Science.gov

Sample records for 2nd order perturbation

  1. The transient nature of 2nd-order stereopsis.

    PubMed

    Hess, Robert F; Wilcox, Laurie M

    2008-05-01

    There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work. PMID:18407312

  2. The transient nature of 2nd-order stereopsis.

    PubMed

    Hess, Robert F; Wilcox, Laurie M

    2008-05-01

    There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work.

  3. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  4. Four-dimensional investigation of the 2nd order volume autocorrelation technique

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Tzallas, P.; Benis, E. P.; Kruse, J.; Peralta Conde, A.; Kalpouzos, C.; Charalambidis, D.

    2009-10-01

    The 2nd order volume autocorrelation technique, widely utilized in directly measuring ultra-short light pulses durations, is examined in detail via model calculations that include three-dimensional integration over a large ionization volume, temporal delay and spatial displacement of the two beams of the autocorrelator at the focus. The effects of the inherent displacement to the 2nd order autocorrelation technique are demonstrated for short and long pulses, elucidating the appropriate implementation of the technique in tight focusing conditions. Based on the above investigations, a high accuracy 2nd order volume autocorrelation measurement of the duration of the 5th harmonic of a 50 fs long laser pulse, including the measurement of the carrier wavelength oscillation, is presented.

  5. A new analytic solution for 2nd-order Fermi acceleration

    SciTech Connect

    Mertsch, Philipp

    2011-12-01

    A new analytic solution for 2nd-order Fermi acceleration is presented. In particular, we consider time-dependent rates for stochastic acceleration, diffusive and convective escape as well as adiabatic losses. The power law index q of the turbulence spectrum is unconstrained and can therefore account for Kolmogorov (q = 5/3) and Kraichnan (q = 3/2) turbulence, Bohm diffusion (q = 1) as well as the hard-sphere approximation (q = 2). This considerably improves beyond solutions known to date and will prove a useful tool for more realistic modelling of 2nd-order Fermi acceleration in a variety of astrophysical environments.

  6. 2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.

  7. Efficient Simulation of Wing Modal Response: Application of 2nd Order Shape Sensitivities and Neural Networks

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    2000-01-01

    At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.

  8. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  9. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  10. Surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings for single-lobe emission

    NASA Astrophysics Data System (ADS)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled, surface-emitting (GCSE) quantum-cascade lasers (QCLs) are demonstrated with high-power, single-lobe surface emission. A 2nd-order Au-semiconductor distributed-feedback (DFB)/ distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric longitudinal mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. In turn, the antisymmetric longitudinal modes are strongly absorbed by the metal in the grating, causing the symmetric longitudinal mode to be favored to lase, which produces a single lobe beam over a grating duty-cycle range of 36-41 %. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of residual reflections from the device's cleaved ends. Peak pulsed output powers of ~ 0.4 W were measured with single-lobe, single-mode operation near 4.75 μm.

  11. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.

    PubMed

    Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-10-21

    A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.

  12. The 2nd Order Focusing by Energy for TOF Sector Field Mass Analyzer with an Orthogonal Acceleration: Theory, Modeling, Experiment

    NASA Astrophysics Data System (ADS)

    Poteshin, S. S.; Chernyshev, D. M.; Sysoev, Alexey A.; Sysoev, Alexander A.

    Currently axially symmetric type of analyzer with an electrostatic sector fields (AESF) is rarely used to construct time-of-flight mass spectrometers. The main drawback, hindering the wider use of the analyzers of this type, is the lack of chromatic second-order focusing by energy. However, the configuration of AESF in combination with orthogonal accelerator (OA) allows to achieved it through compensation of energy aberrations of the analyzer in the system of orthogonal input of the ion beam. In the presented work the results of theoretical calculation, simulation and experimentally obtained data are compared. Characteristics of the analyzer with OA in a large extent depend on the parameters of the incoming ion beam. Data of modeling the 2nd stage of gas-dynamic interface, which have the greatest influence on the parameters of the ion beam, is provided.

  13. Explicit formulas for 2nd-order driving terms due to sextupoles and chromatic effects of quadrupoles.

    SciTech Connect

    Wang, C-X. )

    2012-04-25

    Optimization of nonlinear driving terms have become a useful tool for designing storage rings, especially modern light sources where the strong nonlinearity is dominated by the large chromatic effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is well known for computing such driving terms. However, it appears that there was a lack of explicit formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and chromatic effects of quadrupoles, which can be considered as thin elements. The computation is accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results given here are the same as the APS internal note AOP-TN-2009-020. This internal nte has been revised and published here as a Light Source Note in order to get this information into the public domain, since both ELEGANT and OPA are using these formulas.

  14. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-01

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  15. Higher-order Lagrangian perturbative theory for the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Tatekawa, Takayuki; Mizuno, Shuntaro

    2016-10-01

    Zel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.

  16. Multifield cosmological perturbations at third order and the ekpyrotic trispectrum

    SciTech Connect

    Lehners, Jean-Luc; Renaux-Petel, Sebastien

    2009-09-15

    Using the covariant formalism, we derive the equations of motion for adiabatic and entropy perturbations at third order in perturbation theory for cosmological models involving two scalar fields. We use these equations to calculate the trispectrum of ekpyrotic and cyclic models in which the density perturbations are generated via the entropic mechanism. In these models, the conversion of entropy into curvature perturbations occurs just before the big bang, either during the ekpyrotic phase or during the subsequent kinetic energy dominated phase. In both cases, we find that the nonlinearity parameters f{sub NL} and g{sub NL} combine to leave a very distinct observational imprint.

  17. The truncated Newton using 1st and 2nd order adjoint-state method: a new approach for traveltime tomography without rays

    NASA Astrophysics Data System (ADS)

    Bretaudeau, F.; Metivier, L.; Brossier, R.; Virieux, J.

    2013-12-01

    named as the truncated Newton (TCN) (Métivier et al. 2012) with a more accurate estimation of the impact of the Hessian. We propose an efficient implementation for first-arrival traveltime tomography. In TCN, the model update Δm is obtained through the iterative resolution of the Newton linear system H Δm = - g. Based on a matrix-free conjugate gradient resolution, the iterative solver requires only the computation of the gradient and of Hessian-vector products. We propose a generalization of the computation of the gradient using the adjoint-state method that allows to consider receivers located anywhere. Then the Hessian-vector products are computed using an original formulation based on a 2nd-order adjoint-state method, at the cost of an additional forward modeling. The TCN algorithm is composed of two nested loops: an internal loop to compute Δm, and an external loop where a line search is performed to update the subsurface parameters. TCN thus considers locally the inversion of the traveltime data using an estimation of the full Hessian (both 1st and 2nd order terms) at an acceptable cost. Tomography with TCN is an improvement over the simple gradient-based adjoint-state tomography due to its good convergence property, to the better consideration of illumination, and is a promising tool for multi-parameter inversion as rescaling is given by the Hessian.

  18. Complete Hamiltonian analysis of cosmological perturbations at all orders

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2016-06-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations at all orders. To make the procedure transparent, we consider a simple model and resolve the `gauge-fixing' issues and extend the analysis to scalar field models and show that our approach can be applied to any order of perturbation for any first order derivative fields. In the case of Galilean scalar fields, our procedure can extract constrained relations at all orders in perturbations leading to the fact that there is no extra degrees of freedom due to the presence of higher time derivatives of the field in the Lagrangian. We compare and contrast our approach to the Lagrangian approach (Chen et al. [2006]) for extracting higher order correlations and show that our approach is efficient and robust and can be applied to any model of gravity and matter fields without invoking slow-roll approximation.

  19. Nonlinear random motion analysis of coupled heave-pitch motions of a spar platform considering 1st-order and 2nd-order wave loads

    NASA Astrophysics Data System (ADS)

    Liu, Shuxiao; Tang, Yougang; Li, Wei

    2016-06-01

    In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.

  20. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    PubMed

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-01

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  1. A simple extrapolation of thermodynamic perturbation theory to infinite order

    SciTech Connect

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2015-09-21

    Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A{sub 3}/A{sub 2}, where A{sub i} is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)

  2. A neutron diffraction study of structural distortion and magnetic ordering in the cation-ordered perovskites Ba{sub 2}Nd{sub 1−x}Y{sub x}MoO{sub 6}

    SciTech Connect

    Collins, Oonagh M.; Cussen, Edmund J.

    2013-04-15

    The cation ordered perovskites Ba{sub 2}Nd{sub 1−x}Y{sub x}MoO{sub 6} (0.04≤x≤0.35) have been synthesised by solid-state techniques under reducing conditions at temperatures up to 1350 °C. Rietveld analyses of X-ray and neutron powder diffraction data show that these compounds adopt a tetragonally distorted perovskite structure. The tetragonal distortion is driven by the bonding requirements of the Ba{sup 2+} cation that occupies the central interstice of the perovskite; this cation would be underbonded if these compounds retained the cubic symmetry exhibited by the prototypical structure. The size and charge difference between the lanthanides and Mo{sup 5+} lead to complete ordering of the cations to give a rock-salt ordering of Nd{sup 3+}/Y{sup 3+}O{sub 6} and MoO{sub 6} octahedra. The I4/m space group symmetry is retained on cooling the x=0.1, 0.2 and 0.35 samples to low temperature ca. 2 K. Ba{sub 2}Nd{sub 0.90}Y{sub 0.10}MoO{sub 6} undergoes a gradual distortion of the MoO{sub 6} units on cooling from room temperature to give two long trans bonds (2.001(2) Å) along the z-direction and four shorter apical bonds (1.9563(13) Å) in the xy-plane. This distortion of the MoO{sub 6} units stabilises the 4d{sup 1} electron in the d{sub xz} and d{sub yz} orbitals whilst the d{sub xy} orbital is increased in energy due to the contraction of the Mo–O bonds in the xy-plane. This bond extension along z is propagated through the structure and gives a negative thermal expansion of −13×10{sup −6} K{sup −1} along c. The overall volumetric thermal expansion is positive due to conventional expansion along the other two crystallographic axes. With increasing Y{sup 3+} content this distortion is reduced in x=0.2 and eliminated in x=0.35 which contains largely regular MoO{sub 6} octahedra. The x=0.1 and x=0.2 show small peaks in the neutron diffraction profile due to long range antiferromagnetic order arising from ordered moments of ca. 2 μ{sub B}. - Graphical

  3. Threshold singularities, dispersion relations and fixed-order perturbative calculations

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Ruiz-Femenía, P.

    2016-08-01

    We show how to correctly treat threshold singularities in fixed-order perturbative calculations of the electron anomalous magnetic moment and hadronic pair production processes such as top pair production. With respect to the former, we demonstrate the equivalence of the "non-perturbative", resummed treatment of the vacuum polarization contribution, whose spectral function exhibits bound state poles, with the fixed-order cal-culation by identifying a threshold localized term in the four-loop spectral function. In general, we find that a modification of the dispersion relation by threshold subtractions is required to make fixed-order calculations well-defined and provide the subtraction term. We then solve the apparent problem of a divergent convolution of the partonic cross section with the parton luminosity in the computation of the top pair production cross section starting from the fourth-order correction. We find that when the computation is performed in the usual way as an integral of real and virtual corrections over phase space at a given order in the expansion in the strong coupling, an additional contribution has to be added at N3LO.

  4. High-order primordial perturbations with quantum gravitational effects

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2016-06-01

    In this paper, we provide a systematic investigation of high-order primordial perturbations with nonlinear dispersion relations due to quantum gravitational effects in the framework of uniform asymptotic approximations. Because of these effects, the equation of motion of the mode function in general has multiple turning points. After obtaining analytically approximated solutions to any order in different regions, associated with different types of turning points, we match them to the third one. To this order the errors are less than 0.15%. General expressions of the power spectra of the primordial tensor and scalar perturbations are derived explicitly. We also investigate effects of backreactions of the quantum gravitational corrections, and make sure that inflation lasts long enough in order to solve the underlying problems, such as flatness, horizon, and monopole. Then we study various features of the spectra that are observationally relevant. In particular, under a moderate assumption about the energy scale of the underlying theory of quantum gravity, we have shown that the quantum gravitational effects may alter significantly the ratio between the tensor and scalar power spectra, thereby providing a natural mechanism to alleviate the tension between observations and certain inflationary models, including the one with a quadratic potential.

  5. Second-order perturbation theory: Problems on large scales

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2015-11-01

    In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion due to its gravitational self-force. Because the self-force is small, one can often approximate the motion as geodesic. However, it is well known that self-force effects accumulate over time, making the geodesic approximation fail on long time scales. It is less well known that this failure at large times translates to a failure at large distances as well. At second perturbative order, two large-distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both stand in the way of practical computations of second-order self-force effects. Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The secular growth is tamed with a multiscale expansion that captures the system's slow evolution. The divergent integrals are eliminated by matching to the correct retarded solution at large distances. I also show how to extract conservative self-force effects by taking local-in-time "snapshots" of the global solution. These methods are readily adaptable to the physically relevant case of a point mass orbiting a black hole.

  6. Staggered chiral perturbation theory at next-to-leading order

    SciTech Connect

    Sharpe, Stephen R.; Van de Water, Ruth S.

    2005-06-01

    We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are not SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.

  7. Fourth-order perturbative model for photoinduced internal conversion processes.

    PubMed

    Molesky, Brian P; Moran, Andrew M

    2013-12-27

    Essential to the functionality of numerous biological and synthetic molecular systems is the ability to rapidly convert electronic excitation energy into heat. Such internal conversion (IC) transitions often cannot be described by traditional second-order kinetic theories because of time-coincident electronic and nuclear relaxation processes. Here, we present a perturbative fourth-order phenomenological model for photoinduced IC that incorporates effects associated with finite laser bandwidths and nonequilibrium nuclear motions. Specialized knowledge of first-principles computational methods is not required, and many parameters can be obtained with standard spectroscopic measurements. The model is applied to the IC processes that precede electrocyclic ring-opening in α-terpinene. It is shown that the primary factor governing the shape of the population decay profile (Gaussian versus exponential) is the rate at which the wavepacket approaches the geometry corresponding to degeneracy between the excited states. Other parameters such as the displacement in the promoting mode and the thermal fluctuation amplitudes affect the sensitivity of the IC dynamics to motion of the wavepacket but do not alter the basic physical picture. Finally, we suggest a wavepacket representation of the IC process to visualize correlations between population-transfer dynamics and the amount of energy transferred from the system to the bath.

  8. Second-order perturbation on a SDCI calculation

    NASA Astrophysics Data System (ADS)

    Maynau, Daniel; Heully, Jean-Louis

    1993-08-01

    Starting from a SDCI calculation the SD eigenvector is perturbed by all triply and quadruply excited determinants. Efficiency is promoted through direct CI techniques, however, some flexibility has been kept, making possible the use of various perturbational schemes (here: Epstein—Nesbet and M∅ller—Plesset). The SDCI starting point avoids divergence problems posed by CCSD(T) and also by purely perturbative methods such as MP4. Several calculations on the potential curves of some molecules (H 2O, N 2, F 2, Ne 2) show that the present method is at least as good as the MP4 or CCSD(T) methods at comparable computational cost.

  9. Photonic Crystals from Order to Disorder: Perturbative Methods in Nanophotonics

    ScienceCinema

    Johnson, Steven G. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    Photonic crystals are periodic dielectric structures in which light can behave much differently than in a homogeneous medium. This talk gives an overview of some of the interesting properties and applications of these media, from switching in subwavelength microcavities to slow-light devices, to guiding light in air. However, some of the most interesting and challenging problems occur when the periodicity is disturbed, either by design or by inevitable fabrication imperfections. The talk focuses especially on small perturbations that have important effects, from slow-light tapers to surface roughness disorder, and will show that many classic perturbative approaches must be rethought for high-contrast nanophotonics. The combination of strong periodicity with large field discontinuities at interfaces causes standard methods to fail, but succumbs to new generalizations, while some problems remain open.

  10. Automatic Integral Reduction for Higher Order Perturbative Calculations

    SciTech Connect

    Anastasiou, C

    2004-06-04

    We present a program for the reduction of large systems of integrals to master integrals. The algorithm was first proposed by Laporta; in this paper, we implement it in MAPLE. We also develop two new features which keep the size of intermediate expressions relatively small throughout the calculation. The program requires modest input information from the user and can be used for generic calculations in perturbation theory.

  11. Eskimo Word Order Variation and Its Contact-Induced Perturbation.

    ERIC Educational Resources Information Center

    Fortescue, Michael

    1993-01-01

    Although Eskimo languages are commonly characterized as displaying rather "free" word order compared to major western European languages, West Greenlandic (WG) has a clearly dominant, pragmatically neutral ordering pattern. It is argued that WG behaves more like Slavic languages. (Contains 36 references.) (LB)

  12. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim

    2007-11-15

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  13. Application of MACSYMA to first order perturbation theory in celestial mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Lau, E. L.

    1977-01-01

    The application of MACSYMA to general first order perturbation theory in celestial mechanics is explored. Methods of derivation of small variations in the Keplerian orbital elements are developed. As an example of the methods, the small general relativistic perturbations on the two-body Newtonian motion, resulting from the rotation of the central body, are developed in detail.

  14. Revisiting Hartle's model using perturbed matching theory to second order: amending the change in mass

    NASA Astrophysics Data System (ADS)

    Reina, Borja; Vera, Raül

    2015-08-01

    Hartle's model describes the equilibrium configuration of a rotating isolated compact body in perturbation theory up to second order in general relativity. The interior of the body is a perfect fluid with a barotropic equation of state, no convective motions and rigid rotation. That interior is matched across its surface to an asymptotically flat vacuum exterior. Perturbations are taken to second order around a static and spherically symmetric background configuration. Apart from the explicit assumptions, the perturbed configuration is constructed upon some implicit premises, in particular the continuity of the functions describing the perturbation in terms of some background radial coordinate. In this work we revisit the model within a modern general and consistent theory of perturbative matchings to second order, which is independent of the coordinates and gauges used to describe the two regions to be joined. We explore the matching conditions up to second order in full. The main particular result we present is that the radial function m0 (in the setting of the original work) of the second order perturbation tensor, contrary to the original assumption, presents a jump at the surface of the star, which is proportional to the value of the energy density of the background configuration there. As a consequence, the change in mass δ M needed by the perturbed configuration to keep the value of the central energy density unchanged must be amended. We also discuss some subtleties that arise when studying the deformation of the star.

  15. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling.

    PubMed

    Petersen, Frederic N R; Laursen, Ib; Bohr, Henrik; Nielsen, Claus Hélix

    2009-10-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to -6kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid<-->gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few A results in up to 10-fold increased exchange rates as compared to the 'optimal' match situation pointing to the regulatory role of hydrophobic coupling in lipid-protein interactions.

  16. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling

    SciTech Connect

    Petersen, Frederic N.R.; Laursen, Ib; Bohr, Henrik; Nielsen, Claus Helix

    2009-10-02

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to -6 kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid {r_reversible} gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few A results in up to 10-fold increased exchange rates as compared to the 'optimal' match situation pointing to the regulatory role of hydrophobic coupling in lipid-protein interactions.

  17. Vector and tensor contributions to the curvature perturbation at second order

    NASA Astrophysics Data System (ADS)

    Carrilho, Pedro; Malik, Karim A.

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part of the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.

  18. 2nd Generation ELT Performance Specification Development

    NASA Technical Reports Server (NTRS)

    Stimson, Chad M.

    2015-01-01

    NASA Search And Rescue is supporting RTCA SC-229 with research and recommendations for performance specifications for the 2nd generation of emergency locator transmitters. Areas for improvement and methods for collecting data will be presented.

  19. Next-to-leading order perturbative QCD corrections to baryon correlators in matter

    SciTech Connect

    Groote, S.; Koerner, J. G.; Pivovarov, A. A.

    2008-08-01

    We compute the next-to-leading order (NLO) perturbative QCD corrections to the correlators of nucleon interpolating currents in relativistic nuclear matter. The main new result is the calculation of the O({alpha}{sub s}) perturbative corrections to the coefficient functions of the vector quark condensate in matter. This condensate appears in matter due to the violation of Lorentz invariance. The NLO perturbative QCD corrections turn out to be large which implies that the NLO corrections must be included in a sum rule analysis of the properties of both bound nucleons and relativistic nuclear matter.

  20. Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order

    NASA Astrophysics Data System (ADS)

    Johnston, S. J.; Jafari, H.; Moshokoa, S. P.; Ariyan, V. M.; Baleanu, D.

    2016-07-01

    The fractional Burgers equation describes the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Laplace homotopy perturbation method is discussed to obtain the approximate analytical solution of space-fractional and time-fractional Burgers equations. The method used combines the Laplace transform and the homotopy perturbation method. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional orders.

  1. High-order azimuthal instabilities on a cylindrical liquid jet driven by temporal and spatial perturbations

    NASA Astrophysics Data System (ADS)

    Dressler, John L.

    1998-09-01

    A method has been developed to drive a cylindrical liquid jet unstable for deformations with axial wavelengths shorter than the circumference of the jet and azimuthal mode numbers greater than 0. The benefit of this method is that a cylindrical liquid jet can be broken into a spray with an average diameter smaller than the diameter of the initial jet. The higher-order instabilities were created by establishing initial conditions for the jet in space and time at the nozzle. An electromechanical transducer creates the applied temporal initial condition which is a sinusoidally varying velocity perturbation added to the steady velocity of the jet. The amplitude of the velocity perturbation can be as large as the jet's steady velocity and the energy in the applied velocity perturbation drives the instability. The spatial perturbation is created by placing perturbations in the circumference of the nozzle. As the velocity perturbation travels on the jet, its leading edge steepens and the trailing edge broadens in a manner analogous to the steepening of a pressure pulse in a compressible gas. If the driven velocity perturbation is sufficiently large, a shock or jump forms on the leading edge of the velocity pulse and the jet may break up into higher-order modes. A theoretical analysis of the breakup process, based on an adaptation of compressible fluid shock theory, is used to derive a fundamental lower bound on the spray's Sauter mean diameter as a function of the velocity perturbation amplitude. Techniques for approaching the theoretical minimum spray diameter by using the higher-order modes to atomize liquid jets are discussed.

  2. Semi analytical solution of second order fuzzy Riccati equation by homotopy perturbation method

    NASA Astrophysics Data System (ADS)

    Jameel, A. F.; Ismail, Ahmad Izani Md

    2014-07-01

    In this work, the Homotopy Perturbation Method (HPM) is formulated to find a semi-analytical solution of the Fuzzy Initial Value Problem (FIVP) involving nonlinear second order Riccati equation. This method is based upon homotopy perturbation theory. This method allows for the solution of the differential equation to be calculated in the form of an infinite series in which the components can be easily calculated. The effectiveness of the algorithm is demonstrated by solving nonlinear second order fuzzy Riccati equation. The results indicate that the method is very effective and simple to apply.

  3. Statistical Physics, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Mandl, F.

    1989-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Statistical Physics, Second Edition develops a unified treatment of statistical mechanics and thermodynamics, which emphasises the statistical nature of the laws of thermodynamics and the atomic nature of matter. Prominence is given to the Gibbs distribution, leading to a simple treatment of quantum statistics and of chemical reactions. Undergraduate students of physics and related sciences will find this a stimulating account of the basic physics and its applications. Only an elementary knowledge of kinetic theory and atomic physics, as well as the rudiments of quantum theory, are presupposed for an understanding of this book. Statistical Physics, Second Edition features: A fully integrated treatment of thermodynamics and statistical mechanics. A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialised material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints for solving the problems are given in an Appendix.

  4. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  5. Computerized computation for first order non-spherical perturbations of satellites.

    NASA Astrophysics Data System (ADS)

    Zhou, Ming

    The first order non-spherical perturbations of satellites including J2J3J4 and J2,2 terms have been automatically derived on IBM-PC computer by manipulating Broucke's symbolic Poisson series processory. The present report introduces the method and a set of relative subroutines.

  6. PIRLS 2016 Assessment Framework. 2nd Edition

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2015-01-01

    The "PIRLS 2016 Assessment Framework, 2nd Edition" provides the foundation for the three international assessments planned as part of the International Association for the Evaluation of Educational Achievement's Progress in International Reading Literacy Study (PIRLS) 2016: PIRLS, PIRLS Literacy, and ePIRLS. PIRLS represents the…

  7. Action approach to cosmological perturbations: the second-order metric in matter dominance

    SciTech Connect

    Boubekeur, Lotfi; Creminelli, Paolo; Vernizzi, Filippo; Norena, Jorge

    2008-08-15

    We study nonlinear cosmological perturbations during post-inflationary evolution, using the equivalence between a perfect barotropic fluid and a derivatively coupled scalar field with Lagrangian [-({partial_derivative}{phi}){sup 2}]{sup (1+w)/2w}. Since this Lagrangian is just a special case of k-inflation, this approach is analogous to the one employed in the study of non-Gaussianities from inflation. We use this method to derive the second-order metric during matter dominance in the comoving gauge directly as a function of the primordial inflationary perturbation {zeta}. Going to Poisson gauge, we recover the metric previously derived in the literature.

  8. The effect of problem perturbations on nonlinear dynamical systems and their reduced order models

    SciTech Connect

    Serban, R; Homescu, C; Petzold, L

    2005-03-03

    Reduced order models are used extensively in many areas of science and engineering for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce models that depend strongly on the nominal set of parameters for which the reduction is carried out. In this paper we address the following two questions: 'What is the effect of perturbations in the problem parameters on the output functional of a nonlinear dynamical system?' and 'To what extent does the reduced order model capture this effect?'

  9. Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences

    NASA Astrophysics Data System (ADS)

    Ho, H. C.; Johnson, W. R.; Blundell, S. A.; Safronova, M. S.

    2006-08-01

    Third-order relativistic many-body perturbation theory (MBPT) is applied to obtain energies of ions with two valence electrons in the no virtual-pair approximation (NVPA). A total of 302 third-order Goldstone diagrams are organized into 12 one-body and 23 two-body terms. Only third-order two-body terms and diagrams are presented in this paper, owing to the fact that the one-body terms are identical to the previously studied third-order terms in monovalent ions. Dominant classes of diagrams are identified. The model potential is the Dirac-Hartree-Fock potential VN-2 , and B -spline basis functions in a cavity of finite radius are employed in the numerical calculations. The Breit interaction is taken into account through the second order of perturbation theory, and the lowest-order Lamb shift is also evaluated. Sample calculations are performed for berylliumlike ions with Z=4-7 , and for the magnesiumlike ion PIV . The third-order excitation energies are in excellent agreement with measurement with an accuracy at 0.2% level for the cases considered. Comparisons are made with second-order MBPT results, and with other calculations. The third-order energy correction is shown to be significant, improving the previous second-order calculations by an order of magnitude.

  10. Multipartitioning Møller-Plesset perturbation theory: Size-extensivity at third order and symmetry conservation

    NASA Astrophysics Data System (ADS)

    Rolik, Zoltán; Szabados, Ágnes

    Multipartitioning multireference many-body perturbation theory (Zaitevskii and Malrieu, Chem. Phys. Lett. 1995, 233, 597) is investigated with regard to symmetry and size-extensivity. We show that the spin-adapted formulation suffers from spatial symmetry breaking and propose a general symmetry-conserving zero-order Hamiltonian. We analyze size-extensivity of various partitionings at the third order and find that extensivity holds if one-particle quantities in the zero-order Hamiltonian are properly chosen. In particular, third order of the spin-adapted and general symmetry-adapted theory prove to be extensive.

  11. Self-consistent second-order Green's function perturbation theory for periodic systems

    NASA Astrophysics Data System (ADS)

    Rusakov, Alexander A.; Zgid, Dominika

    2016-02-01

    Despite recent advances, systematic quantitative treatment of the electron correlation problem in extended systems remains a formidable task. Systematically improvable Green's function methods capable of quantitatively describing weak and at least qualitatively strong correlations appear as promising candidates for computational treatment of periodic systems. We present a periodic implementation of temperature-dependent self-consistent 2nd-order Green's function (GF2) method, where the self-energy is evaluated in the basis of atomic orbitals. Evaluating the real-space self-energy in atomic orbitals and solving the Dyson equation in k-space are the key components of a computationally feasible algorithm. We apply this technique to the one-dimensional hydrogen lattice — a prototypical crystalline system with a realistic Hamiltonian. By analyzing the behavior of the spectral functions, natural occupations, and self-energies, we claim that GF2 is able to recover metallic, band insulating, and at least qualitatively Mott regimes. We observe that the iterative nature of GF2 is essential to the emergence of the metallic and Mott phases.

  12. Exploring arbitrarily high orders of optimized perturbation theory in QCD with nf → 161/2

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    2016-09-01

    Perturbative QCD with nf flavours of massless quarks becomes simple in the hypothetical limit nf → 161/2, where the leading β-function coefficient vanishes. The Banks-Zaks (BZ) expansion in a0 ≡8/321 (161/2 -nf) is straightforward to obtain from perturbative results in MS ‾ or any renormalization scheme (RS) whose nf dependence is 'regular'. However, 'irregular' RS's are perfectly permissible and should ultimately lead to the same BZ results. We show here that the 'optimal' RS determined by the Principle of Minimal Sensitivity does yield the same BZ-expansion results when all orders of perturbation theory are taken into account. The BZ limit provides an arena for exploring optimized perturbation theory at arbitrarily high orders. These explorations are facilitated by a 'master equation' expressing the optimization conditions in the fixed-point limit. We find an intriguing strong/weak coupling duality a →a*2 / a about the fixed point a*.

  13. The Møller-Plesset perturbation revisited: origin of high-order divergences

    NASA Astrophysics Data System (ADS)

    Malrieu, Jean-Paul; Angeli, Celestino

    2013-07-01

    Contrarily to what happens with the Epstein-Nesbet (EN) zeroth-order Hamiltonian, the Møller-Plesset (MP) perturbation operator has diagonal matrix elements, the expression of which is recalled. It is a balance between hole-hole and particle-particle repulsions on one hand and of hole-particle attractions on the other hand. For the double excitations, which dominate the correlation effects, the attractive terms prevail and the second-order MP energy is underestimated, at least for atoms of the first rows of the periodic table. It will be shown that when the perturbation expansion reaches multiple excitations, the diagonal terms of the MP perturbation operator may become larger than the zeroth-order MP excitation energy and creates an oscillating divergence of the series. Several situations of this type will be presented. This divergence is linked to the non-additivity of excitation energies, while this additivity is an underlying assumption for the linked cluster theorem and the coupled cluster method. This analysis may also explain why for heavy atoms the second-order MP energies overshoot the exact correlation energies.

  14. Application of adomian decomposition method for singularly perturbed fourth order boundary value problems

    NASA Astrophysics Data System (ADS)

    Deniz, Sinan; Bildik, Necdet

    2016-06-01

    In this paper, we use Adomian Decomposition Method (ADM) to solve the singularly perturbed fourth order boundary value problem. In order to make the calculation process easier, first the given problem is transformed into a system of two second order ODEs, with suitable boundary conditions. Numerical illustrations are given to prove the effectiveness and applicability of this method in solving these kinds of problems. Obtained results shows that this technique provides a sequence of functions which converges rapidly to the accurate solution of the problems.

  15. Order reduction of complex systems described by TSK fuzzy models based on singular perturbations method

    NASA Astrophysics Data System (ADS)

    Bouazza, Anouar; Sakly, Anis; Benrejeb, Mohamed

    2013-03-01

    This article deals with the concept of order reduction of linear complex systems described by TSK fuzzy models. The use of singular perturbations technique for process modelling and the choice of Benrejeb arrow form characteristic matrix provide the decoupling of dynamics of linear systems in the continuous and discrete case. An original contribution is to apply nonconventional TSK fuzzy approach on a direct current motor in order, on one hand, to highlight the order reduction of this system presented locally in the form of linear models and, on the other hand, to show the efficiency of the proposed approaches.

  16. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    SciTech Connect

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung E-mail: jchan@knu.ac.kr

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as that of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.

  17. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces

    SciTech Connect

    Sahoo, Tapas; Pollak, Eli

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  18. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  19. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  20. Vibrational Corrections to Molecular Properties: Second-Order Vibrational Perturbation Theory VS Variational Computations

    NASA Astrophysics Data System (ADS)

    Harding, Michael E.; Vázquez, Juana; Stanton, John F.; Diezemann, Gregor; Gauss, Jürgen

    2011-06-01

    For a small set of linear and non-linear molecules, a detailed comparison of two different procedures for predicting vibrationally averaged molecular properties, i.e., second-order vibrational perturbation theory (VPT2) and a variational approach, is carried out. Results for vibrational corrections to dipole and quadrupole moments, nuclear quadrupole moments, static electric-dipole polarizabilities, NMR chemical shielding tensors, nuclear spin-rotation tensors, magnetizabilities, and rotational g-tensors are reported.

  1. Anti-Stokes luminescence in the light of second order perturbation theory

    SciTech Connect

    Bhattacharya, Rupak Pal, Bipul Bansal, Bhavtosh

    2014-11-10

    Anti-Stokes photoluminescence is measured in high-quality GaAs quantum wells. The primary pathway for interband optical absorption and hence emission under subbandgap photoexcitation is the optical phonon-mediated second-order electric dipole transition. This conclusion is drawn from the remarkable agreement between predictions of second-order perturbation calculation and the measured intensity of anti-Stokes photoluminescence, both as function of the detuning wavelength and temperature. The results are of direct relevance to laser cooling of solids where phonon-assisted upconversion is a necessary condition.

