Science.gov

Sample records for 2nd order qcd

  1. Exogenous attention enhances 2nd-order contrast sensitivity.

    PubMed

    Barbot, Antoine; Landy, Michael S; Carrasco, Marisa

    2011-05-11

    Natural scenes contain a rich variety of contours that the visual system extracts to segregate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention--the involuntary and transient capture of spatial attention--affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer's 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  2. Exogenous attention enhances 2nd-order contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  3. The transient nature of 2nd-order stereopsis.

    PubMed

    Hess, Robert F; Wilcox, Laurie M

    2008-05-01

    There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work. PMID:18407312

  4. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  5. The 2nd-order Post-Newtonian Orbit Equation of Light

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Fei, Bao-Jun; Sun, Wei-Jin; Ji, Cheng-Xiang

    2008-10-01

    Based on the 2nd-order post-Newtonian approximation under the DSX frame of the general relativity theory, the 2nd-order post-Newtonian orbital equation of light in the axis-symmetrical stationary spacetime is derived, and from this, the angle of deflection of light propagating in the equatorial plane is derived. The obtained results are consistent with those of the Schwarzchild and Kerr metrics within the limits of measuring precision.

  6. Four-dimensional investigation of the 2nd order volume autocorrelation technique

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Tzallas, P.; Benis, E. P.; Kruse, J.; Peralta Conde, A.; Kalpouzos, C.; Charalambidis, D.

    2009-10-01

    The 2nd order volume autocorrelation technique, widely utilized in directly measuring ultra-short light pulses durations, is examined in detail via model calculations that include three-dimensional integration over a large ionization volume, temporal delay and spatial displacement of the two beams of the autocorrelator at the focus. The effects of the inherent displacement to the 2nd order autocorrelation technique are demonstrated for short and long pulses, elucidating the appropriate implementation of the technique in tight focusing conditions. Based on the above investigations, a high accuracy 2nd order volume autocorrelation measurement of the duration of the 5th harmonic of a 50 fs long laser pulse, including the measurement of the carrier wavelength oscillation, is presented.

  7. 2nd-Order CESE Results For C1.1: Transonic Ringleb Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d (an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available.) The CESE method is a time-accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist.

  8. 2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.

  9. Efficient Simulation of Wing Modal Response: Application of 2nd Order Shape Sensitivities and Neural Networks

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    2000-01-01

    At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.

  10. Computer Generation of Subduction Frequencies for 2ND Order Phase Transitions in Two-Dimensions

    NASA Astrophysics Data System (ADS)

    Deonarine, Samaroo

    The Landau theory of 2nd order phase transitions and Group theory Criteria are used to predict which subgroups G (L-HOOK EQ) G(,0) can occur in transitions for 2-D systems (plane-group to plane-group and diperiodic to diperiodic). Previous work 1 on the 17 plane space groups has been based on the tables of Coxeter & Moser 2 and the International Tables of X-ray Crystallography (ITXRC, 1965) 3 . These tables do not exhaust all the possible subgroups of a space group 4 . Since such explicit tables are non-existent for other families of space groups we have developed algorithms that make a systematic search of the parent unit cell of G(,0) to locate the origin and orientation of all its subgroups G, G (L-HOOK EQ) G(,0). We have written a RATFOR/FORTRAN program for the VAX 11-780 which will generate the subduction frequencies. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). for allowed second order phase transitions in 2-dimensional systems that are describable by the 80 diperiodic Groups G(,0) and G 5 . Our program gives a complete tabulation (Origin, new Translation Sublattice, Subduction Frequency, Subgroup and its Generators) of the allowed continuous or second order phase transitions from a parent diperiodic group G(,0) to another diperiodic subgroup G.

  11. QCD as a topologically ordered system

    SciTech Connect

    Zhitnitsky, Ariel R.

    2013-09-15

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.

  12. A convective divertor utilizing a 2nd-order magnetic field null

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas

    2014-10-01

    New results motivate a detailed study of a magnetic divertor concept characterized by strong plasma convection near a poloidal magnetic field (Bp) null region. The configuration is that of a near-2nd-order Bp null (Bp ~ Δ r2) , as in a snowflake divertor. The concept has 2 key features: (A) Convection spreads the heat flux between multiple divertor legs and further broadens the heat-flux profile within each leg, thereby greatly reducing target-plate heat loads. (B) The heat flux is further reduced by line radiation in each leg in detachment-like ionization zones. Theory indicates that convective turbulence arises when the poloidal plasma beta, βp = 2μ0nT/B p 2 >> 1 . Measurements in TCV now more fully quantify earlier NSTX and TCV observations of plasma mixing, and related modeling of TCV indicates that strongly enhanced null-region transport is present. Convective mixing provides a stabilizing mechanism to prevent the ionization fronts (hydrogenic and impurity) from collapsing to a highly radiating core MARFE. Also, the radiating zone maps to a very small region at the midplane owing to the very weak Bp in the convective region, thus minimizing its impact on the core plasma. Detailed calculations are reported that combine features A and B noted above. The plasma mixing mechanisms are described together with the corresponding transport model implemented in the 2D UEDGE edge transport code. UEDGE calculations are presented that quantify the roles of mixing, impurity radiation, and detachment stability for a realistic snowflake configuration. Work in collaboration with D.D. Ryutov, S.I. Krasheninnikov, and M.V. Umansky. Performed for the U.S. DoE by LLNS, LLC, LLNL, under Contract DE-AC52-07NA27344.

  13. Order and disorder in Ca 2ND 0.90H 0.10-A structural and thermal study

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Suard, Emmanuelle; Irvine, John T. S.

    2011-08-01

    The structure of calcium nitride hydride and its deuterided form has been re-examined at room temperature and studied at high temperature using neutron powder diffraction and thermal analysis. When synthesised at 600 °C, a mixture of both ordered and disordered Ca 2ND 0.90H 0.10 phases results. The disordered phase is the minor component and has a primitive rocksalt structure (spacegroup Fm3 m) with no ordering of D/N on the anion sites and the ordered phase is best described using the rhombohedral spacegroup R-3 m with D and N arranged in alternate layers in (111) planes. This mixture of ordered and disordered phases exists up to 580 °C, at which the loss of deuterium yields Ca 2ND 0.85 with the disappearance of the disordered phase. In the new ordered phase there exists a similar content of vacancies on both anion sites; to achieve this balance, a little N transfers onto the D site, whereas there is no indication of D transferring onto the N-sites. These observations are thought to indicate that the D/N ordering is difficult to achieve with fully occupied anion sites. It has previously been reported that Ca 2ND has an ordered cubic cell with alternating D and N sites in the [100] directions [1]; however, for the samples studied herein, there were clearly two coexisting phases with apparent broadening/splitting of the primitive peaks but not for the ordered peaks. The rhombohedral phase was in fact metrically cubic; however, all the observed peaks were consistent with the rhombohedral unit cell with no peaks requiring the larger ordered cubic unit cell to be utilised. Furthermore this rhombohedral cell displays the same form of N-D ordering as the Sr and Ba analogues, which are metrically rhombohedral.

  14. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  15. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  16. Light-like Wilson line in QCD without path ordering

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2016-07-01

    Unlike the Wilson line in QED the Wilson line in QCD contains path ordering. In this paper we get rid of the path ordering in the light-like Wilson line in QCD by simplifying all the infinite number of noncommuting terms in the SU(3) pure gauge. We prove that the light-like Wilson line in QCD naturally emerges when path integral formulation of QCD is used to prove factorization of soft and collinear divergences at all order in coupling constant in QCD processes at high energy colliders.

  17. Surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings for single-lobe emission

    NASA Astrophysics Data System (ADS)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled, surface-emitting (GCSE) quantum-cascade lasers (QCLs) are demonstrated with high-power, single-lobe surface emission. A 2nd-order Au-semiconductor distributed-feedback (DFB)/ distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric longitudinal mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. In turn, the antisymmetric longitudinal modes are strongly absorbed by the metal in the grating, causing the symmetric longitudinal mode to be favored to lase, which produces a single lobe beam over a grating duty-cycle range of 36-41 %. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of residual reflections from the device's cleaved ends. Peak pulsed output powers of ~ 0.4 W were measured with single-lobe, single-mode operation near 4.75 μm.

  18. Explicit formulas for 2nd-order driving terms due to sextupoles and chromatic effects of quadrupoles.

    SciTech Connect

    Wang, C-X. )

    2012-04-25

    Optimization of nonlinear driving terms have become a useful tool for designing storage rings, especially modern light sources where the strong nonlinearity is dominated by the large chromatic effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is well known for computing such driving terms. However, it appears that there was a lack of explicit formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and chromatic effects of quadrupoles, which can be considered as thin elements. The computation is accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results given here are the same as the APS internal note AOP-TN-2009-020. This internal nte has been revised and published here as a Light Source Note in order to get this information into the public domain, since both ELEGANT and OPA are using these formulas.

  19. Increasing the water temperature of a 2nd order stream reach: Hydraulic aspects of a whole-stream manipulative experiment

    NASA Astrophysics Data System (ADS)

    de Lima, João L. M. P.; Canhoto, Cristina

    2015-04-01

    What will happen when water temperatures of streams increases, due to climate changes or in connection with rapidly changing human systems? Trying to answer to this question a whole-stream manipulative experiment was undertaken, where an increase in water temperature was artificially induced on a 2nd order stream reach. The main objective of this poster is to describe this experiment focusing on the design of the hydraulic system. The system maintained a steady flow while allowing natural variation in abiotic factors and was successfully used to evaluate the effects of warming on a stream ecosystem at several levels of biological organization. A constant flow of stream water was controlled by a hydraulic setup (~22m long; ~1.5m width) subdivided into two independent channels. One channel of the study reach received heated water (~3°C above the other), while the other received water at stream ambient temperature. The warming system maintained a steady gravity controlled flow making use of weirs and valves.

  20. Structural and magnetic study of order-disorder behavior in the double perovskites Ba2Nd1-xMnxMoO6.

    PubMed

    Coomer, Fiona C; Cussen, Edmund J

    2014-01-21

    The synthesis and structural and magnetic characterization of the site-ordered double perovskites, Ba2Nd1-xMnxMoO6, 0 < x ≤ 1, are reported in order to show the effect of doping Jahn-Teller active, S = 1/2, Mo(5+) into the structure of Ba2MnMoO6, which exhibits anomalous long-range antiferromagnetic order. Rietveld refinements against room temperature neutron powder diffraction data indicate that the tetragonal distortion present in the Ba2NdMoO6 end member persists to x ≤ 0.3. This is predominantly manifested as a tilting of the MO6 octahedra, and there is no evidence of any structural phase transitions on cooling to 1.5 K. For x > 0.3, no deviation from the ideal cubic Fm3̅m symmetry is observed. Furthermore, dc-susceptibility measurements confirm that Mn(2+) is being doped onto the Nd(3+) site, and the associated oxidation of Mo(5+) to Mo(6+). For all compositions, the Curie-Weiss paramagnetic behavior above 150 K indicates negative Weiss constants that range from -24(2) and -85(2) K. This net antiferromagnetic interaction is weakest when x ≈ 0.5, where the disorder in cation site occupancy and competition with ferromagnetic interactions is the greatest. Despite these strong antiferromagnetic interactions, there is no evidence in the dc-susceptibility of a bulk cancellation of spins for x > 0.05. Low-temperature neutron diffraction measurements indicate that there is no long-range magnetic order for 0.1 ≤ x < 0.9. Ba2Nd0.10Mn0.90MoO6 exhibits additional Bragg scattering at 2 K, indicative of long-range antiferromagnetic ordering of the Mn(2+) cations, with a propagation vector k = (1/2, 1/2, 1/2). The scattering intensities can be modeled using a noncollinear magnetic structure with the Mn(2+) moments orientated antiferromagnetically along the four different ⟨111⟩ directions. PMID:24392887

  1. DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization

    NASA Astrophysics Data System (ADS)

    Meri, Adnan; Wengle, Hans

    Results are presented from a Direct Numerical Simulation (DNS) and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing step (Reh=3300) with a fully developed channel flow (Rcτ=180) utilized asatime-dependent inflow condition. Numerical solutions using a fourth-order compact (Hermitian) scheme, which was formulated directly for anon-equidistant and staggered grid in [1] are compared with numerical solutions using the classical second-order central scheme. There sults from LES (using the dynamic subgrid scale model) are evaluated against a corresponding DNS reference data set (fourth-order solution).

  2. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: II. Illustrative application to a paradigm particle diffusion problem

    NASA Astrophysics Data System (ADS)

    Cacuci, Dan G.

    2015-03-01

    This work presents an illustrative application of the second-order adjoint sensitivity analysis methodology (2nd-ASAM) to a paradigm neutron diffusion problem, which is sufficiently simple to admit an exact solution, thereby making transparent the underlying mathematical derivations. The general theory underlying 2nd-ASAM indicates that, for a physical system comprising Nα parameters, the computation of all of the first- and second-order response sensitivities requires (per response) at most (2Nα + 1) "large-scale" computations using the first-level and, respectively, second-level adjoint sensitivity systems (1st-LASS and 2nd-LASS). Very importantly, however, the illustrative application presented in this work shows that the actual number of adjoint computations needed for computing all of the first- and second-order response sensitivities may be significantly less than (2Nα + 1) per response. For this illustrative problem, four "large-scale" adjoint computations sufficed for the complete and exact computations of all 4 first- and 10 distinct second-order derivatives. Furthermore, the construction and solution of the 2nd-LASS requires very little additional effort beyond the construction of the adjoint sensitivity system needed for computing the first-order sensitivities. Very significantly, only the sources on the right-sides of the diffusion (differential) operator needed to be modified; the left-side of the differential equations (and hence the "solver" in large-scale practical applications) remained unchanged. All of the first-order relative response sensitivities to the model parameters have significantly large values, of order unity. Also importantly, most of the second-order relative sensitivities are just as large, and some even up to twice as large as the first-order sensitivities. In the illustrative example presented in this work, the second-order sensitivities contribute little to the response variances and covariances. However, they have the

  3. Antiangular Ordering of Gluon Radiation in QCD Media

    SciTech Connect

    Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2011-03-25

    We investigate angular and energy distributions of medium-induced gluon emission off a quark-antiquark antenna in the framework of perturbative QCD as an attempt toward understanding, from first principles, jet evolution inside the quark-gluon plasma. In-medium color coherence between emitters, neglected in all previous calculations, leads to a novel mechanism of soft-gluon radiation. The structure of the corresponding spectrum, in contrast with known medium-induced radiation, i.e., off a single emitter, retains some properties of the vacuum case; in particular, it exhibits a soft divergence. However, as opposed to the vacuum, the collinear singularity is regulated by the pair opening angle, leading to a strict angular separation between vacuum and medium-induced radiation, denoted as antiangular ordering. We comment on the possible consequences of this new contribution for jet observables in heavy-ion collisions.

  4. QCD

    NASA Astrophysics Data System (ADS)

    Fleming, Sean

    In this talk I review recent experimental and theoretical results in QCD. Since the topic is too vast to cover within given time constraints I choose to highlight some of the subjects that I find particularly exciting. On the experimental side I focus on measurements made at the Tevatron. Specifically jet production rates, and the cross section for B meson production. In addition I discuss an interesting measurement made by the Belle collaboration of double exclusive charmonium production. On the theory side I quickly review recent advances in computing hadronic cross sections at subleading order in perturbation theory. I then move on to soft-collinear effective theory. After a lightning review of the formalism I discuss recently published results on color-suppressed B → D decays.

  5. Second-order QCD corrections to jet production at hadron colliders: the all-gluon contribution.

    PubMed

    Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Pires, J

    2013-04-19

    We report the calculation of next-to-next-to-leading order QCD corrections in the purely gluonic channel to dijet production and related observables at hadron colliders. Our result represents the first next-to-next-to-leading order calculation of a massless jet observable at hadron colliders, and opens the path towards precision QCD phenomenology with the LHC. PMID:23679596

  6. Improvement of Measurement Accuracy of Strain of Thin Film by CCD Camera with a Template Matching Method Using the 2ND-ORDER Polynomial Interpolation

    NASA Astrophysics Data System (ADS)

    Park, Jun-Hyub; Shin, Myung-Soo; Kang, Dong-Joong; Lim, Sung-Jo; Ha, Jong-Eun

    In this study, a system for non-contact in-situ measurement of strain during tensile test of thin films by using CCD camera with marking surface of specimen by black pen was implemented as a sensing device. To improve accuracy of measurement when CCD camera is used, this paper proposed a new method for measuring strain during tensile test of specimen with micrometer size. The size of pixel of CCD camera determines resolution of measurement, but the size of pixel can not satisfy the resolution required in tensile test of thin film because the extension of the specimen is very small during the tensile test. To increase resolution of measurement, the suggested method performs an accurate subpixel matching by applying 2nd order polynomial interpolation method to the conventional template matching. The algorithm was developed to calculate location of subpixel providing the best matching value by performing single dimensional polynomial interpolation from the results of pixel-based matching at a local region of image. The measurement resolution was less than 0.01 times of original pixel size. To verify the reliability of the system, the tensile test for the BeNi thin film was performed, which is widely used as a material in micro-probe tip. Tensile tests were performed and strains were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can effectively describe a behavior of materials after yield during the tensile test of the specimen at microscale with easy setup and better accuracy.

  7. Nonlinear random motion analysis of coupled heave-pitch motions of a spar platform considering 1st-order and 2nd-order wave loads

    NASA Astrophysics Data System (ADS)

    Liu, Shuxiao; Tang, Yougang; Li, Wei

    2016-06-01

    In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.

  8. A neutron diffraction study of structural distortion and magnetic ordering in the cation-ordered perovskites Ba{sub 2}Nd{sub 1−x}Y{sub x}MoO{sub 6}

    SciTech Connect

    Collins, Oonagh M.; Cussen, Edmund J.

    2013-04-15

    The cation ordered perovskites Ba{sub 2}Nd{sub 1−x}Y{sub x}MoO{sub 6} (0.04≤x≤0.35) have been synthesised by solid-state techniques under reducing conditions at temperatures up to 1350 °C. Rietveld analyses of X-ray and neutron powder diffraction data show that these compounds adopt a tetragonally distorted perovskite structure. The tetragonal distortion is driven by the bonding requirements of the Ba{sup 2+} cation that occupies the central interstice of the perovskite; this cation would be underbonded if these compounds retained the cubic symmetry exhibited by the prototypical structure. The size and charge difference between the lanthanides and Mo{sup 5+} lead to complete ordering of the cations to give a rock-salt ordering of Nd{sup 3+}/Y{sup 3+}O{sub 6} and MoO{sub 6} octahedra. The I4/m space group symmetry is retained on cooling the x=0.1, 0.2 and 0.35 samples to low temperature ca. 2 K. Ba{sub 2}Nd{sub 0.90}Y{sub 0.10}MoO{sub 6} undergoes a gradual distortion of the MoO{sub 6} units on cooling from room temperature to give two long trans bonds (2.001(2) Å) along the z-direction and four shorter apical bonds (1.9563(13) Å) in the xy-plane. This distortion of the MoO{sub 6} units stabilises the 4d{sup 1} electron in the d{sub xz} and d{sub yz} orbitals whilst the d{sub xy} orbital is increased in energy due to the contraction of the Mo–O bonds in the xy-plane. This bond extension along z is propagated through the structure and gives a negative thermal expansion of −13×10{sup −6} K{sup −1} along c. The overall volumetric thermal expansion is positive due to conventional expansion along the other two crystallographic axes. With increasing Y{sup 3+} content this distortion is reduced in x=0.2 and eliminated in x=0.35 which contains largely regular MoO{sub 6} octahedra. The x=0.1 and x=0.2 show small peaks in the neutron diffraction profile due to long range antiferromagnetic order arising from ordered moments of ca. 2 μ{sub B}. - Graphical

  9. Leptonic decay of the ϒ(1S) meson at third order in QCD.

    PubMed

    Beneke, Martin; Kiyo, Yuichiro; Marquard, Peter; Penin, Alexander; Piclum, Jan; Seidel, Dirk; Steinhauser, Matthias

    2014-04-18

    We present the complete next-to-next-to-next-to-leading order short-distance and bound-state QCD correction to the leptonic decay rate Γ(ϒ(1S)→ℓ+ℓ-) of the lowest-lying spin-1 bottomonium state. The perturbative QCD prediction is compared to the measurement Γ(ϒ(1S)→e+e-)=1.340(18)  keV. PMID:24785029

  10. Bose-Einstein or HBT Correlation Signals of a Second Order QCD Phase Transition

    SciTech Connect

    Csoergo, T.; Hegyi, S.; Novak, T.; Zajc, W. A.

    2006-04-11

    For particles emerging from a second order QCD phase transition, we show that a recently introduced shape parameter of the Bose-Einstein correlation function, the Levy index of stability equals to the correlation exponent -- one of the critical exponents that characterize the behaviour of the matter in the vicinity of the second order phase transition point. Hence the shape of the Bose-Einstein / HBT correlation functions, when measured as a function of bombarding energy and centrality in various heavy ion reactions, can be utilized to locate experimentally the second order phase transition and the critical end point of the first order phase transition line in QCD.

  11. Order of the Roberge-Weiss endpoint (finite size transition) in QCD

    NASA Astrophysics Data System (ADS)

    D'Elia, Massimo; Sanfilippo, Francesco

    2009-12-01

    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large Nc QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3D universality class. Phenomenological implications and further speculations about the QCD phase diagram are discussed.

  12. Order of the Roberge-Weiss endpoint (finite size transition) in QCD

    SciTech Connect

    D'Elia, Massimo; Sanfilippo, Francesco

    2009-12-01

    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large N{sub c} QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3D universality class. Phenomenological implications and further speculations about the QCD phase diagram are discuss0008.

  13. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    DOE PAGESBeta

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-02-03

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  14. Unparticles in diphoton production to next-to-leading order in QCD at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Tripathi, Anurag

    2009-04-01

    We compute to next-to-leading order in QCD the tensor unparticle contribution to the diphoton production at the LHC, wherein the unparticle sector is a consequence of (a) scale invariance but not full conformal invariance and (b) conformal invariance. We use the semianalytical two cutoff phase-space slicing method to handle the O(αs) corrections to the pp→γγX and show that our results are insensitive to the soft and collinear cutoffs. In order to avoid the contribution of the photons due to fragmentation, we employ the smooth cone isolation criterion. Significance of the QCD corrections to the diphoton events including unparticles is highlighted.

  15. Next-to-leading order perturbative QCD corrections to baryon correlators in matter

    SciTech Connect

    Groote, S.; Koerner, J. G.; Pivovarov, A. A.

    2008-08-01

    We compute the next-to-leading order (NLO) perturbative QCD corrections to the correlators of nucleon interpolating currents in relativistic nuclear matter. The main new result is the calculation of the O({alpha}{sub s}) perturbative corrections to the coefficient functions of the vector quark condensate in matter. This condensate appears in matter due to the violation of Lorentz invariance. The NLO perturbative QCD corrections turn out to be large which implies that the NLO corrections must be included in a sum rule analysis of the properties of both bound nucleons and relativistic nuclear matter.

  16. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  17. Next-to-Leading-Order QCD Corrections to WW+Jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Kallweit, S.; Uwer, P.

    2008-02-15

    We report on the calculation of the next-to-leading-order QCD corrections to the production of W-boson pairs in association with a hard jet at the Fermilab Tevatron and CERN Large Hadron Collider, which is an important source of background for Higgs boson and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular, if a veto against the emission of a second hard jet is applied.

  18. Next-to-Leading-Order QCD Corrections to tt+jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Uwer, P.; Weinzierl, S.

    2007-06-29

    We report on the calculation of the next-to-leading-order QCD corrections to the production of top-quark-top-antiquark pairs in association with a hard jet at the Fermilab Tevatron and the CERN Large Hadron Collider. We present results for the tt+jet cross section and the forward-backward charge asymmetry. The corrections stabilize the leading-order prediction for the cross section. The charge asymmetry receives large corrections.

  19. Charged-Higgs-boson production at the LHC: Next-to-leading-order supersymmetric QCD corrections

    SciTech Connect

    Dittmaier, Stefan; Kraemer, Michael; Spira, Michael; Walser, Manuel

    2011-03-01

    The dominant production process for heavy charged-Higgs bosons at the LHC is the associated production with heavy quarks. We have calculated the next-to-leading-order supersymmetric QCD corrections to charged-Higgs production through the parton processes qq,gg{yields}tbH{sup {+-}} and present results for total cross sections and differential distributions. The QCD corrections reduce the renormalization and factorization scale dependence and thus stabilize the theoretical predictions. We present a comparison of the next-to-leading-order results for the inclusive cross section with a calculation based on bottom-gluon fusion gb{yields}tH{sup {+-}} and discuss the impact of the next-to-leading-order corrections on charged-Higgs searches at the LHC.

  20. Chiral order and fluctuations in multi-flavour QCD

    NASA Astrophysics Data System (ADS)

    Descotes-Genon, S.; Girlanda, L.; Stern, J.

    2003-03-01

    Multi-flavour (N_f ge 3) chiral perturbation theory (χPT) may exhibit instabilities due to vacuum fluctuations of sea bar q q pairs. Keeping the fluctuations small would require a very precise fine tuning of the low-energy constants L_4(μ) and L_6(μ) to L_4^{crit}(M_ρ) = - 0.51 \\cdot 10^{-3}, L_6^{crit}(M_ρ) = - 0.26 \\cdot 10^{-3}. A small deviation from these critical values - like the one suggested by the phenomenology of OZI-rule violation in the scalar channel - is amplified by huge numerical factors inducing large effects of vacuum fluctuations. This would lead in particular to a strong Nf dependence of chiral symmetry breaking (χSB) and a suppression of the multi-flavour chiral order parameters. A simple resummation is shown to cure the instability of N_fge 3 χPT, but it modifies the standard expressions of some O( p 2 ) and O( p 4 ) low-energy parameters in terms of observables. On the other hand, for r= m s / m & gt; 15, the two-flavour condensate is not suppressed, due to the contribution induced by massive vacuum bar ss pairs. Thanks to the latter, the standard two-flavour χPT is protected from multi-flavour instabilities and could provide a well-defined expansion scheme in powers of non-strange quark masses.

  1. Unparticles in diphoton production to next-to-leading order in QCD at the LHC

    SciTech Connect

    Kumar, M. C.; Mathews, Prakash

    2009-04-01

    We compute to next-to-leading order in QCD the tensor unparticle contribution to the diphoton production at the LHC, wherein the unparticle sector is a consequence of (a) scale invariance but not full conformal invariance and (b) conformal invariance. We use the semianalytical two cutoff phase-space slicing method to handle the O({alpha}{sub s}) corrections to the pp{yields}{gamma}{gamma}X and show that our results are insensitive to the soft and collinear cutoffs. In order to avoid the contribution of the photons due to fragmentation, we employ the smooth cone isolation criterion. Significance of the QCD corrections to the diphoton events including unparticles is highlighted.

  2. Next-To-Leading Order QCD Corrections to pp->ttbb+X at the LHC

    SciTech Connect

    Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S.

    2009-07-03

    We report on the calculation of the full next-to-leading-order QCD corrections to the production of ttbb final states at the LHC, which deliver a serious background contribution to the production of a Higgs boson (decaying into a bb pair) in association with a tt pair. While the corrections significantly reduce the unphysical scale dependence of the leading-order cross section, our results predict an enhancement of the ttbb production cross section by a K factor of about 1.8.

  3. Leading order hadronic contribution to g-2 from twisted mass QCD

    SciTech Connect

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2010-06-01

    We calculate the leading order hadronic contribution to the muon anomalous magnetic moment using twisted mass lattice QCD. The pion masses range from 330 MeV to 650 MeV. We use two lattice spacings, a=0.079 fm and 0.063 fm, to study lattice artifacts. Finite-size effects are studied for two values of the pion mass, and we calculate the disconnected contributions for four ensembles. Particular attention is paid to the dominant contributions of the vector mesons, both phenomenologically and from our lattice calculation.

  4. Next-to-Leading Order QCD Corrections to Three-Jet Cross Sections with Massive Quarks

    SciTech Connect

    Bernreuther, W.; Brandenburg, A.; Uwer, P.

    1997-07-01

    We calculate the cross section for e{sup +}e{sup {minus}} annihilation into three jets for massive quarks at next-to-leading order in perturbative QCD, both on and off the Z resonance. Our computation allows the implementation of any jet clustering algorithm. We give results for the three-jet cross section involving b quarks for the JADE and Durham algorithms at c.m.energies {radical}(s)=m{sub Z} . We also discuss a three-jet observable that is sensitive to the mass of the b quark. {copyright} {ital 1997} {ital The American Physical Society}

  5. Drell-Yan production at threshold to third order in QCD.

    PubMed

    Ahmed, Taushif; Mahakhud, Maguni; Rana, Narayan; Ravindran, V

    2014-09-12

    The recent computation on the full threshold contributions to Higgs boson production at next to next to next to leading order (N^{3}LO) in QCD contains valuable information on the soft gluons resulting from virtual and real emission partonic subprocesses. We use those from the real emissions to obtain the corresponding soft gluon contributions to Drell-Yan production and determine the missing δ(1-z) part of the N^{3}LO. The numerical impact of threshold effects demonstrates the importance of our results in the precision study with the Drell-Yan process at the LHC. PMID:25259969

  6. Leading-order hadronic contribution to g-2 from lattice QCD

    SciTech Connect

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-03-01

    We calculate the leading-order hadronic correction to the anomalous magnetic moments of each of the three charged leptons in the Standard Model: the electron, muon and tau. Working in two-flavor lattice QCD, we address essentially all sources of systematic error: lattice artifacts, finite-size effects, quark-mass extrapolation, momentum extrapolation and disconnected diagrams. The only remaining significant systematic error, the exclusion of the strange and charm quark contributions, will be addressed in our four-flavor calculation. We achieve a statistical accuracy of 2% or better for the physical values for each of the three leptons and the systematic errors are at most comparable.

  7. Higgs Boson pair production at next-to-next-to-leading order in QCD.

    PubMed

    de Florian, Daniel; Mazzitelli, Javier

    2013-11-15

    We compute the next-to-next-to-leading order QCD corrections for standard model Higgs boson pair production inclusive cross section at hadron colliders within the large top-mass approximation. We provide numerical results for the LHC, finding that the corrections are large, resulting in an increase of O(20%) with respect to the next-to-leading order result at c.m. energy sqrt[sH]=14  TeV. We observe a substantial reduction in the scale dependence, with overlap between the current and previous order prediction. All our results are normalized using the full top- and bottom-mass dependence at leading order. We also provide analytical expressions for the K factors as a function of sH. PMID:24289675

  8. Next-to-leading order QCD predictions for the hadronic WH+jet production

    SciTech Connect

    Su Jijuan; Ma Wengan; Zhang Renyou; Guo Lei

    2010-06-01

    We calculate the next-to-leading order (NLO) QCD corrections to the WH{sup 0} production in association with a jet at hadron colliders. We study the impacts of the complete NLO QCD radiative corrections to the integrated cross sections, the scale dependence of the cross sections, and the differential cross sections ((d{sigma}/dcos{theta}), (d{sigma}/dp{sub T})) of the final W-, Higgs boson and jet. We find that the corrections significantly modify the physical observables, and reduce the scale uncertainty of the leading-order cross section. Our results show that by applying the inclusive scheme with p{sub T,j}{sup cut}=20 GeV and taking m{sub H}=120 GeV, {mu}={mu}{sub 0{identical_to}}(1/2)(m{sub W}+m{sub H}), the K-factor is 1.15 for the process pp{yields}W{sup {+-}H0}j+X at the Tevatron, while the K-factors for the processes pp{yields}W{sup -}H{sup 0}j+X and pp{yields}W{sup +}H{sup 0}j+X at the LHC are 1.12 and 1.08, respectively. We conclude that to understand the hadronic associated WH{sup 0} production, it is necessary to study the NLO QCD corrections to the WH{sup 0}j production process which is part of the inclusive WH{sup 0} production.

  9. Determination of Polarised Parton Distributions in the Nucleon --- Next to Leading Order QCD Analysis

    NASA Astrophysics Data System (ADS)

    Tatur, Stanislaw; Bartelski, Jan; Kurzela, Miroslaw

    2000-03-01

    We have made next to leading order QCD fit to the deep inelastic spin asymmetries on nucleons and we have determined polarised quark and gluon densities. The functional form for such distributions was inspired by the Martin, Roberts and Stirling fit for unpolarised case. In addition to usually used data points (averaged over x and Q2) we have also considered the sample containing points with similar x and different Q2. It seems that splitting of quark densities into valence and sea contribution is strongly model dependent and only their sum (i.e. , Δ u and Δ d) can be precisely determined from the data. Integrated polarised gluon contribution, contrary to some expectations, is relatively small and the sign of it depends on the fact which sample of data points is used.

