluorine with hydrogen (deuterium), which is promising for these purposes because the number of lines is large by comparison with any other type of laser (about 100 lines). These lasers also have high efficiency in converting the pumping energy to radiation and high beam power with relatively small dimensions and the same laser cell can be used to obtain the emission from carbon dioxide in the range 9.6-10.6 ..mu..m by energy transfer from DF to carbon dioxide. It is necessary to know the absorption characteristics of the substances at the lines of the HF (DF) laser. In this paper, the authors report measured cross sections for carbon dioxide, nitrogen oxide, and carbon hydrogenate, in the form of minor impurities in the air (about 1-10%) for various lines from an HF laser. The authors compare the data with published values, while the available spectroscopic characteristics are used in theoretical calculations of the absorption cross section and compared with the experiment.

  20. Hypernuclear production cross section in the reaction of 6Li + 12C at 2 A GeV

    NASA Astrophysics Data System (ADS)

    Rappold, C.; Saito, T. R.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Kim, E.; Kavatsyuk, M.; Ma, Y.; Maas, F.; Minami, S.; Nakajima, D.; Özel-Tashenov, B.; Yoshida, K.; Achenbach, P.; Ajimura, S.; Aumann, T.; Ayerbe Gayoso, C.; Bhang, H. C.; Caesar, C.; Erturk, S.; Fukuda, T.; Göküzüm, B.; Guliev, E.; Hoffmann, J.; Ickert, G.; Ketenci, Z. S.; Khaneft, D.; Kim, M.; Kim, S.; Koch, K.; Kurz, N.; Le Fèvre, A.; Mizoi, Y.; Nungesser, L.; Ott, W.; Pochodzalla, J.; Sakaguchi, A.; Schmidt, C. J.; Sekimoto, M.; Simon, H.; Takahashi, T.; Tambave, G. J.; Tamura, H.; Trautmann, W.; Voltz, S.; Yoon, C. J.

    2015-07-01

    Hypernuclear production cross sections have been deduced for the first time with induced reaction of heavy ion beam on fixed target and by means of the invariant mass method by the HypHI Collaboration exploiting the reaction of 6Li + 12C at 2 A GeV or √{sNN} = 2.70 GeV. A production cross section of 3.9 ± 1.4 μb for 3ΛH and of 3.1 ± 1.0 μb for 4ΛH respectively in the projectile rapidity region was inferred as well as the total production cross section of the Λ hyperon was measured and found to be equal to 1.7 ± 0.8 mb. A global fit based on a Bayesian approach was performed in order to include and propagate statistical and systematic uncertainties. Production ratios of 3ΛH/4ΛH, 3ΛH/Λ and 4ΛH/Λ were included in the inference procedure. The strangeness population factors S3 and S4 of 3ΛH and 4ΛH respectively were extracted. In addition, the multiplicities of the Λ hyperon, 3ΛH, and 4ΛH together with the rapidity and transversal momentum density distributions of the observed hypernuclei were extracted and reported.

  1. Activation cross sections of deuteron induced reactions on niobium in the 30-50 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A. V.

    2016-04-01

    Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of 93Nb(d,x)93m,90Mo, 92m,91m,90Nb, 89,88Zr and 88,87m,87gY in the energy range of 30-50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  2. Theoretical study of isotopic production cross-sections in proton-nucleus reactions at 200MeV

    NASA Astrophysics Data System (ADS)

    Sabra, Mohammad S.

    2016-03-01

    As NASA's future plans are likely to include extended human missions in deep space, protections from space radiation take on increased importance. When galactic cosmic rays, mainly protons, interacts with the material of spacecraft, secondary fragments are produced, which contribute substantially to the dose and dose equivalent received by the crew inside. A detailed understanding of the reaction mechanism, as well as a knowledge of cross sections are needed. We analyze energy spectra, angular distributions, and isotopic cross-sections of intermediate-mass fragments (IMFs) from the interaction of 27Al, 59Co, and 197Au with 200 MeV protons. Calculations within the modified statistical model with final state interaction were performed using SAPTON code. General agreement is obtained with the experiment which suggests that most of the IMFs are emitted after equilibrium is reached (i.e. in the evaporation stage).

  3. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the γ process

    NASA Astrophysics Data System (ADS)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Käppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-01

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of Ep=2.75-9 MeV, close to the upper end of the respective Gamow window of the γ process. We have determined cross sections for 102Pd(p,γ)103Ag, 104Pd(p,γ)105Ag, and 105Pd(p,n)105Ag, as well as partial cross sections of 104Pd(p,n)104Agg, 105Pd(p,γ)106Agm, 106Pd(p,n)106Agm, and 110Pd(p,n)110Agm with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in γ-process calculations.

  4. Astrophysical reaction rates for Ni-58,Ni-60(n,gamma) from new neutron capture cross section measurements

    SciTech Connect

    Guber, Klaus H; Derrien, Herve; Leal, Luiz C; Arbanas, Goran; Wiarda, Dorothea; Koehler, Paul; Harvey, John A

    2010-01-01

    New neutron capture cross section of 58,60Ni were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator (ORELA). The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture (DC) cross sections were included in the analyses. From these resonance parameters and the DC contribution, new (n,y) astrophysical reaction rates were determined over the entire energy range needed by the lastest stellar models describing the so-called weak s process. PACS numbers: 25.40.Lw, 26.20Kn, 27.40.+z, 27.50.+e, 97.10.Cv

  5. An experimental technique for measurement of emission cross sections of excited state species in ion--molecule reactions

    SciTech Connect

    Mahmood, M.F. )

    1990-11-01

    A novel technique has been described in the present studies for the measurement of emission cross sections of excited state species formed in ion--molecule reactions and has been applied to the case of collisions of N{sup +}/Ar{sup +} ions with HgI{sub 2} molecules. Emission spectra of HgI radical due to ({ital B}--{ital X}) transition from highly excited levels to lower levels have been observed and identified. Using the integrated intensity of the most intense band of the HgI ({ital B}{sup 2}{Sigma}{sup +}, {ital v}{prime}=0{endash}{ital X} {sup 2}{Sigma}{sup +}, {ital v}{double prime}=22) transition at 445 nm, emission cross sections were measured in the kinetic energy range of 100--1000 eV (laboratory frame).

  6. Comparison Between Zero-Range and Finite-Range Calculations of Total Reaction Cross Sections for Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Thoyaib, S. S.

    2008-03-01

    Total cross-sections of the halo nuclei in both the zero- and the finite-ranges are calculated at energy range of 25--800 MeV/n, by using the carbon nuclei as a probe. The calculations are based on the Optical Limit Approximation (OLA) of the Glauber theory and are done for Li, Be and B isotopes using the finite and the zero range interactions. We found that the total cross-sections depend slightly on the nuclear density. On the other hand, there is a discrepancy between the calculated results of both ranges in the surface region of the reaction probability. The theoretical results for the zero- and the finite-range are compared with experimental data. We found that the zero-range predictions are consistent with experimental data more than the finite-range.

  7. The Breakup Cross Section of the D+D Reaction at 6.94 MeV

    NASA Astrophysics Data System (ADS)

    Richard, A. L.; Brune, C. R.; Ingram, D. C.; Dhakal, S.; Karki, A.; Massey, T. N.; O'Donnell, J. E.; Parker, C. E.

    2016-03-01

    The D+D reactions are well known and widely used for a variety of purposes, mainly because of the use of the D(d, n)3He reaction as a mono-energetic neutron source. The least studied of the D+D reactions is the D(d, n)pD reaction known as the deuteron breakup reaction, which produces a continuum of neutrons at energies below the monoenergetic peak. The neutron energy distribution as a function of angle for the cross section, {{{d^2}σ } over {dΩ dE}}, of the D(d,n)pD reaction has been measured using a 6.94-MeV pulsed deuteron beam incident upon a D2 gas target. The time-of-flight technique was used to determine the energy of the neutrons detected in an array of two lithium glass scintillators and one NE-213 scintillator. The breakup cross section was determined as low as 225-keV neutron energy in the lithium glass detectors.

  8. Differential cross sections and recoil polarizations for the reaction γp→K+Σ0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  9. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    SciTech Connect

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding.

  10. Differential scattering cross sections for collisions of 0.5-, 1.5-, and 5.0-keV helium atoms with He, H2, N2, and O2. [for atmospheric processes modeling

    NASA Technical Reports Server (NTRS)

    Newman, J. H.; Smith, K. A.; Stebbings, R. F.; Chen, Y. S.

    1985-01-01

    This paper reports the first results of an experimental program established to provide cross section data for use in modeling various atmospheric processes. Absolute cross sections, differential in the scattering angle, have been measured for collisions of 0.5-, 1.5-, and 5.0-keV helium atoms with He, H2, N2, and O2 at laboratory scattering angles between 0.1 deg and 5 deg. The results are the sums of cross sections for elastic and inelastic scattering of helium atoms; charged collision products are not detected. Integration of the differential cross section data yields integral cross sections consistent with measurements by other workers. The apparatus employs a position-sensitive detector for both primary and scattered particles and uses a short target cell with a large exit aperture to ensure a simple and well-defined apparatus geometry.

  11. Measurement of evaporation residue cross-sections of the reaction 30Si + 238U at subbarrier energies

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nagame, Y.; Tsukada, K.; Tsuruta, K.; Hofmann, S.; Hessberger, F. P.; Ackermann, D.; Heinz, S.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mazzocco, M.; Schoett, H. J.; Antalic, S.; Saro, S.; Comas, V. F.; Heredia, J. A.

    2007-02-26

    The reaction 30Si + 238U {yields} 268Sg* was studied at beam energies close to the Coulomb barrier. At the above barrier energy of Ec.m. = 144.0 MeV (center-of-mass energy at half thickness of the target), we measured three decay chains of 263Sg produced by evaporation of five neutrons. The cross-section was (67{sub -37}{sup +67}) pb. At subbarrier energy of Ec.m. = 133.0 MeV we measured three spontaneously fissioning nuclei which we assigned to the isotope 264Sg. The half-life of (120{sub -44}{sup +126}) ms was determined. The production cross-section was (10{sub -6}{sup +10}) pb, which is about four orders magnitude larger than the calculation based on the one-dimensional barrier penetration model in the fusion process, showing fusion enhancement caused by the prolate deformation of 238U. At Ec.m. = 128.0 MeV an upper cross-section limit of 15 pb was measured. Compared to excitation functions measured for the lighter system 16O + 238U {yields} 254Fm*, a reduction of the fusion probability was observed at low beam energies indicating increasing competition from quasifission processes.

  12. Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.

    2017-04-01

    Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.

  13. Partial cross sections of the 92Mo(p ,γ ) reaction and the γ strength in 93Tc

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Goriely, S.; Netterdon, L.; Péru, S.; Scholz, P.; Schwengner, R.; Zilges, A.

    2016-04-01

    Background: 92Mo is the most abundant nucleus of the p nuclei, with an isotopic abundance of more than 14 %. The γ -process nucleosynthesis is believed to produce 92Mo but fails to explain its large abundance, especially with respect to the other p nuclei produced in the same stellar environment. Further studies require precise nuclear models for the calculation of reaction cross sections. Purpose: A measurement of the total and partial cross sections of the 92Mo(p ,γ )93Tc reaction allows for a stringent test of statistical-model predictions. Not only different proton+nucleus optical model potentials, but also the γ -ray strength function of 93Tc can be investigated. In addition, high-resolution in-beam γ -ray spectroscopy enables the determination of new precise nuclear structure data for 93Tc. Method: Total and partial cross-section values were measured by using the in-beam method. Prompt γ rays emitted during the irradiation of 92Mo with protons at seven different energies between 3.7 and 5.3 MeV were detected by using the high-purity germanium (HPGe) detector array HORUS at the Institute for Nuclear Physics, University of Cologne. The γ γ -coincidence method was applied to correlate γ -ray cascades in 93Tc with their origin in the 92Mo+p compound state. Results: The measured cross sections are compared to Hauser-Feshbach calculations by using the statistical-model code talys on the basis of different nuclear physics input models. Using default settings based on standard phenomenological models, the experimental values cannot be reproduced. A shell-model calculation was carried out to predict the low-energy M 1 strength in 93Tc. Together with Gogny-Hartree-Fock-Bogoliubov (Gogny-HFB) or Skyrme-HFB plus quasi-particle random-phase approximation (QRPA) models for the γ -ray strength function, the agreement between experimental data and theoretical predictions could be significantly improved. In addition, deviations from the adopted level scheme were

  14. (p,α) Reaction Cross Sections Calculations of Fe and Ni Target Nuclei Using New Developed Semi-empirical Formula

    NASA Astrophysics Data System (ADS)

    Tel, E.; Akca, S.; Kara, A.; Yiğit, M.; Aydın, A.

    2013-10-01

    Iron (Fe) and nickel (Ni) are important fusion structural materials in reactor technology. The gas production in the metallic structure arising from many different types of nuclear reactions has been a significant damage mechanism in structural components of fusion reactors. The hydrogen and its isotopes at high temperatures leave out of the metallic lattice but the alpha (α) particles that remain in the lattice generate helium (He) gas bubbles. In other words, the α particles can cause serious changes in the physical and mechanical properties of the fusion structural materials. In this study, the excitation functions of 54,57Fe(p,α) and 58,60,61,64Ni(p,α) reactions have been investigated in the incident proton energy range of 10-40 MeV to estimate the radiation damage effects on fusion structural materials used in the construction of the first walls and core of the reactor. The calculations of (p,α) reaction cross sections on 54,57Fe and 58,60,61,64Ni have been made by using PCROSS code and CEM95 code. The full exciton and cascade exciton model (CEM95) for pre-equilibrium calculations and Weisskopf-Ewing model for equilibrium calculations are used. Besides, the semi-empirical cross section formula with new coefficient obtained by Tel et al. (Pramana J Phys 74:931-943, 2010) has been applied for (p,α) reactions at 17.9 MeV proton incident energy.

  15. Chemical destruction of rotationally "hot" HeH+: Quantum cross sections and mechanisms of its reaction with H

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Gianturco, F. A.; Tacconi, M.

    2012-12-01

    The present work focuses on the reaction of a molecule of astrophysical interest, the HeH+, with the most abundant species in the Universe: the H atom, and in situations where the partner ion is internally excited into some of its lower rotational states. This strongly exothermic reaction: HeH++H→H2++He, leads to the destruction of HeH+ and we study this outcome by using an accurate reactive potential energy surface (RPES) and by analysing the behaviour of the helicity within the Negative Imaginary Potential (NIP) approach. Different, possible molecular mechanisms connected with the role of rotationally "hot" HeH+ partners are thus suggested from the behaviour of cross sections for different helicity values and the effects on the overall destruction efficiency are also discussed, both for reaction temperatures in the range of Early Universe processes and for colder reaction conditions in ion traps (at mK temperatures).

  16. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Takács, S.; Ditrói, F.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.

    2014-04-01

    In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the natNd(d,x) 151,150,149,148m,148g,146,144,143Pm, 149,147,139mNd, 142Pr and 139gCe nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed.

  17. Gas-phase SN2 and bromine abstraction reactions of chloride ion with bromomethane: reaction cross sections and energy disposal into products.

    PubMed

    Angel, Laurence A; Ervin, Kent M

    2003-01-29

    Reaction cross sections and product velocity distributions are presented for the bimolecular gas-phase nucleophilic substitution (S(N)2) reaction Cl(-) + CH(3)Br --> CH(3)Cl + Br(-) as a function of collision energy, 0.06-24 eV. The exothermic S(N)2 reaction is inefficient compared with phase space theory (PST) and ion-dipole capture models. At the lowest energies, the S(N)2 reaction exhibits the largest cross sections and symmetrical forward/backward scattering of the CH(3)Cl + Br(-) products. The velocity distributions of the CH(3)Cl + Br(-) products are in agreement with an isotropic PST distribution, consistent with a complex-mediated reaction and a statistical internal energy distribution of the products. Above 0.2 eV, the velocity distributions become nonisotropic and nonstatistical, exhibiting CH(3)Cl forward scattering between 0.2 and 0.6 eV. A rebound mechanism with backward scattering above 0.6 eV is accompanied by a new rising feature in the CH(3)Cl + Br(-) cross sections. The competitive endothermic reaction Cl(-) + CH(3)Br --> CH(3) + ClBr(-) rises from its thermochemical threshold at 1.9 +/- 0.4 eV, showing nearly symmetrically scattered products just above threshold and strong backward scattering above 3 eV associated with a second feature in the cross section.

  18. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  19. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  20. Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for ( γ, n) reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydin, A.; Tel, E.

    2014-11-01

    The theoretical photo-neutron cross sections for ( γ, n) reaction have been calculated on 142,143,144,145,146,150Nd rare-earth isotopes at photon energies of 8-23 MeV using the PCROSS, TALYS 1.2, and EMPIRE 3.1 computer codes. TALYS 1.2 two-component exciton model and EMPIRE 3.1 exciton model has been used to calculate the pre-equilibrium photo-neutron cross sections. PCROSS Weisskopf-Ewing model has been used for the reaction equilibrium cross-section calculations. The obtained cross sections have been compared with each other and against the experimental values existing in the EXFOR database. Generally, pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study.

  1. Differential cross sections for the reactions γp→pη and γp→pη'

    DOE PAGES

    Williams, M.; Krahn, Z.; Applegate, D.; ...

    2009-10-29

    In high-statistics differential cross sections for the reactions γ p -> p η and γ p -> p η' the CLAS at Jefferson Lab was used to measure the center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the η' measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

  2. PIGE related differential cross-section measurements of the 25Mg(p,p‧γ)25Mg reaction

    NASA Astrophysics Data System (ADS)

    Preketes-Sigalas, K.; Lagoyannis, A.; Axiotis, M.; Becker, H. W.; Foteinou, V.; Harissopulos, S.; Kokkoris, M.; Provatas, G.

    2016-11-01

    The differential cross sections of the 25Mg(p,p‧γ)25Mg reaction, critical for the quantitative determination of magnesium in complex matrices using the PIGE technique, were measured at two (2) angles, 55° and 90°, and at proton energies from 2420 to 4550 keV, by detecting the 390, 585 and 975 keV γ-rays emitted. The experimental setup consisted of two 100% relative efficiency HPGe detectors. The results are compared to those already present in literature and an attempt is made to explain the existing discrepancies. The obtained results from the present work are validated via thick-target measurements.

  3. Absolute cross sections of the 86Sr(α,n)89Zr reaction at energies of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Oprea, Andreea; Glodariu, Tudor; Filipescu, Dan; Gheorghe, Ioana; Mitu, Andreea; Boromiza, Marian; Bucurescu, Dorel; Costache, Cristian; Cata-Danil, Irina; Florea, Nicoleta; Ghita, Dan Gabriel; Ionescu, Alina; Marginean, Nicolae; Marginean, Raluca; Mihai, Constantin; Mihai, Radu; Negret, Alexandru; Nita, Cristina; Olacel, Adina; Pascu, Sorin; Sotty, Cristophe; Suvaila, Rares; Stan, Lucian; Stroe, Lucian; Serban, Andreea; Stiru, Irina; Toma, Sebastian; Turturica, Andrei; Ujeniuc, Sorin

    2017-09-01

    Absolute cross sections for the 86Sr(α,n)89Zr reaction at energies close to the Gamow window are reported. Three thin SrF2 targets were irradiated using the 9 MV Tandem facility in IFIN-HH Bucharest that delivered α beams for the activation process. Two high-purity Germanium detectors were used to measure the induced activity of 89Zr in a low background environment. The experimental results are in very good agreement with Hauser-Feshbach statistical model calculations performed with the TALYS code.

  4. VizieR Online Data Catalog: Cross sections produced by 3He reactions (Murphy+,

    NASA Astrophysics Data System (ADS)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2017-05-01

    The 3He abundance in impulsive solar energetic particle (SEP) is enhanced up to several orders of magnitude compared to its photospheric value of [3He]/[4He] = 1-3 x 10-4. Interplanetary magnetic field and timing observations suggest that these events are related to solar flares. Observations of 3He in flare-accelerated ions would clarify the relationship between these two phenomena. Energetic 3He interactions in the solar atmosphere produce gamma-ray nuclear-deexcitation lines, both lines that are also produced by protons and α particles and lines that are essentially unique to 3He. Gamma-ray spectroscopy can, therefore, reveal enhanced levels of accelerated 3He. In this paper, we identify all significant deexcitation lines produced by 3He interactions in the solar atmosphere. We evaluate their production cross sections and incorporate them into our nuclear deexcitation-line code. We find that enhanced 3He can affect the entire gamma-ray spectrum. We identify gamma-ray line features for which the yield ratios depend dramatically on the 3He abundance. We determine the accelerated 3He/α ratio by comparing these ratios with flux ratios measured previously from the gamma-ray spectrum obtained by summing the 19 strongest flares observed with the Solar Maximum Mission Gamma-Ray Spectrometer. All six flux ratios investigated show enhanced 3He, confirming earlier suggestions. The 3He/α weighted mean of these new measurements ranges from 0.05 to 0.3 (depending on the assumed accelerated α/proton ratio) and has a <1 x 10-3 probability of being consistent with the photospheric value. With the improved code, we can now exploit the full potential of gamma-ray spectroscopy to establish the relationship between flare-accelerated ions and 3He-rich SEPs. (3 data files).

  5. Differential cross section for the π+d-->pp reaction from 80 to 417 MeV

    NASA Astrophysics Data System (ADS)

    Boswell, J.; Altemus, R.; Minehart, R.; Orphanos, L.; Ziock, H. J.; Wadlinger, E. A.

    1982-05-01

    Differential cross sections were measured for the reaction, π+d-->pp, at seven energies, 80, 100, 140, 182, 230, 323, and 417 MeV. Sufficient data were taken for a 1% statistical uncertainty at eleven different angles for most of these energies. The elastic π+p reaction was used to normalize the π+d-->pp data. Legendre polynomial fits of the data are presented. The increased accuracy and energy of these data require an addition of a 6θ* term in the traditional low energy form of the differential cross section: C(A+2θ*+B4θ*). The coefficients, A and B, are used to compare the present data with a survey of previous experiments and the theoretical work of Niskanen. Agreement is usually within uncertainties, but some diagreement remains even among recent experiments. NUCLEAR REACTIONS d (π,pp), E=80-417 MeV; measured σ(θ) calculated Legendre polynomial fits; compared to earlier work.

  6. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    NASA Astrophysics Data System (ADS)

    Kaplan, Abdullah; Capali, Veli; Ozdogan, Hasan

    2015-07-01

    Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi) due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS). In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f), (γ,f), (p,f), (n,f) and (3He,f) reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  7. Cross section systematics for the lightest Bi and Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Andreyev, A.N.; Ackermann, D.; Muenzenberg, G.; Antalic, S.; Saro, S.; Streicher, B.; Darby, I.G.; Page, R.D.; Wiseman, D.R.; Franchoo, S.; Hessberger, F.P.; Kuusiniemi, P.; Lommel, B.; Kindler, B.; Mann, R.; Sulignano, B.; Hofmann, S.; Huyse, M.; Vel, K. van de; Duppen, P. van

    2005-07-01

    The production of the very neutron-deficient nuclides {sup 184-192}Bi and {sup 186-192}Po in the vicinity of the neutron midshell at N = 104 has been studied by using heavy-ion-induced complete fusion reactions in a series of experiments at the velocity filter SHIP. The cross sections for the xn and pxn evaporation channels of the {sup 46}Ti+{sup 144}Sm{yields}{sup 190}Po*,{sup 98}Mo+{sup 92}Mo{yields}{sup 190}Po*,{sup 50,52}Cr+{sup 142}Nd{yields}{sup 192,194}Po*, and {sup 94,95}Mo+{sup 93}Nb{yields}{sup 187,188}Bi* reactions were measured. The results obtained, together with the previously known cross section data for the heavier Bi and Po nuclides, are compared with the results of statistical model calculations carried out with the HIVAP code. It is shown that a satisfactory description of the experimental data requires a significant (up to 35%) reduction of the theoretical fission barriers. The optimal reactions for production of the lightest Bi and Po isotopes are discussed.

  8. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 <--> N2O5 at atmospherically relevant conditions.

    PubMed

    Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S

    2007-11-21

    The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).

  9. Direct measurement of the 4He (12C, 16O) γ reaction cross section near stellar energies

    NASA Astrophysics Data System (ADS)

    Sagara, Kenshi

    2014-09-01

    The 12C+4He-->16O + γ reaction is one of the key reactions in stellar He-burning, but its total cross section at stellar energy (Ecm = 0.3 MeV) has not been measured yet, in spite of many experiments made in the world for about a half century. At Kyushu University Tandem accelerator Laboratory (KUTL), we have been making direct measurement of the 4He (12C, 16O) γ total cross section below Ecm = 2.4 MeV for about 20 years. We have measured the total cross section at Ecm = 2.4, 1.5 and 1.2 MeV. Now we are preparing to measure the cross section at 1.0 MeV. The direct measurement was made from Ecm = 5 MeV down to 1.9 MeV at Ruhr University, Bochum. We use a pulsed 12C beam and a windowless 4He target, and detect all the 16O recoils in a charge state. A usually continuum 12C beam from our tandem accelerator is pulsed by a pre-buncher, a main buncher, and a beam chopper. Our tandem accelerator was designed to be used at the acceleration voltage of 6-10 MV. For the 4He (12C, 16O) γ experiment we need to use it at 1.3-1.8 MV where beam transmission is very low, then we have invented an acceleration-deceleration method for the tandem accelerator. We have developed a blow-in windowless He target based on an original idea. To separate 16O recoils from the 12C beam, we developed a recoil-mass separator. To reject 12C backgrounds, we developed a long-time chopper, and an ionization chamber. Now, we are preparing to measure time-of-flight of 16O recoils and 12C backgrounds. Many original instruments and the experimental results will be presented. Finally we discuss what are necessary for future direct measurement of the 4He (12C, 16O) γ total cross section below 1.0 MeV, down to 0.7 MeV. A dynamitron accelerator and hard-working researchers may be inevitable. The 12C+4He-->16O + γ reaction is one of the key reactions in stellar He-burning, but its total cross section at stellar energy (Ecm = 0.3 MeV) has not been measured yet, in spite of many experiments made in the world

  10. An Am/Be neutron source and its use in integral tests of differential neutron reaction cross-section data.

    PubMed

    Uddin, M S; Zaman, M R; Hossain, S M; Spahn, I; Sudár, S; Qaim, S M

    2010-09-01

    An Am/Be neutron source, installed recently at the Rajshahi University, is described. Neutron flux mapping was done using the nuclear reactions (197)Au(n,gamma)(198)Au, (113)In(n,gamma)(114m)In, (115)In(n,n'gamma)(115m)In and (58)Ni(n,p)(58)Co. An approximate validation of the neutron spectral shape was done using five neutron threshold detectors and the iterative unfolding code SULSA. Integral cross sections of the reactions (54)Fe(n,p)(54)Mn, (59)Co(n,p)(59)Fe and (92)Mo(n,p)(92m)Nb were measured with fast neutrons (E(n)>1.5MeV) and compared with data calculated using the neutron spectral distribution and the excitation function of each reaction given in data libraries: an agreement within +/-6% was found.

  11. Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2015-11-01

    In the frame of the systematical study of light ion induced nuclear reactions activation cross sections for deuteron induced reactions on monoisotopic 103Rh were extended to 50 MeV incident energy. Excitation functions were measured in the 49.8-36.6 MeV energy range for the 103Rh(d,xn)100,101Pd, 103Rh(d,pxn)99m,99g,100,101m,101g,102m,102gRh and 103Rh(d,x)97,103Ru reactions by using the stacked foil irradiation technique and off-line high resolution γ-ray spectrometry. The experimental results are compared to our previous results and to the theoretical predictions in the TENDL-2014 library (TALYS 1.6 code).

  12. Use of Neutron Transfer Reactions to Indirectly Determine Neutron Capture Cross Sections on Neutron-Rich Nuclei

    SciTech Connect

    McCleskey, M.; Mukhamedzhanov, A. M.; Tribble, R. E.; Simmons, E.; Spiridon, A.; Banu, A.; Roeder, B.; Goldberg, V.; Trache, L.; Chen, X. F.; Lui, Y.-W.