  2. First-order Cosmological Perturbations Engendered by Point-like Masses

    NASA Astrophysics Data System (ADS)

    Eingorn, Maxim

    2016-07-01

    In the framework of the concordance cosmological model, the first-order scalar and vector perturbations of the homogeneous background are derived in the weak gravitational field limit without any supplementary approximations. The sources of these perturbations (inhomogeneities) are presented in the discrete form of a system of separate point-like gravitating masses. The expressions found for the metric corrections are valid at all (sub-horizon and super-horizon) scales and converge at all points except at the locations of the sources. The average values of these metric corrections are zero (thus, first-order backreaction effects are absent). Both the Minkowski background limit and the Newtonian cosmological approximation are reached under certain well-defined conditions. An important feature of the velocity-independent part of the scalar perturbation is revealed: up to an additive constant, this part represents a sum of Yukawa potentials produced by inhomogeneities with the same finite time-dependent Yukawa interaction range. The suggested connection between this range and the homogeneity scale is briefly discussed along with other possible physical implications.

  3. Photoassociation of a cold-atom-molecule pair. II. Second-order perturbation approach

    SciTech Connect

    Lepers, M.; Vexiau, R.; Bouloufa, N.; Dulieu, O.; Kokoouline, V.

    2011-04-15

    The electrostatic interaction between an excited atom and a diatomic ground-state molecule in an arbitrary rovibrational level at large mutual separations is investigated with a general second-order perturbation theory, in the perspective of modeling the photoassociation between cold atoms and molecules. We find that the combination of quadrupole-quadrupole and van der Waals interactions competes with the rotational energy of the dimer, limiting the range of validity of the perturbative approach to distances larger than 100 Bohr radii. Numerical results are given for the long-range interaction between Cs and Cs{sub 2}, showing that the photoassociation is probably efficient for any Cs{sub 2} rotational energy.

  4. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the

  5. Manifestly gauge invariant theory of the nonlinear cosmological perturbations in the leading order of the gradient expansion

    NASA Astrophysics Data System (ADS)

    Hamazaki, Takashi

    2011-07-01

    In the full nonlinear cosmological perturbation theory in the leading order of the gradient expansion, all the types of the gauge invariant perturbation variables are defined. The metric junction conditions across the spacelike transition hypersurface are formulated in a manifestly gauge invariant manner. It is manifestly shown that all the physical laws such as the evolution equations, the constraint equations, and the junction conditions can be written using the gauge invariant variables which we defined only. Based on the existence of the universal adiabatic growing mode in the nonlinear perturbation theory and the ρ philosophy where the physical evolution are described using the energy density ρ as the evolution parameter, we give the definitions of the adiabatic perturbation variable and the entropic perturbation variables in the full nonlinear perturbation theory. In order to give the analytic order estimate of the nonlinear parameter fNL, we present the exponent evaluation method. As the models where fNL changes continuously and becomes large, using the ρ philosophy, we investigate the non-Gaussianity induced by the entropic perturbation of the component which does not govern the cosmic energy density, and we show that in order to obtain the significant non-Gaussianity it is necessary that the scalar field which supports the entropic perturbation is extremely small compared with the scalar field which supports the adiabatic perturbation.

  6. High-order terms in the renormalized perturbation theory for the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Pandis, Vassilis; Hewson, Alex C.

    2015-09-01

    We study the renormalized perturbation theory of the single-impurity Anderson model, particularly the high-order terms in the expansion of the self-energy in powers of the renormalized coupling U ˜. Though the presence of counterterms in the renormalized theory may appear to complicate the diagrammatics, we show how these can be seamlessly accommodated by carrying out the calculation order-by-order in terms of skeleton diagrams. We describe how the diagrams pertinent to the renormalized self-energy and four vertex can be automatically generated, translated into integrals, and numerically integrated. To maximize the efficiency of our approach we introduce a generalized k -particle/hole propagator, which is used to analytically simplify the resultant integrals and reduce the dimensionality of the integration. We present results for the self-energy and spectral density to fifth order in U ˜, for various values of the model asymmetry, and compare them to a numerical renormalization group calculation.

  7. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    SciTech Connect

    Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  8. Unified semiclassical perturbation and infinite order sudden approximation, with application to the reaction path Hamiltonian model

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Shi, Shenghua

    1981-09-01

    It is shown how two popular approximate dynamical models—the semiclassical perturbation (SCP) approximation and the infinite order sudden (IOS) approximation—can be combined in a consistent way that includes the correct features of both. Application of this unified SCP-IOS approximation to the reaction path Hamiltonian model of Miller, Handy, and Adam [J. Chem. Phys. 72, 99 (1980)] leads to extremely simple, explicit formulas for the reactive S matrix, product state distrubutions, etc., which can be readily applied to polyatomic systems. Initial numerical tests on a simple model problem indicate that the model is of useful accuracy.

  9. Macroscopic order in a nematic liquid crystal: Perturbation by spontaneous director fluctuations.

    PubMed

    Hamasuna, Daichi; Hashim, Rauzah; Kasatani, Atsuhiro; Luckhurst, Geoffrey R; Sugimura, Akihiko; Timimi, Bakir A; Zimmermann, Herbert

    2015-06-01

    The dynamic alignment of the nematic director by near-orthogonal electric and magnetic fields has been investigated. The intermediate states during the relaxation process were found, with the aid of time-resolved deuterium NMR spectroscopy, to be markedly nonuniform. The macroscopic order was perturbed, although the initial and final states of the director appear to be essentially uniform. However, the initial state does have a profound influence on the uniformity of the director in the intermediate states. We have developed a fundamental model based on the effect of spontaneous director fluctuations to explain these unusual NMR observations.

  10. Assessment of the second-order perturbative corrections to PNOF5

    NASA Astrophysics Data System (ADS)

    Piris, M.; Ruipérez, F.; Matxain, J. M.

    2014-03-01

    In a recent paper (J. Chem. Phys. 139, 064111, 2013), an antisymmetrised product of strongly orthogonal geminals with the expansion coefficients explicitly expressed by means of the occupation numbers was used to generate the Piris natural orbital functional 5 (PNOF5). This functional describes most of the non-dynamical effects, but also an important part of the intrapair (intrageminal) electron correlation. Second-order corrections to the generating PNOF5 wave function were derived using the multiconfigurational perturbation theory size consistent at the second order (SC2-MCPT) to include the missing interpair (intergeminal) electron correlation. A modified version of the SC2-MCPT involving double excitations only from different geminals was introduced and denoted as PNOF5-PT2. In this paper, the ground-state energies of 36 closed-shell species belonging to the G2/97 test set of molecules are studied by the PNOF5-PT2 and PNOF5-SC2-MCPT methods. The numerical performance of both methods on eight dimers, with different strength of hydrogen bonds, and 13 isogyric reactions is also assessed. The results are in reasonable agreement with those obtained using the complete active space second-order perturbation theory and coupled-cluster method with singles, doubles, and noniterative triples corrections.

  11. Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2016-10-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.

  12. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Mena, Filipe C.; Vera, Raül

    2008-10-01

    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary, and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies, in particular, that no region described by FLRW can be a source of the Kerr metric.

  13. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    SciTech Connect

    Mars, Marc; Mena, Filipe C.; Vera, Rauel

    2008-10-15

    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary, and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies, in particular, that no region described by FLRW can be a source of the Kerr metric.

  14. Scalar and tensor perturbations in loop quantum cosmology: high-order corrections

    SciTech Connect

    Zhu, Tao; Wang, Anzhong; Wu, Qiang; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin E-mail: anzhong_wang@baylor.edu E-mail: klaus_kirsten@baylor.edu E-mail: wuq@zjut.edu.cn

    2015-10-01

    Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratio is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.

  15. Superosculating intermediate orbits: Fourth-and fifth-order tangencies to trajectories of perturbed motion

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2006-12-01

    The theory of superosculating intermediate orbits previously suggested by the author is developed. A new class of orbits with a fourth-order tangency to the actual trajectory of a celestial body at the initial time is constructed. Orbits with a fifth-order tangency have been constructed for the first time. The motion in the constructed orbits is represented as a combination of two motions: the motion of a fictitious attracting center with a variable mass and the motion relative to this center. The first motion is generally parabolic, while the second motion is described by the equations of the Gylden—Mestschersky problem. The variation in the mass of the fictitious center obeys Mestschersky’s first and combined laws. The new orbits represent more accurately the actual motion in the initial segment of the trajectory than an osculating Keplerian orbit and other existing analogues. Encke’s generalized methods of special perturbations in which the constructed intermediate orbits are used as reference orbits are presented. Numerical simulations using the approximations of the motions of Asteroid Toutatis and Comet P/Honda—Mrkos—Pajdušáková as examples confirm that the constructed orbits are highly efficient. Their application is particularly beneficial in investigating strongly perturbed motion.

  16. Production and verification of a 2nd generation clonal group of Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Hou, Jilun; Zhang, Xiaoyan; Wang, Yufen; Sun, Zhaohui; Si, Fei; Jiang, Xiufeng; Liu, Haijin

    2016-01-01

    Clonal fishes are useful tools in biology and aquaculture studies due to their isogenicity. In Japanese flounder (Paralichthys olivaceus), a group of homozygous clones was created by inducing meiogynogenesis in eggs from a mitogynogenetic homozygous diploid. As the clones reached sexual maturity, meiogynogenesis was again induced in order to produce a 2nd generation clonal group of Japanese flounder. After 3 months, there were 611 healthy, surviving individuals. Twenty-four microsatellite markers, that covered all the linkage groups of Japanese flounder, were used to identify the homozygosity of the 2nd generation clones; no heterozygous locus was detected. This indicates that the production of a 2nd generation clonal group of Japanese flounder was successful. Restriction-site DNA associated sequencing at the genomic level also confirmed the homozygosity and clonality of the 2nd generation clonal group. Furthermore, these 2nd generation clones had a small coefficient of variation for body shape indices at 210 days of age and showed a high degree of similarity in body characteristics among individuals. The successful production of 2nd generation clones has laid the foundation for the large-scale production of clonal Japanese flounder. PMID:27767055

  17. Comprehensive investigation about the second order term of thermodynamic perturbation expansion

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Solana, J. R.

    2009-10-01

    Monte Carlo simulations are carried out for the second order term in the thermodynamic perturbation expansion around a hard sphere reference fluid. The sample potentials considered cover a wide spectrum: From two frequently employed, namely hard sphere plus square well potential and hard core attractive Yukawa potential, to two kinds of repulsive potentials, namely hard sphere plus square shoulder potential and hard sphere plus triangle shoulder potential; the investigated potential range also extends from extremely short range to rather long range. The obtained simulation data are used to evaluate performance of two theoretical approaches, i.e., a traditional macroscopic compressibility approximation (MCA) and a recent coupling parameter expansion. Extensive comparison shows that the coupling parameter expansion provides a reliable method for accurately calculating the second order term of the high temperature series expansion, while the widely accepted MCA fails quantitatively or even qualitatively for most of the situations investigated.

  18. Quasidegenerate second-order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Head-Gordon, Martin

    1999-02-01

    A family of quasidegenerate second-order perturbation theories that correct excitation energies from single-excitation configuration interaction (CIS) are introduced which generalize the earlier non-degenerate second-order method, CIS(D). The new methods are termed CIS(D), where n ranges from 0 to x, according to the number of terms retained in a doubles denominator expansion. Truncation at either n = 0 or n = 1 yields methods which involve the diagonalization of a dressed singles-only response matrix, where the dressing is state-independent. Hence CIS(D0) and CIS(D1) can be implemented efficiently using semidirect methods, which are discussed. Test calculations on formaldehyde, ethylene, chlorine nitrate, styrene, benzaldehyde, and chalcone are presented to assess the performance of these methods. CIS(D0) and CIS(D1) both show significant improvements relative to CIS(D) in cases of near-degeneracy.

  19. Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Ren, Xinguo; Rinke, Patrick; Scuseria, Gustavo E.; Scheffler, Matthias

    2013-07-01

    We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as ``renormalization'' of the second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrödinger perturbation theory based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE) contribution was treated approximately, has already been benchmarked for molecular atomization energies and chemical reaction barrier heights and shows a well-balanced performance [J. Paier , New J. Phys.1367-263010.1088/1367-2630/14/4/043002 14, 043002 (2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers, and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an overall satisfactory performance across different electronic situations, and is a promising step towards a generally applicable electronic-structure approach.

  20. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  1. 2nd Generation RLV Risk Definition Program

    NASA Technical Reports Server (NTRS)

    Davis, Robert M.; Stucker, Mark (Technical Monitor)

    2000-01-01

    The 2nd Generation RLV Risk Reduction Mid-Term Report summarizes the status of Kelly Space & Technology's activities during the first two and one half months of the program. This report was presented to the cognoscente Contracting Officer's Technical Representative (COTR) and selected Marshall Space Flight Center staff members on 26 September 2000. The report has been approved and is distributed on CD-ROM (as a PowerPoint file) in accordance with the terms of the subject contract, and contains information and data addressing the following: (1) Launch services demand and requirements; (2) Architecture, alternatives, and requirements; (3) Costs, pricing, and business cases analysis; (4) Commercial financing requirements, plans, and strategy; (5) System engineering processes and derived requirements; and (6) RLV system trade studies and design analysis.

  2. Second-order many-body perturbation theory: an eternal frontier.

    PubMed

    Hirata, So; He, Xiao; Hermes, Matthew R; Willow, Soohaeng Y

    2014-01-30

    Second-order many-body perturbation theory [MBPT(2)] is the lowest-ranked member of a systematic series of approximations convergent at the exact solutions of the Schrödinger equations. It has served and continues to serve as the testing ground for new approximations, algorithms, and even theories. This article introduces this basic theory from a variety of viewpoints including the Rayleigh-Schrödinger perturbation theory, the many-body Green's function theory based on the Dyson equation, and the related Feynman-Goldstone diagrams. It also explains the important properties of MBPT(2) such as size consistency, its ability to describe dispersion interactions, and divergence in metals. On this basis, this article surveys three major advances made recently by the authors to this theory. They are a finite-temperature extension of MBPT(2) and the resolution of the Kohn-Luttinger conundrum, a stochastic evaluation of the correlation and self-energies of MBPT(2) using the Monte Carlo integration of their Laplace-transformed expressions, and an extension to anharmonic vibrational zero-point energies and transition frequencies based on the Dyson equation.

  3. Second-order many-body perturbation theory: an eternal frontier.

    PubMed

    Hirata, So; He, Xiao; Hermes, Matthew R; Willow, Soohaeng Y

    2014-01-30

    Second-order many-body perturbation theory [MBPT(2)] is the lowest-ranked member of a systematic series of approximations convergent at the exact solutions of the Schrödinger equations. It has served and continues to serve as the testing ground for new approximations, algorithms, and even theories. This article introduces this basic theory from a variety of viewpoints including the Rayleigh-Schrödinger perturbation theory, the many-body Green's function theory based on the Dyson equation, and the related Feynman-Goldstone diagrams. It also explains the important properties of MBPT(2) such as size consistency, its ability to describe dispersion interactions, and divergence in metals. On this basis, this article surveys three major advances made recently by the authors to this theory. They are a finite-temperature extension of MBPT(2) and the resolution of the Kohn-Luttinger conundrum, a stochastic evaluation of the correlation and self-energies of MBPT(2) using the Monte Carlo integration of their Laplace-transformed expressions, and an extension to anharmonic vibrational zero-point energies and transition frequencies based on the Dyson equation. PMID:24328153

  4. Quasidegenerate scaled opposite spin second order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Casanova, David; Rhee, Young Min; Head-Gordon, Martin

    2008-04-01

    Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.

  5. Nonlinear waves in second order conformal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fogaça, D. A.; Marrochio, H.; Navarra, F. S.; Noronha, J.

    2015-02-01

    In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a "soliton-like" wave solution in Israel-Stewart hydrodynamics despite the presence of dissipation and relaxation effects.

  6. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  7. Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy

    SciTech Connect

    Willow, Soohaeng Yoo; Zhang, Jinmei; Valeev, Edward F.; Hirata, So

    2014-01-21

    A stochastic algorithm is proposed that can compute the basis-set-incompleteness correction to the second-order many-body perturbation (MP2) energy of a polyatomic molecule. It evaluates the sum of two-, three-, and four-electron integrals over an explicit function of electron-electron distances by a Monte Carlo (MC) integration at an operation cost per MC step increasing only quadratically with size. The method can reproduce the corrections to the MP2/cc-pVTZ energies of H{sub 2}O, CH{sub 4}, and C{sub 6}H{sub 6} within a few mE{sub h} after several million MC steps. It circumvents the resolution-of-the-identity approximation to the nonfactorable three-electron integrals usually necessary in the conventional explicitly correlated (R12 or F12) methods.

  8. Testing higher-order Lagrangian perturbation theory against numerical simulations. 2: Hierarchical models

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Buchert, T.; Weib, A. G.

    1995-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.

  9. Accuracy of second order perturbation theory in the polaron and variational polaron frames

    NASA Astrophysics Data System (ADS)

    Lee, Chee Kong; Moix, Jeremy; Cao, Jianshu

    2012-05-01

    In the study of open quantum systems, the polaron transformation has recently attracted a renewed interest as it offers the possibility to explore the strong system-bath coupling regime. Despite this interest, a clear and unambiguous analysis of the regimes of validity of the polaron transformation is still lacking. Here we provide such a benchmark, comparing second order perturbation theory results in the original untransformed frame, the polaron frame, and the variational extension with numerically exact path integral calculations of the equilibrium reduced density matrix. Equilibrium quantities allow a direct comparison of the three methods without invoking any further approximations as is usually required in deriving master equations. It is found that the second order results in the original frame are accurate for weak system-bath coupling; the results deteriorate when the bath cut-off frequency decreases. The full polaron results are accurate for the entire range of coupling for a fast bath but only in the strong coupling regime for a slow bath. The variational method is capable of interpolating between these two methods and is valid over a much broader range of parameters.

  10. Third-order thermodynamic perturbation theory for effective potentials that model complex fluids

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Solana, J. R.

    2008-08-01

    We have performed Monte Carlo simulations to obtain the thermodynamic properties of fluids with two kinds of hard-core plus attractive-tail or oscillatory potentials. One of them is the square-well potential with small well width. The other is a model potential with oscillatory and decaying tail. Both model potentials are suitable for modeling the effective potential arising in complex fluids and fluid mixtures with extremely-large-size asymmetry, as is the case of the solvent-induced depletion interactions in colloidal dispersions. For the former potential, the compressibility factor, the excess energy, the constant-volume excess heat capacity, and the chemical potential have been obtained. For the second model potential only the first two of these quantities have been obtained. The simulations cover the whole density range for the fluid phase and several temperatures. These simulation data have been used to test the performance of a third-order thermodynamic perturbation theory (TPT) recently developed by one of us [S. Zhou, Phys. Rev. E 74, 031119 (2006)] as compared with the well-known second-order TPT based on the macroscopic compressibility approximation due to Barker and Henderson. It is found that the first of these theories provides much better accuracy than the second one for all thermodynamic properties analyzed for the two effective potential models.

  11. General properties on applying the principle of minimum sensitivity to high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang; Ma, Hong-Hao; Han, Hua-Yong

    2015-02-01

    As one of the key components of perturbative QCD theory, it is helpful to find a systematic and reliable way to set the renormalization scale for a high-energy process. The conventional treatment is to take a typical momentum as the renormalization scale, which assigns an arbitrary range and an arbitrary systematic error to pQCD predictions, leading to the well-known renormalization scheme and scale ambiguities. As a practical solution for such a scale setting problem, the "principle of minimum sensitivity" (PMS) has been proposed in the literature. The PMS suggests to determine an optimal scale for the pQCD approximant of an observable by requiring its slope over the scheme and scale changes to vanish. In this paper, we present a detailed discussion on general properties of the PMS by utilizing three quantities Re+e-, Rτ and Γ (H →b b ¯) up to four-loop QCD corrections. After applying the PMS, the accuracy of pQCD prediction, the pQCD convergence, the pQCD predictive power, etc., are discussed. Furthermore, we compare the PMS with another fundamental scale setting approach, i.e. the principle of maximum conformality (PMC). The PMC is theoretically sound, which follows the renormalization group equation to determine the running behavior of the coupling constant and satisfies the standard renormalization group invariance. Our results show that PMS does provide a practical way to set the effective scale for high-energy process, and the PMS prediction agrees with the PMC one by including enough high-order QCD corrections, both of which shall be more accurate than the prediction under the conventional scale setting. However, the PMS pQCD convergence is an accidental, which usually fails to achieve a correct prediction of unknown high-order contributions with next-to-leading order QCD correction only, i.e. it is always far from the "true" values predicted by including more high-order contributions.

  12. 2nd Generation Reusable Launch Vehicle NASA Led Propulsion Tasks

    NASA Technical Reports Server (NTRS)

    Richards, Steve

    2000-01-01

    Design, development and test of a 2nd generation Reusable Launch Vehicle (RLV) is presented. This current paper discusses the following: 2nd Generation RLV Propulsion Project, Overview of NASA Led Tasks in Propulsion, Gen2 Turbo Machinery Technology Demonstrator, and Combustion Devices Test Bed, GRCop-84 Sheet For Combustion Chambers, Nozzles and Large Actively Cooled Structures

  13. A Second Order Expansion of the Separatrix Map for Trigonometric Perturbations of a Priori Unstable Systems

    NASA Astrophysics Data System (ADS)

    Guardia, M.; Kaloshin, V.; Zhang, J.

    2016-11-01

    In this paper we study a so-called separatrix map introduced by Zaslavskii-Filonenko (Sov Phys JETP 27:851-857, 1968) and studied by Treschev (Physica D 116(1-2):21-43, 1998; J Nonlinear Sci 12(1):27-58, 2002), Piftankin (Nonlinearity (19):2617-2644, 2006) Piftankin and Treshchëv (Uspekhi Mat Nauk 62(2(374)):3-108, 2007). We derive a second order expansion of this map for trigonometric perturbations. In Castejon et al. (Random iteration of maps of a cylinder and diffusive behavior. Preprint available at arXiv:1501.03319, 2015), Guardia and Kaloshin (Stochastic diffusive behavior through big gaps in a priori unstable systems (in preparation), 2015), and Kaloshin et al. (Normally Hyperbolic Invariant Laminations and diffusive behavior for the generalized Arnold example away from resonances. Preprint available at http://www.terpconnect.umd.edu/vkaloshi/, 2015), applying the results of the present paper, we describe a class of nearly integrable deterministic systems with stochastic diffusive behavior.

  14. A Second Order Expansion of the Separatrix Map for Trigonometric Perturbations of a Priori Unstable Systems

    NASA Astrophysics Data System (ADS)

    Guardia, M.; Kaloshin, V.; Zhang, J.

    2016-07-01

    In this paper we study a so-called separatrix map introduced by Zaslavskii-Filonenko (Sov Phys JETP 27:851-857, 1968) and studied by Treschev (Physica D 116(1-2):21-43, 1998; J Nonlinear Sci 12(1):27-58, 2002), Piftankin (Nonlinearity (19):2617-2644, 2006) Piftankin and Treshchëv (Uspekhi Mat Nauk 62(2(374)):3-108, 2007). We derive a second order expansion of this map for trigonometric perturbations. In Castejon et al. (Random iteration of maps of a cylinder and diffusive behavior. Preprint available at arXiv:1501.03319, 2015), Guardia and Kaloshin (Stochastic diffusive behavior through big gaps in a priori unstable systems (in preparation), 2015), and Kaloshin et al. (Normally Hyperbolic Invariant Laminations and diffusive behavior for the generalized Arnold example away from resonances. Preprint available at http://www.terpconnect.umd.edu/vkaloshi/, 2015), applying the results of the present paper, we describe a class of nearly integrable deterministic systems with stochastic diffusive behavior.

  15. Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials.

    PubMed

    Nicholls, David P; Reitich, Fernando; Johnson, Timothy W; Oh, Sang-Hyun

    2014-08-01

    The scattering of time-harmonic linear waves by periodic media arises in a wide array of applications from materials science and nondestructive testing to remote sensing and oceanography. In this work we have in mind applications in optics, more specifically plasmonics, and the surface plasmon polaritons that are at the heart of remarkable phenomena such as extraordinary optical transmission, surface-enhanced Raman scattering, and surface plasmon resonance biosensing. In this paper we develop robust, highly accurate, and extremely rapid numerical solvers for approximating solutions to grating scattering problems in the frequency regime where these are commonly used. For piecewise-constant dielectric constants, which are commonplace in these applications, surface formulations are clearly advantaged as they posit unknowns supported solely at the material interfaces. The algorithms we develop here are high-order perturbation of surfaces methods and generalize previous approaches to take advantage of the fact that these algorithms can be significantly accelerated when some or all of the interfaces are trivial (flat). More specifically, for configurations with one nontrivial interface (and one trivial interface) we describe an algorithm that has the same computational complexity as a two-layer solver. With numerical simulations and comparisons with experimental data, we demonstrate the speed, accuracy, and applicability of our new algorithms. PMID:25121539

  16. Analytical energy gradients for second-order multireference perturbation theory using density fitting.

    PubMed

    Győrffy, Werner; Shiozaki, Toru; Knizia, Gerald; Werner, Hans-Joachim

    2013-03-14

    We present algorithms for computing analytical energy gradients for multi-configuration self-consistent field methods and partially internally contracted complete active space second-order perturbation theory (CASPT2) using density fitting (DF). Our implementation is applicable to both single-state and multi-state CASPT2 analytical gradients. The accuracy of the new methods is demonstrated for structures and excitation energies of valence and Rydberg states of pyrrole, as well as for structures and adiabatic singlet-triplet energy splittings for the hydro-, the O,O(')-formato-, and the N,N(')-diiminato-copper-dioxygen complexes. It is shown that the effects of density fitting on optimized structures and relative energies are negligible. For cases in which the total cost is dominated by the integral evaluations and transformations, the DF-CASPT2 gradient calculations are found to be faster than the corresponding conventional calculations by typically a factor of three to five using triple-ζ basis sets, and by about a factor of ten using quadruple-ζ basis sets.

  17. Second-order many-body perturbation study of ice Ih

    NASA Astrophysics Data System (ADS)

    He, Xiao; Sode, Olaseni; Xantheas, Sotiris S.; Hirata, So

    2012-11-01

    Ice Ih is arguably the most important molecular crystal in nature, yet our understanding of its structural and dynamical properties is still far from complete. We present embedded-fragment calculations of the structures and vibrational spectra of the three-dimensional, proton-disordered phase of ice Ih performed at the level of second-order many-body perturbation theory with a basis-set superposition error correction. Our calculations address previous controversies such as the one related to the O-H bond length as well as the existence of two types of hydrogen bonds with strengths differing by a factor of two. For the latter, our calculations suggest that the observed spectral features arise from the directionality or the anisotropy of collective hydrogen-bond stretching vibrations rather than the previously suggested vastly different force constants. We also report a capability to efficiently compute infrared and Raman intensities of a periodic solid. Our approach reproduces the infrared and Raman spectra, the variation of inelastic neutron scattering spectra with deuterium concentration, and the anomaly of heat capacities at low temperatures for ice Ih.

  18. Scaled Second Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods

    SciTech Connect

    Rhee, Young Min; Head-Gordon, Martin

    2007-02-01

    Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.

  19. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory.

    PubMed

    Hannon, Kevin P; Li, Chenyang; Evangelista, Francesco A

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller-Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (ΔST) of the naphthyne isomers strongly depend on the equilibrium structures. For a consistent set of geometries, the ΔST values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.

  20. The effect of perturbations on resistance to sliding in second-order moments comparing two different bracket types

    PubMed Central

    Wong, Justin K; Romanyk, Dan L; Toogood, Roger W; Heo, Giseon; Carey, Jason P

    2014-01-01

    Orthodontic literature has shown all ligation methods to behave similarly in the clinical situation; however, the reasoning behind this still requires further investigation. A novel frictional device able to measure forces at the level of the bracket along with a custom perturbation device was used to investigate the effect of perturbations on resistance to sliding (RS) using conventional and passive ligated brackets. 150 3M Victory Series twins (0.022 slot) and 150 Damon Q brackets (0.022 slot) were tested using an 0.018 x 0.025 stainless steel wire for RS. There were 5 test groups consisting of equal numbers (n=30) representing combinations of high and low amplitude and frequency of perturbations along with a control. Second order angulation tested ranged from 0 to 6 degrees. Results for conventional brackets in the presence of perturbations at 0 degrees showed there was a statistically significant reduction (P<0.001) in RS when compared to controls. At 6 degrees, this difference (P<0.001) was seen in both high perturbation groups and one of the low perturbation groups. For passive ligated brackets, no statistically significant difference between groups was seen at 0 degrees. However, at 6 degrees high perturbation groups both resulted in statistically significant (P<0.001) reductions in RS when compared to controls. From this study it was concluded that passive ligated brackets have a lower RS when compared to conventional ligated brackets under all test conditions and angulations. Also, amplitude of perturbations has a larger role than frequency in reduction of RS values. PMID:25395993

  1. Twisted mass chiral perturbation theory at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Sharpe, Stephen R.; Wu, Jackson M.

    2005-04-01

    We study the properties of pions in twisted mass lattice QCD (with two degenerate flavors) using chiral perturbation theory (χPT). We work to next-to-leading order (NLO) in a power-counting scheme in which mq˜aΛ2QCD, with mq the physical quark mass and a the lattice spacing. We argue that automatic O(a) improvement of physical quantities at maximal twist, which has been demonstrated in general if mq≫aΛ2QCD, holds even if mq˜aΛ2QCD, as long as one uses an appropriate nonperturbative definition of the twist angle, with the caveat that we have shown this only through NLO in our chiral expansion. We demonstrate this with explicit calculations, for arbitrary twist angle, of all pionic quantities that involve no more than a single pion in the initial and final states: masses, decay constants, form factors, and condensates, as well as the differences between alternate definitions of twist angle. We also calculate the axial and pseudoscalar form factors of the pion, quantities which violate flavor and parity, and which vanish in the continuum limit. These are of interest because they are not automatically O(a) improved at maximal twist. They allow a determination of the unknown low-energy constants introduced by discretization errors, and provide tests of the accuracy of χPT at NLO. We extend our results into the regime where mq˜a2Λ3QCD, and argue in favor of a recent proposal that automatic O(a) improvement at maximal twist remains valid in this regime.

  2. Stirling engine design manual, 2nd edition

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  3. Florida Investigates 2nd Possible Local Transmission of Zika Virus

    MedlinePlus

    ... html Florida Investigates 2nd Possible Local Transmission of Zika Virus If confirmed, cases would be first instances ... investigating a second possible case of locally transmitted Zika infection. On Tuesday, the first possible case of ...

  4. 2nd Antibiotic Halves C-Section Infection Rate

    MedlinePlus

    ... gov/news/fullstory_161230.html 2nd Antibiotic Halves C-Section Infection Rate: Study Two medications are better ... delivery, Andrews said. Overall, about 12 percent of C-sections result in an infection, according to background ...

  5. 2ND FLOOR HALLWAY LOOKING EAST, NOTE PRESSED TIN CEILING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2ND FLOOR HALLWAY LOOKING EAST, NOTE PRESSED TIN CEILING - New York State Soldiers & Sailors Home, Building No. 29, Department of Veterans Affairs Medical Center, 76 Veterans Avenue, Bath, Steuben County, NY

  6. Automatic Generation of Analytic Equations for Vibrational and Rovibrational Constants from Fourth-Order Vibrational Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Gong, Justin Z.; Stanton, John F.

    2014-06-01

    The derivation of analytic expressions for vibrational and rovibrational constants, for example the anharmonicity constants χij and the vibration-rotation interaction constants α^B_r, from second-order vibrational perturbation theory (VPT2) can be accomplished with pen and paper and some practice. However, the corresponding quantities from fourth-order perturbation theory (VPT4) are considerably more complex, with the only known derivations by hand extensively using many layers of complicated intermediates and for rotational quantities requiring specialization to orthorhombic cases or the form of Watson's reduced Hamiltonian. We present an automatic computer program for generating these expressions with full generality based on the adaptation of an existing numerical program based on the sum-over-states representation of the energy to a computer algebra context. The measures taken to produce well-simplified and factored expressions in an efficient manner are discussed, as well as the framework for automatically checking the correctness of the generated equations.

  7. Ladybugs of South Dakota, 2nd edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images of the 80 species of Coccinellidae, commonly known as lady beetles, that occur in South Dakota are presented in taxonomic order. The second edition updates information, including the addition of a species new to South Dakota. Information on each species includes genus-species name, sub-fami...