  10. Next-to-Leading Order QCD Predictions for Z, gamma^* 3-Jet Distributions at the Tevatron

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2010-06-02

    Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z, {gamma}{sup {asterisk}}+ 1, 2, 3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron pair. We find good agreement between the NLO results for jet {sub pT} distributions and measurements by CDF and D0. We also present jetproduction ratios, or probabilities of finding one additional jet. As a function of vector-boson {sub pT} , the ratios have distinctive features which we describe in terms of a simple model capturing leading logarithms and phase-space and parton-distribution-function suppression.

  11. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    SciTech Connect

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-08-01

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.

  12. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    2015-10-01

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/ MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  13. Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.

    PubMed

    Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F

    2013-09-27

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework. PMID:24116766

  14. 2nd Generation ELT Performance Specification Development

    NASA Technical Reports Server (NTRS)

    Stimson, Chad M.

    2015-01-01

    NASA Search And Rescue is supporting RTCA SC-229 with research and recommendations for performance specifications for the 2nd generation of emergency locator transmitters. Areas for improvement and methods for collecting data will be presented.

  15. Exploring arbitrarily high orders of optimized perturbation theory in QCD with nf → 161/2

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    2016-09-01

    Perturbative QCD with nf flavours of massless quarks becomes simple in the hypothetical limit nf → 161/2, where the leading β-function coefficient vanishes. The Banks-Zaks (BZ) expansion in a0 ≡8/321 (161/2 -nf) is straightforward to obtain from perturbative results in MS ‾ or any renormalization scheme (RS) whose nf dependence is 'regular'. However, 'irregular' RS's are perfectly permissible and should ultimately lead to the same BZ results. We show here that the 'optimal' RS determined by the Principle of Minimal Sensitivity does yield the same BZ-expansion results when all orders of perturbation theory are taken into account. The BZ limit provides an arena for exploring optimized perturbation theory at arbitrarily high orders. These explorations are facilitated by a 'master equation' expressing the optimization conditions in the fixed-point limit. We find an intriguing strong/weak coupling duality a →a*2 / a about the fixed point a*.

  16. W-Boson Production in Association with a Jet at Next-to-Next-to-Leading Order in Perturbative QCD.

    PubMed

    Boughezal, Radja; Focke, Christfried; Liu, Xiaohui; Petriello, Frank

    2015-08-01

    We present the complete calculation of W-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order (NNLO) in perturbative QCD. To cancel infrared divergences, we discuss a new subtraction method that exploits the fact that the N-jettiness event-shape variable fully captures the singularity structure of QCD amplitudes with final-state partons. This method holds for processes with an arbitrary number of jets and is easily implemented into existing frameworks for higher-order calculations. We present initial phenomenological results for W+jet production at the LHC. The NNLO corrections are small and lead to a significantly reduced theoretical error, opening the door to precision measurements in the W+jet channel at the LHC. PMID:26296111

  17. Bottomonium spectrum at order v{sup 6} from domain-wall lattice QCD: Precise results for hyperfine splittings

    SciTech Connect

    Meinel, Stefan

    2010-12-01

    The bottomonium spectrum is computed in dynamical 2+1 flavor lattice QCD, using nonrelativistic QCD for the b quarks. The main calculations in this work are based on gauge field ensembles generated by the RBC and UKQCD Collaborations with the Iwasaki action for the gluons and a domain-wall action for the sea quarks. Lattice spacing values of approximately 0.08 fm and 0.11 fm are used, and simultaneous chiral extrapolations to the physical pion mass are performed. As a test for gluon-discretization errors, the calculations are repeated on two ensembles generated by the MILC Collaboration with the Luescher-Weisz gauge action. Gluon-discretization errors are also studied in a lattice potential model using perturbation theory for four different gauge actions. The nonperturbative lattice QCD results for the radial and orbital bottomonium energy splittings obtained from the RBC/UKQCD ensembles are found to be in excellent agreement with experiment. To get accurate results for spin splittings, the spin-dependent order-v{sup 6} terms are included in the nonrelativistic QCD action, and suitable ratios are calculated such that most of the unknown radiative corrections cancel. The cancellation of radiative corrections is verified explicitly by repeating the calculations with different values of the couplings in the nonrelativistic QCD action. Using the lattice ratios of the S-wave hyperfine and the 1P tensor splitting, and the experimental result for the 1P tensor splitting, the 1S hyperfine splitting is found to be 60.3{+-}5.5{sub stat{+-}}5.0{sub syst{+-}}2.1{sub exp} MeV, and the 2S hyperfine splitting is predicted to be 23.5{+-}4.1{sub stat{+-}}2.1{sub syst{+-}}0.8{sub exp} MeV.

  18. Next-to-leading-order perturbative-QCD predictions for gammagamma-->M+M- (M=pi,K).

    PubMed

    Duplancić, Goran; Nizić, Bene

    2006-10-01

    We report the first complete leading-twist next-to-leading-order perturbative-QCD predictions for the two-photon exclusive channels gammagamma-->M(+)M(-) (M=pi,K) at large momentum transfer. The asymptotic distribution amplitude is utilized as a candidate form for the nonperturbative dynamical input. Comparison of the obtained results with the existing experimental data does not provide sufficiently clear evidence to support the applicability of the hard-scattering approach at currently accessible energies. PMID:17155242

  19. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    SciTech Connect

    Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; Ma, Hong -Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-06-26

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.

  20. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    NASA Astrophysics Data System (ADS)

    Bi, Huan-Yu; Wu, Xing-Gang; Ma, Yang; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-09-01

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e- and the Higgs partial width Γ (H → b b bar). Both methods lead to the same resummed ('conformal') series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi }-terms in the pQCD expansion are taken into account. We also show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.

  1. Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Konar, Partha; Majhi, Swapan

    2016-06-01

    Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I and inverse seesaw models, respectively, in explaining the naturally small neutrino mass. TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the Standard Model light neutrinos, through which they can be produced and detected at the high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections to the heavy neutrino production, and study the scale variation in cross-sections as well as the kinematic distributions with different final states at 14 TeV LHC and also in the context of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated with missing energy in the final state. Using the √{s}=8 TeV, 20 .3 fb-1 and 19 .7 fb-1 data at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton search by CMS at √{s}=8 TeV with 19 .5 fb-1 data, we also obtain the prospective scale dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.

  2. Rapidity distributions in Drell-Yan and Higgs productions at threshold to third order in QCD.

    PubMed

    Ahmed, Taushif; Mandal, M K; Rana, Narayan; Ravindran, V

    2014-11-21

    We present the threshold N(3)LO perturbative QCD corrections to the rapidity distributions of dileptons in the Drell-Yan process and Higgs boson in gluon fusion. Sudakov resummation of QCD amplitudes, renormalization group invariance, and the mass factorization theorem provide useful guidelines to obtain them in an elegant manner. We use various state of the art three loop results that have been recently available to obtain these distributions. For the Higgs boson, we demonstrate numerically the importance of these corrections at the LHC. PMID:25479490

  3. Next-to-leading order QCD factorization for semi-inclusive deep inelastic scattering at twist 4.

    PubMed

    Kang, Zhong-Bo; Wang, Enke; Wang, Xin-Nian; Xing, Hongxi

    2014-03-14

    Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO) perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production in deeply inelastic e+A collisions, as well as lepton pair production in p+A collisions. With explicit calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be solved to determine the scale dependence of the jet transport parameter in the study of jet quenching. PMID:24679281

  4. Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Wang, Enke; Wang, Xin-Nian; Xing, Hongxi

    2014-03-01

    Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO) perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production in deeply inelastic e +A collisions, as well as lepton pair production in p +A collisions. With explicit calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be solved to determine the scale dependence of the jet transport parameter in the study of jet quenching.

  5. PIRLS 2016 Assessment Framework. 2nd Edition

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2015-01-01

    The "PIRLS 2016 Assessment Framework, 2nd Edition" provides the foundation for the three international assessments planned as part of the International Association for the Evaluation of Educational Achievement's Progress in International Reading Literacy Study (PIRLS) 2016: PIRLS, PIRLS Literacy, and ePIRLS. PIRLS represents the…

  6. Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX

    NASA Astrophysics Data System (ADS)

    Jäger, Barbara; Schneider, Steven; Zanderighi, Giulia

    2012-09-01

    We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on the leptonic decays of the weak gauge boson, and take photonic and non-resonant contributions to the matrix elements fully into account. We provide results for observables of particular importance for the suppression of QCD backgrounds to vector-boson fusion processes by means of central-jet-veto techniques. While parton-shower effects are small for most observables associated with the two hardest jets, they can be more pronounced for distributions that are employed in central-jet-veto studies.

  7. Diffractive dijet photoproduction in ultraperipheral collisions at the LHC in next-to-leading order QCD

    NASA Astrophysics Data System (ADS)

    Guzey, V.; Klasen, M.

    2016-04-01

    We make predictions for the cross sections of diffractive dijet photoproduction in pp, pA and AA ultraperipheral collisions (UPCs) at the LHC during Runs 1 and 2 using next-to-leading perturbative QCD. We find that the resulting cross sections are sufficiently large and, compared to lepton-proton scattering at HERA, have an enhanced sensitivity to small observed momentum fractions in the diffractive exchange, commonly denoted {z}_{P}^{jets} , and an unprecedented reach in the invariant mass of the photon-nucleon system W. We examine two competing schemes of diffractive QCD factorization breaking, which assume either a global suppression factor or a suppression for resolved photons only and demonstrate that the two scenarios can be distinguished by the nuclear dependence of the distributions in the observed parton momentum fraction in the photon x γ jets.

  8. DOUBLE TRANSVERSE SPIN ASYMMETRIES AT NEXT-TO-LEADING ORDER IN QCD.

    SciTech Connect

    MUKHERJEE,A.; STRATMANN,M.; VOGELSANG,W.

    2004-10-10

    We present a technique to calculate the cross sections and spin asymmetries for transversely polarized pp collisions at NLO in QCD and report on the use of this technique for the processes p{up_arrow}p{up_arrow} {yields} {gamma}X, p{up_arrow}p{up_arrow} {yields} {pi}X and p{up_arrow}p{up_arrow} {yields} {ell}{sup +}{ell}{sup -} X.

  9. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  10. Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD

    DOE PAGESBeta

    Boughezal, Radja; Campbell, John M.; Ellis, R. Keith; Focke, Christfried; Giele, Walter T.; Liu, Xiaohui; Petriello, Frank

    2016-04-14

    Here, we present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z+jet channel ready for precision studies at the LHC run II.

  11. A Brief Overview of Fixed-Order Perturbative QCD Calculations of Jet Production in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Vitev, I.

    We review recent developments in the QCD description of jet production and modification in reactions with heavy nuclei at relativistic energies. Our goal is to formulate a perturbative expansion in the presence of nuclear matter that allows to systematically improve the accuracy of the theoretical predictions. As an example, we present calculations of inclusive jet cross sections at RHIC, Z(0/gamma^*) -tagged jet cross sections at the LHC, and jet shapes that include both next-to-leading order perturbative effects and the effects of the nuclear medium.

  12. Next-to-Leading-Order QCD Corrections to W{sup +}W{sup -}bb Production at Hadron Colliders

    SciTech Connect

    Denner, A.; Dittmaier, S.; Kallweit, S.; Pozzorini, S.

    2011-02-04

    Top-antitop quark pairs belong to the most abundantly produced and precisely measurable heavy-particle signatures at hadron colliders and allow for crucial tests of the standard model and new physics searches. Here we report on the calculation of the next-to-leading order (NLO) QCD corrections to hadronic W{sup +}W{sup -}bb production, which provides a complete NLO description of the production of top-antitop pairs and their subsequent decay into W bosons and bottom quarks, including interferences, off-shell effects, and nonresonant backgrounds. Numerical predictions for the Tevatron and the LHC are presented.

  13. Z-Boson Production in Association with a Jet at Next-To-Next-To-Leading Order in Perturbative QCD.

    PubMed

    Boughezal, Radja; Campbell, John; Ellis, R Keith; Focke, Christfried; Giele, Walter; Liu, Xiaohui; Petriello, Frank

    2016-04-15

    We present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z+jet channel ready for precision studies at the LHC run II. PMID:27127962

  14. Z -Boson Production in Association with a Jet at Next-To-Next-To-Leading Order in Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja; Campbell, John; Ellis, R. Keith; Focke, Christfried; Giele, Walter; Liu, Xiaohui; Petriello, Frank

    2016-04-01

    We present the first complete calculation of Z -boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N -jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z +jet channel ready for precision studies at the LHC run II.

  15. Expansions of τ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-08-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling αs and other QCD parameters from the hadronic decays of the τ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called “reference model,” including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

  16. Next-to-leading order QCD corrections to the decay width H → Zγ

    NASA Astrophysics Data System (ADS)

    Bonciani, Roberto; Del Duca, Vittorio; Frellesvig, Hjalte; Henn, Johannes M.; Moriello, Francesco; Smirnov, Vladimir A.

    2015-08-01

    We present the analytic calculation of the two-loop QCD corrections to the decay width of a Higgs boson into a photon and a Z boson. The calculation is carried out using integration-by-parts identities for the reduction to master integrals of the scalar integrals, in terms of which we express the amplitude. The calculation of the master integrals is performed using differential equations applied to a set of functions suitably chosen to be of uniform weight. The final result is expressed in terms of logarithms and polylogarithmic functions Li2, Li3, Li4 and Li2,2.

  17. Next-to-leading order QCD predictions for A{sup 0}{gamma} associated production at the CERN Large Hadron Collider

    SciTech Connect

    Dai Liang; Shao Dingyu; Gao Jun; Zhang Hao; Li Chongsheng

    2011-03-01

    We calculate the complete next-to-leading order (NLO) QCD corrections (including SUSY QCD corrections) to the inclusive total cross sections of the associated production processes pp{yields}A{sup 0}{gamma}+X in the minimal supersymmetric standard model (MSSM) at the CERN Large Hadron Collider (LHC). Our results show that the enhancement of the total cross sections from the NLO QCD corrections can reach 25%{approx}15% for 200 GeVQCD effects, and find an observable signature above the standard model (SM) background for a normal luminosity of 100 fb{sup -1} at the LHC.

  18. Next-to-leading order QCD effects in associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider

    SciTech Connect

    Gao Jun; Li Chongsheng; Li Zhao

    2008-01-01

    We present the calculations of the next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the associated production of the W{sup {+-}}H{sup {+-}} through bb annihilation in the minimal supersymmetric standard model at the CERN Large Hadron Collider. The NLO QCD corrections can either enhance or reduce the total cross sections, but they generally efficiently reduce the dependence of the total cross sections on the renormalization/factorization scale. The magnitude of the NLO QCD corrections is about 10% in most of the parameter space and can reach 15% in some parameter regions. We also show the Monte Carlo simulation results for the 2j+{tau}{sub jet}+pe{sub T} signature from the W{sup {+-}} and the H{sup {+-}} decays including the NLO QCD effects, and find an observable signal at a 5{sigma} level in some parameter region of the minimal supergravity model.

  19. Z{gamma}{gamma} production with leptonic decays and triple photon production at next-to-leading order QCD

    SciTech Connect

    Bozzi, G.; Campanario, F.; Rauch, M.; Zeppenfeld, D.

    2011-10-01

    We present a calculation of the O({alpha}{sub s}) QCD corrections to the production of a Z boson in association with two photons and to triple-photon production at hadron colliders. All final-state photons are taken as real. For the Z boson, we consider the decays both into charged leptons and into neutrinos including all off-shell effects. Numerical results are obtained via a Monte Carlo program based on the structure of the VBFNLO program package. This allows us to implement general cuts and distributions of the final-state particles. We find that the next-to-leading order QCD corrections are sizable and significantly exceed the expectations from a scale variation of the leading-order result. In addition, differential distributions of important observables change considerably. The prediction of two-photon-associated Z production with Z decays into neutrinos from the charged-lepton rate works well, once we use an additional cut on the invariant mass of the charged-lepton pair.

  20. Higgs production in heavy-quark annihilation through next-to-next-to-leading order QCD

    NASA Astrophysics Data System (ADS)

    Harlander, Robert V.

    2016-05-01

    The total inclusive cross section for charged and neutral Higgs production in heavy-quark annihilation is presented through NNLO QCD. It is shown that, aside from an overall factor, the partonic cross section is independent of the initial-state quark flavors, and that any interference terms involving two different Yukawa couplings vanish. A simple criterion for defining the central renormalization and factorization scale is proposed. Its application to the bbar{b}φ process yields results which are compatible with the values usually adopted for this process. Remarkably, we find little variation in these values for the other initial-state quark flavors. Finally, we disentangle the impact of the different parton luminosities from genuine hard NNLO effects and find that, for the central scales, a naive rescaling by the parton luminosities approximates the full result remarkably well.

  1. Next-to-leading order QCD predictions for Z,{gamma}*+3-jet distributions at the Tevatron

    SciTech Connect

    Berger, C. F.; Bern, Z.; Ita, H.; Dixon, L. J.; Gleisberg, T.; Febres Cordero, F.; Forde, D.; Kosower, D. A.; Maitre, D.

    2010-10-01

    Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z,{gamma}*+1, 2, 3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron pair. We find good agreement between the next-to-leading order results for jet p{sub T} distributions and measurements by CDF and D0. We also present jet-production ratios, or probabilities of finding one additional jet. As a function of vector-boson p{sub T}, the ratios have distinctive features which we describe in terms of a simple model capturing leading logarithms and phase-space and parton-distribution-function suppression.

  2. W{sup +}W{sup -} production in large extra dimension model at next-to-leading order in QCD at the LHC

    SciTech Connect

    Agarwal, Neelima; Tiwari, Vivek Kumar; Ravindran, V.; Tripathi, Anurag

    2010-08-01

    We present next-to-leading order QCD corrections to production of two W bosons in hadronic collisions in the extra dimension Arkani-Hamed, Dimopoulos, and Dvali model. Invariant mass and rapidity distributions are obtained to order {alpha}{sub s} in QCD by taking into account all the parton level subprocesses. The computation is organized using the Monte Carlo based method of phase space slicing. We estimate the impact of the QCD corrections on various observables and find that they are significant. We present some results for a 10 TeV LHC, but most of the results presented here are for 14 TeV LHC. We also show the reduction in factorization scale uncertainty when O({alpha}{sub s}) effects are included.

  3. 2nd Generation RLV Risk Definition Program

    NASA Technical Reports Server (NTRS)

    Davis, Robert M.; Stucker, Mark (Technical Monitor)

    2000-01-01

    The 2nd Generation RLV Risk Reduction Mid-Term Report summarizes the status of Kelly Space & Technology's activities during the first two and one half months of the program. This report was presented to the cognoscente Contracting Officer's Technical Representative (COTR) and selected Marshall Space Flight Center staff members on 26 September 2000. The report has been approved and is distributed on CD-ROM (as a PowerPoint file) in accordance with the terms of the subject contract, and contains information and data addressing the following: (1) Launch services demand and requirements; (2) Architecture, alternatives, and requirements; (3) Costs, pricing, and business cases analysis; (4) Commercial financing requirements, plans, and strategy; (5) System engineering processes and derived requirements; and (6) RLV system trade studies and design analysis.

  4. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  5. Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool

    NASA Astrophysics Data System (ADS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-03-01

    We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)SJNCAS0038-5506][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)SPHJAR0038-5646] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)EPCFFB1434-604410.1140/epjc/s10052-009-1195-8][M. M. Block, Eur. Phys. J. C 68, 683 (2010)EPCFFB1434-604410.1140/epjc/s10052-010-1374-7] allow us to write fully decoupled solutions for the singlet structure function Fs(x,Q2) and G(x,Q2) as Fs(x,Q2)=Fs(Fs0(x0),G0(x0)) and G(x,Q2)=G(Fs0(x0),G0(x0)), where the x0 are the Bjorken x values at Q02. Here Fs and G are known functions—found using LO DGLAP splitting functions—of the initial boundary conditions Fs0(x)≡Fs(x,Q02) and G0(x)≡G(x,Q02), i.e., the chosen starting functions at the virtuality Q02. For both G(x) and Fs(x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy—a computational fractional precision of O(10-9). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet Fs distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)EPCFFB1434-604410.1140/epjc/s10052-009-1072-5], starting from their initial values at Q02=1GeV2 and 1.69GeV2, respectively, using their choice of αs(Q2). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and Fs satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of

  6. Next-to-next-to-leading order QCD corrections in models of TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    de Florian, Daniel; Mahakhud, Maguni; Mathews, Prakash; Mazzitelli, Javier; Ravindran, V.

    2014-04-01

    We compute the next-to-next-to-leading order QCD corrections to the graviton production in models of TeV-scale gravity, within the soft-virtual approximation. For the Arkani-Hamed, Dimopoulos and Dvali (ADD) model we evaluate the contribu-tion to the Drell-Yan cross section, and we present distributions for the di-lepton invariant mass at the LHC with a center-of-mass energy = 14 TeV. We find a large K factor ( K ≃ 1 .8) for large values of invariant mass, which is the region where the ADD graviton contribution dominates the cross section. The increase in the cross section with respect to the previous order result is larger than 10% in the same invariant mass region. We also observe a substantial reduction in the scale uncertainty. For the Randall-Sundrum (RS) model we computed the total single graviton production cross section at the LHC. We find an increase between 10% and 13% with respect to the next-to-leading order prediction, depending on the model parameters. We provide an analytic expression for the NNLO K factor as a function of the lightest RS graviton mass.

  7. Next-to-leading-order QCD correction to inclusive J/{psi}({Upsilon}) production in Z{sup 0} decay

    SciTech Connect

    Li, Rong; Wang, Jian-Xiong

    2010-09-01

    In this paper, we study the J/{psi}({Upsilon}) production in Z boson decay in a color-singlet model (CSM). We calculate the next-to-leading-order (NLO) QCD correction to Z{yields}quarkonium+QQ, the dominant contribution in the CSM, with the vector and axial-vector parts in the ZQQ vertex being treated separately. The results show that the vector and axial-vector parts have the same K factor (the ratio of the NLO result to the leading-order result) 1.13 with the renormalization scale {mu}=2m{sub c} and m{sub c}=1.5 GeV, and the K factor falls to 0.918 when applying the Brodsky, Lepage, and Mackenzie (BLM) renormalization scale scheme with obtained {mu}{sub BLM}=2.28 GeV and m{sub c}=1.5 GeV. By including the contributions from the next-dominant ones, the photon and gluon fragmentation processes, the branching ratio for Z{yields}J/{psi}{sub prompt}+X is (7.3-10.0)x10{sup -5} with the uncertainty consideration for the renormalization scale and charm quark mass. The results are about one-half of the central value of the experimental measurement 2.1x10{sup -4}. Furthermore, the J/{psi} energy distribution in our calculation cannot describe the experimental data. Therefore, even at QCD NLO, the contribution to Z{yields}J/{psi}{sub prompt}+X from the CSM cannot fully account for the experimental measurement. And there should be contributions from other mechanisms, such as the color-octet (COM) contributions. We define R{sub cc}=({Gamma}(Z{yields}J/{psi}ccX)/{Gamma}(Z{yields}J/{psi}X)) and obtain R{sub cc}=0.84 for only the CSM contribution and R{sub cc}=0.49 for COM and CSM contributions together. Then the R{sub cc} measurement could be used to clarify the COM contributions.

  8. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses. PMID:25910112

  9. 2nd Generation Reusable Launch Vehicle NASA Led Propulsion Tasks

    NASA Technical Reports Server (NTRS)

    Richards, Steve

    2000-01-01

    Design, development and test of a 2nd generation Reusable Launch Vehicle (RLV) is presented. This current paper discusses the following: 2nd Generation RLV Propulsion Project, Overview of NASA Led Tasks in Propulsion, Gen2 Turbo Machinery Technology Demonstrator, and Combustion Devices Test Bed, GRCop-84 Sheet For Combustion Chambers, Nozzles and Large Actively Cooled Structures

  10. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  11. The Rare decay K+ ---> pi+ nu anti-nu at the next-to-next-to-leading order in QCD

    SciTech Connect

    Buras, A.J.; Gorbahn, M.; Haisch, U.; Nierste, U.; /Fermilab

    2005-08-01

    The authors calculate the complete next-to-next-to-leading order QCD correction of the charm quark contribution to the branching ratio for the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}} in the standard model. The inclusion of these {Omicron}({alpha}{sub s}) contributions leads to a significant reduction of the theoretical uncertainty from {+-} 10.1% down to {+-} 2.4% in the relevant parameter P{sub c}, implying the left over scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta} and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006 and {+-} 1.2{sup o}, respectively. for the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c} = 0.37 {+-} 0.06 is modified to P{sub c} = 0.37 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). Adding the recently calculated long-distance contributions we find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the quoted error almost entirely due to the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements.

  12. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  13. Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica; Williams, Ciaran

    2016-08-01

    We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework.

  14. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bevilacqua, G.; Hartanto, H. B.; Kraus, M.; Worek, M.

    2016-02-01

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  15. Next-to-leading order QCD corrections to a heavy resonance production and decay into top quark pair at the LHC

    SciTech Connect

    Gao Jun; Li Chongsheng; Li Bohua; Zhu Huaxing; Yuan, C.-P.

    2010-07-01

    We present a complete next-to-leading order (NLO) QCD calculation to a heavy resonance production and decay into a top quark pair at the LHC, where the resonance could be either a Randall-Sundrum Kaluza-Klein graviton G or an extra gauge boson Z{sup '}. The complete NLO QCD corrections can enhance the total cross sections by about 80%-100% and 20%-40% for the G and the Z{sup '}, respectively, depending on the resonance mass. We also explore in detail the NLO corrections to the polar angle distributions of the top quark, and our results show that the shapes of the NLO distributions can be different from the leading order ones for the Kaluza-Klein graviton. Moreover, we study the NLO corrections to the spin correlations of the top quark pair production via the above process, and find that the corrections are small.

  16. Florida Investigates 2nd Possible Local Transmission of Zika Virus

    MedlinePlus

    ... html Florida Investigates 2nd Possible Local Transmission of Zika Virus If confirmed, cases would be first instances ... investigating a second possible case of locally transmitted Zika infection. On Tuesday, the first possible case of ...

  17. Stirling engine design manual, 2nd edition

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  18. Molecular motors and the 2nd law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong

    2014-03-01

    Molecular motors from biology and nanotechnology often operate on chemical energy of fuel molecules in an isothermal environment, unlike macroscopic heat engines that draw energy from a heat flow between two temperatures. Nevertheless, isothermal molecular motors are still subject to the 2nd law of thermodynamics in a fundamental way: their directional motion must cost a finite amount of energy other than the environmental heat even though no work is done; otherwise the 2nd law would be violated. Hence the 2nd law requires a finite energy price for pure direction of molecular motors. But what is the lowest price of direction allowed by the 2nd law? And how does the 2nd law-decreed price of direction limit performance of molecular motors? In the talk, I shall present our theoretical study of the 2nd law-molecular motor link on basis of the accumulated biomotor phenomenology, and also introduce our experimental effort to develop biomimetic DNA bipedal nanomotors following the mechanistic guidelines out of the theoretical study. [Main contents of this talk are from references:] This work is partially supported by FRC grants R-144-000-259-112, R-144-000-290-112 and R-144-000-320-112.

  19. Next-to-leading order QCD predictions for graviton and photon associated production in the large extra dimensions model at the LHC

    SciTech Connect

    Gao Xiangdong; Li Chongsheng; Gao Jun; Wang Jian; Oakes, Robert J.

    2010-02-01

    We present the calculations of the complete next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the Kaluza-Klein (KK) graviton and photon associated production process pp{yields}{gamma}G{sub KK}+X in the large extra dimensions model at the LHC. We show that the NLO QCD corrections in general enhance the total cross sections and reduce the dependence of the total cross sections on the factorization and renormalization scales. When jet veto is considered, the NLO corrections reduce the total cross sections. We also calculate some important differential cross sections for this process at NLO: the missing transverse momentum distribution, the transverse momentum distribution, and the pseudorapidity distribution of photon.

  20. Next-to-leading order QCD corrections to the single top quark production via model-independent tqg flavor-changing neutral-current couplings at hadron colliders

    SciTech Connect

    Gao Jun; Li Chongsheng; Zhang Jiajun; Zhu Huaxing

    2009-12-01

    We present the calculations of the complete next-to-leading order (NLO) QCD effects on the single top productions induced by model-independent tqg flavor-changing neutral-current couplings at hadron colliders. Our results show that, for the tcg coupling, the NLO QCD corrections can enhance the total cross sections by about 60% and 30%, and for the tug coupling by about 50% and 20% at the Tevatron and LHC, respectively, which means that the NLO corrections can increase the experimental sensitivity to the flavor-changing neutral-current couplings by about 10%-30%. Moreover, the NLO corrections reduce the dependence of the total cross sections on the renormalization or factorization scale significantly, which lead to increased confidence on the theoretical predictions. Besides, we also evaluate the NLO corrections to several important kinematic distributions, and find that for most of them the NLO corrections are almost the same and do not change the shape of the distributions.

  1. tt¯+large missing energy from top-quark partners: A comprehensive study at next-to-leading order QCD

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja; Schulze, Markus

    2013-12-01

    We perform a detailed study of top-quark partner production in the tt¯ plus large missing energy final state at the LHC, presenting results for both scalar and fermionic top-quark partners in the semileptonic and dileptonic decay modes of the top quarks. We compare the results of several simulation tools: leading order matrix elements, next-to-leading order (NLO) matrix elements, leading order plus parton shower simulations, and merged samples that contain the signal process with an additional hard jet radiated. We find that predictions from leading order plus parton shower simulations can significantly deviate from NLO QCD or LO merged samples and do not correctly model the kinematics of the tt¯+ET,miss signature. They are therefore not a good framework for modeling this new physics signature. On the other hand, the acceptances obtained with a merged sample of the leading-order process together with the radiation of an additional hard jet are in agreement with the NLO predictions. We also demonstrate that the scale variation of the inclusive cross section, plus that of the acceptance, does not accurately reflect the uncertainty of the cross section after cuts, which is typically larger. We show the importance of including higher-order QCD corrections when using kinematic distributions to determine the spin of the top-quark partner.

  2. Next-to-leading order QCD predictions for t{gamma} associated production via model-independent flavor-changing neutral-current couplings at hadron colliders

    SciTech Connect

    Zhang Yue; Li Bohua; Li Chongsheng; Gao Jun; Zhu Huaxing

    2011-05-01

    We present the complete next-to-leading order (NLO) QCD predictions for the t{gamma} associated production induced by model-independent tq{gamma} and tqg flavor-changing neutral-current (FCNC) couplings at hadron colliders, respectively. We also consider the mixing effects between the tq{gamma} and tqg FCNC couplings for this process. Our results show that, for the tq{gamma} couplings, the NLO QCD corrections can enhance the total cross sections by about 50% and 40% at the Tevatron and LHC, respectively. Including the contributions from the tq{gamma}, tqg FCNC couplings and their mixing effects, the NLO QCD corrections can enhance the total cross sections by about 50% for the tu{gamma} and tug FCNC couplings, and by about 80% for the tc{gamma} and tcg FCNC couplings at the LHC, respectively. Moreover, the NLO corrections reduce the dependence of the total cross section on the renormalization and factorization scale significantly. We also evaluate the NLO corrections for several important kinematic distributions.

  3. Ladybugs of South Dakota, 2nd edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images of the 80 species of Coccinellidae, commonly known as lady beetles, that occur in South Dakota are presented in taxonomic order. The second edition updates information, including the addition of a species new to South Dakota. Information on each species includes genus-species name, sub-fami...

  4. Gastrointestinal imaging in pediatrics, 2nd ed

    SciTech Connect

    Franken, E.A. Jr.; Smith, W.L.

    1982-01-01

    Gastrointestinal imaging in pediatrics is very different from its predecessor, gastrointestinal radiology in pediatrics, which was written eight years ago. The second edition is organized by anatomic area with supplemental chapters on special procedures (i.e., angiography, nuclear medicine, computerized axial tomography and ultrasonography). This volume contains 635 pages in contrast to the first edition which consisted of 323 pages. The arrangement of this volume is by anatomic area and not be clinical problem, therefore, the reader should have some background in pediatric radiology in order to find answers to specific questions.

  5. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  6. QCD (&) event generators

    SciTech Connect

    Skands, Peter Z.; /Fermilab

    2005-07-01

    Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.