    2010-03-01

    {sup 14}C(n,gamma){sup 15}C is being used as a test case in the development of an indirect method to determine neutron capture cross sections on neutron-rich unstable nuclei at astrophysical energies. Our approach makes use of two reactions: one peripheral used to find the asymptotic normalization coefficient (ANC) and a second non-peripheral reaction to determine the spectroscopic factor. The ANC for {sup 15}C has been determined using a HI neutron transfer reaction with a 12 MeV/nucleon {sup 14}C beam on a {sup 13}C target. The spectroscopic factor will be determined using {sup 14}C(d,p) in forward kinematics with an incident deuteron energy of 60 MeV. Both experiments were performed using the MDM high-resolution spectrometer at Texas A and M University.

  13. Differential reaction cross section of the C2H5X (X=Br, I) K → systems

    NASA Astrophysics Data System (ADS)

    Herrero, V. J.; Tabares, F. L.; Saez Rabanos, V.; Aoiz, F. J.; González Ureña, A.

    Using the crossed molecular beam method complete laboratory differential reaction cross sections for the exoergic reaction C2H5Br → BrK + C2H5 have been measured as a function of relative translational energy from 0·11 to 0·41 eV. An analysis has been carried out of both the present KBr laboratory angular distributions and that of KI from the K + C2H5I molecular beam reaction obtained by Aoiz et al., over the range of reactive translational energy, Ēt, from 0·17 eV to 0·55 eV. By using the uncoupled approximation for the centre of mass (c.m.) angular and recoil energy distributions to recover the laboratory angular distributions it was found the c.m. differential (solid angle) reaction cross sections to be backward-peaked, characteristic of a direct, rebound mechanism, with a large fraction of the available energy going into product translation. The average translational energy of the products, Ē't, increases approximately linearly with increasing collision energy E't = 0·57 Ēt + 0·59 and Ē't = 0·65 Et + 0·72 (in eV) for the K + C2H5Br and C2H5I reactions respectively. The present data for the K + C2H5X (X = I, Br) systems are compared with previous results for the analogous CH3X reaction from where the role played by the halogen and alkyl group is discussed and qualitative effects are noted as, for example, the fact that the heavier the alkyl group the broader the backward cone of the MX angular distribution. Comparison with several theoretical impulsive models, e.g. the photodissociation model of Herschbach and the information-theoretic form of Levine and coworkers is made. A modified hard sphere collision is also found to account satisfactorily for the main features of the present differential reaction cross sections.

  14. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  15. New empirical formula for (γ, n) reaction cross section near GDR peak for elements with Z ⩾ 60.

    NASA Astrophysics Data System (ADS)

    Makwana, Rajnikant; Mukherjee, S.; Wang, Jian-Song; Chen, Zhi-Qiang

    2017-04-01

    A new empirical formula has been developed that describes the (γ, n) nuclear reaction cross sections for isotopes with Z ⩾ 60. The results were supported by calculations using TALYS - 1.6 and EMPIRE - 3.2.2 nuclear modular codes. The energy region for incident photon energy has been selected near the giant dipole resonance (GDR) peak energy. The evaluated empirical data were compared with available data in the experimental data library EXFOR. The data produced using TALYS - 1.6 and EMPIRE - 3.2.2 are in good agreement with experimental data. We have tested and presented the reproducibility of the present new empirical formula. We observe the reproducibility of the new empirical formula near the GDR peak energy is in good agreement with the experimental data and shows a remarkable dependency on key nuclei properties: the neutron, proton and atomic number of the nuclei. The behavior of nuclei near the GDR peak energy and the dependency of the GDR peak on the isotopic nature are predicted. An effort has been made to explain the deformation of the GDR peak in (γ, n) nuclear reaction cross sections for some isotopes, which could not be reproduced with TALYS - 1.6 and EMPIRE - 3.2.2. The evaluated data have been presented for the isotopes 180W, 183W, 202Pb, 203Pb, 204Pb, 205Pb, 231Pa, 232U, 237U and 239Pu, for which there are no previous measurements.

  16. Cross sections for α-particle induced reactions on Sn115,116 around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Avrigeanu, V.; Glodariu, T.; Mihai, C.; Bucurescu, D.; Ivaşcu, M.; Căta-Danil, I.; Stroe, L.; Sima, O.; Căta-Danil, G.; Deleanu, D.; Ghiţă, D. G.; Mărginean, N.; Mărginean, R.; Negret, A.; Pascu, S.; Sava, T.; Suliman, G.; Zamfir, N. V.

    2011-06-01

    The cross sections of the Sn115(α,γ)Te119, Sn115(α,n)Te118, and Sn116(α,n)Te119 reactions (both on ground and isomeric states) have been measured at effective center-of-mass energies from 9.3 to 14.8 MeV. During a first experiment, enriched self-supporting Sn115 (51.2%) + Sn116 (24.4%) foils were bombarded with an α beam delivered by the Bucharest IFIN-HH Tandem Accelerator. In a second experiment, a highly enriched Sn116 target was irradiated in order to disentangle the experimental cross section contributions due to Sn115(α,γ)Te119 and Sn115(α,n)Te118 reactions obtained in the first measurement. The beam-induced activity was measured with two large volume HPGe detectors in close geometry. The experimental results were compared with theoretical predictions obtained in the framework of the statistical model.

  17. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    SciTech Connect

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  18. First result of the cross sectional measurement of 3He-3He solar reaction in OCEAN

    NASA Astrophysics Data System (ADS)

    Itahashi, T.; Kudomi, N.; Kume, K.; Takahisa, K.; Yoshida, S.; Ejiri, H.; Toki, H.; Nagai, Y.; Komori, M.; Ohsumi, H.

    2001-04-01

    The first result in OCEAN measurement of the fusion reactions 3He(3He,2p)α at the energy of 40 to 50 keV by means of a low-energy, high current accelerator are reported. The accelerator in this facility can produce an intense beam of 3He1+ and 3He2+ ions of more than 1mA. A detection efficiency for proposed detector assembly of ΔE-E counter telescope is simulated with GEANT program and it expects a detection efficiency about 10% for the two proton coincidence for 3He+3He-->2p+α reaction. The accuracy of Monte Carlo program was checked by D(3He,p)α reaction by replacing the target gas to deuterium. .

  19. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections

    DOE R&D Accomplishments Database

    Koeppl, G. W.; Karplus, Martin

    1970-10-01

    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  20. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  1. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  2. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    SciTech Connect

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.; Mendes Jr, D. R.; Faria, P. N. de; Pires, K. C. C.; Barioni, A.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  3. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV

    NASA Astrophysics Data System (ADS)

    Majerle, M.; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-01

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  4. A measurement of the differential cross section for the reaction &*circ;n ->&-circ;p from deuterium

    NASA Astrophysics Data System (ADS)

    Zhang, Jixie; Dodge, Gail

    2010-11-01

    Differential cross sections for exclusive &-circ; electro-production from the neutron in the reaction e+d -> e'+&-circ;+p+pr have been measured over a broad kinematics range. The experiment was performed using a newly built radial time projection chamber (RTPC) and the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The RTPC detector was specially built to detect low energy recoil protons and had a valid momentum acceptance from 67 to 250 MeV/c. Electron scattering data were taken with beam energies of 2.1, 4.2 and 5.3 GeV using a 7 atm gaseous deuterium target. The differential cross sections for D(e, e'&-circ;p)p have been extracted, with the proton detected either by the CLAS or by the RTPC. The structure functions σT + ɛσL, σLT and σTT are also extracted and compared to MAID and SAID predictions.

  5. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  6. Measurements and usage of cross sections of various (n,xn) threshold reactions

    NASA Astrophysics Data System (ADS)

    Chudoba, P.; Vrzalová, J.; Svoboda, O.; Krása, A.; Kugler, A.; Majerle, M.; Suchopár, M.; Wagner, V.

    2017-03-01

    Current trend in nuclear reactor physics is a transition from technologies using thermal neutrons to technologies utilizing fast neutrons. Unfortunately focus was put mainly on the thermal neutrons for a long time and lead to very good knowledge about this low energy region, but very scarce coverage of the high energy region. This means that there is a gap in the knowledge of excitation functions for higher energies. This gap spreads from 20 MeV up to 1 GeV and higher. This is exactly the energy region needed for description of advanced nuclear systems such as accelerator driven systems (ADS). Our group from Nuclear Physics Institute (NPI) of the CAS is a member of an international collaboration Energy & Transmutation of Radioactive Waste (E&T RAW). This collaboration focuses on ADS for many years. In order to measure neutron field within ADS models it is necessary to know excitation functions of reactions used to monitor the neutron field. In many cases there are almost no experimental data for suitable reactions. Worse and quite common case is that there are no data at all. Therefore we are also focusing on measurements of these data in order to fill the databases as well as to allow further improvements of codes for nuclear data calculations.

  7. New calculations of cyclotron production cross sections of some positron emitting radioisotopes in proton induced reactions

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydin, E. G.; Kaplan, A.; Aydin, A.

    2009-02-01

    In this study, new calculations on the excitation functions of 13C( p,n)13N, 14N( p,a)11C, 15N( p,n)15O, 16O( p,a)13N, 18O( p,n)18F, 62Ni( p,n)62Cu, 68Zn( p,n)68Ga and 72Ge( p,n)72 As reactions have been carried out in the 5-40 MeV incident proton energy range. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve hybrid model, geometry dependent hybrid model, the cascade exciton model and full exciton model. Equilibrium effects were calculated according to Weisskopf-Ewing model. The calculated results have been compared with experimental data taken from literature.

  8. Time-Reversal Measurement of the p -Wave Cross Sections of the 7Be (n ,α )4He Reaction for the Cosmological Li Problem

    NASA Astrophysics Data System (ADS)

    Kawabata, T.; Fujikawa, Y.; Furuno, T.; Goto, T.; Hashimoto, T.; Ichikawa, M.; Itoh, M.; Iwasa, N.; Kanada-En'yo, Y.; Koshikawa, A.; Kubono, S.; Miyawaki, E.; Mizuno, M.; Mizutani, K.; Morimoto, T.; Murata, M.; Nanamura, T.; Nishimura, S.; Okamoto, S.; Sakaguchi, Y.; Sakata, I.; Sakaue, A.; Sawada, R.; Shikata, Y.; Takahashi, Y.; Takechi, D.; Takeda, T.; Takimoto, C.; Tsumura, M.; Watanabe, K.; Yoshida, S.

    2017-02-01

    The cross sections of the 7Be (n ,α )4He reaction for p -wave neutrons were experimentally determined at Ec .m .=0.20 - 0.81 MeV slightly above the big bang nucleosynthesis (BBN) energy window for the first time on the basis of the detailed balance principle by measuring the time-reverse reaction. The obtained cross sections are much larger than the cross sections for s -wave neutrons inferred from the recent measurement at the n_TOF facility in CERN, but significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the 7Be (n ,α )4He reaction rate is not large enough to solve the cosmological lithium problem, and this conclusion agrees with the recent result from the direct measurement of the s -wave cross sections using a low-energy neutron beam and the evaluated nuclear data library ENDF/B-VII.1.

  9. Production cross sections of niobium and tantalum isotopes in proton-induced reactions on (nat)Zr and (nat)Hf up to 14 MeV.

    PubMed

    Murakami, M; Haba, H; Goto, S; Kanaya, J; Kudo, H

    2014-08-01

    Production cross sections of Nb and Ta isotopes in the proton-induced reactions on (nat)Zr and (nat)Hf, respectively, were measured up to 14 MeV using a stacked-foil technique. The observed nuclides in the (nat)Zr(p,x) reactions were (90g,91m,92m,95m,95g,96)Nb, (95)Zr, and (87g,88)Y. In the (nat)Hf(p,x) reactions, (175,176,177,178,179)Ta and (175)Hf were observed. The obtained cross sections for each nuclide were compared with the previously reported data and with the theoretical cross sections calculated by the TALYS-1.4 code. Thick-target yields of the observed nuclides were deduced from the measured production cross sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Detection of helicobacter pylori in benign laryngeal lesions by polymerase chain reaction: a cross sectional study

    PubMed Central

    2012-01-01

    Background Although Helicobacter Pylori (HP) was detected in some cases of chronic laryngitis, the results were not confirmed by polymerase chain reaction (PCR). By this time, it has not been found in laryngeal lesions by in house PCR, the most sensitive method for detecting the genome tracks. Regarding the previous results and also few numbers of studies about the presence of HP in benign laryngeal lesions, specifically by PCR, we aimed to investigate the presence of HP in benign laryngeal lesions by in-house PCR. Methods The samples were taken from 55 patients with benign laryngeal lesions and frozen in −20°C. One milliliter (ml) of lysis buffer was added to 100 mg (mg) of each sample and the tube was placed in 56°C overnight. Then DNA extraction was carried out. Results To find HP DNA, in-house PCR was performed that revealed 5 positive results among 55 patients with benign laryngeal lesions. Of them, 3 were polyp, 1 was nodule and 1 was papilloma. Conclusion Although the number of positive results was not a lot in this study, it was in contrast with previous studies which could not find any HP tracks in benign laryngeal lesions by other methods. More studies about the prevalence of HP in benign laryngeal lesions improve judging about the effect of this infection on benign laryngeal lesions. PMID:22515206

  11. Low-energy cross sections in the {sup 12}C({alpha},{gamma}){sup 16}O reaction

    SciTech Connect

    Katsuma, M.

    2008-09-15

    The low-energy {sup 12}C({alpha},{gamma}){sup 16}O reaction is analyzed with the potential model. The potentials are chosen from the deep potential describing the {alpha}-particle nuclear rainbow phenomena at high energies. Below E{sub c.m.}=1 MeV, the cross section is found to be dominated by the E2 transition to the ground state of {sup 16}O. No enhancement of the E1 component at low energies is predicted. The extrapolated astrophysical S-factors at E{sub c.m.}=0.3 MeV are S{sub E2}=150 keV b and S{sub E1}=3 keV b.

  12. Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

    SciTech Connect

    Kuzyakin, R. A. Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2013-06-15

    Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

  13. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  14. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  15. {sup 7,9,10}Be elastic scattering and total reaction cross sections on a {sup 12}C target

    SciTech Connect

    Zamora, J. C.; Guimaraes, V.; Barioni, A.; Lepine-Szily, A.; Lichtenthaeler, R.; Faria, P. N. de; Mendes, D. R. Jr.; Gasques, L. R.; Scarduelli, V.; Pires, K. C. C.; Morcelle, V.; Leistenschneider, E.; Condori, R. P.; Zagatto, V. A.; Morais, M. C.; Crema, E.; Shorto, J. M. B.

    2011-09-15

    Elastic scattering angular distributions for {sup 7}Be, {sup 9}Be, and {sup 10}Be isotopes on {sup 12}C target were measured at laboratory energies of 18.8, 26.0, and 23.2 MeV, respectively. The analysis was performed in terms of optical model potentials using Woods-Saxon and double-folding form factors. Also, continuum discretized coupled-channels calculations were performed for {sup 7}Be and {sup 9}Be + {sup 12}C systems to infer the role of breakup in the elastic scattering. For the {sup 10}Be + {sup 12}C system, bound states coupled-channels calculations were considered. Moreover, total reaction cross sections were deduced from the elastic scattering analysis and compared with published data on other weakly and tightly bound projectiles elastically scattered on the {sup 12}C target, as a function of energy.

  16. Nuclear reaction analysis with ion microbeam of cross sections of surface layers deposited in a tokamak divertor

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Emmoth, B.; Petersson, P.; Possnert, G.; Coad, J. P.; Likonen, J.; Renvall, T.

    2007-05-01

    Ion micro beam analysis has been applied to the investigation of plasma deposited layers covering the divertor tiles in the JET tokamak. Since the layers are about 100 μm thick they are too thick to be completely investigated by ordinary ion beam analysis. Cross sections of the layers were prepared by cutting and polishing. Elemental depth profiles were determined from the two dimensional images that could be derived by nuclear reaction analysis and resonant backscattering spectrometry, using ion beams focused to a few μm spot size. A combination of analysis methods are shown, which allow measurements of the concentration profiles of carbon, beryllium, deuterium, oxygen and stainless steel components at levels of a few percent, with an accuracy better than 10%.

  17. Isotopic production cross sections of residual nuclei in the spallation reaction 136Xe(200 A MeV)+p

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Tassan-Got, L.; Benlliure, J.; Rodríguez-Sánchez, J. L.; Audouin, L.; Boudard, A.; Casarejos, E.; Enqvist, T.; Ducret, J. E.; Farget, F.; Fernández-Domínguez, B.; Fernández Ordóñez, M.; Giot, L.; Heinz, A.; Henzl, V.; Henzlova, D.; Kelić-Heil, A.; Lafriaskh, A.; Leray, S.; Napolitani, P.; Pereira, J.; Pérez-Loureiro, D.; Ricciardi, M. V.; Stéphan, C.; Schmidt, K.-H.; Schmitt, C.; Villagrasa, C.; Volant, C.; Yordanov, O.

    2017-04-01

    The residual nuclei produced in the spallation reaction of 136Xe nuclei at 200 A MeV on protons have been studied by measuring the isotopic distributions for the elements from cadmium (Z =48 ) to cesium (Z =55 ) by using the fragment separator (FRS) spectrometer at GSI and the inverse kinematics technique. This is one of the few measurements performed at such a low projectile energy, close to the validity limit for intranuclear cascade models such as incl or isabel. The experimental results have been compared to these intranuclear cascade codes coupled to the evaporation code abla. Both code combinations reproduce qualitatively the measured isotopic distributions; however, both underestimate the production of residues with mass numbers between 126 and 134. The measured cross sections are of interest for the planning of future radioactive beam or neutron source facilities.

  18. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  19. Measurement of the OXYGEN-17(PROTON, Alpha Particle) Nitrogen -14 Cross Section at Stellar Energies (proton Energies, Resonant Reaction)

    NASA Astrophysics Data System (ADS)

    Blackmon, Jeffery Curtis

    The isotopic abundance ratio 16O/17O has been shown to be a good probe of mass flow and mixing in stars. This ratio is sensitive to the depth of convective mixing which occurs on the giant branch and to the amount of nonconvective mixing occurring on the main sequence. The interpretation of recent observations of this ratio in red giants is limited by a large uncertainty in the value of the 17O(p, alpha)14N reaction rate. This reaction rate is dominated at stellar energies by a resonance at E_{rm x} = 5673 keV in the compound nucleus 18 F, whose strength was previously uncertain. We have carried out a measurement of the ^ {17}O(p,alpha)^{14 }N cross section at proton energies of 75 keV and 65 keV. Thick, high-purity rm Ta_2O _5 targets enriched to 77% ^ {17}O were used in conjunction with beam currents of 0.45 mA and large-solid-angle detectors. The background for the experiment was measured using targets of natural isotopic composition. The resonance peak was observed in the data collected at 75 keV, and we determined the proton width of the 5673 keV state to be 22 +/- 4 neV. This implies a rate for the 17O(p,alpha)^ {14}N reaction that is ten times greater than the typical rates used previously in stellar models.

  20. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVcross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  1. Differential cross sections for scattering of 0.5-, 1.5-, and 5.0-keV hydrogen atoms by He, H2, N2, and O2

    NASA Technical Reports Server (NTRS)

    Newman, J. H.; Chen, Y. S.; Smith, K. A.; Stebbings, R. F.

    1986-01-01

    This paper reports measurements of absolute cross sections, differential in angle, for scattering of 0.5-, 1.5-, and 5.0-keV hydrogen atoms by He, H2, N2, and O2 at laboratory scattering angles between 0.1 and 5 deg. The measured cross sections are the sums of those for elastic and inelastic collisions having a fast H atom product and are needed for calculating energy transfer to the upper atmosphere from precipitating ring current particles.

  2. Measurement of γ-emission branching ratios for ^{154,156,158}Gd compound nuclei: Tests of surrogate nuclear reaction approximations for (n,γ) cross sections

    NASA Astrophysics Data System (ADS)

    Scielzo, N. D.; Escher, J. E.; Allmond, J. M.; Basunia, M. S.; Beausang, C. W.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Clark, R. M.; Dietrich, F. S.; Fallon, P.; Gibelin, J.; Goldblum, B. L.; Lesher, S. R.; McMahan, M. A.; Norman, E. B.; Phair, L.; Rodriquez-Vieitez, E.; Sheets, S. A.; Thompson, I. J.; Wiedeking, M.

    2010-03-01

    The surrogate nuclear reaction method can be used to determine neutron-induced reaction cross sections from measured decay properties of a compound nucleus created using a different reaction and calculated formation cross sections. The reliability of (n,γ) cross sections determined using the Weisskopf-Ewing and ratio approximations are explored for the Gd155,157(n,γ) reactions. Enriched gadolinium targets were bombarded with 22-MeV protons and γ rays were detected in coincidence with scattered protons using the Silicon Telescope Array for Reaction Studies/Livermore-Berkeley Array for Collaborative Experiments (STARS/LiBerACE) silicon and germanium detector arrays. The γ-emission probabilities for the Gd154,156,158 compound nuclei were measured at excitation energies up to 12 MeV. It is found that the approximations yield results that deviate from directly measured Gd155,157(n,γ) cross sections at low energies. To extract reliable cross sections, a more sophisticated analysis should be developed that takes into account angular-momentum differences between the neutron-induced and surrogate reactions.

  3. Novel 4π Detection System for the Measurement of the 6Li(n,α)3H Reaction Cross Section

    NASA Astrophysics Data System (ADS)

    Giorginis, Georgios; Bencardino, Raffaele

    2011-12-01

    A dedicated one-dimensional Time Projection Chamber (1D-TPC) was designed and produced at IRMM to determine the 6Li(n,α)3H cross section in the 0.4-2.8 MeV energy range, aiming at 5% accuracy. The basic TPC components were a twin gridded ionisation chamber (GIC) with interwired electrodes and fast digitisation of the anode and cathode signals. The energy of both reaction products emitted from a thin 6LiF sample at the common TPC cathode was measured. A Kr(97%)CO2(3%) mixture was used as the detector gas at a pressure up to 3.5 bar. A 238U sample mounted on the cathode of an ionisation chamber without grid was used as the neutron flux monitor. Special care was taken to reduce the experimental sources of uncertainty. The beam-monitor 238U sample was characterised at IRMM by low-geometry α-counting with an accuracy of 0.1%. A 6Li sample was produced at IRMM by vacuum evaporation of 6LiF onto transparent aluminium backing. The number of 6Li atoms will be measured via Thermal Neutron Depth Profiling with an expected accuracy of 2% with respect to an IRMM Standard Reference Material. First test measurements were performed using a monoenergetic neutron beam produced by the T(p,n)3He reaction at the IRMM 7 MV Van de Graaff accelerator. The experimental method and preliminary results are presented.

  4. Extension of activation cross-section data of deuteron induced nuclear reactions on cadmium up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-10-01

    The excitation functions for 109,110g,111m+g,113m,114m,115mIn, 107,109,115m,115gCd and 105g,106m,110g,111Ag are presented for stacked foil irradiations on natCd targets in the 49-33 MeV deuteron energy domain. Reduced uncertainty is obtained by determining incident particle flux and energy scale relative to re-measured monitor reactions natAl(d,x)22,24Na. The results were compared to our earlier studies on natCd and on enriched 112Cd targets. The merit of the values predicted by the TALYS 1.6 code (resulting from a weighted combination of reaction cross-section data on all stable Cd isotopes as available in the on-line libraries TENDL-2014 and TENDL-2015) is discussed. Influence on optimal production routes for several radionuclides with practical applications (111In, 114mIn, 115Cd, 109,107Cd….) is reviewed.

  5. Study of the 15N(p,n)15O reaction as a monoenergetic neutron source for the measurement of differential scattering cross sections

    NASA Astrophysics Data System (ADS)

    Poenitz, E.; Nolte, R.; Schmidt, D.; Chen, G.

    2017-03-01

    The 15N(p,n) reaction is a promising candidate for the production of monoenergetic neutrons with energies of up to 5.7 MeV at the facilities where the T(p,n)3He reaction cannot be used. The characteristic properties of this reaction were studied focusing on its suitability as a source of monoenergetic neutrons for the measurement of differential scattering cross sections in the neutron energy range of 2 MeV to 5 MeV . For this purpose differential and integral cross sections were measured and the choice of optimum target conditions was investigated. The reaction has already been used successfully to measure of elastic and inelastic neutron scattering cross sections for natPb in the energy range from 2 MeV to 4 MeV and for 209Bi and 181Ta at 4 MeV .

  6. Reaction and fusion cross sections for the near-symmetric system 129Xe+natSn from 8 A to 35 A MeV

    NASA Astrophysics Data System (ADS)

    Manduci, L.; Lopez, O.; Chbihi, A.; Rivet, M. F.; Bougault, R.; Frankland, J. D.; Borderie, B.; Galichet, E.; La Commara, M.; Le Neindre, N.; Lombardo, I.; Pârlog, M.; Rosato, E.; Roy, R.; Verde, G.; Vient, E.; Indra Collaboration

    2016-10-01

    Background: We study heavy-ion reactions from barrier up to Fermi energy. The data were acquired with the INDRA detector at the GANIL (Caen, France) facility. Purpose: We aim to determine the reaction and fusion cross sections for the reactions induced by 129Xe projectiles on natSn targets for incident energies ranging from 8 A to 35 A MeV. In particular, the evaluation of the fusion and incomplete fusion cross sections is the main purpose, altogether with the comparison with the systematics of Eudes et al. [Europhys. Lett. 104, 22001 (2013), 10.1209/0295-5075/104/22001]. Method: The reaction cross sections are evaluated at each beam energy with data acquired thanks to the INDRA 4 π array. The events are sorted with the help of the observable Eiso,max. We focus therefore our study on a selected sample of events, in such a way that the fusion and incomplete fusion cross sections can be estimated. Results: We present the excitation function of reaction and fusion cross sections for the heavy and nearly symmetric system 129Xe+natSn from 8 A to 35 A MeV. For the fusion excitation function the comparison with the systematics of Eudes et al. seems to be in a fair agreement starting from the beam energy 20 A MeV. For the lower beam energies (8 A and 12 A MeV) discrepancies are observed. Conclusions: The evaluated fusionlike cross sections show a good agrement with a recent systematics for beam energies greater than 20 A MeV. For low beam energies the cross-sectional values are lower than the expected ones. A probable reason for these low values is in the fusion hindrance at energies above or close to the barrier.

  7. Gamma-ray production cross sections in multiple channels for neutron induced reaction on 48Ti for En=1 to 200 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Chadwick, M B; Devlin, M; Fotiades, N; Kawano, T; Nelson, R O; Younes, W

    2006-07-06

    Prompt {gamma}-ray production cross sections were measured on a {sup 48}Ti sample for incident neutron energies from 1 MeV to 200 MeV. Partial {gamma}-ray cross sections for transitions in {sup 45-48}Ti, {sup 45-48}Sc, and {sup 43-45}Ca were determined. The observation of about 130 transitions from 11 different isotopes in the present work provides a demanding test of reaction model calculations, and is the first study in this mass region to extract partial {gamma}-ray cross sections for many different reaction channels over a wide range of incident neutron energies. The neutrons were produced by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed GErmanium Array for Neutron Induced Excitations (GEANIE). Event neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections and then compared with model calculations using the enhanced GNASH reaction code. Compound nuclear, pre-equilibrium emission and direct reaction mechanisms are included. Overall the model calculations of the partial {gamma}-ray cross sections are in good agreement with measured values.

  8. Cross sections for the γp \\to K^{*+} Lambda$ and $γp \\to K^{*+} Sigma^{0}$ reactions measured at CLAS

    SciTech Connect

    Tang, Wei; Hicks, Kenneth. H.; Keller, Dustin M.; Kim, S.-H.; Kim, H.-C.

    2013-06-01

    The first high-statistics cross sections for the reactions $\\gamma p \\to K^{*+} \\Lambda$ and $\\gamma p \\to K^{*+} \\Sigma^0$ were measured using the CLAS detector at photon energies between threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. Differential cross sections are presented over the full range of the center-of-mass angles, $\\theta^{CM}_{K^{*+}}$, and then fitted to Legendre polynomials to extract the total cross section. Results for the $K^{*+}\\Lambda$ final state are compared with two different calculations in an isobar and a Regge model, respectively. Theoretical calculations significantly underestimate the $K^{*+} \\Lambda$ total cross sections between 2.1 and 2.6 GeV, but are in better agreement with present data at higher photon energies.