  8. BOOK REVIEW: Quantum Gravity (2nd edn)

    NASA Astrophysics Data System (ADS)

    Husain, Viqar

    2008-06-01

    There has been a flurry of books on quantum gravity in the past few years. The first edition of Kiefer's book appeared in 2004, about the same time as Carlo Rovelli's book with the same title. This was soon followed by Thomas Thiemann's 'Modern Canonical Quantum General Relativity'. Although the main focus of each of these books is non-perturbative and non-string approaches to the quantization of general relativity, they are quite orthogonal in temperament, style, subject matter and mathematical detail. Rovelli and Thiemann focus primarily on loop quantum gravity (LQG), whereas Kiefer attempts a broader introduction and review of the subject that includes chapters on string theory and decoherence. Kiefer's second edition attempts an even wider and somewhat ambitious sweep with 'new sections on asymptotic safety, dynamical triangulation, primordial black holes, the information-loss problem, loop quantum cosmology, and other topics'. The presentation of these current topics is necessarily brief given the size of the book, but effective in encapsulating the main ideas in some cases. For instance the few pages devoted to loop quantum cosmology describe how the mini-superspace reduction of the quantum Hamiltonian constraint of LQG becomes a difference equation, whereas the discussion of 'dynamical triangulations', an approach to defining a discretized Lorentzian path integral for quantum gravity, is less detailed. The first few chapters of the book provide, in a roughly historical sequence, the covariant and canonical metric variable approach to the subject developed in the 1960s and 70s. The problem(s) of time in quantum gravity are nicely summarized in the chapter on quantum geometrodynamics, followed by a detailed and effective introduction of the WKB approach and the semi-classical approximation. These topics form the traditional core of the subject. The next three chapters cover LQG, quantization of black holes, and quantum cosmology. Of these the chapter on LQG is

  9. Jet algorithms in electron-positron annihilation: perturbative higher order predictions

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2011-02-01

    This article gives results on several jet algorithms in electron-positron annihilation: Considered are the exclusive sequential recombination algorithms Durham, Geneva, Jade-E0 and Cambridge, which are typically used in electron-positron annihilation. In addition also inclusive jet algorithms are studied. Results are provided for the inclusive sequential recombination algorithms Durham, Aachen and anti- k t , as well as the infrared-safe cone algorithm SISCone. The results are obtained in perturbative QCD and are N3LO for the two-jet rates, NNLO for the three-jet rates, NLO for the four-jet rates and LO for the five-jet rates.

  10. Study on high order perturbation-based nonlinear stochastic finite element method for dynamic problems

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yao, Jing-Zheng

    2010-12-01

    Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

  11. Feasible Perturbations of Control Systems with Pure State Constraints and Applications to Second-Order Optimality Conditions

    SciTech Connect

    Hoehener, Daniel

    2013-10-15

    We propose second-order necessary optimality conditions for optimal control problems with very general state and control constraints which hold true under weak regularity assumptions on the data. In particular the pure state constraints are general closed sets, the optimal control is supposed to be merely measurable and the dynamics may be discontinuous in the time variable as well. These results are obtained by an approach based on local perturbations of the reference process by second-order tangent directions. This method allows direct and quite simple proofs.

  12. Spin component-scaled second-order Møller-Plesset perturbation theory for calculating NMR shieldings.

    PubMed

    Maurer, Marina; Ochsenfeld, Christian

    2015-01-13

    Spin component-scaled and scaled opposite-spin second-order Møller-Plesset perturbation approaches (SCS-MP2 and SOS-MP2) are introduced for calculating NMR chemical shifts in analogy to the well-established scaled approaches for MP2 energies. Gauge-including atomic orbitals (GIAO) are employed throughout this work. The GIAO-SCS-MP2 and GIAO-SOS-MP2 methods typically show superior performance to nonscaled MP2 and are closer to the coupled-cluster singles doubles perturbative triples (CCSD(T))/cc-pVQZ reference values. In addition, the pragmatic use of mixed basis sets for the Hartree-Fock and the correlated part of NMR chemical shift calculations is shown to be beneficial. PMID:26574201

  13. Graphical shapes of the 2nd type singularities of a 3-RR̠R planar mechanism

    NASA Astrophysics Data System (ADS)

    Buium, F.; Duca, C.; Doroftei, I.; Leohchi, D.

    2016-08-01

    This paper intends to discuss about singularity curves of 2nd type inside the workspace of a 3R̠RR planar parallel mechanism used as robot structure. In order to attain this goal we will use certain variation of the links dimensional parameters. This characterization of the mechanism singularities located inside mechanism workspace depends on the dimensional parameters and can be useful in mechanism designing accorded to some functional particularities in the sense that it can help in avoiding singular configurations.

  14. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  15. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    SciTech Connect

    Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  16. Higher order statistics of curvature perturbations in IFF model and its Planck constraints

    SciTech Connect

    Fujita, Tomohiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp

    2013-09-01

    We compute the power spectrum P{sub ζ} and non-linear parameters f{sub NL} and τ{sub NL} of the curvature perturbation induced during inflation by the electromagnetic fields in the kinetic coupling model (IFF model). By using the observational result of P{sub ζ},f{sub NL} and τ{sub NL} reported by the Planck collaboration, we study the constraint on the model comprehensively. Interestingly, if the single slow-rolling inflaton is responsible for the observed P{sub ζ}, the constraint from τ{sub NL} is most stringent. We also find a general relationship between f{sub NL} and τ{sub NL} generated in this model. Even if f{sub NL} ∼ O(1), a detectable τ{sub NL} can be produced.

  17. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  18. A Handbook for Classroom Instruction That Works, 2nd Edition

    ERIC Educational Resources Information Center

    Association for Supervision and Curriculum Development, 2012

    2012-01-01

    Perfect for self-help and professional learning communities, this handbook makes it much easier to apply the teaching practices from the ASCD-McREL best-seller "Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement, 2nd Edition." The authors take you through the refined Instructional Planning Guide, so you…

  19. Test Review: The Profile of Mood States 2nd Edition

    ERIC Educational Resources Information Center

    Lin, Shuqiong; Hsiao, Yu-Yu; Wang, Miao

    2014-01-01

    The "Profile of Mood States 2nd Edition" (POMS 2) was published in 2012 by Multi-Health Systems (MHS) to assess transient feelings and mood among individuals aged 13 years and above. Evolving from the original POMS (McNair, Lorr, & Droppleman, 1971, 1992), the POMS 2 was designed for youth (13-17 years old) and adults (18 years old…

  20. Book Review: Bioassays with Arthropods: 2nd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  1. TIFS/FL5 - 2nd Asheville deployment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    TIFS/FL5 - 2nd Asheville deployment. People in photograph include: Charlie Peacock, Randy Bailey, Paul Deppe, Mike Reagan, Mike Norman, Rob Rivera, Paul Schifferle, Russ Parrish, Trey Auther, Lou Glaab, Dave McLuer, Mike Parrag, and Lynda Kramer.

  2. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-01

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.

  3. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-01

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License. PMID:27388038

  4. Covariant second-order perturbations in generalized two-field inflation

    SciTech Connect

    Tzavara, Eleftheria; Tent, Bartjan van; Mizuno, Shuntaro E-mail: Shuntaro.Mizuno@apc.univ-paris7.fr

    2014-07-01

    We examine the covariant properties of generalized models of two-field inflation, with non-canonical kinetic terms and a possibly non-trivial field metric. We demonstrate that kinetic-term derivatives and covariant field derivatives do commute in a proper covariant framework, which was not realized before in the literature. We also define a set of generalized slow-roll parameters, using a unified notation. Within this framework, we study the most general class of models that allows for well-defined adiabatic and entropic sound speeds, which we identify as the models with parallel momentum and field velocity vectors. For these models we write the exact cubic action in terms of the adiabatic and isocurvature perturbations. We thus provide the tool to calculate the exact non-Gaussianity beyond slow-roll and at any scale for these generalized models. We illustrate our general results by considering their long-wavelength limit, as well as with the example of two-field DBI inflation.

  5. Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD

    DOE PAGES

    Boughezal, Radja; Campbell, John M.; Ellis, R. Keith; Focke, Christfried; Giele, Walter T.; Liu, Xiaohui; Petriello, Frank

    2016-04-14

    Here, we present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z+jet channel ready for precision studies at the LHC run II.

  6. State derivative feedback in second-order linear systems: A comparative analysis of perturbed eigenvalues under coefficient variation

    NASA Astrophysics Data System (ADS)

    Araújo, José M.; Dórea, Carlos E. T.; Gonçalves, Luiz M. G.; Datta, Biswa N.

    2016-08-01

    This paper presents a comparative study of sensitivity to parameter variation in two feedback techniques applied in second-order linear systems: state feedback technique and the less conventional state derivative feedback technique. The former uses information on displacements and velocities whereas the latter uses velocities and accelerations. Several contributions on the problem of partial or full eigenvalue/eigenstructure assignment using the state feedback technique are presented in the literature. Recently, some interesting possibilities, such as solving the regularization problem in singular mass second-order systems, are approached using state derivative feedback. In this work, a general equivalence between state feedback and state derivative feedback is first established. Then, figures of merit on the resulting perturbed spectrum are proposed in order to assess the sensitivity of the closed-loop system to variations on the system matrices. Numerical examples are presented to support the obtained results.

  7. Can the second order multireference perturbation theory be considered a reliable tool to study mixed-valence compounds?

    PubMed

    Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo

    2008-05-01

    In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital

  8. 15th order resonance terms using the decaying orbit of TETR-3. [perturbation due to gravitation

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1975-01-01

    Fifteenth-order commensurability of the orbit of TETR-3 (1971-83B) is studied. The study is designed to obtain good discrimination of 15th-order resonances through a better range of inclinations. The first low inclination orbit, 33 deg, is used for this purpose; it is very sensitive to the high degree terms which were rather poorly represented by previously analyzed orbits.

  9. The chaos and order in human ECG under the influence of the external perturbations

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Maria; Valeriy, Pipin

    The results of the many-year telecommunication heliomedical monitoring "Heliomed" show, that space weather and geophysical factor variations serve as a training factor for the adaptation-resistant member of the human population. Here we discuss the specific properties of the human ECG discovered in our experiment. The program "Heliomed" is carried out simultaneously at the different geographical areas that cover the different latitudes. The daily registered param-eters include: the psycho-emotional tests and the 1-st lead ECG, the arterial pressure, the variability cardiac contraction, the electric conduction of bioactive points on skin. The results time series compared with daily values of space weather and geomagnetic parameters. The analysis of ECG signal proceeds as follows. At first step we construct the ECG embedding into 3D phase space using the first 3 Principal Components of the ECG time series. Next, we divide ECG on the separate cycles using the maxima of the ECG's QRS complex. Then, we filter out the non-typical ECG beats by means of the Housdorff distance. Finally, we average the example of the ECG time series along the reference trajectory and study of the dynamical characteristics of the averaged ECG beat. It is found, that the ECG signal embeded in 3D phase space can be considered as a mix of a few states. At the rest, the occurrence of the primary ECG state compare to additional ones is about 8:2. The occurrence of the primary state increases after the stress. The main effect of the external perturbation is observed in structural change of the cardio-cycle and not in the variability of the R-R interval. The num-ber of none-typical cycles increase during an isolated magnetic storm. At the all monitoring centers participating experiment the same type of changes in the cardiac activity parameters is detected to go nearly simultaneously during an isolated magnetic storm. To understand the origin of the standard cardio-cycle changes we use the dynamical

  10. On the higher-order effects in target single ionization by bare ions in the perturbative regime

    NASA Astrophysics Data System (ADS)

    Voitkiv, A. B.; Najjari, B.; Ullrich, J.

    2003-06-01

    We consider hydrogen and helium ionization with emission of soft electrons in high-velocity collisions with bare ions in the perturbative regime |Zp|/vp lesssim 0.1, where Zp is the projectile charge and vp the collision velocity. For such collisions it is usually assumed that the first-order approximation in the projectile-target interaction yields good results for single ionization. However, by performing calculations in the first and second Born, Glauber and CDW-EIS approximations, we show that higher-order effects can considerably influence electron emission already in the collision plane where the main part of the emission occurs. Moreover, the deviations from the first-order results become even stronger if the electron emission is analysed in the plane perpendicular to the momentum transfer. In this plane a pronounced structure appears in the fully differential cross section. This structure is different for collisions with Zp > 0 and Zp < 0 and the difference remains noticeable even for collisions with protons and anti-protons moving at velocities approaching the speed of light. It is also found that, on average, the higher-order effects are relatively more important for collisions with negatively charged projectiles. The deviations from first-order results for emission from hydrogen in the perturbative regime are attributed mainly to the projectile interaction with the hydrogen nucleus. In case of helium single ionization, our calculations suggest that a proper description of electron emission in the perpendicular plane may be very demanding with respect to the quality of the approximations for the initial and final helium states.

  11. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  12. n-body problem in general relativity up to the second post-Newtonian order from perturbative field theory

    SciTech Connect

    Chu Yizen

    2009-02-15

    Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective Lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski space-time to O[(v/c){sup 4}] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2-body problem, the major efforts underway to measure gravitational waves produced by inspiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c){sup 7}]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c){sup 6}] beyond Newton are derived.

  13. Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    2007-05-01

    In this paper we consider generalized nonlinear Schrödinger equations with external potentials. We find the expressions for the fourth and the sixth order Fermi golden rules (FGRs), conjectured in Gang and Sigal [Rev. Math. Phys. 17, 1143-1207 (2005); Geom. Funct. Anal. 16, No. 7, 1377-1390 (2006)]. The FGR is a key condition in a study of the asymptotic dynamics of trapped solitons.

  14. Extension of the chiral perturbation theory meson Lagrangian to order {ital p}{sup 6}

    SciTech Connect

    Fearing, H.W.; Scherer, S.

    1996-01-01

    We have constructed the most general chirally invariant Lagrangian {ital scrL}{sub 6} for the meson sector at order {ital p}{sup 6}. The result provides an extension of the standard Gasser-Leutwyler Lagrangian {ital scrL}{sub 4} to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the construction was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The claim to have obtained the most general Lagrangian relies on this systematic construction and on the elimination of redundant quantities using relations of which we are aware, rather than on a general formal proof of either completeness or independence. The {open_quote}{open_quote}equation-of-motion{close_quote}{close_quote} terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating {ital p}{sup 6} contributions to simple processes. {copyright} {ital 1995 The American Physical Society.}

  15. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  16. Third-order perturbation theory for van der Waals interaction coefficients

    SciTech Connect

    Tang Liyan; Shi Tingyun; Yan Zongchao; Mitroy, J.

    2011-11-15

    The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C{sub 9}/R{sup 9} interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C{sub 9} coefficient are given for the homonuclear alkali-metal dimers. The size of the C{sub 9}:C{sub 3} dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C{sub 11} and C{sub 13} coefficients between two helium atoms and lithium atoms in their ground states are also given.

  17. Reduced dynamics of coupled harmonic and anharmonic oscillators using higher-order perturbation theory

    SciTech Connect

    Schroeder, Markus; Schreiber, Michael; Kleinekathoefer, Ulrich

    2007-03-21

    Several techniques to solve a hierarchical set of equations of motion for propagating a reduced density matrix coupled to a thermal bath have been developed in recent years. This is either done using the path integral technique as in the original proposal by Tanimura and Kubo [J. Phys. Soc. Jpn. 58, 101 (1998)] or by the use of stochastic fields as done by Yan et al. [Chem. Phys. Lett. 395, 216 (2004)]. Based on the latter ansatz a compact derivation of the hierarchy using a decomposition of the spectral density function is given in the present contribution. The method is applied to calculate the time evolution of the reduced density matrix describing the motion in a harmonic, an anharmonic, and two coupled oscillators where each system is coupled to a thermal bath. Calculations to several orders in the system-bath coupling with two different truncations of the hierarchy are performed. The respective density matrices are used to calculate the time evolution of various system properties and the results are compared and discussed with a special focus on the convergence with respect to the truncation scheme applied.

  18. The S 1 states of o-, m-, and p-benzyne studied using multiconfiguration second-order perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Hua; Yu, Shu-Yuan; Huang, Ming-Bao; Wang, Zhi-Xiang

    2007-12-01

    Electronic states of o-, m-, and p-benzyne have been studied based on the CASPT2 (multiconfiguration second-order perturbation theory) geometry optimization calculations. The results for the S 0, T 1, and anionic states of the three benzynes are in good agreement with experiment. Based on adiabatic excitation energy ( T0) calculations, the S 1 states of o-, m-, and p-benzyne are determined to be 1 1B 1, 1 1B 1, and 1 1B 1g, with the T0 values of 3.46, 2.97, and 2.70 eV, respectively. For each benzyne the S 1 and T 1 states have different space-symmetries.

  19. Second-order perturbative corrections to the restricted active space configuration interaction with the hole and particle approach

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2014-04-01

    Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N2 molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.

  20. Second-order perturbative corrections to the restricted active space configuration interaction with the hole and particle approach

    SciTech Connect

    Casanova, David

    2014-04-14

    Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N{sub 2} molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.

  1. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory.

    PubMed

    Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui

    2014-05-01

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.

  2. KICKSTARTING REIONIZATION WITH THE FIRST BLACK HOLES: THE EFFECTS OF SECOND-ORDER PERTURBATION THEORY IN PRE-REIONIZATION VOLUMES

    SciTech Connect

    Holley-Bockelmann, Kelly; Sinha, Manodeep; Wise, John H. E-mail: manodeep.sinha@vanderbilt.edu

    2012-12-10

    We explore structure formation in the dark ages (z {approx} 30-6) using two well-known methods for initializing cosmological N-body simulations. Overall, both the Zel'dovich approximation and second-order Lagrangian perturbation theory (2LPT) are known to produce accurate present-day dark matter halo mass functions. However, since the 2LPT method drives more rapid evolution of dense regions, it increases the occurrence of rare massive objects-an effect that is most pronounced at high redshift. We find that 2LPT produces more halos that could harbor Population III stars and their black hole remnants, and they produce them earlier. Although the differences between the 2LPT and Zel'dovich approximation mass functions are nearly erased by z = 6, this small boost to the number and mass of black holes more than doubles the reionized volume of the early universe. We discuss the implications for reionization and massive black hole growth.

  3. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  4. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals

    SciTech Connect

    Thirman, Jonathan Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  5. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.

    PubMed

    Thirman, Jonathan; Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller-Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond. PMID:26328835

  6. Two 2nd Circuit decisions represent mixed bag on insurance.

    PubMed

    2000-01-21

    The 2nd U.S. Circuit Court of Appeals in New York issued two important rulings within a week on the extent to which the Americans with Disabilities Act (ADA) regulates insurance practices. [Name removed] v. Allstate Life Insurance Co. was a plaintiff-friendly decision, finding that the insurance company illegally refused to sell life insurance to a married couple because of their mental disability, major depression. [Name removed]. v. Israel Discount Bank of New York was more defendant friendly and tackled the issue of whether the ADA permits different benefit caps for mental and physical disabilities. PMID:11367226

  7. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context.

    PubMed

    Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-28

    We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules. PMID:27250284

  8. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.

    PubMed

    Ng, Yee-Hong; Bettens, Ryan P A

    2016-03-01

    Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.

  9. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Martínez, Todd J.

    2012-07-01

    Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.

  10. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context

    NASA Astrophysics Data System (ADS)

    Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-01

    We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules.

  11. 2nd Generation RLV: Program Goals and Acquisition Strategy

    NASA Technical Reports Server (NTRS)

    Graham, J. Bart; Dumbacher, D. L. (Technical Monitor)

    2001-01-01

    The risk to loss of life for Space Shuttle crewmembers is approximately one in 245 missions. U.S. launch service providers captured nearly 100%, of the commercial launch market revenues in the mid 1980s. Today, the U.S. captures less than 50% of that market. A launch system architecture is needed that will dramatically increase the safety of space flight while significantly reducing the cost. NASA's Space Launch Initiative, which is implemented by the 2nd Generation RLV Program Office at Marshall Space Flight Center, seeks to develop technology and reusable launch vehicle concepts which satisfy the commercial launch market needs and the unique needs of NASA. Presented in this paper are the five primary elements of NASA's Integrated Space Transportation Plan along with the highest level goals and the acquisition strategy of the 2nd Generation RLV Program. Approval of the Space Launch Initiative FY01 budget of $290M is seen as a major commitment by the Agency and the Nation to realize the commercial potential that space offers and to move forward in the exploration of space.

  12. Conference report: 2nd Medicon Valley Inhalation Symposium.

    PubMed

    Lastow, Orest

    2014-02-01

    2nd Medicon Valley Inhalation Symposium 16 October 2013, Lund, Sweden The 2nd Medicon Valley Inhalation Symposium was arranged by the Medicon Valley Inhalation Consortium. It was held at the Medicon Village, which is the former AstraZeneca site in Lund, Sweden. It was a 1 day symposium focused on inhaled drug delivery and inhalation product development. 120 delegates listened to 11 speakers. The program was organized to follow the value chain of an inhalation product development. This year there was a focus on inhaled biomolecules. The inhaled delivery of insulin was covered by two presentations and a panel discussion. The future of inhaled drug delivery was discussed together with an overview of the current market situation. Two of the inhalation platforms, capsule inhalers and metered-dose inhalers, were discussed in terms of the present situation and the future opportunities. Much focus was on the regulatory and intellectual aspects of developing inhalation products. The manufacturing of a dry powder inhaler requires precision filling of powder, and the various techniques were presented. The benefits of nebulization and nasal delivery were illustrated with some case studies and examples. The eternal challenge of poor compliance was addressed from an industrial design perspective and some new approaches were introduced.

  13. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  14. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and

  15. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  16. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.

    PubMed

    Hoffmann, Mark R; Helgaker, Trygve

    2015-03-01

    A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.

  17. Orbital-Optimized Second-Order Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: An Efficient Implementation.

    PubMed

    Bozkaya, Uğur

    2014-06-10

    An efficient implementation of the orbital-optimized second-order perturbation theory with the density-fitting (DF-OMP2) and Cholesky decomposition (CD-OMP2) approaches is presented. The DF-OMP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost with the conventional orbital-optimized MP2 (OMP2) [Bozkaya, U.; Turney, J. M.; Yamaguchi, Y.; Schaefer, H. F.; Sherrill, C. D. J. Chem. Phys. 2011, 135, 104103] and the orbital-optimized MP2 with the resolution of the identity approach (OO-RI-MP2) [Neese, F.; Schwabe, T.; Kossmann, S.; Schirmer, B.; Grimme, S. J. Chem. Theory Comput. 2009, 5, 3060-3073]. Our results demonstrate that the DF-OMP2 method provides substantially lower computational costs than OMP2 and OO-RI-MP2. Further application results show that the orbital-optimized methods are very beneficial for the computation of open-shell noncovalent interactions. Considering both computational efficiency and the accuracy of the DF-OMP2 method, we conclude that DF-OMP2 is very promising for the study of weak interactions in open-shell molecular systems.

  18. Semiclassical Transition-State Theory Based on Fourth-Order Vibrational Perturbation Theory: The Symmetrical Eckart Barrier.

    PubMed

    Stanton, John F

    2016-07-21

    Semiclassical transition-state theory based on fourth-order vibrational perturbation theory (VPT4-SCTST) is applied to compute the barrier transmission coefficient for the symmetric Eckart potential. For a barrier parametrized to mimic the H2 + H exchange reaction, the results obtained are in excellent agreement with exact quantum calculations over a range of energy that extends down to roughly 1% of the barrier height, V0, where tunneling is negligible. The VPT2-SCTST treatment, which is commonly used in chemical kinetics studies, also performs quite well but already shows an error of a few percent at ca. 0.8 V0 where tunneling is still important. This suggests that VPT4-SCTST could offer an improvement over VPT2-SCTST in applications studies. However, the computational effort for VPT4-SCTST treatments of molecules is excessive, and any improvement gained is unlikely to warrant the increased effort. Nevertheless, the treatment of the symmetric Eckart barrier problem here suggests a simple modification of the usual VPT2-SCTST protocol that warrants further investigation. PMID:27358083

  19. Closely approximating second-order Møller-Plesset perturbation theory with a local triatomics in molecules model

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Maslen, Paul E.; Head-Gordon, Martin

    2000-02-01

    A new ansatz for local electron correlation is introduced, which truncates double substitutions subject to a triatomics in molecules (TRIM) criterion. TRIM includes all double substitutions in which one occupied-virtual substitution is atomic while the other substitution can be nonlocal (a cubic number, before cutoffs). With an additional approximation, the TRIM second-order Møller-Plesset perturbation theory (MP2) model can be noniteratively solved; this is the model that is implemented. Results are shown for absolute energies of alkane and polyene chains, rotational barriers of substituted ethylenes and benzenes, and association energies of the water and neon dimers. Over 99.7% of the untruncated MP2 energy is recovered for the test cases, and the relative energies of small systems are in error by less than 0.1 kcal/mol. By contrast, a diatomics in molecules (DIM) truncation recovers about 95% of the full MP2 energy, and yields errors several times larger for relative energies.

  20. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  1. 2nd International Conference on Health and Human Rights.

    PubMed

    Dougherty, S

    1997-01-01

    The 2nd International Conference on Health and Human Rights held in 1996 explored the issue of human rights and public health advocacy in light of the AIDS pandemic. Speakers addressed the pervasive personal and institutional racism within the United States (known as structural violence) that hinders minority health status and health care. Poverty and its relationship to women's risk of HIV infection are viewed as one of the most significant manifestations of structural violence for those in the field of HIV/AIDS. Other speakers addressed the destruction of urban habitats and the effect of this destruction on urban society and health, and how social class can affect health care delivery, access, and mortality.

  2. Symbolic derivation of high-order Rayleigh-Schroedinger perturbation energies using computer algebra: Application to vibrational-rotational analysis of diatomic molecules

    SciTech Connect

    Herbert, J.M.

    1997-07-01

    Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.

  3. Refraction data survey: 2nd generation correlation of myopia.

    PubMed

    Greene, Peter R; Medina, Antonio

    2016-10-01

    The objective herein is to provide refraction data, myopia progression rate, prevalence, and 1st and 2nd generation correlations, relevant to whether myopia is random or inherited. First- and second-generation ocular refraction data are assembled from N = 34 families, average of 2.8 children per family. From this group, data are available from N = 165 subjects. Inter-generation regressions are performed on all the data sets, including correlation coefficient r, and myopia prevalence [%]. Prevalence of myopia is [M] = 38.5 %. Prevalence of high myopes with |R| >6 D is [M-] = 20.5 %. Average refraction is  = -1.84 D ± 3.22 (N = 165). For the high myopes, |R| >6 D, prevalence for the parents is [M-] = 25 %, for the 2nd generation [M-] = 16.5 %. Average myopia level for the high myopes, both generations, is  = -7.52 D ± 1.31 D (N = 33). Regression parameters are calculated for all the data sets, yielding correlation coefficients in the range r = 0.48-0.72 for some groups of myopes and high myopes, fathers to daughters, and mothers to sons. Also of interest, some categories show essentially no correlation, -0.20 < r < 0.20, indicating that the refractive errors occur randomly. Time series results show myopia diopter rates = -0.50 D/year.

  4. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  5. Dynamical next-to-next-to-leading order parton distributions and the perturbative stability of F{sub L}(x,Q{sup 2})

    SciTech Connect

    Glueck, M.; Reya, E.; Pisano, C.

    2008-04-01

    Recent measurements for F{sub 2}(x,Q{sup 2}) have been analyzed in terms of the 'dynamical' and 'standard' parton model approach at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) of perturbative QCD. Having fixed the relevant NLO and NNLO parton distributions, we present the implications and predictions for the longitudinal structure function F{sub L}(x,Q{sup 2}). It is shown that the previously noted extreme perturbative NNLO/NLO instability of F{sub L}(x,Q{sup 2}) is an artifact of the commonly utilized 'standard' gluon distributions. In particular it is demonstrated that using the appropriate--dynamically generated--parton distributions at NLO and NNLO, F{sub L}(x,Q{sup 2}) turns out to be perturbatively rather stable already for Q{sup 2}{>=}O(2-3 GeV{sup 2})

  6. Prospects of using the second-order perturbation theory of the MP2 type in the theory of electron scattering by polyatomic molecules

    SciTech Connect

    Čársky, Petr

    2015-01-22

    So far the second-order perturbation theory has been only applied to the hydrogen molecule. No application was attempted for another molecule, probably because of technical difficulties of such calculations. The purpose of this contribution is to show that the calculations of this type are now feasible on larger polyatomic molecules even on commonly used computers.

  7. Physical properties of double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6}

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji

    2013-01-15

    The crystal, magnetic structures and physical properties of the double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6} are investigated through powder X-ray and neutron diffraction, electrical conductivity, magnetic susceptibility, and specific heat measurements. The Rietveld analysis reveals that the Nd and Os ions are arranged with regularity over the six-coordinate B sites in a distorted perovskite ABO{sub 3} framework. The monoclinic crystal structure described by space group P2{sub 1}/n (tilt system a{sup -}a{sup -}c{sup +}) becomes more distorted with decreasing temperature from 300 K down to 2.5 K. This compound shows a long-range antiferromagnetic ordering of Os{sup 5+} below 65 K. An antiferromagnetic ordering of Nd{sup 3+} also occurs at lower temperatures ({approx}20 K). The magnetic structure is of Type I and the magnetic moments of Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. - Graphical Abstract: The Magnetic structure of Ba{sub 2}NdOsO{sub 6} is of Type I, and the magnetic moments of the Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. Highlights: Black-Right-Pointing-Pointer Crystal structures of Ba{sub 2}NdOsO{sub 6} are determined to be monoclinic below 300 K. Black-Right-Pointing-Pointer Its electrical resistivity shows a Mott variable-range hopping behavior with localized carriers. Black-Right-Pointing-Pointer An antiferromagnetic ordering of the Os{sup 5+}moment occurs at 65 K. Black-Right-Pointing-Pointer The magnetic structure of Ba{sub 2}NdOsO{sub 6} is determined to be of Type I.

  8. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    McGovern, Judith

    2013-04-01

    The recent determination of the proton charge radius from the Lamb shift in muonic hydrogen [1] gives a value that differs by many standard deviations from the CODATA value [2] and from the results of recent electron scattering experiments [3]. In the theoretical calculations [4], the least-well-determined contribution is the ``proton polarisability'' contribution. This is the part of the two-photon exchange which involves proton excitations. The dominant effect can be determined via dispersion relations from the proton structure functions, but a subtraction term remains [5,6]. This subtraction term is the amplitude T1(0,Q^2) for forward, zero-energy, doubly-virtual Compton scattering, which we calculate in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the γNδ form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift, and allows us to significantly reduce the theoretical uncertainty in the latter [7].[4pt] [1] R. Pohl et al., Nature 466, 213 (2010).[0pt] [2] P. J. Mohr, B. N. Taylor and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008) [arXiv:0801.0028].[0pt] [3] J. C. Bernauer et al. (A1 Collaboration), Phys. Rev. Lett. 105, 242001 (2010) [arXiv:1007.5076].[0pt] [4] U. D. Jentschura, Ann. Phys. 326, 500 (2011) [arXiv:1011.5275]; E. Borie, Ann. Phys. 327, 733 (2012) [arXiv:1103.1772].[0pt] [5] K. Pachucki, Phys. Rev. A 60, 3593 (1999) [arXiv:physics/9906002].[0pt] [6] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011) [arXiv:1101.5965]; also [arXiv:1109.3779].[0pt] [7] M. C. Birse and J. A. McGovern, Eur. Phys. J. A48, 120 (2012) [arXiv:1206.3030].

  9. Auxiliary basis sets for density fitting second-order Møller-Plesset perturbation theory: correlation consistent basis sets for the 5d elements Hf-Pt.

    PubMed

    Hill, J Grant

    2011-07-28

    Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-PP, cc-pwCVnZ-PP, aug-cc-pVnZ-PP, and aug-cc-pwCVnZ-PP orbital basis sets (used in conjunction with pseudopotentials) for the 5d transition metal elements Hf-Pt have been optimized for use in density fitting second-order Møller-Plesset perturbation theory and other correlated ab initio methods. Calculations of the second-order Møller-Plesset perturbation theory correlation energy, for a test set of small to medium sized molecules, indicate that the density fitting error when utilizing these sets is negligible at three to four orders of magnitude smaller than the orbital basis set incompleteness error.

  10. What's Up With Mercury's 2nd-Degree Shape?

    NASA Astrophysics Data System (ADS)

    Chen, E.; Phillips, R. J.; Zhong, S.

    2015-12-01

    The long-wavelength topography and geoid of a planet are basic observations fundamental to understanding the planet's thermal and dynamical history. Observations by the MESSENGER spacecraft have significantly reduced the uncertainty in the spherical harmonic 2nd-degree (l2) topography and gravity coefficients. Similar to those of the Moon, the long wavelength shape and geoid of Mercury are significantly out of hydrostatic equilibrium [Perry et al., 2015]. The diversion from equilibrium of the Moon has been attributed to orbital evolution and the "freezing-in" of a fossil bulge. With respect to Mercury, the disequilibrium of the l2 shape and geoid is unlikely to be due to its orbital history [Matsuyama and Nimmo, 2009]. Non-hydrostatic models can explain the gravity and shape of Mercury. Buoyancy from thermal anomalies isostatically supporting the surface falls short of reproducing the observed l2 admittance and topography. We explore three scenarios that can generate high admittances at degree-2: flexural/membrane loading on the surface, buoyant structures within the mantle, or topography on the core-mantle boundary. We discuss both isostatic and dynamic models of compensation, and include variations of viscosity structure and elastic properties. However, typical sources of these mechanisms (e.g. large volcanic provinces that collectively have symmetry about the equator or mantle convection with a strong l2 component) are not obviously present on Mercury.