  7. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  8. Test Review: The Profile of Mood States 2nd Edition

    ERIC Educational Resources Information Center

    Lin, Shuqiong; Hsiao, Yu-Yu; Wang, Miao

    2014-01-01

    The "Profile of Mood States 2nd Edition" (POMS 2) was published in 2012 by Multi-Health Systems (MHS) to assess transient feelings and mood among individuals aged 13 years and above. Evolving from the original POMS (McNair, Lorr, & Droppleman, 1971, 1992), the POMS 2 was designed for youth (13-17 years old) and adults (18 years old…

  9. Book Review: Bioassays with Arthropods: 2nd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  10. A Handbook for Classroom Instruction That Works, 2nd Edition

    ERIC Educational Resources Information Center

    Association for Supervision and Curriculum Development, 2012

    2012-01-01

    Perfect for self-help and professional learning communities, this handbook makes it much easier to apply the teaching practices from the ASCD-McREL best-seller "Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement, 2nd Edition." The authors take you through the refined Instructional Planning Guide, so you…

  11. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-01

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%. PMID:26894704

  12. Next-to-next-to-leading order QCD analysis of spin-dependent parton distribution functions and their uncertainties: Jacobi polynomials approach

    NASA Astrophysics Data System (ADS)

    Taghavi-Shahri, F.; Khanpour, Hamzeh; Atashbar Tehrani, S.; Alizadeh Yazdi, Z.

    2016-06-01

    We present a first QCD analysis of next-to-next-leading-order (NNLO) contributions of the spin-dependent parton distribution functions (PPDFs) in the nucleon and their uncertainties using the Jacobi polynomial approach. Having the NNLO contributions of the quark-quark and gluon-quark splitting functions in perturbative QCD [Nucl. Phys. B889, 351 (2014)], one can obtain the evolution of longitudinally polarized parton densities of hadrons up to NNLO accuracy of QCD. Very large sets of recent and up-to-date experimental data of spin structure functions of the proton g1p, neutron g1n, and deuteron g1d have been used in this analysis. The predictions for the NNLO calculations of the polarized parton distribution functions as well as the proton, neutron and deuteron polarized structure functions are compared with the corresponding results of the NLO approximation. We form a mutually consistent set of polarized PDFs due to the inclusion of the most available experimental data including the recently high-precision measurements from COMPASS16 experiments [Phys. Lett. B 753, 18 (2016)]. We have performed a careful estimation of the uncertainties using the most common and practical method, the Hessian method, for the polarized PDFs originating from the experimental errors. The proton, neutron and deuteron structure functions and also their first moments, Γp ,n ,d , are in good agreement with the experimental data at small and large momentum fractions of x . We will discuss how our knowledge of spin-dependence structure functions can improve at small and large values of x by the recent COMPASS16 measurements at CERN, the PHENIX and STAR measurements at RHIC, and at the future proposed colliders such as the Electron-Ion Collider.

  13. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2

    NASA Astrophysics Data System (ADS)

    Borsányi, Sz.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Ratti, C.; Szabó, K. K.

    2012-08-01

    We determine the equation of state of QCD for nonzero chemical potentials via a Taylor expansion of the pressure. The results are obtained for N f = 2 + 1 flavors of quarks with physical masses, on various lattice spacings. We present results for the pressure, interaction measure, energy density, entropy density, and the speed of sound for small chemical potentials. At low temperatures we compare our results with the Hadron Resonance Gas model. We also express our observables along trajectories of constant entropy over particle number. A simple parameterization is given (the Matlab/Octave script parameterization.m, submitted to the arXiv along with the paper), which can be used to reconstruct the observables as functions of T and μ, or as functions of T and S/N.

  14. [Employment and education in the 2nd economic and social development plan of Togo].

    PubMed

    Dovi-sodemekou, F B

    1985-01-01

    Togo is a developing country whose population is increasing at the rapid rate of 2.7%/year. Economic development is therefore a necessity to ensure at least an average standard of living. Plans of development include objectives of structural societal changes, including improvements in education and employment. This study analyzes the evolution of population activities. It identifies obstacles to the improvement of education and employment. The investigation examines the employment and education situation before adoption of the 2nd plan of Togo and predicts the probable evolution of the situation. Despite the priority accorded to agriculture, the 2nd plan appears to give greater importance to industry. The industrial and commercial sector has witnessed a 65.2% investment increase, whereas the rural sector had an investment increase of 11.8%. The 2nd plan, in view of its relation to the evolution of economic activities, took into account the demand for manual labor. In the private sector, industries should occupy an important position. The dualism of a modern and a traditional sector is considered a cause of underdevelopment. The modern sector should be developed in order to suppress the traditional sector and allow progress in society. As a result of this approach, agriculture is given a 2ndary role. PMID:12267415

  15. Next-to-leading order QCD corrections to associated production of a SM Higgs boson with a pair of weak bosons in the POWHEG-BOX

    NASA Astrophysics Data System (ADS)

    Baglio, Julien

    2016-03-01

    After the discovery of a Higgs boson in 2012 at the CERN Large Hadron Collider (LHC) the detailed study of its properties, and most importantly its couplings to other particles, has started. This is a very important task to be completed, in particular to test whether it is indeed the Higgs boson predicted by the Standard Model (SM). The precise study of the Higgs couplings to gauge bosons is of particular importance and requires as much information as possible. In this view this paper provides the next-to-leading order (NLO) QCD corrections to the production cross sections and differential distributions of a SM Higgs boson in association with a pair of weak bosons W+W- , W±Z and Z Z , matched with parton shower (PS) in the POWHEG-BOX framework. The NLO QCD corrections are found to be significant and PS effects are sizable at low pT in the jet differential distributions, as expected, while these effects are negligible in other distributions. We will also provide a detailed study of the theoretical uncertainties affecting the total production rates at the LHC and at the Future Circular Collider in hadron-hadron mode, the potential 100 TeV follow-up of the LHC machine: the scale uncertainty calculated by the variation of the renormalization and factorization scales, the parton distribution function and related αs errors as well as the parametric uncertainties on the input weak boson masses.

  16. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.

  17. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  18. Next-to-leading-order QCD corrections to jet cross sections and jet rates in deeply inelastic electron-proton scattering

    SciTech Connect

    Graudenz, D. )

    1994-04-01

    Jet cross sections in deeply inelastic scattering in the case of transverse photon exchange for the production of (1+1) and (2+1) jets are calculated in next-to-leading-order QCD (here the +1'' stands for the target remnant jet, which is included in the jet definition). The jet definition scheme is based on a modified JADE cluster algorithm. The calculation of the (2+1) jet cross section is described in detail. Results for the virtual corrections as well as for the real initial- and final-state corrections are given explicitly. Numerical results are stated for jet cross sections as well as for the ratio [sigma][sub (2+1) jet]/[sigma][sub tot] that can be expected at E665 and DESY HERA. Furthermore the scale ambiguity of the calculated jet cross sections is studied and different parton density parametrizations are compared.

  19. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  20. Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross Section Near Threshold in e(+)e(-) Annihilation.

    PubMed

    Beneke, Martin; Kiyo, Yuichiro; Marquard, Peter; Penin, Alexander; Piclum, Jan; Steinhauser, Matthias

    2015-11-01

    We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width. PMID:26588372

  1. Next-to-leading-order QCD corrections to the yields and polarisations of J/ψ and Y directly produced in association with a Z boson at the LHC

    NASA Astrophysics Data System (ADS)

    Gong, Bin; Lansberg, Jean-Philippe; Lorcé, Cédric; Wang, Jian-Xiong

    2013-03-01

    We update the study of the production of direct J/ψ in association with a Z boson at the Next-to-Leading Order (NLO) in α s by evaluating both the yield differential in P T and the J/ψ polarisation in the QCD-based Colour-Singlet Model (CSM). Contrary to an earlier claim, QCD corrections at small and mid P T are small if one assumes that the factorisation and the renormalisation scales are commensurate with the Z boson mass. As it can be anticipated, the t-channel gluon-exchange ( t-CGE) topologies start to be dominant only for P T ≳ m Z /2. The polarisation pattern is not altered by the QCD corrections. This is thus far the first quarkonium-production process where this is observed in the CSM. Along the same lines, our predictions for direct Y+Z are also given.

  2. Two 2nd Circuit decisions represent mixed bag on insurance.

    PubMed

    2000-01-21

    The 2nd U.S. Circuit Court of Appeals in New York issued two important rulings within a week on the extent to which the Americans with Disabilities Act (ADA) regulates insurance practices. [Name removed] v. Allstate Life Insurance Co. was a plaintiff-friendly decision, finding that the insurance company illegally refused to sell life insurance to a married couple because of their mental disability, major depression. [Name removed]. v. Israel Discount Bank of New York was more defendant friendly and tackled the issue of whether the ADA permits different benefit caps for mental and physical disabilities. PMID:11367226

  3. Tests of Enhanced Leading Order QCD in W Boson plus Jet Production in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Tsuno, Soushi; /Tsukuba U.

    2004-01-01

    The authors have studied the W + {ge} n jets process in Tevatron Run II experiment. The data used correspond to a total integrated luminosity of 72 pb{sup -1} taken from March 2002 through January 2003. The lowest order QCD predictions have been tested with a new prescription of the parton-jet matching, which allows to construct the enhanced LO phase space. According to this procedure, one gets unique results which do not depend on unphysical bias of kinematical cuts to avoid the collinear/infrared divergence in calculation. Namely, one can get the meaningful results in the lowest order prediction. The controllable event samples of the W boson plus jets events by the enhanced lowest order prediction will lead smaller systematic uncertainty than the naive prediction without any cares of the collinear/infrared divergence. They expect their method will be also useful to make systematically small samples as the background estimates in the top quark analysis. They found a good agreement between data and theory in typical kinematics distributions. The number of events for each inclusive sample up to 3 jets are compared with Monte Carlo calculations. A comparison with Run I results is also presented. This is the first result for the CDF Run II experiment.

  4. The crystal structure of ^7Li2ND

    NASA Astrophysics Data System (ADS)

    Tsubota, Masami; Sorby, Magnus H.; Hino, Satoshi; Ichikawa, Takayuki; Hauback, Bjorn C.; Kojima, Yoshitsugu

    2008-03-01

    Recently much attention has been given to reversible hydrogen storage materials possessing high gravimetric capacity. Lithium amide/imide systems are promising candidates. Chen et al.[1] found that a mixture of lithium amide and lithium hydride can reversibly store hydrogen up to 6.5 mass% forming lithium imide (Li2NH). Among them, the crystal structure of Li2NH is still controversial. Balogh et al.[2] have reported a cubic structure model. However, this model differs significantly from theoretical structure models. In this work, the crystal structure of the isotopically substituted ^7Li2ND has been investigated by powder neutron and synchrotron X-ray diffraction experiments. In our data some peaks, which should be a single peak for cubic symmetry, were obviously split indicating a lower symmetry than cubic for lithium imide. The structure of ^7Li2ND will be described. [1] P. Chen et al., J. Phys. Chem. B 107 (2003) 10967. [2] M.P. Balogh et al., J. Alloys Compd. 420 (2006) 326.

  5. 2nd Generation RLV: Program Goals and Acquisition Strategy

    NASA Technical Reports Server (NTRS)

    Graham, J. Bart; Dumbacher, D. L. (Technical Monitor)

    2001-01-01

    The risk to loss of life for Space Shuttle crewmembers is approximately one in 245 missions. U.S. launch service providers captured nearly 100%, of the commercial launch market revenues in the mid 1980s. Today, the U.S. captures less than 50% of that market. A launch system architecture is needed that will dramatically increase the safety of space flight while significantly reducing the cost. NASA's Space Launch Initiative, which is implemented by the 2nd Generation RLV Program Office at Marshall Space Flight Center, seeks to develop technology and reusable launch vehicle concepts which satisfy the commercial launch market needs and the unique needs of NASA. Presented in this paper are the five primary elements of NASA's Integrated Space Transportation Plan along with the highest level goals and the acquisition strategy of the 2nd Generation RLV Program. Approval of the Space Launch Initiative FY01 budget of $290M is seen as a major commitment by the Agency and the Nation to realize the commercial potential that space offers and to move forward in the exploration of space.

  6. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD

    NASA Astrophysics Data System (ADS)

    Berger, Edmond L.; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-01

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  7. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon. PMID:27284650

  8. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  9. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and

  10. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  11. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  12. The QCD running coupling

    DOE PAGESBeta

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $Q_0$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less

  13. QCD phenomenology

    SciTech Connect

    Hess, Peter O.

    2006-09-25

    A review is presented on the contributions of Mexican Scientists to QCD phenomenology. These contributions range from Constituent Quark model's (CQM) with a fixed number of quarks (antiquarks) to those where the number of quarks is not conserved. Also glueball spectra were treated with phenomenological models. Several other approaches are mentioned.

  14. Production of massless bottom jets in pp¯ and pp collisions at next-to-leading order of QCD

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Kramer, Gustav

    2016-06-01

    We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (pT) the ratio of the next-to-leading order to the leading-order cross-section (K factor) is smaller than one. It increases with increasing pT and approaches one at larger pT at a value depending essentially on the choice of the renormalization scale. Adding nonperturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross-sections obtained by the CDF and the CMS collaborations.

  15. Philips' 2nd generation Novallure LED candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Pei, Zhigang; Yuan, Chuan; Jiang, Tan; Lu, Zhengsong; Wang, Yuqian; Duan, Xiaoqing; Xiong, Yan; Zhong, Hong; Liu, Ye

    2010-08-01

    Finding an energy efficient replacement of incandescent candle lamp has been a technical challenge. Compact fluorescent lamps, for example, can be miniaturized to fit the form factor of a candle lamp but they fail to reproduce its "sparkle" effect. Empowered by solid state lighting technology along with original optical design, Philips has successfully developed LED-powered candle lamps "Novallure" with great energy savings (2W power consumption with lumen output of 55 lumen) and the "butterfly" radiation pattern that mimics the sparkle effect from an incandescent candle lamp. With new high performance LED packages, novel under-cut prismatic optics and state-of-the-art electronic driver solution and thermal solution, we have developed a 2nd generation Novallure with breakthrough performance: a dimmable 2700K 136 lumen LED candle lamp with CRI 90.

  16. Fourth Generation CP Violation Effects on B{yields}K{pi}, {phi}K, and {rho}K in Next-to-Leading-Order Perturbative QCD

    SciTech Connect

    Hou Weishu; Li Hsiangnan; Mishima, Satoshi; Nagashima, Makiko

    2007-03-30

    We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A{sub CP}(B{sup 0}{yields}K{sup +}{pi}{sup -})-A{sub CP}(B{sup +}{yields}K{sup +}{pi}{sup 0}). Taking |V{sub t{sup '}}{sub s}V{sub t{sup '}}{sub b}|{approx}0.02 with a phase just below 90 deg., which is consistent with the b{yields}sl{sup +}l{sup -} rate and the B{sub s} mixing parameter {delta}m{sub B{sub s}}, we find a downward shift in the mixing-induced CP asymmetries of B{sup 0}{yields}K{sub S}{pi}{sup 0} and {phi}K{sub S}. The predicted behavior for B{sup 0}{yields}{rho}{sup 0}K{sub S} is opposite.

  17. Next-to-Leading-Order QCD Corrections to e{sup +}e{sup -}{yields}J/{psi}gg at the B Factories

    SciTech Connect

    Gong Bin; Wang Jianxiong

    2009-04-24

    We calculate the next-to-leading-order (NLO) QCD corrections to e{sup +}e{sup -}{yields}J/{psi}gg via color singlet J/{psi}({sup 3}S{sub 1}) at the B factories. The result shows that the cross section is enhanced to 0.373 pb by a K factor (NLO/LO) of about 1.21. By considering its dependence on the charm quark mass and renormalization scale, the NLO cross section can range from 0.294 to 0.409 pb. Further including the {psi}{sup '} feed-down, {sigma}[e{sup +}e{sup -}{yields}J/{psi}X(non-cc)] is enhanced by another factor of about 1.29 and reach 0.482 pb. In addition, the momentum distributions of J/{psi} production and polarization are presented. Recent measurements from Belle agree well with our prediction for the cross section and momentum distribution. It is expected that this process can serve as a very good channel to clarify the J/{psi} polarization puzzle by performing further experimental measurements.

  18. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  19. Updated Next-to-Next-to-Leading-Order QCD Predictions for the Weak Radiative B-Meson Decays.

    PubMed

    Misiak, M; Asatrian, H M; Boughezal, R; Czakon, M; Ewerth, T; Ferroglia, A; Fiedler, P; Gambino, P; Greub, C; Haisch, U; Huber, T; Kamiński, M; Ossola, G; Poradziński, M; Rehman, A; Schutzmeier, T; Steinhauser, M; Virto, J

    2015-06-01

    Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O(α_{s}^{2}) and lower-order perturbative corrections that have been calculated after 2006. New estimates of nonperturbative effects are taken into account, too. For the CP- and isospin-averaged branching ratios, we find B_{sγ}=(3.36±0.23)×10^{-4} and B_{dγ}=(1.73_{-0.22}^{+0.12})×10^{-5}, for E_{γ}>1.6 GeV. Both results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain R_{γ}≡(B_{sγ}+B_{dγ})/B_{cℓν}=(3.31±0.22)×10^{-3}. A new bound from B_{sγ} on the charged Higgs boson mass in the two-Higgs-doublet-model II reads M_{H^{±}}>480 GeV at 95% C.L. PMID:26196614

  20. Updated Next-to-Next-to-Leading-Order QCD Predictions for the Weak Radiative B -Meson Decays

    NASA Astrophysics Data System (ADS)

    Misiak, M.; Asatrian, H. M.; Boughezal, R.; Czakon, M.; Ewerth, T.; Ferroglia, A.; Fiedler, P.; Gambino, P.; Greub, C.; Haisch, U.; Huber, T.; Kamiński, M.; Ossola, G.; Poradziński, M.; Rehman, A.; Schutzmeier, T.; Steinhauser, M.; Virto, J.

    2015-06-01

    Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O (αs2) and lower-order perturbative corrections that have been calculated after 2006. New estimates of nonperturbative effects are taken into account, too. For the C P - and isospin-averaged branching ratios, we find Bs γ=(3.36 ±0.23 )×10-4 and Bd γ=(1.7 3-0.22+0.12) ×10-5 , for Eγ>1.6 GeV . Both results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain Rγ≡(Bs γ+Bd γ) /Bc ℓν=(3.31 ±0.22 )×10-3 . A new bound from Bs γ on the charged Higgs boson mass in the two-Higgs-doublet-model II reads MH±>480 GeV at 95% C.L.

  1. Physical properties of double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6}

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji

    2013-01-15

    The crystal, magnetic structures and physical properties of the double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6} are investigated through powder X-ray and neutron diffraction, electrical conductivity, magnetic susceptibility, and specific heat measurements. The Rietveld analysis reveals that the Nd and Os ions are arranged with regularity over the six-coordinate B sites in a distorted perovskite ABO{sub 3} framework. The monoclinic crystal structure described by space group P2{sub 1}/n (tilt system a{sup -}a{sup -}c{sup +}) becomes more distorted with decreasing temperature from 300 K down to 2.5 K. This compound shows a long-range antiferromagnetic ordering of Os{sup 5+} below 65 K. An antiferromagnetic ordering of Nd{sup 3+} also occurs at lower temperatures ({approx}20 K). The magnetic structure is of Type I and the magnetic moments of Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. - Graphical Abstract: The Magnetic structure of Ba{sub 2}NdOsO{sub 6} is of Type I, and the magnetic moments of the Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. Highlights: Black-Right-Pointing-Pointer Crystal structures of Ba{sub 2}NdOsO{sub 6} are determined to be monoclinic below 300 K. Black-Right-Pointing-Pointer Its electrical resistivity shows a Mott variable-range hopping behavior with localized carriers. Black-Right-Pointing-Pointer An antiferromagnetic ordering of the Os{sup 5+}moment occurs at 65 K. Black-Right-Pointing-Pointer The magnetic structure of Ba{sub 2}NdOsO{sub 6} is determined to be of Type I.

  2. FOREWORD: Extreme QCD 2012 (xQCD)

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei

    2013-04-01

    The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this

  3. Baryons in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-15

    We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.

  4. QCD tests at CDF

    SciTech Connect

    Giannetti, P. )

    1991-05-01

    Recent analysis of jet data taken at the Fermilab Tevatron Collider at {radical}S = 1.8 Tev are presented. Inclusive jet, dijet, trijet and direct photon measurements are compared to QCD parton level calculations, at orders {alpha}{sub s}{sup 3} or {alpha}{sub s}{sup 2}. The large total transverse energy events are well described by the Herwig shower Montecarlo. 19 refs., 20 figs., 1 tab.

  5. [Microsurgical 2nd toe transfer for catastrophic hand reconstruction].

    PubMed

    Placer, A; Lozano, Ja

    2007-01-01

    The correct reconstruction of the catastrophic hand requires complex surgical techniques. The microsurgical transference of a toe is indicated when all other reconstructive options are shown to be useless for the reconstruction of the required clamp function. In this clinical note we set out the case of a 32 year old man, who came to our accident and emergency department after suffering a traffic accident. After exploration the diagnosis was that of catastrophic left hand, among other policontusions. Urgent surgery was carried out, saving the maximum possible viable structures. The immediate result of this surgery was a hand with 1st, 4th and 5th functional fingers. As the essential clamp function between the 1st and 4th or 5th fingers was not totally satisfactory, we decided to reconstruct the 3rd finger of his hand with his ipsilateral 2nd toe. All pertinent studies to determine vascularisation of the flap were carried out in planning the surgery, and the microsurgical transfer was then realized, which was successful. Today, after a suitable rehabilitation, the patient has recovered a satisfactory function of heavy and fine clamp in the operated hand. Toe to hand transfer is a good option for finger reconstruction and its function. Rehabilitation is the key to functional recovery. PMID:18227902

  6. 2nd PEGS Annual Symposium on Antibodies for Cancer Therapy

    PubMed Central

    Ho, Mitchell; Royston, Ivor; Beck, Alain

    2012-01-01

    The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market.  The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors.  Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery. PMID:22864478

  7. Aging Studies of 2nd Generation BaBar RPCs

    SciTech Connect

    Band, H.R.; /SLAC

    2007-09-25

    The BaBar detector, operating at the PEPII B factory of the Stanford Linear Accelerator Center (SLAC), installed over 200 2nd generation Resistive Plate Chambers (RPCs) in 2002. The streamer rates produced by backgrounds and signals from normal BaBar running vary considerably (0.1- >20 Hz/cm2) depending on the layer and position of the chambers, thus providing a broad spectrum test of RPC performance and aging. The lowest rate chambers have performed very well with stable efficiencies averaging 95%. Other chambers had rate-dependant inefficiencies due to Bakelite drying which were reversed by the introduction of humidified gases. RPC inefficiencies in the highest rate regions of the higher rate chambers have been observed and also found to be rate dependant. The inefficient regions grow with time and have not yet been reduced by operation with humidified input gas. Three of these chambers were converted to avalanche mode operation and display significantly improved efficiencies. The rate of production of HF in the RPC exhaust gases was measured in avalanche and streamer mode RPCs and found to be comparable despite the lower current of the avalanche mode RPCs.

  8. PREFACE: 2nd International Symposium "Optics and its Applications"

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav

    2016-01-01

    The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.

  9. APTWG: 2nd Asia-Pacific Transport Working Group Meeting

    NASA Astrophysics Data System (ADS)

    Dong, J. Q.; Shi, Y. J.; Tamura, N.; Jhang, Hogun; Watanabe, T.-H.; Ding, X. T.

    2013-02-01

    This conference report summarizes the contributions to and discussions at the 2nd Asia-Pacific Transport Working Group Meeting held in Chengdu, China, from 15 to 18 May 2012. The topics of the meeting were organized under five main headings: momentum transport, non-locality in transport, edge turbulence and L-H transition, three-dimensional effects on transport physics, and particle, momentum and heat pinches. It is found that lower hybrid wave and ion cyclotron wave induce co-current rotation while electron cyclotron wave induces counter-current rotation. A four-stage imaging for low (L) to high (H) confinement transition gradually emerges and a more detailed verification is urgently expected. The new edge-localized modes mitigation technique with supersonic molecular beam injection was approved to be effective to some extent on HL-2A and KSTAR. It is also found that low collisionality, trapped electron mode to ion temperature gradient transition (or transition of higher to lower density and temperature gradients), fuelling and lithium coating are in favour of inward pinch of particles in tokamak plasmas.

  10. Next-to-Leading-Order QCD Correction to e{sup +}e{sup -}{yields}J/{psi}+{eta}{sub c} at {radical}(s)=10.6 GeV

    SciTech Connect

    Zhang Yujie; Gao Yingjia; Chao, K.-T.

    2006-03-10

    One of the most challenging open problems in heavy quarkonium physics is the double charm production in e{sup +}e{sup -} annihilation at B factories. The measured cross section of e{sup +}e{sup -}{yields}J/{psi}+{eta}{sub c} is much larger than leading order (LO) theoretical predictions. With the nonrelativistic QCD factorization formalism, we calculate the next-to-leading order (NLO) QCD correction to this process. Taking all one-loop self-energy, triangle, box, and pentagon diagrams into account, and factoring the Coulomb-singular term into the cc bound state wave function, we get an ultraviolet and infrared finite correction to the cross section of e{sup +}e{sup -}{yields}J/{psi}+{eta}{sub c} at {radical}(s)=10.6 GeV. We find that the NLO QCD correction can substantially enhance the cross section with a K factor (the ratio of NLO to LO) of about 1.8-2.1; hence, it greatly reduces the large discrepancy between theory and experiment.

  11. QCD corrections to triboson production

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Achilleas; Melnikov, Kirill; Petriello, Frank

    2007-07-01

    We present a computation of the next-to-leading order QCD corrections to the production of three Z bosons at the Large Hadron Collider. We calculate these corrections using a completely numerical method that combines sector decomposition to extract infrared singularities with contour deformation of the Feynman parameter integrals to avoid internal loop thresholds. The NLO QCD corrections to pp→ZZZ are approximately 50% and are badly underestimated by the leading order scale dependence. However, the kinematic dependence of the corrections is minimal in phase space regions accessible at leading order.

  12. A next-to-leading-order QCD analysis of charged current event rates from (nu)N deep inelastic scattering at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Goldman, Jesse Matthew

    This dissertation details the results of a NLO QCD analysis of overlinenoverline Fe and overlinenoverline Fe scattering at the Fermilab Tevatron. Recently an increasing number of measurements by a variety of experiments have led to a good understanding of the partonic contents of the nucleon. Accurate parameterisations of these contents and the fact that neutrino Deep Inelastic Scattering is an ideal probe of the nucleus allow for a unique understanding of QCD and related phenomena in the kinematic region for which Q2 > 5 GeV 2 and 0.1 < x < 0.7. Perturbative QCD and such non-perturbative effects as the EMC correction, the longitudinal structure function, RL, and higher twist corrections are studied and χ2 comparisons are made with the NuTeV charged current data sample. These comparisons indicate that a NLO perturbative QCD) model combined with the EMC correction and higher twist best agrees with the NuTeV data. Using this resultant model and altering the cuts to include all data for which 0.003 < x < 0.7 leads to a NLO measurement of the strange sea level, κ. Combining this result with the measurement of κ from the NuTeV dimuon analysis leads to limits on the Cabbibo-Kobayashi-Masakawa matrix element, Vcs, which are consistent with currently accepted values.

  13. Highlights of the 2 nd Bioinformatics Student Symposium by ISCB RSG-UK

    PubMed Central

    White, Benjamen; Fatima, Vayani; Fatima, Nazeefa; Das, Sayoni; Rahman, Farzana; Hassan, Mehedi

    2016-01-01

    Following the success of the 1 st Student Symposium by ISCB RSG-UK, a 2 nd Student Symposium took place on 7 th October 2015 at The Genome Analysis Centre, Norwich, UK. This short report summarizes the main highlights from the 2 nd Bioinformatics Student Symposium. PMID:27239284

  14. Examples to Accompany "Descriptive Cataloging of Rare Books, 2nd Edition."

    ERIC Educational Resources Information Center

    Association of Coll. and Research Libraries, Chicago, IL.

    This book is intended to be used with "Descriptive Cataloging of Rare Books," 2nd edition (DCRB) as an illustrative aid to catalogers and others interested in or needing to interpret rare book cataloging. As such, it is to be used in conjunction with the rules it illustrates, both in DCRB and in "Anglo-American Cataloging Rules," 2nd edition…

  15. Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika; Peterson, John; Conrad, Mark; Cook, Paul; Tiemi, Onishi

    2011-03-31

    This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.

  16. PREFACE: 2nd National Conference on Nanotechnology 'NANO 2008'

    NASA Astrophysics Data System (ADS)

    Czuba, P.; Kolodziej, J. J.; Konior, J.; Szymonski, M.

    2009-03-01

    This issue of Journal of Physics: Conference Series contains selected papers presented at the 2nd National Conference on Nanotechnology 'NANO2008', that was held in Kraków, Poland, 25-28 June 2008. It was organized jointly by the Polish Chemical Society, Polish Physical Society, Polish Vacuum Society, and the Centre for Nanometer-scale Science and Advanced Materials (NANOSAM) of the Jagiellonian University. The meeting presentations were categorized into the following topics: 1. Nanomechanics and nanotribology 2. Characterization and manipulation in nanoscale 3. Quantum effects in nanostructures 4. Nanostructures on surfaces 5. Applications of nanotechnology in biology and medicine 6. Nanotechnology in education 7. Industrial applications of nanotechnology, presentations of the companies 8. Nanoengineering and nanomaterials (international sessions shared with the fellows of Maria-Curie Host Fellowships within the 6th FP of the European Community Project 'Nano-Engineering for Expertise and Development, NEED') 9. Nanopowders 10. Carbon nanostructures and nanosystems 11. Nanoelectronics and nanophotonics 12. Nanomaterials in catalysis 13. Nanospintronics 14. Ethical, social, and environmental aspects of nanotechnology The Conference was attended by 334 participants. The presentations were delivered as 7 invited plenary lectures, 25 invited topical lectures, 78 oral and 108 poster contributions. Only 1/6 of the contributions presented during the Conference were submitted for publication in this Proceedings volume. From the submitted material, this volume of Journal of Physics: Conference Series contains 37 articles that were positively evaluated by independent referees. The Organizing Committee gratefully acknowledges all these contributions. We also thank all the referees of the papers submitted for the Proceedings for their timely and thorough work. We would like to thank all members of the National Program Committee for their work in the selection process of

  17. Renormalization in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, John C.

    2011-04-01

    In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  18. Seven topics in perturbative QCD

    SciTech Connect

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  19. QCD at nonzero chemical potential: Recent progress on the lattice

    NASA Astrophysics Data System (ADS)

    Aarts, Gert; Attanasio, Felipe; Jäger, Benjamin; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu

    2016-01-01

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  20. 2nd interface between ecology and land development in California

    USGS Publications Warehouse

    Keeley, Jon E.; Baer-Keeley, Melanie; Fortheringham, C.J.

    2000-01-01

    The 2nd Interface Between Ecology and Land Development Conference was held in association with Earth Day 1997, five years after the first Interface Conference. Rapid population growth in California has intensified the inevitable conflict between land development and preservation of natural ecosystems. Sustainable development requires wise use of diminishing natural resources and, where possible, restoration of damaged landscapes. These Earth Week Celebrations brought together resource managers, scientists, politicians, environmental consultants, and concerned citizens in an effort to improve the communication necessary to maintain our natural biodiversity, ecosystem processes and general quality of life. As discussed by our keynote speaker, Michael Soule, the best predictor of habitat loss is population growth and nowhere is this better illustrated than in California. As urban perimeters expand, the interface between wildlands and urban areas increases. Few problems are more vexing than how to manage the fire prone ecosystems indigenous to California at this urban interface. Today resource managers face increasing challenges of dealing with this problem and the lead-off section of the proceedings considers both the theoretical basis for making decisions related to prescribed burning and the practical application. Habitat fragmentation is an inevitable consequence of development patterns with significant impacts on animal and plant populations. Managers must be increasingly resourceful in dealing with problems of fragmentation and the often inevitable consequences, including susceptibility to invasive oganisms. One approach to dealing with fragmentation problems is through careful landplanning. California is the national leader in the integration of conservation and economics. On Earth Day 1991, Governor Pete Wilson presented an environmental agenda that promised to create between land owners and environmentalists, agreements that would guarantee the protection of

  1. QCD measurements at the Tevatron

    SciTech Connect

    Bandurin, Dmitry; /Florida State U.

    2011-12-01

    Selected quantum chromodynamics (QCD) measurements performed at the Fermilab Run II Tevatron p{bar p} collider running at {radical}s = 1.96 TeV by CDF and D0 Collaborations are presented. The inclusive jet, dijet production and three-jet cross section measurements are used to test perturbative QCD calculations, constrain parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, {alpha}{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. The diphoton production cross-sections check the validity of the NLO pQCD predictions, soft-gluon resummation methods implemented in theoretical calculations, and contributions from the parton-to-photon fragmentation diagrams. Events with W/Z+jets productions are used to measure many kinematic distributions allowing extensive tests and tunes of predictions from pQCD NLO and Monte-Carlo (MC) event generators. The charged-particle transverse momenta (p{sub T}) and multiplicity distributions in the inclusive minimum bias events are used to tune non-perturbative QCD models, including those describing the multiple parton interactions (MPI). Events with inclusive production of {gamma} and 2 or 3 jets are used to study increasingly important MPI phenomenon at high p{sub T}, measure an effective interaction cross section, {sigma}{sub eff} = 16.4 {+-} 2.3 mb, and limit existing MPI models.