  9. Application of asymmetry depending empirical formulas for (p,n alpha) reaction cross-sections at 24.8 and 28.5 MeV incident energies.

    PubMed

    Tel, E; Aydin, E G; Aydin, A; Kaplan, A

    2009-02-01

    In this study, we have investigated the asymmetry term effect for the (p,n alpha) reaction cross-sections and we have obtained new coefficients for the (p,n alpha) reactions at 24.8 and 28.5 MeV energies. We have suggested empirical formulas including the new coefficients found by fitting two parameters for proton induced reactions. The coefficients were determined by least-squares fitting method. The obtained cross-section formulas with new coefficients have been discussed and compared with the available experimental data.

  10. Total and partial cross sections of the 112Sn(α ,γ ) 116Te reaction measured via in-beam γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Netterdon, L.; Mayer, J.; Scholz, P.; Zilges, A.

    2015-03-01

    Background: The nucleosynthesis of the neutron-deficient p nuclei remains an open question in nuclear astrophysics. Beside uncertainties on the astrophysical side, the nuclear-physics input parameters entering Hauser-Feshbach calculations for the nucleosynthesis of the p nuclei must be put on a firm basis. Purpose: An extended database of experimental data is needed to address uncertainties of the nuclear-physics input parameters for Hauser-Feshbach calculations. Especially α + nucleus optical model potentials at low energies are not well known. The in-beam technique with an array of high-purity germanium (HPGe) detectors was successfully applied to the measurement of absolute cross sections of an (α ,γ ) reaction on a heavy nucleus at sub-Coulomb energies. Method: The total and partial cross-section values were measured by means of in-beam γ -ray spectroscopy. For this purpose, the absolute reaction yield was measured using the HPGe detector array HORUS at the FN tandem accelerator at the University of Cologne. Total and partial cross sections were measured at four different α -particle energies from Eα=10.5 MeV to Eα=12 MeV . Results: The measured total cross-section values are in excellent agreement with previous results obtained with the activation technique, which proves the validity of the applied method. With the present measurement, the discrepancy between two older data sets is removed. The experimental data was compared to Hauser-Feshbach calculations using the nuclear reaction code talys. With a modification of the semi-microscopic α + nucleus optical model potential OMP 3, the measured cross-section values are reproduced well. Moreover, partial cross sections could be measured for the first time for an (α ,γ ) reaction. Conclusions: A modified version of the semimicroscopic α + nucleus optical model potential OMP3, as well as modified proton and γ widths, are needed in order to obtain a good agreement between experimental data and theory. It

  11. Measurement of the cross section for the 4He(α, n)7Be reaction as a possible solution to the cosmological lithium problem

    NASA Astrophysics Data System (ADS)

    Kawabata, T.; Furuno, T.; Ichikawa, M.; Iwasa, N.; Kanada-En'yo, Y.; Koshikawa, A.; Kubono, S.; Miyawaki, E.; Morimoto, T.; Murata, M.; Nanamura, T.; Nishimura, S.; Shikata, Y.; Takahashi, Y.; Takeda, T.; Tsumura, M.; Watanabe, K.

    2017-06-01

    The cross section for the 4He(α,n)7Be reaction was measured at low energies between Eα = 38.50 and 39.64 MeV motivated by the cosmological lithium problem. On the basis of the detailed balance principle, the cross section for the 7Be(n,α)4He reaction was obtained at Ec.m. = 0.20-0.81 MeV close to the Big Bang nucleosynthesis (BBN) energy window for the first time. The obtained cross sections are significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the 7Be(n,α)4He reaction rate is not large enough to solve the cosmological lithium problem.

  12. Cross sections for nuclide production in proton- and deuteron-induced reactions on 93Nb measured using the inverse kinematics method

    NASA Astrophysics Data System (ADS)

    Nakano, Keita; Watanabe, Yukinobu; Kawase, Shoichiro; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Takeuchi, Satoshi; Togano, Yasuhiro; Nakamura, Takashi; Maeda, Yukie; Ahn, Deuk Soon; Aikawa, Masayuki; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Ichihara, Takashi; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubo, Toshiyuki; Kubono, Shigeru; Kurokawa, Meiko; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Taniuchi, Ryo; Tsubota, Jun'ichi; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Isotopic production cross sections were measured for proton- and deuteron-induced reactions on 93Nb by means of the inverse kinematics method at RIKEN Radioactive Isotope Beam Factory. The measured production cross sections of residual nuclei in the reaction 93Nb + p at 113 MeV/u were compared with previous data measured by the conventional activation method in the proton energy range between 46 and 249 MeV. The present inverse kinematics data of four reaction products (90Mo, 90Nb, 88Y, and 86Y) were in good agreement with the data of activation measurement. Also, the model calculations with PHITS describing the intra-nuclear cascade and evaporation processes generally well reproduced the measured isotopic production cross sections.

  13. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas

  14. The cross sections and energy spectra of the particle emission in proton induced reaction on 204,206,207,208Pb and 209Bi

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengjun; Liang, Haiying; Xu, Yongli; Han, Yinlu; Cai, Chonghai; Shen, Qingbiao

    2017-09-01

    All cross sections of proton induced reactions, angular distributions, energy spectra and double differential cross sections of neutron, proton, deuteron, triton, helium and alpha-particle emissions for p+ 204,206,207,208Pb, 209Bi reactions are consistently calculated and analyzed at incident proton energies below 200 MeV. The optical model, the distorted wave Born approximation theory, the unified Hauser-Feshbach and exciton model which includes the improved Iwamoto-Harada model are used. Theoretically calculated results are compared with the existing experimental data.

  15. /sup 26/Al(n,p)/sup 26/Mg reaction: Comparison between the Hauser-Feshbach formula and the exact random-matrix result for the cross section

    SciTech Connect

    Thomas, J.; Zirnbauer, M.R.; Langanke, K.

    1986-06-01

    We have calculated the /sup 26/Al(n,p)/sup 26/Mg reaction rate using an exact expression for the compound-nucleus cross section derived recently by Verbaarschot et al. This reaction is astrophysically important, and it happens to fall in a kinematic regime where the exact expression is expected to yield large deviations from the standard Hauser-Feshbach formula. We find that the exact statistical cross section is 20% lower at energies greater than 300 keV, and drops to 40% lower at 0 energy but still does not describe the available data. These deviations are quite similar to those predicted by the formula of Tepel et al.

  16. Spectrum average cross section measurement of (183)W (n, p)(183)Ta and (184)W (n, p)(184)Ta reaction cross section in (252)Cf(sf) neutron field.

    PubMed

    Makwana, Rajnikant; Mukherjee, S; Snoj, L; S Barala, S; Mehta, M; Mishra, P; Tiwari, S; Abhangi, M; Khirwadkar, S; Naik, H

    2017-09-01

    Neutron induced nuclear reactions are of prime importance for both fusion and fission nuclear reactor technology. Present work describes the first time measurement of spectrum average cross section of nuclear reactions (183)W(n,p)(183)Ta and (184)W(n,p)(184)Ta using (252)Cf spontaneous fission neutron source. Standard neutron activation analysis (NAA) technique was used. The neutron spectra were calculated using Monte Carlo N Particle Code (MCNP). The effects of self-shielding and back scattering were taken into account by optimizing the detector modeling. These effects along with efficiency of detector were corrected for volume sample in the actual source-detector geometry. The measured data were compared with the previously measured data available in Exchange Format (EXFOR) data base and evaluated data using EMPIRE - 3.2.2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chlorine atom spin orbit branching ratios and total absolute reaction cross-sections for the H+DCl→HD+Cl reaction

    NASA Astrophysics Data System (ADS)

    Hanf, Alexander; Läuter, Almuth; Suresh, Dhanya; Volpp, Hans-Robert; Wolfrum, Jürgen

    2001-05-01

    Chlorine atom spin-orbit product branching ratios and total absolute reaction cross-sections have been measured for the H+DCl→HD+Cl gas-phase reaction for collision energies of E col=1.0, 1.4 and 1.7 eV. The measured Cl*( 2P1/2) atom spin-orbit product branching ratios φ Cl*(1.0 eV)=[ Cl*]/[ Cl+ Cl*]=(0.06±0.02) , φ Cl*(1.4 eV)=(0.07±0.01) , and φ Cl*(1.7 eV)=(0.16±0.01) revealed the increasing importance of a non-adiabatic reaction channel H+DCl→HD+Cl * with increasing collision energy. The measured total absolute reaction cross-sections allow for comparison with results from recent quasi-classical trajectory (QCT) calculations [F.J. Aoiz et al. J. Phys. Chem. A 104 (2000) 10452].

  18. Cross-sectional study exploring barriers to adverse drug reactions reporting in community pharmacy settings in Dhaka, Bangladesh

    PubMed Central

    Amin, Mohammad Nurul; Khan, Tahir Mehmood; Dewan, Syed Masudur Rahman; Islam, Mohammad Safiqul; Moghal, Mizanur Rahman

    2016-01-01

    Objectives To assess community pharmacists'/pharmacy technicians' knowledge and perceptions about adverse drug reactions (ADRs) and barriers towards the reporting of such reactions in Dhaka, Bangladesh. Method A cross-sectional study was planned to approach potential respondents for the study. A self-administered questionnaire was delivered to community pharmacists/pharmacy technicians (N=292) practising in Dhaka, Bangladesh. Results The overall response to the survey was 69.5% (n=203). The majority of the sample was comprised of pharmacy technicians (152, 74.9%) who possessed a diploma in pharmacy, followed by pharmacists (37, 18.2%) and others (12, 5.9%). Overall, 72 (35.5%) of the respondents disclosed that they had experienced an ADR at their pharmacy, yet more than half (105, 51.7%) were not familiar with the existence of an ADR reporting body in Bangladesh. Exploring the barriers to the reporting of ADRs, it was revealed that the top four barriers to ADR reporting were ‘I do not know how to report (Relative Importance Index (RII)=0.998)’, ‘reporting forms are not available (0.996)’, ‘I am not motivated to report (0.997)’ and ‘Unavailability of professional environment to discuss about ADR (RII=0.939)’. In addition to these, a majority (141, 69.46%) were not confident about the classification of ADRs (RII=0.889) and were afraid of legal liabilities associated with reporting ADRs (RII=0.806). Moreover, a lack of knowledge about pharmacotherapy and the detection of ADRs was another major factor hindering their reporting (RII=0.731). Conclusions The Directorate of Drug Administration in Bangladesh needs to consider the results of this study to help it improve and simplify ADR reporting in Bangladeshi community pharmacy settings. PMID:27489151

  19. Investigation of 14-15 MeV ( n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydın, A.; Kaplan, A.; Şarer, B.

    2008-09-01

    In the hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study we have investigated asymmetry term effect for the ( n, t) reaction cross-sections at 14-15 neutron incident energy. It has been discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained empirical and semi-empirical formulas by fitting two parameter for ( n, t) reactions were given. All calculated results have been compared with the experimental data and the other semi-empirical formulas.

  20. Measurements of the cross section for the (182)W(n,p)(182(m+g))Ta and (184)(n,p)(184)Ta reactions in the 14MeV energy range using the activation technique.

    PubMed

    Song, Yueli; Zhou, Fengqun; Tian, Mingli; Li, Yong; Yuan, Shuqing; Lan, Changlin

    2015-04-01

    The cross section for the (182)W(n,p)(182(m+g))Ta and (184)W(n,p)(184)Ta reactions has been measured in the neutron energy range of 13.5-14.7MeV using the activation technique and a coaxial HPGe γ-ray detector. In our experiment, the fast neutrons were produced by the T(d,n)(4)He reaction at the ZF-300-II Intense Neutron Generator at Lanzhou University. Natural wolfram foils of 99.9% purity were used as target materials. The neutron flux was determined using the monitor reaction (93)Nb(n,2n)(92m)Nb and the neutron energies were determined using the method of cross-section ratio measurements employing the (90)Zr(n,2n)(89)Zr to (93)Nb(n,2n)(92m)Nb reactions. The results of this work are compared with experimental data found in the literature and the estimates obtained from a published empirical formula based on the statistical model with Q-value dependence and odd-even effects taken into consideration.

  1. Cross sections of ground and isomeric states for (n,p) reaction on Sm-154 between 13.57 and 14.83MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2016-07-01

    In this study, the activation cross sections were measured for the (154)Sm(n,p)(154g)Pm, and (154)Sm(n,p)(154m)Pm reactions at several neutron energies between 13.57 and 14.83MeV, which were produced by the neutron generator (SAMES T-400) through the (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HPGe) detector. In the cross section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of neutron flux, and low energy neutrons. The measured cross sections were compared with data reported in literature as well as model calculations using the code TALYS 1.6.

  2. Measurements of isomeric cross sections for the (n,α) reaction on the ¹⁴²Nd isotope at approximately 14 MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2014-09-01

    In this study, the activation cross sections were measured for (142)Nd(n,α)(139m)Ce reaction at four neutron energies between 13.57 and 14.83 MeV, which were produced by a neutron generator through (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HpGe) detector. In the cross section measurements, corrections were made regarding the effects of the gamma-ray attenuation, the dead-time, the fluctuation of the neutron flux, and low energy neutrons. The measured cross sections were compared with the published literature and the results of the model calculation (TALYS 1.4).

  3. Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the {sup 50}Ti+{sup 249}Bk hot fusion reaction

    SciTech Connect

    Liu Zuhua; Bao, Jing-Dong

    2011-09-15

    The evaporation residue (ER) cross sections for 3n and 4n evaporation channels in the {sup 50}Ti + {sup 249}Bk reaction leading the formation of {sup 296}119 and {sup 295}119 isotopes are evaluated by means of a modified fusion-by-diffusion model. In the model, the dynamic evolution from dinucleus to mononucleus is taken into account with the two-dimensional coupled Langenvin equations. The calculated maximum ER cross sections in 3n and 4n evaporation channels of the {sup 50}Ti + {sup 249}Bk reaction are 0.17 and 0.57 pb, respectively. The cross section of 0.57 pb is close to the present experimental limit for the registration of the evaporation residual nuclei. Therefore, superheavy element 119 may be the most hopeful new element with Z>118 to be synthesized under somehow improved experimental conditions in the near future.

  4. Isomeric cross-section ratio for the formation of 58Com,g in neutron, proton, deuteron, and alpha-particle induced reactions in the energy region up to 25 MeV

    NASA Astrophysics Data System (ADS)

    Sudár, S.; Qaim, S. M.

    1996-06-01

    Excitation functions were determined for 58Fe(p,n)58Com, natFe(d,xn)58Com, 55Mn(α,n)58Com, and 59Co(n,2n)58Com reactions from the respective thresholds to 14.12 MeV in work with protons, 12.97 MeV with deuterons, 13 MeV with neutrons, and 25.52 MeV with alpha particles. The radioactivity of the activation product 58Com(T1/2=9.15 h) was determined by high resolution γ-ray and x-ray spectrometry. Using the present σm results and the (σm+σg) data reported earlier, the isomeric cross-section ratio σm/(σm+σg) was determined for each reaction. Statistical model calculations taking into account the precompound effects were performed for the above-mentioned four reactions as well as for the 58Ni(n,p)58Com,g process. A consistent set of model parameters was used. The isomeric cross-section ratio for the pair 58Com,g strongly depends on the level scheme and branching ratios of the known levels of 58Co. Different reactions produced different angular momentum distributions of the compound nucleus, resulting in different isomeric cross-section ratio at the same excitation of the compound nucleus. The ratio was found to be relatively high for target nuclei with high spin values.

  5. Measurement of cross sections for {alpha}-induced reactions on {sup 197}Au and thick-target yields for the ({alpha},{gamma}) process on {sup 64}Zn and {sup 63}Cu

    SciTech Connect

    Basunia, M. S.; Smith, A. R.; Shugart, H. A.; Norman, E. B.

    2007-01-15

    We have measured the cross sections for the {sup 197}Au({alpha},{gamma}){sup 201}Tl and {sup 197}Au({alpha},2n){sup 199}Tl reactions in the 17.9- to 23.9-MeV energy range, and {sup 197}Au({alpha},n){sup 200}Tl reaction in the 13.4- to 23.9-MeV energy range using an activation technique. Thick-target yields for the {sup 64}Zn({alpha},{gamma}){sup 68}Ge (7- to 14-MeV) and {sup 63}Cu({alpha},{gamma}){sup 67}Ga (7-MeV) reactions were measured. For all measurements, natural elements were bombarded with He{sup +} beams from the 88 In. Cyclotron at the Lawrence Berkeley National Laboratory (LBNL). Irradiated samples were counted using a {gamma}-spectrometry system at LBNL's Low Background Facility. Measured {sup 197}Au({alpha},{gamma}){sup 201}Tl cross sections were compared with the NON-SMOKER theoretical values. The thick-target yields for the {sup 64}Zn({alpha},{gamma}){sup 68}Ge and {sup 63}Cu({alpha},{gamma}){sup 67}Ga reactions are also compared with the theoretical yield, calculated numerically using the energy dependent NON-SMOKER cross section data. In both cases, measured values are found to follow a trend of overlapping the predicted value near the alpha nucleus barrier height and fall below with a slowly widening difference between them in the sub-barrier energy points.

  6. The 181Ta(7Li,5n)183Os reaction: Measurement and analysis of the excitation function and isomeric cross-section ratios

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Sharma, R. P.; Rashid, M. H.

    1998-03-01

    Excitation function and isomeric cross-section ratios for the production of 183Osm,g by 7Li-induced reactions on 181Ta are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross-section ratios for nuclear reaction 181Ta(7Li,5n)183Osm,g are compared with the theoretical statistical model calculation by using the ALICE/91, STAPRE, and CASCADE codes. In the energy range of the present measurement the excitation functions are fitted fairly well by both the geometry dependent hybrid (GDH) model and the hybrid model of Blann with initial exciton number n0=7 (nn=4, np=3, nh=0) using the ALICE/91 code. The experimental isomeric cross-section ratios are also reproduced fairly well by the calculation using the STAPRE code. However, the CASCADE code calculations slightly underpredict the cross section but reproduce the shape. In general, the statistical model under a suitable set of global assumptions, can reproduce the excitation function as well as isomeric cross-section ratios.

  7. Cross-section measurement for the /sup 7/Li(n,n't)/sup 4/He reaction at 14. 74 MeV

    SciTech Connect

    Smith, D.L.; Meadows, J.W.; Bretscher, M.M.; Cox, S.A.

    1984-09-01

    The cross section for the /sup 7/Li(n,n't)/sup 4/He reaction is measured at an average neutron energy of 14.74 MeV, with a resolution of 0.324 MeV, relative to the /sup 238/U neutron-fission cross section. Tritium activities for the irradiated lithium-metal samples (enriched to 99.95% in /sup 7/Li) are deduced using a liquid-scintillation counting method which relies upon the tritiated-water standard from the US National Bureau of Standards. The measured cross section ratio of /sup 7/Li(n,n't)/sup 4/He to /sup 238/U neutron fission is 0.2523 (+- 2.2%). The derived /sup 7/Li(n,n't)/sup 4/He reaction cross section is 0.301 (+- 5.3%) barn, based on the ENDF/B-V value of 1.193 (+- 4.8%) barn for the /sup 238/U neutron-fission cross section. 59 references.

  8. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    SciTech Connect

    Patin, Joshua Barnes

    2002-01-01

    The study of the reactions between heavy ions and 208Pb, 209Bi, 238U, and 248Cm Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238U(18O,xn)256-xFm, 238U(22Ne,xn)260-xNo, and 248Cm(15N,xn)263-xLr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 48Pb(238Ca,xn)256-xNo, 208Pb(50Ti,xn)258-xRf, 208Pb(51V,xn)259-xDb, 50Bi(238Ti,xn)259-xDb, and 209Bi(51V,xn)260-xSg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.

  9. Measurement of the activation cross section for the (p,xn) reactions in niobium with potential applications as monitor reactions

    NASA Astrophysics Data System (ADS)

    Avila-Rodriguez, M. A.; Wilson, J. S.; Schueller, M. J.; McQuarrie, S. A.

    2008-08-01

    Excitation functions of the 93Nb(p,n) 93mMo, 93Nb(p,pn) 92mNb and 93Nb(p,αn) 89Zr nuclear reactions were measured up to 17.4 MeV by the conventional activation method using the stacked-foil technique. Stacks were irradiated at different incident energies on the TR19/9 cyclotron at the Edmonton PET Centre. The potential of the measured excitation functions for use as monitor reactions was evaluated and tested by measuring activity ratios at a different facility. Single Nb foils were irradiated at incident energies in the range from 12 to 19 MeV on the TR19/9 cyclotron at Brookhaven National Laboratory. Results are compared with the published data and with theoretical values as determined by the nuclear reaction model code EMPIRE.

  10. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  11. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    SciTech Connect

    Pritychenko, B.; Mughabghab, S.F.

    2012-12-15

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  12. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide ⁵⁵Co.

    PubMed

    Amjed, N; Hussain, M; Aslam, M N; Tárkányi, F; Qaim, S M

    2016-02-01

    The excitation functions of the (54)Fe(d,n)(55)Co, (56)Fe(p,2n)(55)Co and (58)Ni(p,α)(55)Co reactions were analyzed with relevance to the production of the β(+)-emitter (55)Co (T½=17.53 h), a promising cobalt radionuclide for PET imaging. The nuclear model codes ALICE-IPPE, EMPIRE and TALYS were used to check the consistency of the experimental data. The statistically fitted excitation function was employed to calculate the integral yield of the product. The amounts of the radioactive impurities (56)Co and (57)Co were assessed. A comparison of the three investigated production routes is given.

  13. Impact of the In-medium Nucleon-nucleon Cross Section Modification on Early-reaction-phase Dynamics Below 100 A MeV

    SciTech Connect

    Basrak, Z.; Zoric, M.; Eudes, P.; Sebille, F.

    2009-08-26

    With a semi-classical transport model studied is the impact of the in-medium NN cross section modifications on the early energy transformation, dynamical emission and quasiprojectile properties of the Ar+Ni and Ni+Ni reactions at 52, 74 and 95(90) A MeV.

  14. Measurement of Effective Cross Section of Th-233(n,γ)Th-234 Reaction Using the KUR

    NASA Astrophysics Data System (ADS)

    Chatani, Hiroshi

    2005-05-01

    Thorium nitrate was irradiated together with Au and Co neutron fluence monitors in the Kyoto University Reactor (KUR). The thorium was chemically purified using the solvent extraction and ion-exchange methods. The γ-rays in the decay of Th-234 were measured using high-purity Ge detectors (HPGes). Thermal neutron fluxes and epithermal indexes, i.e., the relative strength of the epithermal dE/E component, were determined using the Westcott convention. Five effective cross sections were determined for epithermal indexes from 0.01 to 0.04 using three irradiation facilities. The cross section for 2200 m/s neutrons and the resonance integral were deduced to be (1270±50) b and (1680±930) b, respectively, from the results of the five effective cross sections.

  15. 57Co (n,γ) 58Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    NASA Astrophysics Data System (ADS)

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The 57Co (n,γ) 58Co thermal and resonance integral cross section were measured as 51 (5) b and 20.0 (19) b , respectively, by irradiating aliquots of 57Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  16. {sup 57}Co(n,{gamma}){sup 58}Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    SciTech Connect

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The {sup 57}Co(n,{gamma}){sup 58}Co thermal and resonance integral cross section were measured as 51(5) b and 20.0(19) b, respectively, by irradiating aliquots of {sup 57}Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  17. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    SciTech Connect

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-10-15

    In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  18. Comparisons and scaling rules between N+N2 and N2+N2 collision induced dissociation cross sections from atomistic studies

    NASA Astrophysics Data System (ADS)

    Esposito, F.; Garcia, E.; Laganà, A.

    2017-04-01

    Quantitative knowledge of elementary processes involved in plasmas are key to successfully perform accurate kinetic simulations. The issue is the huge amount of data to treat, both in the dynamical calculation and in the kinetic simulation. The aim of this paper is to study the dissociation in atom–molecule (AM) and molecule–molecule (MM) collisions involving nitrogen, obtained by molecular dynamics calculations considering vibrational states in the range 10–50 and collision energy up to 10 eV, in order to formulate suitable scaling laws resulting in less expensive computational procedures and easier to handle treatments in kinetic simulations. It is shown that, while a direct substitution of MM dissociation cross sections with AM ones might be acceptable only at very high collision energy, scaling laws application allows to obtain quite good results on almost the whole energy range of interest.

  19. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014.

  20. Cross section for the reaction C-12(e,p)B-11; and its relevance to the formation of B-11 in active galaxies

    NASA Astrophysics Data System (ADS)

    Hoffmann, D. H. H.; Richter, A.; Schrieder, G.; Seegebarth, K.

    1983-08-01

    An experiment has been conducted in order to furnish new data for an estimate of the influence of electron-induced processes in the formation of B-11 from C-12 at astrophysical sites having large densities of high energy electrons. The cross section for the C-12(e, p)B-12 reaction has been measured at incident electron energies of 21, 25, 35, 45, and 55 MeV at the detection angles of 55, 90 and 125 deg. It is concluded that in cosmic sources with a high energy proton flux that is small by comparison with the total electron flux, the electrospallation and photospallation cross sections are not negligible, although the present data give an electroproduction cross section for B-11 that is lower than recent theoretical results by a factor of 2.

  1. Cross sections of the (HI, αn) channel in the cold-fusion-type reactions 209Bi+ 40Ar and 208Pb+ 37Cl

    NASA Astrophysics Data System (ADS)

    Lazarev, Yu. A.; Oganessian, Yu. Ts.; Szeglowki, Z.; Utyonkov, V. K.; Kharitonov, Yu. P.; Constantinescu, O.; Liên, Dinh Thi; Shirokovsky, I. V.; Tretyakova, S. P.

    1994-11-01

    By applying an off-line radiochemistry technique, cross sections for the production of the isotope 240Cm(T {1}/{2}=27 d) in the cold-fusion-type reactions 209Bi+ 40Ar and 208Pb+ 37Cl at the bombarding energy Elab⩽230 MeV were determined to be 0.5±0.2 nb and 0.6±0.3 nb, respectively. The production of 240Cm was attributed to the 1n-deexcitation channel of the composite systems 249Md and 245Es. At the same time, the measured 240Cm production cross sections represent upper cross-section limits for the (HI, αn) channel of the reactions under study. These upper limits are about 100 times lower than the cross-section values reported recently by Nomura et al. for the ( 40Ar, αx n) channels with x=1,2 of the 209Bi+ 40Ar reaction at Elab=208 MeV. In the context of the above measurements, presented and discussed is the up-to-date summary of the available evidence on cross sections of the (HI, αxn) channels in the cold-fusion-type reactions induced by projectiles ranging from 37Cl to 50Ti on targets of 203,205Tl, 208Pb, and 209Bi nuclei. Appreciable EC(β +)-delayed or/and spontaneous fission effects were detected in the 209Bi+ 40Ar, 208Pb+ 37Cl, and 206Pb+ 37Cl reactions. The obtained data point, in particular, to the EC(β +)-delayed fission occuring in the decay chains ? and ?.

  2. Product PCNPsurv or the "reduced" evaporation residue cross section σER/σfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Hemdeep, Gupta, Raj K.

    2016-04-01

    The product PCNPsurv of compound nucleus (CN) fusion probability PCN and survival probability Psurv is calculated to determine the reduced evaporation residue cross section σER/σfusion , denoted σERreduced, with (total) fusion cross section σfusion given as a sum of CN-formation cross section σCN and non-CN cross section σnCN for each reaction, where σCN is the sum of evaporation residue cross section σER and fusion-fission cross section σff and σnCN, if not measured, is estimated empirically as the difference between measured and calculated σfusion. Our calculations of PCN and Psurv, based on the dynamical cluster-decay model, were successfully made for some 17 "hot" fusion reactions, forming different CN of mass numbers ACN˜100 -300 , with deformations of nuclei up to hexadecapole deformations and "compact" orientations for both coplanar (Φc=0∘ ) and noncoplanar (Φc≠0∘ ) configurations, using various different nuclear interaction potentials. Interesting variations of σERreduced with CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 show that, independent of entrance channel, different isotopes of CN, and nuclear interaction potentials used, the dominant quantity in the product is Psurv, which classifies all the studied CN into three groups of weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, with relative magnitudes of σERreduced˜1 , ˜10-6 , and ˜10-11 , which, like for PCN, get further grouped in two dependencies of (i) weakly fissioning and strongly fissioning superheavy nuclei decreasing with increasing E* and (ii) radioactive nuclei increasing with increasing E*.