  11. PREFACE: 2nd International Symposium "Optics and its Applications"

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav

    2016-01-01

    The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.

  12. 2nd Circuit vacates sanction against plantiff's attorney.

    PubMed

    1999-07-23

    The 2nd U.S. Circuit Court of Appeals vacated sanctions against attorney Lee Nuwesra whose client claimed HIV discrimination. The court ruled that U.S. District Judge Constance Baker Motley abused her judicial discretion in ruling that Nuwesra must pay $25,000 of legal costs spent by the client's employer in defending itself against litigation that the judge found frivolous. The appeals panel faulted the judge for not specifying which conduct on the part of the attorney was actionable. Plaintiff [name removed] claimed that his firing from [name removed] & [name removed], Inc., was motivated by his HIV illness and that his rights under the Americans with Disabilities Act were violated. [Name removed] failed to establish that his employer knew his HIV status. Motley sanctioned Nuwesra for not performing adequate pre-trial investigation in the case. According to Federal Rules of Civil Procedure judges can only sanction attorneys at the request of the opposing side, which was not made by the defendants in this case.

  13. [Microsurgical 2nd toe transfer for catastrophic hand reconstruction].

    PubMed

    Placer, A; Lozano, Ja

    2007-01-01

    The correct reconstruction of the catastrophic hand requires complex surgical techniques. The microsurgical transference of a toe is indicated when all other reconstructive options are shown to be useless for the reconstruction of the required clamp function. In this clinical note we set out the case of a 32 year old man, who came to our accident and emergency department after suffering a traffic accident. After exploration the diagnosis was that of catastrophic left hand, among other policontusions. Urgent surgery was carried out, saving the maximum possible viable structures. The immediate result of this surgery was a hand with 1st, 4th and 5th functional fingers. As the essential clamp function between the 1st and 4th or 5th fingers was not totally satisfactory, we decided to reconstruct the 3rd finger of his hand with his ipsilateral 2nd toe. All pertinent studies to determine vascularisation of the flap were carried out in planning the surgery, and the microsurgical transfer was then realized, which was successful. Today, after a suitable rehabilitation, the patient has recovered a satisfactory function of heavy and fine clamp in the operated hand. Toe to hand transfer is a good option for finger reconstruction and its function. Rehabilitation is the key to functional recovery.

  14. 2nd PEGS Annual Symposium on Antibodies for Cancer Therapy

    PubMed Central

    Ho, Mitchell; Royston, Ivor; Beck, Alain

    2012-01-01

    The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market.  The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors.  Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery. PMID:22864478

  15. PREFACE: 2nd National Conference on Nanotechnology 'NANO 2008'

    NASA Astrophysics Data System (ADS)

    Czuba, P.; Kolodziej, J. J.; Konior, J.; Szymonski, M.

    2009-03-01

    This issue of Journal of Physics: Conference Series contains selected papers presented at the 2nd National Conference on Nanotechnology 'NANO2008', that was held in Kraków, Poland, 25-28 June 2008. It was organized jointly by the Polish Chemical Society, Polish Physical Society, Polish Vacuum Society, and the Centre for Nanometer-scale Science and Advanced Materials (NANOSAM) of the Jagiellonian University. The meeting presentations were categorized into the following topics: 1. Nanomechanics and nanotribology 2. Characterization and manipulation in nanoscale 3. Quantum effects in nanostructures 4. Nanostructures on surfaces 5. Applications of nanotechnology in biology and medicine 6. Nanotechnology in education 7. Industrial applications of nanotechnology, presentations of the companies 8. Nanoengineering and nanomaterials (international sessions shared with the fellows of Maria-Curie Host Fellowships within the 6th FP of the European Community Project 'Nano-Engineering for Expertise and Development, NEED') 9. Nanopowders 10. Carbon nanostructures and nanosystems 11. Nanoelectronics and nanophotonics 12. Nanomaterials in catalysis 13. Nanospintronics 14. Ethical, social, and environmental aspects of nanotechnology The Conference was attended by 334 participants. The presentations were delivered as 7 invited plenary lectures, 25 invited topical lectures, 78 oral and 108 poster contributions. Only 1/6 of the contributions presented during the Conference were submitted for publication in this Proceedings volume. From the submitted material, this volume of Journal of Physics: Conference Series contains 37 articles that were positively evaluated by independent referees. The Organizing Committee gratefully acknowledges all these contributions. We also thank all the referees of the papers submitted for the Proceedings for their timely and thorough work. We would like to thank all members of the National Program Committee for their work in the selection process of

  16. Psychiatric Diagnosis and Concomitant Medical Treatment for 1st and 2nd Grade Children

    ERIC Educational Resources Information Center

    Cornell-Swanson, La Vonne; Frankenberger, William; Ley, Katie; Bowman, Krista

    2007-01-01

    This study examined the proportion of children in 1st and 2nd grade classes who were currently prescribed medication for psychotropic disorders. The study also examined the attitudes of 1st and 2nd grade teachers toward diagnosis of psychiatric disorders and use of psychiatric medication to treat children. Results of the current study indicate…

  17. Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika; Peterson, John; Conrad, Mark; Cook, Paul; Tiemi, Onishi

    2011-03-31

    This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.

  18. Highlights of the 2 nd Bioinformatics Student Symposium by ISCB RSG-UK

    PubMed Central

    White, Benjamen; Fatima, Vayani; Fatima, Nazeefa; Das, Sayoni; Rahman, Farzana; Hassan, Mehedi

    2016-01-01

    Following the success of the 1 st Student Symposium by ISCB RSG-UK, a 2 nd Student Symposium took place on 7 th October 2015 at The Genome Analysis Centre, Norwich, UK. This short report summarizes the main highlights from the 2 nd Bioinformatics Student Symposium. PMID:27239284

  19. Examples to Accompany "Descriptive Cataloging of Rare Books, 2nd Edition."

    ERIC Educational Resources Information Center

    Association of Coll. and Research Libraries, Chicago, IL.

    This book is intended to be used with "Descriptive Cataloging of Rare Books," 2nd edition (DCRB) as an illustrative aid to catalogers and others interested in or needing to interpret rare book cataloging. As such, it is to be used in conjunction with the rules it illustrates, both in DCRB and in "Anglo-American Cataloging Rules," 2nd edition…

  20. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing.

    PubMed

    Weiss, T; Mesch, M; Schäferling, M; Giessen, H; Langbein, W; Muljarov, E A

    2016-06-10

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume. PMID:27341256

  1. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Mesch, M.; Schäferling, M.; Giessen, H.; Langbein, W.; Muljarov, E. A.

    2016-06-01

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume.

  2. Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem with a turning point

    NASA Astrophysics Data System (ADS)

    Shen, Jianhe; Han, Maoan

    2014-08-01

    This paper considers the existence and uniformly valid asymptotic approximation of canard solutions in a second-order nonlinear singularly perturbed boundary value problem with a turning point. We get the main results by constructing the asymptotic solution first and then defining a couple of upper and lower solutions suitably on the basis of the asymptotic solution. Two examples are carried out to illustrate and verify the theoretical results.

  3. All-order perturbation calculation of energies, hyperfine constants, multipole polarizabilities, and blackbody radiation shift in {sup 87}Sr{sup +}

    SciTech Connect

    Safronova, U. I.

    2010-08-15

    Excitation energies of the [Kr]ns{sub 1/2}, [Kr]np{sub j}, [Kr]nd{sub j}, and [Kr]nf{sub j} (n{<=}9 and [Kr]=(1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}4p{sup 6}) in Sr ii are evaluated. First-order, second-order, third-order, and all-order Coulomb energies and first-order and second-order Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=7. Electric-dipole (5s{sub 1/2}-np{sub j}, n=5-26), electric-quadrupole (5s{sub 1/2}-nd{sub j}, n=4-26), and electric-octupole (5s{sub 1/2}-nf{sub j}, n=4-26) matrix elements are calculated to obtain the ground-state E1, E2, and E3 static polarizabilities. Scalar and tensor polarizabilities for the 5p{sub j}-9p{sub j} and 4d{sub j}-8d{sub j} excited states in Sr ii are also calculated. All the above-mentioned matrix elements are determined using the all-order method. We also investigate the hyperfine structure in {sup 87}Sr{sup +}. The hyperfine A values and B values are determined for the first low-lying levels up to n=7. The quadratic Stark effect on hyperfine-structure levels of the {sup 87}Sr{sup +} ground state is investigated. The calculated shift for the (F=5,M=0){r_reversible}(F=4,M=0) transition is found to be 0.120(1) Hz/(kV/cm){sup 2}. These calculations provide a theoretical benchmark for comparison with the experiment and theory. A careful study of uncertainty of our calculations is carried out for the transition-matrix elements, line strengths, transition rates, lifetimes, polarizabilities, and the Stark shift coefficient.

  4. 2nd interface between ecology and land development in California

    USGS Publications Warehouse

    Keeley, Jon E.; Baer-Keeley, Melanie; Fortheringham, C.J.

    2000-01-01

    The 2nd Interface Between Ecology and Land Development Conference was held in association with Earth Day 1997, five years after the first Interface Conference. Rapid population growth in California has intensified the inevitable conflict between land development and preservation of natural ecosystems. Sustainable development requires wise use of diminishing natural resources and, where possible, restoration of damaged landscapes. These Earth Week Celebrations brought together resource managers, scientists, politicians, environmental consultants, and concerned citizens in an effort to improve the communication necessary to maintain our natural biodiversity, ecosystem processes and general quality of life. As discussed by our keynote speaker, Michael Soule, the best predictor of habitat loss is population growth and nowhere is this better illustrated than in California. As urban perimeters expand, the interface between wildlands and urban areas increases. Few problems are more vexing than how to manage the fire prone ecosystems indigenous to California at this urban interface. Today resource managers face increasing challenges of dealing with this problem and the lead-off section of the proceedings considers both the theoretical basis for making decisions related to prescribed burning and the practical application. Habitat fragmentation is an inevitable consequence of development patterns with significant impacts on animal and plant populations. Managers must be increasingly resourceful in dealing with problems of fragmentation and the often inevitable consequences, including susceptibility to invasive oganisms. One approach to dealing with fragmentation problems is through careful landplanning. California is the national leader in the integration of conservation and economics. On Earth Day 1991, Governor Pete Wilson presented an environmental agenda that promised to create between land owners and environmentalists, agreements that would guarantee the protection of

  5. Diagrammatic many-body perturbation expansion for atoms and molecules: VI Experiments in vector processing and parallel processing for second-order energy calculations

    NASA Astrophysics Data System (ADS)

    Moncrieff, David; Baker, David J.; Wilson, Stephen

    1989-08-01

    The efficient evaluation of the second-order expression in the many-body perturbation theory expansion for the correlation energy on vector processing and parallel processing computers is discussed. It is argued that the linked diagram theorem not only leads to the well known theoretical advantages of the many-body perturbation theory approach which allows the calculation of correlation energies for large (i.e. extended molecules or species containing heavy atoms) systems but also decouples the many-electron problem allowing efficient implementation on parallel processing machines. Furthermore, the computation associated with each of the resulting subproblems is very well suited to vector processing machines. Timing tests are reported for the CRAY 1 and CDC Cyber 205 vector processors, for a 1 processor implementation on the CRAY X-MP/48 and the ETA-10E, and for a 4 processor implementation on the Cray X-MP/48.

  6. Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order

    NASA Astrophysics Data System (ADS)

    Assylbekov, Yernat M.

    2016-10-01

    We show that the knowledge of the Dirichlet-to-Neumann map on the boundary of a bounded open set in {{{R}}}n, n≥slant 3, for the perturbed polyharmonic operator {(-{{Δ }})}m+A\\cdot D+q, m≥slant 2, with 2n\\gt m, A\\in {W}-\\tfrac{m-2{2},\\tfrac{2n}{m}} and q\\in {W}-\\tfrac{m{2},\\tfrac{2n}{m}}, determines the potentials A and q in the set uniquely. The proof is based on a Carleman estimate with linear weights and with a gain of two derivatives and on the property of products of functions in Sobolev spaces.

  7. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  8. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  9. Efficient parallel algorithm of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation (RI-MP2)

    NASA Astrophysics Data System (ADS)

    Katouda, Michio; Nagase, Shigeru

    An efficient parallel algorithm is developed for second-order Møller-Plesset perturbation theory with the resolution-of-identity approximation of two-electron repulsion integrals (RI-MP2) to perform MP2 energy calculations of large molecules on distributed memory processors. Benchmark calculations are carried out for taxol (C47H51NO14), valinomycin (C54H90N6O18), and two-layer nanographene sheets (C96H24)2, which show the high parallel efficiency of the developed algorithm.

  10. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    SciTech Connect

    Huang, Yuanhang; Beran, Gregory J. O.

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simple model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.

  11. 21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH HOLLOW STEEL SASH AND POLISHED PLATE WIRE GLASS. THIS WINDOW IS AT THE FRONT OF THE BUILDING. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  12. 37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 CREEL MACHINES, WHICH FEED YARN INTO KNITTING MACHINES. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  13. 6. 2nd floor where stables used to be; note bottom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 2nd floor where stables used to be; note bottom of truss with suspension rods for floor which results in clear span on 1st level - Diebolt Brewing Company Stable, 2695 Pittsburgh Avenue, Cleveland, Cuyahoga County, OH

  14. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  15. 27. INTERIOR, ADMINISTRATION BUILDING, 2ND FLOOR, SOUTHEAST CORNER SPACE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR, ADMINISTRATION BUILDING, 2ND FLOOR, SOUTHEAST CORNER SPACE, LOOKING UP AT CIRCULAR MOTIF AND BANDS IN THE CEILING ABOVE THE ACOUSTICAL TILES - Ford Motor Company Plant, 700 South Union Street, Alexandria, Independent City, VA

  16. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  17. 22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING MACHINE. LIGHT TABLE USED TO CHECK FOR CLOTH DEFECTS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  18. 12. CLOSEUP VIEW OF 2ND FLOOR WINDOW SHOWING THE WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP VIEW OF 2ND FLOOR WINDOW SHOWING THE WHITE GLAZED TERRA COTTA DETAILS, AT FRONT ELEVATION. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  19. 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic

    MedlinePlus

    ... news/fullstory_159807.html 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic Scientists concerned it ... the United States who was infected with a bacteria that is resistant to an antibiotic of last ...

  20. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  1. 26. VIEW OF CUT AWAY FLOOR BUILDING 23 2ND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF CUT AWAY FLOOR BUILDING 23 2ND FLOOR SHOWING TYPICAL MILL CONSTRUCTION (SECTION OF FLOOR CONTAMINATED WITH HAZARDOUS MATERIAL WAS REMOVED FOR DISPOSAL) - Bryant Electric Company, 1421 State Street, Bridgeport, Fairfield County, CT

  2. 12. Bldg #13, 2nd floor, interior stone walls w/windows and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Bldg #13, 2nd floor, interior stone walls w/windows and bent pipe thru wall L and light bulbs in ceiling, to NE - Lawrence Machine Shop, Building No. 13, Union & Canal Streets, Lawrence, Essex County, MA

  3. If 1st Baby's Early, 2nd Will Be Too: Study

    MedlinePlus

    ... If 1st Baby's Early, 2nd Will Be Too: Study Chances just as high for women who go ... it really is a potent factor," said senior study author Laura Jelliffe-Pawlowski. She is associate director ...

  4. Practical recursive solution of degenerate Rayleigh-Schrödinger perturbation theory and application to high-order calculations of the Zeeman effect in hydrogen

    NASA Astrophysics Data System (ADS)

    Silverstone, Harris J.; Moats, Richard K.

    1981-04-01

    With the aim of high-order calculations, a new recursive solution for the degenerate Rayleigh-Schrödinger perturbation-theory wave function and energy has been derived. The final formulas, χ(N)σ=R(-σ)ΣN-1k=0H¯(σ+1+k)σ+1χ(N-1-k) E(N+σ)=<0|H(N+σ)σ+1|0>+<0|ΣN-2k=0H(σ+1+k)σ+1|χ(N-1-k)> which involve new Hamiltonian-related operators H(σ+k)σ and H¯(σ+k)σ, strongly resemble the standard nondegenerate recursive formulas. As an illustration, the perturbed energy coefficients for the 3s-3d0 states of hydrogen in the Zeeman effect have been calculated recursively through 87th order in the square of the magnetic field. Our treatment is compared with that of Hirschfelder and Certain

    [J. Chem. Phys. 60, 1118 (1974)]
    , and some relative advantages of each are pointed out.

  5. Acid soil and acid rain, 2nd edition

    SciTech Connect

    Kennedy, I.R.

    1992-01-01

    This book examines the basic chemical processes involved in acidification in order to better assess their long-term effects on the status of soils, the health of plants and other living species that depend on them. It also discusses acidity, pH and protons their significance in bioenergetics and the consequent role of autotrophic organisms in acidifying ecosystems. This edition incorporates and integrates recent findings that render more explanations of the causes of the environmental impacts of acidity, especially in forests and lakes. Also explores current research into acid rain and soil in order to devise appropriate measures for their amelioration.

  6. Criteria for first- and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory

    SciTech Connect

    Krasnoshchekov, Sergey V.; Isayeva, Elena V.; Stepanov, Nikolay F.

    2014-12-21

    The second-order vibrational Hamiltonian of a semi-rigid polyatomic molecule when resonances are present can be reduced to a quasi-diagonal form using second-order vibrational perturbation theory. Obtaining exact vibrational energy levels requires subsequent numerical diagonalization of the Hamiltonian matrix including the first- and second-order resonance coupling coefficients. While the first-order Fermi resonance constants can be easily calculated, the evaluation of the second-order Darling-Dennison constants requires more complicated algebra for seven individual cases with different numbers of creation-annihilation vibrational quanta. The difficulty in precise evaluation of the Darling-Dennison coefficients is associated with the previously unrecognized interference with simultaneously present Fermi resonances that affect the form of the canonically transformed Hamiltonian. For the first time, we have presented the correct form of the general expression for the evaluation of the Darling-Dennison constants that accounts for the underlying effect of Fermi resonances. The physically meaningful criteria for selecting both Fermi and Darling-Dennison resonances are discussed and illustrated using numerical examples.

  7. Writing II for 2nd Year EFL Student Teachers

    ERIC Educational Resources Information Center

    Abdallah, Mahmoud M. S.

    2015-01-01

    Writing is a very important skill that should be mastered properly by university students, especially pre-service language teachers (e.g. EFL student teachers). In order to present their ideas efficiently in the context of their academic study, they have to be trained well on how to write meaningful pieces (e.g. essays, academic reports,…

  8. Second-Order Perturbation Theory for Fractional Occupation Systems: Applications to Ionization Potential and Electron Affinity Calculations.

    PubMed

    Su, Neil Qiang; Xu, Xin

    2016-05-10

    Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers.

  9. Second-Order Perturbation Theory for Fractional Occupation Systems: Applications to Ionization Potential and Electron Affinity Calculations.

    PubMed

    Su, Neil Qiang; Xu, Xin

    2016-05-10

    Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers. PMID:27010405

  10. Construction of Giant-Spin Hamiltonians from Many-Spin Hamiltonians by Third-Order Perturbation Theory and Application to an Fe3 Cr Single-Molecule Magnet.

    PubMed

    Tabrizi, Shadan Ghassemi; Arbuznikov, Alexei V; Kaupp, Martin

    2016-05-10

    A general giant-spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange-coupled metal cluster with dominant Heisenberg interactions was derived from a many-spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second-order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high-field EPR spectra of a number of single-molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high-rank axial and transverse terms to be necessary to account for experimental data in terms of giant-spin models. While mixing of spin multiplets by local zero-field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third-order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an S=6 trigonal Fe3 Cr complex that was recently investigated by high-field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic-field space. The results question the ability of present high-field EPR techniques to determine high-rank zero-field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3 Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs. PMID:27062248

  11. Construction of Giant-Spin Hamiltonians from Many-Spin Hamiltonians by Third-Order Perturbation Theory and Application to an Fe3 Cr Single-Molecule Magnet.

    PubMed

    Tabrizi, Shadan Ghassemi; Arbuznikov, Alexei V; Kaupp, Martin

    2016-05-10

    A general giant-spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange-coupled metal cluster with dominant Heisenberg interactions was derived from a many-spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second-order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high-field EPR spectra of a number of single-molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high-rank axial and transverse terms to be necessary to account for experimental data in terms of giant-spin models. While mixing of spin multiplets by local zero-field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third-order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an S=6 trigonal Fe3 Cr complex that was recently investigated by high-field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic-field space. The results question the ability of present high-field EPR techniques to determine high-rank zero-field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3 Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs.

  12. Technical decision-making with higher order structure data: specific binding of a nonionic detergent perturbs higher order structure of a therapeutic monoclonal antibody.

    PubMed

    Budyak, Ivan L; Doyle, Brandon L; Weiss, William F

    2015-04-01

    Robust higher order structure (HOS) characterization capability and strategy are critical throughout biopharmaceutical development from initial candidate selection and formulation screening to process optimization and manufacturing. This case study describes the utility of several orthogonal HOS methods as investigational tools during purification process development. An atypically high level of residual detergent in a development drug substance batch of a therapeutic monoclonal antibody triggered a root cause investigation. Several orthogonal biophysical techniques were used to uncover and characterize a specific interaction between the detergent and the antibody. Isothermal titration calorimetry (ITC) was used to quantify the molar ratio and affinity of the binding event, and circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC) were used to evaluate corresponding impacts on secondary/tertiary structure and thermal stability, respectively. As detergents are used routinely in biopharmaceutical processing, this case study highlights the value and power of HOS data in informing technical investigations and underlines the importance of HOS characterization as a component of overall biopharmaceutical analytical control strategy.

  13. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    SciTech Connect

    Phillips, Jordan J. Zgid, Dominika

    2014-06-28

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H{sub 32} finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  14. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    NASA Astrophysics Data System (ADS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-06-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  15. The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory

    NASA Astrophysics Data System (ADS)

    Pou-Amérigo, Rosendo; Merchán, Manuela; Nebot-Gil, Ignacio; Malmqvist, Per-Åke; Roos, Björn O.

    1994-09-01

    The performance of multiconfigurational second order perturbation theory has been analyzed for the description of the bonding in CuH, Cu2, NiH, and Ni2. Large basis sets based on atomic natural orbitals (ANOS) were employed. The effects of enlarging the active space and including the core-valence correlation contributions have also been analyzed. Spectroscopic constants have been computed for the corresponding ground state. The Ni2 molecule has been found to have a 0+g ground state with a computed dissociation energy of 2.10 eV, exp. 2.09 eV, and a bond distance of 2.23 Å. The dipole moments of NiH and CuH are computed to be 2.34 (exp. 2.4±0.1) and 2.66 D, respectively.

  16. A compendium of fossil marine animal families, 2nd edition

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1992-01-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  17. A compendium of fossil marine animal families, 2nd edition.

    PubMed

    Sepkoski, J J

    1992-03-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  18. Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Suhai, Sándor

    1994-11-01

    Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up to the complete fourth order of the Mo/ller-Plesset perturbation theory (MP4-PT), and by using different versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization functions up to 6s3p2d1f per H atom. In order to compare the performance of the PT and DFT methods, several physical properties have been computed at all theoretical levels including lattice geometry, cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequilibrium configurations (dissociation). For these latter quantities, both spin-restricted (RHF) and unrestricted (UHF) wave functions have been employed in all orders of PT. The methods described have been used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experiments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison with the MP4 results.

  19. An Introduction to Thermodynamics and Statistical Mechanics - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Stowe, Keith

    2003-03-01

    This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities, in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics - the study of small systems interacting with huge reservoirs. The changes to this second edition have been made after more than 10 years classroom testing and student feedback. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd numbered problems, and solutions to even problems are available to instructors at www.cambridge.org/9780521865579. The entire book has been re-written and now covers more topics It has a greater number of homework problems which range in difficulty from warm-ups to challenges It is concise and has an easy reading style

  20. DOE performance indicators for 2nd quarter CY 1993

    SciTech Connect

    Not Available

    1993-11-01

    The Department of Energy (DOE) has established a Department-wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment, safety, and health (ES&H) performance of the DOE at the Secretary and other management levels. This is the tenth in a series of quarterly reports generated for the Department of Energy Idaho Operations Office (DOE-ID) by EG&G Idaho, Inc. to meet the requirements of the PI Program as directed by the DOE Standard (DOE-STD-1048-92). The information in this tenth quarterly report, while contributing to a historical database for supporting future trending analysis, does not at this time provide a sound basis for developing trend-related conclusions. In the future, it is expected that trending and analysis of operational data will enhance the safety culture in both DOE and contractor organizations by providing an early warning of deteriorating environment, safety, and health conditions. DOE-STD-1048-92 identifies four general areas of PIs. They are: Personnel Safety, Operational Incidents, Environment, and Management. These four areas have been subdivided into 26 performance indicators. Approximately 115 performance indicator control and distribution charts comprise the body of this report. A brief summary of PIs contained in each of these general areas is provided. The four EG&G facilities whose performance is charted herein are as follows: (1) The Advanced Test Reactor (ATR), (2) The Radioactive Waste Management Complex (RWMC), (3) The Waste Experimental Reduction Facility (WERF), and (4) The Test Reactor Area (TRA) Hot Cells.

  1. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    NASA Astrophysics Data System (ADS)

    Peskin, Michael E.

    2011-04-01

    and topology, and applications to condensed matter systems including the Peierls instability and the quantum Hall fluid. It is a large amount of territory to cover in a single volume. Few derivations are more than one page long. Those that fit in that space are very smooth, but others are too abbreviated to be fully comprehensible. The prose that accompanies the derivations, though, is always enticing. Zee misses no opportunity to point out that an argument he gives opens the door to some deeper subject that he encourages the reader to explore. I do warn students that it is easy to learn from this book how to talk quantum field theory without understanding it. To avoid this pitfall, it is important (as Zee emphasizes) to fill in the steps of his arguments with hard calculation. One topic from which Zee does not restrain himself is the quantum theory of gravity. In the first hundred pages we find a `concise introduction to curved spacetime' that includes a very pretty derivation of the Christoffel symbol from the geodesic equation. Toward the end of the book, there is a set of chapters devoted to the quantization of the gravitational field. The structure of the graviton propagator is worked out carefully. The van Dam-Veltman discontinuity between massless and massive spin 2 exchange is explained clearly. But after this Zee runs out of steam in presenting fully worked arguments. Still, there is room for more prose on connections to the great mysteries of the subject: the ultraviolet behavior, the cosmological constant, and the unification of forces. A new chapter added to the second edition discusses `Is Einstein Gravity The Square Of Yang-Mills Theory?' and suggests an affirmative answer, based on brand-new developments in perturbative quantum field theory. Quantum field theory is a large subject that still has not reached its definitive form. As such, there is room for many textbooks of complementary character. Zee states frankly, `It is not the purpose of this book

  2. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    NASA Astrophysics Data System (ADS)

    Peskin, Michael E.

    2011-04-01

    and topology, and applications to condensed matter systems including the Peierls instability and the quantum Hall fluid. It is a large amount of territory to cover in a single volume. Few derivations are more than one page long. Those that fit in that space are very smooth, but others are too abbreviated to be fully comprehensible. The prose that accompanies the derivations, though, is always enticing. Zee misses no opportunity to point out that an argument he gives opens the door to some deeper subject that he encourages the reader to explore. I do warn students that it is easy to learn from this book how to talk quantum field theory without understanding it. To avoid this pitfall, it is important (as Zee emphasizes) to fill in the steps of his arguments with hard calculation. One topic from which Zee does not restrain himself is the quantum theory of gravity. In the first hundred pages we find a `concise introduction to curved spacetime' that includes a very pretty derivation of the Christoffel symbol from the geodesic equation. Toward the end of the book, there is a set of chapters devoted to the quantization of the gravitational field. The structure of the graviton propagator is worked out carefully. The van Dam-Veltman discontinuity between massless and massive spin 2 exchange is explained clearly. But after this Zee runs out of steam in presenting fully worked arguments. Still, there is room for more prose on connections to the great mysteries of the subject: the ultraviolet behavior, the cosmological constant, and the unification of forces. A new chapter added to the second edition discusses `Is Einstein Gravity The Square Of Yang-Mills Theory?' and suggests an affirmative answer, based on brand-new developments in perturbative quantum field theory. Quantum field theory is a large subject that still has not reached its definitive form. As such, there is room for many textbooks of complementary character. Zee states frankly, `It is not the purpose of this book

  3. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.

    PubMed

    Loibl, Stefan; Schütz, Martin

    2014-07-14

    In this paper, we present theory and implementation of an efficient program for calculating magnetizabilities and rotational g tensors of closed-shell molecules at the level of local second-order Møller-Plesset perturbation theory (MP2) using London orbitals. Density fitting is employed to factorize the electron repulsion integrals with ordinary Gaussians as fitting functions. The presented program for the calculation of magnetizabilities and rotational g tensors is based on a previous implementation of NMR shielding tensors reported by S. Loibl and M. Schütz [J. Chem. Phys. 137, 084107 (2012)]. Extensive test calculations show (i) that the errors introduced by density fitting are negligible, and (ii) that the errors of the local approximation are still rather small, although larger than for nuclear magnetic resonance (NMR) shielding tensors. Electron correlation effects for magnetizabilities are tiny for most of the molecules considered here. MP2 appears to overestimate the correlation contribution of magnetizabilities such that it does not constitute an improvement over Hartree-Fock (when comparing to higher-order methods like CCSD(T)). For rotational g tensors the situation is different and MP2 provides a significant improvement in accuracy over Hartree-Fock. The computational performance of the new program was tested for two extended systems, the larger comprising about 2200 basis functions. It turns out that a magnetizability (or rotational g tensor) calculation takes about 1.5 times longer than a corresponding NMR shielding tensor calculation.

  4. Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study.

    PubMed

    Phung, Quan Manh; Wouters, Sebastian; Pierloot, Kristine

    2016-09-13

    The complete active space second order perturbation theory (CASPT2) can be extended to larger active spaces by using the density matrix renormalization group (DMRG) as solver. Two variants are commonly used: the costly DMRG-CASPT2 with exact 4-particle reduced density matrix (4-RDM) and the cheaper DMRG-cu(4)-CASPT2 in which the 4-cumulant is discarded. To assess the accuracy and limitations of the latter variant DMRG-cu(4)-CASPT2 we study the spin state energetics of iron porphyrin Fe(P) and its model compound FeL2, a model for the active center of NiFe hydrogenase, and manganese-oxo porphyrin MnO(P)(+); a series of excited states of chromium hexacarbonyl Cr(CO)6; and the interconversion of two Cu2O2(2+) isomers. Our results clearly show that PT2 on top of DMRG is essential in order to obtain quantitative results for transition metal complexes. Good results were obtained with DMRG-cu(4)-CASPT2 as compared to full CASPT2 and DMRG-CASPT2 in calculations with small- and medium-sized active spaces. In calculations with large-sized active spaces (∼30 active orbitals), the performance of DMRG-cu(4)-CASPT2 is less impressive due to the errors originating from both the finite number of renormalized states m and the 4-RDM approximation. PMID:27547847

  5. Evaluation of a Hand Washing Program for 2nd-Graders

    ERIC Educational Resources Information Center

    Tousman, Stuart; Arnold, Dani; Helland, Wealtha; Roth, Ruth; Heshelman, Nannatte; Castaneda, Oralia; Fischer, Emily; O'Neil, Kristen; Bileto, Stephanie

    2007-01-01

    The purpose of this project was to determine if a multiple-week learner-centered hand washing program could improve hand hygiene behaviors of 2nd-graders in a northern Illinois public school system. Volunteers from the Rockford Hand Washing Coalition went into 19 different classrooms for 4 consecutive weeks and taught a learner-centered program.…

  6. The Effect of Using Computer Edutainment on Developing 2nd Primary Graders' Writing Skills

    ERIC Educational Resources Information Center

    Mohammed Abdel Raheem, Azza Ashraf

    2011-01-01

    The present study attempted to examine the effect of using computer edutainment on developing 2nd graders' writing skills. The study comprised thirty-second year primary stage enrolled in Bani Hamad primary governmental school, Minia governorate. The study adopted the quasi-experimental design. Thirty participants were randomly assigned to one…

  7. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    EPA Science Inventory

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  8. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect

    Maxfield, D.A.

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  9. Technical Adequacy of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report

    ERIC Educational Resources Information Center

    Erford, Bradley T.; Miller, Emily M.; Isbister, Katherine

    2015-01-01

    This study provides preliminary analysis of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report, which was designed to screen individuals aged 10 years and older for anxiety and behavior symptoms. Score reliability and internal and external facets of validity were good for a screening-level test.

  10. 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Entomological Society of China (ESC) and Beijing Institute of Microbiology and Epidemiology (BIME) hosted the 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases in Beijing, China, May 23-27, 2011. The theme of the Forum was “Impact of global climate ch...

  11. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  12. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  13. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

    PubMed

    Willow, Soohaeng Yoo; Salim, Michael A; Kim, Kwang S; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation.

  14. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.