  2. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  3. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  4. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  5. 22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING MACHINE. LIGHT TABLE USED TO CHECK FOR CLOTH DEFECTS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  6. 12. Bldg #13, 2nd floor, interior stone walls w/windows and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Bldg #13, 2nd floor, interior stone walls w/windows and bent pipe thru wall L and light bulbs in ceiling, to NE - Lawrence Machine Shop, Building No. 13, Union & Canal Streets, Lawrence, Essex County, MA

  7. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  8. 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic

    MedlinePlus

    ... news/fullstory_159807.html 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic Scientists concerned it ... the United States who was infected with a bacteria that is resistant to an antibiotic of last ...

  9. Front elevation of Rostrum with 2nd Division American Expeditionary Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Front elevation of Rostrum with 2nd Division American Expeditionary Force Monument in foreground, view to northwest - Cypress Hills National Cemetery, Jamaica Avenue Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  10. 37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 CREEL MACHINES, WHICH FEED YARN INTO KNITTING MACHINES. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  11. 73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, SHOWING STEPPED PLATFORM, BENCHES, AND LIGHT STANDARDS - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  12. 21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH HOLLOW STEEL SASH AND POLISHED PLATE WIRE GLASS. THIS WINDOW IS AT THE FRONT OF THE BUILDING. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  13. 77 FR 53862 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...) Dana Mermelstein (202) (2nd Review). 482-1391 Silicomanganese from Venezuela (A-307-820) (2nd...

  14. QCD for Postgraduates (4/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 4 We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.

  15. Simplifying Multi-Jet QCD Computation

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2011-11-04

    These lectures give a pedagogical discussion of the computation of QCD tree amplitudes for collider physics. The tools reviewed are spinor products, color ordering, MHV amplitudes, and the Britto-Cachazo-Feng-Witten recursion formula.

  16. Foundations of Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2011-04-01

    1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.

  17. Foundations of Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2013-11-01

    1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.

  18. Sudakov safety in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew J.; Marzani, Simone; Thaler, Jesse

    2015-06-01

    Traditional calculations in perturbative quantum chromodynamics (pQCD) are based on an order-by-order expansion in the strong coupling αs. Observables that are calculable in this way are known as "safe." Recently, a class of unsafe observables was discovered that do not have a valid αs expansion but are nevertheless calculable in pQCD using all-orders resummation. These observables are called "Sudakov safe" since singularities at each αs order are regulated by an all-orders Sudakov form factor. In this paper, we give a concrete definition of Sudakov safety based on conditional probability distributions, and we study a one-parameter family of momentum sharing observables that interpolate between the safe and unsafe regimes. The boundary between these regimes is particularly interesting, as the resulting distribution can be understood as the ultraviolet fixed point of a generalized fragmentation function, yielding a leading behavior that is independent of αs.

  19. Transient 2(nd) Degree Av Block Mobitz Type II: A Rare Finding in Dengue Haemorrhagic Fever.

    PubMed

    Nigam, Ashwini Kumar; Singh, Omkar; Agarwal, Ayush; Singh, Amit K; Yadav, Subhash

    2015-05-01

    Dengue has been a major problem as endemic occurs almost every year and causes a state of panic due to lack of proper diagnostic methods and facilities for proper management. Patients presenting with classical symptoms are easy to diagnose, however as a large number of cases occur every year, a number of cases diagnosed with dengue fever on occasion presents with atypical manifestations, which cause extensive evaluation of the patients, unnecessary referral to higher centre irrespective of the severity and therefore a rough idea of these manifestations must be present in the backdrop in order to prevent these problems. Involvement of cardiovascular system in dengue has been reported in previous studies, and they are usually benign and self-limited. The importance of study of conduction abnormalities is important as sometimes conduction blocks are the first sign of acute myocarditis in patients of Dengue Hemorrhagic Fever in shock. We present here a case of 2(nd) Degree Mobitz Type II atrioventricular AV block in a case of Dengue Hemorrhagic fever reverting to the normal rhythm in recovery phase and no signs thereafter on follow up. PMID:26155512

  20. Acid soil and acid rain, 2nd edition

    SciTech Connect

    Kennedy, I.R.

    1992-01-01

    This book examines the basic chemical processes involved in acidification in order to better assess their long-term effects on the status of soils, the health of plants and other living species that depend on them. It also discusses acidity, pH and protons their significance in bioenergetics and the consequent role of autotrophic organisms in acidifying ecosystems. This edition incorporates and integrates recent findings that render more explanations of the causes of the environmental impacts of acidity, especially in forests and lakes. Also explores current research into acid rain and soil in order to devise appropriate measures for their amelioration.

  1. Writing II for 2nd Year EFL Student Teachers

    ERIC Educational Resources Information Center

    Abdallah, Mahmoud M. S.

    2015-01-01

    Writing is a very important skill that should be mastered properly by university students, especially pre-service language teachers (e.g. EFL student teachers). In order to present their ideas efficiently in the context of their academic study, they have to be trained well on how to write meaningful pieces (e.g. essays, academic reports,…

  2. Heavy Quarks, QCD, and Effective Field Theory

    SciTech Connect

    Thomas Mehen

    2012-10-09

    The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.

  3. Radionuclide and radiation protection data handbook 2nd edition (2002).

    PubMed

    Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C

    2002-01-01

    This handbook is a reference source of radionuclide and radiation protection information. Its purpose is to provide users of radionuclides in medicine, research and industry with consolidated and appropriate information and data to handle and transport radioactive substances safely. It is mainly intended for users in low and intermediate activity laboratories. Individual data sheets are provided for a wide range of commonly used radionuclides (144 in total). These radionuclides are classified into five different groups as a function of risk level, represented by colours red, orange, yellow, green and blue, in descending order of risk. PMID:11916063

  4. The Beta Pictoris Circumstellar Disk (5202; 2ND Visit)

    NASA Astrophysics Data System (ADS)

    Trauger, John

    1994-01-01

    We propose new methods to examine the circumstellar disk around Beta Pictoris in order to determine its radial profile, and hence (in combination with IRAS data) to fix its albedo and temperature profile. These observations will extend previous extensive ground based coronagraphic observations, and models by members of the science team. The data will enable us to understand better the central clearing in the disk and whether it is caused by sublimation or possible planet formation. They will also constrain the geometric propertie of the disk including its inclination angle, vertical thickness and radial profile. Such observations limit models for the dynamics of the disk, includin its velocity dispersion and hence mass distribution, and radial mass transport mechanisms. If density waves or clear zones are observed, they will give indirect evidence for the presence of massive bodies (planets) in the disk. Th observations involve a combination of roll deconvolution, polarizers and PSF modelling in order to allow the central stellar image and associated scattered light to be subtracted. Ultraviolet observations will constrain the particle size distribution and the composition of the disk. The observations require the new capabilities in WFPC2 provided by the absence of bleeding across columns, as well as its UV capabilities.

  5. Soft and hard contributions to QCD processes

    SciTech Connect

    Slavnov, D.A.; Bakulina, E.N.

    1995-06-01

    QCD corrections of order {alpha}{sub s} for deep inelastic lepton scattering and the Drell-Yan process are considered. The common soft part of these corrections is found. This result makes it possible to determine the modified parton distribution functions unambiguously beyond the leading logarithmic approximation. These distribution functions are used to obtain QCD corrections that are free of infrared and collinear ambiguities. 6 refs., 2 figs.

  6. A compendium of fossil marine animal families, 2nd edition

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1992-01-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  7. A compendium of fossil marine animal families, 2nd edition.

    PubMed

    Sepkoski, J J

    1992-03-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification. PMID:11542296

  8. QCD with chiral 4-fermion interactions ({chi}QCD)

    SciTech Connect

    Kogut, J.B.; Sinclair, D.K.

    1996-10-01

    Lattice QCD with staggered quarks is augmented by the addition of a chiral 4-fermion interaction. The Dirac operator is now non-singular at m{sub q}=0, decreasing the computing requirements for light quark simulations by at least an order of magnitude. We present preliminary results from simulations at finite and zero temperatures for m{sub q}=0, with and without gauge fields. Chiral QCD enables simulations at physical u and d quark masses with at least an order of magnitude saving in CPU time. It also enables simulations with zero quark masses which is important for determining the equation of state. A renormalization group analysis will be needed to continue to the continuum limit. 7 refs., 2 figs.

  9. Regional Observations of North Korea Explosions: 1st and 2nd Tests

    NASA Astrophysics Data System (ADS)

    Chi, Heon Cheol; Shin, Jin Soo; Lee, Hee-Il; Park, Jung Ho; Sheen, Dong-Hoon; Kim, Geunyoung; Kim, Tea Sung; Che, Il-Young; Lim, In-Seub

    2010-05-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthally full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of the 1st and the 2nd test data showed that the 2nd test site was moved approximately 2 Km westward from 1st site. The Pn/Lg spectral ratio clearly discriminate these events from two nearby natural earthquakes above 4 Hz. Full moment tensor inversion also indicate the 2nd test had a very large isotropic component. But mb-Ms discrimination, which has been considered one of the most reliable discriminants for separating explosions and earthquakes, did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of the 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of both 1st and 2nd tests, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. These variations are mainly due to lateral variation of crustal structures surrounding the test site. Remarkably mb(Lg) showed very linear relationship with mb(Pn). By considering attenuation characteristics according to the propagation path, the variations could be effectively reduced. The cut-off frequencies of P wave of both tests showed no or negligible difference even though the estimated yield of the 2nd test were much larger than that of the 1st one. The ratio of P-wave amplitudes of two tests showed from 2 to 3.1 times. Correspondingly the

  10. Monitoring North Korea Explosions: Status and Result of 1st and 2nd Tests (Invited)

    NASA Astrophysics Data System (ADS)

    Chi, H.; Lee, H.; Shin, J.; Park, J.; Sheen, D.; Kim, G.; Che, I.; Lim, I.; Kim, T.

    2009-12-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthal full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries, and only stations with the distance of 200 to 550 Km from the test site were considered. Irrespective of azimuthal directions of stations from the test site, the conventional discrimination, Pn/Lg spectral ratio clearly showed that both tests were explosion. But mb-Ms discrimination did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of 1st test, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of 1st and 2nd test data showed that 2nd test site was moved approximately 2 Km westward from 1st site. The cut-off frequencies of P wave of 1st and 2nd tests showed no or negligible difference even though the estimated yield of 2nd test were much larger than that of 1st one. The ratio of 1st and 2nd P-wave amplitudes showed from 2 to 3.1 times. Correspondingly the estimated energy or yield were ranged from 4 to roughly 10 times. KIGAM evaluated the yield of 2nd test were 8 times in the average larger than that of 1st one.

  11. An Introduction to Thermodynamics and Statistical Mechanics - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Stowe, Keith

    2003-03-01

    This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities, in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics - the study of small systems interacting with huge reservoirs. The changes to this second edition have been made after more than 10 years classroom testing and student feedback. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd numbered problems, and solutions to even problems are available to instructors at www.cambridge.org/9780521865579. The entire book has been re-written and now covers more topics It has a greater number of homework problems which range in difficulty from warm-ups to challenges It is concise and has an easy reading style

  12. Organic Chemistry, 2nd Edition (by Paula Y. Bruice)

    NASA Astrophysics Data System (ADS)

    Katz, Marlene G.

    1998-11-01

    Prentice Hall: Englewood Cliffs, NJ, 1998, xxx +1256 pp, 6 appendices. ISBN 0-13-841925-6. $99. The author has made some constructive changes to the second edition of this visually pleasing book. The chapter order has been rearranged so that all of spectroscopy is covered in two adjoining chapters (new problems combining NMR and IR have been added), all of the chapters on bioorganic chemistry are grouped together (information on reducing sugars has been added), and the last section now covers heterocycles, pericyclic reactions, polymer synthesis, multistep synthetic strategies, and drug design. The publisher offers additional material at its Web site and a paperback for students assisting them in using the Internet. The ChemCentral Organic Web site has problem sets to supplement each chapter (including hints for struggling students) and animations of molecules undergoing reactions. In addition the Web site provides syllabus construction software for instructors. The accompanying study guide/solutions manual, written by the textbook author, contains a glossary, answers to chapter problems, and a practice test (for the first twenty chapters). There are sections called "special topics" which offer in-depth treatment of pH, pKa, buffers, and the electron-pushing formalism.

  13. DOE performance indicators for 2nd quarter CY 1993

    SciTech Connect

    Not Available

    1993-11-01

    The Department of Energy (DOE) has established a Department-wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment, safety, and health (ES&H) performance of the DOE at the Secretary and other management levels. This is the tenth in a series of quarterly reports generated for the Department of Energy Idaho Operations Office (DOE-ID) by EG&G Idaho, Inc. to meet the requirements of the PI Program as directed by the DOE Standard (DOE-STD-1048-92). The information in this tenth quarterly report, while contributing to a historical database for supporting future trending analysis, does not at this time provide a sound basis for developing trend-related conclusions. In the future, it is expected that trending and analysis of operational data will enhance the safety culture in both DOE and contractor organizations by providing an early warning of deteriorating environment, safety, and health conditions. DOE-STD-1048-92 identifies four general areas of PIs. They are: Personnel Safety, Operational Incidents, Environment, and Management. These four areas have been subdivided into 26 performance indicators. Approximately 115 performance indicator control and distribution charts comprise the body of this report. A brief summary of PIs contained in each of these general areas is provided. The four EG&G facilities whose performance is charted herein are as follows: (1) The Advanced Test Reactor (ATR), (2) The Radioactive Waste Management Complex (RWMC), (3) The Waste Experimental Reduction Facility (WERF), and (4) The Test Reactor Area (TRA) Hot Cells.

  14. Dark energy from QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-30

    We review two mechanisms rooted in the infrared sector of QCD which, by exploiting the properties of the QCD ghost, as introduced by Veneziano, provide new insight on the cosmological dark energy problem, first, in the form of a Casimir-like energy from quantising QCD in a box, and second, in the form of additional, time-dependent, vacuum energy density in an expanding universe. Based on [1, 2].

  15. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect

    Maxfield, D.A.

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  16. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    EPA Science Inventory

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  17. 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Entomological Society of China (ESC) and Beijing Institute of Microbiology and Epidemiology (BIME) hosted the 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases in Beijing, China, May 23-27, 2011. The theme of the Forum was “Impact of global climate ch...

  18. Technical Adequacy of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report

    ERIC Educational Resources Information Center

    Erford, Bradley T.; Miller, Emily M.; Isbister, Katherine

    2015-01-01

    This study provides preliminary analysis of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report, which was designed to screen individuals aged 10 years and older for anxiety and behavior symptoms. Score reliability and internal and external facets of validity were good for a screening-level test.

  19. Stem cells and cancer immunotherapy: Arrowhead’s 2nd annual cancer immunotherapy conference

    PubMed Central

    2014-01-01

    Investigators from academia and industry gathered on April 4 and 5, 2013, in Washington DC at the Arrowhead’s 2nd Annual Cancer Immunotherapy Conference. Two complementary concepts were discussed: cancer “stem cells” as targets and therapeutic platforms based on stem cells.

  20. Evaluation of a Hand Washing Program for 2nd-Graders

    ERIC Educational Resources Information Center

    Tousman, Stuart; Arnold, Dani; Helland, Wealtha; Roth, Ruth; Heshelman, Nannatte; Castaneda, Oralia; Fischer, Emily; O'Neil, Kristen; Bileto, Stephanie

    2007-01-01

    The purpose of this project was to determine if a multiple-week learner-centered hand washing program could improve hand hygiene behaviors of 2nd-graders in a northern Illinois public school system. Volunteers from the Rockford Hand Washing Coalition went into 19 different classrooms for 4 consecutive weeks and taught a learner-centered program.…

  1. The Effect of Using Computer Edutainment on Developing 2nd Primary Graders' Writing Skills

    ERIC Educational Resources Information Center

    Mohammed Abdel Raheem, Azza Ashraf

    2011-01-01

    The present study attempted to examine the effect of using computer edutainment on developing 2nd graders' writing skills. The study comprised thirty-second year primary stage enrolled in Bani Hamad primary governmental school, Minia governorate. The study adopted the quasi-experimental design. Thirty participants were randomly assigned to one…

  2. 70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND TEE (LEFT) AND NORTHWEST SIDE OF TEE (RIGHT), WITH VIEW OF PILINGS, LOOKING SOUTH-SOUTHWEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  3. 71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING VIEW OF PILINGS, LIFEGURD TOWER ON SOUTHEAST SIDE OF TEE (RIGHT), LOOKING EAST-NORTHEAST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  4. Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at.%) thin films

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wojcieszak, Damian; Kaczmarek, Danuta; Domaradzki, Jaroslaw; Zatryb, Grzegorz; Misiewicz, Jan; Morgiel, Jerzy

    2015-04-01

    Titanium dioxide thin films, each doped with the same amount of neodymium (1 at.%) were deposited by Low Pressure Hot Target Reactive Sputtering and High Energy Reactive Magnetron Sputtering processes in order to obtain anatase and rutile thin film structures respectively. The microstructure and phase composition were analyzed using the transmission electron microscopy method including high resolution electron microscopy imaging. The measurements of the optical properties showed, that both prepared thin films were transparent in the visible light range and had a low extinction coefficient of ca. 3 ṡ 10-3. The thin film with the anatase structure had a lower cut-off wavelength and refractive index and a higher value of optical energy band gap as-compared to the TiO2:Nd coating with the rutile structure. Simultaneously, more efficient photoluminescence emission was observed for the rutile thin films.

  5. QCD results at CDF

    SciTech Connect

    Norniella, Olga; /Barcelona, IFAE

    2005-01-01

    Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.

  6. QCD resummation for hadronic final states

    NASA Astrophysics Data System (ADS)

    Luisoni, Gionata; Marzani, Simone

    2015-10-01

    We review the basic concepts of all-order calculations in quantum chromodynamics (QCD) and their application to collider phenomenology. We start by discussing the factorization properties of QCD amplitudes and cross-sections in the soft and collinear limits and their resulting all-order exponentiation. We then discuss several applications of this formalism to observables which are of great interest at particle colliders. In this context, we describe the all-order resummation of event-shape distributions, as well as observables that probe the internal structure of hadronic jets.

  7. Innovations in Lattice QCD Algorithms

    SciTech Connect

    Konstantinos Orginos

    2006-06-25

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.

  8. The efficiency of second order orientation coherence detection.

    PubMed

    Baldwin, Alex S; Husk, Jesse S; Edwards, Lauren; Hess, Robert F

    2015-04-01

    Neurons in early visual cortex respond to both luminance- (1st order) and contrast-modulated (2nd order) local features in the visual field. In later extra-striate areas neurons with larger receptive fields integrate information across the visual field. For example, local luminance-defined features can be integrated into contours and shapes. Evidence for the global integration of features defined by contrast-modulation is less well established. While good performance in some shape tasks has been demonstrated with 2nd order stimuli, the integration of contours fails with 2nd order elements. Recently we developed a global orientation coherence task that is more basic than contour integration, bearing similarity to the well-established global motion coherence task. Similar to our previous 1st order result for this task, we find 2nd order coherence detection to be scale-invariant. There was a small but significant threshold elevation for 2nd order relative to 1st order. We used a noise masking approach to compare the efficiency of orientation integration for the 1st and 2nd order. We find a significant deficit for 2nd order detection at both the local and global level, however the small size of this effect stands in stark contrast against previous results from contour-integration experiments, which are almost impossible with 2nd order stimuli. PMID:25749675

  9. Individual Differences In The School Performance of 2nd-Grade Children Born to Low-Income Adolescent Mothers

    ERIC Educational Resources Information Center

    Apiwattanalunggarn, Kunlakarn Lekskul; Luster, Tom

    2005-01-01

    The purpose of this study was to investigate factors that contribute to individual differences in the school performance of 2nd-grade children born to adolescent mothers. The sample of this study was 90 low-income adolescent mothers and their children. Data were collected from the adolescent mothers and their first-born children, now in 2nd grade,…

  10. Effective charges and expansion parameters in QCD

    SciTech Connect

    Braaten, E.; Leveille, J.P.

    1981-10-01

    The momentum subtraction scheme MOM has been empirically successful in producing small QCD corrections to physical quantities at one loop order. By explicit calculations, we show that with a suitable shift in the renormalization scale, the minimal subtraction scheme coupling constant ..cap alpha../sub MS/ coincides with typical momentum scheme coupling constants at both one and two loop order.

  11. Renormalization group analysis in nonrelativistic QCD for colored scalars

    SciTech Connect

    Hoang, Andre H.; Ruiz-Femenia, Pedro

    2006-01-01

    The velocity nonrelativistic QCD Lagrangian for colored heavy scalar fields in the fundamental representation of QCD and the renormalization group analysis of the corresponding operators are presented. The results are an important ingredient for renormalization group improved computations of scalar-antiscalar bound state energies and production rates at next-to-next-to-leading-logarithmic (NNLL) order.

  12. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  13. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD. PMID:24010426

  14. Very large millimeter/submillimeter array toward search for 2nd Earth

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoru; Saito, Masao

    2012-09-01

    ALMA (Atacama Large Millimeter/submillimeter Array) is a revolutionary radio telescope and its early scientific operation has just started. It is expected that ALMA will resolve several cosmic questions and will give us a new cosmic view. Our passion for astronomy naturally goes beyond ALMA because we believe that the 21st-century astronomy should pursue the new scientific frontier. In this conference, we propose a project of the future radio telescope to search for habitable planets and finally detect 2nd Earth as a migratable planet. Detection of 2nd Earth is one of the ultimate dreams not only for astronomers but also for every human being. To directly detect 2nd Earth, we have to carefully design the sensitivity and angular resolution of the telescope by conducting trade-off analysis between the confusion limit and the minimum detectable temperature. The result of the sensitivity analysis is derived assuming an array that has sixty-four (64) 50-m antennas with 25-μm surface accuracy mainly located within the area of 300 km (up to 3000 km), dual-polarization SSB receivers with the best noise temperature performance achieved by ALMA or better, and IF bandwidth of 128 or 256 GHz.. We temporarily name this telescope "Very Large Millimeter/Submillimeter Array (VLMSA)". Since this sensitivity is extremely high, we can have a lot of chances to study the galaxy, star formation, cosmology and of course the new scientific frontier.

  15. NASA 2nd Generation RLV Program Introduction, Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.

  16. Application research on enhancing near-infrared micro-imaging quality by 2nd derivative

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ma, Zhi-hong; Zhao, Liu; Wang, Bei-hong; Han, Ping; Pan, Li-gang; Wang, Ji-hua

    2013-08-01

    Near-infrared micro-imaging will not only provide the sample's spatial distribution information, but also the spectroscopic information of each pixel. In this thesis, it took the artificial sample of wheat flour and formaldehyde sodium sulfoxylate distribution given for example to research the data processing method for enhancing the quality of near-infrared micro-imaging. Near-infrared spectroscopic feature of wheat flour and formaldehyde sodium sulfoxylate being studied on, compare correlation imaging and 2nd derivative imaging were applied in the imaging processing of the near-infrared micro-image of the artificial sample. Furthermore, the two methods were combined, i.e. 2nd derivative compare correlation imaging was acquired. The result indicated that the difference of the correlation coefficients between the two substances, i.e. wheat flour and formaldehyde sodium sulfoxylate, and the reference spectrum has been increased from 0.001 in compare correlation image to 0.796 in 2nd derivative compare correlation image respectively, which enhances the imaging quality efficiently. This study will, to some extent, be of important reference significance to near-infrared micro-imaging method research of agricultural products and foods.

  17. Resonances in QCD

    NASA Astrophysics Data System (ADS)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  18. Variable flavor number parton distributions and weak gauge and Higgs boson production at hadron colliders at next-to-next-to-leading order of QCD

    SciTech Connect

    Jimenez-Delgado, P.; Reya, E.

    2009-12-01

    Based on our recent next-to-next-to-leading order (NNLO) dynamical parton distributions as obtained in the 'fixed flavor number scheme', we generate radiatively parton distributions in the 'variable flavor number scheme' where the heavy-quark flavors (c,b,t) also become massless partons within the nucleon. Only within this latter factorization scheme are NNLO calculations feasible at present, since the required partonic subprocesses are only available in the approximation of massless initial-state partons. The NNLO predictions for gauge boson production are typically larger (by more than 1{sigma}) than the next-to-leading order (NLO) ones, and rates at LHC energies can be predicted with an accuracy of about 5%, whereas at Tevatron they are more than 2{sigma} above the NLO ones. The NNLO predictions for standard model Higgs-boson production via the dominant gluon fusion process have a total (parton distribution function and scale) uncertainty of about 10% at LHC which almost doubles at the lower Tevatron energies; they are typically about 20% larger than the ones at NLO but the total uncertainty bands overlap.

  19. QCD at D0 and CDF

    SciTech Connect

    Blazey, G.C.

    1995-05-01

    Selected recent Quantum Chromodynamics (QCD) results from the D0 and CDF experiments at the Fermilab Tevatron are presented and discussed. The inclusive jet and inclusive triple differential dijet cross sections are compared to next-to-leading order QCD calculations. The sensitivity of the dijet cross section to parton distribution functions (for hadron momentum fractions {approximately} 0.01 to {approximately} 0.4) will constrain the gluon distribution of the proton. Two analyses of dijet production at large rapidity separation are presented. The first analysis tests the contributions of higher order processes to dijet production and can be considered a test of BFKL or GLAP parton evolution. The second analysis yields a strong rapidity gap signal consistent with colorless exchange between the scattered partons. The prompt photon inclusive cross section is consistent with next-to-leading order QCD only at the highest transverse momenta. The discrepancy at lower momenta may be indicative of higher order processes impacting a transverse momentum or ``k{sub T}`` to the partonic interaction. The first measurement of the strong coupling constant from the Tevatron is also presented. The coupling constant can be determined from the ratio of W + 1jet to W + 0jet cross sections and a next-to-leading order QCD calculation.

  20. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ryttov, Thomas A.

    2016-08-01

    We suggest how to consistently calculate the anomalous dimension γ* of the ψ ¯ ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n +1 loop beta function and n loop anomalous dimension are known, then γ* can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O (Δfn) , where Δf=N¯ f-Nf , Nf is the number of flavors, and N¯f is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δf. We then compute γ* through O (Δf2) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ* is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ* through O (Δf3) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ* are observed for a large range of flavors.

  1. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.

    PubMed

    Ryttov, Thomas A

    2016-08-12

    We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors. PMID:27563948

  2. Synthesis, structural characterization, and electrical properties of new oxygen-deficient tetragonal tungsten bronzes Ba2NdTi(2+x)Nb(3-x)O(15-x/2).

    PubMed

    Prades, Marta; Masó, Nahum; Beltrán, Héctor; Cordoncillo, Eloisa; West, Anthony R

    2013-02-18

    Oxygen-deficient tetragonal tungsten bronzes ceramics with general formula Ba(2)NdTi(2+x)Nb(3-x)O(15-x/2) (0 ≤ x ≤ 1) have been prepared by low temperature solvothermal synthesis with final firing of ceramics at 1100-1300 °C in air. Rietveld refinement of X-ray powder diffraction (XRD) and neutron powder diffraction (ND) data at room temperature of Ba(2)NdTi(3)Nb(2)O(14.5) shows that Ba and Nd are ordered on the 15-coordinate and 12-coordinate sites, respectively, Ti and Nb are disordered nonrandomly over the two octahedral sites, and oxygen vacancies locate preferentially in the coordination sphere of Nd and Ti/Nb(2) atoms. Variable frequency impedance measurements show that samples are poor electronic conductors with activation energies ∼0.8-1.7 eV, conductivities ∼1 × 10(-5) S cm(-1) at ∼725 °C and with some evidence of oxide ion conduction at high x values. Composition dependence of the dielectric properties shows a transition from classic ferroelectric behavior with Ba(2)NdTi(2)Nb(3)O(15) to a relaxor-like behavior with Ba(2)NdTi(3)Nb(2)O(14.5). At intermediate compositions, both a first-order phase transition and relaxor-like behavior are observed. PMID:23360368

  3. BRST invariance in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2015-12-01

    In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.

  4. Phase structure of QCD for heavy quarks

    NASA Astrophysics Data System (ADS)

    Fischer, Christian S.; Luecker, Jan; Pawlowski, Jan M.

    2015-01-01

    We investigate the nature of the deconfinement and Roberge-Weiss transition in the heavy quark regime for finite real and imaginary chemical potential within the functional approach to continuum QCD. We extract the critical phase boundary between the first-order and crossover regions and also explore tricritical scaling. Our results confirm previous ones from finite volume lattice studies.

  5. Marking up lattice QCD configurations and ensembles

    SciTech Connect

    P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie

    2007-10-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  6. Dual condensate and QCD phase transition

    SciTech Connect

    Zhang Bo; Bruckmann, Falk; Fodor, Zoltan; Szabo, Kalman K.; Gattringer, Christof

    2011-05-23

    The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.

  7. Holographic models and the QCD trace anomaly

    SciTech Connect

    Jose L. Goity, Roberto C. Trinchero

    2012-08-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  8. QCD sign problem for small chemical potential

    SciTech Connect

    Splittorff, K.; Verbaarschot, J. J. M.

    2007-06-01

    The expectation value of the complex phase factor of the fermion determinant is computed in the microscopic domain of QCD at nonzero chemical potential. We find that the average phase factor is nonvanishing below a critical value of the chemical potential equal to half the pion mass and vanishes exponentially in the volume for larger values of the chemical potential. This holds for QCD with dynamical quarks as well as for quenched and phase quenched QCD. The average phase factor has an essential singularity for zero chemical potential and cannot be obtained by analytic continuation from imaginary chemical potential or by means of a Taylor expansion. The leading order correction in the p-expansion of the chiral Lagrangian is calculated as well.

  9. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    NASA Astrophysics Data System (ADS)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana

  10. [Model and enlightenment from rescue of August 2nd Kunshan explosion casualty].

    PubMed

    Tan, Q; Qiu, H B; Sun, B W; Shen, Y M; Nie, L J; Zhang, H W

    2016-01-01

    On August 2nd, 2014, a massive dust explosion occurred in a factory of Kunshan, resulting in a mass casualty involving 185 burn patients. They were transported to 20 medical institutions in Jiangsu province and Shanghai. More than one thousand of medical personnel of our country participated in this emergency rescue, and satisfactory results were achieved. In this paper, the characteristics of this accident were analyzed, the positive effects of interdisciplinary cooperation were affirmed, and the contingency plan, rescue process and pattern, and reserve, organization and management of talents during this rescue process were reviewed retrospectively. PMID:27426066

  11. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  12. Easy Glide in a Coarse-Grained Mg-2Zn-2Nd Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Jonas, John J.; Yue, Stephen

    2016-08-01

    Compression tests were performed at 673 K (400 °C) on a Mg-2Zn-2Nd alloy at the strain rates of 0.1, 0.01, and 0.001/s. The 0.1 and 0.01/s flow curves displayed work hardening to a peak stress at around 0.2 true strain. However, testing at 0.001/s led to steady-state flow at about 22 MPa from 0.03 true strain onwards. Such a steady-state flow is attributed to the predominance of basal slip under these conditions.

  13. The ratio of 2nd to 4th digit length: a new predictor of disease predisposition?

    PubMed

    Manning, J T; Bundred, P E

    2000-05-01

    The ratio between the length of the 2nd and 4th digits is: (a) fixed in utero; (b) lower in men than in women; (c) negatively related to testosterone and sperm counts; and (d) positively related to oestrogen concentrations. Prenatal levels of testosterone and oestrogen have been implicated in infertility, autism, dyslexia, migraine, stammering, immune dysfunction, myocardial infarction and breast cancer. We suggest that 2D:4D ratio is predictive of these diseases and may be used in diagnosis, prognosis and in early life-style interventions which may delay the onset of disease or facilitate its early detection. PMID:10859702

  14. [Infected chorionic hematoma as a cause of infection in the 2nd trimester].