  3. The (3He,tf) as a surrogate reaction to determine (n,f) cross sections in the 10 to 20 MeV energy range

    SciTech Connect

    Basunia, M. S.; Clark, R. M.; Goldblum, B. L.; Bernstein, L. A.; Phair, L.; Burke, J. T.; Beausang, C. W.; Bleuel, D. L.; Darakchieva, B.; Dietrich, F. S.; Evtimova, M.; Fallon, P.; Gibelin, J.; Hatarik, R.; Jewett, C. C.; Lesher, S. R.; McMahan, M. A.; Rodriguez-Vieitez, E.; Wiedeking, M.

    2009-02-25

    The surrogate reaction 238U(3He,tf) is used to determine the 237Np(n,f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ~;;761 mu g/cm2 metallic 238U foil was bombarded with a 42 MeV 3He2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS), consists of two 140 mu m and one 1000 mu m Micron S2 type silicon detectors. The 237Np(n,f) cross sections, determined indirectly, were compared with the 237Np(n,f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the (3He,tf) reaction as a surrogate to extract (n,f) cross section in the 10 to 20 MeV equivalent neutron energy is found to be suitable.

  4. Differential and angle-integrated cross sections for the 40Ca(n, α)37Ar reaction from 4.0 to 6.5 MeV

    NASA Astrophysics Data System (ADS)

    Han, Jinhua; Liu, Jiaming; Liu, Xiang; Fan, Xiao; Wang, Zhimin; Chen, Jinxiang; Zhang, Guohui; Gledenov, Yu. M.; Sedysheva, M. V.; Krupa, L.; Khuukhenkhuu, G.; Szalanski, P. J.

    2015-01-01

    Differential cross sections for the 40 Ca( n,) , and reactions are measured at neutron energies of 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5MeV using a double-section gridded ionization chamber and two CaF2 samples. Monoenergetic neutrons were produced through the 2 H( d, n)3 He reaction with a deuterium gas target. A BF3 neutron counter was utilized to normalize the neutron flux among different measurements. The absolute value of neutron flux was calibrated using a 238U sample. Angle-integrated cross sections for the 40 Ca( n,) , and reactions are obtained from the integration of the differential data. Model calculations are performed using the TALYS-1.6 code and general agreement is achieved between measurements and calculations. Then the total 40Ca( n,)37Ar cross sections are derived from the angle-integrated cross sections combined with the code calculations. Present results are compared with existing measurements and evaluations.

  5. Time-Reversal Measurement of the p-Wave Cross Sections of the ^{7}Be(n,α)^{4}He Reaction for the Cosmological Li Problem.

    PubMed

    Kawabata, T; Fujikawa, Y; Furuno, T; Goto, T; Hashimoto, T; Ichikawa, M; Itoh, M; Iwasa, N; Kanada-En'yo, Y; Koshikawa, A; Kubono, S; Miyawaki, E; Mizuno, M; Mizutani, K; Morimoto, T; Murata, M; Nanamura, T; Nishimura, S; Okamoto, S; Sakaguchi, Y; Sakata, I; Sakaue, A; Sawada, R; Shikata, Y; Takahashi, Y; Takechi, D; Takeda, T; Takimoto, C; Tsumura, M; Watanabe, K; Yoshida, S

    2017-02-03

    The cross sections of the ^{7}Be(n,α)^{4}He reaction for p-wave neutrons were experimentally determined at E_{c.m.}=0.20-0.81  MeV slightly above the big bang nucleosynthesis (BBN) energy window for the first time on the basis of the detailed balance principle by measuring the time-reverse reaction. The obtained cross sections are much larger than the cross sections for s-wave neutrons inferred from the recent measurement at the n_TOF facility in CERN, but significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the ^{7}Be(n,α)^{4}He reaction rate is not large enough to solve the cosmological lithium problem, and this conclusion agrees with the recent result from the direct measurement of the s-wave cross sections using a low-energy neutron beam and the evaluated nuclear data library ENDF/B-VII.1.

  6. Measurement of the analysing power and the differential cross section of the overlinepp charge-exchange reaction at LEAR

    NASA Astrophysics Data System (ADS)

    Birsa, R.; Bradamante, F.; Torre-Colautti, S. Dalla; Giorgi, M.; Lamanna, M.; Martin, A.; Penzo, A.; Schiavon, P.; Tessarotto, F.; Macciotta, M. P.; Masoni, A.; Puddu, G.; Serci, S.; Niinikoski, T.; Rijllart, A.; Ahmidouch, A.; Heer, E.; Hess, R.; Kunne, R. A.; Luc, C. Lechanoine-Le; Mascarini, C.; Rapin, D.; Arvieux, J.; Bertini, R.; Catz, H.; Faivre, J. C.; Perrot-Kunne, F.; Agnello, M.; Iazzi, F.; Minetti, B.; Bressani, T.; Chiavassa, E.; De Marco, N.; Musso, A.; Piccotti, A.

    1990-08-01

    As part of a programme to study the spin structure of the overlinepp→ overlinenn channel, we have measured the analysing power A0 n and the differential cross section at an incident antiproton beam momentum of 704 MeV/ c. The analysing power exhibits a remarkable angular dependence, which is poorly reproduced by the existing potential models.

  7. Measuring reaction probability ratios to simulate neutron-induced cross-sections of short-lived nuclei

    NASA Astrophysics Data System (ADS)

    Plettner, C.; Ai, H.; Beausang, C. W.; Bernstein, L. A.; Ahle, L.; Amro, H.; Babilon, M.; Burke, J. T.; Caggiano, J. A.; Casten, R. F.; Church, J. A.; Cooper, J. R.; Crider, B.; Gürdal, G.; Heinz, A.; McCutchan, E. A.; Moody, K.; Punyon, J. A.; Qian, J.; Ressler, J. J.; Schiller, A.; Williams, E.; Younes, W.

    2005-10-01

    Measuring the neutron-induced fission cross-sections of short-lived nuclei represents an experimental challenge due to target activity and the low intensity of neutron beams. One way to alleviate the problems inherent in the direct measurement is to use the surrogate method, where one measures the decay probability of the same compound nucleus formed using a charged beam and a stable target. The decay probability of the compound nucleus is then used to estimate the neutron-induced cross-section. As an extension to the surrogate method, we introduce a new method of reporting the fission probabilities of two compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. The ratio method was checked in a known case, the 236U(n, f)/238U(n, f) cross-section ratio, which turned out to be the same as the probability ratio of P(236U(d, pf))/P(238U(d, pf)). As an application, the 237U(n, f)/235U(n, f) cross-section ratio was inferred, on the basis of the measured P(238U(d, d'f))/P(236U(d, d'f)) probability ratio.

  8. Cross section measurements via residual nuclear decays: Analysis methods

    SciTech Connect

    Zhou Fengqun; Gao Lei; Li Kuohu; Song Yueli; Zhang Fang; Kong Xiangzhong; Luo Junhua

    2009-11-15

    We develop an approach to calculating the pure cross section of the ground state of artificial radioactive nuclides that subtracts the effect of an excited state on the ground state. We apply a formalism to obtaining pure cross sections by subtracting the effect of excited states in the reactions {sup 122}Te(n,2n){sup 121}Te{sup g} and {sup 128}Te(n,2n){sup 127}Te{sup g}, induced by neutrons of about 14 MeV. The cross sections are measured by an activation relative to the {sup 93}Nb(n,2n){sup 92}Nb{sup m} reaction and are compared with results that take into account the effect of the excited state. Measurements are carried out by {gamma} detection using a coaxial high-purity germanium (HPGe) detector. As samples, spectroscopically pure Te powder is used. The fast neutrons are produced by the {sup 3}H(d,n){sup 4}He reaction. The neutron energies in these measurements are determined using the method of cross-section ratios between the {sup 90}Zr(n,2n){sup 89}Zr{sup m+g} and {sup 93}Nb(n,2n){sup 92}Nb{sup m} reactions.

  9. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    PubMed

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  10. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction

    SciTech Connect

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1{sup 2}A′ global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 − 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  11. Cross sections of the (n ,p ) reaction on the 78Se and 80Se isotopes measured for 13.73 MeV to 14.77 MeV and estimated for 10 MeV to 20 MeV neutron energies

    NASA Astrophysics Data System (ADS)

    Attar, F. M. D.; Dhole, S. D.; Bhoraskar, V. N.

    2014-12-01

    The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions were measured at five neutron energies over the range 13.73 MeV to 14.77 MeV using 56Fe and 19F as monitor elements, respectively. The cross sections were also theoretically estimated using EMPIRE-II and TALYS codes over 10 MeV to 20 MeV neutrons and matched with the experimental cross sections by making proper choice of the model parameters. The theoretical and experimental cross sections of 80Se(n ,p ) 80As reaction are smaller as compared to the 78Se(n ,p ) 78As reaction at each neutron energy. This difference is attributed to the competing 80Se(n ,2 n )79Se and 80Se( n ,α )Ge77m reactions, which effectively decrease the cross sections of 80Se(n ,p ) 80As reaction as compared to that of the 78Se(n ,p ) 78As reaction over the neutron energy range used in the present work. The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions estimated by the EMPIRE-II code initially increase but later on decrease with neutron energy, respectively, above 16 MeV and 19 MeV, whereas those estimated by the TALYS code continuously increase with neutron energy. The present results indicate that the trends in the variation of cross section with neutron energy depend on the model used in the calculations. The cross sections of the 80Se(n ,p ) 80As reaction at different neutron energies reported in the present work can be added as a new data in the nuclear data library.

  12. Cross-Section Measurements for (n,xn) Reactions by In-Beam Gamma-Ray Spectroscopy

    SciTech Connect

    Pavlik, A.; Baumann, P.; Kerveno, M.; Rudolf, G.; Borcea, C.; Mihailescu, L.C.; Jericha, E.; Raskinyte, I.; Jokic, S.; Lukic, S.; Meulders, J.P.; Nolte, R.; Plompen, A.J.M.

    2005-05-24

    The nuclear reactions 207Pb(n,2n)206Pb and 232Th(n,5n)228Th were studied by measuring prompt gamma-ray emission spectra from the interaction of neutrons with an enriched 207Pb sample and a natTh sample. For 207Pb the measurements were performed at the white neutron beam of the GELINA neutron source at IRMM Geel in the neutron energy range up to 20 MeV. The Th measurements were done at the quasi-monoenergetic 7Li(p,n)7Be neutron source at the Universite Catholique de Louvain for five peak neutron energies in the range 29 MeV to 42 MeV. The measurements were complemented by model calculations using the code system EMPIRE-II.

  13. Measurement of the LITHIUM-8(DEUTERON, NEUTRON)BERYLLIUM-9 and LITHIUM-8(ALPHA, NEUTRON)BORON-11 Reaction Cross Sections at Astrophysical Energies by Radioactive Beam Techniques

    NASA Astrophysics Data System (ADS)

    Corn, Philip Bennet

    A preliminary direct measurement of the ^8Li(d,n)^9Be cross section has been obtained by means of a radioactive beam facility used with the Lawrence Livermore National Laboratory FN van de Graaff accelerator. The cross section at a ^8Li energy of 13.3 MeV agrees plausibly with values estimated from data for the reverse reaction, ^9Be(n,d)^8Li, and for the related ^7Li(d,n) ^8Be reaction to within the large estimated experimental error. This result thus demonstrates the feasibility of the technique. In addition, a design for a similar radioactive beam measurement of the ^8Li(alpha,n) 11B reaction cross section is given. The two reactions figure prominently in network calculations for current inhomogeneous models of primordial nucleosynthesis in the early universe, and because of the short 838 millisecond half life of the radioactive ^8Li nuclide, their cross sections have not been measured directly before. The radioactive beam apparatus employs a 16.0 MeV ^7Li beam from the accelerator incident on a thin, deuterated polyethylene primary reaction target foil. A secondary beam containing ^8Li produced in the ^7 Li(d,p)^8Li reaction is concentrated by a spectrometer incorporating twin triplet magnetic quadrupole elements and an electrostatic dipole, and is focussed on a second deuterated polyethylene reaction target foil in which the reaction of interest takes place. Reaction products are identified and measured by means of a pair of surface barrier charged particle detector telescopes, and ^8Li flux is measured via a CaF_2 scintillator and photomultiplier tube at the rear of the detector chamber. Future efforts will use improved gas cell production and reaction targets and detector systems, and will focus in the near term on a definitive measurement of the ^8Li(d,n)^9 Be cross section at several energies. The experiments and apparatus described are part of a continuing program of studies of astrophysically interesting reactions on radioactive nuclides carried out with

  14. Cross section for the reaction {sup 115}In(γ, γ′){sup 115m} In in the region of the E1 giant resonance

    SciTech Connect

    Dzhilavyan, L. Z.

    2015-07-15

    The cross section for the reaction {sup 115}In(γ, γ′){sub 115m}In was measured for photon energies in the range of E{sub γ} ≅ 4–46 MeV. The parameters of the peak in this cross section near the threshold for the reaction {sup 115}In(γ, n), (E{sub γ}){sub (γ,n)}{sup thr}, were refined. It is shown that, in the cross section for the reaction {sup 115}In(γ, γ′){sup 115m}In at Eγ ∼ 27 MeV, there is no second peak for which δ{sub II}{sup int} would exceed about 0.2δ{sub I}{sup int} for the peak at E{sub γ} ∼ (E{sub γ}){sub (γ,n)}{sup thr}. The possibility of employing this reaction both in studying photonuclear reaction physics and in monitoring bremsstrahlung photons in gamma-activation studies was examined.

  15. Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    NASA Astrophysics Data System (ADS)

    Kankainen, A.; Woods, P. J.; Nunes, F.; Langer, C.; Schatz, H.; Bader, V.; Baugher, T.; Bazin, D.; Brown, B. A.; Browne, J.; Doherty, D. T.; Estrade, A.; Gade, A.; Kontos, A.; Lotay, G.; Meisel, Z.; Montes, F.; Noji, S.; Perdikakis, G.; Pereira, J.; Recchia, F.; Redpath, T.; Stroberg, R.; Scott, M.; Seweryniak, D.; Stevens, J.; Weisshaar, D.; Wimmer, K.; Zegers, R.

    2016-01-01

    Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al ( d, n) reaction in inverse kinematics by tagging states by their characteristic γ -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al ( p, γ) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment.

  16. Measurement of reaction cross-sections for 89Y at average neutron energies of 7.24-24.83 MeV

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Shahid, Muhammad

    2015-05-01

    We measured neutron-induced reaction cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions with the average neutron energy region from 7.45 to 24.83 MeV by an activation and off-line γ-ray spectrometric technique using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. The neutron-induced reaction cross-sections of 89Y as a function of neutron energy were taken from the TENDL-2013 library. The flux-weighted average cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions were calculated from the TENDL-2013 values based on mono-energetic neutron and by using the neutron energy spectrum from MCNPX 2.6.0 code. The present results are compared with the flux-weighted values of TENDL-2013 and are found to be in good agreement

  17. Activation cross-sections of long lived products of deuteron induced nuclear reactions on dysprosium up to 50 MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Ignatyuk, A V

    2014-01-01

    Activation cross-sections for production of (162m,161,155)Ho, (165,159,157,155)Dy and (161,160,156,155)Tb radionuclides in deuteron induced nuclear reactions on elemental dysprosium were measured up to 50 MeV for practical application and the test of the predictive power of nuclear reaction model codes. A stacked-foil irradiation technique and off-line gamma-ray spectrometry were used to determine the activities. No earlier cross-section data were found in the literature. The experimental data are compared with the predictions of the ALICE-D, EMPIRE-D and TALYS codes. Integral production yields were calculated from the fitted experimental data.

  18. Measurement of 58Fe (p , n)58Co reaction cross-section within the proton energy range of 3.38 to 19.63 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty; Jyrwa, Betylda; Naik, Haldhara; Naik, Yeshwant; Suryanarayana, Saraswatula Venkata; Ganesan, Srinivasan

    2017-08-01

    The 58Fe (p , n)58Co reaction cross-section within Giant Dipole Resonance (GDR) region i.e. from 3.38 to 19.63 MeV was measured by stacked-foil activation and off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron facility at Mumbai. The present data were compared with the existing literature data and found to be in good agreement. The 58Fe (p , n)58Co reaction cross-section as a function of proton energy was also theoretically calculated by using the computer code TALYS-1.8 and found to be in good agreement, which shows the validity of the TALYS-1.8 program.

  19. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  20. Measurement of the cross section of the residues from the 11B-induced reaction on 89Y and 93Nb: Production of 97Ru and Rhm101

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Maiti, Moumita

    2017-06-01

    Background: The heavy-ion induced reactions on intermediate mass targets are complex in nature, even at the low energies. To understand those nuclear reaction phenomena in detail, more experimental studies are required in a wide range of energies. Purpose: Investigation of heavy-ion reactions by measuring production cross sections of the residues produced in the 11B-induced reactions on 89Y and 93Nb at low energies, near and above the barrier, and to check the effectiveness of the different nuclear models to explain them. Further, aim is also to optimize the production parameters of neutron deficient medically relevant 97Ru and Rhm101 radioisotopes produced in those reactions, respectively. Method: The 11B beam was allowed to impinge on 89Y and 93Nb foils supported by an aluminum (Al) catcher foil, arranged in a stack, in 27.5-58.7 and 30.6-62.3 MeV energy range, respectively. The off-line γ -ray spectrometry was carried out after the end of bombardment to measure the activity of the radionuclides produced in each foil and cross sections were calculated. Measured cross-sectional data were analyzed in terms of compound and precompound model calculations. Results: The measured cross sections of Ru,9597, 96,95,94Tc, Mom93, Ym90 radionuclides produced in the 11B+89Y reaction, and 101,100,99Pd, 101m,100,99mRh, 97Ru produced in the 11B+93Nb reaction showed good agreement with the model calculations based on the Hauser-Feshbach formulation and exciton model. Unlike theoretical estimation, consistent production of Ym90 was observed in the 11B+89Y reaction. Substantial pre-equilibrium contribution was noticed in the 3 n reaction channel in both reactions. Conclusions: Theoretical estimations confirmed that major production yields are mostly contributed by the compound reaction process. Pre-equilibrium emissions contributed at the high energy tail of the 3 n channel for both reactions. Moreover, an indirect signature of a direct reaction influence was also observed in the

  1. Neutron cross sections: Book of curves

    SciTech Connect

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs.

  2. Theoretical investigation of cross sections and astrophysical S-factors for the 92Mo(α,n)95Ru and 94Mo(α,n)97Ru reactions

    NASA Astrophysics Data System (ADS)

    Aydin, Abdullah; Yıldız, Ercan; Sarpün, Ismail Hakki

    2016-11-01

    Molybdenum is commonly applied as a constructive material in different types of nuclear reactors. The cross sections of the 92Mo(α,n)95Ru and 94Mo(α,n)97Ru reactions have been calculated at 5-20 MeV energy ranges. In theoretical calculations, the TALYS1.6 and NONSMOKER codes were used. Also the astrophysical S-factors were calculated. Results of our calculations were checked to the experimental data obtained from EXFOR database.

  3. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    SciTech Connect

    Korovin, Yu. A.; Maksimushkina, A. V. Frolova, T. A.

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  4. Measurement of the helicity-dependent total cross-section for the γn rightarrow p π-_{} π0_{} reaction

    NASA Astrophysics Data System (ADS)

    Ahrens, J.; Altieri, S.; Annand, J. R. M.; Arends, H.-J.; Beck, R.; Blackston, M. A.; Bradtke, C.; Braghieri, A.; d'Hose, N.; Dutz, H.; Fix, A.; Heid, E.; Jahn, O.; Klein, F.; Kondratiev, R.; Lang, M.; Lisin, V.; Martinez-Fabregate, M.; McGeorge, J. C.; Meyer, W.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Protopopescu, D.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Rostomyan, T.; Ryckbosch, D.; Tamas, G.; Thomas, A.; Weller, H. R.

    2011-03-01

    The helicity dependence of the total cross-section for the γ n rightarrow p π-_{} π0_{} reaction has been measured for the first time at incident photon energies from 450 to 800MeV. The measurement was performed with the large-acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. Both the measured unpolarized and the helicity-dependent observables are not well described by the existing theoretical models.

  5. Activation cross-sections of longer lived radioisotopes of proton induced nuclear reactions on terbium up to 65MeV.

    PubMed

    Tárkányi, F; Hermanne, A; Ditrói, F; Takács, S; Ignatyuk, A V

    2017-09-01

    Experimental cross sections are presented for the (159)Tb(p,xn)(153,155,157,159)Dy, (152,153,155,156m2,m1,g,158)Tb and (153,151)Gd nuclear reactions up to 65MeV. The experimental results are compared with the recently reported experimental data and with the results of the nuclear reaction codes ALICE-IPPE, EMPIRE and TALYS as reported in the TENDL-2015 on-line library. Integral thick-target yields are also derived for the reaction products used in practical applications and production routes are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermal neutron cross-section and resonance integral of the 152Sm(n,γ)153Sm reaction induced by pulsed neutrons

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun

    2017-10-01

    We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.

  7. How Accurately Do We Know the Cross Section of the 7Be(p, {gamma})8B Reaction?

    SciTech Connect

    Gai, Moshe

    2006-03-13

    The 'world average' of the astrophysical cross section factor , S17(0), is driven by the Seattle result due to the very small quoted uncertainty, which we however demonstrate it to be an overestimated accuracy. We propose more realistic error bars for the Seattle results based on the published Seattle data. This leads to a an uncertainty of the measured slope of S17 and thus an uncertainty due to extrapolation that can be reasonably estimated to be {sub -3.0}{sup +0.0} eV-b.

  8. An Investigation of the 40Ar(n,p)40Cl Reaction Cross-Section below 50MeV at Crocker Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Walsh, Nicholas Ian

    Large underground liquid argon detectors are poised to detect neutrinos from the next galactic supernova. Liquid argon detectors are uniquely sensitive to the electron neutrino, thus giving them the capability to detect neutronization neutrinos for the first time. One background that may mimic the signal of this low-energy neutrino interaction in argon is the beta-decay of Cl-40 which is produced in argon by a fast neutron reaction. Previous measurements of this 40Ar+n->40Cl+p reaction cross section exist only below 15 MeV and the measurements differ by a factor of two. Using the U.C. Davis Crocker Nuclear Laboratory neutron beam this cross-section is determined by fitting to a parametrized model for neutron energies up to 50 MeV. Neutrons at this facility are generated from mono-energetic protons impinging on a thick beryllium target. Then, the neutrons that pass through the collimator are measured by time-of-flight and a fast-neutron activation technique. Using the neutron fluxes generated from five different proton energies, including 50 MeV protons, the 40Ar(n,p)40Cl reaction cross section is measured by irradiating liquid argon in each beam and counting the subsequent gammas from the Cl-40 decay in a high-purity germanium detector.

  9. Cross section limits for the {sup 248}Cm({sup 25}Mg,4n-5n){sup 268,269}Hs reactions

    SciTech Connect

    Dvorak, J.; Dvorakova, Z.; Schuber, R.; Tuerler, A.; Yakushev, A.; Bruechle, W.; Duellmann, Ch. E.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Eberhardt, K.; Thoerle, P.; Eichler, R.; Nagame, Y.; Qin, Z.; Semchenkov, A.; Wegrzecki, M.

    2009-03-15

    We report on an attempt to produce and detect {sup 268}Hs and {sup 269}Hs in the nuclear fusion reaction {sup 25}Mg+{sup 248}Cm using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of {sup 269}Hs we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction {sup 248}Cm({sup 25}Mg,4n){sup 269}Hs at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the {sup 248}Cm({sup 25}Mg,5n){sup 268}Hs reaction depends on the assumed half-life of unknown {sup 268}Hs. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb.

  10. 7Be (n ,α )4He Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Musumarra, A.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; Finocchiaro, P.; Ayranov, M.; Damone, L.; Kivel, N.; Aberle, O.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barros, S.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mazzone, A.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Pappalardo, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Piscopo, M.; Plompen, A.; Porras, I.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration

    2016-10-01

    The energy-dependent cross section of the 7Be (n ,α )4He reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si -7Be -Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.

  11. Activation cross sections for 190Os( n, p) 190m,gRe, 188Os( n, p) 188Re and 190Os( n, n') 190mOs reactions from 13.5 to 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Zhang, Zhirong; Tian, Weisong; Tuo, Fei; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2009-04-01

    Cross sections for ( n, p) and ( n, n') reactions have been measured on osmium isotopes at the neutron energies from 13.5 to 14.8 MeV using the activation technique in combination with high-resolution gamma-ray spectroscopy. Neutrons were produced via the 3H( d, n) 4He reaction using solid TiT. The neutron fluences were determined using the monitor reaction 93Nb( n,2 n) 92mNb. Data are reported for the following reactions: 190Os( n, p) 190mRe, 190Os( n, p) 190gRe, 190Os( n, p) 190Re, 188Os( n, p) 188Re and 190Os( n, n') 190mOs. Nuclear model calculations using the code HFTT, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of the products. The cross sections were discussed and compared with experimental data found in the literature, with values of model calculations including the pre-equilibrium contribution, and with evaluation data of JEFF-3.1/A.

  12. Cross Sections of P-Induced Reactions up to 100 MeV for the Interpretation of Solar Cosmic Ray Produced Nuclides

    NASA Astrophysics Data System (ADS)

    Schiekel, T.; Rosel, R.; Herpers, U.; Bodemann, R.; Michel, R.; Dittrich, B.; Hofmann, H. J.; Suter, M.; Wolfli, W.; Holmqvist, B.; Conde, H.; Malmborg, P.

    1992-07-01

    Integral excitation functions for the production of residual nuclides by proton-induced reactions are the basic data for an accurate modelling of the interactions of solar cosmic ray (SCR) particles with extraterrestrial matter. Due to the relatively low energies (<200 MeV/A) of SCR particles the production of nuclear active secondary particles can be widely neglected and theoretical production rate depth profiles can be calculated by simply folding the depth dependent SCR spectra with thin target cross sections of the underlying nuclear reactions. The accuracy of such calculations exclusively depends on the quality of the available cross sections. For many nuclides, in particular for long-lived radionuclides and stable rare gas isotopes, the exis- ting cross section database is neither comprehensive nor reliable. Therefore, we started a series of experiments to improve this situation. Eighteen elements (C, N as Si3N4, O as SiO2, Mg, Al, Si, Ti, V, Mn as Mn/Ni-alloy, Fe, Co, Ni, Cu, Zr, Nb, Rh, Ba as Ba-contai- ning glass, and Au) were irradiated with 94 and 99 MeV protons at the external beam of the TSL-cyclotron at Uppsala. Cross sections were determined using the stacked foil technique. Beam monitoring was done by investigating the production of ^22Na from Al, for which evaluated cross sections exist. Residual nuclides were measured by X-, gamma- and accelerator-mass spectrometry. In order to check the quality of our experimental procedure some target elements (22 <= Z <= 28) were included in the new exper- iments, which had been formerly irradiated at Julich, at Louvain La Neuve, and at IPN Orsay. Comparisons between the earlier measurements (1,2) and the new cross sections showed excellent agreement. Up to now, cross sections were measured for more than 120 different reactions. Here, we report on the results obtained for the target elements C, N, O, Mg, Al, and Si. The status of experimental excitation functions for the production of some radionuclides

  13. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Takeuchi, Satoshi; Togano, Yasuhiro; Nakamura, Takashi; Maeda, Yukie; Ahn, Deuk Soon; Aikawa, Masayuki; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Ichihara, Takashi; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubo, Toshiyuki; Kubono, Shigeru; Kurokawa, Meiko; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Taniuchi, Ryo; Tsubota, Jun'ichi; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs) with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  14. Microscopic model analysis of the 6He, 6Li+28Si total reaction cross sections at the energy range 5-50 A MeV

    SciTech Connect

    Lukyanov, K. V.; Kukhtina, I. N.; Lukyanov, V. K.; Penionzhkevich, Yu. E.; Sobolev, Yu. G.; Zemlyanaya, E. V.