    PubMed

    Baudin, Pablo; Ettenhuber, Patrick; Reine, Simen; Kristensen, Kasper; Kjærgaard, Thomas

    2016-02-01

    The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation. PMID:26851903

  15. MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers.

    PubMed

    Katouda, Michio; Nakajima, Takahito

    2013-12-10

    A new algorithm for massively parallel calculations of electron correlation energy of large molecules based on the resolution of identity second-order Møller-Plesset perturbation (RI-MP2) technique is developed and implemented into the quantum chemistry software NTChem. In this algorithm, a Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model is applied to attain efficient parallel performance on massively parallel supercomputers. An in-core storage scheme of intermediate data of three-center electron repulsion integrals utilizing the distributed memory is developed to eliminate input/output (I/O) overhead. The parallel performance of the algorithm is tested on massively parallel supercomputers such as the K computer (using up to 45 992 central processing unit (CPU) cores) and a commodity Intel Xeon cluster (using up to 8192 CPU cores). The parallel RI-MP2/cc-pVTZ calculation of two-layer nanographene sheets (C150H30)2 (number of atomic orbitals is 9640) is performed using 8991 node and 71 288 CPU cores of the K computer. PMID:26592275

  16. Second-Order Møller-Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane Waves Approach.

    PubMed

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2012-11-13

    A novel algorithm, based on a hybrid Gaussian and plane waves (GPW) approach, is developed for the canonical second-order Møller-Plesset perturbation energy (MP2) of finite and extended systems. The key aspect of the method is that the electron repulsion integrals (ia|λσ) are computed by direct integration between the products of Gaussian basis functions λσ and the electrostatic potential arising from a given occupied-virtual pair density ia. The electrostatic potential is obtained in a plane waves basis set after solving the Poisson equation in Fourier space. In particular, for condensed phase systems, this scheme is highly efficient. Furthermore, our implementation has low memory requirements and displays excellent parallel scalability up to 100 000 processes. In this way, canonical MP2 calculations for condensed phase systems containing hundreds of atoms or more than 5000 basis functions can be performed within minutes, while systems up to 1000 atoms and 10 000 basis functions remain feasible. Solid LiH has been employed as a benchmark to study basis set and system size convergence. Lattice constants and cohesive energies of various molecular crystals have been studied with MP2 and double-hybrid functionals. PMID:26605583

  17. Fourth Generation CP Violation Effects on B{yields}K{pi}, {phi}K, and {rho}K in Next-to-Leading-Order Perturbative QCD

    SciTech Connect

    Hou Weishu; Li Hsiangnan; Mishima, Satoshi; Nagashima, Makiko

    2007-03-30

    We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A{sub CP}(B{sup 0}{yields}K{sup +}{pi}{sup -})-A{sub CP}(B{sup +}{yields}K{sup +}{pi}{sup 0}). Taking |V{sub t{sup '}}{sub s}V{sub t{sup '}}{sub b}|{approx}0.02 with a phase just below 90 deg., which is consistent with the b{yields}sl{sup +}l{sup -} rate and the B{sub s} mixing parameter {delta}m{sub B{sub s}}, we find a downward shift in the mixing-induced CP asymmetries of B{sup 0}{yields}K{sub S}{pi}{sup 0} and {phi}K{sub S}. The predicted behavior for B{sup 0}{yields}{rho}{sup 0}K{sub S} is opposite.

  18. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.

    PubMed

    Baudin, Pablo; Ettenhuber, Patrick; Reine, Simen; Kristensen, Kasper; Kjærgaard, Thomas

    2016-02-01

    The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.

  19. MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers.

    PubMed

    Katouda, Michio; Nakajima, Takahito

    2013-12-10

    A new algorithm for massively parallel calculations of electron correlation energy of large molecules based on the resolution of identity second-order Møller-Plesset perturbation (RI-MP2) technique is developed and implemented into the quantum chemistry software NTChem. In this algorithm, a Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model is applied to attain efficient parallel performance on massively parallel supercomputers. An in-core storage scheme of intermediate data of three-center electron repulsion integrals utilizing the distributed memory is developed to eliminate input/output (I/O) overhead. The parallel performance of the algorithm is tested on massively parallel supercomputers such as the K computer (using up to 45 992 central processing unit (CPU) cores) and a commodity Intel Xeon cluster (using up to 8192 CPU cores). The parallel RI-MP2/cc-pVTZ calculation of two-layer nanographene sheets (C150H30)2 (number of atomic orbitals is 9640) is performed using 8991 node and 71 288 CPU cores of the K computer.

  20. Numerical and perturbative computations of solitary waves of the Benjamin-Ono equation with higher order nonlinearity using Christov rational basis functions

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Xu, Zhengjie

    2012-02-01

    Computation of solitons of the cubically-nonlinear Benjamin-Ono equation is challenging. First, the equation contains the Hilbert transform, a nonlocal integral operator. Second, its solitary waves decay only as O(1/∣ x∣ 2). To solve the integro-differential equation for waves traveling at a phase speed c, we introduced the artificial homotopy H( uXX) - c u + (1 - δ) u2 + δu3 = 0, δ ∈ [0, 1] and solved it in two ways. The first was continuation in the homotopy parameter δ, marching from the known Benjamin-Ono soliton for δ = 0 to the cubically-nonlinear soliton at δ = 1. The second strategy was to bypass continuation by numerically computing perturbation series in δ and forming Padé approximants to obtain a very accurate approximation at δ = 1. To further minimize computations, we derived an elementary theorem to reduce the two-parameter soliton family to a parameter-free function, the soliton symmetric about the origin with unit phase speed. Solitons for higher order Benjamin-Ono equations are also computed and compared to their Korteweg-deVries counterparts. All computations applied the pseudospectral method with a basis of rational orthogonal functions invented by Christov, which are eigenfunctions of the Hilbert transform.

  1. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model

    NASA Astrophysics Data System (ADS)

    Baudin, Pablo; Ettenhuber, Patrick; Reine, Simen; Kristensen, Kasper; Kjærgaard, Thomas

    2016-02-01

    The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.

  2. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  3. Frame independent cosmological perturbations

    SciTech Connect

    Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl

    2013-09-01

    We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.

  4. Lattice extraction of K{yields}{pi}{pi} amplitudes to next-to-leading order in partially quenched and in full chiral perturbation theory

    SciTech Connect

    Laiho, Jack; Soni, Amarjit

    2005-01-01

    We show that it is possible to construct {epsilon}{sup '}/{epsilon} to next-to-leading order (NLO) using partially quenched chiral perturbation theory (PQChPT) from amplitudes that are computable on the lattice. We demonstrate that none of the needed amplitudes require 3-momentum on the lattice for either the full theory or the partially quenched theory; nondegenerate quark masses suffice. Furthermore, we find that the electro-weak penguin ({delta}I=3/2 and 1/2) contributions to {epsilon}{sup '}/{epsilon} in PQChPT can be determined to NLO using only degenerate (m{sub K}=m{sub {pi}}) K{yields}{pi} computations without momentum insertion. Issues pertaining to power divergent contributions, originating from mixing with lower dimensional operators, are addressed. Direct calculations of K{yields}{pi}{pi} at unphysical kinematics are plagued with enhanced finite volume effects in the (partially) quenched theory, but in simulations when the sea quark mass is equal to the up and down quark mass the enhanced finite volume effects vanish to NLO in PQChPT. In embedding the QCD penguin left-right operator onto PQChPT an ambiguity arises, as first emphasized by Golterman and Pallante. With one version [the 'PQS' (patially quenched singlet)] of the QCD penguin, the inputs needed from the lattice for constructing K{yields}{pi}{pi} at NLO in PQChPT coincide with those needed for the full theory. Explicit expressions for the finite logarithms emerging from our NLO analysis to the above amplitudes also are given.

  5. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    SciTech Connect

    Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost

    2015-09-14

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.

  6. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach.

    PubMed

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-14

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  7. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    NASA Astrophysics Data System (ADS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  8. NASA 2nd Generation RLV Program Introduction, Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.

  9. Nonlinearly generated harmonic signals in ultra-small waveguides with magnetic films: Tunable enhancements of 2nd and 4th harmonics

    NASA Astrophysics Data System (ADS)

    Marsh, J.; Zagorodnii, V.; Celinski, Z.; Camley, R. E.

    2012-03-01

    The nonlinear generation of high harmonic signals (up to 5th harmonic) is explored in an ultra-small waveguide which contains a thin ferromagnetic film. The strength of the different harmonics is highly tunable. In particular, the power in the 2nd and 4th harmonic signals may be enhanced by over two orders of magnitude by varying the direction of a static magnetic field with respect to the long axis of the waveguide. In contrast, the 3rd and 5th harmonics are relatively insensitive to the direction of the magnetic field. The experimental results are explained by analytical and numerical calculations.

  10. Mars Curriculum for K-12 Science Education, 2nd Edition, Making Tracks on Mars Teacher Resource and Activity Guide

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2012-03-01

    A Mars K-12 curriculum, created by the New Mexico Museum of Natural History & Science, is now in 2nd edition DVD, approved by NASA educational review, 508 compliant to ensure accessibility for people with disabilities, and applicable to MSL.

  11. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    NASA Astrophysics Data System (ADS)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana

  12. [Model and enlightenment from rescue of August 2nd Kunshan explosion casualty].

    PubMed

    Tan, Q; Qiu, H B; Sun, B W; Shen, Y M; Nie, L J; Zhang, H W

    2016-01-01

    On August 2nd, 2014, a massive dust explosion occurred in a factory of Kunshan, resulting in a mass casualty involving 185 burn patients. They were transported to 20 medical institutions in Jiangsu province and Shanghai. More than one thousand of medical personnel of our country participated in this emergency rescue, and satisfactory results were achieved. In this paper, the characteristics of this accident were analyzed, the positive effects of interdisciplinary cooperation were affirmed, and the contingency plan, rescue process and pattern, and reserve, organization and management of talents during this rescue process were reviewed retrospectively.

  13. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  14. [Model and enlightenment from rescue of August 2nd Kunshan explosion casualty].

    PubMed

    Tan, Q; Qiu, H B; Sun, B W; Shen, Y M; Nie, L J; Zhang, H W

    2016-01-01

    On August 2nd, 2014, a massive dust explosion occurred in a factory of Kunshan, resulting in a mass casualty involving 185 burn patients. They were transported to 20 medical institutions in Jiangsu province and Shanghai. More than one thousand of medical personnel of our country participated in this emergency rescue, and satisfactory results were achieved. In this paper, the characteristics of this accident were analyzed, the positive effects of interdisciplinary cooperation were affirmed, and the contingency plan, rescue process and pattern, and reserve, organization and management of talents during this rescue process were reviewed retrospectively. PMID:27426066

  15. Easy Glide in a Coarse-Grained Mg-2Zn-2Nd Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Jonas, John J.; Yue, Stephen

    2016-10-01

    Compression tests were performed at 673 K (400 °C) on a Mg-2Zn-2Nd alloy at the strain rates of 0.1, 0.01, and 0.001/s. The 0.1 and 0.01/s flow curves displayed work hardening to a peak stress at around 0.2 true strain. However, testing at 0.001/s led to steady-state flow at about 22 MPa from 0.03 true strain onwards. Such a steady-state flow is attributed to the predominance of basal slip under these conditions.

  16. Easy Glide in a Coarse-Grained Mg-2Zn-2Nd Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Jonas, John J.; Yue, Stephen

    2016-08-01

    Compression tests were performed at 673 K (400 °C) on a Mg-2Zn-2Nd alloy at the strain rates of 0.1, 0.01, and 0.001/s. The 0.1 and 0.01/s flow curves displayed work hardening to a peak stress at around 0.2 true strain. However, testing at 0.001/s led to steady-state flow at about 22 MPa from 0.03 true strain onwards. Such a steady-state flow is attributed to the predominance of basal slip under these conditions.

  17. Development of self-recognition, personal pronoun use, and pretend play during the 2nd year.

    PubMed

    Lewis, Michael; Ramsay, Douglas

    2004-01-01

    This study examined the relation of visual self-recognition to personal pronoun use and pretend play. For a longitudinal sample (N=66) at the ages when self-recognition was emerging (15, 18, and 21 months), self-recognition was related to personal pronoun use and pretend play such that children showing self-recognition used more personal pronouns and demonstrated more advanced pretend play than did children not showing self-recognition. The finding of a relation among these measures provides additional evidence that in the middle of the 2nd year of life a metarepresentation of self emerges in the human child.

  18. Conditional Lethal Mutants of Adenovirus 2-Simian Virus 40 Hybrids I. Host Range Mutants of Ad2+ND1

    PubMed Central

    Grodzicker, Terri; Anderson, Carl; Sharp, Phillip A.; Sambrook, Joe

    1974-01-01

    Human adenovirus type 2 (Ad2) grows poorly in monkey cells, although this defect can be overcome by co-infection with simian virus 40 (SV40). The nondefective Ad2-SV40 hybrid virus, Ad2+ND1, replicates efficiently in both human and African green monkey kidney cells, presumably due to the insertion of SV40 sequences into the Ad2 DNA. Several mutants of Ad2+ND1 have been isolated that grow and plaque poorly in monkey cells, although they retain the ability to replicate and plaque efficiently in HeLa cells. One of these mutants (H39) has been examined in detail. Studies comparing the DNA of the mutant with Ad2+ND1 either by the cleavage patterns produced by Escherichia coli R·RI restriction endonuclease digestion or by heteroduplexing reveal no differences. The pattern of protein synthesis of Ad2+ND1 and H39 in monkey cells is quite different with the mutant resembling Ad2, which is defective in the synthesis of late proteins. However, in human cells, the proteins synthesized by H39 and the parent Ad2+ND1 are very similar. The production of SV40 U antigen in H39-infected cells is different from that in Ad2+ND1-infected cells. Finally, the growth of H39 in monkey cells can be complemented by SV40. Images PMID:4364898

  19. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential

    NASA Astrophysics Data System (ADS)

    Kim, Inkoo; Lee, Yoon Sup

    2014-10-01

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  20. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential

    SciTech Connect

    Kim, Inkoo; Lee, Yoon Sup

    2014-10-28

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  1. Editorial: 2nd Special Issue on behavior change, health, and health disparities

    PubMed Central

    Higgins, Stephen T.

    2016-01-01

    This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372

  2. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  3. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence.

  4. [How to read and understand Registries for Evaluating Patient Outcomes: A User's Guide (2nd Edition)].

    PubMed

    Yang, Wei; Xie, Yan-Ming

    2013-09-01

    Registry studies (RS) get more and more attention in recent years because it can reflect the health care situations of the real world. There are a number of large scale RS for traditional Chinese medicine (TCM). RS are observational studies that can complement randomized controlled trials (RCT). RS have an irreplaceable position in real word study (RWS), especially for small probability events. There are some different characters and qualities in RS. Registries for Evaluating Patient Outcomes: A User's Guide (2nd Edition) was published by the agency for healthcare research and quality (AHRQ) in 2010. It described the details of how to establish, maintain, and evaluate RS, and using 38 RS samples to illustrate the possible problems in undertaking such research. The User's Guide (2nd Edition) provides a reliable reference document for RS. TCM injections post-marketing safety surveillance RS is a national program involving multiple centers in China. This program can further improve RS quality their application in China and is a good illustration of how to follow this guide accurately. PMID:24471311

  5. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-02-19

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON.

  6. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  7. Scoping analysis of the Advanced Test Reactor using SN2ND

    SciTech Connect

    Wolters, E.; Smith, M.

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of the SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature

  8. VizieR Online Data Catalog: 2nd Cat. of Radial Velocities with Astrometric Data (Kharchenko+, 2007)

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Scholz, R.-D.; Piskunov, A. E.; Roeser, S.; Schilbach, E.

    2007-06-01

    The catalogue of radial velocities of Galactic stars with high precision astrometric data, 2nd version (CRVAD-2), is the result of a merging of star lists from the All-Sky Compiled Catalogue of 2.5 Million Stars (ASCC-2.5, Cat. I/280) with the General Catalogue of Radial Velocities (GCRV, Cat. III/213) and with other recently published radial velocity lists and catalogues. Cross identification of objects was carried out with help of coordinate, magnitude, colour and/or spectral type criteria. Data from the Catalogue of Components of Double and Multiple Stars (CCDM, Cat. I/274) were taken into account for the identification of multiple system components. Altogether 54907 stars from the ASCC-2.5 were identified with 51762 stars from the RV source catalogues, 3085 stars have secondary components and 30 stars have 3rd components in multiple systems. The CRVAD-2 includes accurate J2000 equatorial coordinates, proper motions and trigonometric parallaxes in the Hipparcos system, Johnson's BV photometric data, spectral types, radial velocities, multiplicity and variability flags. Stars are sorted in the order of increasing right ascension J2000. This catalogue supersedes the previous version numbered . (1 data file).

  9. Degenerate density perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2016-09-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  10. Renormalized second-oder perturbation theory for the electron correlation energy: concepts and benchmarks

    NASA Astrophysics Data System (ADS)

    Rinke, Patrick; Ren, Xinguo; Scheffler, Matthias; Scuseria, Gustavo

    2012-02-01

    We present a renormalized second-oder perturbation theory (R2PT) for the electron correlation energy that combines the random-phase approximation (RPA), second-order screened exchange (SOSEX) [1], and renormalized single excitations (rSE) [2]. These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as a ``renormalization" of the direct, the exchange and the single excitation (SE) term of 2nd-order Rayleigh-Schr"ordinger perturbation theory based on an (approximate) Kohn-Sham reference state. A preliminary version of R2PT has been benchmarked for covalently-bonded molecular systems and chemical reaction barrier heights [3] and shows an overall well balanced performance. We have extended this, by including ``off-diagonal'' diagrams into the rSE term and expect this refined version of R2PT to be more generally applicable to electronic systems of different bonding characteristics. Extended benchmarks of van-der-Waals-bonded molecules and crystalline solids will be presented. [1] A. Gr"uneis et al., J. Chem. Phys. 131, 154115 (2009). [2] X. Ren et al., Phys. Rev. Lett. 106, 153003 (2011). [3] J. Paier et al., arXiv:cond-mat/1111.0173.

  11. Perturbation theory in electron diffraction

    NASA Astrophysics Data System (ADS)

    Bakken, L. N.; Marthinsen, K.; Hoeier, R.

    1992-12-01

    The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.

  12. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  13. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    SciTech Connect

    Jeong, S. H. Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-15

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  14. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

    SciTech Connect

    Reece, Charles E.; Reilly, Anthony V.

    2012-09-01

    The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

  15. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  16. A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster

    SciTech Connect

    Tan, C. Y.; Dey, J.; Madrak, R. L.; Pellico, W.; Romanov, G.; Sun, D.; Terechkine, I.

    2015-07-13

    A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.

  17. Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Michael J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejmil, Edward

    2003-01-01

    A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields.

  18. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  19. Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours

    NASA Astrophysics Data System (ADS)

    Barnhardt, D.; Garretson, P.; Will, P.

    Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.

  20. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2011-12-01

    Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT) is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426) 1st-order high temperature series expansion (HTSE) TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861), have some serious shortcomings: (i) the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii) the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE) and a non hard sphere (HS) perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i) we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii) We give a quantitative analysis on why convergence

  1. The relationship between the carrying angle and the distal extent of the 2nd and 4th fingertips.

    PubMed

    Sönmez, M; Tattemur, Y; Karacan, K; Erdal, M

    2012-08-01

    The angle towards the lateral side between the arm and forearm when the forearm is in full extension and supination is defined as the carrying angle. It is well known that the 2nd finger is longer in women whereas the 4th finger is longer in men, due to in-utero hormonal effects. In the present study, the relationship between the carrying angle and the distal extent of the 2nd and 4th fingertips is studied. The findings reveal that the carrying angle was greater both in left and right sides in women than in men. In addition, while the distal extent of the 2nd fingertips was longer in women, the 4th fingertip was longer in men. There was a moderately positive correlation between the carrying angle and the distal fingertip lengths. Therefore, it could be suggested that the morphometric factors play role on the distal extent of the fingertips other than the hormonal effects.

  2. Effect of torsional twist on 2nd order non-linear optical activity of anthracene and pyrene tricyanofuran derivatives.

    PubMed

    Planells, Miquel; Pizzotti, Maddalena; Nichol, Gary S; Tessore, Francesca; Robertson, Neil

    2014-11-14

    Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the μβ1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure. PMID:25264846

  3. Conference Proceedings: 2nd European Conference of Rehabilitation International; Disability in the Family. (Brighton, England, September 18-21, 1978)

    ERIC Educational Resources Information Center

    Royal Association for Disability and Rehabilitation, London (England).

    The conference proceedings of the 2nd European Conference of Rehabilitation International (1978) on the theme disability in the family contains the agenda and approximately 80 papers. National presentations consider the theme in papers by representatives of Finland, Hungary, Belgium, The Netherlands, Portugal, Hong Kong, India, The German…

  4. Curriculum on the Edge of Survival: How Schools Fail to Prepare Students for Membership in a Democracy. 2nd Edition

    ERIC Educational Resources Information Center

    Heller, Daniel

    2012-01-01

    Typically, school curriculum has been viewed through the lens of preparation for the workplace or higher education, both worthy objectives. However, this is not the only lens, and perhaps not even the most powerful one to use, if the goal is to optimize the educational system. "Curriculum on the Edge of Survival, 2nd Edition," attempts to define…

  5. Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...

  6. Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast.

    PubMed

    Emmert-Streib, Frank; Zhang, Shu-Dong; Hamilton, Peter

    2014-12-01

    In this paper, we present a meeting report for the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. We describe the organization of the summer school, its underlying concept and student feedback we received after the completion of the summer school.

  7. Give It a Shot! Toolkit for Nurses and Other Immunization Champions Working with Secondary Schools. 2nd Edition

    ERIC Educational Resources Information Center

    Boyer-Chu, Lynda; Wooley, Susan F.

    2008-01-01

    Adolescent immunization saves lives--but promoting immunization takes time and thought, and today's nurses and other health advocates are faced with a host of ever-expanding responsibilities in a time of reduced budgets and staff. This toolkit is thus structured as an easy and reliable resource. This 2nd edition contains: (1) a 64-page manual;…

  8. The Hyphen as a Syllabification Cue in Reading Bisyllabic and Multisyllabic Words among Finnish 1st and 2nd Graders

    ERIC Educational Resources Information Center

    Häikiö, Tuomo; Bertram, Raymond; Hyönä, Jukka

    2016-01-01

    Finnish ABC books present words with hyphens inserted at syllable boundaries. Syllabification by hyphens is abandoned in the 2nd grade for bisyllabic words, but continues for words with three or more syllables. The current eye movement study investigated how and to what extent syllable hyphens in bisyllabic ("kah-vi" "cof-fee")…

  9. The Influence of Neighborhood Density and Word Frequency on Phoneme Awareness in 2nd and 4th Grades

    ERIC Educational Resources Information Center

    Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.

    2011-01-01

    Purpose: The purpose of this study was to test the hypothesis that two lexical characteristics--neighborhood density and word frequency--interact to influence performance on phoneme awareness tasks. Methods: Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation…

  10. Observation in a School without Walls: Peer Observation of Teaching in a 2nd-12th Grade Independent School

    ERIC Educational Resources Information Center

    Salvador, Josephine

    2012-01-01

    What happens when teachers start to observe each other's classes? How do teachers make meaning of observing and being observed? What effects, if any, does requiring peer observation have on the teaching community? This research explores these questions in a qualitative study of peer observation of teaching (POT) in the 2nd-12th grades of an…

  11. Scalar cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Wainwright, John

    2012-05-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein’s field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations.

  12. First case of Fusobacterium necrophorum endocarditis to have presented after the 2nd decade of life.

    PubMed

    Moore, Curtiss; Addison, Daniel; Wilson, James M; Zeluff, Barry

    2013-01-01

    Fusobacterium necrophorum, an obligate, anaerobic, filamentous, gram-negative rod, is thought to be a normal inhabitant of the mucous membranes in human beings. Fusobacterium species have been implicated in cases of Lemierre syndrome and other pathologic conditions. Their reported association with infective endocarditis is extremely rare. We describe the case of a previously healthy 34-year-old man who emergently presented with flu-like symptoms and dyspnea on exertion. He had recently undergone a dental procedure. Empiric antibiotic therapy was initiated. Blood cultures were positive for metronidazole-resistant F. necrophorum. A transesophageal echocardiogram revealed 2 mobile vegetations on the mitral valve. Despite the antibiotic therapy, the patient's respiratory status worsened and, after 3 weeks, he died. On the basis of the organism's pathophysiology and the patient's recent dental procedure, the oral cavity was the likely source of the bacteremia. Our patient's case underscores the importance of recognizing Fusobacterium bacteremia as a possible cause of endocarditis. To our knowledge, this is the first reported case of monomicrobial F. necrophorum endocarditis to have presented in a patient after the 2nd decade of life. In addition, it is apparently only the 4th report of F. necrophorum mitral valve endocarditis with case results derived from modern culture techniques.

  13. First case of Fusobacterium necrophorum endocarditis to have presented after the 2nd decade of life.

    PubMed

    Moore, Curtiss; Addison, Daniel; Wilson, James M; Zeluff, Barry

    2013-01-01

    Fusobacterium necrophorum, an obligate, anaerobic, filamentous, gram-negative rod, is thought to be a normal inhabitant of the mucous membranes in human beings. Fusobacterium species have been implicated in cases of Lemierre syndrome and other pathologic conditions. Their reported association with infective endocarditis is extremely rare. We describe the case of a previously healthy 34-year-old man who emergently presented with flu-like symptoms and dyspnea on exertion. He had recently undergone a dental procedure. Empiric antibiotic therapy was initiated. Blood cultures were positive for metronidazole-resistant F. necrophorum. A transesophageal echocardiogram revealed 2 mobile vegetations on the mitral valve. Despite the antibiotic therapy, the patient's respiratory status worsened and, after 3 weeks, he died. On the basis of the organism's pathophysiology and the patient's recent dental procedure, the oral cavity was the likely source of the bacteremia. Our patient's case underscores the importance of recognizing Fusobacterium bacteremia as a possible cause of endocarditis. To our knowledge, this is the first reported case of monomicrobial F. necrophorum endocarditis to have presented in a patient after the 2nd decade of life. In addition, it is apparently only the 4th report of F. necrophorum mitral valve endocarditis with case results derived from modern culture techniques. PMID:24082377

  14. Severe weather phenomena: SQUALL LINES The case of July 2nd 2009

    NASA Astrophysics Data System (ADS)

    Paraschivescu, Mihnea; Tanase, Adrian

    2010-05-01

    The wind intensity plays an important role, among the dangerous meteorological phenomena, to produce negative effects on the economy and the social activities, particularly when the wind is about to turn into a storm. During the past years one can notice an increase of wind frequency and intensity due to climate changes and, consequently, as a result of the extreme meteorological phenomena not only on a planetary level but also on a regional one. Although dangerous meteorological phenomena cannot be avoided, since they are natural, nevertheless they can be anticipated and decision making institutions and mass media can be informed. This is the reason why, in this paper, we set out to identify the synoptic conditions that led to the occurrence of the severe storm case in Bucharest on July 2nd, 2009, as well as the matrices that generate such cases. At the same time we sought to identify some indications evidence especially from radar data so as to lead to the improvement of the time interval between the nowcasting warning and the actual occurrence of the phenomenon.

  15. Minimal Clinically Important Difference on Parkinson's Disease Sleep Scale 2nd Version.

    PubMed

    Horváth, Krisztina; Aschermann, Zsuzsanna; Ács, Péter; Deli, Gabriella; Janszky, József; Komoly, Sámuel; Karádi, Kázmér; Kovács, Márton; Makkos, Attila; Faludi, Béla; Kovács, Norbert

    2015-01-01

    Background and Aims. The aim of the present study was to determine the estimates of minimal clinically important difference for Parkinson's Disease Sleep Scale 2nd version (PDSS-2) total score and dimensions. Methods. The subject population consisted of 413 PD patients. At baseline, MDS-UPDRS, Hoehn-Yahr Scale, Mattis Dementia Rating Scale, and PDSS-2 were assessed. Nine months later the PDSS-2 was reevaluated with the Patient-Reported Global Impression Improvement Scale. Both anchor-based techniques (within patients' score change method and sensitivity- and specificity-based method by receiver operating characteristic analysis) and distribution-based approaches (effect size calculations) were utilized to determine the magnitude of minimal clinically important difference. Results. According to our results, any improvements larger than -3.44 points or worsening larger than 2.07 points can represent clinically important changes for the patients. These thresholds have the effect size of 0.21 and -0.21, respectively. Conclusions. Minimal clinically important differences are the smallest change of scores that are subjectively meaningful to patients. Studies using the PDSS-2 as outcome measure should utilize the threshold of -3.44 points for detecting improvement or the threshold of 2.07 points for observing worsening.

  16. Wind-US Results for the AIAA 2nd Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance III; Foster, Lancert; Mankbadi, Mina

    2014-01-01

    This presentation contains Wind-US results presented at the 2nd Propulsion Aerodynamics Workshop. The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from government, industry, academia, and commercial software companies. Participants were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a 25deg conical nozzle for a range of nozzle pressure ratios between 1.4 and 7.0. Participants were also asked to simulate two cases in which the 25deg conical nozzle was bifurcated by a solid plate, resulting in vortex shedding (NPR=1.6) and shifted plume shock (NPR=4.0). A second set of nozzle cases involved computing the discharge and thrust coefficients for a convergent dual stream nozzle for a range of subsonic nozzle pressure ratios. The workshop committee also compared the plume mixing of these cases across various codes and models. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total pressure at downstream rake locations were examined.

  17. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Hill, J Grant

    2013-09-30

    Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit.

  18. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  19. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  20. Madeira Extreme Floods: 2009/2010 Winter. Case study - 2nd and 20th of February

    NASA Astrophysics Data System (ADS)

    Pires, V.; Marques, J.; Silva, A.

    2010-09-01

    Floods are at world scale the natural disaster that affects a larger fraction of the population. It is a phenomenon that extends it's effects to the surrounding areas of the hydrographic network (basins, rivers, dams) and the coast line. Accordingly to USA FEMA (Federal Emergency Management Agency) flood can be defined as:"A general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from: Overflow of inland or tidal waters; Unusual and rapid accumulation or runoff of surface waters from any source; Mudflow; Collapse or subsidence of land along the shore of a lake or similar body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above." A flash flood is the result of intense and long duration of continuous precipitation and can result in dead casualties (i.e. floods in mainland Portugal in 1967, 1983 and 1997). The speed and strength of the floods either localized or over large areas, results in enormous social impacts either by the loss of human lives and or the devastating damage to the landscape and human infrastructures. The winter of 2009/2010 in Madeira Island was characterized by several episodes of very intense precipitation (specially in December 2009 and February 2010) adding to a new record of accumulated precipitation since there are records in the island. In February two days are especially rainy with absolute records for the month of February (daily records since 1949): 111mm and 97mm on the 2nd and 20th respectively. The accumulated precipitation ended up with the terrible floods on the 20th of February causing the lost of dozens of human lives and hundreds of millions of Euros of losses The large precipitation occurrences either more intense precipitation in a short period or less intense precipitation during a larger period are sometimes the precursor of

  1. Overview of the 2nd Gen 3.7m HIAD Static Load Test

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.; Cheatwood, F. M.; Cassell, A. M.; Anderson, P.; Lowery, A.

    2015-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for human class payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). In October of 2014, a 3.7m HIAD inflatable structure with an integrated flexible thermal protection sys-tem (F-TPS) was subjected to a static load test series to verify the designs structural performance. The 3.7m HIAD structure was constructed in a 70 deg sphere-cone stacked-toroid configuration using eight inflatable tori, which were joined together using adhesives and high strength textile webbing to help distribute the loads throughout the inflatable structure. The inflatable structure was fabricated using 2nd generation structural materials that permit an increase in use temperature to 400 C+ as compared to the 250 C limitation of the 1st generation materials. In addition to the temperature benefit, these materials also offer a 40 reduction in structure mass. The 3.7m F-TPS was fabricated using high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. The F-TPS was constructed of 2nd generation TPS materials increasing its heating capability from 35W sq cm to over 100W sq cm. This test article is the first stacked-torus HIAD to be fabricated and tested with a 70 deg sphere-cone. All previous stacked-torus HIADs have employed a 60o sphere-cone. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for dis-placement of the inflatable structure as loads were applied. The tub rim was attached to the

  2. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  3. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    NASA Astrophysics Data System (ADS)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  4. The Ratio of 2nd to 4th Digit Length in Korean Alcohol-dependent Patients

    PubMed Central

    Han, Changwoo; Bae, Hwallip; Lee, Yu-Sang; Won, Sung-Doo; Kim, Dai Jin

    2016-01-01

    Objective The ratio of 2nd to 4th digit length (2D:4D) is a sexually dimorphic trait. Men have a relatively shorter second digit than fourth digit. This ratio is thought to be influenced by higher prenatal testosterone level or greater sensitivity to androgen. The purpose of this study is to investigate the relationship between alcohol dependence and 2D:4D in a Korean sample and whether 2D:4D can be a biologic marker in alcohol dependence. Methods In this study, we recruited 87 male patients with alcohol dependence from the alcohol center of one psychiatric hospital and 52 healthy male volunteers who were all employees in the same hospital as controls. We captured images of the right and left hands of patients and controls using a scanner and extracted data with a graphics program. We measured the 2D:4D of each hand and compared the alcohol dependence group with the control group. We analyzed these ratios using an independent-samples t-test. Results The mean 2D:4D of patients was 0.934 (right hand) and 0.942 (left hand), while the mean 2D:4D of controls was 0.956 (right hand) and 0.958 (left hand). Values for both hands were significantly lower for patients than controls (p<0.001, right hand; p=0.004, left hand). Conclusion Patients who are alcohol dependent have a significantly lower 2D:4D than controls, similar to the results of previous studies, which suggest that a higher prenatal testosterone level in the gonadal period is related to alcoholism. Furthermore, 2D:4D is a possible predictive marker of alcohol dependence. PMID:27121425

  5. The Influence of Instructional Climates on Time Spent in Management Tasks and Physical Activity of 2nd-Grade Students during Physical Education

    ERIC Educational Resources Information Center

    Logan, Samuel W.; Robinson, Leah E.; Webster, E. Kipling; Rudisill, Mary E.