    PubMed

    Weigel, M; Friese, K; Schmitt, W; Strittmatter, H J; Melchert, F

    1992-12-01

    Superinfected subchorionic haematomas are a rare septic focus in the 2nd trimenon. Symptoms being unspecific, the diagnosis has to be made by exclusion, in most cases. As the changes of a successful treatment of the manifest infection is poor, antibiotic prophylaxis as well as close laboratory controls and early antibiotic therapy should be discussed after sonographic diagnosis of an intrauterine haematoma. Two of our three patients reported on having suffered a miscarriage; only one pregnancy could be maintained after spontaneous depletion of the infected haemorrhage. PMID:1490559

  15. Strong decays of excited baryons in Large Nc QCD

    SciTech Connect

    Goity, J. L.; Scoccola, N. N.

    2007-02-12

    We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  16. Strong decays of excited baryons in Large Nc QCD

    SciTech Connect

    Goity, Jose; Scoccola, Norberto

    2007-02-01

    We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  17. QCD physics at CDF

    SciTech Connect

    Harris, R.

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus minus} .15(stat) {plus minus} .23(sys).

  18. QCD physics at CDF

    SciTech Connect

    Harris, R.; The CDF Collaboration

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus_minus} .15(stat) {plus_minus} .23(sys).

  19. Nonperturbative QCD corrections to electroweak observables

    SciTech Connect

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  20. QCD Evolution 2015

    NASA Astrophysics Data System (ADS)

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  1. Editorial: 2nd Special Issue on behavior change, health, and health disparities.

    PubMed

    Higgins, Stephen T

    2015-11-01

    This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policy makers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372

  2. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-Jian; Yang, Shuo; Hu, Wei-Kun; He, Heng; Ma, Si-Qi; Zhang, Ge; Dong, Xiao-Yan; Chen, Chen; Wang, Dao-Wen; Li, Bin

    2016-01-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  3. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  4. Editorial: 2nd Special Issue on behavior change, health, and health disparities

    PubMed Central

    Higgins, Stephen T.

    2016-01-01

    This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372

  5. Novel QCD Phenomena

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2007-07-06

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.

  6. Scoping analysis of the Advanced Test Reactor using SN2ND

    SciTech Connect

    Wolters, E.; Smith, M.

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of the SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature

  7. The Top Quark, QCD, And New Physics.

    DOE R&D Accomplishments Database

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  8. THE TOP QUARK, QCD, AND NEW PHYSICS.

    SciTech Connect

    DAWSON,S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup +}e{sup -} + t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup +}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  9. Lattice QCD for parallel computers

    NASA Astrophysics Data System (ADS)

    Quadling, Henley Sean

    Lattice QCD is an important tool in the investigation of Quantum Chromodynamics (QCD). This is particularly true at lower energies where traditional perturbative techniques fail, and where other non-perturbative theoretical efforts are not entirely satisfactory. Important features of QCD such as confinement and the masses of the low lying hadronic states have been demonstrated and calculated in lattice QCD simulations. In calculations such as these, non-lattice techniques in QCD have failed. However, despite the incredible advances in computer technology, a full solution of lattice QCD may still be in the too-distant future. Much effort is being expended in the search for ways to reduce the computational burden so that an adequate solution of lattice QCD is possible in the near future. There has been considerable progress in recent years, especially in the research of improved lattice actions. In this thesis, a new approach to lattice QCD algorithms is introduced, which results in very significant efficiency improvements. The new approach is explained in detail, evaluated and verified by comparing physics results with current lattice QCD simulations. The new sub-lattice layout methodology has been specifically designed for current and future hardware. Together with concurrent research into improved lattice actions and more efficient numerical algorithms, the very significant efficiency improvements demonstrated in this thesis can play an important role in allowing lattice QCD researchers access to much more realistic simulations. The techniques presented in this thesis also allow ambitious QCD simulations to be performed on cheap clusters of commodity computers.

  10. REGGE TRAJECTORIES IN QCD

    SciTech Connect

    Radyushkin, Anatoly V.; Efremov, Anatoly Vasilievich; Ginzburg, Ilya F.

    2013-04-01

    We discuss some problems concerning the application of perturbative QCD to high energy soft processes. We show that summing the contributions of the lowest twist operators for non-singlet $t$-channel leads to a Regge-like amplitude. Singlet case is also discussed.

  11. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  12. Progress in lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2002-09-30

    After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.

  13. QCD: Quantum Chromodynamics

    ScienceCinema

    Lincoln, Don

    2016-06-28

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab?s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  14. QCD physics at CDF

    SciTech Connect

    Devlin, T.; CDF Collaboration

    1996-10-01

    The CDF collaboration is engaged in a broad program of QCD measurements at the Fermilab Tevatron Collider. I will discuss inclusive jet production at center-of-mass energies of 1800 GeV and 630 GeV, properties of events with very high total transverse energy and dijet angular distributions.

  15. QCD results from CDF

    SciTech Connect

    Plunkett, R.; The CDF Collaboration

    1991-10-01

    Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.

  16. Baryons and QCD

    SciTech Connect

    Nathan Isgur

    1997-03-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.

  17. Novel QCD Phenomenology

    SciTech Connect

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC

  18. Tetragonal ZrO2:Nd3+ nanosphere: Combustion synthesis, luminescence and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Chandrasekhar, D.; Kadam, R. M.

    2015-12-01

    Nanocrystalline ZrO2:Nd3+ was synthesised using gel-combustion method and characterized systematically using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Through this route we can stabilize metastable tetragonal phase at 500 °C through addition of 1 mol % Nd3+ which is technologically more important. Optical characterization of the sample was done using photoluminescence (PL) and photoacoustic spectroscopy (PAS). PL studies shows an intense and optimum stimulated emission cross section of 1065 nm peak corresponding to 4F3/2 → 4I11/2 which and thus it can be a probable laser material. PAS is used to investigate electronic absorption of Nd3 in zirconia. Various covalency parameters like nephelauxetic ratio (β), covalency factor (b1/2) and Sinha parameter (δ) were evaluated for pure oxide powder and as well as for Nd3+ doped zirconia.

  19. International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting

    PubMed Central

    2010-01-01

    The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775

  20. International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting.

    PubMed

    Turgut, Mehmet; Geuna, Stefano

    2010-01-01

    The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775

  1. A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster

    SciTech Connect

    Tan, C. Y.; Dey, J.; Madrak, R. L.; Pellico, W.; Romanov, G.; Sun, D.; Terechkine, I.

    2015-07-13

    A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.

  2. Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Michael J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejmil, Edward

    2003-01-01

    A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields.

  3. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  4. Glass fiber laser at 1. 36. mu. m from SiO sub 2 :Nd

    SciTech Connect

    Hakimi, F.; Po, H.; Tumminelli, R.; McCollum, B.C.; Zenteno, L.; Cho, N.M.; Snitzer, E. )

    1989-10-01

    By adding 14 mol % P{sub 2}O{sub 5} to the core of a SiO{sub 2}:Nd fiber, laser emission was obtained at 1.36 {mu}m. From the fluorescent spectra and laser thresholds for the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 11/2} and {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 3/2} transitions, the net gain at 1.36 {mu}m is 0.024 dB/mW, and the ratio of excited-state absorption (the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital G}{sub 1/2} transition) to stimulated emission is estimated to be 0.78.

  5. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

    SciTech Connect

    Reece, Charles E.; Reilly, Anthony V.

    2012-09-01

    The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

  6. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  7. Preliminary GPS orbit combination results of the IGS 2nd reprocessing campaign

    NASA Astrophysics Data System (ADS)

    Choi, Kevin

    2015-04-01

    International GNSS Service (IGS) has contributed to the International Terrestrial Reference Frame by reprocessing historic GPS network data and submitting Terrestrial Reference Frame solutions and Earth Rotation Parameters. For the 2nd reprocessing campaign, Analysis Centers (ACs) used up to 21 years of GPS observation data with daily integrations. IERS2010 conventions are applied to model the physical effects of the Earth. Total eight ACs have participated (7 Global solutions, and 2 Tide Gauge solutions) by reprocessing entire time series in a consistent way using the latest models and methodology. IGS combined daily SINEX TRF and EOP combinations have already been submitted to the IERS for ITRF2013. This presentation mainly focuses on the preliminary quality assessment of the reprocessed AC orbits. Quality of the orbit products are examined by examining the repeatability between daily AC satellite ephemeris. Power spectral analysis shows the background noise characteristics of each AC products, and its periodic behaviors.

  8. The Second Stellar Spectrum and the non-LTE Problem of the 2nd Kind

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier

    2009-09-01

    This paper presents an overview of the radiative transfer problem of calculating the spectral line intensity and polarization that emerges from a (generally magnetized) astrophysical plasma composed of atoms and molecules whose excitation state is significantly influenced by radiative transitions produced by an anisotropic radiation field. The numerical solution of this non-LTE problem of the 2nd kind is facilitating the physical understanding of the second solar spectrum and the exploration of the complex magnetism of the extended solar atmosphere, but much more could be learned if high-sensitivity polarimeters were developed also for the present generation of night-time telescopes. Interestingly, I find that the population ratio between the levels of some resonance line transitions can be efficiently modulated by the inclination of a weak magnetic field when the anisotropy of the incident radiation is significant, something that could provide a new diagnostic tool in astrophysics.

  9. The planar optics phase sensor: a study for the VLTI 2nd generation fringe tracker

    NASA Astrophysics Data System (ADS)

    Blind, Nicolas; Le Bouquin, Jean-Baptiste; Absil, Olivier; Alamir, Mazen; Berger, Jean-Philippe; Defrère, Denis; Feautrier, Philippe; Hénault, François; Jocou, Laurent; Kern, Pierre; Laurent, Thomas; Malbet, Fabien; Mourard, Denis; Rousselet-Perraut, Karine; Sarlette, Alain; Surdej, Jean; Tarmoul, Nassima; Tatulli, Eric; Vincent, Lionel

    2010-07-01

    In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2nd Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design.

  10. Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours

    NASA Astrophysics Data System (ADS)

    Barnhardt, D.; Garretson, P.; Will, P.

    Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.

  11. The renormalization scale problem and novel perspectives for QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2015-11-01

    I discuss a number of novel tests of QCD, measurements which can illuminate fundamental features of hadron physics. These include the origin of the “ridge” in proton-proton collisions; the production of the Higgs at high xF; the role of digluon-initiated processes for quarkonium production; flavor-dependent anti-shadowing; the effect of nuclear shadowing on QCD sum rules; direct production of hadrons at high transverse momentum; and leading-twist lensing corrections; and the breakdown of perturbative QCD factorization. I also review the “Principle of Maximum Conformalit” (PMC) which systematically sets the renormalization scale order-by-order in pQCD, independent of the choice of renormalization scheme, thus eliminating an unnecessary theoretical uncertainty.

  12. QCD with many fermions and QCD topology

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2013-04-01

    Major nonperturbative phenomena in QCD - confinement and chiral symmetry breaking - are known to be related with certain topological objects. Recent lattice advances into the domain of many Nf = O(10) fermion flavors have shown that both phase transitions had shifted in this case to much stronger coupling. We discuss confinement in terms of monopole Bose condensation, and discuss how it is affected by fermions "riding" on the monopoles, ending with the Nf dependence of the critical line. Chiral symmetry breaking is discussed in terms of the (anti)selfdual dyons, the instanton constituents. The fermionic zero modes of those have a different meaning and lead to strong interaction between dyons and antidyons. We report some qualitative consequences of this theory and also some information about our first direct numerical study of the dyonic ensemble, in respect to both chiral symmetry breaking and confinement (via back reaction to the holonomy potential).

  13. [Measurement report on the horizontal position relationship between the umbilicus and the 2nd lum- bar spinal process in adults].

    PubMed

    Zhao, Jingyi; Fu, Liyuan; Wang, Yueqi; Qiu, Wenqi; Yao, Miaojie; Zhao, Baixiao; Guo, Changqing

    2016-04-01

    The impact factors were explored to determine the horizontal positional relationship between the umbilicus and the 2nd lumbar spinal process in adults and to verify the accuracy of the localization of Shenshu (BL 23) via the umbilicus. The position of the umbilicus and the 2nd lumbar spinal process was measured in 100 participants and the data were analyzed through SPSS 20.0 software. It was found that the umbilicus and the 2nd lumbar process were not positioned horizontally. The positional relationship of these two sites was not apparently correlated with gender, age, body weight, body height, BMI, waistline and discomfort of lumbar region. The umbilicus was commonly and posteriorly projected on the site between the 4th and 5th lumbar vertebra. It is explained that the localization of Shenshu (BL23) via the umbilicus is not accurate. PMID:27352498

  14. Wong's equations and the small x effective action in QCD

    SciTech Connect

    Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju

    2000-07-13

    We propose a new form for the small x effective action in QCD. This form of the effective action is motivated by Wong's equations for classical, colored particles in non-Abelian background fields. We show that the BFKL equation, which sums leading logarithms in x, is efficiently reproduced with this form of the action. We argue that this form of the action may be particularly useful in computing next-to-leading-order results in QCD at small x.

  15. Wong's equations and the small x effective action in QCD

    SciTech Connect

    Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju

    2001-02-01

    We propose a new form for the small x effective action in QCD. This form of the effective action is motivated by Wong's equations for classical, colored particles in non-Abelian background fields. We show that the BFKL equation, which sums leading logarithms in x, is efficiently reproduced with this form of the action. We argue that this form of the action may be particularly useful in computing next-to-leading-order results in QCD at small x.

  16. Two flavor QCD and confinement

    SciTech Connect

    D'Elia, Massimo; Di Giacomo, Adriano; Pica, Claudio

    2005-12-01

    We argue that the order of the chiral transition for N{sub f}=2 is a sensitive probe of the QCD vacuum, in particular, of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with L{sub t}=4 and L{sub s}=12, 16, 20, 24, 32 and quark masses am{sub q} ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A detailed comparison with previous works, which all use similar techniques as ours, is performed. A second order transition in the O(4) and O(2) universality classes are incompatible with our data, which seem to prefer a first order transition. However we have L{sub t}=4 and unimproved action, so that a check with improved techniques (algorithm and action) and possibly larger L{sub t} will be needed to assess this issue on a firm basis.

  17. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  18. Exponentially modified QCD coupling

    SciTech Connect

    Cvetic, Gorazd; Valenzuela, Cristian

    2008-04-01

    We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.

  19. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  20. Introduction to lattice QCD

    SciTech Connect

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  1. QCD tests at CDF

    SciTech Connect

    Kovacs, E.; CDF Collaboration

    1996-02-01

    We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E{sub T}>200 GeV, or dijet masses > 400 GeV/c{sup 2}. We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k{sub T} smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution.

  2. Sivers Asymmetry with QCD Evolution

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Idilbi, Ahmad; Kang, Zhong-Bo; Vitev, Ivan

    2015-02-01

    We analyze the Sivers asymmetry in both Drell-Yan (DY) production and semi-inclusive deep inelastic scattering (SIDIS), while considering properly defined transverse momentum dependent parton distribution and fragmentation functions and their QCD evolution. After finding a universal non-perturbative spin-independent Sudakov factor that can describe reasonably well the world's data of SIDIS, DY lepton pair and W/Z production in unpolarized scatterings, we perform a global fitting of all the experimental data on the Sivers asymmetry in SIDIS from HERMES, COMPASS and Jefferson Lab. Then we make predictions for the asymmetry in DY lepton pair and W boson production, which could be compared to the future experimental data in order to test the sign change of the Sivers function.

  3. Future directions for QCD

    SciTech Connect

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  4. Predictions from lattice QCD

    SciTech Connect

    Kronfeld, A.S.; Allison, I.F.; Aubin, C.; Bernard, C.; Davies, C.T.H.; DeTar, C.; Di Pierro, M.; Freeland, E.D.; Gottlieb, Steven; Gray, A.; Gregor, E.; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Levkova, L.; Mackenzie, P.B.; Maresca, F.; Menscher, D.; Nobes, M.; Okamoto, M.; Oktay, M.B.; /Fermilab /Glasgow U. /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Art Inst. of Chicago /Indiana U. /Ohio State U. /Arizona U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Cornell U., LEPP /Simon Fraser U. /UC, Santa Barbara

    2005-09-01

    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q{sup 2} dependence of the form factor in semileptonic D {yields} K/{nu} decay, the decay constant of the D meson, and the mass of the B{sub c} meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.

  5. Pion observables and QCD

    SciTech Connect

    Roberts, C.D.

    1994-09-01

    The Dyson-Schwinger equations (DSEs) are a tower of coupled integral equations that relate the Green functions of QCD to one another. Solving these equations provides the solution of QCD. This tower of equations includes the equation for the quark self-energy, which is the analogue of the gap equation in superconductivity, and the Bethe-Salpeter equation, the solution of which is the quark-antiquark bound state amplitude in QCD. The application of this approach to solving Abelian and non-Abelian gauge theories is reviewed. The nonperturbative DSE approach is being developed as both: (1) a computationally less intensive alternative and; (2) a complement to numerical simulations of the lattice action of QCD. In recent years, significant progress has been made with the DSE approach so that it is now possible to make sensible and direct comparisons between quantities calculated using this approach and the results of numerical simulations of Abelian gauge theories. Herein the application of the DSE approach to the calculation of pion observables is described: the {pi}-{pi} scattering lengths (a{sub 0}{sup 0}, a{sub 0}{sup 2}, A{sub 1}{sup 1}, a{sub 2}{sup 2}) and associated partial wave amplitudes; the {pi}{sup 0} {yields} {gamma}{gamma} decay width; and the charged pion form factor, F{sub {pi}}(q{sup 2}). Since this approach provides a straightforward, microscopic description of dynamical chiral symmetry breaking (D{sub X}SB) and confinement, the calculation of pion observables is a simple and elegant illustrative example of its power and efficacy. The relevant DSEs are discussed in the calculation of pion observables and concluding remarks are presented.

  6. Phase transitions in QCD and string theory

    NASA Astrophysics Data System (ADS)

    Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.

    1991-02-01

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

  7. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  8. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  9. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    SciTech Connect

    Machado, Magno V.T.

    2004-09-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.

  10. Early Run 2 Hard QCD Results from the ATLAS Collaboration

    NASA Astrophysics Data System (ADS)

    Orlando, Nicola

    2016-07-01

    We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.

  11. QCD and Asymptotic Freedom:. Perspectives and Prospects

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development — specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions — only limited insight has been achieved. However, I shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, I discuss two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ~102 MeV, governed by QCD dynamics, is of interest from several points of view. Besides having a certain intrinsic grandeur, the question “Does the nature of matter change qualitatively, as it is radically heated?” is important for cosmology, relevant to planned high-energy heavy-ion collision experiments, and provides a promising arena for numerical simulations of QCD. Recent numerical work seems to be consistent with expectations suggested by renormalization group analysis of the potential universality classes of the QCD chiral phase transition; specifically, that the transition is second-order for two species of massless quarks but first order otherwise. There is an interesting possibility of long-range correlations in heavy ion collisions due to the creation of

  12. Resource Letter QCD-1: Quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Kronfeld, Andreas S.; Quigg, Chris

    2010-11-01

    This Resource Letter provides a guide to the literature on quantum chromodynamics (QCD), the relativistic quantum field theory of the strong interactions. Journal articles, books, and other documents are cited for the following topics: Quarks and color, the parton model, Yang-Mills theory, experimental evidence for color, QCD as a color gauge theory, asymptotic freedom, QCD for heavy hadrons, QCD on the lattice, the QCD vacuum, pictures of quark confinement, early and modern applications of perturbative QCD, the determination of the strong coupling and quark masses, QCD and the hadron spectrum, hadron decays, the quark-gluon plasma, the strong nuclear interaction, and QCD's role in nuclear physics.

  13. Lensing Signals in the Hubble Ultra-deep Field using all 2nd-order Shape Deformations

    SciTech Connect

    Irwin, John; Shmakova, Marina; Anderson, Jay; /Rice U.

    2006-07-17

    The long exposure times of the HST Ultra-Deep Field plus the use of an empirically derived position-dependent PSF, have enabled us to measure a cardioid/displacement distortion map coefficient as well as improving upon the sextupole map coefficient. We confirmed that curved background galaxies are clumped on the same angular scale as found in the HST Deep Field North. The new cardioid/displacement map coefficient is strongly correlated to a product of the sextupole and quadrupole coefficients. One would expect to see such a correlation from fits to background galaxies with quadrupole and sextupole moments. Events that depart from this correlation are expected to arise from map coefficient changes due to lensing, and several galaxy subsets selected using this criteria are indeed clumped.

  14. Effect of torsional twist on 2nd order non-linear optical activity of anthracene and pyrene tricyanofuran derivatives.

    PubMed

    Planells, Miquel; Pizzotti, Maddalena; Nichol, Gary S; Tessore, Francesca; Robertson, Neil

    2014-11-14

    Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the μβ1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure. PMID:25264846

  15. Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07

    SciTech Connect

    Steven R. Sherman

    2007-03-01

    This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07.

  16. The Hyphen as a Syllabification Cue in Reading Bisyllabic and Multisyllabic Words among Finnish 1st and 2nd Graders

    ERIC Educational Resources Information Center

    Häikiö, Tuomo; Bertram, Raymond; Hyönä, Jukka

    2016-01-01

    Finnish ABC books present words with hyphens inserted at syllable boundaries. Syllabification by hyphens is abandoned in the 2nd grade for bisyllabic words, but continues for words with three or more syllables. The current eye movement study investigated how and to what extent syllable hyphens in bisyllabic ("kah-vi" "cof-fee")…

  17. Give It a Shot! Toolkit for Nurses and Other Immunization Champions Working with Secondary Schools. 2nd Edition

    ERIC Educational Resources Information Center

    Boyer-Chu, Lynda; Wooley, Susan F.

    2008-01-01

    Adolescent immunization saves lives--but promoting immunization takes time and thought, and today's nurses and other health advocates are faced with a host of ever-expanding responsibilities in a time of reduced budgets and staff. This toolkit is thus structured as an easy and reliable resource. This 2nd edition contains: (1) a 64-page manual;…

  18. Conference Proceedings: 2nd European Conference of Rehabilitation International; Disability in the Family. (Brighton, England, September 18-21, 1978)

    ERIC Educational Resources Information Center

    Royal Association for Disability and Rehabilitation, London (England).

    The conference proceedings of the 2nd European Conference of Rehabilitation International (1978) on the theme disability in the family contains the agenda and approximately 80 papers. National presentations consider the theme in papers by representatives of Finland, Hungary, Belgium, The Netherlands, Portugal, Hong Kong, India, The German…

  19. The Influence of Neighborhood Density and Word Frequency on Phoneme Awareness in 2nd and 4th Grades

    ERIC Educational Resources Information Center

    Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.

    2011-01-01

    Purpose: The purpose of this study was to test the hypothesis that two lexical characteristics--neighborhood density and word frequency--interact to influence performance on phoneme awareness tasks. Methods: Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation…

  20. Observation in a School without Walls: Peer Observation of Teaching in a 2nd-12th Grade Independent School

    ERIC Educational Resources Information Center

    Salvador, Josephine

    2012-01-01

    What happens when teachers start to observe each other's classes? How do teachers make meaning of observing and being observed? What effects, if any, does requiring peer observation have on the teaching community? This research explores these questions in a qualitative study of peer observation of teaching (POT) in the 2nd-12th grades of an…

  1. Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...

  2. Curriculum on the Edge of Survival: How Schools Fail to Prepare Students for Membership in a Democracy. 2nd Edition

    ERIC Educational Resources Information Center

    Heller, Daniel

    2012-01-01

    Typically, school curriculum has been viewed through the lens of preparation for the workplace or higher education, both worthy objectives. However, this is not the only lens, and perhaps not even the most powerful one to use, if the goal is to optimize the educational system. "Curriculum on the Edge of Survival, 2nd Edition," attempts to define…

  3. Minimal Clinically Important Difference on Parkinson's Disease Sleep Scale 2nd Version

    PubMed Central

    Horváth, Krisztina; Aschermann, Zsuzsanna; Ács, Péter; Deli, Gabriella; Janszky, József; Komoly, Sámuel; Karádi, Kázmér; Kovács, Márton; Makkos, Attila; Faludi, Béla; Kovács, Norbert

    2015-01-01

    Background and Aims. The aim of the present study was to determine the estimates of minimal clinically important difference for Parkinson's Disease Sleep Scale 2nd version (PDSS-2) total score and dimensions. Methods. The subject population consisted of 413 PD patients. At baseline, MDS-UPDRS, Hoehn-Yahr Scale, Mattis Dementia Rating Scale, and PDSS-2 were assessed. Nine months later the PDSS-2 was reevaluated with the Patient-Reported Global Impression Improvement Scale. Both anchor-based techniques (within patients' score change method and sensitivity- and specificity-based method by receiver operating characteristic analysis) and distribution-based approaches (effect size calculations) were utilized to determine the magnitude of minimal clinically important difference. Results. According to our results, any improvements larger than −3.44 points or worsening larger than 2.07 points can represent clinically important changes for the patients. These thresholds have the effect size of 0.21 and −0.21, respectively. Conclusions. Minimal clinically important differences are the smallest change of scores that are subjectively meaningful to patients. Studies using the PDSS-2 as outcome measure should utilize the threshold of −3.44 points for detecting improvement or the threshold of 2.07 points for observing worsening. PMID:26539303

  4. Wind-US Results for the AIAA 2nd Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance III; Foster, Lancert; Mankbadi, Mina

    2014-01-01

    This presentation contains Wind-US results presented at the 2nd Propulsion Aerodynamics Workshop. The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from government, industry, academia, and commercial software companies. Participants were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a 25deg conical nozzle for a range of nozzle pressure ratios between 1.4 and 7.0. Participants were also asked to simulate two cases in which the 25deg conical nozzle was bifurcated by a solid plate, resulting in vortex shedding (NPR=1.6) and shifted plume shock (NPR=4.0). A second set of nozzle cases involved computing the discharge and thrust coefficients for a convergent dual stream nozzle for a range of subsonic nozzle pressure ratios. The workshop committee also compared the plume mixing of these cases across various codes and models. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total pressure at downstream rake locations were examined.

  5. Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Maxwell, Reed; Dages, Cecile; Mouche, Emmanuel; Mugler, Claude; Paniconi, Claudio; Park, Young-Jin; Putti, Mario; Shen, Chaopeng; Stisen, Simon; Sudicky, Edward; Sulis, Mauro; Ji, Xinye

    2015-04-01

    The 2nd Phase of the Integrated Hydrologic Model Intercomparison Project commenced in June 2013 with a workshop at Bonn University funded by the German Science Foundation and US National Science Foundation. Three test cases were defined and compared that are available online at www.hpsc-terrsys.de including a tilted v-catchment case; a case called superslab based on multiple slab-heterogeneities in the hydraulic conductivity along a hillslope; and the Borden site case, based on a published field experiment. The goal of this phase is to further interrogate the coupling of surface-subsurface flow implemented in various integrated hydrologic models; and to understand and quantify the impact of differences in the conceptual and technical implementations on the simulation results, which may constitute an additional source of uncertainty. The focus has been broadened considerably including e.g. saturated and unsaturated subsurface storages, saturated surface area, ponded surface storage in addition to discharge, and pressure/saturation profiles and cross-sections. Here, first results are presented and discussed demonstrating the conceptual and technical challenges in implementing essentially the same governing equations describing highly non-linear moisture redistribution processes and surface-groundwater interactions.

  6. Improved beam spot measurements in the 2nd generation proton beam writing system

    NASA Astrophysics Data System (ADS)

    Yao, Yong; van Mourik, Martin W.; Santhana Raman, P.; van Kan, Jeroen A.

    2013-07-01

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm.

  7. Severe weather phenomena: SQUALL LINES The case of July 2nd 2009

    NASA Astrophysics Data System (ADS)

    Paraschivescu, Mihnea; Tanase, Adrian

    2010-05-01

    The wind intensity plays an important role, among the dangerous meteorological phenomena, to produce negative effects on the economy and the social activities, particularly when the wind is about to turn into a storm. During the past years one can notice an increase of wind frequency and intensity due to climate changes and, consequently, as a result of the extreme meteorological phenomena not only on a planetary level but also on a regional one. Although dangerous meteorological phenomena cannot be avoided, since they are natural, nevertheless they can be anticipated and decision making institutions and mass media can be informed. This is the reason why, in this paper, we set out to identify the synoptic conditions that led to the occurrence of the severe storm case in Bucharest on July 2nd, 2009, as well as the matrices that generate such cases. At the same time we sought to identify some indications evidence especially from radar data so as to lead to the improvement of the time interval between the nowcasting warning and the actual occurrence of the phenomenon.

  8. AGK Rules in Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Bartels, Jochen

    2006-06-01

    I summarize the present status of the AGK cutting rules in perturbative QCD. Particular attention is given to the application of the AGK analysis to diffraction and multiple scattering in DIS at HERA and to pp collisions at the LHC. I also discuss the bootstrap conditions which appear in pQCD.

  9. QCD: Questions, challenges, and dilemmas

    SciTech Connect

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.

  10. QCD coupling constants and VDM

    SciTech Connect

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  11. Exploring Three Nucleon Forces in Lattice QCD

    SciTech Connect

    Doi, Takumi

    2011-10-21

    We study the three nucleon force in N{sub f} = 2 dynamical clover fermion lattice QCD, utilizing the Nambu-Bethe-Salpeter wave function of the three nucleon system. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we develop a new formulation to extract the genuine three nucleon force which requires only the information of parity-even two nucleon potentials. In order to handle the extremely expensive calculation cost, we consider a specific three-dimensional coordinate configuration for the three nucleons. We find that the linear setup is advantageous, where nucleons are aligned linearly with equal spacings. The lattice calculation is performed with 16{sup 3}x32 configurations at {beta} = 1.95, m{sub {pi}} = 1.13 GeV generated by CP-PACS Collaboration, and the result of the three nucleon force in triton channel is presented.

  12. The {Lambda}(1405) in Full QCD

    SciTech Connect

    Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. Selim

    2011-12-14

    At 1405.1 MeV, the lowest-lying negative-parity state of the {Lambda} baryon lies surprising low. Indeed, this is lower than the lowest negative-parity state of the nucleon, even though the {Lambda}(1405) possesses a valence strange quark. However, previous Lattice QCD studies have been unable to identify such a low-lying state. Using the PACS-CS (2+1)-flavour full-QCD ensembles, available through the ILDG, we utilise a variational analysis with source and sink smearing to isolate this elusive state. We find three low-lying odd-parity states, and for the first time reproduce the correct level ordering with respect to the nearby scattering thresholds.

  13. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2010-01-08

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  14. QCD and strings

    SciTech Connect

    Sakai, Tadakatsu; Sugimoto, Shigeki

    2005-12-02

    We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.

  15. QCD and strings

    NASA Astrophysics Data System (ADS)

    Sakai, Tadakatsu; Sugimoto, Shigeki

    2005-12-01

    We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.

  16. The Influence of Instructional Climates on Time Spent in Management Tasks and Physical Activity of 2nd-Grade Students during Physical Education

    ERIC Educational Resources Information Center

    Logan, Samuel W.; Robinson, Leah E.; Webster, E. Kipling; Rudisill, Mary E.

    2015-01-01

    The purpose of this study is to determine the effect of two physical education (PE) instructional climates (mastery, performance) on the percentage of time students spent in a) moderate-to-vigorous physical activity (MVPA) and b) management tasks during PE in 2nd-grade students. Forty-eight 2nd graders (mastery, n = 23; performance, n = 25)…

  17. Cool QCD: Hadronic Physics and QCD in Nuclei

    NASA Astrophysics Data System (ADS)

    Cates, Gordon

    2015-10-01

    QCD is the only strongly-coupled theory given to us by Nature, and it gives rise to a host of striking phenomena. Two examples in hadronic physics include the dynamic generation of mass and the confinement of quarks. Indeed, the vast majority of the mass of visible matter is due to the kinetic and potential energy of the massless gluons and the essentially massless quarks. QCD also gives rise to the force that binds protons and neutrons into nuclei, including subtle effects that have historically been difficult to understand. Describing these phenomena in terms of QCD has represented a daunting task, but remarkable progress has been achieved in both theory and experiment. Both CEBAF at Jefferson Lab and RHIC at Brookhaven National Lab have provided unprecedented experimental tools for investigating QCD, and upgrades at both facilities promise even greater opportunities in the future. Also important are programs at FermiLab as well as the LHC at CERN. Looking further ahead, an electron ion collider (EIC) has the potential to answer whole new sets of questions regarding the role of gluons in nuclear matter, an issue that lies at the heart of the generation of mass. On the theoretical side, rapid progress in supercomputers is enabling stunning progress in Lattice QCD calculations, and approximate forms of QCD are also providing deep new physical insight. In this talk I will describe both recent advances in Cool QCD as well as the exciting scientific opportunities that exist for the future.

  18. Madeira Extreme Floods: 2009/2010 Winter. Case study - 2nd and 20th of February

    NASA Astrophysics Data System (ADS)

    Pires, V.; Marques, J.; Silva, A.