    2007-05-22

    The existing and some preliminary experimental data on the total cross sections of the 4,6He, 6,7Li+28Si reactions at energies E=5-50 A MeV are demonstrated. The data on 6Li,6He+28Si are analyzed in the framework of the microscopic optical potential with real and imaginary parts obtained with a help of the double-folding procedure and by using the current models of densities of the projectile nuclei. Besides, the microscopic double-folding Coulomb potential is calculated and its effect on cross sections is compared with that when one applies the traditional Coulomb potential of the uniform charge distribution. The semi-microscopic potentials are constructed from both the renormalized microscopic potentials and their derivatives to take into account collective motion effect and to improve an agreement with experimental data.

  15. Comment on "Cross section of the 13C(α ,n )16O reaction: A background for the measurement of geo-neutrinos"

    NASA Astrophysics Data System (ADS)

    Peters, W. A.

    2017-08-01

    Harissopulos et al. [Phys. Rev. C 72, 062801(R) (2005), 10.1103/PhysRevC.72.062801] report a cross section from a measurement that used a moderated neutron detector not capable of measuring the neutron energy and therefore unable to determine the relative contribution from neutrons that populate the ground state or excited 16O states in 13C(α ,n )16O reactions above 5 MeV. Since the energies of ejected neutrons populating the excited states are 6 MeV lower than those populating the ground state, the corresponding efficiency of their neutron detector for these neutrons was a factor of 2 higher than assumed. Therefore, the reported 13C(α ,n )16O cross sections above 5 MeV may be overcalculated by nearly 50%.

  16. Reaction cross sections of 14B and 8He on proton targets for the separation of proton and neutron density distributions

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Fukuda, Mitunori; Nishimura, Daiki; Suzuki, Shinji; Takechi, Maya; Mihara, Mototsugu; Matsuta, Kensaku; Oono, Junnichi; Yamaoka, Shintaro; Ohtsubo, Takashi; Izumikawa, Takuji; Nagashima, Masayuki; Suzuki, Takeshi; Yamaguchi, Takayuki; Kitagawa, Atsushi; Fukuda, Shigekazu; Sato, Shinji; Himac H093 Collaboration

    2014-09-01

    In order to discuss the exotic surface structures of neutron- / proton-rich nuclei such as halo and skin in detail, it is important to clarify the distributions of neutron and proton respectively. For this purpose, we utilize the isospin (p-p or p-n) asymmetry of nucleon-nucleon total cross sections in the intermediate energy region. We employed a Proton target as the isospin asymmetric target, which is the most asymmetric one. Also, we employed Be, C, and Al targets which are isospin symmetric to be contrast with Proton target. In the present work, we have measured reaction cross sections for 14B and 8He on Proton, Be, C, and Al targets at intermediate energies. The experiments were carried out at the HIMAC heavy ion synchrotron facility, Japan. We will report results of the analyses.

  17. Cross Sections for the $\\gamma p \\to K^{*0}\\Sigma^+$ Reaction at $E_\\gamma = 1.7 - 3.0$ GeV

    SciTech Connect

    I. Hleiqawi; K. Hicks; D.Carman; T.Mibe

    2007-04-01

    Differential cross sections for the reaction $\\gamma p \\to K^{*0} \\Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The \\kstar was detected by its decay products, $K^+\\pi^-$, in the CLAS detector at Jefferson Lab. These data are the first \\kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the model's two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $\\kappa$ meson exchange in $t$-channel diagrams should be investigated.

  18. Measurement of the in-medium K0 inclusive cross section in pi(-) -induced reactions at 1.15 GeV/c.

    PubMed

    Benabderrahmane, M L; Herrmann, N; Wiśniewski, K; Kecskemeti, J; Andronic, A; Barret, V; Basrak, Z; Bastid, N; Buehler, P; Cargnelli, M; Caplar, R; Cordier, E; Deppner, I; Crochet, P; Dupieux, P; Dzelalija, M; Fabbietti, L; Fodor, Z; Gasik, P; Gasparić, I; Grishkin, Y; Hartmann, O N; Hildenbrand, K D; Hong, B; Kang, T I; Kienle, P; Kirejczyk, M; Kim, Y J; Kis, M; Koczoń, P; Korolija, M; Kotte, R; Lebedev, A; Leifels, Y; Lopez, X; Manko, V; Marton, J; Mangiarotti, A; Merschmeyer, M; Matulewicz, T; Petrovici, M; Piasecki, K; Rami, F; Reischl, A; Reisdorf, W; Rogowska, M; Ryu, M S; Schmidt, P; Schüttauf, A; Seres, Z; Sikora, B; Sim, K S; Simion, V; Siwek-Wilczyńska, K; Smolyankin, V; Suzuki, K; Tymiński, Z; Widmann, E; Xiao, Z G; Yamazaki, T; Yushmanov, I; Zhang, X Y; Zhilin, A; Zmeskal, J; Bratkovskaya, E; Cassing, W

    2009-05-08

    The K0 meson production by pi(-) mesons of 1.15 GeV/c momentum on C, Al, Cu, Sn, and Pb nuclear targets was measured with the FOPI spectrometer at the Schwer-Ionen-Synchrotron accelerator of GSI. Inclusive production cross sections and the momentum distributions of K0 mesons are compared to scaled elementary production cross sections and to predictions of theoretical models describing the in-medium production of kaons. The data represent a new reference for those models, which are widely used for interpretation of the strangeness production in heavy-ion collisions. The presented results demonstrate the sensitivity of the kaon production to the reaction amplitudes inside nuclei and point to the existence of a repulsive KN potential of 20+/-5 MeV at normal nuclear matter density.

  19. Coriolis coupling effects in the calculation of state-to-state integral and differential cross sections for the H+D2 reaction.

    PubMed

    Chu, Tian-Shu; Han, Ke-Li; Hankel, Marlies; Balint-Kurti, Gabriel G

    2007-06-07

    The quantum wavepacket parallel computational code DIFFREALWAVE is used to calculate state-to-state integral and differential cross sections for the title reaction on the BKMP2 surface in the total energy range of 0.4-1.2 eV with D2 initially in its ground vibrational-rotational state. The role of Coriolis couplings in the state-to-state quantum calculations is examined in detail. Comparison of the results from calculations including the full Coriolis coupling and those using the centrifugal sudden approximation demonstrates that both the energy dependence and the angular dependence of the calculated cross sections are extremely sensitive to the Coriolis coupling, thus emphasizing the importance of including it correctly in an accurate state-to-state calculation.

  20. Differential cross sections measurement of 28Si(p,p/γ)28Si and 29Si(p,p/γ)29Si reactions for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-03-01

    Differential cross sections for gamma-ray emission from the 28Si(p,p/γ)28Si (Eγ = 1779 keV) and the 29Si(p,p/γ)29Si (Eγ = 1273 keV) nuclear reactions were measured in the energy range of 2.0-3.2 MeV and 2.0-3.0 MeV, respectively. The thin Si targets were prepared by evaporating natural SiO onto self-supporting Ag films. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. The great advantage of this work is that differential cross sections were obtained with a procedure irrespective of absolute value of the collected beam charge.

  1. OPPORTUNITIES TO CONSTRAIN ASTROPHYSICAL REACTION RATES FOR THE s-PROCESS VIA DETERMINATION OF THE GROUND-STATE CROSS-SECTIONS

    SciTech Connect

    Rauscher, T.; Mohr, P.; Dillmann, I.; Plag, R.

    2011-09-10

    Modern models of s-process nucleosynthesis in stars require stellar reaction rates of high precision. Most neutron-capture cross-sections in the s-process have been measured, and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well, because only the capture of the ground state of a target is measured in the laboratory. Captures of excited states can contribute considerably to stellar rates that are already at typical s-process temperatures. We show that the ground-state contribution X to a stellar rate is the relevant measure to identify reactions that are or could be well constrained by experiments and apply it to (n,{gamma}) reactions in the s-process. We further show that the maximum possible reduction in uncertainty of a rate via determination of the ground-state cross-section is given directly by X. An error analysis of X is presented, and it is found that X is a robust measure with mostly small uncertainties. Several specific examples (neutron capture of {sup 79}Se, {sup 95}Zr, {sup 121}Sn, {sup 187}Os, and {sup 193}Pt) are discussed in detail. The ground-state contributions for a set of 412 neutron-capture reactions around the s-process path are presented in a table. This allows identification of reactions that may be better constrained by experiments and that cannot be constrained solely by measuring ground-state cross-sections (and thus require supplementary studies). General trends and implications are discussed.

  2. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  3. Psychological reactions of adolescent schoolgirls to human papillomavirus vaccination in western Uganda: A comparative cross-sectional study.

    PubMed

    Turiho, Andrew Kampikaho; Okello, Elialilia S; Muhwezi, Wilson W; Nakasujja, Noeline; Katahoire, Anne R

    2015-07-01

    Schoolgirls in two Ugandan districts were recently vaccinated against human papillomavirus that causes most cervical cancer. This cross-sectional comparative study used mixed research methods to assess influence of human papillomavirus vaccination on adolescents' worrisome thoughts about being vaccinated and psychological distress. Vaccination predicted worrisome thoughts among the recently vaccinated (adjusted odds ratio: 1.65, confidence interval: 1.13-2.41; p = 0.01). Vaccination predicted distress (1.75, confidence interval: 1.09-2.82; p = 0.02), particularly among those recently vaccinated (1.92, confidence interval: 1.27-2.89; p = 0.001) and those who experienced worrisome thoughts (1.80, confidence interval: 1.06-3.07; p = 0.02). Parental communication mitigated distress (0.50, confidence interval: 0.35-0.72; p = 0.000).

  4. Double differential cross section for light mass fragment production on tens of MeV proton, deuteron, helium and carbon induced reactions

    NASA Astrophysics Data System (ADS)

    Sanami, Toshiya; Yamaguchi, Yuji; Uozumi, Yusuke; Hagiwara, Masayuki; Koba, Yusuke

    2017-09-01

    Double differential cross sections (DDXs) of light mass fragment (LMFs - Li,Be,B,C,N and O) productions were measured for tens of MeV proton, deuteron helium and carbon induced reactions on Be, C, Al, Ti and Cu targets. The incident energies for the measurements were chosen to allow us to compare DDXs with same incident energy but different projectiles on various targets. Systematic data were obtained to see the differences between projectile energies, particles, targets and emitted particles. From the comparison, reaction processes of not only evaporation from complete fusion nucleus, but also scattering, pickup, stripping and projectile fragmentation were observed.

  5. Dynamics of alkali ions-neutral molecules reactions: Radio frequency-guided beam experimental cross-sections and direct quasiclassical trajectory studies

    SciTech Connect

    Aguilar, J.; Andres, J. de; Lucas, J. M.; Alberti, M.; Huarte-Larranaga, F.; Bassi, D.; Aguilar, A.

    2012-11-27

    Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structure information.

  6. Measurement of double differential charged-particle emission cross sections for reactions induced by 26 MeV protons and FKK model analysis

    SciTech Connect

    Watanabe, Y.; Aoto, A.; Kashimoto, H.

    1994-06-01

    Double differential charged-particle emission cross sections of proton-induced reactions have been measured for {sup nat}C, {sup 27}Al, {sup nat}Si, {sup 98}Mo, {sup 106}Pd, {sup 159}Tb and {sup 181}Ta at energies around 26 MeV. Several (p,p{prime}) and (p,n) data for {sup 98}Mo and {sup 106}Pd in the incident energy range from 12 to 26 MeV are analysed in terms of the Feshbach-Kerman-Koonin model, in order to study preequilibrium nucleon emission from nucleon-induced reactions.

  7. Investigation of total cross sections for reactions induced by 6He interaction with silicon nuclei at energies between 5 and 50 MeV/ A

    NASA Astrophysics Data System (ADS)

    Kabdrakhimova, G. D.; Sobolev, Yu. G.; Kuhtina, I. N.; Kuterbekov, K. A.; Mendibaev, K. O.; Penionzhkevich, Yu. E.

    2017-01-01

    Experimental excitation functions in terms of the total cross sections for 6He + Si nuclear reactions are analyzed in the energy range between 5 and 50 MeV/ A, and a brief survey of the procedures used to obtain experimental data is given. Particular attention is given to describing experiments performed in beams of radioactive nuclei from the accelerators of the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research (JINR, Dubna). The experimental data in question are analyzed on the basis of a semimicroscopic optical model.

  8. Utilizing (p,d) and (p,t) reactions to obtain (n,f) cross sections in uranium nuclei via the surrogate-ratio method

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Beausang, C. W.; Ross, T. J.; Burke, J. T.; Scielzo, N. D.; Basunia, M. S.; Campbell, C. M.; Casperson, R. J.; Crawford, H. L.; Escher, J. E.; Munson, J.; Phair, L. W.; Ressler, J. J.

    2012-02-01

    The surrogate ratio method has been tested for (p,d) and (p,t) reactions on uranium nuclei. 236U and 238U targets were bombarded with 28-MeV protons and the light ion recoils and fission fragments were detected using the Silicon Telescope Array for Reaction Studies detector array at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The (p,df) reaction channels on 236U and 238U targets were used as a surrogate to determine the σ[236U(n,f)]/σ[234U(n,f)] cross-section ratio. The (p,tf) reaction channels were also measured with the same targets as a surrogate for the σ[235U(n,f)]/σ[(233U(n,f)] ratio. For the (p,df) and (p,tf) surrogate measurements, there is good agreement with accepted (n,f) values over equivalent neutron energy ranges of En=0-7 MeV and En=0-5.5 MeV, respectively. An internal surrogate ratio method comparing the (p,d) and (p,t) reaction channels on a single target is also discussed. The σ[234U(n,f)]/σ[233U(n,f)] and σ[236U(n,f)]/σ[235U(n,f)] cross-section ratios are extracted using this method for the 236U and 238U targets, respectively. The resulting fission cross-section ratios show relatively good agreement with accepted values up to En˜5 MeV.

  9. Reaction time norms as measured by ruler drop method in school-going South Asian children: A cross-sectional study.

    PubMed

    Aranha, V P; Saxena, S; Moitra, M; Narkeesh, K; Arumugam, N; Samuel, A J

    2017-01-01

    This study aimed to estimate normative range for reaction time using ruler drop method for school-going South Asian children between 6 and 12 years of age. A cross-sectional study was used to evaluate the reaction time for 204 children. Normal values for each age group were obtained. The results of multiple linear regressions showed a decrease in the reaction time values with age, and a significant change occurring between six and eight years of age. No difference in reaction time was obtained between boys and girls. Ruler drop method is an easy to use test and the results of this study provide a normative data for age groups 6-12 years ranging from 214.2ms to 248.8ms. These values can serve as a reference to screen children with delayed reaction time. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  11. Differential and integral cross sections of the N(2D)+H2-->NH+H reaction from exact quantum and quasi-classical trajectory calculations.

    PubMed

    Lin, Shi Ying; Bañares, Luis; Guo, Hua

    2007-03-29

    Exact quantum mechanical state-to-state differential and integral cross sections and their energy dependence have been calculated on an accurate NH2 potential energy surface (PES), using a newly proposed Chebyshev wave packet method. The NH product is found to have a monotonically decaying vibrational distribution and an inverted rotational distribution. The product angular distributions peak in both forward and backward directions, but with a backward bias. This backward bias is more pronounced than that observed previously on a less accurate PES. Both the differential and integral cross sections oscillate mildly with collision energy, indicating the dominance of short-lived resonances. The quantum mechanical results are compared with those obtained from quasi-classical trajectories. The agreement is generally reasonable and the discrepancies can be attributed to the neglect of quantum effects such as tunneling. Detailed analysis of the trajectories revealed that the backward bias in the differential cross section stems overwhelmingly from the fast insertion component of the reaction, augmented with some flux from the abstraction channel, particularly at high collision energies.

  12. Diffractive, inelastic and total cross sections in high energy pp, pA and γ*A reactions with the dipole formalism

    SciTech Connect

    Ster, Andras

    2015-04-10

    The Lund Monte Carlo model DIPSY has recently been extended to ions to study elastic, inelastic and diffractive processes in high energy collisions between electrons, protons and nuclei. In this BFKL-based dipole formalism of parton interactions fluctuations are naturally included and adding them to the pomeron ladder substantially determine the diffractive excitation cross sections of the processes. Starting from √(s{sub NN})=200 GeV and √(s{sub γ*N})=100 GeV we provide results for pp, pA and γ*A total, inelastic and diffractive cross sections that are shown and discussed in case of pp, pO, pCu, pPb and γ*Au reactions. We find good agreement with pp and pPb data. We find that the diffractive cross sections are relatively small compared to the total ones but with increasing collision energies they grow faster than the elastic or the inelastic ones. We make a comparison to calculations obtained by the more conventional method of the Glauber Model MC, too.

  13. Differential cross section measurements for hadron therapy: 50 MeV/nucleon 12C reactions on H, C, O, Al, and natTi targets

    NASA Astrophysics Data System (ADS)

    Divay, C.; Colin, J.; Cussol, D.; Finck, Ch.; Karakaya, Y.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.

    2017-04-01

    During a carbon therapy treatment, the beam undergoes inelastic nuclear reactions leading to the production of secondary fragments. These nuclear interactions tend to delocate a part of the dose into healthy tissues and create a mixed radiation field. In order to accurately estimate the dose deposited into the tissues, the production rate of these fragments all along the beam path have to be taken into account. But the double differential carbon fragmentation cross sections are not well known in the energy range needed for a treatment (up to 400 MeV/nucleon). Therefore, a series of experiments aiming to measure the double differential fragmentation cross sections of carbon on thin targets of medical interest has been started by our collaboration. In March 2015 we performed an experiment to study the fragmentation of a 50 MeV/nucleon 12C beam on thin targets at GANIL. During this experiment, energy and angular cross-section distributions on H, C, O, Al, and natTi have been measured. The experimental set-up will be detailed as well as the systematic error study and all the experimental results will be presented.

  14. Absolute state-selected total cross sections for the ion-molecule reactions O + (4S,2D,2P)+H2(D2)

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, Y.-L.; Flesch, G. D.; Ng, C. Y.

    1997-01-01

    Absolute total cross sections for the state-selected reactions of O+(4S,2D,2P)+H2 (D2) have been measured in the center-of-mass collision energy (Ec.m.) range of 0.02-12 eV. The cross sections for OH+ (OD+) from O+(2D)+H2 (D2) are slightly higher than those from O+(4S)+H2 (D2), whereas the OH+ (OD+) cross sections from O+ (2P)+H2 (D2) are ≈40% lower than those from O+(4S)+H2 (D2) and O+ (2D)+H2 (D2). At Ec.m.<0.5 eV, the total cross sections for OH+ (OD+) from O+ (4S)+H2 (D2) and O+(2D)+H2 (D2) are in accord with those predicted by the Langevin-Gioumousis-Stevenson model. Significantly higher cross sections are observed for H+ (D+) and H2+ (D2+) from O+(2D)+H2 (D2) and O+(2P)+H2 (D2), as compared to those from O+(4S)+H2 (D2). The exothermic nature of the O+(2D,2P)+H2 (D2) charge transfer collisions accounts for the high cross sections observed for H2+ (D2+). While the H+ (D+) ions observed in the O+(4S)+H2 (D2) reaction are identified with the H+ (D+)+O+H channel, the H+ (D+) ions from the reactions involving O+(2D) and O+(2P) are associated mostly with the H+ (D+)+OH (OD) channel, the formation of which obeys the spin-conservation rule. The comparison of the sum (σT) of cross sections for OH+ (OD+), H2+ (D2+), and H+ (D+) from O+(4S)+H2 (D2) to those from O+(2D)+H2 (D2) and O+(2P)+H2 (D2) shows that the σTs for O+(4S)+H2 (D2), O+(2D)+H2 (D2), and O+(2P)+H2 (D2) at Ec.m.<0.5 eV are comparable. At Ec.m.>0.5 eV, the σTs for O+(2P)+H2 (D2) are greater than those for O+(2D)+H2 (D2), which in turn are greater than those for O+(4S)+H2 (D2). This observation is attributed to the increase in the number of accessible product channels for reactions involving the excited O+(2D) and O+(2P) reactant ions.

  15. Non-coplanar compact configurations of nuclei and non-compound-nucleus contribution in the fusion cross section of the 12C+93Nb reaction

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Hemdeep, Kaur, Arshdeep; Gupta, Raj K.

    2016-02-01

    Background: In our earlier study of the 12C+93Nb→*105Ag reaction at three near- and below-barrier energies (Ec .m .=41.097 , 47.828, and 54.205 MeV), using the dynamical cluster-decay model (DCM) with various nuclear interaction potentials (the Blocki et al. pocket formula and others derived from the Skyrme energy density formalism) for compact, coplanar (Φc=00 ) nuclei, we found a large non-compound-nucleus (nCN) contribution in the measured fusion cross section of this reaction. Purpose: In the present work, we look for the effect of using non-coplanar, compact configurations (Φc≠00 ), in the Blocki et al. pocket formula of the nuclear proximity potential, on the non-compound-nucleus (nCN) contribution, using the DCM. Methods: Allowing the Φ degree of freedom in the DCM formalism, we calculate the compound-nucleus (CN) and nCN cross sections. The only parameter of the DCM is the neck-length parameter Δ R , which also fits the empirically determined nCN cross section nearly exactly, under the assumption of considering it like a quasifission process where the fragment preformation factor P0=1 . Results: With the Φ degree of freedom included, at the higher two energies the nCN cross section gets enhanced, and hence the pure CN cross section is decreased, since the calculated (total) fusion cross section is fitted to experimental data. The parameter Δ R for the nCN contribution is smaller, and hence the reaction time larger, than for the CN decay process. Also, the contributing angular momentum ℓmax value increases in going from Φc=00 to Φc≠00 for both the CN and nCN processes. The intermediate mass fragments (IMFs), measured up to mass 13 in this reaction, are shown extended up to mass 16, and the fusion-fission (f f ) region is identified as A /2 ±16 , the same as for the Φc=00 case. Conclusions: As a result of enhanced nCN cross section due to Φc≠00 , the CN fusion probability PCN for *105Ag changes its behavior from an increasing to a

  16. The Role of Personal Goals in Depressive Reaction to Adverse Life Events: A Cross-Sectional Study

    PubMed Central

    Couyoumdjian, Alessandro; Ottaviani, Cristina; Trincas, Roberta; Spitoni, Grazia; Tenore, Katia; Mancini, Francesco

    2012-01-01

    Consistent with cognitive views of depression, we aimed to investigate the mediating role of personal goals in the relationship between stressful events and distinct patterns of depressive symptoms in a nonclinical sample. Participants identified a dysphoric episode that occurred in the previous year by reporting the severity of 12 depressive symptoms and their plausible cause. A goal taxonomy was used to determine how much the event interfered with the achievement of a series of personal goals. After controlling for age and current level of depression, the patterns of symptoms differed based on the triggering events. The relationship between sadness and affective losses was partially mediated by the personal goal of lovableness, and success was a partial mediator in the association between an event of failure and symptoms of worthlessness and anhedonia. Although the cross-sectional design of the study does not allow for conclusions on the direction of effects, findings suggest the importance of motivational factors in the development of specific patterns of depressive symptoms to adverse events. Assuming a continuum from low mood to clinical depression, treatment models could benefit from a precise identification of the specific stressors that initiate depressive behaviour and the personal meaning assigned to those events. PMID:23304090

  17. Measurement of the 18Ne(α,p0) 21Na reaction cross section in the burning energy region for x-ray bursts.

    PubMed

    Salter, P J C; Aliotta, M; Davinson, T; Al Falou, H; Chen, A; Davids, B; Fulton, B R; Galinski, N; Howell, D; Lotay, G; Machule, P; Murphy, A StJ; Ruiz, C; Sjue, S; Taggart, M; Walden, P; Woods, P J

    2012-06-15

    The 18Ne(α,p) 21Na reaction provides one of the main HCNO-breakout routes into the rp process in x-ray bursts. The 18Ne(α,p0) 21Na reaction cross section has been determined for the first time in the Gamow energy region for peak temperatures T∼2  GK by measuring its time-reversal reaction 21Na(p,α) 18Ne in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(α,p) 21Na reaction.

  18. Differential cross sections and product rotational polarization in A + BC reactions using wave packet methods: H+ + D2 and Li + HF examples.

    PubMed

    Zanchet, A; Roncero, O; González-Lezana, T; Rodríguez-López, A; Aguado, A; Sanz-Sanz, C; Gómez-Carrasco, S

    2009-12-31

    The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate transformation required when using reactant Jacobi coordinates, as recently proposed [ J. Chem. Phys. 2006 , 125 , 054102 ], the method is first applied to the H + D(2) reaction as a benchmark, for which exact time-independent calculations are also performed. It is found that the use of reactant coordinates yields accurate results, with a computational effort slightly lower than that when using product coordinates. The H(+) + D(2) reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections for individual final rotational states of the products are obtained based on exact dynamical calculations for some selected total angular momenta, combined with the random phase approximation to save the high computational time required to calculate all partial waves with very long propagations. The results obtained are in excellent agreement with available exact time-independent calculations. Finally, the method is applied to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross sections are not available. The results are compared with recent quasiclassical simulations and experimental results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is also analyzed as a function of the scattering angle.

  19. Experimental cross-sections of deuteron-induced reaction on 89Y up to 20 MeV; comparison of natTi(d,x)48V and 27Al(d,x)24Na monitor reactions

    NASA Astrophysics Data System (ADS)

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-10-01

    We measured cross-sections of the deuteron-induced reactions on 89Y in the energy range of 3.9-19.5 MeV. Excitation functions for formation of 88Zr, 89mZr, 89Zr, 88Y, 90mY and 87mSr were determined and compared with previously published data and prediction of the TALYS code. Thick target yields for production of 88Zr, 89Zrcum, 88Y, 90mY and 87mSr were calculated from the measured cross-sections. Achievable activity versus radionuclidic purity of medically relevant 89Zr is discussed and compared with the production via the 89Y(p,n) reaction. Parallel use of titanium and aluminium beam monitors revealed systematic difference between the recommended cross-sections of both monitoring reactions and provided new cross-section data for formation of 24Na, 27Mg, 43Sc, 44mSc, 44Sc, 46Sc, 47Sc and 48Sc. The cross-sections for the natTi(d,x)46Sc reactions agree very well with recently proposed recommended values.

  20. Chemiluminescence from the Ca*(/sup 3/P) + SF/sub 6/ reaction: absolute cross section, photon yields, and electronic branching

    SciTech Connect

    Verdasco, E.; Rabanos, V.S.; Aoiz, F.J.; Urena, A.G.

    1987-04-09

    A study of the chemiluminescence under single-collision conditions of the reaction of the metastable Ca(4s4p /sup 3/P/sup 0/) of atomic calcium with SF/sup 6/ is presented. Chemiluminescence cross sections and photon yields for production of various CaF (A,B) band systems are also reported. The observed electronic branching ratio sigma/sub A//sigma/sub B/ is 4.77, and a comparison with several statistical model calculations is also discussed.

  1. Evidence for a pairing anti-halo effect in the odd-even staggering in reaction cross sections of weakly bound nuclei

    SciTech Connect

    Hagino, K.; Sagawa, H.

    2011-07-15

    We investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a three-body model, respectively. We show that the odd-even staggering in the reaction cross sections of {sup 30,31,32}Ne and {sup 14,15,16}C are successfully reproduced, and thus the staggering can be attributed to the pairing anti-halo effect. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for s and p waves using the HFB wave functions.

  2. Cross sections of the 56Fe(n ,α ) 53Cr and 54Fe(n ,α ) 51Cr reactions in the MeV region

    NASA Astrophysics Data System (ADS)

    Wang, Zhimin; Fan, Xiao; Zhang, Luyu; Bai, Huaiyong; Chen, Jinxiang; Zhang, Guohui; Gledenov, Yu. M.; Sedysheva, M. V.; Krupa, L.; Khuukhenkhuu, G.