    2015-01-01

    The purpose of this study is to determine the effect of two physical education (PE) instructional climates (mastery, performance) on the percentage of time students spent in a) moderate-to-vigorous physical activity (MVPA) and b) management tasks during PE in 2nd-grade students. Forty-eight 2nd graders (mastery, n = 23; performance, n = 25)…

  6. Perturbative QUANTUM GRAVITY

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2003-12-01

    A good understanding of Perturbative Quantum Gravity is essential for anyone who wishes to proceed towards any kind of non-perturbative approach. This lecture is a brief resumé of the main features of the perturbative regime.

  7. Collaborative study for the establishment of the 2(nd) International Standard for Bleomycin Complex A2/B2.

    PubMed

    Jorajuria, S; Raphalen, C; Dujardin, V; Daas, A

    2015-01-01

    Organization (WHO) International Standard (IS) for bleomycin complex A2/B2. Eight laboratories from different countries participated. Potencies of the candidate material were estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 1(st) IS for bleomycin complex A2/B2 was used as a reference. Based on the results of the study, the 2(nd) IS for bleomycin complex A2/B2 was adopted at the meeting of the WHO Expert Committee for Biological Standardization (ECBS) in 2014 with an assigned potency of 12 500 International Units (IU) per vial. The 2(nd) IS for bleomycin complex A2/B2 is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).

  8. Neurobehavioral Evaluation System (NES): comparative performance of 2nd-, 4th-, and 8th-grade Czech children.

    PubMed

    Otto, D A; Skalik, I; House, D E; Hudnell, H K

    1996-01-01

    The Neurobehavioral Evaluation System was designed for field studies of workers, but many NES tests can be performed satisfactorily by children as young as 7 or 8 years old and a few tests, such as simple reaction time, can be performed by preschool children. However, little comparative data from children of different ages or grade levels are available. Studies of school children in the Czech Republic indicate that 2nd-grade children could perform the following NES tests satisfactorily: Finger Tapping, Visual Digit Span. Continuous Performance, Symbol-Digit Substitution, Pattern Comparison, and simpler conditions of Switching Attention. Comparative scores of boys and girls from the 2nd, 4th, and 8th grades and power analyses to estimate appropriate sample size were presented. Performance varied systematically with grade level and gender. Larger samples were needed with younger children to achieve comparable levels of statistical power. Gender comparisons indicated that boys responded faster, but made more errors than girls. PMID:8866533

  9. Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference.

    PubMed

    Chen, Zhenhua; Chen, Xun; Ying, Fuming; Gu, Junjing; Zhang, Huaiyu; Wu, Wei

    2014-10-01

    Using the formulas and techniques developed in Papers I and II of this series, the recently developed second-order perturbation theory based on a valence bond self-consistent field reference function (VBPT2) has been extended by using the internally contracted correction wave function. This ansatz strongly reduces the size of the interaction space compared to the uncontracted wave function and thus improves the capability of the VBPT2 method dramatically. Test calculations show that internally contracted VBPT2 using only a small number of reference valence bond functions, can give results as accuracy as the VBPT2 method and other more sophisticated methods such as full configuration interaction and multireference configuration interaction. PMID:25296795

  10. Complete active space second order perturbation theory (CASPT2) study of N(2D) + H2O reaction paths on D1 and D0 potential energy surfaces: Direct and roaming pathways

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-10-01

    We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.

  11. Seven topics in perturbative QCD

    SciTech Connect

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  12. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  13. Kato expansion in quantum canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  14. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  15. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  16. Covariant generalization of cosmological perturbation theory

    SciTech Connect

    Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo

    2007-01-15

    We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.

  17. 2nd Radio and Antenna Days of the Indian Ocean (RADIO 2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the ''Radio and Antenna Days of the Indian Ocean'' (RADIO 2014) international conference that was held from 7th to 10th April 2014 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2014 is the second of a series of conferences organized in the Indian Ocean region. The aim of the conference is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. The RADIO international conference emerged following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world and a need was felt for the organization of such an event in this region. Following numerous requests, the Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, was again chosen for the organization of the 2nd RADIO international conference. The conference was organized by the Radio Society, Mauritius and the Local Organizing Committee consisted of scientists from SUPELEC, France, the University of Mauritius, and the University of Technology, Mauritius. We would like to take the opportunity to thank all people, institutions and companies that made the event such a success. We are grateful to our gold sponsors CST and FEKO as well as URSI for their generous support which enabled us to partially support one PhD student and two scientists to attend the conference. We would also like to thank IEEE-APS and URSI for providing technical co-sponsorship. More than hundred and thirty abstracts were submitted to the conference. They were peer-reviewed by an international scientific committee and, based on the reviews, either accepted, eventually after revision, or rejected. RADIO 2014 brought together participants from twenty countries spanning

  18. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  19. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  20. Complete leading order analysis in Chiral Perturbation Theory of the decays K{sub L}{r_arrow}{gamma}{gamma} and K{sub L}{r_arrow}l{sub +}l{sub {minus}}{gamma}

    SciTech Connect

    J. L. Goity; Longzhe Zhang

    1997-02-01

    The decays K{sub L}{r_arrow}{gamma}{gamma} and K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} are studied at the leading order p{sup 6} in Chiral Perturbation Theory. One-loop contributions stemming from the odd intrinsic parity {vert_bar}{Delta}S{vert_bar}=1 effective Lagrangian of order p{sup 4} are included and shown to be of possible relevance. They affect the decay K{sub L}{r_arrow}{gamma}{gamma} adding to the usual pole terms a piece free of counterterm uncertainties. In the case of the K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} decays the dependence of the form factor on the dilepton invariant mass requires a counterterm. The form factor may receive a sizeable contribution from chiral logarithms. Including considerations from the K{sub L}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma} direct emission amplitude, the authors obtain two consistent scenarios. In one scenario the long distance contributions from the one-loop terms are important, while in the other they are marginal. In both cases the counterterm is shown to be significant.

  1. Improving the performance of E-beam 2nd writing in mask alignment accuracy and pattern faultless for CPL technology

    NASA Astrophysics Data System (ADS)

    Lee, Booky; Hung, Richard; Lin, Orson; Wu, Yuan-Hsun; Kozuma, Makoto; Shih, Chiang-Lin; Hsu, Michael; Hsu, Stephen D.

    2005-01-01

    The chromeless phase lithography (CPL) is a potential technology for low k1 optical image. For the CPL technology, we can control the local transmission rate to get optimized through pitch imaging performance. The CPL use zebra pattern to manipulate the pattern local transmission as a tri-tone structure in mask manufacturing. It needs the 2nd level writing to create the zebra pattern. The zebra pattern must be small enough not to be printed out and the 2nd writing overlay accuracy must keep within 40nm. The request is a challenge to E-beam 2nd writing function. The focus of this paper is in how to improve the overlay accuracy and get a precise pattern to form accurate pattern transmission. To fulfill this work several items have been done. To check the possibility of contamination in E-Beam chamber by the conductive layer coating we monitor the particle count in the E-Beam chamber before and after the coated blank load-unload. The conductivity of our conductive layer has been checked to eliminate the charging effect by optimizing film thickness. The dimension of alignment mark has also been optimized through experimentation. And finally we checked the PR remain to ensure sufficient process window in our etching process. To verify the performance of our process we check the 3D SEM picture. Also we use AIMs to prove the resolution improvement capability in CPL compared to the traditional methods-Binary mask and Half Tone mask. The achieved overlay accuracy and process can provide promising approach for NGL reticle manufacturing of CPL technology.

  2. 2nd International Salzburg Conference on Neurorecovery (ISCN 2013) Salzburg/ Austria | November 28th - 29th, 2013

    PubMed Central

    Brainin, M; Muresanu, D; Slavoaca, D

    2014-01-01

    The 2nd International Salzburg Conference on Neurorecovery was held on the 28th and 29th of November, 2013, in Salzburg, one of the most beautiful cities in Austria, which is well known for its rich cultural heritage, world-famous music and beautiful surrounding landscapes. The aim of the conference was to discuss the progress in the field of neurorecovery. The conference brought together internationally renowned scientists and clinicians, who described the clinical and therapeutic relevance of translational research and its applications in neurorehabilitation. PMID:25713602

  3. THE 2nd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 10–14 APRIL 2010, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Baharnoori, Moogeh; Bartholomeusz, Cali; Boucher, Aurelie A.; Buchy, Lisa; Chaddock, Christopher; Chiliza, Bonga; Föcking, Melanie; Fornito, Alex; Gallego, Juan A.; Hori, Hiroaki; Huf, Gisele; Jabbar, Gul A.; Kang, Shi Hyun; El Kissi, Yousri; Merchán-Naranjo, Jessica; Modinos, Gemma; Abdel-Fadeel, Nashaat A.M.; Neubeck, Anna-Karin; Ng, Hsiao Piau; Novak, Gabriela; Owolabi, Olasunmbo.O.; Prata, Diana P.; Rao, Naren P.; Riecansky, Igor; Smith, Darryl C.; Souza, Renan P.; Thienel, Renate; Trotman, Hanan D.; Uchida, Hiroyuki; Woodberry, Kristen A.; O'Shea, Anne; DeLisi, Lynn E.

    2014-01-01

    The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10–15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:20934307

  4. [In search of the ideal surgical treatment for lymphedema. Report of 2nd European Conference on supermicrosurgery (Barcelona - March 2012)].

    PubMed

    Rausky, J; Robert, N; Binder, J-P; Revol, M

    2012-12-01

    Since more than 50 years, many surgeons all around the world try to find the perfect surgical technique to treat limb lymphedemas. Decongestive physiotherapy associated with the use of a compressive garment has been the primary choice for lymphedema treatment. Many different surgical techniques have been developed, however, to date, there is no consensus on surgical procedure. Most surgical experts of lymphedema met in the second European Conference on supermicrosurgery, organized on March 1st and 2nd 2012, in San Pau Hospital, Barcelona. Together they tried to clarify these different options and ideally a strategy for using these techniques.

  5. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies.

  6. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  7. Detection of Counter-Changing Contrast: Second-Order Apparent Motion Without Postrectification Motion-Energy Analysis or Salience Mapping/Feature Tracking

    ERIC Educational Resources Information Center

    Gilroy, Lee A.; Hock, Howard S.

    2004-01-01

    The perception of 2nd-order, texture-contrast-defined motion was studied for apparent-motion stimuli composed of a pair of spatially displaced, simultaneously visible checkerboards. It was found that background-relative, counter-changing contrast provided the informational basis for the perception of 2nd-order apparent motion; motion began where…

  8. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    SciTech Connect

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  9. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient.

    PubMed

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    2016-07-14

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 method and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated. PMID:27421396

  10. Finite-temperature second-order many-body perturbation and Hartree-Fock theories for one-dimensional solids: an application to Peierls and charge-density-wave transitions in conjugated polymers.

    PubMed

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree-Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the "dimerized" low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  11. Complete active space second order perturbation theory (CASPT2) study of N({sup 2}D) + H{sub 2}O reaction paths on D{sub 1} and D{sub 0} potential energy surfaces: Direct and roaming pathways

    SciTech Connect

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-10-21

    We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.

  12. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    NASA Astrophysics Data System (ADS)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    2016-07-01

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 method and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.

  13. The recursion relation in Lagrangian perturbation theory

    SciTech Connect

    Rampf, Cornelius

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  14. [Medical support of the 65th Army during the East Prussian offensive operation performed by the 2nd Belorussian Front].

    PubMed

    Shelepov, A M; Leonik, S I; Lemeshkin, R N

    2015-02-01

    Prussian offensive operation performed by the 2nd Belorussian Front. An activity of the medical An activity of the medical service of the 65th Army during the East Prussian offensive operation performed by the 2nd Belorussian Front is a typical example of the medical support of troops during the final stages of World War II. Forms and methods of medical support management, which were developed during the war, haven't lost their importance in modern conditions. These methods include the establishment of specialized surgical and therapeutic field hospital, establishment of medical institutions in the Army, which worked on the evacuation directions and reserve of mobile hospitals and transport, timely extension of the first echelons of the hospital base front to change institutions hospital deployed the army base. A research of experience in organizing medical support of the offensive operations performed during the last year of World War II provides the material for the development of the theory of modern medical support operations and ability to provide on this basis, the continuity of the hospitals, the continuity of qualified and specialized medical care, improve the performance of diagnostic and treatment work.

  15. BMI differences in 1st and 2nd generation immigrants of Asian and European origin to Australia.

    PubMed

    Hauck, Katharina; Hollingsworth, Bruce; Morgan, Lawrie

    2011-01-01

    We estimate assimilation of immigrants' body mass index (BMI) to the host population of Australia over one generation, conducting separate analyses for immigrants from 7 regions of Europe and Asia. We use quantile regressions to allow for differing impact of generational status across 19 quantiles of BMI from under-weight to morbidly obese individuals. We find that 1st generation South European immigrants have higher, and South and East Asian immigrants have lower BMI than Australians, but have assimilated to the BMI of their hosts in the 2nd generation. There are no or only small BMI differences between Australians and 1st and 2nd generation immigrants from East Europe, North-West Europe, Middle East and Pacific regions. We conclude that both upward and downward assimilation in some immigrant groups is most likely caused by factors which can change over one generation (such as acculturation), and not factors which would take longer to change (such as genetics). Our results suggest that public health policies targeting the lifestyles of well educated Asian immigrants may be effective in preventing BMI increase in this subgroup.

  16. [Medical support of the 65th Army during the East Prussian offensive operation performed by the 2nd Belorussian Front].

    PubMed

    Shelepov, A M; Leonik, S I; Lemeshkin, R N

    2015-02-01

    Prussian offensive operation performed by the 2nd Belorussian Front. An activity of the medical An activity of the medical service of the 65th Army during the East Prussian offensive operation performed by the 2nd Belorussian Front is a typical example of the medical support of troops during the final stages of World War II. Forms and methods of medical support management, which were developed during the war, haven't lost their importance in modern conditions. These methods include the establishment of specialized surgical and therapeutic field hospital, establishment of medical institutions in the Army, which worked on the evacuation directions and reserve of mobile hospitals and transport, timely extension of the first echelons of the hospital base front to change institutions hospital deployed the army base. A research of experience in organizing medical support of the offensive operations performed during the last year of World War II provides the material for the development of the theory of modern medical support operations and ability to provide on this basis, the continuity of the hospitals, the continuity of qualified and specialized medical care, improve the performance of diagnostic and treatment work. PMID:25920177

  17. Efficacy and Safety of rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy

    PubMed Central

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  18. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  19. Internet Power Searching: The Advanced Manual. 2nd Edition. Neal-Schuman NetGuide Series.

    ERIC Educational Resources Information Center

    Bradley, Phil

    This handbook provides information on how Internet search engines and related software and utilities work and how to use them in order to improve search techniques. The book begins with an introduction to the Internet. Part 1 contains the following chapters that cover mining the Internet for information: "An Introduction to Search…

  20. Degenerate Open Shell Density Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark; Dunlap, Brett

    The density perturbation theory (DPT) methodology we have developed applies the Hohenberg-Kohn theorem to perturbations in density functional theory. At each order, the energy is directly minimized with respect to the density at all lower orders. The difference between the perturbed and unperturbed densities is expanded in terms of a finite number of basis functions, and a single matrix inversion in this space reduces the complexity of the problem to that of non-interacting perturbation theory. For open-shell systems with symmetry, however, the situation becomes more complex. Typically, the perturbation will break the symmetry leading to a zeroth-order shift in the Kohn-Sham potential. Because the symmetry breaking is independent of the strength of the perturbation, the mapping from the initial to the perturbed KS potential is discontinuous and techniques from perturbation theory for noninteracting particles fail. We describe a rigorous formulation of DPT for use in systems that display an initial degeneracy, such as atoms and Fe55Cp*12 clusters and present initial calculations on these systems.

  1. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  2. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).

    PubMed

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  3. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    NASA Astrophysics Data System (ADS)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1- and π2- states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  4. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    SciTech Connect

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  5. 77 FR 32530 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Goldberger, (202) 482-4136. 803) (2nd Review). Steel Concrete Reinforcing Bars from Ukraine (A-823-...

  6. Quarks in Coulomb gauge perturbation theory

    SciTech Connect

    Popovici, C.; Watson, P.; Reinhardt, H.

    2009-02-15

    Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.

  7. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  8. 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer.

    PubMed

    Eberhardt, W E E; De Ruysscher, D; Weder, W; Le Péchoux, C; De Leyn, P; Hoffmann, H; Westeel, V; Stahel, R; Felip, E; Peters, S

    2015-08-01

    To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines of treatment in advanced disease, early-stage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on locally advanced disease.

  9. Impact of Insulin Resistance on Neointimal Tissue Proliferation after 2nd-Generation Drug-Eluting Stent Implantation.

    PubMed

    Komatsu, Takaaki; Yaguchi, Isao; Komatsu, Sachiko; Nakahara, Shiro; Kobayashi, Sayuki; Sakai, Yoshihiko; Taguchi, Isao

    2015-08-01

    Percutaneous coronary intervention is established as an effective treatment for patients with ischemic heart disease; in particular, drug-eluting stent implantation is known to suppress in-stent restenosis. Diabetes mellitus is an independent risk factor for restenosis, so reducing insulin resistance is being studied as a new treatment approach. In this prospective study, we sought to clarify the factors associated with in-stent restenosis after percutaneous coronary intervention, and we evaluated the homeostasis model assessment of insulin resistance (HOMA-IR) index as a predictor of restenosis. We enrolled 136 consecutive patients who underwent elective percutaneous coronary intervention at our hospital from February 2010 through April 2013. All were implanted with a 2nd-generation drug-eluting stent. We distributed the patients in accordance with their HOMA-IR index values into insulin-resistant Group P (HOMA-IR, ≥2.5; n=77) and noninsulin-resistant Group N (HOMA-IR, <2.5; n=59). Before and immediately after stenting, we measured reference diameter, minimal lumen diameter, and percentage of stenosis, and after 8 months we measured the last 2 factors and late lumen loss, all by means of quantitative coronary angiography. After 8 months, the mean minimal lumen diameter was smaller in Group P than that in Group N (1.85 ± 1.02 vs 2.37 ± 0.66 mm; P=0.037), and the mean late lumen loss was larger (0.4 ± 0.48 vs 0.16 ± 0.21 mm; P=0.025). These results suggest that insulin resistance affects neointimal tissue proliferation after 2nd-generation drug-eluting stent implantation. PMID:26413014

  10. Laparoscopic hepatectomy is theoretically better than open hepatectomy: preparing for the 2nd International Consensus Conference on Laparoscopic Liver Resection.

    PubMed

    Wakabayashi, Go; Cherqui, Daniel; Geller, David A; Han, Ho-Seong; Kaneko, Hironori; Buell, Joseph F

    2014-10-01

    Six years have passed since the first International Consensus Conference on Laparoscopic Liver Resection was held. This comparatively new surgical technique has evolved since then and is rapidly being adopted worldwide. We compared the theoretical differences between open and laparoscopic liver resection, using right hepatectomy as an example. We also searched the Cochrane Library using the keyword "laparoscopic liver resection." The papers retrieved through the search were reviewed, categorized, and applied to the clinical questions that will be discussed at the 2nd Consensus Conference. The laparoscopic hepatectomy procedure is more difficult to master than the open hepatectomy procedure because of the movement restrictions imposed upon us when we operate from outside the body cavity. However, good visibility of the operative field around the liver, which is located beneath the costal arch, and the magnifying provide for neat transection of the hepatic parenchyma. Another theoretical advantage is that pneumoperitoneum pressure reduces hemorrhage from the hepatic vein. The literature search turned up 67 papers, 23 of which we excluded, leaving only 44. Two randomized controlled trials (RCTs) are underway, but their results are yet to be published. Most of the studies (n = 15) concerned short-term results, with some addressing long-term results (n = 7), cost (n = 6), energy devices (n = 4), and so on. Laparoscopic hepatectomy is theoretically superior to open hepatectomy in terms of good visibility of the operative field due to the magnifying effect and reduced hemorrhage from the hepatic vein due to pneumoperitoneum pressure. However, there is as yet no evidence from previous studies to back this up in terms of short-term and long-term results. The 2nd International Consensus Conference on Laparoscopic Liver Resection will arrive at a consensus on the basis of the best available evidence, with video presentations focusing on surgical techniques and the publication

  11. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    SciTech Connect

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  12. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  13. Perturbative tests of non-perturbative counting

    NASA Astrophysics Data System (ADS)

    Dabholkar, Atish; Gomes, João

    2010-03-01

    We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.

  14. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    PubMed

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-01

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation.

  15. Matter perturbations in Galileon cosmology

    SciTech Connect

    De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji

    2011-02-15

    We study the evolution of matter density perturbations in Galileon cosmology where the late-time cosmic acceleration can be realized by a field kinetic energy. We obtain full perturbation equations at linear order in the presence of five covariant Lagrangians L{sub i} (i=1,{center_dot}{center_dot}{center_dot},5) satisfying the Galileon symmetry {partial_derivative}{sub {mu}}{phi}{yields}{partial_derivative}{sub {mu}}{phi}{sup +}b{sub {mu}} in the flat space-time. The equations for a matter perturbation as well as an effective gravitational potential are derived under a quasistatic approximation on subhorizon scales. This approximation can reproduce full numerical solutions with high accuracy for the wavelengths relevant to large-scale structures. For the model parameters constrained by the background expansion history of the Universe, the growth rate of matter perturbations is larger than that in the {Lambda}-cold dark matter model, with the growth index {gamma} today typically smaller than 0.4. We also find that, even on very large scales associated with the integrated-Sachs-Wolfe effect in cosmic microwave background temperature anisotropies, the effective gravitational potential exhibits a temporal growth during the transition from the matter era to the epoch of cosmic acceleration. These properties are useful to distinguish the Galileon model from the {Lambda}-cold dark matter model in future high-precision observations.

  16. Disformal invariance of curvature perturbation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; White, Jonathan

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  17. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2014-09-01

    General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.

  18. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller–Plesset perturbation theory

    SciTech Connect

    Bozkaya, Uğur

    2014-09-28

    General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.

  19. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.

    PubMed

    Bozkaya, Uğur

    2014-09-28

    General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.

  20. Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Morrison, J. H.

    2004-01-01

    In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.

  1. Angiogenesis and lung cancer: ramucirumab prolongs survival in 2(nd)-line metastatic NSCLC.

    PubMed

    Das, Millie; Wakelee, Heather

    2014-12-01

    In the REVEL trial, ramucirumab, a monoclonal antibody to VEGFR-2, improved overall survival in combination with docetaxel compared to docetaxel alone in the second-line setting of non-small cell lung cancer (NSCLC). Along with bevacizumab and nintedanib, ramucirumab is the third anti-angiogenic agent that has yielded positive overall survival results in a phase III trial of patients with advanced NSCLC. Given the lack of effective therapies in the relapsed setting and the disappointing results of many other VEGF-targeted agents in lung cancer, the results from REVEL are encouraging. One of the major remaining hurdles is the identification of reliable predictive biomarkers in order to predict which patients are most likely to benefit from anti-angiogenic therapies. Despite the positive results seen in REVEL, the exact role of ramucirumab in the treatment paradigm of lung cancer remains to be seen given the modest survival benefit of 1.4 months and the lack of predictive biomarkers at this time.

  2. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    NASA Astrophysics Data System (ADS)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  3. IR divergences in inflation and entropy perturbations

    SciTech Connect

    Xue, Wei; Brandenberger, Robert; Gao, Xian E-mail: xgao@apc.univ-paris7.fr

    2012-06-01

    We study leading order perturbative corrections to the two point correlation function of the scalar field describing the curvature perturbation in a slow-roll inflationary background, paying particular attention to the contribution of entropy mode loops. We find that the infrared divergences are worse than in pure de Sitter space: they are power law rather than logarithmic. The validity of perturbation theory and thus of the effective field theory of cosmological perturbations leads to stringent constraints on the coupling constants describing the interactions, in our model the quartic self-interaction coupling constant of the entropy field. If the self coupling constant is larger than some critical value which depends in particular on the duration of the inflationary phase, then perturbation theory breaks down. Our analysis may have implications for the stability of de Sitter space: the quantum effects which lead to an instability of de Sitter space will be larger in magnitude in the presence of entropy fluctuations.

  4. The 4th order GISS model of the global atmosphere

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Bayliss, A.; Storch, J.

    1977-01-01

    The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).

  5. 2nd International Symposium on Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering (REES-2015)

    NASA Astrophysics Data System (ADS)

    Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna

    2016-01-01

    The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to

  6. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  7. Dynamics of the properties of steppe paleosols of the Sarmatian time (2nd century BC-4th century AD) in relation to secular variations in climatic humidity

    NASA Astrophysics Data System (ADS)

    Demkin, V. A.; Zolotareva, B. N.; Demkina, T. S.; Khomutova, T. E.; Kashirskaya, N. N.; El'Tsov, M. V.; Udal'Tsov, S. N.

    2012-02-01

    Paleosols buried under kurgans of the Early (2nd-1st centuries BC), Middle (1st-2nd centuries AD) and Late (2nd-IV centuries AD) Sarmatian epochs were studied in dry steppes and desert steppes of the Lower Volga region (the Privolzhskaya and Ergeni Uplands and the Caspian Lowland). It was found that temporal variations in the morphological, chemical, microbiological, and magnetic properties of the paleosols in the interval of 2200-1600 BP were characterized by the cyclic pattern related to secular dynamics of climatic humidity with changes in the mean annual precipitation of ±30-50 mm. These climate changes did not transform chestnut paleosols and paleosolonetzes at the type or subtype taxonomic levels. However, they led to certain changes in the humus, carbonate, and salt profiles of the soils; in the character of solonetzic horizon B1; and in the state of microbial communities. According to these data, the Sarmatian time was characterized by alternation of micropluvial and microarid stages lasting fro about 100-200 years. In particular, the stages of humidization were observed in the 1st century BC-1st century AD and in the 4th century AD; the most arid conditions were observed in the second half of the 2nd and the first half of the 3rd century AD.

  8. Research and Prediction of the Application of Multimedia Teaching Aid in Teaching Technical Education on the 2nd Level of Primary Schools

    ERIC Educational Resources Information Center

    Stebila, Ján

    2011-01-01

    The purpose and the main aim of the pedagogic experiment were to practically verify the success of Multimedia Teaching Aid (MTA) in conditions of primary schools. We assumed that the use of our multimedia teaching aid in teaching technical education on the 2nd level of primary schools would significantly affect the level of knowledge of pupils…

  9. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Zhang, Guochun; Yao, Jiyong; Xu, Tianxiang; Zhang, Xinyuan; Fu, Ying; Wu, Yicheng

    2015-08-01

    A self-activated crystal Na2Nd2O(BO3)2 has been grown from the Na2O-Nd2O3-B2O3-NaF system. Its structure was determined by single crystal X-ray diffraction, and verified by infrared spectrum and inductively coupled plasma optical emission spectrometry. Na2Nd2O(BO3)2 crystallizes in the monoclinic crystal system, space group P21/c with unit-cell parameters a = 10.804 Å, b = 6.421 Å, c = 10.450 Å, β = 117.95°, Z = 4, and V = 640.4 Å3. Its absorption and emission spectra were measured at room temperature. Based on the absorption spectrum, the spontaneous transition probabilities, fluorescence branch ratio, and the radiation lifetime of 4F3/2 state were calculated. The emission properties under the 355 nm excitation were also evaluated. The electronic structure of Na2Nd2O(BO3)2 was calculated by the first-principles method. The obtained results show that Na2Nd2O(BO3)2 may be a promising microchip laser material.

  10. Perturbation calculation of thermodynamic density of states

    SciTech Connect

    Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm

    2011-01-01

    The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.

  11. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  12. 2nd PEGS Annual Symposium on Antibodies for Cancer Therapy: April 30-May 1, 2012, Boston, USA.

    PubMed

    Ho, Mitchell; Royston, Ivor; Beck, Alain

    2012-01-01

    The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market. The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of 'photoimmunotherapy'. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors. Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery.

  13. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    PubMed

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. PMID:25686968

  14. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine.

  15. Enhanced Deficits in Long-Term Potentiation in the Adult Dentate Gyrus with 2nd Trimester Ethanol Consumption

    PubMed Central

    Helfer, Jennifer L.; White, Emily R.; Christie, Brian R.

    2012-01-01

    Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders. PMID:23227262

  16. Report on the 2nd International Consortium on Hallucination Research: evolving directions and top-10 "hot spots" in hallucination research.

    PubMed

    Waters, Flavie; Woods, Angela; Fernyhough, Charles

    2014-01-01

    This article presents a report on the 2nd meeting of the International Consortium on Hallucination Research, held on September 12th and 13th 2013 at Durham University, UK. Twelve working groups involving specialists in each area presented their findings and sought to summarize the available knowledge, inconsistencies in the field, and ways to progress. The 12 working groups reported on the following domains of investigation: cortical organisation of hallucinations, nonclinical hallucinations, interdisciplinary approaches to phenomenology, culture and hallucinations, subtypes of auditory verbal hallucinations, a Psychotic Symptoms Rating Scale multisite study, visual hallucinations in the psychosis spectrum, hallucinations in children and adolescents, Research Domain Criteria behavioral constructs and hallucinations, new methods of assessment, psychological therapies, and the Hearing Voices Movement approach to understanding and working with voices. This report presents a summary of this meeting and outlines 10 hot spots for hallucination research, which include the in-depth examination of (1) the social determinants of hallucinations, (2) translation of basic neuroscience into targeted therapies, (3) different modalities of hallucination, (4) domain convergence in cross-diagnostic studies, (5) improved methods for assessing hallucinations in nonclinical samples, (6) using humanities and social science methodologies to recontextualize hallucinatory experiences, (7) developmental approaches to better understand hallucinations, (8) changing the memory or meaning of past trauma to help recovery, (9) hallucinations in the context of sleep and sleep disorders, and (10) subtypes of hallucinations in a therapeutic context. PMID:24282321

  17. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine. PMID:26455002

  18. Summary of the 2nd International Symposium on Arthrogryposis, St. Petersburg, Russia, September 17-19, 2014.

    PubMed

    Hall, Judith G; Agranovich, Olga; Ogranovich, Alga; Pontén, Eva; Pontén, Ava; van Bosse, Harold J P

    2015-06-01

    Enormous progress has been made in understanding the etiology and therapies for arthrogryposis (multiple congenital contractures). A 2nd International Symposium on Arthrogryposis was sponsored by the Turner Institute in St. Petersburg, Russia. Olga Agranovich, Head of the Arthrogryposis Department of the Turner Institute, organized this special meeting. Care providers from multiple disciplines from all over the world representing 18 nations attended. Participants included: Pediatric orthopedic specialists, rehabilitation physicians, occupational therapists, physical therapists, medical geneticists, neurologists, craniofacial physicians, psychologists, developmental biologists, as well as representatives from parent support groups. The 1st symposium established the need for a collaborative and interdisciplinary approach to the treatment of arthrogryposis, engagement of parent support organizations, and the aim for more research. The Second Symposium highlighted the continuing need for more research on various therapies, identification of different types of arthrogryposis, standardized descriptions of severity, development of new orthotics, improved prenatal diagnosis, and studying adult outcome. Major progress has been made on both upper and lower limb treatments.

  19. Near infrared emission and energy transfer in Eu2+ - Nd3+ co-doped Ca2BO3Cl

    NASA Astrophysics Data System (ADS)

    Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Novel near infrared (NIR) emitting phosphor, Ca2BO3Cl:Eu2+, Nd3+ was synthesized by conventional solid-state reaction and characterized with X-ray diffraction, photoluminescence emission, photoluminescence excitation spectra and fluorescence decay measurements. When excited with 400 nm, the phosphor gives broadband emission at 560 nm, which corresponds to the allowed 5d → 4f transition of Eu2+ and an intense NIR emissions in the range 800-1400 nm, which are assigned to the characteristic 4I9/2,11/2,13/2 transitions of Nd3+ ions. The dependence of visible and NIR emissions, decay lifetime and the energy transfer efficiency (ηETE) were investigated in detail. The luminescence spectra, both in visible (VIS) and NIR regions, and decay lifetime curves of Eu2+ have been measured to prove energy transfer (ET) from Eu2+ to Nd3+. These results demonstrate the possibility for enhancing the photovoltaic conversion efficiency of silicon solar cell by modifying the absorption and utilizing the UV to blue part of the solar spectrum where the efficiency of c-Silicon solar cell is low.