    2010-09-01

    Floods are at world scale the natural disaster that affects a larger fraction of the population. It is a phenomenon that extends it's effects to the surrounding areas of the hydrographic network (basins, rivers, dams) and the coast line. Accordingly to USA FEMA (Federal Emergency Management Agency) flood can be defined as:"A general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from: Overflow of inland or tidal waters; Unusual and rapid accumulation or runoff of surface waters from any source; Mudflow; Collapse or subsidence of land along the shore of a lake or similar body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above." A flash flood is the result of intense and long duration of continuous precipitation and can result in dead casualties (i.e. floods in mainland Portugal in 1967, 1983 and 1997). The speed and strength of the floods either localized or over large areas, results in enormous social impacts either by the loss of human lives and or the devastating damage to the landscape and human infrastructures. The winter of 2009/2010 in Madeira Island was characterized by several episodes of very intense precipitation (specially in December 2009 and February 2010) adding to a new record of accumulated precipitation since there are records in the island. In February two days are especially rainy with absolute records for the month of February (daily records since 1949): 111mm and 97mm on the 2nd and 20th respectively. The accumulated precipitation ended up with the terrible floods on the 20th of February causing the lost of dozens of human lives and hundreds of millions of Euros of losses The large precipitation occurrences either more intense precipitation in a short period or less intense precipitation during a larger period are sometimes the precursor of

  19. Massively Parallel QCD

    SciTech Connect

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  20. Nonperturbative QCD Calculations

    NASA Astrophysics Data System (ADS)

    Dellby, Niklas

    1995-01-01

    The research described in this thesis is an exact transformation of the Yang-Mills quantum chromodynamics (QCD) Lagrangrian into a form that is suitable for nonperturbative calculations. The conventional Yang-Mills Lagrangian has proven to be an excellent basis for perturbative calculations, but in nonperturbative calculations it is difficult to separate gauge problems from physical properties. To mitigate this problem, I develop a new equivalent Lagrangian that is not only expressed completely in terms of the field strengths ofthe gauge field but is also manifestly Lorentz and gauge invariant. The new Lagrangian is quadratic in derivatives, with non-linear local couplings, thus it is ideally suited for a numerical calculation. The field-strength Lagrangian is of such a form that it is possible to do a straightforward numerical stationary path expansion and find the fundamental QCD properties. This thesis examines several approximations analytically, investigating different ways to utilize the new Lagrangian. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  1. Hybrid baryons in QCD

    DOE PAGESBeta

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  2. 11 Years of Cloud Characteristics from SEVIRI: 2nd Edition of the CLAAS Dataset by CMSAF

    NASA Astrophysics Data System (ADS)

    Finkensieper, Stephan; Stengel, Martin; Fokke Meirink, Jan; van Zadelhoff, Gerd-Jan; Kniffka, Anke

    2016-04-01

    Spatiotemporal variability of clouds is an important aspect of the climate system. Therefore climate data records of cloud properties are valuable to many researchers in the climate community. The passive SEVIRI imager onboard the geostationary Meteosat Second Generation satellites is well suited for the needs of cloud retrievals as it provides measurements in 12 spectral channels every 15 minutes and thus allows for capturing both the spatial and the temporal variability of clouds. However, requirements on climate data records are high in terms of record length and homogeneity, so that intercalibration and homogenization among the available SEVIRI instruments becomes a crucial factor. We present the 2nd edition of the CLoud Property DAtAset using SEVIRI (CLAAS-2) generated within the EUMETSAT Satellite Application Facility on Climate Monitoring (CMSAF), that is temporally extended and qualitatively improved compared to the 1st edition. CLAAS-2 covers the time period 2004-2014 and features cloud mask, cloud top properties, cloud phase, cloud type, and microphysical cloud properties on the complete SEVIRI disc in 15-minute temporal resolution. Temporally and spatially averaged quantities, mean diurnal cycles and monthly histograms are included as well. CLAAS-2 was derived from a homogenized data basis, obtained by intercalibrating visible and infrared SEVIRI radiances (of Meteosat 8, 9 and 10) with MODIS, using state-of-the-art retrieval schemes. In addition to the dataset characteristics, we will present validation results using CALIPSO as reference observations. The CLAAS-2 dataset will allow for a large variety of applications of which some will be indicated in our presentation, with focus on determining diurnal to seasonal cycles, spatially resolved frequencies of cloud properties as well as showing the potential for using CLAAS-2 data for model process studies.

  3. The Ratio of 2nd to 4th Digit Length in Korean Alcohol-dependent Patients

    PubMed Central

    Han, Changwoo; Bae, Hwallip; Lee, Yu-Sang; Won, Sung-Doo; Kim, Dai Jin

    2016-01-01

    Objective The ratio of 2nd to 4th digit length (2D:4D) is a sexually dimorphic trait. Men have a relatively shorter second digit than fourth digit. This ratio is thought to be influenced by higher prenatal testosterone level or greater sensitivity to androgen. The purpose of this study is to investigate the relationship between alcohol dependence and 2D:4D in a Korean sample and whether 2D:4D can be a biologic marker in alcohol dependence. Methods In this study, we recruited 87 male patients with alcohol dependence from the alcohol center of one psychiatric hospital and 52 healthy male volunteers who were all employees in the same hospital as controls. We captured images of the right and left hands of patients and controls using a scanner and extracted data with a graphics program. We measured the 2D:4D of each hand and compared the alcohol dependence group with the control group. We analyzed these ratios using an independent-samples t-test. Results The mean 2D:4D of patients was 0.934 (right hand) and 0.942 (left hand), while the mean 2D:4D of controls was 0.956 (right hand) and 0.958 (left hand). Values for both hands were significantly lower for patients than controls (p<0.001, right hand; p=0.004, left hand). Conclusion Patients who are alcohol dependent have a significantly lower 2D:4D than controls, similar to the results of previous studies, which suggest that a higher prenatal testosterone level in the gonadal period is related to alcoholism. Furthermore, 2D:4D is a possible predictive marker of alcohol dependence. PMID:27121425

  4. Mechanosensitivity of the 2nd Kind: TGF-β Mechanism of Cell Sensing the Substrate Stiffness

    PubMed Central

    Cockerill, Max; Rigozzi, Michelle K.; Terentjev, Eugene M.

    2015-01-01

    Cells can sense forces applied to them, but also the stiffness of their environment. These are two different phenomena, and here we investigate the mechanosensitivity of the 2nd kind: how the cell can measure an elastic modulus at a single point of adhesion—and how the cell can receive and interpret the chemical signal released from the sensor. Our model uses the example of large latent complex of TGF-β as a sensor. Stochastic theory gives the rate of breaking of latent complex, which initiates the signaling feedback loop after the active TGF-β release and leads to a change of cell phenotype driven by the α-smooth muscle actin. We investigate the dynamic and steady-state behaviors of the model, comparing them with experiments. In particular, we analyse the timescale of approach to the steady state, the stability of the non-linear dynamical system, and how the steady-state concentrations of the key markers vary depending on the elasticity of the substrate. We discover a crossover region for values of substrate elasticity closely corresponding to that of the fibroblast to myofibroblast transition. We suggest that the cell could actively vary the parameters of its dynamic feedback loop to ‘choose’ the position of the transition region and the range of substrate elasticity that it can detect. In this way, the theory offers the unifying mechanism for a variety of phenomena, such as the myofibroblast conversion in fibrosis of wounds and lungs and smooth muscle cell dysfunction in cardiac disease. PMID:26448620

  5. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    NASA Astrophysics Data System (ADS)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  6. QCD for Postgraduates (1/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  7. QCD Factorization and PDFs from Lattice QCD Calculation

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Qing; Qiu, Jian-Wei

    2015-02-01

    In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.

  8. QCD coherence and the top quark asymmetry

    NASA Astrophysics Data System (ADS)

    Skands, Peter; Webber, Bryan; Winter, Jan

    2012-07-01

    Coherent QCD radiation in the hadroproduction of top quark pairs leads to a forward-backward asymmetry that grows more negative with increasing transverse momentum of the pair. This feature is present in Monte Carlo event generators with coherent parton showering, even though the production process is treated at leading order and has no intrinsic asymmetry before showering. In addition, depending on the treatment of recoils, showering can produce a positive contribution to the inclusive asymmetry. We explain the origin of these features, compare them in fixed-order calculations and the H erwig++, P ythia and S herpa event generators, and discuss their implications.

  9. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  10. R evolution: Improving perturbative QCD

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Jain, Ambar; Scimemi, Ignazio; Stewart, Iain W.

    2010-07-01

    Perturbative QCD results in the MS¯ scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the “MSR scheme” which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS¯. Results in MSR depend on a cutoff parameter R, in addition to the μ of MS¯. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like μ in MS¯). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q˜1GeV, and power corrections are reduced compared to MS¯.

  11. Gravitational waves from the cosmological QCD transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.

    2014-09-01

    We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.

  12. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders.

    PubMed

    Meyer, M L; Salimpoor, V N; Wu, S S; Geary, D C; Menon, V

    2010-04-01

    The contribution of the three core components of working memory (WM) to the development of mathematical skills in young children is poorly understood. The relation between specific WM components and Numerical Operations, which emphasize computation and fact retrieval, and Mathematical Reasoning, which emphasizes verbal problem solving abilities in 48 2nd and 50 3rd graders was assessed using standardized WM and mathematical achievement measures. For 2nd graders, the central executive and phonological components predicted Mathematical Reasoning skills; whereas the visuo-spatial component predicted both Mathematical Reasoning and Numerical Operations skills in 3rd graders. This pattern suggests that the central executive and phonological loop facilitate performance during early stages of mathematical learning whereas visuo-spatial representations play an increasingly important role during later stages. We propose that these changes reflect a shift from prefrontal to parietal cortical functions during mathematical skill acquisition. Implications for learning and individual differences are discussed. PMID:21660238

  13. Neurobehavioral Evaluation System (NES): comparative performance of 2nd-, 4th-, and 8th-grade Czech children.

    PubMed

    Otto, D A; Skalik, I; House, D E; Hudnell, H K

    1996-01-01

    The Neurobehavioral Evaluation System was designed for field studies of workers, but many NES tests can be performed satisfactorily by children as young as 7 or 8 years old and a few tests, such as simple reaction time, can be performed by preschool children. However, little comparative data from children of different ages or grade levels are available. Studies of school children in the Czech Republic indicate that 2nd-grade children could perform the following NES tests satisfactorily: Finger Tapping, Visual Digit Span. Continuous Performance, Symbol-Digit Substitution, Pattern Comparison, and simpler conditions of Switching Attention. Comparative scores of boys and girls from the 2nd, 4th, and 8th grades and power analyses to estimate appropriate sample size were presented. Performance varied systematically with grade level and gender. Larger samples were needed with younger children to achieve comparable levels of statistical power. Gender comparisons indicated that boys responded faster, but made more errors than girls. PMID:8866533

  14. QCD aspects of W/Z production at the Tevatron

    SciTech Connect

    Guglielmo, G.; CDF and D0 Collaborations

    1997-07-01

    Hadron colliders are providing valuable opportunities for studying the influence of the strong force on electroweak interactions in both the perturbative and non-perturbative regions. At the Fermilab Tevatron, analysis by CDF and D0 of p{anti p} {yields} W/Z + X events at {radical}s = 1.8 TeV have been used to test a variety of leading order and next-to-leading order QCD predictions. Among the many promising benefits are improvements of parton distribution functions at high Q{sup 2} , demonstration of soft gluon radiation patterns which survive hadronization, and tests of perturbative QCD and resummation calculations.

  15. Lattice QCD and Nuclear Physics

    SciTech Connect

    Konstantinos Orginos

    2007-03-01

    A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.

  16. Hadron physics in holographic QCD

    NASA Astrophysics Data System (ADS)

    Santra, A. B.; Lombardo, U.; Bonanno, A.

    2012-07-01

    Hadron physics deals with the study of strongly interacting subatomic particles such as neutrons, protons, pions and others, collectively known as baryons and mesons. Physics of strong interaction is difficult. There are several approaches to understand it. However, in the recent years, an approach called, holographic QCD, based on string theory (or gauge-gravity duality) is becoming popular providing an alternative description of strong interaction physics. In this article, we aim to discuss development of strong interaction physics through QCD and string theory, leading to holographic QCD.

  17. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  18. Emotional and Behavioral Disorders in 1.5th Generation, 2nd Generation Immigrant Children, and Foreign Adoptees.

    PubMed

    Tan, Tony Xing

    2016-10-01

    Existing theories (e.g., acculturative stress theory) cannot adequately explain why mental disorders in immigrants are less prevalent than in non-immigrants. In this paper, the culture-gene co-evolutionary theory of mental disorders was utilized to generate a novel hypothesis that connection to heritage culture reduces the risk for mental disorders in immigrant children. Four groups of children aged 2-17 years were identified from the 2007 United States National Survey of Children's Health: 1.5th generation immigrant children (n = 1378), 2nd generation immigrant children (n = 4194), foreign adoptees (n = 270), and non-immigrant children (n = 54,877). The 1.5th generation immigrant children's connection to their heritage culture is stronger than or similar to the 2nd generation immigrants, while the foreign adoptees have little connection to their birth culture. Controlling for age, sex, family type and SES, the odds for having ADD/ADHD, Conduct Disorder, Anxiety Disorder, and Depression diagnosis were the lowest for the 1.5th generation immigrant children, followed by the 2nd generation immigrant children and the foreign adoptees. The foreign adoptees and non-adopted children were similar in the odds of having these disorders. Connection to heritage culture might be the underlying mechanism that explained recent immigrants' lower rates of mental disorders. PMID:26972324

  19. PREFACE: 1st-2nd Young Researchers Meetings in Rome - Proceedings

    NASA Astrophysics Data System (ADS)

    YRMR Organizing Committee; Cannuccia, E.; Mazzaferro, L.; Migliaccio, M.; Pietrobon, D.; Stellato, F.; Veneziani, M.

    2011-03-01

    Students in science, particularly in physics, face a fascinating and challenging future. Scientists have proposed very interesting theories, which describe the microscopic and macroscopic world fairly well, trying to match the quantum regime with cosmological scales. Between the extremes of this scenario, biological phenomena in all their complexity take place, challenging the laws we observe in the atomic and sub-atomic world. More and more accurate and complex experiments have been devised and these are now going to test the paradigms of physics. Notable experiments include: the Large Hadronic Collider (LHC), which is going to shed light on the physics of the Standard Model of Particles and its extensions; the Planck-Herschel satellites, which target a very precise measurement of the properties of our Universe; and the Free Electron Lasers facilities, which produce high-brilliance, ultrafast X-ray pulses, allowing the investigation of the fundamental processes of solid state physics, chemistry, and biology. These projects are the result of huge collaborations spread across the world, involving scientists belonging to different and complementary research fields: physicists, chemists, biologists and others, keen to make the best of these extraordinary laboratories. Even though each branch of science is experiencing a process of growing specialization, it is very important to keep an eye on the global picture, remaining aware of the deep interconnections between inherent fields. This is even more crucial for students who are beginning their research careers. These considerations motivated PhD students and young post-docs connected to the Roman scientific research area to organize a conference, to establish the background and the network for interactions and collaborations. This resulted in the 1st and 2nd Young Researchers Meetings in Rome (http://ryrm.roma2.infn.it), one day conferences aimed primarily at graduate students and post-docs, working in physics in Italy

  20. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  1. Excited Baryons in Holographic QCD

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-11-08

    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.

  2. QCD analogy for quantum gravity

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing

    2016-06-01

    Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.

  3. Nonlinear waves in second order conformal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fogaça, D. A.; Marrochio, H.; Navarra, F. S.; Noronha, J.

    2015-02-01

    In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a "soliton-like" wave solution in Israel-Stewart hydrodynamics despite the presence of dissipation and relaxation effects.

  4. QCD and Light-Front Holography

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  5. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  6. 2nd Radio and Antenna Days of the Indian Ocean (RADIO 2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the ''Radio and Antenna Days of the Indian Ocean'' (RADIO 2014) international conference that was held from 7th to 10th April 2014 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2014 is the second of a series of conferences organized in the Indian Ocean region. The aim of the conference is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. The RADIO international conference emerged following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world and a need was felt for the organization of such an event in this region. Following numerous requests, the Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, was again chosen for the organization of the 2nd RADIO international conference. The conference was organized by the Radio Society, Mauritius and the Local Organizing Committee consisted of scientists from SUPELEC, France, the University of Mauritius, and the University of Technology, Mauritius. We would like to take the opportunity to thank all people, institutions and companies that made the event such a success. We are grateful to our gold sponsors CST and FEKO as well as URSI for their generous support which enabled us to partially support one PhD student and two scientists to attend the conference. We would also like to thank IEEE-APS and URSI for providing technical co-sponsorship. More than hundred and thirty abstracts were submitted to the conference. They were peer-reviewed by an international scientific committee and, based on the reviews, either accepted, eventually after revision, or rejected. RADIO 2014 brought together participants from twenty countries spanning

  7. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  8. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. PMID:27036098

  9. Lattice QCD computations: Recent progress with modern Krylov subspace methods

    SciTech Connect

    Frommer, A.

    1996-12-31

    Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.

  10. Detection of Counter-Changing Contrast: Second-Order Apparent Motion Without Postrectification Motion-Energy Analysis or Salience Mapping/Feature Tracking

    ERIC Educational Resources Information Center

    Gilroy, Lee A.; Hock, Howard S.

    2004-01-01

    The perception of 2nd-order, texture-contrast-defined motion was studied for apparent-motion stimuli composed of a pair of spatially displaced, simultaneously visible checkerboards. It was found that background-relative, counter-changing contrast provided the informational basis for the perception of 2nd-order apparent motion; motion began where…

  11. QCD THERMODYNAMICS AT ZERO AND NON-ZERO DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2007-07-03

    We present recent results on thermodynamics of QCD with almost physical light quark masses and a physical strange quark mass value. These calculations have been performed with an improved staggered action especially designed for finite temperature lattice QCD. In detail we present a calculation of the transition temperature, using a combined chiral and continuum extrapolation. Furthermore we present preliminary results on the interaction measure and energy density at almost realistic quark masses. Finally we discuss the response of the pressure to a finite quark chemical potential. Within the Taylor expansion formalism we calculate quark number susceptibilities and leading order corrections to finite chemical potential. This is particularly useful for mapping out the critical region in the QCD phase diagram.

  12. 't Hooft vertices, partial quenching, and rooted staggered QCD

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.

    2008-06-01

    We discuss the properties of 't Hooft vertices in partially quenched and rooted versions of QCD in the continuum. These theories have a physical subspace, equivalent to ordinary QCD, that is contained within a larger space that includes many unphysical correlation functions. We find that the 't Hooft vertices in the physical subspace have the expected form, despite the presence of unphysical 't Hooft vertices appearing in correlation functions that have an excess of valence quarks (or ghost quarks). We also show that, due to the singular behavior of unphysical correlation functions as the massless limit is approached, order parameters for nonanomalous symmetries can be nonvanishing in finite volume if these symmetries act outside of the physical subspace. Using these results, we demonstrate that arguments recently given by Creutz - claiming to disprove the validity of rooted staggered QCD - are incorrect. In particular, the unphysical 't Hooft vertices do not present an obstacle to the recovery of taste symmetry in the continuum limit.

  13. Monopole condensation in two-flavor adjoint QCD

    SciTech Connect

    Cossu, Guido; D'Elia, Massimo; Di Giacomo, Adriano; Lacagnina, Giuseppe; Pica, Claudio

    2008-04-01

    In QCD with adjoint fermions, the deconfining transition takes place at a lower temperature than the chiral transition. We study the two transitions by use of the Polyakov loop, the monopole order parameter, and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order parameters for confinement are not affected by the chiral transition. We conclude that the degrees of freedom relevant to confinement are different from those describing chiral symmetry.

  14. 2nd International Salzburg Conference on Neurorecovery (ISCN 2013) Salzburg/ Austria | November 28th - 29th, 2013

    PubMed Central

    Brainin, M; Muresanu, D; Slavoaca, D

    2014-01-01

    The 2nd International Salzburg Conference on Neurorecovery was held on the 28th and 29th of November, 2013, in Salzburg, one of the most beautiful cities in Austria, which is well known for its rich cultural heritage, world-famous music and beautiful surrounding landscapes. The aim of the conference was to discuss the progress in the field of neurorecovery. The conference brought together internationally renowned scientists and clinicians, who described the clinical and therapeutic relevance of translational research and its applications in neurorehabilitation. PMID:25713602

  15. [Combined Anterior and Posterior Surgical Approaches for Resection of a 2nd-rib Chondrosarcoma Occupying the Superior Sulcus].

    PubMed

    Shinohara, Yoshikazu; Anraku, Masaki; Saito, Noriyuki; Fukumoto, Kento; Kobayashi, Hiroshi; Shinoda, Yusuke; Chikuda, Hirotaka; Nakajima, Jun

    2016-06-01

    A 77-year-old man with right chest wall chondrosarcoma invading vertebral bodies underwent resection. Computed tomography (CT) showed that the tumor occupied the right superior sulcus, and was close to mediastinal organs including the trachea and esophagus. We adopted a combined anterior and posterior approaches that made safe and curative resection possible. In the anterior approach, we dissected and mobilized the neurovascular structures and neighboring organs from the tumor. A-4 cm gutter on the ventral side of the 1st, 2nd, and 3rd thoracic vertebral bodies was created for safe resection. By the subsequent posterior approach, successful resection was achieved without violating tumor margins. PMID:27246126

  16. THE 2nd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 10–14 APRIL 2010, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Baharnoori, Moogeh; Bartholomeusz, Cali; Boucher, Aurelie A.; Buchy, Lisa; Chaddock, Christopher; Chiliza, Bonga; Föcking, Melanie; Fornito, Alex; Gallego, Juan A.; Hori, Hiroaki; Huf, Gisele; Jabbar, Gul A.; Kang, Shi Hyun; El Kissi, Yousri; Merchán-Naranjo, Jessica; Modinos, Gemma; Abdel-Fadeel, Nashaat A.M.; Neubeck, Anna-Karin; Ng, Hsiao Piau; Novak, Gabriela; Owolabi, Olasunmbo.O.; Prata, Diana P.; Rao, Naren P.; Riecansky, Igor; Smith, Darryl C.; Souza, Renan P.; Thienel, Renate; Trotman, Hanan D.; Uchida, Hiroyuki; Woodberry, Kristen A.; O'Shea, Anne; DeLisi, Lynn E.

    2014-01-01

    The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10–15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:20934307

  17. Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1H HR-MAS spectroscopy

    PubMed Central

    Cohn, Brad R.; Zhao, Shoujun; Kornak, John; Zhang, Vickie Y.; Iman, Rahwa; Kurhanewicz, John; Vahidi, Kiarash; Yu, Jingwei; Caughey, Aaron B.; Swanson, Mark G.

    2016-01-01

    Object To establish and compare normative metabolite concentrations in 2nd and 3rd trimester human amniotic fluid samples in an effort to reveal metabolic biomarkers of fetal health and development. Materials and methods Twenty-one metabolite concentrations were compared between 2nd (15–27 weeks gestation, N = 23) and 3rd (29–39 weeks gestation, N = 27) trimester amniotic fluid samples using 1H high resolution magic angle spinning (HR-MAS) spectroscopy. Data were acquired using the electronic reference to access in vivo concentrations method and quantified using a modified semi-parametric quantum estimation algorithm modified for high-resolution ex vivo data. Results Sixteen of 21 metabolite concentrations differed significantly between 2nd and 3rd trimester groups. Betaine (0.00846±0.00206 mmol/kg vs. 0.0133±0.0058 mmol/kg, P <0.002) and creatinine (0.0124±0.0058 mmol/kg vs. 0.247±0.011 mmol/kg, P <0.001) concentrations increased significantly, while glucose (5.96±1.66 mmol/kg vs. 2.41±1.69 mmol/kg, P <0.001), citrate (0.740±0.217 mmol/kg vs. 0.399±0.137 mmol/kg, P <0.001), pyruvate (0.0659±0.0103 mmol/kg vs. 0.0299±0.286 mmol/kg, P <0.001), and numerous amino acid (e.g. alanine, glutamate, isoleucine, leucine, lysine, and valine) concentrations decreased significantly with advancing gestation. A stepwise multiple linear regression model applied to 50 samples showed that gestational age can be accurately predicted using combinations of alanine, glucose and creatinine concentrations. Conclusion These results provide key normative data for 2nd and 3rd trimester amniotic fluid metabolite concentrations and provide the foundation for future development of magnetic resonance spectroscopy (MRS) biomarkers to evaluate fetal health and development. PMID:19779747

  18. Recent QCD results from the Tevatron

    SciTech Connect

    Pickarz, Henryk; CDF and DO collaboration

    1997-02-01

    Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.

  19. Kenneth Wilson and Lattice QCD

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    2015-09-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.

  20. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  1. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    SciTech Connect

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  2. AdS/QCD and Light Front Holography: A New Approximation to QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  3. Time resolved 2nd harmonic generation at LaAlO3/SrTiO3 Interfaces

    NASA Astrophysics Data System (ADS)

    Adhikari, Sanjay; Eom, Chang-Beom; Ryu, Sangwoo; Cen, Cheng

    2014-03-01

    Ultrafast spectroscopy can produce information of carrier/lattice dynamics, which is especially valuable for understanding phase transitions at LaAlO3/SrTiO3 interfaces. LaAlO3 (LAO) and SrTiO3 (STO) are both associated with wide band gap, which allows deep penetration of commonly used laser wavelengths and therefore usually leads to overwhelming bulk signal background. Here we report a time resolved study of a 2nd harmonic generation (SHG) signal resulting from impulsive below-the-band-gap optical pumping. The nonlinear nature of the signal enables us to probe the interface directly. Output of a home built Ti:Sapphire laser and BBO crystal were used to generate 30fs pulses of two colors (405nm and 810nm). The 405nm pulse was used to pump the LAO/STO interfaces, while 2nd harmonics of the 810nm pulse generated at the interfaces was probed as a function of the time delay. Signals from samples with varying LAO thicknesses clearly correlates to the metal-insulator transition. Distinct time dependent signals were observed at LAO/STO interfaces grown on different substrates. Experiments performed at different optical polarization geometries, interface electric fields and temperatures allow us to paint a clearer picture of the novel oxide heterostructures under investigation.

  4. Efficacy and Safety of rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy

    PubMed Central

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  5. Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films

    NASA Astrophysics Data System (ADS)

    Wojcieszak, Damian; Mazur, Michal; Kaczmarek, Danuta; Morgiel, Jerzy; Zatryb, Grzegorz; Domaradzki, Jaroslaw; Misiewicz, Jan

    2015-10-01

    TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti-Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile-amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.

  6. BMI differences in 1st and 2nd generation immigrants of Asian and European origin to Australia.

    PubMed

    Hauck, Katharina; Hollingsworth, Bruce; Morgan, Lawrie

    2011-01-01

    We estimate assimilation of immigrants' body mass index (BMI) to the host population of Australia over one generation, conducting separate analyses for immigrants from 7 regions of Europe and Asia. We use quantile regressions to allow for differing impact of generational status across 19 quantiles of BMI from under-weight to morbidly obese individuals. We find that 1st generation South European immigrants have higher, and South and East Asian immigrants have lower BMI than Australians, but have assimilated to the BMI of their hosts in the 2nd generation. There are no or only small BMI differences between Australians and 1st and 2nd generation immigrants from East Europe, North-West Europe, Middle East and Pacific regions. We conclude that both upward and downward assimilation in some immigrant groups is most likely caused by factors which can change over one generation (such as acculturation), and not factors which would take longer to change (such as genetics). Our results suggest that public health policies targeting the lifestyles of well educated Asian immigrants may be effective in preventing BMI increase in this subgroup. PMID:20869292

  7. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  8. The supercritical pomeron in QCD.

    SciTech Connect

    White, A. R.

    1998-06-29

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory.

  9. QCD inequalities for hadron interactions.

    PubMed

    Detmold, William

    2015-06-01

    We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}. PMID:26196617

  10. Recent QCD results from CDF

    SciTech Connect

    Yun, J.C.

    1990-10-10

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb{sup {minus}1} during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs.

  11. Lattice QCD clusters at Fermilab

    SciTech Connect

    Holmgren, D.; Mackenzie, Paul B.; Singh, Anitoj; Simone, Jim; /Fermilab

    2004-12-01

    As part of the DOE SciDAC ''National Infrastructure for Lattice Gauge Computing'' project, Fermilab builds and operates production clusters for lattice QCD simulations. This paper will describe these clusters. The design of lattice QCD clusters requires careful attention to balancing memory bandwidth, floating point throughput, and network performance. We will discuss our investigations of various commodity processors, including Pentium 4E, Xeon, Opteron, and PPC970. We will also discuss our early experiences with the emerging Infiniband and PCI Express architectures. Finally, we will present our predictions and plans for future clusters.

  12. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  13. QCD: Challenges for the future

    SciTech Connect

    Burrows, P.; Dawson, S.; Orr, L.; Smith, W.H.

    1997-01-13

    Despite many experimental verifications of the correctness of our basic understanding of QCD, there remain numerous open questions in strong interaction physics and we focus on the role of future colliders in addressing these questions. We discuss possible advances in the measurement of {alpha}{sub s}, in the study of parton distribution functions, and in the understanding of low x physics at present colliders and potential new facilities. We also touch briefly on the role of spin physics in advancing our understanding of QCD.

  14. Nucleon Structure from Lattice QCD

    SciTech Connect

    David Richards

    2007-09-05

    Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of the nucleon form factors and moments of parton distribution functions, before proceeding to describe lattice studies of the Generalized Parton Distributions (GPDs). In particular, I show how lattice studies of GPDs contribute to building a three-dimensional picture of the proton, I conclude by describing the prospects for studying the structure of resonances from lattice QCD.

  15. QCD Results from the Fermilab Tevatron proton-antiproton Collider

    SciTech Connect

    Warburton, Andreas; CDF, for the; Collaborations, D0

    2010-01-01

    Selected recent quantum chromodynamics (QCD) measurements are reviewed for Fermilab Run II Tevatron proton-antiproton collisions studied by the Collider Detector at Fermilab (CDF) and D0 Collaborations at a centre-of-mass energy of {radical}s = 1.96 TeV. Tantamount to Rutherford scattering studies at the TeV scale, inclusive jet and dijet production cross-section measurements are used to seek and constrain new particle physics phenomena, test perturbative QCD calculations, inform parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, a{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. Events with {gamma} + 3-jet configurations are used to measure the increasingly important double parton scattering (DPS) phenomenon, with an obtained effective interaction cross section of {sigma}{sub eff} = 16.4 {+-} 2.3 mb. Observations of central exclusive particle production demonstrate the viability of observing the Standard Model Higgs boson using similar techniques at the Large Hadron Collider (LHC). Three areas of inquiry into lower energy QCD, crucial to understanding high-energy collider phenomena, are discussed: the examination of intra-jet track kinematics to infer that jet formation is dominated by pQCD, and not hadronization, effects; detailed studies of the underlying event and its universality; and inclusive minimum-bias charged-particle momentum and multiplicity measurements, which are shown to challenge the Monte Carlo generators.

  16. Drell-Yan lepton angular distributions in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Lambertsen, Martin; Vogelsang, Werner

    2016-06-01

    We present a comprehensive comparison of the available experimental data for the Drell-Yan lepton angular coefficients λ and ν to calculations at leading and next-to-leading order of perturbative QCD. To obtain the next-to-leading order corrections, we make use of publicly available numerical codes that allow us to compute the Drell-Yan cross section at second order in perturbation theory and from which the contributions we need can be extracted. Our comparisons reveal that perturbative QCD is able to describe the experimental data overall rather well, especially at colliders, but also in the fixed-target regime. On the basis of the angular coefficients alone, there appears to be little (if any) convincing evidence for effects that go beyond fixed-order collinear factorized perturbation theory, although the presence of such effects is not ruled out.

  17. Two-color QCD at high density

    NASA Astrophysics Data System (ADS)

    Boz, Tamer; Giudice, Pietro; Hands, Simon; Skullerud, Jon-Ivar; Williams, Anthony G.

    2016-01-01

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor'kov propagator. We express the Gor'kov propagator in terms of form factors and present recent lattice simulation results.