    2015-10-01

    Cross sections of the 56Fe(n ,α ) 53Cr and 54Fe(n ,α )51Cr reactions were measured at En=5.5 and 6.5 MeV and En=4.0 ,4.5 ,5.5 ,and 6.5 MeV , respectively, using a double-section gridded ionization chamber as the α -particle detector. Natural iron and enriched 56Fe and 54Fe foil samples were prepared. A deuterium gas target was used to produce monoenergetic neutrons through the 2H(d ,n )3He reaction. Two rounds of experiments were performed at the 4.5-MV Van de Graaff Accelerator of Peking University. The foreground and background were measured in separate runs. The neutron flux was monitored by a B F3 long counter, and the cross sections of the 238U(n ,f ) reaction were used as the standard. Present results are compared with those of the talys-1.6 code calculations, existing measurements, and evaluations.

  3. From γ emissions to (n,xn) cross sections of interest: The role of GAINS and GRAPhEME in nuclear reaction modeling

    NASA Astrophysics Data System (ADS)

    Kerveno, M.; Bacquias, A.; Borcea, C.; Dessagne, Ph.; Henning, G.; Mihailescu, L. C.; Negret, A.; Nyman, M.; Olacel, A.; Plompen, A. J. M.; Rouki, C.; Rudolf, G.; Thiry, J. C.

    2015-12-01

    During the last 10 years, in the general context of nuclear energy applications and future reactors development, our collaboration has performed measurements of (n, x nγ cross sections to study (n, xn) reactions. Large sets of new and accurate experimental data have been produced on a variety of nuclei from 7Li to 238U. Comparisons with nuclear reaction code calculations have shown that the predictions of these exclusive cross sections are a real challenge for the theoretical codes. Indeed many processes are involved as evaporation, fission if fissionable nucleus, direct and pre-equilibrium reactions, etc. All these processes should be simultaneously well described by the models that using nuclear structure description for optical potential, level densities, decay scheme, etc. In this article, we review what we have learned since the last P(ND)2 workshop held in 2005 (A.J.M. Plompen, Proceedings of the Perspectives on Nuclear data for the Next Decade Workshop, Bruyères-le-Châtel, France, 26-28 September 2005, NEA Report N° 6121, p. 151) and highlight how we can further progress in this field in order to provide new, complete, accurate and relevant experimental data.

  4. Extension of activation cross section data of long lived products in deuteron induced nuclear reactions on platinum up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2017-06-01

    In the frame of a systematical study of light ion induced nuclear reactions on platinum, activation cross sections for deuteron induced reactions were investigated. Excitation functions were measured in the 20.8-49.2 MeV energy range for the natPt(d,xn)191,192,193,194,195,196m2,196g,198g,199Au, natPt(d,x)188,189,191,195m,197m,197gPt and natPt(d,x)189,190,192,194m2Ir reactions by using the stacked foil irradiation technique. The experimental results are compared with previous results from the literature and with the theoretical predictions in the TENDL-2014 and TENDL-2015 libraries. The applicability of the produced radio-tracers for wear measurements has been presented.

  5. Cross-section measurement of the /sup 3/He(n,. gamma. ) reaction at E/sub n/ = 24. 5 keV

    SciTech Connect

    Wervelman, R.; Abrahams, K.; Stecher-Rasmussen, F. ); Postma, H.; Davids, G.J.; Bots, G.J.C. )

    1989-08-01

    At 24.5-keV neutron energy, the radiative capture of neutrons proceeds with only a few parts per million compared to to the scattering and (n,p) reactions. Nevertheless, the radiative capture is of interest in the study of fusion reactions, which occur in the sun or in fusion reactors. This reaction yields very high energy (20.6-MeV) gamma rays which are outstanding above any background and therefore may be of diagnostic value in fusion reactor research. A cross-section value {sigma}/sub n{gamma}/ (24.5 keV) = 9.2 +- 2.0 {mu}b is obtained, which is in good agreement with the value 12 +- 6 {mu}b from earlier literature.

  6. Neutron cross sections

    SciTech Connect

    Not Available

    1988-01-01

    This handbook displays curves of neutron cross sections in the energy range of 0.01 eV to 200 MeV (and associated information) as a function of incident neutron energy. Tables include reference to all data. Information on isomeric state production is also included. This book represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, the third edition of which was published in 1976.

  7. Observation of a reactive resonance in the integral cross section of a six-atom reaction: F+CHD3.

    PubMed

    Zhou, Jingang; Lin, Jim J; Liu, Kopin

    2004-07-08

    The title reaction was investigated under crossed-beam conditions at collisional energies ranging from about 0.4 to 7.5 kcal/mol. Product velocity distributions were measured by a time-sliced, velocity-map imaging technique to explicitly account for the density-to-flux transformation factors. Both the state-resolved, pair-correlated excitation functions and vibrational branching ratios are presented for the two isotopic product channels. An intriguing resonance tunneling mechanism occurring near the reaction threshold for the HF+CD3 product channel is surmized, which echoes the reactive resonances found previously for the F+HD-->HF+D reaction and more recently for the F+CH4 reaction. T

  8. Activation cross sections and isomeric ratios in reactions induced by 14.5 MeV neutrons on152Sm,154Sm and178Hf

    NASA Astrophysics Data System (ADS)

    Kirov, A.; Nenoff, N.; Georgieva, E.; Necheva, C.; Ephtimov, I.

    1993-09-01

    Cross sections for the reactions152Sm( n, p)152 g,m1, m2 Pm,154Sm( n, p)154 g,m Pm,178Hf( n, p)178 m,g Lu,154Sm( n, d)153Pm and152Sm( n, α)149Nd were measured at 14.5 MeV neutron energy by the activation method. On the basis of these cross sections, the associated isomeric ratios in154Pm,152Pm,178Lu and the comparison with the predictions of different compound and precompound models, conclusions are drawn about the role of the preequilibrium processes in 14.5 MeV neutron induced reactions. Calculations for equal angular momentum removal by equilibrium and preequilibrium emitted particles better reproduced the experimental isomeric ratios, than for higher angular momentum removal in the preequilibrium phase. The isomeric ratios may be used as a source of additional information about the spin of the isomeric states in152Pm and154Pm for which the spectroscopic information is uncertain.

  9. The {sup 12}C({sup 3}He,p{gamma}){sup 14}N reaction cross section for {gamma}-ray spectroscopy simulation of fusion plasmas

    SciTech Connect

    Proverbio, I.; Nocente, M.; Tardocchi, M.; Gorini, G.; Kiptily, V. G.; Collaboration: JET-EFDA Contributors

    2010-10-15

    High resolution {gamma}-ray spectroscopy measurements were performed in JET ({sup 3}He)D plasmas with high energy ion populations driven by radio-frequency (RF) heating. One of the first reactions investigated was {sup 12}C({sup 3}He,p{gamma}){sup 14}N, which was observed at low {sup 3}He concentrations. In order to interpret the measurements in this work, cross section data for the {sup 12}C({sup 3}He,p{gamma}){sup 14}N reaction are evaluated. Available data for the population of excited states in {sup 14}N up to the eighth level are assessed in the range E{sub 3He}=0-5 MeV. Discrepancies and gaps in the database have been solved by means of interpolations and consistency analysis. The evaluated cross section data are used to predict the intensity ratio of characteristic 2.31 and 1.63 MeV {gamma}-rays.

  10. Measurement and R-matrix analysis of the nitrogen-15(p,gamma0)oxygen-16 reaction cross section

    NASA Astrophysics Data System (ADS)

    Leblanc, Paul James, IV

    2010-12-01

    Along with the p-p chains, the CNO cycle is the main source of energy production inside of stars with masses larger than the sun. The 15 N + p reaction is the first branch point of this cycle, where the (p,alpha) reaction returns material to the CN cycle and the (p,gamma) reaction leads to the NO cycle, and thus plays a role in determining the final energy production of the process and influences the abundances of oxygen isotopes. This project involves obtaining new measurements for the 15N(p,gamma 0)16O reaction. Dominated by two broad resonances at Ep = 338 and 1028 keV [45], measurements of this reaction were performed in the proton energy range from 1800 keV down to 130 keV. Particular attention was paid to the area between the two dominant resonances, along with the low energy region, as these are the most important regions in determining the S(0) extrapolations [48]. To obtain this measurement, article accelerators at both the University of Notre Dame's Nuclear Science Laboratory (NSL) and the Underground Laboratory for Nuclear Astrophysics (LUNA) in Gran Sasso, Italy were used. In both locations, high purity germanium detectors were used to detect gamma-rays from the reaction of around 13 MeV. It was not possible to measure down to energies corresponding to relevant stellar environment temperatures, and so theoretical fits and extrapolations to the data must be made. To this end, the multi-level, multi-channel R-matrix code AZURE was used. The resulting S factor calculations were used to calculate new reaction rates for different temperature values, and gives up to a factor of 2 difference from currently used compilations [4].

  11. Investigation of coulomb and pairing effects using new developed empirical formulas for proton-induced reaction cross sections

    SciTech Connect

    Tel, E. Aydin, E. G.; Aydin, A.; Kaplan, A.; Boeluekdemir, M. H.; Okuducu, S.

    2010-03-15

    We have investigated Coulomb and pairing effects by using new empirical formulas including the new coefficients for (p, {alpha}) at 17.9 MeV, (p, np) at 22.3 MeV, and (p, n{alpha}) at 24.8 and 28.5 MeV energies. A new formula is obtained by adjusting Levkovskii's original asymmetry parameter formula and also Tel et al. formula for proton-induced reactions. The new coefficients by using least-squares fitting method for the reactions are determined. In addition, the findings of the present study are compared with the available experimental data.

  12. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections

    NASA Astrophysics Data System (ADS)

    Laszlo, Kenneth J.; Buckner, John H.; Munger, Eleanor B.; Bush, Matthew F.

    2017-02-01

    The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than 4.

  13. Cross Section of OH Radical Overtone Transition near 7028 cm(-1) and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals.

    PubMed

    Assaf, Emmanuel; Fittschen, Christa

    2016-09-15

    The absorption cross section of an overtone transition of OH radicals at 7028.831 cm(-1) has been measured using an improved experimental setup coupling laser photolysis to three individual time-resolved detection techniques. Time-resolved relative OH radical profiles were measured by laser-induced fluorescence (LIF), and their absolute profiles have been obtained by cw-cavity ring-down spectroscopy (cw-CRDS). HO2 radicals were quantified simultaneously at the well-characterized absorption line at 6638.21 cm(-1) by a second cw-CRDS absorption path. Initial OH concentrations and thus their absorption cross sections have been deduced from experiments of 248 nm photolysis of H2O2: OH and HO2 profiles have been fitted to a simple kinetic model using well-known rate constants. The rate constant of the reaction between OH and HO2 radicals turned out to be sensitive to the deduction of the initial OH concentration and has been revisited in this work: OH decays have been observed in the presence of varying excess HO2 concentrations. A rate constant of (1.02 ± 0.06) × 10(-10) cm(3) s(-1) has been obtained, in good agreement with previous measurements and recent recommendations. An absorption cross section of σOH = (1.54 ± 0.1) × 10(-19) cm(2) at a total pressure of 50 Torr helium has been obtained from consistent fitting of OH and HO2 profiles in a large range of concentrations.

  14. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections

    NASA Astrophysics Data System (ADS)

    Laszlo, Kenneth J.; Buckner, John H.; Munger, Eleanor B.; Bush, Matthew F.

    2017-07-01

    The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than 4.

  15. Comment on 'Low-energy cross sections in the {sup 12}C({alpha},{gamma}){sup 16}O reaction'

    SciTech Connect

    Descouvemont, P.; Dufour, M.

    2010-02-15

    We show that the E1 and E2 S factors recommended by Katsuma [Phys. Rev. C 78, 034606 (2008)] do not include well-known constraints and that the model is inappropriate for the {sup 12}C({alpha},{gamma}){sup 16}O reaction.

  16. Probing the weakly-bound neutron orbit of {sup 31}Ne with total reaction and one-neutron removal cross sections

    SciTech Connect

    Horiuchi, W.; Suzuki, Y.; Capel, P.; Baye, D.

    2010-02-15

    A candidate of a neutron-halo nucleus, {sup 31}Ne, contains a single neutron in the pf shell. Within the Glauber and eikonal models, we analyze reactions used to study {sup 31}Ne. We show in a {sup 30}Ne+n model that the magnitudes of the total reaction and above all of the one-neutron removal cross sections of {sup 31}Ne on {sup 12}C and {sup 208}Pb targets strongly depend on the orbital angular momentum of the neutron, thereby providing us with efficient ways to determine both the spin-parity and structure of the ground state of {sup 31}Ne. Besides these inclusive observables, we also calculate energy and parallel-momentum distributions for the breakup of {sup 31}Ne and show their strong dependence on the orbital of the valence neutron in the bound state of {sup 31}Ne.

  17. Inelastic partial {gamma}-ray cross sections of {sup 150}Sm+n reactions for E{sub n} = 1-15 MeV

    SciTech Connect

    Dashdorj, D.; Kawano, T.; Devlin, M.; Fotiades, N.; Nelson, R. O.; Mitchell, G. E.; Becker, J. A.; Garrett, P. E.; Kunieda, S.

    2011-06-28

    The {sup 150}Sm(n,n'{gamma}) reaction was measured from E{sub n} = 1 to 15 MeV at the Los Alamos Neutron Science Cemter (LANSCE). The {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Measured {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections, Twenty four individual {gamma}-rays up to E{sub x} = 1.8 MeV in {sup 150}Sm were measured. Results are compared with enhanced Hauser Feshbach model calculations: the spin distribution in the pre-equilibrium reaction is calculated with the quantum mechanical model of Feshbach, Kerman and Koonin. The particle transmission coefficients were calculated with two different global optical model potential parameter sets. We employed the coupled-channel optical model based on the soft rotor model and with spherical potential.

  18. Cross sections and analyzing powers for (p ⃗,n p ) reactions of 2H, 6Li, and 12C at 296 MeV

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Yasuda, J.; Dozono, M.; Fukunaga, T.; Gotanda, S.; Hatanaka, K.; Ishibashi, K.; Kanaya, Y.; Kimura, S.; Maeda, Y.; Maeda, Y.; Nishio, Y.; Noro, T.; Nozoe, T.; Ohnaka, K.; Sakaguchi, S.; Sakemi, Y.; Sekiguchi, K.; Taguchi, T.; Wada, Y.

    2017-07-01

    We report measurements of cross sections and analyzing powers for nucleon-knockout (p ⃗,n p ) reactions of 2H, 6Li, and 12C at 296 MeV using the RCNP NPOL3 neutron detector and large acceptance spectrometer. The 1 s and 1 p knockout reactions were successfully separated with a separation-energy resolution of approximately 6 MeV. The resulting data were compared with plane-wave and distorted-wave impulse approximation calculations employing the nucleon-nucleon t matrix in free space. No significant differences were identified in the case of the present analyzing power data, in contrast to the significant reductions observed in (p ⃗,2 p ) values. The conventional Pauli blocking and nuclear binding effects with the g matrix and the relativistic effect of nucleon mass reduction in the nuclei are also discussed.

  19. Cross section measurements of the 3He(α, γ)7Be reaction using DRAGON at TRIUMF

    NASA Astrophysics Data System (ADS)

    Nara Singh, B. S.; Sjue, S. K. L.; Davids, B.; Hass, M.; Adsley, P.; Buchmann, L.; Carmona-Gallardo, M.; Fallis, J.; Fox, S. P.; Fulton, B.; Galinski, N.; Hager, U.; Hutcheon, D. A.; Laird, A. M.; Martin, L.; Ottewell, D.; Reeve, S.; Ruiz, C.; Ruprecht, G.; Shotter, A.; Tengblad, O.

    2012-02-01

    We present our initial efforts with the DRAGON separator at TRIUMF facility towards obtaining the energy dependence of the astrophysical S-factor for 3He(α, γ)7Be reaction in the energy range of Ecm = 2 to 3 MeV that was recommended by the recent evaluations. A comparison between the existing data and our new complementary Madrid data, together with the recent theoretical calculations, is also given in the context of our ongoing work.

  20. Reactive differential cross sections in the rotating linear model: reactions of fluorine atoms with hydrogen molecules and their isotopic variants

    SciTech Connect

    Hayes, E.F.; Walker, R.B.

    1984-07-19

    Angular distributions are predicted for the reactions f + H/sub 2/(v=0) ..-->.. H + HF(v'=2), F + HD(v=0) ..-->.. D + HF(v'=2), and F + D/sub 2/(v=0) ..-->.. D + DF(v'=3) by solving the quantum-dynamical equations for the rotating linear model with corrections for bending zero-point energy (the BCRLM approximation). For each of these reactions, time delays, deflection functions, opacity functions, and resonance parameters are reported. The resonance contributions to the angular distributions are predicted to be relatively small for each of the title reactions. The resonance lifetimes in all cases are found to be greater than 4 times the vibrational period of the reactant diatomic molecule. However, the angular velocities, lifetimes, and amplitudes of the resonance states are not collectively large enough to produce discernible effects in the angular distributions. Shifts in the peaks of the angular distributions from backward to sideways scattering as the collision energy is increased appear to be due primarily to direct (i.e., nonresonance) scattering. 14 references, 20 figures, 5 tables.

  1. Cross-sections for (p,x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes

    SciTech Connect

    Wooten, A. Lake; Lewis, Benjamin C.; Lapi, Suzanne E.

    2014-12-11

    The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. Furthermore, the decay properties of 52Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. There are several parameters essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data. Our paper contributes to the routine production of 52gMn for biomedical research by contributing experimental cross-sections for natural chromium (natCr) targets for the natCr(p,x)52gMn reaction, as well as for the production of the radiocontaminants 52m,54Mn.

  2. Cross-sections for (p,x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes

    DOE PAGES

    Wooten, A. Lake; Lewis, Benjamin C.; Lapi, Suzanne E.

    2014-12-11

    The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. Furthermore, the decay properties of 52Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. There are several parameters essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data.more » Our paper contributes to the routine production of 52gMn for biomedical research by contributing experimental cross-sections for natural chromium (natCr) targets for the natCr(p,x)52gMn reaction, as well as for the production of the radiocontaminants 52m,54Mn.« less

  3. Cross-sections for (p,x) reactions on natural chromium for the production of (52,52m,54)Mn radioisotopes.

    PubMed

    Wooten, A Lake; Lewis, Benjamin C; Lapi, Suzanne E

    2015-02-01

    The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. The decay properties of (52)Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. Several parameters that are essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data. This work contributes to the routine production of (52g)Mn for biomedical research by contributing experimental cross-sections for natural chromium ((nat)Cr) targets for the (nat)Cr(p,x)(52g)Mn reaction, as well as for the production of the radiocontaminants (52m,54)Mn.

  4. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  5. Systematics of the Extraction of the Elementary γn -->π- p Reaction Cross Sections beyond the Impulse Approximation for γd -->π- pp

    NASA Astrophysics Data System (ADS)

    Berroteran, Oliver; Strakovsky, Igor

    2015-10-01

    The radiative decay width of neutral baryons may be extracted from π- and π0 photo-production off the neutron, involving a bound neutron target, requiring the use of model-dependent nuclear final state interaction (FSI) corrections. The cross section for the processes γn -->π- p will be extracted from recent CLAS (E = 400 - 2500 MeV) and MAX-lab (E = 146 - 166 MeV) measurements for γd -->π- pp accounting for Fermi motion effects in the Impulse Approximation (IA) as well as nucleon-nucleon- and pion-nucleon-FSI effects beyond the IA. To test the GW-ITEP FSI code for γn -->π- p in a reliable way to obtain information on systematics of the extraction of the elementary γn -->π- p reaction cross sections beyond the IA for γd -->π- pp, three key factors were chosen and analyzed: (i) The sensitivity to the number of steps of integration for numerical calculations of the five-fold integrals in the determination of FSI amplitudes; (ii) The sensitivity to the alternative deuteron-wave functions. (iii) The sensitivity to the experimental kinematic cut-off of the detected protons (the experimental information is uncertain). Preliminary estimations show that the contribution of all three factors to the overall systematics is less than 4%. U.S. DOE, Office of Science, Office of Nuclear Physics, Grant DE-FG02-99-ER41110.

  6. Improved activation cross sections for vanadium and titanium

    SciTech Connect

    Muir, D.W.; Arthur, E.D.

    1983-01-01

    Vanadium alloys such as V-20Ti and V-Cr-Ti are attractive candidates for use as structural materials in fusion-reactor blankets. The virtual absence of long-lived activation products in these alloys suggest the possibility of reprocessing on an intermediate time scale. We have employed the modern Hauser-Feshbach nuclear-model code GNASH to calculate cross sections for neutron-activation reactions in /sup 50/V and /sup 51/V, to allow a more accurate assessment of induced radioactivity in vanadium alloys. In addition, cross sections are calculated for the reactions /sup 46/Ti(n,2n) and /sup 45/Ti(n,2n) in order to estimate the production of /sup 44/Ti, a 1.2-MeV gamma-ray source with a half-life of 47 years.

  7. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    SciTech Connect

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated with typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the

  8. Detailed determination of the nuclear fusion radius by a simultaneous optical model calculation of elastic scattering and fusion cross sections in reactions involving weakly bound projectiles

    SciTech Connect

    Camacho, A. Gomez; Aguilera, E. F.; Gomes, P. R. S.; Lubian, J.

    2007-10-15

    Within the optical model for direct reactions, simultaneous calculations of elastic scattering, complete fusion, and total reaction cross sections for energies around the Coulomb barrier are presented for reactions involving the weakly bound projectile {sup 9}Be on {sup 64}Zn. Volume (W{sub F}) and surface (W{sub DR}) Woods-Saxon optical potentials are used such that the former is responsible only for complete fusion reactions while the latter for all direct reactions plus incomplete fusion. Simultaneous fits can be obtained with several sets of potential parameters, but if we impose the condition that the strength of W{sub F} is smaller than the strength of W{sub DR} at the tail region of the potential (this condition is discussed in detail), then values are required for r{sub F} and r{sub DR} of around 1.6 and 1.7-1.9 fm, respectively. These values are much larger than those frequently used in barrier penetration model calculations. Through the energy dependence of the real and imaginary parts of the polarization potentials, we show that the usual threshold anomaly does not show up for this system, but instead there is evidence of the presence of a breakup threshold anomaly.

  9. Measurement of longitudinal and transverse cross sections in the 3He(e,e'pi+)3H reaction at W=1.6 GeV

    SciTech Connect

    D. Gaskell; A. Ahmidouch; P. Ambrozewicz; H. Anklin; J. Arrington; K. Assamagan; S. Avery; K. Bailey; O. K. Baker; S. Beedoe; B. Beise; H. Breuer; D. S. Brown; R. Carlini; J. Cha; N. Chant; A. Cowley; S. Danagoulian; D. De Schepper; J. Dunne; D. Dutta; R. Ent; L. Gan; A. Gasparian; D. F. Geesaman; R. Gilman; C. Glashausser; P. Gueye; M. Harvey; O. Hashimoto; W. Hinton; G. Hofman; C. Jackson; H. E. Jackson; C. Keppel; E. Kinney; D. Koltenuk; A. Lung; D. Mack; D. McKee; J. Mitchell; H. Mkrtchyan; B. Mueller; G. Niculescu; I. Niculescu; T. G. O'Neill; V. Papavassiliou; D. Potterveld; J. Reinhold; P. Roos; R. Sawafta; R. Segel; S. Stepanyan; V. Tadevosyan; T. Takahashi; L. Tang; B. Terburg; D. Van Westrum; J. Volmer; T. P. Welch; S. Wood; L. Yuan; B. Zeidman; B. Zihlmann

    2001-12-21

    The coherent 3He(e,e{pi}+)3H reaction was measured at Q2 = 0.4 (GeV/c)2 and W = 1.6 GeV for two values of the virtual photon polarization, {epsilon}, allowing the separation of longitudinal and transverse cross sections. The results from the coherent process on 3He were compared to H(e,e{pi}+)n data taken at the same kinematics. This marks the first direct comparison of these processes. At these kinematics (p{pi} = 1.1 GeV/c), pion rescattering from the spectator nucleons in the 3He(e,e{pi}+)3H process is expected to be small, simplifying the comparison to {pi}+ production from the free proton.

  10. Longitudinal and Transverse Cross Sections in the {sup 1}H ({ital e},thinspthinsp {ital e}{sup {prime}}{ital K}{sup +}){Lambda} Reaction

    SciTech Connect

    Niculescu, G.; Gueye, P.; Ahmidouch, A.; Assamagan, K.; Avery, S.; Baker, O.K.; Beard, K.; Cha, J.; Eden, T.; Harvey, M.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, I.; Savage, G.; Tang, L.; Williams, R.; Mohring, R.M.; Beise, E.; Breuer, H.; Chang, C.C.; Chant, N.; Collins, G.; Duncan, F.; Ewell, L.; Gustafsson, K.K.; Lung, A.; Roos, P.; Abbott, D.; Baker, O.K.; Carlini, R.; Dunne, J.; Ent, R.; Keppel, C.; Mack, D.; Majewski, S.; Mitchell, J.; Tang, L.; Vulcan, W.; Wood, S.; Yan, C.; Ahmidouch, A.; Madey, R.; Amatuni, T.A.; Mkrtchyan, H.; Stepanyan, S.; Tadevosian, V.; Ambrozewicz, P.; Martoff, C.J.; Angelescu, T.; Mihul, A.; Teodorescu, L.; Armstrong, C.S.; Finn, M.; Meekins, D.; Bailey, K.; Cummings, W.; Geesaman, D.F.; Hansen, J.; Potterveld, D.; Reinhold, J.; Zeidman, B.; Beedoe, S.; Danagoulian, S.; Jackson, C.; Mtingwa, S.; Sawafta, R.; Volmer, J.; Cisbani, E.; De Leo, R.; Frullani, S.; Garibaldi, F.; Iodice, M.; Leone, T.; Lolos, G.; Perrino, R.; Urciuoli, G.M.; Dutta, D.; Segel, R.; Eyraud, L.; Furget, C.; Kox, S.; Real, J.

    1998-08-01

    The {sup 1}H( e,thinspe{sup {prime}}K{sup +}){Lambda} reaction was studied as a function of the squared four-momentum transfer, Q{sup 2} , and the virtual photon polarization, {var_epsilon} . For each of four Q{sup 2} settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c){sup 2} , the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q{sup 2} dependence of the {sigma}{sub L}/{sigma}{sub T} ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations. {copyright} {ital 1998} {ital The American Physical Society }

  11. Differential cross section and analyzing power of the p-vectorp{yields}pp{pi}{sup 0} reaction at a beam energy of 390 MeV

    SciTech Connect

    Maeda, Y.; Segawa, M.; Yoshida, H. P.; Ishida, T.; Yagita, T.; Kacharava, A.; Nomachi, M.; Shimbara, Y.; Sugaya, Y.; Tamura, K.; Yasuda, K.; Wilkin, C.

    2008-04-15

    The differential cross section and analyzing power A{sub y} of the p-vectorp{yields}pp{pi}{sup 0} reaction have been measured at RCNP in coplanar geometry at a beam energy of 390 MeV and the dependence on both the pion emission angle and the relative momentum of the final protons has been extracted. The angular variation of A{sub y} for the large values of the relative momentum studied here shows that this is primarily an effect of the interference of pion s and p waves and this interference can also explain the momentum dependence. Within the framework of a very simple model, these results would suggest that the pion-production operator has a significant long-range component.

  12. Calculation of (p,γ) and (p,α) nuclear reaction cross sections in stars up to 10 MeV

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpun, Ismail Hakki; Okur, Sureyya Gulistan

    2016-11-01

    In Knowledge of the proton-proton (p-p) chain and CNO cycle are required for the evolution of main sequence stars during the early formation of the universe. In this study, we summarized the excitation functions of (p,γ) and (p,α) reactions for 7Be(p,γ)8B, 12C(p,γ)13N, 13C(p,γ)14N, 14N(p,γ)15O and 15N(p,α)15O in p-p chain and CNO cycle using EMPIRE and TALYS computer up to 10 MeV. The calculated data on nuclear fusion cross sections in hydrogen-burning stars were compared with theoretical TENDL-2014 and ENDF/B-VII data from EXFOR. The calculation results show closed agreement between the calculations and the data from literature.

  13. Cross sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides

    NASA Astrophysics Data System (ADS)

    Steyn, G. F.; Vermeulen, C.; Szelecsényi, F.; Kovács, Z.; Hohn, A.; van der Meulen, N. P.; Schibli, R.; van der Walt, T. N.

    2014-01-01

    Cross sections are presented for various Dy, Tb and Gd radionuclides produced in the proton bombardment of 159Tb as well as for the reactions 152Gd(p,4n)149Tb and 155Gd(p,4n)152Tb up to 66 MeV. The experimental excitation functions are compared with theoretical predictions by means of the geometry-dependent hybrid (GDH) model as implemented in the code ALICE/ASH, as well as with values from the TENDL-2012 library and previous literature experimental data, where available. Physical yields have been derived for the production of some of the medically important radioterbiums, namely 149Tb (radionuclide therapy), 152Tb (PET) and 155Tb (SPECT). The indirect production of high-purity 155Tb via the decay of its precursor 155Dy is reported. The possibility of a large-scale production facility based on a commercial 70 MeV cyclotron is also discussed.

  14. Shortening Isolation of Patients With Suspected Tuberculosis by Using Polymerase Chain Reaction Analysis: A Nationwide Cross-sectional Study.

    PubMed

    Fløe, Andreas; Hilberg, Ole; Thomsen, Vibeke Østergaard; Lillebaek, Troels; Wejse, Christian

    2015-11-01

    Isolation of patients suspected for pulmonary tuberculosis is guided by serial sputum smears. This can result in isolation for days for patients with noncontagious tuberculosis. To determine whether a single sample negative for Mycobacterium tuberculosis complex at polymerase chain reaction (PCR) can guide isolation. We retrospectively evaluated sputum samples analyzed for M. tuberculosis complex at the International Reference Laboratory of Mycobacteriology, Copenhagen, Denmark in 2002-2011. We selected culture-confirmed tuberculosis cases with ≥3 samples within 14 days before or after the initial culture-positive sample. We repeated the process for those with ≥2 samples within 28 days. The primary outcome was PCR-negative, smear-positive patients. We included 53 533 sputum samples from 20 928 individuals; 1636 had culture-confirmed tuberculosis. Of these, 856 had ≥3 sputum samples analyzed within the 28 days, and 482 had ≥1 PCR result. Nine patients (2.5% of smear-positive patients) were smear positive/PCR negative; 8 of the 9 had a smear-positive result in only 1 of 3 samples, and 5 had a low smear grade. Of 722 patients with 2 samples, 7 (1.3% of smear-positive patients) were smear positive/PCR negative. Overall, none were smear positive for the sample that produced the negative PCR result. Primary PCR identified >97% of serial smear-positive cases. The majority of the missed cases had low-grade smears. Nevertheless, the occurrence of smear-positive/PCR-negative cases underlines the importance of increasing the quantity and quality of samples. Moreover, it is important that samples analyzed with PCR are cultured, owing to higher-sensitivity drug susceptibility testing, differential diagnosis, and surveillance. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Cross-sections for populating excited states in 150-153Sm via the (p,d) and (p,t) reactions

    NASA Astrophysics Data System (ADS)

    Humby, P.; Simon, A.; Beausang, C. W.; Gell, K.; Tarlow, T.; Vyas, G.; Ross, T. J.; Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Koglin, J.; Ota, S.; Allmond, J. M.; McCleskey, M.; McCleskey, E.; Saastamoinen, A.; Chyzh, R.; Dag, M.

    2014-09-01

    Light ion transfer reactions were used to populate low/medium spin states in 150-154Sm via the (p,p' γ), (p,d γ) and (p,t γ) reactions. The 25 MeV proton beam, with an average current of 1 nA, was provided by the K-150 Cyclotron at the Cyclotron Institute of Texas A&M University. The outgoing charged particles and coincident gamma-rays were detected using the STARLiTeR arrays. STARs (Silicon Telescope Array for Reaction studies), a highly segmented ΔE-E silicon telescope, provides particle identification as well as the energies, times and angular distributions of the protons, deuterons and tritons in the exit channels. LiTeR (Livermore Texas Richmond array), an array of six BGO shielded HPGe clover detectors, records the energy, time and angular distribution of the coincident gamma rays, providing excellent selectivity of the states of interest. Preliminary results for the cross-sections for direct population of states in 150-153Sm will be presented. Light ion transfer reactions were used to populate low/medium spin states in 150-154Sm via the (p,p' γ), (p,d γ) and (p,t γ) reactions. The 25 MeV proton beam, with an average current of 1 nA, was provided by the K-150 Cyclotron at the Cyclotron Institute of Texas A&M University. The outgoing charged particles and coincident gamma-rays were detected using the STARLiTeR arrays. STARs (Silicon Telescope Array for Reaction studies), a highly segmented ΔE-E silicon telescope, provides particle identification as well as the energies, times and angular distributions of the protons, deuterons and tritons in the exit channels. LiTeR (Livermore Texas Richmond array), an array of six BGO shielded HPGe clover detectors, records the energy, time and angular distribution of the coincident gamma rays, providing excellent selectivity of the states of interest. Preliminary results for the cross-sections for direct population of states in 150-153Sm will be presented. This work was partly supported by the US Department of Energy

  16. Evaluation of nuclear reaction cross section data for the production of (87)Y and (88)Y via proton, deuteron and alpha-particle induced transmutations.

    PubMed

    Zaneb, H; Hussain, M; Amjad, N; Qaim, S M

    2016-06-01

    Proton, deuteron and alpha-particle induced reactions on (87,88)Sr, (nat)Zr and (85)Rb targets were evaluated for the production of (87,88)Y. The literature data were compared with nuclear model calculations using the codes ALICE-IPPE, TALYS 1.6 and EMPIRE 3.2. The evaluated cross sections were generated; therefrom thick target yields of (87,88)Y were calculated. Analysis of radio-yttrium impurities and yield showed that the (87)Sr(p, n)(87)Y and (88)Sr(p, n)(88)Y reactions are the best routes for the production of (87)Y and (88)Y respectively. The calculated yield for the (87)Sr(p, n)(87)Y reaction is 104 MBq/μAh in the energy range of 14→2.7MeV. Similarly, the calculated yield for the (88)Sr(p, n)(88)Y reaction is 3.2 MBq/μAh in the energy range of 15→7MeV.

  17. Measurement of flux-weight average cross-sections of natZn(γ,xn) reactions in the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Cho, Young-Sik; Lee, Young-Ok; Shin, Sung-Gyun; Cho, Moo-Hyun; Kang, Yeong-Rok; Lee, Man-Woo

    2017-04-01

    The flux-weighted average cross-sections of (γ , xn) reactions on natZn induced by the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV have been determined by activation and off-line γ-ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The theoretical photon-induced reaction cross-sections of natZn as a function of photon energy were taken from TENDL-2014 nuclear data library based on TALYS 1.6 program. The flux-weighted average cross-sections were obtained from the literature data and the theoretical values of TENDL-2014 based on mono-energetic photon. The flux-weighted reaction cross-sections from the present work and literature data at different bremsstrahlung end-point energies are in good agreement with the theoretical values. It was found that the individual natZn(γ , xn) reaction cross-sections increase sharply from reaction threshold to certain values where the next reaction channel opens. There after it remains constant for a while, where the next reaction channel increases. Then it decreases slowly with increase of bremsstrahlung end-point energy due to opening of different reaction channels.

  18. Theoretical Formalism To Estimate the Positron Scattering Cross Section.

    PubMed

    Singh, Suvam; Dutta, Sangita; Naghma, Rahla; Antony, Bobby

    2016-07-21

    A theoretical formalism is introduced in this article to calculate the total cross sections for positron scattering. This method incorporates positron-target interaction in the spherical complex optical potential formalism. The study of positron collision has been quite subtle until now. However, recently, it has emerged as an interesting area due to its role in atomic and molecular structure physics, astrophysics, and medicine. With the present method, the total cross sections for simple atoms C, N, and O and their diatomic molecules C2, N2, and O2 are obtained and compared with existing data. The total cross section obtained in the present work gives a more consistent shape and magnitude than existing theories. The characteristic dip below 10 eV is identified due to the positronium formation. The deviation of the present cross section with measurements at energies below 10 eV is attributed to the neglect of forward angle-discrimination effects in experiments, the inefficiency of additivity rule for molecules, empirical treatment of positronium formation, and the neglect of annihilation reactions. In spite of these deficiencies, the present results show consistent behavior and reasonable agreement with previous data, wherever available. Besides, this is the first computational model to report positron scattering cross sections over the energy range from 1 to 5000 eV.

  19. Effect of surface energy constant and surface asymmetry constant in the charged particle emission cross-section for the reactions $ (78,82,86) Kr +(12) C $ 78 , 82 , 86 K r + 12 C

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, P.; Davoodabadi, S.

    2016-12-01

    The effects of the surface energy constant and the surface asymmetry constant in the charged particle emission cross section, have been examined by using the proximity potentials Prox77, BW91, AW95. The charged particle emission cross-section for the reactions ^{78,82,86} Kr +^{12} C have been calculated. Good consistency between the results of this work and the experimental data have been obtained using appropriate values of these constants.

  20. A cross-sectional study of cutaneous drug reactions in a private dental college and government medical college in eastern India.

    PubMed

    Chattopadhyay, C; Chakrabarti, N

    2012-01-01

    Cutaneous drug reactions are a common impediment in therapy, the incidence ranging from 2% to 8%. This cross-sectional study was designed to compare different trends of cutaneous drug reaction in two different socio-economic groups of patients in the same region. The aim was to evaluate common drugs implicated in causing reactions, describe the adverse cutaneous drug reactions, study the characteristics of patients presenting with the reactions. This is an observational study of cross-sectional type. The study was carried out in the department of Oral and Maxillofacial surgery in a Private dental College and department of General Medicine in a Medical College only on outdoor basis for 3 years. Out of 2000 patients observed in each college for their necessary treatment 75 patients in the dental College and 200 patients in the Medical College were reported to have various types of cutaneous drug reactions. Diagnosis was based on detailed history including temporal correlation between drug intake and onset of rash and thorough clinical examination Apart from history of drug intake, information regarding associated other allergy, comorbidity and severity (whether hospitalization was required or not) was recorded. Rechallenge with the drug was not possible due to ethical problem. Out of 2000 patients observed in each college 75 patients in dental College and 200 patients in Medical College were documented to have different kinds of cutaneous drug reactions. A total of 30 were male and 45 female in dental college whereas 90 male and 110 female patients were enrolled in Medical College. The age group of the patients in both the colleges ranged from 18 to 75 years. Common culprits observed in this study were antibiotics and NSAIDs. They had contributed 53% and 40% of the total skin reactions respectively in dental college and 47.5% and 45% in Medical College. We encountered 6 patients of systemic lupus erythematosus (SLE), 20 patients with allergic rhinitis and 12 patients

  1. Cross-sections of the reaction 232Th(p,3n)230Pa for production of 230U for targeted alpha therapy.

    PubMed

    Morgenstern, Alfred; Apostolidis, Christos; Bruchertseifer, Frank; Capote, Roberto; Gouder, Thomas; Simonelli, Federica; Sin, Mihaela; Abbas, Kamel

    2008-10-01

    (230)U/(226)Th is a promising novel alpha-emitter system for application in targeted alpha therapy of cancer. The therapeutic nuclides can be produced by proton irradiation of natural (232)Th according to the reaction (232)Th(p,3n)(230)Pa, followed by subsequent beta decay of (230)Pa to (230)U. In this study, the experimental excitation function for the (232)Th(p,3n)(230)Pa reaction up to 34 MeV proton energy has been measured using the stacked-foil technique. The proton energies in the various foils were calculated with the SRIM 2003 code and gamma-ray spectrometry was used to measure the activities of the various radioisotopes produced. The measured cross-sections are in good agreement with selected literature values and with model calculations using the EMPIRE II code. The reaction (232)Th(p,3n)(230)Pa allows the production of carrier-free (230)U in clinically relevant levels.

  2. Searching for the low-energy resonances in the 12C(12C,n)23Mg reaction cross section relevant for s-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bucher, B.; Fang, X.; Almaraz-Calderon, S.; Alongi, A.; Ayangeakaa, A. D.; Beard, M.; Best, A.; Browne, J.; Cahillane, C.; Couder, M.; deBoer, R.; Kontos, A.; Long, A.; Lu, W.; Lyons, S.; Notani, M.; Patel, D.; Paul, N.; Roberts, A.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W.; Tang, X. D.

    2013-03-01

    The 12C(12C,n) reaction (Q=-2.6 MeV) is a potential neutron source for the weak s-process occurring in shell-carbon burning of massive stars. The uncertainty in this reaction rate limits our understanding of the production of elements in the range 60 < A < 110. Current stellar models must rely on the smooth extrapolation of a dubious statistical model calculation based on experimental data taken at energies well above the Gamow window which lies below 3.2 MeV. At Notre Dame, this reaction cross section has been measured in finer steps at energies above 3.5 MeV, while successful measurements down to 3.1 MeV have just recently been achieved. In addition, a new extrapolation based on measurements of the mirror system has been developed which predicts a number of low-energy resonances while accounting well for the high-energy resonances. An overview of this work along with the most recent results and astrophysical implications are presented.

  3. Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: New data and evaluation

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Ditrói, F.; Hermanne, A.; Takács, S.; Ignatyuk, A. V.

    2012-06-01

    Cross-sections of proton induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 90Mo(cum), 93mMo, 99Mo(cum), 90Nb(cum), 92mNb, 95mNb, 95gNb, 96Nb and 88Zr(cum), 89Zr(cum) were measured up to 40 MeV proton energy by a using stacked foil technique and activation method. The main goals of this work were to study the production possibility of the medically important 99mTc and its 99Mo parent nucleus, to get experimental data for accelerator technology, for monitoring of proton beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analysed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE-II and TALYS codes.

  4. High-Resolution Neutron Capture and Total Cross-Section Measurements, and the Astrophysical 95Mo(n,gamma) Reaction Rate at s-process Temperatures

    SciTech Connect

    Koehler, Paul Edward; Guber, Klaus H; Harvey, John A; Wiarda, Dorothea

    2008-01-01

    Abundances of Mo isotopes predicted by stellar models of the s process are, except for {sup 95}Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for {sup 95}Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the {sup 95}Mo(n,{gamma}) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of {sup 95}Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to E{sub n} = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the {sup 95}Mo(n,{gamma}) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.

  5. Averaging cross section data so we can fit it

    SciTech Connect

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  6. Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and Cl Atoms.

    PubMed

    Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique

    2016-11-17

    The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.

  7. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  8. Measurement of 150-Sm(n,2ngammai) 149-Sm cross sections between threshold and 20 MeV

    SciTech Connect

    Cooper, J; Becker, J; Dashdorj, D; Dietrich, F S; Garrett, P; Hoffman, R; Younes, W; Nelson, R; Devlin, M; Fotiades, N

    2004-08-02

    Absolute partial {gamma}-ray cross sections for the production of discrete {gamma}-rays from the reaction {sup 150}Sm(n,2n{gamma}{sub i}){sup 149}Sm were measured using the GEANIE {gamma}-ray spectrometer coupled with the intense white neutron source at WNR/LANSCE. The measurements were made for incident neutron energies between threshold (8.04 MeV) and 20 MeV. The partial cross sections for 21 {gamma}-rays were extracted from the data. Of these, 17 were compared to calculations performed using the enhanced Hauser-Feshbach code STAPRE. The partial {gamma}-ray cross sections of the observed parallel decay paths to the ground state were summed, forming a lower bound for the (n,2n) reaction channel. A combination of theory and experiment was then used to deduce the (n,2n) reaction channel cross section.

  9. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions {sup 233,238}U, {sup 242}Pu, and {sup 248}Cm+{sup 48}Ca

    SciTech Connect

    Oganessian, Yu.Ts.; Utyonkov, V.K.; Lobanov, Yu.V.; Abdullin, F.Sh.; Polyakov, A.N.; Shirokovsky, I.V.; Tsyganov, Yu.S.; Gulbekian, G.G.; Bogomolov, S.L.; Gikal, B.N.; Mezentsev, A.N.; Iliev, S.; Subbotin, V.G.; Sukhov, A.M.; Voinov, A.A.; Buklanov, G.V.; Subotic, K.; Zagrebaev, V.I.; Itkis, M.G.; Patin, J.B.

    2004-12-01

    We have studied the dependence of the production cross sections of the isotopes {sup 282,283}112 and {sup 286,287}114 on the excitation energy of the compound nuclei {sup 286}112 and {sup 290}114. The maximum cross section values of the xn-evaporation channels for the reaction {sup 238}U({sup 48}Ca,xn){sup 286-x}112 were measured to be {sigma}{sub 3n}=2.5{sub -1.1}{sup +1.8} pb and {sigma}{sub 4n}=0.6{sub -0.5}{sup +1.6} pb; for the reaction {sup 242}Pu({sup 48}Ca,xn){sup 290-x}114: {sigma}{sub 2n}{approx}0.5 pb, {sigma}{sub 3n}=3.6{sub -1.7}{sup +3.4} pb, and {sigma}{sub 4n}=4.5{sub -1.9}{sup +3.6} pb. In the reaction {sup 233}U({sup 48}Ca,2-4n){sup 277-279}112 at E*=34.9=2.2 MeV we measured an upper cross section limit of {sigma}{sub xn}{<=}0.6 pb. The observed shift of the excitation energy associated with the maximum sum evaporation residue cross section {sigma}{sub ER}(E*) to values significantly higher than that associated with the calculated Coulomb barrier can be caused by the orientation of the deformed target nucleus in the entrance channel of the reaction. An increase of {sigma}{sub ER} in the reactions of actinide targets with {sup 48}Ca is consistent with the expected increase of the survivability of the excited compound nucleus upon closer approach to the closed neutron shell N=184. In the present work we detected 33 decay chains arising in the decay of the known nuclei {sup 282}112, {sup 283}112, {sup 286}114, {sup 287}114, and {sup 288}114. In the decay of {sup 287}114({alpha}){yields}{sup 283}112({alpha}){yields}{sup 279}110(SF), in two cases out of 22, we observed decay chains of four and five sequential {alpha} transitions that end in spontaneous fission of {sup 271}Sg (T{sub {alpha}}{sub /SF}=2.4{sub -1.0}{sup +4.3} min) and {sup 267}Rf (T{sub SF}{approx}2.3 h), longer decay chains than reported previously. We observed the new nuclide {sup 292}116 (T{sub {alpha}}=18{sub -6}{sup +16} ms,E{sub {alpha}}=10.66{+-}0.07 MeV) in the irradiation of the

  10. Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV

    SciTech Connect

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.

  11. Differential Cross Sections for the H + D2 → HD(v' = 3, j' = 4-10) + D Reaction above the Conical Intersection.

    PubMed

    Gao, Hong; Sneha, Mahima; Bouakline, Foudhil; Althorpe, Stuart C; Zare, Richard N

    2015-12-17

    We report rovibrationally selected differential cross sections (DCSs) of the benchmark reaction H + D2 → HD(v' = 3, j' = 4-10) + D at a collision energy of 3.26 eV, which exceeds the conical intersection of the H3 potential energy surface at 2.74 eV. We use the PHOTOLOC technique in which a fluorine excimer laser at 157.64 nm photodissociates hydrogen bromide (HBr) molecules to generate fast H atoms and the HD product is detected in a state-specific manner by resonance-enhanced multiphoton ionization. Fully converged quantum wave packet calculations were performed for this reaction at this high collision energy without inclusion of the geometric phase (GP) effect, which takes into account coupling to the first excited state of the H3 potential energy surface. Multimodal structures can be observed in most of the DCSs up to j' = 10, which is predicted by theory and also well-reproduced by experiment. The theoretically calculated DCSs are in good overall agreement with the experimental measurements, which indicates that the GP effect is not large enough that its existence can be verified experimentally at this collision energy.

  12. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-06-21

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  13. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-06-01

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  14. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets

    SciTech Connect

    Zhao, Bin; Sun, Zhigang E-mail: hguo@unm.edu; Guo, Hua E-mail: hguo@unm.edu

    2014-06-21

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D{sub 2} reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  15. Measurement of the transverse-longitudinal cross sections in the p(e-->,e'p)π0 reaction in the /Δ region

    NASA Astrophysics Data System (ADS)

    Mit-Bates Oops Collaboration; Kunz, C.; Kaloskamis, N. I.; Distler, M. O.; Zhou, Z.-L.; Alarcon, R.; Barkhuff, D.; Bernstein, A. M.; Bertozzi, W.; Calarco, J.; Casagrande, F.; Chen, J.; Comfort, J.; Dodson, G.; Dooley, A.; Dow, K.; Farkhondeh, M.; Georgakopoulos, S.; Gilad, S.; Hicks, R.; Hotta, A.; Jiang, X.; Karabarbounis, A.; Kowalski, S.; Margaziotis, D. J.; Mertz, C.; Miskimen, R.; Nakagawa, I.; Papanicolas, C. N.; Pavan, M. M.; Peterson, G.; Ramirez, A.; Rowntree, D.; Sarty, A. J.; Shaw, J.; Six, E.; Sparveris, N.; Soong, S.-B.; Stiliaris, S.; Tamae, T.; Tieger, D.; Tschalaer, C.; Tsentalovich, G.; Turchinetz, W.; Vellidis, C. E.; Warren, G. A.; Williamson, S.; Young, A.; Zhao, J.; Zwart, T.

    2003-07-01

    Accurate measurements of the p(e-->,e'p)π0 reaction were performed at Q2=0.127 (GeV/c)2 in the /Δ resonance energy region. The experiments at the MIT-Bates Linear Accelerator used an 820 MeV polarized electron beam with the out-of-plane magnetic spectrometer system (OOPS). In this Letter we report the first simultaneous determination of both the TL and /TL' (``fifth'' or polarized) cross sections at low Q2 where the pion cloud contribution is predicted to dominate the quadrupole amplitudes (E2 and C2). These are the real and imaginary parts of the transverse-longitudinal interference amplitudes and provide a sensitive determination of the Coulomb quadrupole amplitude and a test of reaction calculations. Comparisons with model calculations are presented. The empirical MAID calculation gives the best overall agreement with this accurate data. The parameters of this model for the values of the resonant multipoles are M1+(I=3/2)=(40.9+/-0.3)×10-3/mπ, /CMR=C2/M1=-6.5+/-0.3%, /EMR=E2/M1=-2.2+/-0.9%, where the errors are due to the experimental uncertainties.

  16. Reaction cross sections for. nu. sup 13 C r arrow e sup minus sup 13 N and. nu. sup 13 C r arrow. nu. prime sup 13 C sup * for low energy neutrinos

    SciTech Connect

    Fukugita, M. ); Kohyama, Y.; Kubodera, K.; Kuramoto, T. )

    1990-04-01

    Cross sections for {nu}+{sup 13}C reactions are calculated both for charged- and neutral-current reactions in order to estimate the efficiency of a {sup 13}C target as a solar neutrino detector. The relevant transition matrix elements are obtained using the semiphenomenological effective-operator approach for {ital p}-shell nuclei.

  17. Quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2010-06-01

    The radar cross section σC is an objective measure of the "radar visibility" of an object. As such, σC is an important concept for the correct characterization of the operational performance of radar systems. Furthermore, σC is equally essential for the design and development of stealth weapon systems and platforms. Recent years have seen the theoretical development of quantum radars, that is, radars that operate with a small number of photons. In this regime, the radar-target interaction is described through photon-atom scattering processes governed by the laws of quantum electrodynamics. As such, it is theoretically inconsistent to use the same σC to characterize the performance of a quantum radar. In this paper we define a quantum radar cross section σQ based on quantum electrodynamics and interferometric considerations. We discuss the theoretical challenges of defining σQ, as well as computer simulations of σC and σQ for simple targets.

  18. Fully Coriolis-coupled quantum studies of the H + O2 (upsilon i = 0-2, j i = 0,1) --> OH + O reaction on an accurate potential energy surface: integral cross sections and rate constants.

    PubMed

    Lin, Shi Ying; Sun, Zhigang; Guo, Hua; Zhang, Dong Hui; Honvault, Pascal; Xie, Daiqian; Lee, Soo-Y

    2008-01-31

    We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.

  19. State-to-state differential cross sections for D2 + OH → D + DOH reaction: Influence of vibrational excitation of OH reactant.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-10-07

    State-to-state differential cross sections (DCSs) are computed quantum mechanically in full dimensionality for the title reaction using a reactant-product decoupling scheme. The DCSs are calculated at three collision energies of 0.25, 0.28, and 0.34 eV, corresponding to the existing experimental results. In good agreement with experiment, the calculated DCSs are dominated by backward scattering, thanks to the direct rebound mechanism, and the DOH product has two quanta of OD stretching vibration in the newly formed OD bond. In addition, the vibrational excitation of the OH reactant is found to result in a very different but predictable vibrational distribution of the DOH product. It is further shown at the state-to-state level that the DCSs of the DOH(vOD, vb, vOH) product state from the OH(v = 1) reactant state resemble the ones of the DOH(vOD, vb, vOH-1) product state from the OH(v = 0) reactant state, thanks to the spectator nature of the OH moiety.

  20. State-to-state differential cross sections for D2 + OH → D + DOH reaction: Influence of vibrational excitation of OH reactant

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-10-01

    State-to-state differential cross sections (DCSs) are computed quantum mechanically in full dimensionality for the title reaction using a reactant-product decoupling scheme. The DCSs are calculated at three collision energies of 0.25, 0.28, and 0.34 eV, corresponding to the existing experimental results. In good agreement with experiment, the calculated DCSs are dominated by backward scattering, thanks to the direct rebound mechanism, and the DOH product has two quanta of OD stretching vibration in the newly formed OD bond. In addition, the vibrational excitation of the OH reactant is found to result in a very different but predictable vibrational distribution of the DOH product. It is further shown at the state-to-state level that the DCSs of the DOH(vOD, vb, vOH) product state from the OH(v = 1) reactant state resemble the ones of the DOH(vOD, vb, vOH-1) product state from the OH(v = 0) reactant state, thanks to the spectator nature of the OH moiety.

  1. Measurements of the ^89Y(n,n')^89Y^m reaction cross section using the ASP D-T fusion source

    NASA Astrophysics Data System (ADS)

    Simons, Andrew; Gardner, Matthew; Williams, Ben; Rubery, Michael

    2012-10-01

    A programme of measurements of the ^89Y(n,n')^89Y^m reaction cross section has commenced at AWE using the ASP accelerator to impinge deuterons onto tritiated titanium layers mounted on copper discs producing fluxes of approximately 10^11 neutrons per second. The neutrons are generated for up to half an hour and are used to excite Yttrium into its first isomeric state at 909.1 keV which then decays with a half life of 15.7 seconds. Two other high purity foils (of ^27Al and ^63,65Cu) are used as a reference to establish consistency between the isotopes energetic and temporal decay signatures. These foils mainly serve to check the reported total neutron fluence, produced by the accelerator, incident on the targets. The activation foils are extracted from the irradiation position by a pneumatic transfer system in ˜ 7 seconds and are transferred to the counting station in 5 to 30 seconds. Data are taken with a BEGe detector and recorded with both a Canberra Genie analogue system and a Xia Pixie-4 digital system. The results from the first campaigns are presented with a discussion of improvements and future plans.

  2. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  3. Systematization of cross sections for the production of residual nuclei on separated tin isotopes in reactions induced by various-energy protons

    NASA Astrophysics Data System (ADS)

    Balabekyan, A. R.; Danagulyan, A. S.; Drnoyan, J. R.; Demekhina, N. A.; Hovhannisyan, G. H.; Simonyan, A. E.; Adam, J.; Solnishkin, A. A.; Tsoupko-Sytnikov, V. M.

    2011-05-01

    Cross sections for the production of residual nuclei on the isotopes 112,118,120,124Sn irradiated with 0.66-, 1.0-, 3.65-, and 8.1-GeV proton beams were investigated. A ten-parameter semiempirical formula was used to systematize the cross sections in question. A comparative analysis of parameter values obtained at different proton energies was performed.

  4. Isotopic effects in the ( π±, 2N) reactions on 16O and 18O

    NASA Astrophysics Data System (ADS)

    Altman, A.; Ashery, D.; Piasetzky, E.; Lichtenstadt, J.; Yavin, A. I.; Bertl, W.; Felawka, L.; Walter, H. K.; Powers, R. J.; Winter, R. G.; v. d. Pluym, J.

    1984-09-01

    The ( π+, 2p), ( π+, pn) and ( π-, pn) reactions on 16O and 18O were studied at 165 MeV. The cross section for the ( π+, 2p) reaction on 18O is larger than that for 16O be only 5% ± 3%, while the total π+ absorption cross section is larger by 17% ± 5%. This supports the assumption that two-nucleon absorption occurs mainly on nucleons in the same shell. It is further concluded that Δ++n → pp is not only absorption mechanism that couples strongly to the nucleon knock out reactions.

  5. Novel 4{pi} Detection System for the Measurement of the {sup 6}Li(n,{alpha}){sup 3}H Reaction Cross Section

    SciTech Connect

    Giorginis, Georgios; Bencardino, Raffaele

    2011-12-13

    A dedicated one-dimensional Time Projection Chamber (1D-TPC) was designed and produced at IRMM to determine the {sup 6}Li(n,{alpha}){sup 3}H cross section in the 0.4-2.8 MeV energy range, aiming at 5% accuracy. The basic TPC components were a twin gridded ionisation chamber (GIC) with interwired electrodes and fast digitisation of the anode and cathode signals. The energy of both reaction products emitted from a thin {sup 6}LiF sample at the common TPC cathode was measured. A Kr(97%)CO{sub 2}(3%) mixture was used as the detector gas at a pressure up to 3.5 bar. A {sup 238}U sample mounted on the cathode of an ionisation chamber without grid was used as the neutron flux monitor. Special care was taken to reduce the experimental sources of uncertainty. The beam-monitor {sup 238}U sample was characterised at IRMM by low-geometry {alpha}-counting with an accuracy of 0.1%. A {sup 6}Li sample was produced at IRMM by vacuum evaporation of {sup 6}LiF onto transparent aluminium backing. The number of {sup 6}Li atoms will be measured via Thermal Neutron Depth Profiling with an expected accuracy of 2% with respect to an IRMM Standard Reference Material. First test measurements were performed using a monoenergetic neutron beam produced by the T(p,n){sup 3}He reaction at the IRMM 7 MV Van de Graaff accelerator. The experimental method and preliminary results are presented.

  6. Five in a row--reactions of smokers to tobacco tax increases: population-based cross-sectional studies in Germany 2001-2006.

    PubMed

    Hanewinkel, Reiner; Isensee, Barbara

    2007-02-01

    To assess reactions of smokers to five waves of tobacco tax increases in Germany. A 10-wave cross-sectional study, with assessments before and after the tax increases. General population of Germany. 10 representative samples from the general population with a total number of 27,608 people aged > or = 14 years, including 8548 smokers (31% of the total sample), were interviewed. Reflection on smoking behaviour, and smoking behaviour (quitting, reducing, switching to a cheaper brand or no change) before and after tobacco tax increases. Before the tax increases, one third to more than half of the smokers reflected on their smoking behaviour, 9.7-13.9% intended to quit, 23.4-34.7% intended to reduce smoking and 10.8-16.4% intended to switch to cheaper tobacco products, whereas 36.1-52.1% did not intend any change at all. After the tax increases, one fourth to more than one third reported to have reflected on their smoking behaviour, 4.0-7.9% quit smoking owing to the increase, 11.5-16.6% reduced consumption and 11.0-19.9% switched to cheaper products. Significant associations were found between the height of the price increase and the intentions and reactions of smokers. Price increases lead to a substantial reflection on smoking and intended and realised behaviour changes such as reduced consumption and switching to cheaper tobacco products. These effects are more pronounced the more the price rises. Therefore, taxation policy will lead to quitting and reducing smoking. However, complementary measures should also be taken to prevent smokers switching to cheaper tobacco products, which would reduce the effectiveness of taxation policy.

  7. New Arsenic Cross Section Calculations

    SciTech Connect

    Kawano, Toshihiko

    2015-03-04

    This report presents calculations for the new arsenic cross section. Cross sections for 73,74,75 As above the resonance range were calculated with a newly developed Hauser-Feshbach code, CoH3.

  8. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013.

  9. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → Φp

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2014-05-27

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γ p → Φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the Φ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the Φ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (Φ → K⁺K⁻) and neutral- (Φ → K0SK0L)more » $$K\\bar{K}$$ decay modes of the Φ. Further, for the charged mode, we differentiate between the cases where the final K⁻ track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed Φ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-mode, respectively. Possible effects from K⁺Λ* channels with p$$K\\bar{K}$$ final-states are discussed. These present results constitute the most precise and extensive Φ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.« less

  10. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp →ϕp

    NASA Astrophysics Data System (ADS)

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-05-01

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp →ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s ) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (ϕ →K+K-) and neutral- (ϕ →KS0KL0) KK ¯ decay modes of the ϕ. Further, for the charged mode, we differentiate between the cases where the final K- track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed ϕ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-modes, respectively. Possible effects from K+Λ* channels with pKK ¯ final states are discussed. These present results constitute the most precise and extensive ϕ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

  11. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → Φp

    SciTech Connect

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J.D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2014-05-27

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γ p → Φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the Φ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the Φ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (Φ → K⁺K⁻) and neutral- (Φ → K0SK0L) $K\\bar{K}$ decay modes of the Φ. Further, for the charged mode, we differentiate between the cases where the final K⁻ track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed Φ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-mode, respectively. Possible effects from K⁺Λ* channels with p$K\\bar{K}$ final-states are discussed. These present results constitute the most precise and extensive Φ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

  12. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  13. Capture cross sections on unstable nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  14. Pu236(n,f), Pu237(n,f), and Pu238(n,f) cross sections deduced from (p,t), (p,d), and (p,p') surrogate reactions

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Beausang, C. W.; Ross, T. J.; Burke, J. T.; Casperson, R. J.; Cooper, N.; Escher, J. E.; Gell, K.; Good, E.; Humby, P.; McCleskey, M.; Saastimoinen, A.; Tarlow, T. D.; Thompson, I. J.

    2014-07-01

    The Pu236(n,f), Pu237(n,f) and Pu238(n,f) cross sections have been inferred by utilizing the surrogate ratio method. Targets of Pu239 and U235 were bombarded with 28.5-MeV protons, and the light ion recoils, as well as fission fragments, were detected using the STARS detector array at the K150 Cyclotron at the Texas A&M cyclotron facility. The (p, tf) reaction on Pu239 and U235 targets was used to deduce the σ (Pu236(n ,f))/σ(U232(n,f)) ratio, and the Pu236(n,f) cross section was subsequently determined for En=0.5-7.5 MeV. Similarly, the (p,df) reaction on the same two targets was used to deduce the σ(Pu237(n ,f))/σ(U233(n,f)) ratio, and the Pu237(n,f) cross section was extracted in the energy range En=0.5-7 MeV. The Pu238(n,f) cross section was also deduced by utilizing the (p,p') reaction channel on the same targets. There is good agreement with the recent ENDF/B-VII.1 evaluated cross section data for Pu238(n,f) in the range En=0.5-10.5 MeV and for Pu237(n,f) in the range En=0.5-7 MeV; however, the Pu236(n,f) cross section deduced in the present work is higher than the evaluation between 2 and 7 MeV.

  15. Determination of flux-weighted average cross-sections of natPb(γ,xn), 208Pb(γ,xn), and 209Bi(γ,xn) reactions using bremsstrahlung end-point energies of 50-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, Haladhara; Kim, Guinyun; Kim, Kwangsoo; Zaman, Muhammad; Shahid, Muhammad; Kang, Yeong-Rok; Woo Lee, Man; Shin, Sung-Gyun; Cho, Moo-Hyun

    2016-11-01

    The flux-weighted average cross-sections of the natPb(γ, xn)198-204Pb reaction for the bremsstrahlung end-point energies of 50-70MeV were determined by activation and off-line γ -ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The relative cross-sections of the 208Pb(γ, xn)202-204Pb and 209Bi(γ, xn)203-206Bi reactions from our earlier work were updated to absolute values and compared with the present data. The photo-neutron cross-sections of natPb, 208Pb, and 209Bi were also calculated, as a function of the photon energy using the TALYS 1.6 code. The flux-weighted average cross-sections were obtained from the theoretical values of the TALYS 1.6 code, based on mono-energetic photons, and compared with the present experimental data. The values were found to be in good agreement with the present data for the 209Bi(γ, xn)203-206Bi, 208Pb(γ, xn)202-204Pb, and natPb(γ, xn)198-202Pb reactions. However, the present data for the natPb(γ, xn)203, 204Pb reactions were higher than the flux-weighted values obtained using the TALYS 1.6 code.

  16. Separation of the Longitudinal and Transverse Cross Sections in the p(e,e{prime}K{sup +}){Lambda} and p(e,e{prime}K{sup +}){Sigma}{sup 0} Reactions

    SciTech Connect

    R.M. Mohring; David Abbott; Abdellah Ahmidouch; T.A. Amatuni; Pawel Ambrozewicz; Tatiana Angelescu; Christopher Armstrong; John Arrington; Ketevi Assamagan; Steven Avery; Kevin Bailey; Kevin Beard; S. Beedoe; Elizabeth Beise; Herbert Breuer; Roger Carlini; Jinseok Cha; C. Chang; Nicholas Chant; Evaristo Cisbani; Glenn Collins; William Cummings; Samuel Danagoulian; Raffaele De Leo; Fraser Duncan; James Dunne; Dipangkar Dutta; T. Eden; Rolf Ent; Laurent Eyraud; Lars Ewell; John Finn; H. Terry Fortune; Valera Frolov; Salvatore Frullani; Christophe Furget; Franco Garibaldi; David Gaskell; Don Geesaman; Paul Gueye; Kenneth Gustafsson; Jens-ole Hansen; Mark Harvey; Wendy Hinton; Ed Hungerford; Mauro Iodice; C. Jackson; Cynthia Keppel; Wooyoung Kim; Kouichi Kino; Douglas Koltenuk; Serge Kox; Laird Kramer; Antonio Leone; Allison Lung; David Mack; Richard Madey; M. Maeda; Stanislaw Majewski; Pete Markowitz; T. MART; C.J. Martoff; David Meekins; A. Mihul; Joseph Mitchell; Hamlet Mkrtchyan; Sekazi Mtingwa; Maria-Ioana Niculescu; R. Perrino; David Potterveld; John Price; Brian Raue; Jean-Sebastien Real; Joerg Reinhold; Philip Roos; Teijiro Saito; Geoff Savage; Reyad Sawafta; Ralph Segel; Samuel Stepanyan; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Liliana Teodorescu; Tatsuo Terasawa; Hiroaki Tsubota; Guido Urciuoli; Jochen Volmer; William Vulcan; T. Welch; Robert Williams; Stephen Wood; Chen Yan; Benjamin Zeidman

    2003-05-01

    We report measurements of cross sections for the reaction p(e,e{prime}K{sup +})Y, for both the Lambda and Sigma{sub 0} hyperon states, at an invariant mass of W = 1.84 GeV and four-momentum transfers 0.5 < Q{sup 2} < 2 (GeV/c){sup 2}. Data were taken for three values of virtual photon polarization, allowing the decomposition of the cross sections into longitudinal and transverse components. The Lambda data is a revised analysis of prior work, whereas the Sigma{sub 0} results have not been previously reported.

  17. Separation of the longitudinal and transverse cross sections in the {sup 1}H(e,e{prime} K{sup +}){Lambda} and {sup 1}H(e,e{prime} K{sup +}){Sigma}{sup 0} reactions

    SciTech Connect

    R.M. Mohring; David Abbott; Abdellah Ahmidouch; Thomas Amatuni; Pawel Ambrozewicz; Tatiana Angelescu; Christopher Armstrong; John Arrington; Ketevi Assamagan; Steven Avery; Kevin Bailey; Kevin Beard; S Beedoe; Elizabeth Beise; Herbert Breuer; Roger Carlini; Jinseok Cha; C. Chang; Nicholas Chant; Evaristo Cisbani; Glenn Collins; William Cummings; Samuel Danagoulian; Raffaele De Leo; Fraser Duncan; James Dunne; Dipangkar Dutta; T Eden; Rolf Ent; Laurent Eyraud; Lars Ewell; John Finn; H. Terry Fortune; Valera Frolov; Salvatore Frullani; Christophe Furget; Franco Garibaldi; David Gaskell; Donald Geesaman; Paul Gueye; Kenneth Gustafsson; Jens-Ole Hansen; Mark Harvey; Wendy Hinton; Ed Hungerford; Mauro Iodice; Ceasar Jackson; Cynthia Keppel; Wooyoung Kim; Kouichi Kino; Douglas Koltenuk; Serge Kox; Laird Kramer; Antonio Leone; Allison Lung; David Mack; Richard Madey; M Maeda; Stanislaw Majewski; Pete Markowitz; T Mart; C Martoff; David Meekins; A. Mihul; Joseph Mitchell; Hamlet Mkrtchyan; Sekazi Mtingwa; Maria-Ioana Niculescu; R. Perrino; David Potterveld; John Price; Brian Raue; Jean Sebastien Real; Joerg Reinhold; Philip Roos; Teijiro Saito; Geoff Savage; Reyad Sawafta; Ralph Segel; Stepan Stepanyan; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Liliana Teodorescu; Tatsuo Terasawa; Hiroaki Tsubota; Guido Urciuoli; Jochen Volmer; William Vulcan; T. Welch; Robert Williams; Stephen Wood; Chen Yan; Benjamin Zeidman

    2003-05-19

    We report measurements of cross sections for the reaction {sup 1}H(e,e{prime} K{sup +})Y, for both the {Lambda} and {Sigma}{sup 0} hyperon states, at an invariant mass of W = 1.84 GeV and four-momentum transfers 0.5 < Q{sup 2} < 2 (GeV/c){sup 2}. Data were taken for three values of virtual photon polarization {epsilon}, allowing the decomposition of the cross sections into longitudinal and transverse components. The {Lambda} data are a revised analysis of prior work, whereas the {Sigma}{sup 0} results have not been previously reported.

  18. Final-State Interactions in Double Polarization Cross Sections of the Exclusive Reaction 2ěc H(ěcγ ,π 0n)p in the Δ(1232)-RESONANCE Region

    NASA Astrophysics Data System (ADS)

    Al-Thoyaib, S. S.

    The influence of the final-state NN- and πN-rescattering on double polarization cross sections for the exclusive reaction 2ěc H(ěcγ ,π 0n)p, involving polarization of the photon beam and the deuteron target, is investigated in the Δ(1232)-resonance region. We found that the effect of NN-rescattering is quite important, whereas the contribution from πN-rescattering is found to be negligible. Sizeable effects, mainly from the NN-rescattering, are found leading to an appreciable reduction of the polarized cross sections. In addition, the effect of final state interactions on the beam-target double polarization E asymmetry is investigated. In contrast to the polarized cross sections, these effects are found to be very small in case of the E asymmetry.

  19. Analysis of cross sections using various nuclear potential

    SciTech Connect

    Aziz, Azni Abdul; Kassim, Hasan Abu; Yusof, Norhasliza; Muhammad Zamrun, F.

    2014-05-02

    The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions.

  20. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  1. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  2. α and 2p2n emission in fast neutron-induced reactions on Ni60

    DOE PAGES

    Fotiades, N.; Devlin, M.; Haight, R. C.; ...

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'α) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  3. Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections

    NASA Astrophysics Data System (ADS)

    Brown, Anne C.; Canosa-Mas, Carlos E.; Douglas Parr, A.; Wayne, Richard P.

    We have measured, using a conventional discharge-flow resonance-fluorescence technique, the rates of reaction between the hydroxyl radical and a series of halogenated ethanes and ethers for the temperature range 230-423 K. Our measurements gave the following Arrhenius expressions (units are cm 3 molecule -1 s -1): CF 2HCH 3 (HFC-152), 14.2 × 10 -13 exp-(1050/ T); CF 2ClCH 3 (HCFC-142b), 2.6 × 10 -13 exp-(1230/ T); CFCl 2CH 3 (HCFC-141b), 5.8 × 10 -13 exp-(1100/ T); CF 3CFH 2 (HFC-134a), 5.8 × 10 -13 exp-(1350/ T); CF 3CF 2H (HFC-125), 2.8 × 10 -13 exp-(1350/ T); CF 3CCl 2H (HCFC-123), 11.8 × 10 -13 exp-(900/ T); CF 2HOCF 2CFClH, (enflurane), 6.1 × 10 -13 exp-(1080/ T); CFH 2OCH(CF 3) 2, (sevoflurane), 15.3 × 10 -13 exp-(900/ T). In two cases, we measured rate constants only at room temperature: CF 3CClBrH (halothane), 6 × 10 -14 and CF 2HOCClHCF 3 (isoflurane), 2.1 × 10 -14. We also report the following values for the integrated absorption cross-sections of the compounds in the spectral region 800-1200 cm -1 in units of cm -2 atm -1: CF 2HCH 3, 1155; CF 2ClCH 3, 1422; CFCl 2CH 3, 1995; CF 3CFH 2, 2686; CF 3CF 2H, 1970, CF 3CCl 2H, 1411; CF 3CClBrH, 1400; CF 2HOCF 2CFClH, 4800; CF 2HOCClHCF 3, 3900; CFH 2OCH(CF 3) 2, 2550. We use our measurements to calculate ozone depletion potentials and greenhouse warming potentials relative to CFCl 3 for each compound.

  4. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  5. Time dependent quantum dynamics study of the Ne + H2(+)(v0 = 0-4, j0 = 1) → NeH(+) + H proton transfer reaction, including the Coriolis coupling. A system with oscillatory cross sections.

    PubMed

    Gamallo, Pablo; Defazio, Paolo; González, Miguel

    2011-10-27

    The Ne + H(2)(+)(v(0) = 0-4, j(0) = 1) proton transfer reaction has been studied in a wide collision energy (E(col)) interval, using the time dependent real wave packet method and taking into account the Coriolis coupling (CC-RWP method) and employing a recent ab initio potential energy surface, widely extending the reaction conditions previously explored at the CC level. The reaction probability shows a strong oscillatory behavior vs E(col) and the presence of sharp resonances, arising from metastable NeH(2)(+) states. The behavior of the reaction cross section σ vs E(col) depends on the vibrational level and can in general be interpreted in terms of the late barrier character of the potential energy surface and the existence (or not) of threshold energy. The situation is particularly complex for v(0) = 2, as σ(v0=2, j0=1) presents significant oscillations with E(col) up to ≈0.33 eV, which probably reflect the resonances found in the reaction probability. Hence, it would be particularly interesting to investigate the Ne + H(2)(+)(v(0) = 2, j(0) = 1) reaction experimentally, as some resonances survive the partial wave summation. The state selected cross sections compare well with previous CC quantum and experimental results, and although the previous centrifugal sudden RWP cross sections are reasonable, the inclusion of the Coriolis coupling is important to achieve a quantitative description of this and similar systems.

  6. Measurement of proton-induced target fragmentation cross sections in carbon

    NASA Astrophysics Data System (ADS)

    Matsushita, K.; Nishio, T.; Tanaka, S.; Tsuneda, M.; Sugiura, A.; Ieki, K.

    2016-02-01

    In proton therapy, positron emitter nuclei are generated via the target nuclear fragmentation reactions between irradiated proton and nuclei constituting a human body. The proton-irradiated volume can be confirmed with measurement of annihilation γ-rays from the generated positron emitter nuclei. To achieve the high accuracy of proton therapy, in vivo dosimetry, i.e., evaluation of the irradiated dose during the treatment is important. To convert the measured activity distribution to irradiated dose, cross-sectional data for positron emitter production is necessary, which is currently insufficient in the treatment area. The purpose of this study is to collect cross-sectional data of 12C (p , pn)11C and 12C (p , p 2 n)10C reactions between the incident proton and carbon nuclei, which are important target nuclear fragmentation reactions, to estimate the range and exposure dose distribution in the patient's body. Using planar-type PET capable of measuring annihilation γ-rays at high positional resolution and thick polyethylene target, we measured cross-sectional data in continuous wide energy range. The cross section of 12C (p , pn)11C is in good agreement with existing experimental data. The cross section of 12C (p , p 2 n)10C is reported for the first data in the low-energy range of 67.6-10.5 MeV near the Bragg peak of proton beam.

  7. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    NASA Astrophysics Data System (ADS)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  8. State-to-state reactive differential cross sections for the H +H2→H2+H reaction on five different potential energy surfaces employing a new quantum wavepacket computer code: DIFFREALWAVE

    NASA Astrophysics Data System (ADS)

    Hankel, Marlies; Smith, Sean C.; Allan, Robert J.; Gray, Stephen K.; Balint-Kurti, Gabriel G.

    2006-10-01

    State-to-state differential cross sections have been calculated for the hydrogen exchange reaction, H +H2→H2+H, using five different high quality potential energy surfaces with the objective of examining the sensitivity of these detailed cross sections to the underlying potential energy surfaces. The calculations were performed using a new parallel computer code, DIFFREALWAVE. The code is based on the real wavepacket approach of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. The calculations are parallelized over the helicity quantum number Ω' (i.e., the quantum number for the body-fixed z component of the total angular momentum) and wavepackets for each J,Ω' set are assigned to different processors, similar in spirit to the Coriolis-coupled processors approach of Goldfield and Gray [Comput. Phys. Commun. 84, 1 (1996)]. Calculations for J =0-24 have been performed to obtain converged state-to-state differential cross sections in the energy range from 0.4to1.2eV. The calculations employ five different potential energy surfaces, the BKMP2 surface and a hierarchical family of four new ab initio surfaces [S. L. Mielke, et al., J. Chem. Phys. 116, 4142 (2002)]. This family of four surfaces has been calculated using three different hierarchical sets of basis functions and also an extrapolation to the complete basis set limit, the so called CCI surface. The CCI surface is the most accurate surface for the H3 system reported to date. Our calculations of differential cross sections are the first to be reported for the A2, A3, A4, and CCI surfaces. They show that there are some small differences in the cross sections obtained from the five different surfaces, particularly at higher energies. The calculations also show that the BKMP2 performs well and gives cross sections in very good agreement with the results from the CCI surface, displaying only small divergences at higher energies.

  9. Elastic Differential Cross Sections

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin M.; Ford, William P.; Norbury, John W.; Vera, Michael D.

    2014-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A less than or equal to 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon- nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability.

  10. Measurement of the cross section for the reaction {sup 20}Ne(n,{alpha}){sup 17}O in the neutron-energy between 4 and 7 MeV

    SciTech Connect

    Khryachkov, V. A.; Bondarenko, I. P.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2012-04-15

    The cross section for the reaction {sup 20}Ne(n, {alpha}){sup 17}O was measured in the neutron-energy range 4-7 MeV. An ionization chamber equipped with a Frisch grid combined with a pulse-shape digitizer was used as a detector. Gaseous neon that served as a target on which the reaction being studied proceeded was added to the gas filling the ionization chamber. The partial cross sections for the {alpha}{sub 0}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 3} channels of the reaction {sup 20}Ne(n, {alpha}){sup 17}O were obtained for the first time.

  11. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  12. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    NASA Technical Reports Server (NTRS)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  13. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1985-01-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  14. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Wilson, J. W.

    1985-05-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  15. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  16. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  17. Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method.

    PubMed

    Zhao, Bin; Zhang, Dong-H; Lee, Soo-Y; Sun, Zhigang

    2014-04-28

    A framework for quantum state-to-state integral and differential cross sections of triatomic reactive scattering using the Multi-Configuration Time-Dependent Hartree (MCTDH) method is introduced, where a modified version of the Heidelberg MCTDH package is applied. Parity of the system is adopted using only non-negative helicity quantum numbers, which reduces the basis set size of the single particle functions in angular degree of freedom almost by half. The initial wave packet is constructed in the space-fixed frame, which can accurately account for the centrifugal potential. By using the reactant-coordinate-based method, the product state-resolved information can be accurately extracted. Test calculations are presented for the H + H2 reactive scattering. This work demonstrates the capability of the MCTDH method for extracting accurate state-to-state integral and differential cross sections. As an efficient scheme for high-dimensional problems, the MCTDH method may be promising for the study of product state-resolved cross sections for polyatomic reactive systems.

  18. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  19. Cross sections of the reaction {sup 231}Pa(d,3n){sup 230}U for the production of {sup 230}U/{sup 226}Th for targeted {alpha} therapy

    SciTech Connect

    Morgenstern, A.; Bruchertseifer, F.; Zielinska, B.; Apostolidis, C.; Lebeda, O.; Stursa, J.; Capote, R.; Sin, M.

    2009-11-15

    {sup 230}U and its daughter nuclide {sup 226}Th are novel therapeutic nuclides for application in targeted {alpha} therapy of cancer. We investigated the feasibility of producing {sup 230}U/{sup 226}Th via deuteron irradiation of {sup 231}Pa according to the reaction {sup 231}Pa(d,3n){sup 230}U. The experimental excitation function for a deuteron-induced reaction on {sup 231}Pa is reported for the first time. Cross sections were measured using thin targets of {sup 231}Pa prepared by electrodeposition and {sup 230}U yields were analysed using {alpha} spectrometry. Beam energies were calculated from measured beam orbits and compared with the values obtained via monitor reactions on aluminium foils using high-resolution {gamma} spectrometry and IAEA recommended cross sections. Beam intensities were determined using a beam current integrator. The experimental cross sections are in excellent agreement with model calculations allowing for deuteron breakup using the EMPIRE 3 code. According to thick-target yields calculated from the experimental excitation function, the reaction {sup 231}Pa(d,3n){sup 230}U allows the production of {sup 230}U/{sup 226}Th at moderate levels.

  20. Evaluation of completeness of suspected adverse drug reaction reports submitted to the mexican national pharmacovigilance centre: a cross-sectional period-prevalence study.

    PubMed

    Sánchez-Sánchez, Betsabé; Altagracia-Martínez, Marina; Kravzov-Jinich, Jaime; Moreno-Bonett, Consuelo; Vázquez-Moreno, Everardo; Martínez-Núñez, Juan Manuel

    2012-10-01

    The Mexican National Centre of Pharmacovigilance (CNFV) receives suspected adverse drug reaction (ADR) reports from the pharmaceutical industry, Federal States Centre of Pharmacovigilance (CEFV) and Healthcare Institution Centres of Pharmacovigilance (CIFV). The completeness of these suspected ADR reports is particularly important for the proper evaluation of drug safety. The aim of the study was to evaluate the completeness of the information reported in a representative sample of suspected ADR reports submitted to the CNFV during 2007 and 2008, to evaluate the completeness of the suspected ADR reports submitted to the CNFV from different sources during these 2 years and to identify the therapeutic subgroups with the highest number of suspected ADR reports during the study years. A cross-sectional period-prevalence study was conducted at the CNFV. Only reports of suspected ADRs submitted by the CEFV, pharmaceutical industry and CIFV during 2007 and 2008 were included in the present study (reports related to vaccines were excluded). The sample sizes to be used for each year were determined using the formula for population rate at 95% significance level. The samples for each year were randomly selected from the reports related to synthetic drugs submitted that year. The suspected ADR reports were classified according to the standing Mexican Official Norm (Norma Oficial Mexicana [NOM]) guidelines, which were used to divide the reports into four categories (0, 1, 2 and 3) based on their completeness. The seriousness of the suspected ADRs reported was also evaluated; a suspected ADR was classified as 'non-serious' when signs and symptoms are likely to be tolerated, 'moderate' when ADR is not life threatening and needs pharmacological treatment, 'serious' when ADR is life threatening and leads to hospitalization and 'fatal' when ADR contributes directly or indirectly to the patient's death. A total sample size of 370 and 371 suspected ADR reports from 2007 and 2008