  20. InAs/GaSb type II superlattices for advanced 2nd and 3rd generation detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Rutz, Frank; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2010-01-01

    InAs/GaSb short-period superlattices (SL) based on GaSb, InAs and AlSb have proven their great potential for high performance infrared detectors. Lots of interest is currently focused on the development of short-period InAs/GaSb SLs for advanced 2nd and 3rd generation infrared detectors between 3 - 30 μm. For the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) a manufacturable technology for high responsivity thermal imaging systems has been developed. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with high responsivity comparable to state of the art CdHgTe and InSb detectors. The material system is also ideally suited for the fabrication of dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels.

  1. Aspects of Perturbative Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Srednyak, Stanislav

    This thesis consists of three parts. The first is devoted to the calculation of multiplicity of two-gluon production in heavy ion collisions in the framework of Colour Glass Condensate. The second exhibits a finite basis for the perturbative correlation functions at a given loop order. The third demonstrates that the number of integrations in a perturbative amplitude can be reduced in half in even dimensions, and provides explicit formula for such a reduction in the (2,2) signature.

  2. Universe (2nd edition)

    SciTech Connect

    Kaufmann, W.J. III

    1988-01-01

    A general text on astronomy is presented. The foundations of the science are reviewed, including descriptions of naked-eye observatons of eclipses and planetary motions and such basic tools as Kepler's laws, the fundamental properties of light, and the optics of telescopes. The formation of the solar system is addressed, and the planets and their satellites are discussed individually. Solar science is treated in detail. Stellar evolution is described chronologically from birth to death. Molecular clouds, star clusters, nebulae, neutron stars, black holes, and various other phenomena that occur in the life of a star are examined in the sequence in which they naturally occur. A survey of the Milky Way introduces galactic astronomy. Quasars and cosmology are addressed, including the most recent developments in research. 156 references.

  3. Gauge and motion in perturbation theory

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2015-08-01

    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.

  4. Screened perturbation theory to three loops

    SciTech Connect

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2001-05-15

    The thermal physics of a massless scalar field with a {phi}{sup 4} interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.

  5. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  6. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Comer, Kathryn J.

    convergence. The unexpected sensitivity to equilibrium (rather than wall) perturbations in the toroidal calculations is traced to the compressional Alfven wave energy contribution to the stability. Beyond a very small range of perturbations, second order terms in the expansion of compressional Alfven wave energy become large. We explored several methods of ameliorating these second order terms, but none improve results consistently or in a meaningful way.

  7. Electrocradiographic Qrs Axis, Q Wave and T-wave Changes in 2nd and 3rd Trimester of Normal Pregnancy

    PubMed Central

    S., Chandrasekharappa; Brid, S.V

    2014-01-01

    Background: Pregnancy although a physiological phenomena affects all the functions of the maternal body and brings about remarkable changes in the cardiovascular system. The cardiovascular changes and many of the physiological adaptations of normal pregnancy alter the physical findings thus, sometimes misleading the diagnosis of heart disease. Pregnancy also brings about various changes in the electrocardiogram, further confusing with that of heart disease. This study is undertaken to highlight the effect of normal pregnancy on the QRS axis, Q wave and T-wave of the Electrocardiogram and thereby helps us to distinguish it from that of pathological changes. Objectives: To study the effect of normal pregnancy on the QRS axis, Q wave and T-wave in the electrocardiogram and to compare with that of normal non pregnant women. Materials and Methods: Fifty normal pregnant women in 2nd and 3rd trimester each between 20– 35 y of age and 50 normal non pregnant women of the same age group were selected for the study. A 12 lead ECG was recorded by using ECG machine with special emphasis on QRS axis, Q wave and T-wave changes and all the parameters were analysed. Results: The ECG changes observed in our study include, deviation of QRS axis towards left as pregnancy advanced, significant increased incidence of occurrence of prominent Q waves in lead II, III and avF in pregnant group (p < 0.05 ) and, T-wave abnormalities like flat and inverted T-waves in lead III, V1 – V3 were more frequent in pregnant group ( p<0.05 ) than in non pregnant group. Conclusion:Normal pregnancy brings about various changes in ECG. These changes during pregnancy should be interpretated with caution by the physicians. It is necessary to understand the normal physiological changes which in turn help us in better management of those with cardiac disease. PMID:25386425

  8. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    SciTech Connect

    Haro, Jaime

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.

  9. Perturbation analysis of electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-06-01

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.

  10. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  11. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  12. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  13. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  14. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses III. Base Composition, Molecular Weight, and Conformation of the Ad2+ND1 Genome

    PubMed Central

    Crumpacker, Clyde S.; Henry, Patrick H.; Kakefuda, Tuyoski; Rowe, Wallace P.; Levin, Myron J.; Lewis, Andrew M.

    1971-01-01

    The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2+ND1, differs from the defective Ad-SV40 hybrid populations previously described, in that this hybrid virus can replicate without the aid of nonhybrid adenovirus helper. Consequently, the deoxyribonucleic acid (DNA) from this virus, which can be obtained free of nonhybrid adenovirus DNA, is well suited for biophysical studies on Ad-SV40 hybrid DNA. Such studies have been performed and demonstrate Ad2+ND1 DNA to have a buoyant density (1.715 g/cm3) and thermal denaturation profile (Tm = 75.1 C) almost identical with nonhybrid Ad2 DNA. Furthermore, its molecular weight, as determined by analytical zone sedimentation and electron microscopy, was 22 × 106 to 25 × 106 daltons, which is also very similar to that determined for Ad2. Electron micrographs showed all of the hybrid molecules to be double-stranded and linear. By using this determination of the molecular weight of Ad2+ND1 DNA and assuming that 1% of this molecule consists of covalently linked SV40 DNA (see companion paper), we calculate that the hybrid DNA molecule contains 220 × 103 to 250 × 103 daltons of SV40 DNA, or the equivalent of one-tenth of the SV40 genome. PMID:4323710

  15. SHARK (System for coronagraphy with High order Adaptive optics from R to K band): a proposal for the LBT 2nd generation instrumentation

    NASA Astrophysics Data System (ADS)

    Farinato, Jacopo; Pedichini, Fernando; Pinna, Enrico; Baciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bruno, Pietro; Cappellaro, Enrico; Carbonaro, Luca; Carlotti, Alexis; Centrone, Mauro; Close, Laird; Codona, Johanan; Desidera, Silvano; Dima, Marco; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Fontana, Adriano; Gaessler, Wolfgang; Giallongo, Emanuele; Gratton, Raffaele; Greggio, Davide; Guerra, Juan Carlos; Guyon, Olivier; Hinz, Philip; Leone, Francesco; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Munari, Matteo; Pagano, Isabella; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Sani, Eleonora; Scuderi, Salvo; Stangalini, Marco; Testa, Vincenzo; Verinaud, Christophe; Viotto, Valentina

    2014-08-01

    This article presents a proposal aimed at investigating the technical feasibility and the scientific capabilities of high contrast cameras to be implemented at LBT. Such an instrument will fully exploit the unique LBT capabilities in Adaptive Optics (AO) as demonstrated by the First Light Adaptive Optics (FLAO) system, which is obtaining excellent results in terms of performance and reliability. The aim of this proposal is to show the scientific interest of such a project, together with a conceptual opto-mechanical study which shows its technical feasibility, taking advantage of the already existing AO systems, which are delivering the highest Strehl experienced in nowadays existing telescopes. Two channels are foreseen for SHARK, a near infrared channel (2.5-0.9 um) and a visible one (0.9 - 0.6 um), both providing imaging and coronagraphic modes. The visible channel is equipped with a very fast and low noise detector running at 1.0 kfps and an IFU spectroscopic port to provide low and medium resolution spectra of 1.5 x 1.5 arcsec fields. The search of extra solar giant planets is the main science case and the driver for the technical choices of SHARK, but leaving room for several other interesting scientific topics, which will be briefly depicted here.

  16. Cloud Occurrence Measurements Over Sea during the 2nd 7 Southeast Asian Studies (7SEAS) Field Campaign in Palawan Archipelago

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.

    2014-12-01

    Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have

  17. EDITORIAL: Selected Papers from OMS'07, the 2nd Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2008-06-01

    OMS'07 was the 2nd Topical Meeting of the European Optical Society (EOS) on Optical Microsystems (OMS). It was organized by the EOS in the frame of its international topical meeting activity, and after the success of the inaugural meeting was once again held in Italy, 30 September to 3 October 2007, amidst the wonderful scenery of the Island of Capri. The local organizing committee was composed of researchers from `La Sapienza' University in Rome and the National Council of Research (CNR) in Naples, Italy. A selected group of leading scientists in the field formed the international scientific committee. The conference was fully dedicated to the most recent advancements carried out in the field of optical microsystems. More then 150 scientists coming from five continents attended the conference and more than 100 papers were presented, organized into the following sessions: Photonic cystals and metamaterials Optofluidic microsystems and devices Optical microsystems and devices New characterization methods for materials and devices Application of optical systems Optical sources and photodetectors Optical resonators Nonlinear optic devices Micro-optical devices. Four keynote lecturers were invited for the Plenary sessions: Federico Capasso, Harvard University, USA; Bahram Javidi, University of Connecticut, USA (Distinguished Lecturer, Emeritus of LEOS--IEEE Society); Demetri Psaltis, EPFL, Lausanne, Switzerland; Ammon Yariv, California Institute of Technology, USA. Furthermore, 21 invited speakers opened each session of the conference with their talks. In addition a special session was organized to celebrate eighty years of the Isituto Nazionale di Ottica Applicata (INOA) of CNR. The special invited speaker for this session was Professor Theodor W Hänsch (Nobel Prize in Physics, 2005), who gave a lecture entitled `What can we do with optical frequency combs?' In this special issue of Journal of Optics A: Pure and Applied Optics, a selection of the most interesting

  18. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  19. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons.

    PubMed

    Accorsi-Mendonça, Daniela; Machado, Benedito H

    2013-04-01

    Second order neurons in the nucleus tractus solitarius (NTS) process and integrate the afferent information from arterial baroreceptors with high fidelity and precise timing synaptic transmission. Since 2nd-order NTS neurons receiving baroreceptors inputs are relatively well characterized, their electrophysiological profile has been accepted as a general characteristic for all 2nd-order NTS neurons involved with the processing of different sensorial inputs. On the other hand, the synaptic properties of other afferent systems in NTS, such as the peripheral chemoreceptors, are not yet well understood. In this context, in previous studies we demonstrated that in response to repetitive afferents stimulation, the chemoreceptors 2nd-order NTS neurons also presented high fidelity of synaptic transmission, but with a large variability in the latency of evoked responses. This finding is different in relation to the precise timing transmission for baroreceptor 2nd-order NTS neurons, which was accepted as a general characteristic profile for all 2nd order neurons in the NTS. In this brief review we discuss this new concept as an index of complexity of the sensorial inputs to NTS with focus on the synaptic processing of baro- and chemoreceptor afferents.

  20. Liouvillian perturbations of black holes

    NASA Astrophysics Data System (ADS)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  1. First and second-order-motion perception after focal human brain lesions

    PubMed Central

    Rizzo, Matthew; Nawrot, Mark; Sparks, JonDavid; Dawson, Jeffrey

    2011-01-01

    Perception of visual motion includes a 1st-order mechanism sensitive to luminance changes and a 2nd-order motion mechanism sensitive to contrast changes. We studied neural substrates for these motion types in 142 subjects with visual cortex lesions, 68 normal controls and 28 brain lesion controls. On 1st-order motion, the visual cortex lesion group performed significantly worse than normal controls overall and in each hemifield, but 2nd-order motion did not differ. Only 1 individual showed a selective 2nd-order motion deficit. Motion deficits were seen with lesions outside the small occipitotemporal region thought to contain a human homolog of motion processing area MT (V5), suggesting that many areas of human brain process visual motion. PMID:18440580

  2. Rolling axions during inflation: perturbativity and signatures

    NASA Astrophysics Data System (ADS)

    Peloso, Marco; Sorbo, Lorenzo; Unal, Caner

    2016-09-01

    The motion of a pseudo-scalar field X during inflation naturally induces a significant amplification of the gauge fields to which it is coupled. The amplified gauge fields can source characteristic scalar and tensor primordial perturbations. Several phenomenological implications have been discussed in the cases in which (i) X is the inflaton, and (ii) X is a field different from the inflaton, that experiences a temporary speed up during inflation. In this second case, visible sourced gravitational waves (GW) can be produced at the CMB scales without affecting the scalar perturbations, even if the scale of inflation is several orders of magnitude below what is required to produce a visible vacuum GW signal. Perturbativity considerations can be used to limit the regime in which these results are under perturbative control. We revised limits recently claimed for the case (i), and we extend these considerations to the case (ii). We show that, in both cases, these limits are satisfied by the applications that generate signals at CMB scales. Applications that generate gravitational waves and primordial black holes at much smaller scales are at the limit of the validity of this perturbativity analysis, so we expect those results to be valid up to possibly order one corrections.

  3. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  4. Equation-of-motion coupled cluster perturbation theory revisited

    SciTech Connect

    Eriksen, Janus J. Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen

    2014-05-07

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.

  5. Aspects of perturbative unitarity

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2016-07-01

    We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

  6. Perturbed Trojan satellites

    NASA Astrophysics Data System (ADS)

    Morais, M. H. M.; Murray, C. D.

    1999-09-01

    We present some mechanisms that can lead to instability of initially small eccentricity Trojan-type orbits associated with planetary satellites. Dermott & Murray (1981) showed that in the context of the hierarchical restricted three-body problem (M>> m), stable small eccentricity coorbital motion associated with the mass m, occurs within a region of relative width in semi-major axis a_s=0.74 epsilon (where epsilon is the dimensionless Hill's radius). However, for large eccentricities, the size of the stable coorbital region shrinks as a_s=4 (epsilon /e)(1/2) epsilon (Namouni 1999). The perturbations from other nearby bodies can cause increases in both eccentricity and semi-major axis, leading to ejection from the coorbital region via collisions with the parent body or a nearby perturber. We show that mean motion resonances among saturnian satellites can cause chaotic diffusion of both the eccentricity and the semi-major axis of their associated Trojan orbits. Moreover, we show that secular resonances inside the coorbital regions of some uranian and saturnian satellites can induce significant increases in the eccentricity of Trojan objects. A better insight into the complicated dynamics exhibited by Trojan objects when they are being subject to perturbations is fundamental to be able to assess the likelihood of finding real examples of these configurations. Dermott & Murray (1981). Icarus 48, 1-11. Namouni (1999). Icarus 137, 293-314.

  7. Fitting of Hadron Mass Spectra and Contributions to Perturbation Theory of Conformal Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Luna Acosta, German Aurelio

    The masses of observed hadrons are fitted according to the kinematic predictions of Conformal Relativity. The hypothesis gives a remarkably good fit. The isospin SU(2) gauge invariant Lagrangian L(,(pi)NN)(x,(lamda)) is used in the calculation of d(sigma)/d(OMEGA) to 2nd-order Feynman graphs for simplified models of (pi)N(--->)(pi)N. The resulting infinite mass sums over the nucleon (Conformal) families are done via the Generalized-Sommerfeld-Watson Transform Theorem. Even though the models are too simple to be realistic, they indicate that if (DELTA)-internal lines were to be included, 2nd-order Feynman graphs may reproduce the experimental data qualitatively. The energy -dependence of the propagator and couplings in Conformal QFT is different from that of ordinary QFT. Suggestions for further work are made in the areas of ultra-violet divergences and OPEC calculations.

  8. Effects of aging and perturbation intensities on temporal parameters during slipping-like perturbations.

    PubMed

    Tropea, Peppino; Martelli, Dario; Aprigliano, Federica; Micera, Silvestro; Monaco, Vito

    2015-01-01

    The aim of this study was to analyze the modifications of temporal parameters during slipping-like perturbations associated both with aging and perturbation intensities. Twelve participants equally distributed from two age groups (elderly and young) were recorded while, during steady locomotion, managing unexpected slipping-like perturbations, in forward direction, at different intensity and amplitude of foot shift. Two metrics were extrapolated from the analysis of the ground reaction force supplied by ad hoc platform aimed at destabilizing the balance control. The results indicated that the analyzed timing variables, both for elderly and young, are strongly modified by intensity of the perturbation, but only slight altered by the amplitude. Concerning the comparison about the two groups, elderly people seem to have slower reactive response than young subjects. These findings support further investigations in order to gain a better understanding of fall dynamics in elderly people.

  9. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  10. Assessment of Orbital-Optimized Third-Order Møller-Plesset Perturbation Theory and Its Spin-Component and Spin-Opposite Scaled Variants for Thermochemistry and Kinetics.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2013-03-12

    An assessment of the OMP3 method and its spin-component and spin-scaled variants for thermochemistry and kinetics is presented. For reaction energies of closed-shell systems, the CCSD, SCS-MP3, and SCS-OMP3 methods show better performances than other considered methods, and no significant improvement is observed due to orbital optimization. For barrier heights, OMP3 and SCS-OMP3 provide the lowest mean absolute deviations. The MP3 method yields considerably higher errors, and the spin scaling approaches do not help to improve upon MP3, but worsen it. For radical stabilization energies, the CCSD, OMP3, and SCS-OMP3 methods exhibit noticeably better performances than MP3 and its variants. Our results demonstrate that if the reference wave function suffers from a spin-contamination, then the MP3 methods dramatically fail. On the other hand, the OMP3 method and its variants can tolerate the spin-contamination in the reference wave function. For overall evaluation, we conclude that OMP3 is quite helpful, especially in electronically challenged systems, such as free radicals or transition states where spin contamination dramatically deteriorates the quality of the canonical MP3 and SCS-MP3 methods. Both OMP3 and CCSD methods scale as n(6), where n is the number of basis functions. However, the OMP3 method generally converges in much fewer iterations than CCSD. In practice, OMP3 is several times faster than CCSD in energy computations. Further, the stationary properties of OMP3 make it much more favorable than CCSD in the evaluation of analytic derivatives. For OMP3, the analytic gradient computations are much less expensive than CCSD. For the frequency computation, both methods require the evaluation of the perturbed amplitudes and orbitals. However, in the OMP3 case there is still a significant computational time savings due to simplifications in the analytic Hessian expression owing to the stationary property of OMP3. Hence, the OMP3 method emerges as a very useful

  11. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  12. Perturbation calculation of thermodynamic density of states.

    PubMed

    Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M

    2011-12-01

    The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.

  13. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  14. Inhomogeneous Broadening in Perturbed Angular Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bunker, Austin; Adams, Mike; Hodges, Jeffery; Park, Tyler; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew

    2009-10-01

    Our research concerns the effect of a static distribution of defects on the net electric field gradient (EFG) within crystal structures. Defects and vacancies perturb the distribution of gamma rays emitted from radioactive probe nuclei within the crystal. These defects and vacancies produce a net EFG at the site of the probe which causes the magnetic quadrupole moment of the nucleus of the probe to precess about the EFG. The net EFG, which is strongly dependent upon the defect concentration, perturbs the angular correlation (PAC) of the gamma rays, and is seen in the damping of the perturbation function, G2(t), in time and broadening of the spectral peaks in the Fourier transform. We have used computer simulations to study the probability distribution of EFG tensor components in order to uncover the concentration dependence of G2(t). This in turn can be used to analyze experimental PAC data and quantitatively describe properties of the crystal.

  15. Perturbation measurement of waveguides for acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  16. Singular perturbations and the sounding rocket problem

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1979-01-01

    In this paper, Goddard's problem of maximizing the final altitude of a sounding rocket (a singular problem of optimal control) is analyzed using singular perturbation methods. The problem is first cast in singular perturbation form and then solved to zero order by adding boundary-layer corrections to the reduced solution. For a quadratic drag law, a closed-form solution is obtained, although consideration of a numerical example indicates that this solution is not useful for practical sounding rockets. However, use of state variable transformations allows a very accurate numerical approximation to be constructed. It is concluded that application of singular perturbation methods to the well-known sounding rocket problem indicates that these methods may have utility in dealing with singular problems of optimal control.

  17. Disentangling perturbative and power corrections in precision tau decay analysis

    SciTech Connect

    Gorbunov, D.S.; Pivovarov, A.A.

    2005-01-01

    Hadronic tau decay precision data are analyzed with account of both perturbative and power corrections of high orders within QCD. It is found that contributions of high order power corrections are essential for extracting a numerical value for the strange quark mass from the data on Cabibbo suppressed tau decays. We show that with inclusion of new five-loop perturbative corrections in the analysis the convergence of perturbation theory remains acceptable only for few low order moments. We obtain m{sub s}(M{sub {tau}})=130{+-}27 MeV in agreement with previous estimates.

  18. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  19. Nonambipolar Transport and Torque in Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.

    2013-10-01

    A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.

  20. Local perturbations perturb—exponentially-locally

    NASA Astrophysics Data System (ADS)

    De Roeck, W.; Schütz, M.

    2015-06-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  1. A special perturbation method in orbital dynamics

    NASA Astrophysics Data System (ADS)

    Peláez, Jesús; Hedo, José Manuel; Rodríguez de Andrés, Pedro

    2007-02-01

    The special perturbation method considered in this paper combines simplicity of computer implementation, speed and precision, and can propagate the orbit of any material particle. The paper describes the evolution of some orbital elements based in Euler parameters, which are constants in the unperturbed problem, but which evolve in the time scale imposed by the perturbation. The variation of parameters technique is used to develop expressions for the derivatives of seven elements for the general case, which includes any type of perturbation. These basic differential equations are slightly modified by introducing one additional equation for the time, reaching a total order of eight. The method was developed in the Grupo de Dinámica de Tethers (GDT) of the UPM, as a tool for dynamic simulations of tethers. However, it can be used in any other field and with any kind of orbit and perturbation. It is free of singularities related to small inclination and/or eccentricity. The use of Euler parameters makes it robust. The perturbation forces are handled in a very simple way: the method requires their components in the orbital frame or in an inertial frame. A comparison with other schemes is performed in the paper to show the good performance of the method.

  2. Gravitational arcs as a perturbation of the perfect ring

    NASA Astrophysics Data System (ADS)

    Alard, C.

    2007-11-01

    The image of a point situated at the centre of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These two effects, displacement and breaking, are directly related to the Taylor expansion of the perturbation at first order on the circle. The numerical accuracy of this perturbative approach is tested in the case of an elliptical potential with a core radius. The contour of the images and the caustic lines are well reproduced by the perturbative approach. These results suggest that the modelling of arcs, and in particular that of tangential arcs, may be simplified by using a general perturbative representation for points located on the circle. This linear perturbative approach is accurate when the gradient of the circular potential is almost linear; this constraint is satisfied when the potential is nearly isothermal.

  3. PREFACE: 2nd International Conference on Particle Physics in memoriam Engin Arık and her Colleagues

    NASA Astrophysics Data System (ADS)

    Çetin, Serkant Ali; Jenni, Peter; Erkcan Özcan, Veysi; Nefer Şenoğuz, Vedat

    2012-02-01

    The 2nd International Conference on Particle Physics in memoriam Engin Arık and her Colleagues: Fatma Şenel Boydağ, İskender Hikmet, Mustafa Fidan, Berkol Doğan and Engin Abat was held at Doğuş University, İstanbul, Turkey on 20-25 June 2011. The conference was organized jointly by the Doğuş and Boğaziçi Universities, with support from CERN and the Turkish Academy of Sciences. This was the second International Conference on Particle Physics (ICPP) organized in memory of Engin Arık and her Colleagues who lost their lives in the tragic plane accident on November 30 2007, on their way to the workshop of the Turkish Accelerator Center (TAC) Project. The first of this conference series was held on 27-31 October 2008 at Boğaziçi University, İstanbul, Turkey. The conference is intended to be repeated every two years in Istanbul as a Conference Series under the name 'ICPP-Istanbul'. Professor Engin Arık had a pioneering role in experimental particle physics in Turkey, and was an inspiring teacher to many colleagues. She led the Turkish participation in experiments at CERN such as CHARMII, SMC, CHORUS, ATLAS and CAST. One of her latest involvements was in the national project to design the Turkish Accelerator Center with the collaboration of 10 Turkish universities including Doğuş and Boğaziçi. Our dear colleagues not only participated in the TAC project but also collaborated on the ATLAS (E Arık, E Abat and B Doğan) and CAST (E Arık, F Şenel Boydağ, İ Hikmet and B Doğan) experiments. We believe that the ICPP-Istanbul conference series has been, and will always be, a way to commemorate them in a most appropriate context. The topics covered in ICPP-Istanbul-II were 'LHC Physics and Tevatron Results', 'Neutrinos and Dark Matter', 'Particle Factories' and 'Accelerator Physics and Future TeV Scale Colliders'. The main emphasis was on the recent experimental results in high-energy physics with discussions on expectations from existing or future

  4. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  5. Staggered heavy baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  6. A new model for realistic random perturbations of stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Dieci, Luca; Li, Wuchen; Zhou, Haomin

    2016-08-01

    Classical theories predict that solutions of differential equations will leave any neighborhood of a stable limit cycle, if white noise is added to the system. In reality, many engineering systems modeled by second order differential equations, like the van der Pol oscillator, show incredible robustness against noise perturbations, and the perturbed trajectories remain in the neighborhood of a stable limit cycle for all times of practical interest. In this paper, we propose a new model of noise to bridge this apparent discrepancy between theory and practice. Restricting to perturbations from within this new class of noise, we consider stochastic perturbations of second order differential systems that -in the unperturbed case- admit asymptotically stable limit cycles. We show that the perturbed solutions are globally bounded and remain in a tubular neighborhood of the underlying deterministic periodic orbit. We also define stochastic Poincaré map(s), and further derive partial differential equations for the transition density function.

  7. Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2nd auto-ionizing states

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Rui; Shen, Li; Zhang, Kai; Dai, Chang-Jian; Yang, Yu-Na

    2016-09-01

    The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f76p1/2nd auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm‑1 and 44580 cm‑1, from which auto-ionization spectra of the Eu 4f76p1/2nd states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).

  8. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  9. Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2nd auto-ionizing states

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Rui; Shen, Li; Zhang, Kai; Dai, Chang-Jian; Yang, Yu-Na

    2016-09-01

    The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f76p1/2nd auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm-1 and 44580 cm-1, from which auto-ionization spectra of the Eu 4f76p1/2nd states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).

  10. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  11. Perturbative unidirectional invisibility

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2015-08-01

    We outline a general perturbative method of evaluating scattering features of finite-range complex potentials and use it to examine complex perturbations of a rectangular barrier potential. In optics, these correspond to modulated refractive index profiles of the form n (x ) =n0+f (x ) , where n0 is real, f (x ) is complex valued, and |f (x ) | ≪1 ≤n0 . We give a comprehensive description of the phenomenon of unidirectional invisibility for such media, proving five general theorems on its realization in P T -symmetric and non-P T -symmetric material. In particular, we establish the impossibility of unidirectional invisibility for P T -symmetric samples whose refractive index has a constant real part and show how a simple scaling transformation of a unidirectionally invisible P T -symmetric index profile with n0=1 may be used to generate a hierarchy of unidirectionally invisible P T -symmetric index profiles with n0>1 . The results pertaining to unidirectional invisibility for n0>1 open the way for the experimental studies of this phenomenon in a variety of active materials. As an application of our general results, we show that a medium with n (x ) =n0+ζ ei K x , ζ and K real, and |ζ |≪1 can support unidirectional invisibility only for n0=1 . We then construct unidirectionally invisible index profiles of the form n (x ) =n0+∑ℓzℓei Kℓx with zℓ complex, Kℓ real, | zℓ|≪1 , and n0>1 .

  12. Encuentro de Linguistica en el Noroeste (2nd, Hermosillo, Mexico, November 18-20, 1992). Memorias Tomos 1 y 2 (Conference on Linguistics in the Northwest [2nd, Hermosillo, Mexico, November 18-20, 1992]. Papers Volumes 1 and 2).

    ERIC Educational Resources Information Center

    Sonora Univ. (Mexico), Dept. of Letters and Linguistics.

    Papers in these volumes were presented at a Mexican conference on linguistics. Most papers are in Spanish; the English translations of the titles include the following: "Directions in Contemporary Semantics" (L. Lara); "Regular Accentuation in Spanish" (C. Braithwaite); "Syntactic Order in Sonoran" (D. Brown); "Speech Datives or Interest/Not of…

  13. Moral Judgment and Its Relation to Second-Order Theory of Mind

    ERIC Educational Resources Information Center

    Fu, Genyue; Xiao, Wen S.; Killen, Melanie; Lee, Kang

    2014-01-01

    Recent research indicates that moral judgment and 1st-order theory of mind abilities are related. What is not known, however, is how 2nd-order theory of mind is related to moral judgment. In the present study, we extended previous findings by administering a morally relevant theory of mind task (an accidental transgressor) to 4- to 7-year-old…

  14. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  15. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures.

  16. Symposium on Parallel Computational Methods for Large-scale Structural Analysis and Design, 2nd, Norfolk, VA, US

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)

    1993-01-01

    Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.

  17. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) Bauman Moscow State Technical University Moscow, Russia, 3-6 June, 2013 The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) was held in Bauman Moscow State Technical University on 3-6 June 2013 and was devoted to modern problems of terahertz optical technologies. RJUS TeraTech 2013 was organized by Bauman Moscow State Technical University in cooperation with Tohoku University (Sendai, Japan) and University of Buffalo (The State University of New York, USA). The Symposium was supported by Bauman Moscow State Technical University (Moscow, Russia) and Russian Foundation for Basic Research (grant number 13-08-06100-g). RJUS TeraTech - 2013 became a foundation for sharing and discussing modern and promising achievements in fundamental and applied problems of terahertz optical technologies, devices based on grapheme and grapheme strictures, condensed matter of different nature. Among participants of RJUS TeraTech - 2013, there were more than 100 researchers and students from different countries. This volume contains proceedings of the 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies'. Valeriy Karasik, Viktor Ryzhii and Stanislav Yurchenko Bauman Moscow State Technical University Symposium chair Anatoliy A Aleksandrov, Rector of BMSTU Symposium co-chair Valeriy E Karasik, Head of the Research and Educational Center 'PHOTONICS AND INFRARED TECHNOLOGY' (Russia) Invited Speakers Taiichi Otsuji, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Akira Satou, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Michael Shur, Electrical, Computer and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, NY, USA Natasha

  18. Do cosmological perturbations have zero mean?

    SciTech Connect

    Armendariz-Picon, Cristian

    2011-03-01

    A central assumption in our analysis of cosmic structure is that cosmological perturbations have a constant ensemble mean, which can be set to zero by appropriate choice of the background. This property is one of the consequences of statistical homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which primordial perturbations have inhomogeneous non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies.

  19. Privacy Is Become with, Data Perturbation

    NASA Astrophysics Data System (ADS)

    Singh, Er. Niranjan; Singhai, Niky

    2011-06-01

    Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.

  20. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  1. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images. PMID:17776019

  2. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.

  3. A new size extensive multireference perturbation theory.

    PubMed

    Chen, Feiwu; Fan, Zhihui

    2014-01-15

    A new multireference perturbation series is derived based on the Rayleigh-Schrödinger perturbation theory. It is orbitally invariant. Its computational cost is comparable to the single reference Møller-Plesset perturbation theory. It is demonstrated numerically that the present multireference second- and third-order energies are size extensive by two types of supermolecules composed of H2 and BH monomers. Spectroscopic constants of F2(X1Σg+),Cl2(X1Σg+),C2-(X2Σg+),B2(X3Σg-),and C2+(X4Σg-) as well as the ground state energies of H2O, NH2, and CH2 at three bond lengths have been calculated with the second multireference perturbation theory. The dissociation behaviors of CH4 and HF have also been investigated. Comparisons with other approximate theoretical models as well as the experimental data have been carried out to show their relative performances.

  4. Using Lagrangian Perturbation Theory for Precision Cosmology

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naonori S.

    2014-06-01

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc-1 and z = 0.35 to better than 2%.

  5. Using Lagrangian perturbation theory for precision cosmology

    SciTech Connect

    Sugiyama, Naonori S.

    2014-06-10

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc{sup –1} and z = 0.35 to better than 2%.

  6. Degenerate R-S perturbation theory

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  7. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions

  8. Gradient expansion of superhorizon perturbations in G-inflation

    SciTech Connect

    Frusciante, Noemi; Zhou, Shuang-Yong; Sotiriou, Thomas P. E-mail: szhou@sissa.it

    2013-07-01

    We develop the gradient expansion formalism for shift-symmetric Galileon-type actions. We focus on backgrounds that undergo inflation, work in the synchronous gauge, and obtain a general solution up to second order without imposing extra conditions at first order. The solution simplifies during the late stages of inflation. We also define a curvature perturbation conserved up to first order.