  18. QCD Corrections and New Physics - Proceedings of the International Symposium

    NASA Astrophysics Data System (ADS)

    Kodaira, Jiro; Onogi, Tetsuya; Sasaki, Ken

    1998-09-01

    The Table of Contents for the full book PDF is as follows: * Preface * Opening Address * Top Quark Physics * Threshold Resummation of Soft Gluons in Hadronic Reactions - An Introduction * Recent Results from CDF * Top Quark Physics: Overview * Complete Description of Polarization Effects in Top Quark Decays Including Higher Order QCD Corrections * Top Pair Production in e+e- and γγ Processes * Structure Functions I * Highlights of Physics at HERA * Some Aspects of the BFKL Evolution * Structure Functions II * New Result from SMC on g_{1}^ρ * Studies of the Nucleon Spin Structure by HERMES * Recent Developments in Perturbative QCD: Q2 Evolution of Chiral-Odd Distributions h1(x,Q2) and hL(x,Q2) * The Small x Behavior of g1 in the Resummed Approach * Jet Physics * QCD Results from LEP1 and LEP2 * Twenty Years of Jet Physics : Old and New * Multi-Parton Loop Amplitudes and Next-to-Leading Order Jet Cross-Sections * Heavy Meson * PQCD Analysis of Inclusive Heavy Hadrons Decays * Strong Coupling Constant from Lattice QCD * Heavy-Light Decay Constant from Lattice NRQCD * Concluding Remarks * Program * Organizing Committee * List of Participants

  19. Breakdown of QCD factorization theorems for inclusive reactions

    SciTech Connect

    Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.

    1982-08-01

    Initial state interactions are shown to violate standard factorization for massive lepton pair production and hadron-induced hard-scattering inclusive reactions order-by-order in QCD perturbation theory. Initial and final state interactions lead to a number of new physical phenomena including K/sub 1/ fluctuations, color correlations, anomalous nuclear number dependence of inclusive cross sections, and induced hadron production in the central rapidity region.

  20. Feynman rules for Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, J.C.

    2012-10-15

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.

  1. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  2. Nuclear reactions from lattice QCD

    DOE PAGESBeta

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  3. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  4. Lattice QCD in Background Fields

    SciTech Connect

    William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-06-01

    Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.

  5. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  6. Experimenting with Langevin lattice QCD

    SciTech Connect

    Gavai, R.V.; Potvin, J.; Sanielevici, S.

    1987-05-01

    We report on the status of our investigations of the effects of systematic errors upon the practical merits of Langevin updating in full lattice QCD. We formulate some rules for the safe use of this updating procedure and some observations on problems which may be common to all approximate fermion algorithms.

  7. Novel QCD Phenomena at the LHC: The Ridge, Digluon-Initiated Subprocesses, Direct Reactions, Non-Universal Antishadowing, and Forward Higgs Production

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2014-10-03

    I discuss a number of novel tests of QCD at the LHC, measurements which can illuminate fundamental features of hadron physics. I also review the “Principle of Maximum Conformality” (PMC) which systematically sets the renormalization scale order-by-order in pQCD, eliminating an unnecessary theoretical uncertainty. The PMC allows LHC experiments to test QCD much more precisely, and the sensitivity of LHC measurements to physics beyond the Standard Model is increased.

  8. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  9. Proceedings of the Southeastern Writing Center Conference (2nd, University of Alabama, February 6, 1982).

    ERIC Educational Resources Information Center

    Olson, Gary A., Comp.

    Included in these proceedings are 11 essays by 12 specialists in the field of writing center administration. The first essay is the keynote address; the other essays are printed in the order in which they were presented at the conference. The papers discuss the following: (1) the writing center: a vision revisited; (2) from thought to word:…

  10. Internet Power Searching: The Advanced Manual. 2nd Edition. Neal-Schuman NetGuide Series.

    ERIC Educational Resources Information Center

    Bradley, Phil

    This handbook provides information on how Internet search engines and related software and utilities work and how to use them in order to improve search techniques. The book begins with an introduction to the Internet. Part 1 contains the following chapters that cover mining the Internet for information: "An Introduction to Search…

  11. QCD tests and large momentum-transfer reactions at CBA

    SciTech Connect

    Longacre, R.; Tannenbaum, M.J.

    1983-03-01

    It is desirable to try to find fundamental tests of QCD which are sensitive to the specific properties of gluons and the non-Alelian structure of the theory, which would show that the theory is computable above leading order, and which are insensitive to the extraneous parameters such as structure functions, fragmentation functions and the like. Such tests can occur when higher-order corrections produce interference effects which must be zero in lowest order. One such effect is the linear polarization of direct single photons produced in p-p collisions. It is claimed that this polarization provides a rigorous test of perturbative QCD as well as an important check on the color hypothesis. This latter aspect is particularly attractive because the polarization involves the three-gluon interaction and the equality of the quark-gluon and three-gluon coupling in an essential way. Plans for studies at the CBA are discussed. (WHK)

  12. QCD corrections to associated production of tt{gamma} at hadron colliders

    SciTech Connect

    Duan Pengfei; Ma Wengan; Zhang Renyou; Han Liang; Guo Lei; Wang Shaoming

    2009-07-01

    We report on the next-to-leading order (NLO) QCD computation of top-quark pair production in association with a photon at the Fermilab Tevatron RUN II and CERN Large Hadron Collider. We describe the impact of the complete NLO QCD radiative corrections to this process, and provide the predictions of the leading order (LO) and NLO integrated cross sections, distributions of the transverse momenta of the top quark and photon for the LHC and Tevatron, and the LO and NLO forward-backward top-quark charge asymmetries for the Tevatron. We investigate the dependence of the LO and NLO cross sections on the renormalization/factorization scale, and find the scale dependence of the LO cross section is obviously improved by the NLO QCD corrections. The K-factor of the NLO QCD correction is 0.977(1.524) for the Tevatron (LHC)

  13. Morgenröthe or business as usual: a personal account of the 2nd Annual EULAR Congress, Prague

    PubMed Central

    Wollheim, Frank A

    2001-01-01

    The 2nd Annual European League Against Rheumatism (EULAR) Congress, held in Prague, 13–16 June 2001, was an impressive event with a record turnout of 8300 delegates. It offered a large variety of first-class state of the art lectures by some 180 invited worldwide speakers. Several new and ongoing therapeutic developments were discussed. The aim to attract the young scientific community was only partly achieved, and the dependence on industry posed some problems. The organization, however, was a big improvement compared with the previous congress in this series. The number of submitted abstracts was relatively low (1200) compared with the number of delegates. Accommodation of satellite symposia and organization of poster sessions remain problem areas of this meeting. The Annual EULAR Congress emerges as one of the two most important annual congresses of rheumatology, the other being the American College of Rheumatology meeting.

  14. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  15. CRACking ion channel targets: 2nd annual Ion Channel Targets Conference. 12-13 September 2006, Boston, MA, USA.

    PubMed

    Mathes, Chris

    2007-01-01

    The 2nd Annual Ion Channel Targets (ICT) Conference (by Select Bioscience LLC) was held in Boston on 12-13 September 2006. A healthy mixture of scientists from pharma, biotech and academic sectors attended the meeting. The speaker list reflected this mixture. In general, the conference focused on new ion channel targets and the methods for studying them in detail. Keynote lectures from Professors David Clapham (Harvard Medical School, USA) and Reinhold Penner (University of Hawaii, USA) set the tone by highlighting recent findings with a voltage-gated proton channel (Clapham), cation channel in sperm (Clapham) and the calcium-release-activated calcium channel (Penner). Also described at ICT were voltage-gated sodium, potassium, transmembrane-receptor-potential channels, as well as ligand-gated nicotinic acetylcholine (nAChR) and GABA type A receptors. PMID:17150038

  16. The influence of neighborhood density and word frequency on phoneme awareness in 2nd and 4th grades

    PubMed Central

    Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.

    2010-01-01

    Purpose The purpose of this study was to test the hypothesis that two lexical characteristics – neighborhood density and word frequency – interact to influence performance on phoneme awareness tasks. Methods Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation between words' neighborhood density, word frequency, and phoneme awareness performance was examined across grades while covarying type and place of deletion. Results A predicted interaction was revealed: words from dense neighborhoods or those with high frequency were more likely to yield correct phoneme awareness responses across grades. Conclusions Findings support an expansion to the lexical restructuring model to include interactions between neighborhood density and word frequency to account for phoneme awareness. PMID:20691979

  17. International collaborative study for establishment of the 2nd WHO International Standard for Haemophilus influenzae type b polysaccharide.

    PubMed

    Mawas, Fatme; Burkin, Karena; Dougall, Thomas; Saydam, Manolya; Rigsby, Peter; Bolgiano, Barbara

    2015-11-01

    In this report we present the results of a collaborative study for the preparation and calibration of a replacement International Standard (IS) for Haemophilus influenzae type b polysaccharide (polyribosyl ribitol phosphate; 5-d-ribitol-(1 → 1)-β-d-ribose-3-phosphate; PRP). Two candidate preparations were evaluated. Thirteen laboratories from 9 different countries participated in the collaborative study to assess the suitability and determine the PRP content of two candidate standards. On the basis of the results from this study, Candidate 2 (NIBSC code 12/306) has been established as the 2nd WHO IS for PRP by the Expert Committee of Biological Standards of the World Health Organisation with a content of 4.904 ± 0.185mg/ampoule, as determined by the ribose assays carried out by 11 of the participating laboratories. PMID:26298195

  18. Laparoscopic hepatectomy is theoretically better than open hepatectomy: preparing for the 2nd International Consensus Conference on Laparoscopic Liver Resection.

    PubMed

    Wakabayashi, Go; Cherqui, Daniel; Geller, David A; Han, Ho-Seong; Kaneko, Hironori; Buell, Joseph F

    2014-10-01

    Six years have passed since the first International Consensus Conference on Laparoscopic Liver Resection was held. This comparatively new surgical technique has evolved since then and is rapidly being adopted worldwide. We compared the theoretical differences between open and laparoscopic liver resection, using right hepatectomy as an example. We also searched the Cochrane Library using the keyword "laparoscopic liver resection." The papers retrieved through the search were reviewed, categorized, and applied to the clinical questions that will be discussed at the 2nd Consensus Conference. The laparoscopic hepatectomy procedure is more difficult to master than the open hepatectomy procedure because of the movement restrictions imposed upon us when we operate from outside the body cavity. However, good visibility of the operative field around the liver, which is located beneath the costal arch, and the magnifying provide for neat transection of the hepatic parenchyma. Another theoretical advantage is that pneumoperitoneum pressure reduces hemorrhage from the hepatic vein. The literature search turned up 67 papers, 23 of which we excluded, leaving only 44. Two randomized controlled trials (RCTs) are underway, but their results are yet to be published. Most of the studies (n = 15) concerned short-term results, with some addressing long-term results (n = 7), cost (n = 6), energy devices (n = 4), and so on. Laparoscopic hepatectomy is theoretically superior to open hepatectomy in terms of good visibility of the operative field due to the magnifying effect and reduced hemorrhage from the hepatic vein due to pneumoperitoneum pressure. However, there is as yet no evidence from previous studies to back this up in terms of short-term and long-term results. The 2nd International Consensus Conference on Laparoscopic Liver Resection will arrive at a consensus on the basis of the best available evidence, with video presentations focusing on surgical techniques and the publication

  19. Impact of Insulin Resistance on Neointimal Tissue Proliferation after 2nd-Generation Drug-Eluting Stent Implantation

    PubMed Central

    Yaguchi, Isao; Komatsu, Sachiko; Nakahara, Shiro; Kobayashi, Sayuki; Sakai, Yoshihiko; Taguchi, Isao

    2015-01-01

    Percutaneous coronary intervention is established as an effective treatment for patients with ischemic heart disease; in particular, drug-eluting stent implantation is known to suppress in-stent restenosis. Diabetes mellitus is an independent risk factor for restenosis, so reducing insulin resistance is being studied as a new treatment approach. In this prospective study, we sought to clarify the factors associated with in-stent restenosis after percutaneous coronary intervention, and we evaluated the homeostasis model assessment of insulin resistance (HOMA-IR) index as a predictor of restenosis. We enrolled 136 consecutive patients who underwent elective percutaneous coronary intervention at our hospital from February 2010 through April 2013. All were implanted with a 2nd-generation drug-eluting stent. We distributed the patients in accordance with their HOMA-IR index values into insulin-resistant Group P (HOMA-IR, ≥2.5; n=77) and noninsulin-resistant Group N (HOMA-IR, <2.5; n=59). Before and immediately after stenting, we measured reference diameter, minimal lumen diameter, and percentage of stenosis, and after 8 months we measured the last 2 factors and late lumen loss, all by means of quantitative coronary angiography. After 8 months, the mean minimal lumen diameter was smaller in Group P than that in Group N (1.85 ± 1.02 vs 2.37 ± 0.66 mm; P=0.037), and the mean late lumen loss was larger (0.4 ± 0.48 vs 0.16 ± 0.21 mm; P=0.025). These results suggest that insulin resistance affects neointimal tissue proliferation after 2nd-generation drug-eluting stent implantation. PMID:26413014

  20. Calculation of the nucleon axial charge in lattice QCD

    SciTech Connect

    D. B. Renner; R. G. Edwards; G. Fleming; Ph. Hagler; J. W. Negele; K. Orginos; A. V. Pochinsky; D. G. Richards; W. Schroers

    2006-09-01

    Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.

  1. QCD corrections to W+W- production through gluon fusion

    NASA Astrophysics Data System (ADS)

    Caola, Fabrizio; Melnikov, Kirill; Röntsch, Raoul; Tancredi, Lorenzo

    2016-03-01

    We compute the next-to-leading order (NLO) QCD corrections to the gg →W+W- → l1+ ν1 l2- νbar2 process, mediated by a massless quark loop, at the LHC. This process first contributes to the hadroproduction of W+W- at O (αs2), but, nevertheless, has a sizable impact on the total production rate. We find that the NLO QCD corrections to the gg →W+W- process amount to O (50)%, and increase the NNLO QCD cross sections of pp →W+W- by approximately two percent, at both the 8 TeV and 13 TeV LHC. We also compute the NLO corrections to gluonic W+W- production within a fiducial volume used by the ATLAS Collaboration in their 8 TeV measurement of the W+W- production rate and find that the QCD corrections are significantly smaller than in the inclusive case. While the current experimental uncertainties are still too large to make these differences relevant, the observed strong dependence of perturbative corrections on kinematic cuts underscores that extrapolation from a fiducial measurement to the total cross section is an extremely delicate matter, and calls for the direct comparison of fiducial volume measurements with corresponding theoretical computations.

  2. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    SciTech Connect

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  3. Fundamentals of Materials Science and Engineering: An Integrated Approach, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Callister, William D., Jr.

    2004-04-01

    This Second Edition of Fundamentals of Materials Science and Engineering continues to take an integrated approach to the topic organization. One specific structure, characteristic, or property type at a time is discussed for all three basic material types--metals, ceramics, and polymeric materials. This order of presentation allows for early introduction of non-metals and supports the engineer's role of choosing a material based on its characteristics. New copies of this text include a CD at no additional charge. The CD is an integral part of the text package and features animated software modules and the last five text chapters in .pdf format.

  4. anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2016-02-01

    We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.

  5. Realization of chiral symmetry breaking and restoration in holographic QCD

    NASA Astrophysics Data System (ADS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-05-01

    With proper profiles of the scalar potential and the dilaton field, for the first time, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature are correctly realized in the holographic QCD framework. In the chiral limit, a nonzero chiral condensate develops in the vacuum and decreases with temperature, and the phase transition is of the second order for a two-flavor case and of the first order for a three-flavor case. In the case of explicit chiral symmetry breaking, in the two-flavor case, the second-order phase transition turns into a crossover with any nonzero current quark mass, and in the three-flavor case, the first-order phase transition turns into a crossover at a finite current quark mass. The correct description of chiral symmetry breaking and restoration makes the holographic QCD models more powerful in dealing with nonperturbative QCD phenomena. This framework can be regarded as a general setup in an application of AdS/CFT to describe conventional Ginzburg-Landau-Wilson-type phase transitions, e.g. in condensed matter and cosmology systems.

  6. Form factors from lattice QCD

    SciTech Connect

    Dru Renner

    2012-04-01

    Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.

  7. Quark eigenmodes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Liu, Guofeng

    In this thesis, we study a number of topics in lattice QCD through the low-lying quark eigenmodes in the domain wall fermion (DWF) formulation in the quenched approximation. Specifically, we present results for the chiral condensate measured from these eigenmodes; we investigate the QCD vacuum structure by looking at the correlation between the magnitude of the chirality density, |psi†(x)gamma5psi( x)|, and the normal density, psi†( x)psi(x), for these states; we study the behavior of DWF formulation at large quark masses by investigating the mass dependence of the eigenvalues of the physical four dimensional-states as well as the bulk, five-dimensional states.

  8. LATTICE QCD AT FINITE DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2006-07-23

    I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.

  9. Cut-constructible part of QCD amplitudes

    SciTech Connect

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-05-15

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.

  10. Compact first and second order polarization mode dispersion emulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Li, Shiguang; Yang, Changxi

    2005-08-01

    We propose a 1st and 2nd order polarization mode dispersion emulator (PMDE) with one variable differential group delay (DGD) element using birefringence crystals and four polarization controllers (PCs). Monte Carlo simulations demonstrate that the output 1st and 2nd order polarization mode dispersion (PMD) generated by the PMDE consists with statistic theory. Compared with former PMDEs, this design is tunable, lower-cost, and more integrated for fabrication, which shows response time of 150 ?s, response frequency of 3.8 kHz, working wavelength of 1550 nm, total power consumption of less than 3 W, working range of 0---84 ps and 0---3600 ps2 for 1st and 2nd order PMD emulation, respectively. Also, it is programmable and can be controlled by either singlechip or computer. It can be applied to study the outage probability of optical communication systems due to PMD effect and the effectiveness of PMD compensation.

  11. Recent QCD results from CDF

    SciTech Connect

    Huston, J. |; CDF Collaboration

    1994-01-01

    CDF has recently concluded a very successful 1992--93 data run in which an integrated luminosity of 21.3 pb {sup {minus}1} was written to tape. The large data sample allows for a greater discovery potential for new phenomena and for better statistical and systematic precision in analysis of conventional physics. This paper summarizes some of the new results from QCD analyses for this run.

  12. ADS/CFT and QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U. /SLAC

    2007-02-21

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation.

  13. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation. PMID:27517766

  14. Lattice gauge theory for QCD

    SciTech Connect

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  15. Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Morrison, J. H.

    2004-01-01

    In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.

  16. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light

  17. FermiQCD: A tool kit for parallel lattice QCD applications

    SciTech Connect

    Di Pierro, M.

    2002-03-01

    We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

  18. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    NASA Astrophysics Data System (ADS)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  19. Consensus Report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals.

    PubMed

    Ramseier, Christoph A; Warnakulasuriya, Saman; Needleman, Ian G; Gallagher, Jennifer E; Lahtinen, Aira; Ainamo, Anja; Alajbeg, Ivan; Albert, David; Al-Hazmi, Nadia; Antohé, Magda Ecaterina; Beck-Mannagetta, Johann; Benzian, Habib; Bergström, Jan; Binnie, Viv; Bornstein, Michael; Büchler, Silvia; Carr, Alan; Carrassi, Antonio; Casals Peidró, Elias; Chapple, Ian; Compton, Sharon; Crail, Jon; Crews, Karen; Davis, Joan Mary; Dietrich, Thomas; Enmark, Birgitta; Fine, Jared; Gallagher, Jennifer; Jenner, Tony; Forna, Doriana; Fundak, Angela; Gyenes, Monika; Hovius, Marjolijn; Jacobs, Annelies; Kinnunen, Taru; Knevel, Ron; Koerber, Anne; Labella, Roberto; Lulic, Martina; Mattheos, Nikos; McEwen, Andy; Ohrn, Kerstin; Polychronopoulou, Argy; Preshaw, Philip; Radley, Nicki; Rosseel, Josine; Schoonheim-Klein, Meta; Suvan, Jean; Ulbricht, Sabina; Verstappen, Petra; Walter, Clemens; Warnakulasuriya, Saman; Wennström, Jan; Wickholm, Seppo; Zoitopoulos, Liana

    2010-02-01

    Tobacco use has been identified as a major risk factor for oral disorders such as cancer and periodontal disease. Tobacco use cessation (TUC) is associated with the potential for reversal of precancer, enhanced outcomes following periodontal treatment, and better periodontal status compared to patients who continue to smoke. Consequently, helping tobacco users to quit has become a part of both the responsibility of oral health professionals and the general practice of dentistry. TUC should consist of behavioural support, and if accompanied by pharmacotherapy, is more likely to be successful. It is widely accepted that appropriate compensation of TUC counselling would give oral health professionals greater incentives to provide these measures. Therefore, TUC-related compensation should be made accessible to all dental professionals and be in appropriate relation to other therapeutic interventions. International and national associations for oral health professionals are urged to act as advocates to promote population, community and individual initiatives in support of tobacco use prevention and cessation (TUPAC) counselling, including integration in undergraduate and graduate dental curricula. In order to facilitate the adoption of TUPAC strategies by oral health professionals, we propose a level of care model which includes 1) basic care: brief interventions for all patients in the dental practice to identify tobacco users, assess readiness to quit, and request permission to re-address at a subsequent visit, 2) intermediate care: interventions consisting of (brief) motivational interviewing sessions to build on readiness to quit, enlist resources to support change, and to include cessation medications, and 3) advanced care: intensive interventions to develop a detailed quit plan including the use of suitable pharmacotherapy. To ensure that the delivery of effective TUC becomes part of standard care, continuing education courses and updates should be implemented and

  20. QCD for Postgraduates (2/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  1. High-Energy QCD Asymptotics of Photon--Photon Collisions

    SciTech Connect

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  2. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    SciTech Connect

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  3. On the loop approximation in nucleon QCD sum rules

    SciTech Connect

    Drukarev, E. G. Ryskin, M. G.; Sadovnikova, V. A.

    2015-10-15

    There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.

  4. 2nd International Symposium on Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering (REES-2015)

    NASA Astrophysics Data System (ADS)

    Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna

    2016-01-01

    The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to

  5. Sudakov resummation in QCD

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo

    2007-09-01

    In this PhD thesis, we analyze and generalize the renormalization group approach to the resummation of large logarithms in the perturbative expansion due to soft and collinear multiparton emissions. In particular, we present a generalization of this approach to prompt photon production. It is interesting to see that also with the more intricate two-scale kinematics that characterizes prompt photon production in the soft limit, it remains true that resummation simply follows from general kinematic properties of the phase space. Also, this approach does not require a separate treatment of individual colour structures when more than one colour structure contributes to fixed order results. However, the resummation formulae obtained here turn out to be less predictive than previous results: this depends on the fact that here neither specific factorization properties of the cross section in the soft limit is assumed, nor that soft emission satisfies eikonal-like relations. We also derive resumation formulae to all logarithmic accuracy and valid for all values of rapidity for the prompt photon production and the Drell-Yan rapidity distributions. We show that for the fixed-target experiment E866/NuSea, the NLL resummation corrections are comparable to NLO fixed-order corrections and are crucial to obtain agreement with the data. Finally we outline also possible future applications of the renormalization group approach.

  6. Workshop report on the 2nd Joint ENCCA/EuroSARC European bone sarcoma network meeting: integration of clinical trials with tumour biology

    PubMed Central

    2014-01-01

    This is the report of the 2nd Joint ENCCA/EuroSARC European Bone Sarcoma Network Meeting held in Leiden, The Netherlands, on 26-27 September 2013, bringing together preclinical and clinical investigators on bone sarcoma. The purpose of this workshop was to present the achievements of biological research and clinical trials in bone sarcomas and to stimulate crosstalk.

  7. Research and Prediction of the Application of Multimedia Teaching Aid in Teaching Technical Education on the 2nd Level of Primary Schools

    ERIC Educational Resources Information Center

    Stebila, Ján

    2011-01-01

    The purpose and the main aim of the pedagogic experiment were to practically verify the success of Multimedia Teaching Aid (MTA) in conditions of primary schools. We assumed that the use of our multimedia teaching aid in teaching technical education on the 2nd level of primary schools would significantly affect the level of knowledge of pupils…

  8. Dynamics of the properties of steppe paleosols of the Sarmatian time (2nd century BC-4th century AD) in relation to secular variations in climatic humidity

    NASA Astrophysics Data System (ADS)

    Demkin, V. A.; Zolotareva, B. N.; Demkina, T. S.; Khomutova, T. E.; Kashirskaya, N. N.; El'Tsov, M. V.; Udal'Tsov, S. N.

    2012-02-01

    Paleosols buried under kurgans of the Early (2nd-1st centuries BC), Middle (1st-2nd centuries AD) and Late (2nd-IV centuries AD) Sarmatian epochs were studied in dry steppes and desert steppes of the Lower Volga region (the Privolzhskaya and Ergeni Uplands and the Caspian Lowland). It was found that temporal variations in the morphological, chemical, microbiological, and magnetic properties of the paleosols in the interval of 2200-1600 BP were characterized by the cyclic pattern related to secular dynamics of climatic humidity with changes in the mean annual precipitation of ±30-50 mm. These climate changes did not transform chestnut paleosols and paleosolonetzes at the type or subtype taxonomic levels. However, they led to certain changes in the humus, carbonate, and salt profiles of the soils; in the character of solonetzic horizon B1; and in the state of microbial communities. According to these data, the Sarmatian time was characterized by alternation of micropluvial and microarid stages lasting fro about 100-200 years. In particular, the stages of humidization were observed in the 1st century BC-1st century AD and in the 4th century AD; the most arid conditions were observed in the second half of the 2nd and the first half of the 3rd century AD.

  9. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Zhang, Guochun; Yao, Jiyong; Xu, Tianxiang; Zhang, Xinyuan; Fu, Ying; Wu, Yicheng

    2015-08-01

    A self-activated crystal Na2Nd2O(BO3)2 has been grown from the Na2O-Nd2O3-B2O3-NaF system. Its structure was determined by single crystal X-ray diffraction, and verified by infrared spectrum and inductively coupled plasma optical emission spectrometry. Na2Nd2O(BO3)2 crystallizes in the monoclinic crystal system, space group P21/c with unit-cell parameters a = 10.804 Å, b = 6.421 Å, c = 10.450 Å, β = 117.95°, Z = 4, and V = 640.4 Å3. Its absorption and emission spectra were measured at room temperature. Based on the absorption spectrum, the spontaneous transition probabilities, fluorescence branch ratio, and the radiation lifetime of 4F3/2 state were calculated. The emission properties under the 355 nm excitation were also evaluated. The electronic structure of Na2Nd2O(BO3)2 was calculated by the first-principles method. The obtained results show that Na2Nd2O(BO3)2 may be a promising microchip laser material.

  10. Summary of the 2nd International Symposium on Arthrogryposis, St. Petersburg, Russia, September 17-19, 2014.

    PubMed

    Hall, Judith G; Agranovich, Olga; Ogranovich, Alga; Pontén, Eva; Pontén, Ava; van Bosse, Harold J P

    2015-06-01

    Enormous progress has been made in understanding the etiology and therapies for arthrogryposis (multiple congenital contractures). A 2nd International Symposium on Arthrogryposis was sponsored by the Turner Institute in St. Petersburg, Russia. Olga Agranovich, Head of the Arthrogryposis Department of the Turner Institute, organized this special meeting. Care providers from multiple disciplines from all over the world representing 18 nations attended. Participants included: Pediatric orthopedic specialists, rehabilitation physicians, occupational therapists, physical therapists, medical geneticists, neurologists, craniofacial physicians, psychologists, developmental biologists, as well as representatives from parent support groups. The 1st symposium established the need for a collaborative and interdisciplinary approach to the treatment of arthrogryposis, engagement of parent support organizations, and the aim for more research. The Second Symposium highlighted the continuing need for more research on various therapies, identification of different types of arthrogryposis, standardized descriptions of severity, development of new orthotics, improved prenatal diagnosis, and studying adult outcome. Major progress has been made on both upper and lower limb treatments. PMID:25847824

  11. Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age.

    PubMed

    Endo, Akihito; Pӓrtty, Anna; Kalliomӓki, Marko; Isolauri, Erika; Salminen, Seppo

    2014-08-01

    Microbial contact begins prior to birth and continues rapidly thereafter. Few long term follow-up studies have been reported and we therefore characterized the development of intestinal microbiota of ten subjects from the 2nd week of life to 13 years of age. PCR-denaturing gradient gel electrophoresis combined with several bacterial group-specific primer sets demonstrated the colonization steps of defined bacterial groups in the microbiota. Bifidobacterium species were seen throughout the test period in all subjects. Bacteroides fragilis group and Blautia coccoides-Eubacterium rectale group species were not detected in several subjects during the first 6 months of life but were commonly seen after 12 months of life. Streptococcus group appeared during early life but was not seen in several subjects at the age of 13 years. Although a few species were linked with the increasing age, major bacterial species in the groups did not change dramatically. Rather considerable changes were found in the relative abundances of each bacterial species. Clustering analysis of total bacterial flora indicated that the microbiota changed considerably between 6 months and 12 months of life, and, at the age of 12 months, the intestinal microbiota was already converted toward a profile characteristic of an adult microbiota. Probiotic supplementation in the beginning of life did not have major impacts on later microbiota development. PMID:24933584

  12. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    PubMed

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. PMID:25686968

  13. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine. PMID:26455002

  14. Enhanced Deficits in Long-Term Potentiation in the Adult Dentate Gyrus with 2nd Trimester Ethanol Consumption

    PubMed Central

    Helfer, Jennifer L.; White, Emily R.; Christie, Brian R.

    2012-01-01

    Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders. PMID:23227262

  15. A neutron powder diffraction study of ND 3 intercalated titanium disulfide, 3 R-TiS 2ND 3

    NASA Astrophysics Data System (ADS)

    Bouwmeester, H. J. M.; Wiegers, G. A.

    1988-10-01

    Neutron powder diffraction of rhombohedral 3 R-TiS 2ND 3 ( a = 3.419 Å, c = 27.03 Å at 300 K, space group R overline3m ) has shown that ND 3 molecules and ND +4 ions, present in a ratio of about 5 to 1 from chemical and physical evidence, occupy statistically the trigonal-prismatic holes between TiS 2 sandwiches. One cannot distinguish between ND 3 and ND +4. Powder intensities calculated for a model with spherically symmetric ND 3 molecules (corresponding to isotropically rotating ND 3 and ND +4) in the trigonal-prismatic holes were in reasonable agreement with the observed intensities. Attempts to obtain information on the precise orientation of ND 3 and ND +4 in the TiS 2 lattice using refinements with structure factors were not successful; the reliability R factor was 0.093 for spherical symmetric ND 3 molecules with nitrogen in the center of the trigonal-prismatic holes.

  16. Near infrared emission and energy transfer in Eu2+ - Nd3+ co-doped Ca2BO3Cl

    NASA Astrophysics Data System (ADS)

    Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Novel near infrared (NIR) emitting phosphor, Ca2BO3Cl:Eu2+, Nd3+ was synthesized by conventional solid-state reaction and characterized with X-ray diffraction, photoluminescence emission, photoluminescence excitation spectra and fluorescence decay measurements. When excited with 400 nm, the phosphor gives broadband emission at 560 nm, which corresponds to the allowed 5d → 4f transition of Eu2+ and an intense NIR emissions in the range 800-1400 nm, which are assigned to the characteristic 4I9/2,11/2,13/2 transitions of Nd3+ ions. The dependence of visible and NIR emissions, decay lifetime and the energy transfer efficiency (ηETE) were investigated in detail. The luminescence spectra, both in visible (VIS) and NIR regions, and decay lifetime curves of Eu2+ have been measured to prove energy transfer (ET) from Eu2+ to Nd3+. These results demonstrate the possibility for enhancing the photovoltaic conversion efficiency of silicon solar cell by modifying the absorption and utilizing the UV to blue part of the solar spectrum where the efficiency of c-Silicon solar cell is low.

  17. InAs/GaSb type II superlattices for advanced 2nd and 3rd generation detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Rutz, Frank; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2010-01-01

    InAs/GaSb short-period superlattices (SL) based on GaSb, InAs and AlSb have proven their great potential for high performance infrared detectors. Lots of interest is currently focused on the development of short-period InAs/GaSb SLs for advanced 2nd and 3rd generation infrared detectors between 3 - 30 μm. For the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) a manufacturable technology for high responsivity thermal imaging systems has been developed. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with high responsivity comparable to state of the art CdHgTe and InSb detectors. The material system is also ideally suited for the fabrication of dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels.

  18. QCD tests in electron-positron scattering

    SciTech Connect

    Maruyama, T.

    1995-11-01

    Recent results on QCD tests at the Z{sup o} resonance are described. Measurements of Color factor ratios, and studies of final state photon radiation are performed by the LEP experiments. QCD tests using a longitudinally polarized beam are reported by the SLD experiment.

  19. Lattice QCD and High Baryon Density State

    SciTech Connect

    Nagata, Keitaro; Nakamura, Atsushi; Motoki, Shinji; Nakagawa, Yoshiyuki; Saito, Takuya

    2011-10-21

    We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.

  20. Quantum properties of QCD string fragmentation

    NASA Astrophysics Data System (ADS)

    Todorova-Nová, Šárka

    2016-07-01

    A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.

  1. Solvable models and hidden symmetries in QCD

    SciTech Connect

    Yepez-Martinez, Tochtli; Hess, P. O.; Civitarese, O.; Lerma H., S.

    2010-12-23

    We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.

  2. A comparison of NNLO QCD predictions with 7 TeV ATLAS and CMS data for V+jet processes

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2016-09-01

    We perform a detailed comparison of next-to-next-to-leading order (NNLO) QCD predictions for the W+jet and Z+jet processes with 7 TeV experimental data from ATLAS and CMS. We observe excellent agreement between theory and data for most studied observables, which span several orders of magnitude in both cross section and energy. For some observables, such as the HT distribution, the NNLO QCD corrections are essential for resolving existing discrepancies between theory and data.

  3. QCD CORRECTIONS TO DILEPTON PRODUCTION NEAR PARTONIC THRESHOLD IN PP SCATTERING.

    SciTech Connect

    SHIMIZU, H.; STERMAN, G.; VOGELSANG, W.; YOKOYA, H.

    2005-10-02

    We present a recent study of the QCD corrections to dilepton production near partonic threshold in transversely polarized {bar p}p scattering, We analyze the role of the higher-order perturbative QCD corrections in terms of the available fixed-order contributions as well as of all-order soft-gluon resummations for the kinematical regime of proposed experiments at GSI-FAIR. We find that perturbative corrections are large for both unpolarized and polarized cross sections, but that the spin asymmetries are stable. The role of the far infrared region of the momentum integral in the resummed exponent and the effect of the NNLL resummation are briefly discussed.

  4. Universe (2nd edition)

    SciTech Connect

    Kaufmann, W.J. III

    1988-01-01

    A general text on astronomy is presented. The foundations of the science are reviewed, including descriptions of naked-eye observatons of eclipses and planetary motions and such basic tools as Kepler's laws, the fundamental properties of light, and the optics of telescopes. The formation of the solar system is addressed, and the planets and their satellites are discussed individually. Solar science is treated in detail. Stellar evolution is described chronologically from birth to death. Molecular clouds, star clusters, nebulae, neutron stars, black holes, and various other phenomena that occur in the life of a star are examined in the sequence in which they naturally occur. A survey of the Milky Way introduces galactic astronomy. Quasars and cosmology are addressed, including the most recent developments in research. 156 references.

  5. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  6. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  7. The microsecond old universe — Relics of QCD phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2014-07-01

    It is entirely plausible under reasonable conditions, that a first-order QCD phase transition occurred from quarks to hadrons when the universe was about a microsecond old. Relics, if there be any, after the quark-hadron phase transition are the most deciding signatures of the phase transition. It is shown in this paper that quark nuggets, the possible relics of first-order QCD phase transitions with baryon number larger than 1043 will survive the entire history of the universe up to now and can be considered as a candidate for the cold dark matter. The spin down core of the neutron star on the high density low temperature end of the QCD phase diagram initiates transition from hadrons to quarks. As the star spins down, the size of the core goes on increasing. Recently discovered massive Pulsar PSRJ 1614-2230 with a mass of 1.97 ± 0.04M⊙ most likely has a strongly interacting core. What possible observables can there be from these neutron stars?

  8. Report of the 2005 Snowmass Top/QCD Working Group

    SciTech Connect

    Juste, A.; Kiyo, Y.; Petriello, F.; Teubner, T.; Agashe, K.; Batra, P.; Baur, U.; Berger, C.F.; Cembranos, J.A.R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.W.N.; Godfrey, S.; Hoang, A.; Perelstein, M.; Sullivan, Z.; Tait, T.; Zhu, S.; /Johns Hopkins U. /Princeton, Inst. Advanced Study /Syracuse U. /Argonne /SUNY, Buffalo /SLAC /UC, Irvine /Zurich, ETH /Zurich U. /Durham U., IPPP /Ottawa Carleton Inst. Phys. /Munich, Max Planck Inst. /Cornell U., CIHEP /Peking U.

    2006-01-17

    This report discusses several topics in both top quark physics and QCD at an International Linear Collider (ILC). Issues such as measurements at the t tbar threshold, including both theoretical and machine requirements, and the determination of electroweak top quark couplings are reviewed. New results concerning the potential of a 500 GeV e+e collider for measuring Wtb couplings and the top quark Yukawa coupling are presented. The status of higher order QCD corrections to jet production cross sections, heavy quark form factors, and longitudinal gauge boson scattering, needed for percent-level studies at the ILC, are reviewed. A new study of the measurement of the hadronic structure of the photon at a gamma gamma collider is presented. The effects on top quark properties from several models of new physics, including composite models, Little Higgs theories, and CPT violation, are studied.

  9. Gauge Configurations for Lattice QCD from The Gauge Connection

    DOE Data Explorer

    The Gauge Connection is an experimental archive for lattice QCD and a repository of gauge configurations made freely available to the community. Contributors to the archive include the Columbia QCDSP collaboration, the MILC collaboration, and others. Configurations are stored in QCD archive format, consisting of an ASCII header which defines various parameters, followed by binary data. NERSC has also provided some utilities and examples that will aid users in handling the data. Users may browse the archive, but are required to register for a password in order to download data. Contents of the archive are organized under four broad headings: Quenched (more than 1200 configurations); Dynamical, Zero Temperature (more than 300 configurations); MILC Improved Staggered Asqtad Lattices (more than 7000 configurations); and Dynamical, Finite Temperature (more than 1200 configurations)

  10. Holographic two dimensional QCD and Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Yee, Ho-Ung; Zahed, Ismail

    2011-07-01

    We present a holographic realization of large N c massless QCD in two dimensions using a D2/ D8 brane construction. The flavor axial anomaly is dual to a three dimensional Chern-Simons term which turns out to be of leading order, and it affects the meson spectrum and holographic renormalization in crucial ways. The massless flavor bosons that exist in the spectrum are found to decouple from the heavier mesons, in agreement with the general lore of non-Abelian bosonization. We also show that an external dynamical photon acquires a mass through the three dimensional Chern-Simons term as expected from the Schwinger mechanism. Massless two dimensional QCD at large N c exhibits anti-vector-meson dominance due to the axial anomaly.

  11. Axion cosmology, lattice QCD and the dilute instanton gas

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Dierigl, M.; Fodor, Z.; Katz, S. D.; Mages, S. W.; Nogradi, D.; Redondo, J.; Ringwald, A.; Szabo, K. K.

    2016-01-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ (T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ (T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  12. More on the infrared renormalization group limit cycle in QCD

    SciTech Connect

    E. Epelbaum; H.-W. Hammer; Ulf-G. Meissner; A. Nogga

    2006-10-01

    We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting. For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.

  13. More on the renormalization group limit cycle in QCD

    SciTech Connect

    Evgeny Epelbaum; Hans-Werner Hammer; Ulf-G. Meissner; Andreas Nogga

    2006-02-26

    We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. We show that small increases in the up and down quark masses, corresponding to a pion mass around 200 MeV, can move QCD to the critical renormalization group trajectory for an infrared limit cycle in the three-nucleon system. At the critical values of the quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. At next-to-leading order in the chiral counting, we find three parameter sets where this effect occurs. For one of them, we study the structure of the three-nucleon system using both chiral and contact effective field theories in detail. Furthermore, we calculate the influence of the limit cycle on scattering observables.

  14. The QCD axion from aligned axions and diphoton excess

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Takahashi, Fuminobu

    2016-04-01

    We argue that the QCD axion can arise from many aligned axions with decay constants much smaller than the conventional axion window. If the typical decay constant is of O (100) GeV to 1 TeV, one or more of the axions or saxions may account for the recently found diphoton excess at ˜ 750 GeV. Our scenario predicts many axions and saxions coupled to gluons with decay constants of order the weak scale, and therefore many collider signatures by heavy axions and saxions will show up at different energy scales. In particular, if the inferred broad decay width is due to multiple axions or saxions, a non-trivial peak structure may become evident when more data is collected. We also discuss cosmological implications of the aligned QCD axion scenario. In the Appendix we give a possible UV completion and argue that the high quality of the Peccei-Quinn symmetry is naturally explained in our scenario.

  15. QCDNUM: Fast QCD evolution and convolution

    NASA Astrophysics Data System (ADS)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  16. QCD Collisional Energy Loss Reexamined

    NASA Astrophysics Data System (ADS)

    Peshier, A.

    2006-11-01

    It is shown that at a large temperature and E→∞ the QCD collisional energy loss reads dE/dx˜α(mD2)T2. Compared to previous approaches, which led to dEB/dx˜α2T2ln⁡(ET/mD2) similar to the Bethe-Bloch formula in QED, we take into account the running of the strong coupling. As one significant consequence, due to asymptotic freedom, dE/dx becomes E independent for large parton energies. Some implications with regard to heavy ion collisions are pointed out.

  17. QCD collisional energy loss reexamined.

    PubMed

    Peshier, A

    2006-11-24

    It is shown that at a large temperature and E --> infinity the QCD collisional energy loss reads dE/dx approximately alpha(m(D)2)T2. Compared to previous approaches, which led to dE(B)/dx approximately alpha2 T2 ln(ET/m(D)2) similar to the Bethe-Bloch formula in QED, we take into account the running of the strong coupling. As one significant consequence, due to asymptotic freedom, dE/dx becomes E independent for large parton energies. Some implications with regard to heavy ion collisions are pointed out. PMID:17155739

  18. "Quantum Field Theory and QCD"

    SciTech Connect

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  19. Nucleon Structure from Lattice QCD

    SciTech Connect

    Haegler, Philipp

    2011-10-24

    Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.

  20. Spectral continuity in dense QCD

    SciTech Connect

    Hatsuda, Tetsuo; Yamamoto, Naoki; Tachibana, Motoi

    2008-07-01

    The vector mesons in three-flavor quark matter with chiral and diquark condensates are studied using the in-medium QCD sum rules. The diquark condensate leads to a mass splitting between the flavor-octet and flavor-singlet channels. At high density, the singlet vector meson disappears from the low-energy spectrum, while the octet vector mesons survive as light excitations with a mass comparable to the fermion gap. A possible connection between the light gluonic modes and the flavor-octet vector mesons at high density is also discussed.

  1. Nuclear Physics from Lattice QCD

    SciTech Connect

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  2. Single transverse-spin asymmetry in QCD

    NASA Astrophysics Data System (ADS)

    Koike, Yuji

    2014-09-01

    So far large single transverse-spin asymmetries (SSA) have been observed in many high-energy processes such as semi-inclusive deep inelastic scattering and proton-proton collisions. Since the conventional parton model and perturbative QCD can not accomodate such large SSAs, the framework for QCD hard processes had to be extended to understand the mechanism of SSA. In this extended frameworks of QCD, intrinsic transverse momentum of partons and the multi-parton (quark-gluon and pure-gluonic) correlations in the hadrons, which were absent in the conventional framework, play a crucial role to cause SSAs, and well-defined formulation of these effects has been a big challenge for QCD theorists. Study on these effects has greatly promoted our understanding on QCD dynamics and hadron structure. In this talk, I will present an overview on these theoretical activity, emphasizing the important role of the Drell-Yan process.

  3. Nuclear Physics and Lattice QCD

    SciTech Connect

    Beane, Silas

    2003-11-01

    Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated

  4. QCD studies in ep collisions

    SciTech Connect

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  5. Electrocradiographic Qrs Axis, Q Wave and T-wave Changes in 2nd and 3rd Trimester of Normal Pregnancy

    PubMed Central

    S., Chandrasekharappa; Brid, S.V

    2014-01-01

    Background: Pregnancy although a physiological phenomena affects all the functions of the maternal body and brings about remarkable changes in the cardiovascular system. The cardiovascular changes and many of the physiological adaptations of normal pregnancy alter the physical findings thus, sometimes misleading the diagnosis of heart disease. Pregnancy also brings about various changes in the electrocardiogram, further confusing with that of heart disease. This study is undertaken to highlight the effect of normal pregnancy on the QRS axis, Q wave and T-wave of the Electrocardiogram and thereby helps us to distinguish it from that of pathological changes. Objectives: To study the effect of normal pregnancy on the QRS axis, Q wave and T-wave in the electrocardiogram and to compare with that of normal non pregnant women. Materials and Methods: Fifty normal pregnant women in 2nd and 3rd trimester each between 20– 35 y of age and 50 normal non pregnant women of the same age group were selected for the study. A 12 lead ECG was recorded by using ECG machine with special emphasis on QRS axis, Q wave and T-wave changes and all the parameters were analysed. Results: The ECG changes observed in our study include, deviation of QRS axis towards left as pregnancy advanced, significant increased incidence of occurrence of prominent Q waves in lead II, III and avF in pregnant group (p < 0.05 ) and, T-wave abnormalities like flat and inverted T-waves in lead III, V1 – V3 were more frequent in pregnant group ( p<0.05 ) than in non pregnant group. Conclusion:Normal pregnancy brings about various changes in ECG. These changes during pregnancy should be interpretated with caution by the physicians. It is necessary to understand the normal physiological changes which in turn help us in better management of those with cardiac disease. PMID:25386425

  6. ENABLE -- A systolic 2nd level trigger processor for track finding and e/[pi] discrimination for ATLAS/LHC

    SciTech Connect

    Klefenz, F.; Noffz, K.H.; Zoz, R. . Lehrstuhl fuer Informatik V); Maenner, R. . Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen)

    1994-08-01

    The Enable Machine is a systolic 2nd level trigger processor for the transition radiation detector (TRD) of ATLAS/LHC. It is developed within the EAST/RD-11 collaboration at CERN. The task of the processor is to find electron tracks and to reject pion tracks according to the EAST benchmark algorithm in less than 10[mu]s. Track are identified by template matching in a ([psi],z) region of interest (RoI) selected by a 1st level trigger. In the ([psi],z) plane tracks of constant curvature are straight lines. The relevant lines form mask templates. Track identification is done by histogramming the coincidences of the templates and the RoI data for each possible track. The Enable Machine is an array processor that handles tracks of the same slope in parallel, and tracks of different slope in a pipeline. It is composed of two units, the Enable histogrammer unit and the Enable z/[psi]-board. The interface daughter board is equipped with a HIPPI-interface developed at JINR/-Dubna, and Xilinx 'corner turning' data converter chips. Enable uses programmable gate arrays (XILINX) for histogramming and synchronous SRAMs for pattern storage. With a clock rate of 40 MHz the trigger decision time is 6.5 [mu]s and the latency 7.0 [mu]s. The Enable machine is scalable in the RoI size as well as in the number of tracks processed. It can be adapted to different recognition tasks and detector setups. The prototype of the Enable Machine has been tested in a beam time of the RD6 collaboration at CERN in October 1993.

  7. The NLO QCD corrections to B c meson production in Z 0 decays

    NASA Astrophysics Data System (ADS)

    Qiao, Cong-Feng; Sun, Li-Ping; Zhu, Rui-Lin

    2011-08-01

    The decay width of Z 0 to B c meson is evaluated at the next-to-leading order (NLO) accuracy in strong interaction. Numerical calculation shows that the NLO correction to this process is remarkable. The quantum chromodynamics (QCD) renormalization scale dependence of the results is obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.

  8. Dark Energy from graviton-mediated interactions in the QCD vacuum

    SciTech Connect

    Pasechnik, Roman; Beylin, Vitaly; Vereshkov, Grigory E-mail: vbey@rambler.ru

    2013-06-01

    Adopting the hypothesis about the exact cancellation of vacuum condensates contributions to the ground state energy in particle physics to the leading order in graviton-mediated interactions, we argue that the observable cosmological constant can be dynamically induced by an uncompensated quantum gravity correction to them after the QCD phase transition epoch. To start with, we demonstrate a possible cancellation of the quark-gluon condensate contribution to the total vacuum energy density of the Universe at temperatures T < 100 MeV without taking into account the graviton-mediated effects. In order to incorporate the latter, we then calculate the leading-order quantum correction to the classical Einstein equations due to metric fluctuations induced by the non-perturbative vacuum fluctuations of the gluon and quark fields in the quasiclassical approximation. It has been demonstrated that such a correction to the vacuum energy density has a form ε{sub Λ} ∼ GΛ{sub QCD}{sup 6}, where G is the gravitational constant, and Λ{sub QCD} is the QCD scale parameter. We analyze capabilities of this approach based on the synthesis between quantum gravity in quasiclassical approximation and theory of non-perturbative QCD vacuum for quantitative explanation of the observed Dark Energy density.

  9. Four-nucleon contact interactions from holographic QCD

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Yi, Deokhyun; Yi, Piljin

    2012-01-01

    We calculate the low energy constants of four-nucleon interactions in an effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to obtain meson-nucleon interactions and then integrate out massive mesons to obtain the four-nucleon interactions in 4D. We end up with two low energy constants at the leading order and seven of them at the next leading order, which is consistent with the effective chiral Lagrangian. The values of the low energy constants are evaluated with the first five Kaluza-Klein resonances.

  10. QCD and the BlueGene

    SciTech Connect

    Vranas, P

    2007-06-18

    Quantum Chromodynamics is the theory of nuclear and sub-nuclear physics. It is a celebrated theory and one of its inventors, F. Wilczek, has termed it as '... our most perfect physical theory'. Part of this is related to the fact that QCD can be numerically simulated from first principles using the methods of lattice gauge theory. The computational demands of QCD are enormous and have not only played a role in the history of supercomputers but are also helping define their future. Here I will discuss the intimate relation of QCD and massively parallel supercomputers with focus on the Blue Gene supercomputer and QCD thermodynamics. I will present results on the performance of QCD on the Blue Gene as well as physics simulation results of QCD at temperatures high enough that sub-nuclear matter transitions to a plasma state of elementary particles, the quark gluon plasma. This state of matter is thought to have existed at around 10 microseconds after the big bang. Current heavy ion experiments are in the quest of reproducing it for the first time since then. And numerical simulations of QCD on the Blue Gene systems are calculating the theoretical values of fundamental parameters so that comparisons of experiment and theory can be made.

  11. Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.

    2016-02-01

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading-order perturbative QCD using a saturation conjecture to control soft-particle production and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow and event-plane angle correlations with the experimental data from Pb +Pb collisions at the LHC. We show how such a systematic multienergy and multiobservable analysis tests the initial-state calculation and the applicability region of hydrodynamics and, in particular, how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.

  12. The QCD/SM working group: Summary report

    SciTech Connect

    W. Giele et al.

    2004-01-12

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In

  13. Sonification of Monopoles and Chaos in QCD

    NASA Astrophysics Data System (ADS)

    de Campo, Alberto; Hörmann, Natascha; Markum, Harald; Plessas, Willibald; Vogt, Katharina

    2007-11-01

    Sonification is defined as the use of non-speech audio to extract information from data and it represents the sound analogue to graphical visualization. The method is applied in several disciplines from economy to medicine to physics. Sonification might also help in analyzing data of lattice QCD. It could assist, together with graphical display, to examine the behavior of lattice observables as a function of parameters like gauge coupling, quark mass, etc. Sonification might further be used to identify unique characteristics of single gauge-field configurations out of many such as, for example, the topological content. In order to demonstrate the methodology for quantum chromodynamics we analyze the monopole order parameter from the confinement to the deconfinement phase. We further produce a sound file for the Lyapunov exponents of classical U(1) and SU(2) gauge theory. The studies are also part of the development of program packages for audio browsing within the interdisciplinary research project SonEnvir ().

  14. Transverse structure of the QCD string

    SciTech Connect

    Meyer, Harvey B.

    2010-11-15

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.

  15. Vector boson production in association with KK modes of the ADD model to NLO in QCD at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit

    2011-05-01

    Next-to-leading order (NLO) QCD corrections to the associated production of the vector boson (Z/W±) with the Kaluza-Klein (KK) modes of the graviton in large extra-dimensional model at the Large Hadron Collider (LHC) are presented. We have obtained various kinematic distributions using a Monte Carlo code which is based on the two-cutoff phase space slicing method that handles soft and collinear singularities appearing at the NLO level. We estimate the impact of the QCD corrections on various observables and find that they are significant. We also show the reduction in factorization scale uncertainty when QCD corrections are included.

  16. Dual QCD thermodynamics and quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Punetha, Garima; Dehnen, H.

    2016-01-01

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP-hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  17. Quest for More Information from Lattice QCD Simulations

    NASA Astrophysics Data System (ADS)

    de Forcrand, P.; García Pérez, M.; Hashimoto, T.; Hioki, S.; Matsufuru, H.; Miyamura, O.; Umeda, T.; Nakamura, A.; Stamatescu, I.-O.; Tago, Y.; Takaishi, T.

    Lattice QCD is one of the most powerful tools to study the non-perturbative nature of the strong interaction. Although much information has been obtained so far to understand QCD, the computational cost becomes higher and higher as we calculate on finer lattices; simulations near the continuum are still far beyond. We report the progress on (1) renormalization group (RG) improved actions and (2) anisotropic lattice, which QCD-TARO group has developed and studied in order to get more information from the simulations on the present computers. RG improved actions were proposed and studied by Wilson and Iwasaki to remove discretization effects for long distance observables. We have studied 1× 1 + 1× 2 type actions, which includes Wilson, Symanzik and Iwasaki ones, by the strong and weak coupling expansions and Monte Carlo RG method. We have calculated RG flow and obtained a new effective β-function. Anisotropic lattice, where the temporal lattice spacing is smaller than that along the spatial one, makes us possible to perform finer resolution measurements in the temporal direction. This is especially useful at the finite temperature, where the temporal lattice size is limited. We have calculated meson pole and screening masses. We have found they behave in a different manner as a function of T.

  18. The real-virtual antenna functions for S → Q Q bar X at NNLO QCD

    NASA Astrophysics Data System (ADS)

    Dekkers, Oliver; Bernreuther, Werner

    2014-11-01

    We determine, in the antenna subtraction framework for handling infrared divergences in higher order QCD calculations, the real-virtual antenna functions for processes involving the production of a pair of massive quarks by an uncolored initial state at NNLO QCD. The integrated leading and subleading color real-virtual antenna functions are computed analytically in terms of (cyclotomic) harmonic polylogarithms. As a by-product and check we compute RQ = σ (e+e- →γ* → Q Q bar X) / σ (e+e- →γ* →μ+μ-) and compare with existing results. Our result for RQ is exact to order αs2.

  19. Light-Front Holography and Non-Perturbative QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  20. The QCD vacuum, hadrons and superdense matter

    SciTech Connect

    Shuryak, E.

    1986-01-01

    This is probably the only textbook available that gathers QCD, many-body theory and phase transitions in one volume. The presentation is pedagogical and readable. Contents: The QCD Vacuum: Introduction; QCD on the Lattice Topological Effects in Gauges Theories. Correlation Functions and Microscopic Excitations: Introduction; Operator Product Expansion; The Sum Rules beyond OPE; Nonpower Contributions to Correlators and Instantons; Hadronic Spectroscopy on the Lattice. Dense Matter: Hadronic Matter; Asymptotically Dense Quark-Gluon Plasma; Instantons in Matter; Lattice Calculations at Finite Temperature; Phase Transitions; Macroscopic Excitations and Experiments: General Properties of High Energy Collisions; ''Barometers'', ''Thermometers'', Interferometric ''Microscope''; Experimental Perspectives.

  1. Excited light isoscalar mesons from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-07-01

    I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.

  2. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  3. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  4. Shape of mesons in holographic QCD

    SciTech Connect

    Torabian, Mahdi; Yee, Ho-Ung

    2009-10-15

    Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.

  5. Towards the chiral limit in QCD

    SciTech Connect

    Shailesh Chandrasekharan

    2006-02-28

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a{sup -1}, the confinement scale {Lambda}{sub QCD}, and the pion mass m{sub {pi}}. Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when {Lambda}{sub QCD} becomes small compared to a{sup -1} and when m{sub {pi}} becomes small compared to {Lambda}{sub QCD}. The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new

  6. First and second-order-motion perception after focal human brain lesions

    PubMed Central

    Rizzo, Matthew; Nawrot, Mark; Sparks, JonDavid; Dawson, Jeffrey

    2011-01-01

    Perception of visual motion includes a 1st-order mechanism sensitive to luminance changes and a 2nd-order motion mechanism sensitive to contrast changes. We studied neural substrates for these motion types in 142 subjects with visual cortex lesions, 68 normal controls and 28 brain lesion controls. On 1st-order motion, the visual cortex lesion group performed significantly worse than normal controls overall and in each hemifield, but 2nd-order motion did not differ. Only 1 individual showed a selective 2nd-order motion deficit. Motion deficits were seen with lesions outside the small occipitotemporal region thought to contain a human homolog of motion processing area MT (V5), suggesting that many areas of human brain process visual motion. PMID:18440580

  7. From QCD to physical resonances

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-05-01

    In this talk, we present the first chiral extrapolation of a resonant scattering amplitude obtained from lattice QCD. Finite-volume spectra, determined by the Hadron Spectrum Collaboration at mπ = 236 MeV [1], for the isotriplet ππ channel are analyzed using the Lüscher method to determine the infinite-volume scattering amplitude. Unitarized Chiral Perturbation Theory is then used to extrapolate the scattering amplitude to the physical light quark masses. The viability of this procedure is demonstrated by its agreement with the experimentally determined scattering phase shift up to center-of-mass energies of 1.2 GeV. Finally, we analytically continue the amplitude to the complex plane to obtain the ρ-pole at [ 755 (2 )(1 )(02 20 ) -i/2 129 (3 )(1 )(1 7 ) ] MeV.

  8. QCD tests with polarized beams

    SciTech Connect

    Maruyama, Takashi; SLD Collaboration

    1996-09-01

    The authors present three QCD studies performed by the SLD experiment at SLAC, utilizing the highly polarized SLC electron beam. They examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K{sup {minus}}`s than antibaryons and K{sup +}`s in quark hemispheres, consistent with the leading particle hypothesis. They performed a search for jet handedness in light q- and {anti q}-jets. Assuming Standard Model values of quark polarization in Z{sup 0} decays, they have set an improved upper limit on the analyzing power of the handedness method. They studied the correlation between the Z{sup 0} spin and the event-plane orientation in polarized Z{sup 0} decays into three jets.

  9. Gluonic transversity from lattice QCD

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Shanahan, P. E.

    2016-07-01

    We present an exploratory study of the gluonic structure of the ϕ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-2 double-helicity-flip gluonic structure function Δ (x ,Q2). This structure function only exists for targets of spin J ≥1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and nonflip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where Δ (x ,Q2) is an "exotic glue" observable probing gluons in a nucleus not associated with individual nucleons.

  10. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  11. Nuclear Force from Lattice QCD

    SciTech Connect

    Ishii, N.; Aoki, S.; Hatsuda, T.

    2007-07-13

    The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32{sup 4} [{approx_equal}(4.4 fm){sup 4}] lattice. A NN potential V{sub NN}(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the {sup 1}S{sub 0} and {sup 3}S{sub 1} channels, we show that the central part of V{sub NN}(r) has a strong repulsive core of a few hundred MeV at short distances (r < or approx. 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.

  12. Nuclear force from lattice QCD.

    PubMed

    Ishii, N; Aoki, S; Hatsuda, T

    2007-07-13

    The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32(4) [approximately (4.4 fm)(4)] lattice. A NN potential V(NN)(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the (1)S(0) and (3)S(1) channels, we show that the central part of V(NN)(r) has a strong repulsive core of a few hundred MeV at short distances (r approximately < 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force. PMID:17678213

  13. Electroweak symmetry breaking via QCD.

    PubMed

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem. PMID:25215976

  14. Pion breather states in QCD

    SciTech Connect

    Hormuzdiar, J.N.; Hsu, S.D.

    1999-02-01

    We describe a class of pionic breather solutions (PBS) which appear in the chiral Lagrangian description of low-energy QCD. These configurations are long lived, with lifetimes greater than 10{sup 3} fm/c, and could arise as remnants of disoriented chiral condensate (DCC) formation at RHIC. We show that the chiral Lagrangian equations of motion for a uniformly isospin-polarized domain reduce to those of the sine-Gordon model. Consequently, our solutions are directly related to the breather solutions of sine-Gordon theory in 3+1 dimensions. We investigate the possibility of PBS formation from multiple domains of DCC, and show that the probability of formation is non-negligible. {copyright} {ital 1999} {ital The American Physical Society}

  15. Modeling QCD for Hadron Physics

    NASA Astrophysics Data System (ADS)

    Tandy, P. C.

    2011-10-01

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  16. Modeling QCD for Hadron Physics

    SciTech Connect

    Tandy, P. C.

    2011-10-24

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  17. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses III. Base Composition, Molecular Weight, and Conformation of the Ad2+ND1 Genome

    PubMed Central

    Crumpacker, Clyde S.; Henry, Patrick H.; Kakefuda, Tuyoski; Rowe, Wallace P.; Levin, Myron J.; Lewis, Andrew M.

    1971-01-01

    The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2+ND1, differs from the defective Ad-SV40 hybrid populations previously described, in that this hybrid virus can replicate without the aid of nonhybrid adenovirus helper. Consequently, the deoxyribonucleic acid (DNA) from this virus, which can be obtained free of nonhybrid adenovirus DNA, is well suited for biophysical studies on Ad-SV40 hybrid DNA. Such studies have been performed and demonstrate Ad2+ND1 DNA to have a buoyant density (1.715 g/cm3) and thermal denaturation profile (Tm = 75.1 C) almost identical with nonhybrid Ad2 DNA. Furthermore, its molecular weight, as determined by analytical zone sedimentation and electron microscopy, was 22 × 106 to 25 × 106 daltons, which is also very similar to that determined for Ad2. Electron micrographs showed all of the hybrid molecules to be double-stranded and linear. By using this determination of the molecular weight of Ad2+ND1 DNA and assuming that 1% of this molecule consists of covalently linked SV40 DNA (see companion paper), we calculate that the hybrid DNA molecule contains 220 × 103 to 250 × 103 daltons of SV40 DNA, or the equivalent of one-tenth of the SV40 genome. PMID:4323710

  18. COLLINEAR SPLITTING, PARTON EVOLUTION AND THE STRANGE-QUARK ASYMMETRY OF THE NUCLEON IN NNLO QCD.

    SciTech Connect

    RODRIGO,G.CATANI,S.DE FLORIAN, D.VOGELSANG,W.

    2004-04-25

    We consider the collinear limit of QCD amplitudes at one-loop order, and their factorization properties directly in color space. These results apply to the multiple collinear limit of an arbitrary number of QCD partons, and are a basic ingredient in many higher-order computations. In particular, we discuss the triple collinear limit and its relation to flavor asymmetries in the QCD evolution of parton densities at three loops. As a phenomenological consequence of this new effect, and of the fact that the nucleon has non-vanishing quark valence densities, we study the perturbative generation of a strange-antistrange asymmetry s(x)-{bar s}(x) in the nucleon's sea.

  19. Pseudo-scalar Higgs boson production at threshold N^3LO and N^3LL QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Kumar, M. C.; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2016-06-01

    We present the first results on the production of pseudo-scalar Higgs boson through gluon fusion at the LHC to N^3LO in QCD taking into account only soft-gluon effects. We have used the effective Lagrangian that describes the coupling of the pseudo-scalar Higgs boson with the gluons in the large top quark mass limit. We have used quantities that have recently become available, namely the three-loop pseudo-scalar Higgs boson form factor and the third order universal soft function in QCD to achieve this. Along with the fixed order results, we also present the process dependent resummation coefficient for a threshold resummation to N^3LL in QCD. Phenomenological impact of these threshold N^3LO corrections to pseudo-scalar Higgs boson production at the LHC is presented and their role in the reduction of the renormalization scale dependence is demonstrated.

  20. Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations

    NASA Astrophysics Data System (ADS)

    Vikas, V.; Wang, Z. J.; Fox, R. O.

    2013-09-01

    Population balance equations with advection and diffusion terms can be solved using quadrature-based moment methods. Recently, high-order realizable finite-volume schemes with appropriate realizability criteria have been derived for the advection term. However, hitherto no work has been reported with respect to realizability problems for the diffusion term. The current work focuses on developing high-order realizable finite-volume schemes for diffusion. The pitfalls of existing finite-volume schemes for the diffusion term based on the reconstruction of moments are discussed, and it is shown that realizability can be guaranteed only with the 2nd-order scheme and that the realizability criterion for the 2nd-order scheme is the same as the stability criterion. However, realizability of moments cannot be guaranteed when higher-order moment-based reconstruction schemes are used. To overcome this problem, realizable high-order finite-volume schemes based on the reconstruction of weights and abscissas are proposed and suitable realizability criteria are derived. The realizable schemes can achieve higher than 2nd-order accuracy for problems with smoothly varying abscissas. In the worst-case scenario of highly nonlinear abscissas, the realizable schemes are 2nd-order accurate but have lower error magnitudes compared to existing schemes. The results obtained using the realizable high-order schemes are shown to be consistent with those obtained using the 2nd-order moment-based reconstruction scheme.