  9. Effects of slipping-like perturbation intensity on the dynamical stability.

    PubMed

    Aprigliano, Federica; Martelli, Dario; Tropea, Peppino; Micera, Silvestro; Monaco, Vito

    2015-01-01

    Falls are a major cause of morbidity and death in elderly people. Understanding how subjects maintain stability while walking or while being exposed to perturbations is important in order to prevent falls. Here, five healthy subjects were asked to manage unexpected slipping-like perturbations of increasing intensities (i.e., soft, medium and strong) in order to investigate the effects of the perturbation intensity on the biomechanical behavior and on the dynamical stability, described by the Margin of Stability. The lower limb kinematic (i.e., hip, knee and ankle joints angles) was computed before and after the onset of the perturbation. The compensatory time and the Margin of Stability were calculated after the onset of the perturbation. As expected, results showed that the perturbation altered the subjects' kinematic and the modulation of the perturbation intensity was reflected in the dynamical stability: the stronger was the perturbation, the lower was the Margin of Stability describing a lower balance recovery.

  10. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  11. Modulated preheating and isocurvature perturbations

    SciTech Connect

    Enqvist, Kari; Rusak, Stanislav E-mail: stanislav.rusak@helsinki.fi

    2013-03-01

    We consider a model of preheating where the coupling of the inflaton to the preheat field is modulated by an additional scalar field which is light during inflation. We establish that such a model produces the observed curvature perturbation analogously to the modulated reheating scenario. The contribution of modulated preheating to the power spectrum and to non-Gaussianity can however be significantly larger compared to modulated perturbative reheating. We also consider the implications of the current constraints on isocurvature perturbations in case where the modulating field is responsible for cold dark matter. We find that existing bounds on CDM isocurvature perturbations imply that modulated preheating is unlikely to give a dominant contribution to the curvature perturbation and that the same bounds suggest important constraints on non-Gaussianity and the amount of primordial gravitational waves.

  12. Assessment of multireference perturbation methods for chemical reaction barrier heights.

    PubMed

    Fracchia, Francesco; Cimiraglia, Renzo; Angeli, Celestino

    2015-05-28

    A few flavors of multireference perturbation theory, two variants of the n-electron valence state perturbation theory and two of the complete active space perturbation theory, are here tested for the calculation of barrier heights for the set of chemical reactions included in the DBH24/08 database, for which very accurate values are available. The comparison of the results obtained with these approaches with those already published for other theoretical models indicates that multireference perturbation theory is a valuable tool for the description of a chemical reaction. Moreover, limiting the comparison to the perturbation theory approaches, one observes that the bad behavior found for single reference methods (such as Møller-Plesset to second and fourth order in the energy) is markedly improved upon moving to the multireference generalizations.

  13. What's new with the flu? Reflections regarding the management and prevention of influenza from the 2nd New Zealand Influenza Symposium, November 2015.

    PubMed

    Charania, Nadia A; Mansoor, Osman D; Murfitt, Diana; Turner, Nikki M

    2016-01-01

    Influenza is a common respiratory viral infection. Seasonal outbreaks of influenza cause substantial morbidity and mortality that burdens healthcare services every year. The influenza virus constantly evolves by antigenic drift and occasionally by antigenic shift, making this disease particularly challenging to manage and prevent. As influenza viruses cause seasonal outbreaks and also have the ability to cause pandemics leading to widespread social and economic losses, focused discussions on improving management and prevention efforts is warranted. The Immunisation Advisory Centre (IMAC) hosted the 2nd New Zealand Influenza Symposium (NZiS) in November 2015. International and national participants discussed current issues in influenza management and prevention. Experts in the field presented data from recent studies and discussed the ecology of influenza viruses, epidemiology of influenza, methods of prevention and minimisation, and experiences from the 2015 seasonal influenza immunisation campaign. The symposium concluded that although much progress in this field has been made, many areas for future research remain. PMID:27607085

  14. Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling

    NASA Astrophysics Data System (ADS)

    Le, Thu Hoai; Malfliet, Annelies; Blanpain, Bart; Guo, Muxing

    2016-06-01

    CaO-SiO2-Nd2O3 slags were equilibrated at 1773 K and 1873 K (1500 °C and 1600 °C) for 24 hours in Ar, and quenched in water to determine the operative phase relations. The composition and crystallinity of the phases in equilibrium were determined by EPMA-WDS and EBSD, respectively. Based on these analyses, the liquid stability region was accurately determined, and a large part of the isothermal section of the phase diagram was constructed. Data resulting from this work can be used to generate a thermodynamic database for rare-earth oxide-containing systems and to support further investigation on separation of rare earths from metallurgical slags or other residues through high-temperature processing.

  15. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698

  16. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  17. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach

    NASA Astrophysics Data System (ADS)

    Lousto, C. O.

    2005-08-01

    . Other sources of gravitational waves are the product of excitation of the supermassive black holes present in the core of most of the galaxies in the universe by surrounding stars; such a star will eventually get close enough - presumably through three-body encounters - for the gravitational radiation to play an important role in the further evolution of its orbit and eventually cause it to merge into its supermassive companion. As the mass ratios are expected to be of the order of 10-3 at most, our perturbative expansion represents a fantastic degree of accuracy, allowing detailed analysis of the sources by space-based detectors sensitive to sub-Hertz frequencies, such as LISA - a joint mission of NASA and ESA that plans to launch three spaceships in orbit around the sun during the next decade. The universe can offer us an even more energetic event: when two galaxies collide, the merger of their central supermassive black holes will produce the largest burst of gravitational radiation in the universe. Presumably the mass ratio in this case will be in the range of 1 to 10-3, hence the extreme usefulness of the second-order approach. Let us return to 1997. After decades of being an open problem, the formulae for the self-force were finally available and, it seemed, ready to be applied in specific computations. This inspired a group of young researchers to meet and study in detail the papers containing the solution to the self-force problem. A ranch donated to Caltech by the movie director Frank Capra made the perfect retreat location, and so in 1998 the series of Capra meetings on radiation reaction was born in San Diego, California. Every year since then, the meeting has incorporated new people and become more formally organized. In 1999 the 2nd Capra meeting took place in Dublin, Ireland http://www.lsc-group.phys.uwm.edu/~patrick/ireland99/. In 2000 it returned to Caltech http://www.tapir.caltech.edu/capra3/, and in 2001 I had the opportunity to organize the 4th Capra

  18. g-FUNCTION in Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Konechny, Anatoly

    We present some explicit computations checking a particular form of gradient formula for a boundary beta function in two-dimensional quantum field theory on a disk. The form of the potential function and metric that we consider were introduced in Refs. 16 and 18 in the context of background independent open string field theory. We check the gradient formula to the third order in perturbation theory around a fixed point. Special consideration is given to situations when resonant terms are present exhibiting logarithmic divergences and universal nonlinearities in beta functions. The gradient formula is found to work to the given order.

  19. A Higher Order Perturbative Parton Evolution Toolkit (HOPPET)

    NASA Astrophysics Data System (ADS)

    Salam, G. P.; Rojo, J.

    2009-01-01

    This document describes a Fortran 95 package for carrying out DGLAP evolution and other common manipulations of parton distribution functions (PDFs). The PDFs are represented on a grid in x-space so as to avoid limitations on the functional form of input distributions. Good speed and accuracy are obtained through the representation of splitting functions in terms of their convolution with a set of piecewise polynomial basis functions, and Runge-Kutta techniques are used for the evolution in Q. Unpolarised evolution is provided to NNLO, including heavy-quark thresholds in the MS¯ scheme, and longitudinally polarised evolution to NLO. The code is structured so as to provide simple access to the objects representing splitting functions and PDFs, making it possible for a user to extend the facilities already provided. A streamlined interface is also available, facilitating use of the evolution part of the code from F77 and C/C++. Program summaryProgram title: HOPPET Catalogue identifier: AEBZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public License No. of lines in distributed program, including test data, etc.: 61 001 No. of bytes in distributed program, including test data, etc.: 270 312 Distribution format: tar.gz Programming language: Fortran 95 Computer: All Operating system: All RAM: ≲10 MB Classification: 11.5 Nature of problem: Solution of the DGLAP evolution equations up to NNLO (NLO) for unpolarised (longitudinally polarised) PDFs, and provision of tools to facilitate manipulation (convolutions, etc.) of PDFs with user-defined coefficient and splitting functions. Solution method: Representation of PDFs on a grid in x, adaptive integration of splitting functions to reduce them to a discretised form, obtaining fast convolutions that are equivalent to integration with an interpolated form of the PDFs; Runge-Kutta solution of the Q evolution, and its caching so as to speed up repeated evolution with different initial conditions. Restrictions: PDFs should be smooth on the scale of the discretisation in x. Running time: A few seconds for initialisation, then ˜10 ms for creating a tabulation with a relative accuracy of 10 -4 from a new initial condition (on a 3.4 GHz Pentium IV processor). Further details in Section 9.2.

  20. Disformal transformation of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Minamitsuji, Masato

    2014-10-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar-tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar-tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  1. Baryonic matter perturbations in decaying vacuum cosmology

    SciTech Connect

    Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br

    2014-08-01

    We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.

  2. Dark matter dispersion tensor in perturbation theory

    NASA Astrophysics Data System (ADS)

    Aviles, Alejandro

    2016-03-01

    We compute the dark matter velocity dispersion tensor up to third order in perturbation theory using the Lagrangian formalism, revealing growing solutions at the third and higher orders. Our results are general and can be used for any other perturbative formalism. As an application, corrections to the matter power spectrum are calculated, and we find that some of them have the same structure as those in the effective field theory of large-scale structure, with "EFT-like" coefficients that grow quadratically with the linear growth function and are further suppressed by powers of the logarithmic linear growth factor f ; other corrections present additional k dependence. Due to the velocity dispersions, there exists a free-streaming scale that suppresses the whole 1-loop power spectrum. Furthermore, we find that as a consequence of the nonlinear evolution, the free-streaming length is shifted towards larger scales, wiping out more structure than that expected in linear theory. Therefore, we argue that the formalism developed here is better suited for a perturbation treatment of warm dark matter or neutrino clustering, where the velocity dispersion effects are well known to be important. We discuss implications related to the nature of dark matter.

  3. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses IV. Characterization of the Simian Virus 40 Ribonucleic Acid Species Induced by Wild-Type Simian Virus 40 and by the Nondefective Hybrid Virus, Ad2+ND1

    PubMed Central

    Oxman, Michael N.; Levine, Arthur S.; Crumpacker, Clyde S.; Levin, Myron J.; Henry, Patrick H.; Lewis, Andrew M.

    1971-01-01

    Ad2+ND1, a nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, has been previously shown to contain a small segment of the SV40 genome covalently linked to Ad2 deoxyribonucleic acid (DNA). The SV40 portion of this hybrid virus has been characterized by relating the SV40-specific ribonucleic acid (RNA) sequences transcribed from the Ad2+ND1 DNA to those transcribed from the DNA of SV40 itself. RNA-DNA hybridization-competition studies indicate that the SV40 component of Ad2+ND1 consists of some, but not all, of that part of the SV40 genome which is transcribed early, i.e., prior to viral DNA replication, in SV40 lytic infection. PMID:4329969

  4. Relativistic perturbations for all the planets

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Bretagnon, P.

    1982-01-01

    The relativistic perturbations in the osculating elements of all the planets, due to the theory of General Relativity, are presented where only the gravitational field of the sun is taken into account and the effects are calculated in the post-Newtonian approximation. The relativistic effects are calculated with the requirement that an accuracy of 5 x 10 to the -12th UA be kept over an interval of 1000 years, and are expressed in series form depending on the dynamical time in the isotropic coordinate and standard coordinate systems. The method uses equations derived from the equations of Gauss for the relativistic acceleration. A theory of the motion of Mercury is derived through the addition of the relativistic perturbations to the third-order Newtonian theory of Bretagnon (1981). It is noted that the computer programs used allow any values for the physical parameters Gamma and Beta of the Eddigton-Robertson metric.

  5. Curvature and isocurvature perturbations in two-field inflation

    NASA Astrophysics Data System (ADS)

    Lalak, Z.; Langlois, D.; Pokorski, S.; Turzyński, K.

    2007-07-01

    We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of 'roulette' inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.

  6. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  7. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  8. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.; Shurygin, A. S.

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device.

  9. Linear perturbations of a Schwarzschild blackhole by thin disc - convergence

    NASA Astrophysics Data System (ADS)

    Čížek, P.; Semerák, O.

    2012-07-01

    In order to find the perturbation of a Schwarzschild space-time due to a rotating thin disc, we try to adjust the method used by [4] in the case of perturbation by a one-dimensional ring. This involves solution of stationary axisymmetric Einstein's equations in terms of spherical-harmonic expansions whose convergence however turned out questionable in numerical examples. Here we show, analytically, that the series are almost everywhere convergent, but in some regions the convergence is not absolute.

  10. Fluvial geoarchaeology in Avaris, the Hyksos capital in the Eastern Nile Delta (2nd Mill. B.C.)

    NASA Astrophysics Data System (ADS)

    Schmitt, Laurent; Goiran, Jean-Philippe; Tronchère, Hervé; Forstner-Muller, Irene

    2014-05-01

    Tell el-Dab'a, the ancient city of Avaris, is a key site for understanding the complex alluvial environment of the Nile delta in northern Egypt which is characterized by a palaeo-network of anastomosing branches. Avaris, the capital of the Hyksos kings, is located on the Pelusiac palaeo-branch, near the eastern margin of the delta. Avaris was an important harbour town from the late 12th Dynasty until the end of the Hyksos Period and then again in the Ramesside Period. For the first time, OSL, radiocarbon and archaeological datings have been combined on the fluvial archives. This database helps us to understand better the chrono-stratigraphy and the evolution of the palaeo-environments. Sedimentary analyses have been conducted on (i) the stratigraphy on the main harbour basin revealed by an excavation in spring 2013 (ii) the sediments that gradually silted in the pelusiac branch: coarse bedload at the bottom and sands to fine silts above. A complete bankfull cross section of the Pelusiac branch has been obtained. Thus, we get 3 important characteristics of the main branch: (1) the width, (2) the depth (3) and the palaeo-discharge has been computed. In order to get an idea of the palaeo-processes, C/M diagrams have been done thanks to the micro-granulometric data. By combining these results, a 5 millennium diachronic cartography of the evolution of the Pelusiac palaeo-branch near Avaris has been produced, providing new insights into the natural landscape evolution that may have accelerated the demise of the great city.

  11. Simulated models of perturbed angular correlation (PAC) spectroscopy in a 4-state+S system

    NASA Astrophysics Data System (ADS)

    Hodges, Jeffery A.; Stufflebeam, Michael A.; Evenson, William E.; Matheson, P.; Zacate, M. O.

    2007-10-01

    Cerium oxide has a cubic crystal structure. A vacancy in CeO2 can be trapped by a probe atom and hop among equivalent 1st or 2nd neighbor sites of the probe, producing a fluctuating electric field gradient (EFG) at the probe nucleus. We have simulated the perturbed angular correlation (PAC) spectrum due to such a changing EFG (4-state model), as well as the case with an additional static background EFG (4-state+S). We have studied the effect of changing the defect hopping rates on the resulting spectrum and the inferred hyperfine parameters. We have analyzed these data to determine experimental conditions under which nonequilibrium initial probe distributions can be detected by PAC.

  12. Perturbational formulation of principal component analysis in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we

  13. High-order Spatio-temporal Schemes for Coupled, Multi-physics Reactor Simulations

    SciTech Connect

    Mr. Vijay S. Mahadevan; Dr. Jean C. Ragusa

    2008-09-01

    This report summarizes the work done in the summer of 08 by the Ph.D. student Vijay Mahadevan. The main focus of the work was to coupled 3-D neutron difusion to 3-D heat conduction in parallel with accuracy greater than or equal to 2nd order in space and time. Results show that the goal was attained.

  14. Mutation of a Cuticle Protein Gene, BmCPG10, Is Responsible for Silkworm Non-Moulting in the 2nd Instar Mutant.

    PubMed

    Wu, Fan; Wang, Pingyang; Zhao, Qiaoling; Kang, Lequn; Xia, Dingguo; Qiu, Zhiyong; Tang, Shunming; Li, Muwang; Shen, Xingjia; Zhang, Guozheng

    2016-01-01

    In the silkworm, metamorphosis and moulting are regulated by ecdysone hormone and juvenile hormone. The subject in the present study is a silkworm mutant that does not moult in the 2nd instar (nm2). Genetic analysis indicated that the nm2 mutation is controlled by a recessive gene and is homozygous lethal. Based on positional cloning, nm2 was located in a region approximately 275 kb on the 5th linkage group by eleven SSR polymorphism markers. In this specific range, according to the transcriptional expression of thirteen genes and cloning, the relative expression level of the BmCPG10 gene that encodes a cuticle protein was lower than the expression level of the wild-type gene. Moreover, this gene's structure differs from that of the wild-type gene: there is a deletion of 217 bp in its open reading frame, which resulted in a change in the protein it encoded. The BmCPG10 mRNA was detectable throughout silkworm development from the egg to the moth. This mRNA was low in the pre-moulting and moulting stages of each instar but was high in the gluttonous stage and in newly exuviated larvae. The BmCPG10 mRNA showed high expression levels in the epidermis, head and trachea, while the expression levels were low in the midgut, Malpighian tubule, prothoracic gland, haemolymph and ventral nerve cord. The ecdysone titre was determined by ELISA, and the results demonstrated that the ecdysone titre of nm2 larvae was lower than that of the wild-type larvae. The nm2 mutant could be rescued by feeding 20-hydroxyecdysone, cholesterol and 7-dehydrocholesterol (7dC), but the rescued nm2 only developed to the 4th instar and subsequently died. The moulting time of silkworms could be delayed by BmCPG10 RNAi. Thus, we speculated that the mutation of BmCPG10 was responsible for the silkworm mutant that did not moult in the 2nd instar. PMID:27096617

  15. Mutation of a Cuticle Protein Gene, BmCPG10, Is Responsible for Silkworm Non-Moulting in the 2nd Instar Mutant

    PubMed Central

    Zhao, Qiaoling; Kang, Lequn; Xia, Dingguo; Qiu, Zhiyong; Tang, Shunming; Li, Muwang; Shen, Xingjia; Zhang, Guozheng

    2016-01-01

    In the silkworm, metamorphosis and moulting are regulated by ecdysone hormone and juvenile hormone. The subject in the present study is a silkworm mutant that does not moult in the 2nd instar (nm2). Genetic analysis indicated that the nm2 mutation is controlled by a recessive gene and is homozygous lethal. Based on positional cloning, nm2 was located in a region approximately 275 kb on the 5th linkage group by eleven SSR polymorphism markers. In this specific range, according to the transcriptional expression of thirteen genes and cloning, the relative expression level of the BmCPG10 gene that encodes a cuticle protein was lower than the expression level of the wild-type gene. Moreover, this gene’s structure differs from that of the wild-type gene: there is a deletion of 217 bp in its open reading frame, which resulted in a change in the protein it encoded. The BmCPG10 mRNA was detectable throughout silkworm development from the egg to the moth. This mRNA was low in the pre-moulting and moulting stages of each instar but was high in the gluttonous stage and in newly exuviated larvae. The BmCPG10 mRNA showed high expression levels in the epidermis, head and trachea, while the expression levels were low in the midgut, Malpighian tubule, prothoracic gland, haemolymph and ventral nerve cord. The ecdysone titre was determined by ELISA, and the results demonstrated that the ecdysone titre of nm2 larvae was lower than that of the wild-type larvae. The nm2 mutant could be rescued by feeding 20-hydroxyecdysone, cholesterol and 7—dehydrocholesterol (7dC), but the rescued nm2 only developed to the 4th instar and subsequently died. The moulting time of silkworms could be delayed by BmCPG10 RNAi. Thus, we speculated that the mutation of BmCPG10 was responsible for the silkworm mutant that did not moult in the 2nd instar. PMID:27096617

  16. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  17. Supersymmetric perturbations of the M5 brane

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2014-05-01

    We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the κ-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspondence.

  18. Quantum inflaton, primordial perturbations, and CMB fluctuations

    SciTech Connect

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-10-15

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.

  19. Shock Boundary Layer Interaction Sensitivity to Upstream Geometric Perturbations

    NASA Astrophysics Data System (ADS)

    Campo, Laura; Helmer, David; Eaton, John

    2012-11-01

    Shock boundary layer interactions (SBLIs) can have drastic effects on the performance of external aerodynamics and propulsion systems in high speed flight vehicles. In such systems, the upstream and boundary conditions of the flow are uncertain, and the sensitivity of SBLIs to perturbations in these conditions is unknown. The sensitivity of two SBLIs - a compression corner interaction and an incident shock interaction - to small geometric perturbations was investigated using particle image velocity measurements. Tests were performed in a continuously operated, low aspect ratio, Mach 2.1 wind tunnel. The shock was generated by a 1.1mm high 20° wall-mounted compression wedge, and various configurations of small (h < 0 . 2 δ) steady bumps were introduced upstream on the opposite wall. 100 perturbed cases were tested in order to generate a dataset which is well suited for validation of CFD codes. Both SBLIs were very sensitive to perturbations in a given region and insensitive to perturbations outside of it. Depending on the location of the perturbations, the compression corner interaction could be significantly strengthened or weakened. The position of the incident SBLI was also a strong function of both the location and size of the upstream perturbations.

  20. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  1. Adjustments after an ankle dorsiflexion perturbation during human running.

    PubMed

    Scohier, M; De Jaeger, D; Schepens, B

    2012-01-01

    In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot touch-down was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touch-down. Some late adjustments were observed in the subsequent steps predominantly occurring during left steps. Subjects maintained the step length and the step period as constant as possible by adjusting other step parameters in order to avoid stumbling and continue running at the speed imposed by the treadmill. To our knowledge, our experiments are the first to investigate perturbations of unexpected timing during human running. The results show that humans have a time-dependent, adapted strategy to maintain their running pattern. PMID:21872474

  2. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  3. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses II. Relationship of Adenovirus 2 Deoxyribonucleic Acid and Simian Virus 40 Deoxyribonucleic Acid in the Ad2+ND1 Genome

    PubMed Central

    Levin, Myron J.; Crumpacker, Clyde S.; Lewis, Andrew M.; Oxman, Michael N.; Henry, Patrick H.; Rowe, Wallace P.

    1971-01-01

    A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2+ND1, has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2+ND1 virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2+ND1 molecule. From the results obtained, it was estimated that 1% of the Ad2+ND1 DNA consists of SV40 nucleotide sequences. PMID:4323709

  4. Creating a Culture of Human Rights, Democracy and Peace in the New Millennium. Proceedings of the International Conference on Children's Rights Education (2nd, Victoria, British Columbia, August 18-22, 2001).

    ERIC Educational Resources Information Center

    Blanchet-Cohen, Natasha; Hart, Stuart; Cook, Philip

    The 2nd International Conference on Children's Rights in Education hosted approximately 150 child-centered international policy makers, who discussed the implications and implementation of children's rights to guide educational policy, research, and practice. This report presents an annotated agenda of the conference proceedings and, based on the…

  5. The Futures of Adult Educator(s): Agency, Identity and Ethos. Joint Conference Proceedings of the 2nd ESREA/ReNAdET Meeting and the 4th TQF Seminar (Tallinn, Estonia, November 9-11, 2011)

    ERIC Educational Resources Information Center

    Heikkinen, Anja, Ed.; Jogi, Larissa, Ed.; Jutte, Wolfgang, Ed.; Zarifis, Georgios K., Ed.

    2012-01-01

    This edited volume contains the papers presented in the 2nd ESREA|ReNAdet meeting that was jointly organised with the VET & CULTURE Network in the University of Tallinn (Estonia), 9-11 November 2011. The papers that appear in the volume discuss the future (or the futures) of adult educators in respect to issues of developing their identities and…

  6. Base case and perturbation scenarios

    SciTech Connect

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  7. Identification of perturbation modes and controversies in ekpyrotic perturbations

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2002-10-01

    If the linear perturbation theory is valid through the bounce, the surviving fluctuations from the ekpyrotic scenario (cyclic one as well) should have very blue spectra with suppressed amplitude for the scalar-type structure. We derive the same (and consistent) result using the curvature perturbation in the uniform-field (comoving) gauge and in the zero-shear gauge. Previously, Khoury et al. interpreted results from the latter gauge condition incorrectly and claimed the scale-invariant spectrum, thus generating controversy in the literature. We also correct similar errors in the literature based on wrong mode identification and joining condition. No joining condition is needed for the derivation.

  8. Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence

    NASA Astrophysics Data System (ADS)

    Lelli, Simone; Maggiore, Michele; Rissone, Anna

    2003-04-01

    It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.

  9. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  10. Bone fractures as indicators of intentional violence in the eastern Adriatic from the antique to the late medieval period (2nd-16th century AD).

    PubMed

    Slaus, Mario; Novak, Mario; Bedić, Zeljka; Strinović, Davor

    2012-09-01

    To test the historically documented hypothesis of a general increase in deliberate violence in the eastern Adriatic from the antique (AN; 2nd-6th c.) through the early medieval (EM; 7th-11th c.) to the late-medieval period (LM; 12th-16th c.), an analysis of the frequency and patterning of bone trauma was conducted in three skeletal series from these time periods. A total of 1,125 adult skeletons-346 from the AN, 313 from the EM, and 466 from the LM series-were analyzed. To differentiate between intentional violence and accidental injuries, data for trauma frequencies were collected for the complete skeleton, individual long bones, and the craniofacial region as well as by type of injury (perimortem vs. antemortem). The results of our analyses show a significant temporal increase in total fracture frequencies when calculated by skeleton as well as of individuals exhibiting one skeletal indicator of deliberate violence (sharp force lesions, craniofacial injuries, "parry" fractures, or perimortem trauma). No significant temporal increases were, however, noted in the frequencies of craniofacial trauma, "parry" fractures, perimortem injuries, or of individuals exhibiting multiple skeletal indicators of intentional violence. Cumulatively, these data suggest that the temporal increase in total fracture frequencies recorded in the eastern Adriatic was caused by a combination of factors that included not only an increase of intentional violence but also a significant change in lifestyle that accompanied the transition from a relatively affluent AN urban lifestyle to a more primitive rural medieval way of life.

  11. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids.

    PubMed

    Reiter, Christoph; Fröhlich, Tony; Zeino, Maen; Marschall, Manfred; Bahsi, Hanife; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Hampel, Frank; Efferth, Thomas; Tsogoeva, Svetlana B

    2015-06-01

    In our ongoing search for highly active hybrid molecules exceeding their parent compounds in anticancer, antimalaria as well as antiviral activity and being an alternative to the standard drugs, we present the synthesis and biological investigations of 2nd generation 1,2,4-trioxane-ferrocene hybrids. In vitro tests against the CCRF-CEM leukemia cell line revealed di-1,2,4-trioxane-ferrocene hybrid 7 as the most active compound (IC50 of 0.01 μM). Regarding the activity against the multidrug resistant subline CEM/ADR5000, 1,2,4-trioxane-ferrocene hybrid 5 showed a remarkable activity (IC50 of 0.53 μM). Contrary to the antimalaria activity of hybrids 4-8 against Plasmodium falciparum 3D7 strain with slightly higher IC50 values (between 7.2 and 30.2 nM) than that of their parent compound DHA, hybrids 5-7 possessed very promising activity (IC50 values lower than 0.5 μM) against human cytomegalovirus (HCMV). The application of 1,2,4-trioxane-ferrocene hybrids against HCMV is unprecedented and demonstrated here for the first time.

  12. Report on the 2nd International Consortium on Hallucination Research: Evolving Directions and Top-10 “Hot Spots” in Hallucination Research

    PubMed Central

    Waters, Flavie

    2014-01-01

    This article presents a report on the 2nd meeting of the International Consortium on Hallucination Research, held on September 12th and 13th 2013 at Durham University, UK. Twelve working groups involving specialists in each area presented their findings and sought to summarize the available knowledge, inconsistencies in the field, and ways to progress. The 12 working groups reported on the following domains of investigation: cortical organisation of hallucinations, nonclinical hallucinations, interdisciplinary approaches to phenomenology, culture and hallucinations, subtypes of auditory verbal hallucinations, a Psychotic Symptoms Rating Scale multisite study, visual hallucinations in the psychosis spectrum, hallucinations in children and adolescents, Research Domain Criteria behavioral constructs and hallucinations, new methods of assessment, psychological therapies, and the Hearing Voices Movement approach to understanding and working with voices. This report presents a summary of this meeting and outlines 10 hot spots for hallucination research, which include the in-depth examination of (1) the social determinants of hallucinations, (2) translation of basic neuroscience into targeted therapies, (3) different modalities of hallucination, (4) domain convergence in cross-diagnostic studies, (5) improved methods for assessing hallucinations in nonclinical samples, (6) using humanities and social science methodologies to recontextualize hallucinatory experiences, (7) developmental approaches to better understand hallucinations, (8) changing the memory or meaning of past trauma to help recovery, (9) hallucinations in the context of sleep and sleep disorders, and (10) subtypes of hallucinations in a therapeutic context. PMID:24282321

  13. Stable Isotope and Trace Element Studies on Gladiators and Contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD) - Implications for Differences in Diet

    PubMed Central

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U.; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts. PMID:25333366

  14. Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Hilbig, R.; Flemming, J.; Slenzka, K.

    This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic air craft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity. However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.

  15. Report on 2nd Royan Institute International Summer School on developmental biology and stem cells Tehran, Iran, 17-22nd July 2011.

    PubMed

    Newgreen, Donald; Grounds, Miranda; Jesuthasan, Suresh; Rashidi, Hassan; Familari, Mary

    2012-03-01

    The 2nd Royan Institute International Summer School was built around the topic of stem cells and grounding in the discipline of developmental biology. The meeting provided not only direct transfer of technical and intellectual information, the normal process in scientific meetings, but was also a forum for the exchange of personal ideas of science as a creative pursuit. This summer school introduced aspiring young Iranian scientists to international researchers and exposed the latter to a rich culture that highly values learning and education, attested by the confident, intelligent young men and women who asked probing questions and who were eager to participate in the workshops. Hossein Baharvand's dedication and passion for science have led to an impressive record of national and international peer-reviewed publications and an increasing number of students who pursue science in Iran, and shows how the right people can create an environment where good science, good science education and motivation will flourish. This report summarizes some of the activities of the workshop in the Royan Institute and the impressions of the visiting scientists in the wider context of the scientific and cultural heritage of Iran.

  16. Development and Validation of Big Four Personality Scales for the Schedule for Nonadaptive and Adaptive Personality-2nd Edition (SNAP-2)

    PubMed Central

    Calabrese, William R.; Rudick, Monica M.; Simms, Leonard J.; Clark, Lee Anna

    2012-01-01

    Recently, integrative, hierarchical models of personality and personality disorder (PD)—such as the Big Three, Big Four and Big Five trait models—have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality hierarchy. To unify these measurement models psychometrically, we sought to develop Big Five trait scales within the Schedule for Adaptive and Nonadaptive Personality–2nd Edition (SNAP-2). Through structural and content analyses, we examined relations between the SNAP-2, Big Five Inventory (BFI), and NEO-Five Factor Inventory (NEO-FFI) ratings in a large data set (N = 8,690), including clinical, military, college, and community participants. Results yielded scales consistent with the Big Four model of personality (i.e., Neuroticism, Conscientiousness, Introversion, and Antagonism) and not the Big Five as there were insufficient items related to Openness. Resulting scale scores demonstrated strong internal consistency and temporal stability. Structural and external validity was supported by strong convergent and discriminant validity patterns between Big Four scale scores and other personality trait scores and expectable patterns of self-peer agreement. Descriptive statistics and community-based norms are provided. The SNAP-2 Big Four Scales enable researchers and clinicians to assess personality at multiple levels of the trait hierarchy and facilitate comparisons among competing “Big Trait” models. PMID:22250598

  17. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells

    SciTech Connect

    Kua, J.; Goddard, W.A. III

    1999-12-01

    Using first principles quantum mechanics [nonlocal density functional theory (B3LYP)], the authors calculated the 13 most likely intermediate species for methanol oxidation on clusters of all 2nd and 3rd row Group VIII transition metals for all three likely binding sites (top, bridge, and cap). This comprehensive set of binding energies and structures allows a detailed analysis of possible reaction mechanisms and how they change for different metals. This illustrates the role in which modern quantum chemical methods can be used to provide data for combinatorial strategies for discovering and designing new catalysts. Methanol dehydrogenation is most facile on Pt, with the hydrogens preferentially stripped off the carbon end. However, water dehydrogenation is most facile on Ru. These results support the bifunctional mechanism for methanol oxidation on Pt-Ru alloys in direct methanol fuel cells (DMFCs). Pure Os is capable of performing both functionalities without cocatalyst. It is suggested that pure Os be examined as a potential catalyst for low overpotential, highly dispersed catalyst DMFCs. Pathways to form the second C-O bond differ between the pure metals (Pt and Os) in which (CO){sub ads} is probably activated by (OH){sub ads} and the Pt-Ru binary system in which (COH){sub ads} is probably activated by O{sub ads}. For all cases formation of (COOH){sub ads} is an important precursor to the final dehydrogenation to desorb CO{sub 2} from the surface.

  18. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.

    PubMed

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  19. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR

    PubMed Central

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  20. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.

    PubMed

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-09-02

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously.