Science.gov

Sample records for 2p ionization threshold

  1. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold

    SciTech Connect

    Wang, H.; Glans, P.; Hemmers, O.

    1997-04-01

    The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.

  2. Vibrationally assisted below-threshold ionization

    NASA Astrophysics Data System (ADS)

    Horton, Spencer L.; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-06-01

    We perform time-resolved UV pump (4.77 eV) and VUV probe (7.94 eV) measurements of internal conversion of 1,3-cyclohexadiene (CHD). Our measurements reveal a substantial ionization of the "hot" ground state following internal conversion despite the fact that our probe photon energy is below the ionization potential (8.21 eV). With the aid of electronic structure calculations, we interpret our results in terms of vibrationally assisted below-threshold ionization, where vibrational energy is converted to electronic energy. The effect relies on both having vibrational modes which allow for this vibrational-electronic coupling and exciting these modes during the internal conversion. We contrast our measurements in CHD with another similar molecule, cis,cis-1,3-cyclooctadiene (cis,cis-COD), for which we do not see the effect.

  3. Mass Analyzed Threshold Ionization of Lutetium Dimer

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Roudjane, Mourad; Liu, Yang; Yang, Dong-Sheng

    2013-06-01

    Lu_2 is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectrum displays several long progressions from the transitions between various vibrational levels of the neutral and ion electronic states. From the spectrum, the upper limit of the ionization energy of the dimer is determined to be 43996 cm^{-1}, and the vibrational frequencies are measured to be 121 cm^{-1} in the neutral state and 90 cm^{-1} in the ion state. By combining with ab initio calculations at CASPT2 level, the ground state of Lu_2 is identified as ^3Σ_g^-. The ^3Σ_g^- state has an electron configuration of 6sσ_g^25dπ_u^15dπ_u^16sσ_u^2, which is formed by the interactions of two Lu atoms in the ^2D(5d6s^2) ground state. Ionization of the neutral state removes a 5dπ_u bonding electron and yields a ion state with a considerably longer bond distance. Lu_2 has a very different bonding feature from La_2, for which a ^1Σ_g^+ ground state was previously identified with an electron configuration of 5dπ_u^46sσ_g^2 formed by the interactions of two La atoms in the ^4F(5d^26s) excited state. Yang Liu, Lu Wu, Chang-Hua Zhang, Serge A. Krasnokutski, and Dong-Sheng Yang, J. Chem. Phys. 135, 034309 (2011).

  4. Mass analyzed threshold ionization (MATI) with VUV radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass analyzed threshold ionization is a combination of threshold ionization spectroscopy with mass spectrometry. Similar to zero electron kinetic energy (ZEKE), MATI spectroscopy takes advantage of the field ionization of long lived high Rydberg states to obtain an ionization threshold and perform spectroscopy on the resulting cation. MATI at the synchrotron utilizing tunable VUV light opens up a novel way to perform spectroscopy on ions and improve the resolution in ionization energy determination in comparison with conventional photoionization efficiency curve measurements. This method is implemented at the Advanced Light Source and vibrationally-resolved MATI spectra for simple di- and polyatomic molecules (O2, N2, H2O, N2O, C2H2, and C6H6) are measured. This preliminary work allows us to test the applicability of MATI at a synchrotron and prepare for investigation of more complex systems such as mixtures of molecules, isomers and clusters.

  5. Resonant effects in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.

    2000-09-01

    The ionization of noble gases in high intensity laser fields produces an electron spectrum with characteristic peaks corresponding to atomic levels of the atom. While many of the features in the low energy part of the spectrum have been explained qualitatively, current models are incomplete and are not able to account for the recurrence of ionization probability for higher energy electrons. In particular, one of the basic questions arising is the importance of multiple ionization in these spectra. While the light intensities are in the regime where multiple ionization is known to occur, it was not clear whether the higher energy (or plateau) electrons are a result of this, and whether multiple ionization even leaves a signature in the electron spectrum. In this dissertation, we use several experimental techniques to explore this problem in argon. Our results show that although multiple ionization occurs, electrons from this process do not appear in the observed electron spectrum. Furthermore, the appearance intensities of the peaks visible in the plateau region of the electron spectrum and of the resonance peaks in the well- understood low energy part show a strong correlation, suggestion a common origin of production. Accurate computer simulations of the process, using a single- active-electron model, reproduce all essential features of the experimental spectra. Our results support the conclusion that all high energy electrons observed in our experiments can be explained with single-electron effects.

  6. Above-threshold ionization by chirped laser pulses

    SciTech Connect

    Nakajima, Takashi

    2007-05-15

    We theoretically investigate above-threshold ionization by chirped laser pulses. By comparing the photoelectron energy spectra and the photoelectron angular distributions of Na for the laser pulses with different chirp rates but with the identical spectral profile, we find that the ionization processes have a clear dependence on the chirp rate. Further calculations without excited bound states during the time propagation of the wave function reveal practically no chirp dependence, which is clear evidence that the origin of the chirp dependence in above-threshold ionization is the excited bound states.

  7. Satellite lines at the ionization threshold in charge transfer systems

    NASA Astrophysics Data System (ADS)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  8. Mass analyzed threshold ionization spectroscopy of p-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.; Chakraborty, Tapas

    2004-05-01

    Adiabatic ionization energy (AIE) and two-color threshold ion vibrational spectra of p-fluorostyrene have been measured by mass analyzed threshold ionization (MATI) method via three different intermediate levels in the first excited state, vibrationless S1 origin, 421411, and 231 vibronic levels. Features of the ion vibrational spectra indicates that the geometry of the molecular ion including the conformation of the vinyl chain in the ionic ground state (D0) is almost identical to that of its neutral ground state (S0), and ionization has very little effect on the vibrational potentials of the aromatic ring modes. Comparison of the AIE with the reported value of styrene shows that fluorination at the para position of the aromatic ring has little effect on energy of the electron ejected in ionization process from the styrene chromophore.

  9. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  10. Probing electron delays in above-threshold ionization

    SciTech Connect

    Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.

    2014-11-21

    Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delays depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.

  11. Probing electron delays in above-threshold ionization

    DOE PAGES

    Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.

    2014-11-21

    Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less

  12. Mass analyzed threshold ionization spectroscopy of indazole cation

    NASA Astrophysics Data System (ADS)

    Su, Huawei; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    We have recorded the two-color resonant two-photon mass analyzed threshold ionization (MATI) spectra of indazole via four intermediate states. The adiabatic ionization energy of this molecule is determined to be 67 534 ± 5 cm -1. The observed MATI bands include in-plane ring bending as well as out-of-plane ring twisting and bending vibrations of the indazole cation. Comparing the present data with those of indole and 7-azaindole leads to a better understanding about the influence of the nitrogen atom in the aza-aromatic bicyclic system.

  13. Experimental studies of partial photodetachment cross sections in K- below the K(7 2P) threshold

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Rohlén, J.; Hultgren, H.; Kiyan, I. Yu.; Pegg, D. J.; Walter, C. W.; Hanstorp, D.

    2012-03-01

    A collinear beams apparatus has been used to determine photodetachment cross sections for K- in the photon energy range 4.250-4.360 eV. State-selective detection, utilizing a resonance ionization scheme, was applied to measure partial cross sections for those channels which leave the residual K atoms in the excited 72S, 52F, and 52G states. The energy region studied encompassed the openings of the aforementioned channels, as well as the channel that leaves the K atom in the 72P state. Two previously unobserved resonances were seen in all three partial cross sections between the K(52G) and K(72P) thresholds. It is shown that a more reliable determination of resonance parameters can be made if the same resonances are observed in several channels. In the region below the K(52F) threshold, three previously observed resonances were investigated [Kiyan , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.5979 84, 5979 (2000)]. A greatly increased modulation of the signal was obtained by detecting in the K(72S) channel instead of the K(52S) channel used in the previous study. Furthermore, the shapes of the cross sections in the threshold regions are discussed. A detailed description of the apparatus and the experimental procedure employed is presented in the paper.

  14. Threshold behavior of e-H ionizing collisions.

    PubMed

    Bartlett, Philip L; Stelbovics, Andris T

    2004-12-03

    We present accurate ab initio numerical solutions of the full Schrödinger equation for the electron-impact ionization of hydrogen near threshold using the propagating exterior complex scaling method. They provide strong support for the Wannier threshold law [Phys. Rev. 90, 817 (1953)], giving sigma proportional to E(1.122+/-0.015), and also give the energy dependence of the electrons' angular distribution as (pi-theta12) FWHM approximately 3.0E(1/4), in general agreement with classical and semiclassical predictions.

  15. Mass analyzed threshold ionization spectroscopy of 7-azaindole cation

    NASA Astrophysics Data System (ADS)

    Lee Lin, Jung; Tzeng, Wen Bih

    2003-10-01

    The vibrationally resolved mass analyzed threshold ionization (MATI) spectra of jet-cooled 7-azaindole have been recorded by ionizing via four different intermediate levels. The adiabatic ionization energy of this molecule is determined to be 65 462±5 cm -1, which is greater than that of indole by 2871 cm -1. The vibrational spectra of 7-azaindole in the S 1 and D 0 states have been successfully assigned by comparing the measured frequencies with those of indole as well as the predicted values from the ab initio calculations. Detailed analysis on the MATI spectra shows that the structure of the cation is somewhat different from that of this species in the neutral S 1 state.

  16. Mass-Analyzed Threshold Ionization of LaO2

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Sergiy; Yang, Dong-Sheng

    2010-06-01

    Lanthanum oxide, LaO2, is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectrum, the adiabatic ionization energy of LaO2 is determined to be 40134 (5) Cm-1 or 4.976 (6) eV, and La+-O stretching and O-La+-O bending frequencies are measured as 656 and 120 Cm-1. The measured ionization energy is about 3.0 eV lower than the value predicted by recent high-level ab initio calculations. In this talk, we will discuss the discrepancy between the experiment and theory and the electronic transition observed in our experiment. T. K. Todorova, I. Infante, L. Gagliardi, and J. M. Dyke, J. Phys. Chem. A 112, 7825 (2008).

  17. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    SciTech Connect

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  18. A study to control chemical reactions using Si:2p core ionization: site-specific fragmentation.

    PubMed

    Nagaoka, Shin-ichi; Fukuzawa, Hironobu; Prümper, Georg; Takemoto, Mai; Takahashi, Osamu; Yamaguchi, Katsuhiro; Kakiuchi, Takuhiro; Tabayashi, Kiyohiko; Suzuki, Isao H; Harries, James R; Tamenori, Yusuke; Ueda, Kiyoshi

    2011-08-18

    In an aim to create a "sharp" molecular knife, we have studied site-specific fragmentation caused by Si:2p core photoionization of bridged trihalosilyltrimethylsilyl molecules in the vapor phase. Highly site-specific bond dissociation has been found to occur around the core-ionized Si site in some of the molecules studied. The site specificity in fragmentation and the 2p binding energy difference between the two Si sites depend in similar ways on the intersite bridge and the electronegativities of the included halogen atoms. The present experimental and computational results show that for efficient "cutting" the following conditions for the two atomic sites to be separated by the knife should be satisfied. First, the sites should be located far from each other and connected by a chain of saturated bonds so that intersite electron migration can be reduced. Second, the chemical environments of the atomic sites should be as different as possible.

  19. Rings in above-threshold ionization: A quasiclassical analysis

    SciTech Connect

    Lewenstein, M.; Kulander, K.C.; Schafer, K.J.; Bucksbaum, P.H. Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Warszawa 02-668 Theoretical Atomic and Molecular Physics , Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94550 Physics Department and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-1120 )

    1995-02-01

    A generalized strong-field approximation is formulated to describe atoms interacting with intense laser fields. We apply it to determine angular distributions of electrons in above-threshold ionization (ATI). The theory treats the effects of an electron rescattering from its parent ion core in a systematic perturbation series. Probability amplitudes for ionization are interpreted in terms of quasiclassical electron trajectories. We demonstrate that contributions from the direct tunneling processes in the absence of rescattering are not sufficient to describe the observed ATI spectra. We show that the high-energy portion of the spectrum, including recently discovered rings (i.e., complex features in the angular distributions of outgoing electrons) are due to rescattering processes. We compare our quasiclassical results with exact numerical solutions.

  20. Mass analyzed threshold ionization (MATI) spectroscopy of p-cresol

    NASA Astrophysics Data System (ADS)

    Shirhatti, P. R.; Wategaonkar, S.

    2012-03-01

    Experimental setup was developed for carrying out the mass analyzed threshold ionization (MATI) spectroscopy. Primary objective has been to carry out the vibronic spectroscopy of the novel hydrogen bonded complexes in the cationic state. To this end MATI spectroscopy is best suited for the purpose. This work presents the successful implementation of the same using p-cresol as a test case. This happens to be the prime substrate in most of our studies on weakly hydrogen bonded complexes that are dominated by the dispersion interaction contrary to the electrostatic nature of the conventional hydrogen bonds. The adiabatic ionization potential of p-cresol was determined as 65,904 ± 10 cm-1 which is in good agreement with the previously reported value. The MATI spectrum also shows a few vibronic bands of p-cresol cation.

  1. Caustics and catastrophes in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Kelvich, S. A.; Becker, W.; Goreslavski, S. P.

    2017-08-01

    Low-energy above-threshold ionization by a midinfrared laser field is investigated in terms of a commonly used semiclassical model. The mapping of the initial conditions (initial transverse velocity and initial phase of the field) on the final drift momenta that is mediated by Newton's equation of motion is approximated by three Coulomb interactions, which occur at the exit of the tunnel and during the subsequent hard and soft interactions that occur when the electron revisits the ion. The mapping exhibits a particular caustic structure in the area of the low-energy structure, which has the shape of the butterfly catastrophe.

  2. Interference structure of above-threshold ionization versus above-threshold detachment

    NASA Astrophysics Data System (ADS)

    Korneev, Ph A.; Popruzhenko, S. V.; Goreslavski, S. P.; Becker, W.; Paulus, G. G.; Fetić, B.; Milošević, D. B.

    2012-05-01

    Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for near-perpendicular emission the qualitative appearance of the spectrum is unaffected.

  3. Polarization asymmetry in two-electron photodetachment - A cogent test of the ionization threshold law

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Bhatia, A. K.

    1988-01-01

    A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.

  4. Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold.

    PubMed

    Arbó, D G; Yoshida, S; Persson, E; Dimitriou, K I; Burgdörfer, J

    2006-04-14

    We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].

  5. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  6. Observation of thresholds and overlapping resonances below the 10 2P1/2 and 2P3/2 thresholds in the photodetachment of Cs-

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Rohlén, J.; Hultgren, H.; Pegg, D. J.; Walter, C. W.; Hanstorp, D.

    2013-11-01

    A collinear beam apparatus has been used to study photodetachment of Cs-. Partial cross sections were measured using state-selective detection based on a resonance ionization scheme. Several resonances were observed in the Cs(102S), Cs(62F), Cs(62G), and Cs(62H) final-state channels below the Cs(102P3/2) channel opening. A model was developed to account for the interference between overlapping resonances. This model is essentially a generalization of the Fano [U. Fano, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.124.1866 124, 1866 (1961)] and Shore [B. W. Shore, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.171.43 171, 43 (1968)] parametrizations for single resonances. Resonance parameters were extracted by fitting the model to the data sets. The openings of the Cs(102S) and Cs(62F) channels, where the polarizabilities of the atomic states are large and positive, showed rapid onsets. In the case of the Cs(62G) and Cs(62H) channels, on the other hand, the photodetachment cross sections increased slowly with energy. For the Cs(62H) channel this is the expected behavior, since it is the result of a large and negative polarizability of the 62H state. In addition, the excitation of the Cs(62H) state with respect to the Cs ground state was found to be 28 356.3(2) cm-1, in agreement with a previous experiment.

  7. A theoretical analysis on the vibronic spectra with mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Chao, Sheng D.; Peng, Hsin Y.

    2008-01-01

    We have theoretically studied the absorption vibronic spectra with the resonance two-photon (R2P) and non-resonance two-photon (NR2P) mass analyzed threshold ionization (MATI) spectroscopy. The theory uses the inverse Born-Oppenheimer approximation (IBOA) to establish a proper basis set. To analyze the MATI vibronic spectra, we have calculated the Franck-Condon factors involved in the vibronic transitions. Several experimental spectra are analyzed using this theory with emphasis on the importance of the resonance intermediate states. The long vibrational progression in a MATI spectrum can be partly attributed to the result of including the anharmonic correction in the calculated Franck-Condon factors. The experimentally observed isotope effect is also analyzed.

  8. Threshold electron attachment and electron impact ionization involving oxygen dimers

    NASA Astrophysics Data System (ADS)

    Kreil, J.; Ruf, M.-W.; Hotop, H.; Ettischer, I.; Buck, U.

    1998-12-01

    Using two different crossed-beams machines we have carried out the first quantitative study of threshold electron attachment and electron impact-induced ionization and fragmentation involving oxygen dimers (O 2) 2. In the electron attachment experiment we study electron transfer from state-selected Ar **(20d) Rydberg atoms to O 2 molecules and dimers in a skimmed supersonic beam at variable nozzle temperatures ( T0) and stagnation pressures ( p0). The relative dimer density is determined through measurements of Penning ionization by metastable Ne *(3s 3P2,0) atoms and used to estimate the absolute cross-section for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 dimers to be nearly 10 -17 m 2, almost four orders of magnitude larger than that for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 monomers. The fragmentation of the oxygen cluster beam is quantitatively characterized by the transverse helium beam scattering method which allows us to spatially separate different clusters. It is shown that in 70 eV electron impact of (O 2) 2 only 3.6(4)% of the dimers are detected as dimer ions (O 2) 2+. In additional experiments involving SF 6 clusters we show that SF 6 dimers fragment nearly completely upon 70 eV electron impact, yielding SF 5+ ions (probability for (SF 6)·SF 5+ production at most 0.3%).

  9. Threshold Ionization and Spin-Orbit Coupling of Cerium Monoxide

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Zhang, Yuchen; Wu, Lu; Yang, Dong-Sheng

    2017-06-01

    Cerium oxides are widely used in heterogeneous catalysis due to their ability to switch between different oxidation states. We report here the mass-analyzed threshold ionization (MATI) spectroscopy of cerium monoxide (CeO) produced by laser ablating a Ce rod in a molecular beam source. The MATI spectrum in the range of 40000-45000 \\wn exhibits several band systems with similar vibrational progressions. The strongest band is at 43015 (5) \\wn, which can be assigned as the adiabatic ionization energy of the neutral species. The spectrum also shows Ce-O stretching frequencies of 817 and 890 \\wn in the neutral and ion states, respectively. By comparing with spin-orbit coupled multireference quasi-degenerate perturbation theory (SO-MCQDPT) calculations, the observed band systems are assigned to transitions from various low-energy spin-orbit levels of the neutral oxide to the two lowest spin-orbit levels of the corresponding ion. The current work will also be compared with previous experimental and computational studies on the neutral species.

  10. Above-threshold ionization through Rydberg state population

    NASA Astrophysics Data System (ADS)

    Xin, Pei Pei; Yuan, Ming Hu; Wang, Han Mu; Yang, Hai Feng; Liu, Hong Ping

    2017-04-01

    We present a theoretical scenario for the atomic above-threshold ionization (ATI) in an intense laser field by investigating the Rydberg state population in real time. Rather than merely viewing the final distribution of photoelectron yield directly, we monitor the Rydberg state population by projecting the time-dependent wave function onto the bound eigen-states. The calculation shows that the population of resonant Rydberg states is closely related to the peaks in photoelectron kinetic energy spectrum (PKES). For a hydrogen atom, the highest populated Rydberg states are degenerated, exactly corresponding to the first ATI peak if one additional photon is absorbed. While for non-hydrogen atoms, e.g., Ar, the highest Rydberg states are mainly populated on specific states, e.g., 3 d (5 s) and 4f in our case, also giving exact peak positions in PKES, where the state identification is obtained by the angular momentum resolved distribution of excited Rydberg states. This method provides an easy to understand picture for the resonance-enhanced effects in ATI as well as the role of atomic core potential in strong-field ionization.

  11. The Cryogenic Dark Matter Search low ionization-threshold experiment

    SciTech Connect

    Basu Thakur, Ritoban

    2014-01-01

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon

  12. The cryogenic dark matter search low ionization-threshold experiment

    NASA Astrophysics Data System (ADS)

    Basu Thakur, Ritoban

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and indirectly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise.In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge

  13. Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold

    NASA Technical Reports Server (NTRS)

    Davis, J.; Jacobs, V. L.

    1975-01-01

    The effects of plasma electric microfields on line-like optical features arising from atomic levels above the ionization threshold are investigated within the framework of the quasi-static and single-frequency dynamic-field theories of spectral-line broadening. The 2p(23)P to 1s2p(3)P and 2s2p(3)P to 1s2s(3)S transitions in helium and helium-like ions are treated as examples. The mixing of the doubly excited levels in the perturbing microfields produces Stark broadening of the emission lines and induces autoionization of the 2p(23)P level, which, unlike the 2s2p(3)P level, is metastable against autoionization in the field-free environment. Determination of the complete Stark-broadening profiles in thermal plasmas is complicated by the need to include the effects of both the (quasi-static) ion and the (dynamic) electron fields. Under nonequilibrium conditions, where electric fields from either electron or ion plasma waves can far exceed nearby particle fields, the calculation and interpretation of the line shapes may be simplified and could provide a diagnostic probe of the wave-field properties.

  14. Mass-Analyzed Threshold Ionization Spectroscopy of 2-Phenylethanol: Probing of Conformational Changes Caused by Ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Karaminkov, R.; Chervenkov, S.; Delchev, V.; Neusser, H. J.

    2009-10-01

    The vibrational structure of the ionic ground state of different conformers of the biologically relevant molecule 2-phenylethanol has been investigated by combination of two-photon two-color mass-analyzed threshold ionization spectroscopy (MATI) and quantum chemical calculations at M05, MP2, and coupled cluster (CC) levels of theory with extended basis sets. MATI spectra recorded via gauche vibronic bands are with poor structure and increasing background, whereas the ones measured via vibronic bands of the anti conformers feature well-resolved vibronic structure in the cation. Ab initio computations predict three stable conformers for the 2-phenylethanol cation out of five initial neutral structures. None of the theoretical structures in the cation features a nonclassical OH···π hydrogen bond in conjunction with the analysis of the MATI spectra. This provides clear evidence that the OH···π hydrogen bond stabilizing the lowest-energy gauche conformer in the neutral breaks upon ionization.

  15. Two-photon ionization and three-photon above-threshold ionization of argon

    SciTech Connect

    Bouhal, A.; Hamoniaux, G.; Mysyrowicz, A.; Antonetti, A.; Breger, P.; Agostini, P.; Constantinescu, R.C.; Muller, H.G.; DiMauro, L.F.

    1998-03-01

    Studies of nonlinear laser-matter interaction have been so far limited to wavelengths from the near ultraviolet to infrared, because of the low brightness of currently available sources outside this range. However nonlinear processes in the VUV/Soft X-ray domain would initiate multiphoton innershell spectroscopy, XUV nonlinear optics and applications of such processes to metrology. The probability of multiphoton transitions decreases rapidly with the number of photons involved. A typical two-photon bound-free transition has a rate of the order of .1 ps{sup {minus}1} at 10{sup 12} W.cm{sup {minus}2} and scales as the square of the intensity. Such an intensity is therefore required to saturate a two-photon transition with a 100 fs pulse. This is difficult to achieve with the present state-of-the-art techniques for producing intense XUV pulses. To the authors knowledge, only two cases of such transitions have been reported so far. The first one is a two-photon ionization of argon by the third harmonic of a KrF laser. Since the photon energy (15 eV) is just below the ionization energy (15.75 eV) for argon, the transition is quasi-resonant. The second case is a two-photon ionization of helium by the 9th harmonic of a Ti:S laser. In the latter case an autocorrelation measurement of the harmonic pulse has been reported. In the present work, the authors report on two-photon ionization of argon at 133 nm (9.3 eV) from the third harmonic of a frequency doubled Ti:S laser, and a three-photon above-threshold ionization involving two 9.3 eV photons and one 3.1 eV photon.

  16. The effect of conformation on the ionization energetics of n-butylbenzene. I. A threshold ionization study

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Ford, Mark S.; Dessent, Caroline E. H.; Müller-Dethlefs, Klaus

    2003-12-01

    Conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Gauche- and anti-cationic conformers were selectively produced by two-color excitation via the respective S1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70 148 and 69 955±5 cm-1, respectively. Analysis of the REMPI and MATI spectra allowed the determination of the S0 (38 cm-1), S1 (100 cm-1), and D0 (-155 cm-1) gauche- and anti-conformer energy differences. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations discussed.

  17. Low-energy structure of above-threshold-ionization electron spectra: Role of the Coulomb threshold effect

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Chu, Shih-I.

    2011-06-01

    Recent experimental observations of above-threshold ionization of rare gas atoms and diatomic molecules by midinfrared laser fields [C. I. Blaga , Nat. Phys.PRLTAO1745-247310.1038/nphys1228 5, 335 (2009); W. Quan , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.093001 103, 093001 (2009)] revealed a prominent maximum in the electron energy spectrum very close to the ionization threshold which is not reproduced by widely used Keldysh-Faisal-Reiss theories. We have performed fully ab initio theoretical analysis and precision calculations to explore the quantum origin of the low-energy structure (LES) observed in the experiments. Our study shows that an important role in shaping of LES is played by the effect of Coulomb attraction in the final electron state and the Coulomb threshold effect.

  18. On the turbulent heating and the threshold condition in the critical ionization velocity interaction

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Papadopoulos, K.; Piel, A.

    1987-01-01

    On the basis of the nonlinear treatment of the ion beam instability and the modified two-stream instability, threshold conditions for the critical ionization velocity interaction are derived. There are three different regimes of interaction: (1) additional ionization for relative velocities smaller than the critical velocity, (2) the self-sustained discharge for velocities greater than the critical velocity which indeed turns out as a sharp threshold, and (3) an explosive growth regime for velocities exceeding 1.5 times the critical velocity. Additional charge exchange collisions of ions and energy loss of electrons due to excitation do not change the basic threshold behavior but modify the value of the critical velocity.

  19. Rydberg-resolved resonant inelastic soft x-ray scattering: dynamics at core ionization thresholds.

    PubMed

    Rubensson, J-E; Söderström, J; Binggeli, C; Gråsjö, J; Andersson, J; Såthe, C; Hennies, F; Bisogni, V; Huang, Y; Olalde, P; Schmitt, T; Strocov, V N; Föhlisch, A; Kennedy, B; Pietzsch, A

    2015-04-03

    Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.

  20. Transitions of the type 2s-2p in highly ionized Cu, Zn, Ga, and Ge

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Cohen, L.; Seely, J. F.; Feldman, U.; Goldsmith, S.; Richardson, M.

    1985-01-01

    Transitions of the type 2s-2p in the F I, O I, N I, and C I isoelectronic sequences of copper, zinc, gallium, and germanium have been identified in the spectra from plasmas produced by the Omega laser system at the University of Rochester. The wavelengths are in the range 50 to 112 A and are measured using silicon and oxygen lines as wavelength standards for gallium and using several lines from the F I, O I, and Na I isoelectronic sequences as wavelength standards for copper, zinc, and germanium. The energy levels that are determined from the measured wavelengths are also presented. Based on these measurements, the wavelengths for a number of magnetic-dipole transitions within the ground configurations of the F I, O I, and N I isoelectronic sequences are predicted.

  1. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane in the supersonic jet

    NASA Astrophysics Data System (ADS)

    Han, Songhee; Yoo, Hyun Sik; Ahn, Doo-Sik; Choi, Young S.; Kim, Sang Kyu

    2011-12-01

    Vacuum ultraviolet (VUV) mass-analyzed threshold ionization (MATI) spectrum of supersonically cooled methylcyclohexane has been obtained to give the precise adiabatic ionization energy of 9.6958 ± 0.0025 eV for the chair equatorial conformer. Vibrationally resolved MATI spectrum has been analyzed with the aid of density functional theory and Franck-Condon calculations. The MATI spectrum reflects the structural change upon ionization and its origin is discussed by inspecting the shapes of the valence orbitals involved in the ionization process. The spectroscopic implication of the structural interconversion above the certain energy level is discussed with theoretical calculations of molecular structures and energetics.

  2. Adiabatic theory of Wannier threshold laws and ionization cross sections

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Yu.

    1994-12-31

    The Wannier threshold law for three-particle fragmentation is reviewed. By integrating the Schroedinger equation along a path where the reaction coordinate R is complex, anharmonic corrections to the simple power law are obtained. These corrections are found to be non-analytic in the energy E, in contrast to the expected analytic dependence upon E.

  3. Intensity-resolved above-threshold ionization of xenon with short laser pulses

    NASA Astrophysics Data System (ADS)

    Hart, N. A.; Strohaber, J.; Kaya, G.; Kaya, N.; Kolomenskii, A. A.; Schuessler, H. A.

    2014-05-01

    We present intensity-resolved above-threshold ionization (ATI) spectra of xenon using an intensity scanning and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and a central wavelength of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have higher contrast and are in excellent agreement with characteristic two and ten Up cutoff energies contrary to that found for raw data. The retrieved electron-ionization probability is consistent with the presence of a second electron from double ionization. This recovered ionization probability is confirmed with a calculation based on the Perelomov, Popov, and Terent'ev tunneling ionization model [Sov. Phys. JETP 23, 924 (1966)]. Thus, the measurements of the photoelectron yields and the developed deconvolution technique allowed retrieval of more accurate spectroscopic information from the ATI spectra and ionization probability features that usually are concealed by volume averaging.

  4. Vibrational levels of p-xylene cation determined by mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Aigner, Udo; Ludwig Selzle, Heinrich; William Schlag, Edward

    2003-10-01

    Mass-analyzed threshold ionization (MATI) spectroscopy and two-color resonant two-photon ionization method were used for the determination of the vibrational levels of the p-xylene cation. The MATI spectrum was recorded via the 0 0 vibrationless level of the S 1 state of p-xylene. The spectrum shows a rich structure and some vibrational frequencies of the cation are determined. The experimental findings are well supported by ab initio calculation.

  5. Ionization thresholds of small carbon clusters: tunable VUV experiments and theory.

    PubMed

    Belau, Leonid; Wheeler, Steven E; Ticknor, Brian W; Ahmed, Musahid; Leone, Stephen R; Allen, Wesley D; Schaefer, Henry F; Duncan, Michael A

    2007-08-22

    Small carbon clusters (Cn, n = 2-15) are produced in a molecular beam by pulsed laser vaporization and studied with vacuum ultraviolet (VUV) photoionization mass spectrometry. The required VUV radiation in the 8-12 eV range is provided by the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. Mass spectra at various ionization energies reveal the qualitative relative abundances of the neutral carbon clusters produced. By far the most abundant species is C3. Using the tunability of the ALS, ionization threshold spectra are recorded for the clusters up to 15 atoms in size. The ionization thresholds are compared to those measured previously with charge-transfer bracketing methods. To interpret the ionization thresholds for different cluster sizes, new ab initio calculations are carried out on the clusters for n = 4-10. Geometric structures are optimized at the CCSD(T) level with cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations are applied to both neutral and cation species to determine adiabatic and vertical ionization potentials. The comparison of computed and measured ionization potentials makes it possible to investigate the isomeric structures of the neutral clusters produced in this experiment. The measurements are inconclusive for the n = 4-6 species because of unquenched excited electronic states. However, the data provide evidence for the prominence of linear structures for the n = 7, 9, 11, 13 species and the presence of cyclic C10.

  6. Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect

    NASA Astrophysics Data System (ADS)

    Li, Changyong; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    The adiabatic ionization energy of p-cyanophenol has been determined to be 72 698 ± 5 cm -1 (9.0134 ± 0.0006 eV) on the basis of mass analyzed threshold ionization (MATI) spectrscopy. Analysis of the newly obtained MATI spectra gives the respective frequencies of 399, 517 and 820 cm -1 for the ring deformation 6a, C-CN bending, and breathing vibrations of the p-cyanophenol cation. Comparing these experimental data with those of phenol leads to a better understanding about the influence of the CN substituent on the ionization energy and molecular vibration.

  7. Absolute cross sections for near-threshold electron-impact excitation of the 2s 2S-->2p 2P transition in C3+

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.; Chung, Y.-S.; Djurić, N.; Wallbank, B.; Woitke, O.; Zhou, S.; Dunn, G. H.; Smith, A. C.

    1998-01-01

    Absolute total cross sections for electron-impact excitation of the 2s 2S-->2p 2P transition in C3+ were measured from 7.35 eV to 8.45 eV using the merged electron-ion-beams energy-loss technique. The results settle the discrepancy between two previous experiments using the crossed-beams fluorescence method, being in very good agreement with the older results [P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf, and D. H. Crandall, Phys. Rev. Lett. 39, 1256 (1977)] but less so with the more recent ones [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A 51, 2162 (1995)]. The present measurements are also in good agreement with unitarized Coulomb-Born and close-coupling calculations.

  8. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  9. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-10-15

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections {sigma}{sub n} and asymmetry parameters {beta}{sub n} are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n{sup -3} dependence of the partial ionization cross sections. However, the {beta}{sub {infinity}}=-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold.

  10. Steplike Intensity Threshold Behavior of Extreme Ionization in Laser-Driven Xenon Clusters

    SciTech Connect

    Doeppner, T.; Mueller, J. P.; Przystawik, A.; Goede, S.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.; Varin, C.; Ramunno, L.; Brabec, T.; Fennel, T.

    2010-07-30

    The generation of highly charged Xe{sup q+} ions up to q=24 is observed in Xe clusters embedded in helium nanodroplets and exposed to intense femtosecond laser pulses ({lambda}=800 nm). Laser intensity resolved measurements show that the high-q ion generation starts at an unexpectedly low threshold intensity of about 10{sup 14} W/cm{sup 2}. Above threshold, the Xe ion charge spectrum saturates quickly and changes only weakly for higher laser intensities. Good agreement between these observations and a molecular dynamics analysis allows us to identify the mechanisms responsible for the highly charged ion production and the surprising intensity threshold behavior of the ionization process.

  11. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles.

  12. Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus

    2016-07-01

    Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.

  13. Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Shivatare, Vidya; Tzeng, Sheng Yuan; Tzeng, Wen Bih

    2013-02-01

    We apply the two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopic technique to record the cation spectra of 1-cyanonaphthalene via four intermediate vibronic levels. The adiabatic ionization energy is determined to be 69 466 ± 5 cm-1. The distinct bands at 416, 472, 516, 669, and 852 cm-1 result from in-plane ring deformation vibrations of the cation. Analysis of these MATI spectra suggests that the molecular geometry and vibrational coordinates of the observed vibrations of the cation in the ground D0 state resemble those of the neutral in the electronically excited S1 state.

  14. Laser-induced crossed-beam charge transfer: energy threshold of the Na (3 2P 3/2) + I 2 → Na + + I -2 channel

    NASA Astrophysics Data System (ADS)

    Bañares, L.; González Ureña, A.

    1991-01-01

    A crossed-beam charge-transfer study was carried out for the Na(3 2P 3/2) + I 2 → Na + + I -2 system using laser excitation of the Na atom. The energy threshold and post-threshold laws were measured for the title reaction and the I 2 molecule electron affinity was determined. The value EA (I 2) = 2.69 ± 0.05 eV obtained in the present work is in accordance with previous determinations.

  15. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  16. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    NASA Astrophysics Data System (ADS)

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae; Kwon, Chan Ho

    2014-11-01

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm-1 (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state (2A2), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C2v symmetry through the C-N axis.

  17. Absolute cross sections for excitation of the 2s 2S-->2p 2P transition in B2+ and for electron-impact single ionization of B2+

    NASA Astrophysics Data System (ADS)

    Woitke, O.; Djurić, N.; Dunn, G. H.; Bannister, M. E.; Smith, A. C.; Wallbank, B.; Badnell, N. R.; Pindzola, M. S.

    1998-12-01

    Absolute cross sections for electron-impact excitation of the 2s 2S-->2p 2P transition of B2+ measured between 5.4 and 7.0 eV are presented. The results are in good agreement with the R-matrix-with-pseudostates (RMPS) calculation of Marchalant et al. [J. Phys. B 30, L435 (1997)]. Also presented are cross sections for electron-impact single ionization of B2+, including measurements between 25 and 200 eV and calculations using the RMPS and time-dependent close-coupling methods. The measured ionization cross sections are about 14% higher near the peak than previous measurements by Crandall et al. [Phys. Rev. A 34, 1757 (1986)], but agree well with experimental data of Hofmann et al. [Z. Phys. D 16, 113 (1990)] and with the present and other theoretical predictions.

  18. Spin-tagged electron-hydrogen scattering: Ionization in the near-threshold region

    SciTech Connect

    Guo, X.Q.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Slevin, J.; Eminyan, M. Department of Experimental Physics, St. Patrick's College, Maynooth, Maynooth, County Kildare Laboratoire de Physique Atomique, Tour 24, Universite Paris VII, F-75251 Paris )

    1990-10-08

    We use beams of polarized electrons and polarized hydrogen atoms to measure the ionization-rate asymmetry, {Delta}{sub {ital I}}=({ital R}({up arrow}{down arrow}){minus}{ital R}({up arrow}{up arrow}))/({ital R}({up arrow}{down arrow})+{ital R}({up arrow}{up arrow})), in the near-threshold region, where {ital R}({up arrow}{down arrow}) and {ital R}({up arrow}{up arrow}) are the ionization rates when the electron spin is antiparallel and parallel, respectively, to the atomic spins. Within 1.7 eV above threshold, our results reveal the presence of structure, which heretofore has not been predicted by any conventional theoretical calculation.

  19. Influence of multi-photon excitation on the atomic above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Tian, Yuan-Ye; Wang, Chun-Cheng; Li, Su-Yu; Guo, Fu-Ming; Ding, Da-Jun; Wim-G, Roeterdink; Chen, Ji-Gen; Zeng, Si-Liang; Liu, Xue-Shen; Yang, Yu-Jun

    2015-04-01

    Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrödinger equation of a hydrogen-like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in above-threshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the above-threshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11034003, 11304116, 11274001, and 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).

  20. Dynamics of the helium atom close to the full fragmentation threshold: Double ionization

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-02-15

    A complete set of cross sections is presented for photodouble ionization of He at 0.1 eV above the threshold. Special care is taken to clear the asymmetry parameter and the energy differential cross section of any ionization-excitation contribution. As a result, their limiting behaviors for the fully asymmetric partitionings of the excess energy are elucidated, thus shedding light on pending discussions in the field. A reliable scheme follows for computing the fully integrated cross section. Very good agreement is observed between the calculated and measured fully differential cross sections after a detailed reassessment of the experimental normalization procedure. The present findings are compared with the assumptions underlying the Wannier picture of near-threshold double escape.

  1. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  2. Resonancelike enhancement in high-order above-threshold ionization of molecules

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Lai, XuanYang; Chen, YongJu; Wang, ChuanLiang; Hu, ZiLong; Liu, XiaoJun; Hao, XiaoLei; Chen, Jing; Hasović, Elvedin; Busuladžić, Mustafa; Becker, Wilhelm; Milošević, Dejan B.

    2013-08-01

    Rresonancelike enhancement of groups of adjacent peaks in the photoelectron spectrum of high-order above-threshold ionization has been well documented for noble-gas atoms subjected to intense infrared laser pulses. However, its physical origin is still under debate. In this Rapid Communication, we investigate experimentally and theoretically high-order above-threshold ionization of diatomic nitrogen and oxygen molecules in order to shed more light on the underlying mechanism. The resonancelike enhancement is experimentally observed for N2 but is absent for O2 molecules. A simulation on the basis of S-matrix theory and the strong-field approximation reproduces the experimental observations. This implies that the resonancelike enhancement can be attributed to the channel-closing effect. The specific molecular structure plays a decisive role for the presence or absence of this enhancement in molecular systems.

  3. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  4. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    SciTech Connect

    Xu, Yanqi; Tzeng, Sheng Yuan; Takahashi, Kaito; Shivatare, Vidya; Zhang, Bing; Tzeng, Wen Bih

    2015-03-28

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S{sub 1}← S{sub 0} electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm{sup −1}, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm{sup −1} for these isomeric species. Most of the observed active vibrations in the electronically excited S{sub 1} and cationic ground D{sub 0} states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S{sub 1} and D{sub 0} states.

  5. Mass analyzed threshold ionization spectroscopy of p -aminophenol cation and the substitution effect

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Lin, Jung Lee; Tzeng, Wen Bih

    2004-10-01

    The mass analyzed threshold ionization (MATI) spectra of p-aminophenol have been recorded by ionizing via the vibrationless 0 0 and vibrational 6a 1, 12 1, and 1 1 levels in the S 1 state. The adiabatic ionization energy (IE) of this molecule is determined to be 58,822 ± 5 cm -1. The frequencies of ring vibrational modes 6a, 12, 1, and 18b of the cation are measured to be 458, 768, 835, and 1181 cm -1, respectively. Comparing these new data of p-aminophenol with those of several p-substituted anilines and p-substituted phenols leads to a better understanding about the substitution effects on the IE as well as the cation vibration.

  6. Mass-analyzed threshold ionization spectroscopy of 1-bromopropane through dissociative intermediate states

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Wang, Yanmei; Tang, Bifeng; Zheng, Qiusha; Zhang, Bing

    2006-02-01

    One-color two-photon ionization of 1-bromopropane, resulting in the 1-C 3H 7Br + ions in the X2E and X2E electronic states, is investigated using mass-analyzed threshold ionization (MATI) spectroscopy. The adiabatic ionization energies of two spin states are found to be 82 257 ± 5 and 84 823 ± 5 cm -1, respectively. The two-photon MATI spectrum exhibits an extensive vibrational structure. The active modes, including the C-Br stretching, the CH 2-Br wagging, the CH 2 and the CH 3 rocking modes, are observed and reliable values for these vibrational frequencies are obtained. We have also performed ab initio and density functional calculations, which provide interpretation for our experimental finding.

  7. Enhancements of rescattered electron yields in above-threshold ionization of molecules

    SciTech Connect

    Cornaggia, C.

    2010-11-15

    In above-threshold ionization of rare-gas atoms, photoelectron spectra recorded in the 10{sup 13}-10{sup 14} W cm{sup -2} range exhibit enhancements in the rescattering plateaus that do not have a unified theoretical interpretation yet. Here an experimental search for such enhancements is reported in simple molecules with ionization potentials near those of rare-gas atoms such as H{sub 2} and N{sub 2} for argon and O{sub 2} for xenon, and in other molecules such as CO{sub 2} and N{sub 2}O. Only H{sub 2} exhibits the enhancements previously observed in atoms. The H{sub 2} particularity is interpreted in terms of its simpler ion structure and associated ionization paths compared with other molecules.

  8. Unusual under-threshold ionization of neon clusters studied by ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Sugishima, A.; Iwayama, H.; Murakami, H.; Yao, M.; Fukuzawa, H.; Liu, X.-J.; Motomura, K.; Ueda, K.; Saito, N.; Foucar, L.; Rudenko, A.; Kurka, M.; Kühnel, K.-U.; Ullrich, J.; Czasch, A.; Dörner, R.; Feifel, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.; Ishikawa, T.; Togashi, T.; Kimura, H.; Ohashi, H.

    2013-08-01

    We carried out time-of-flight mass spectrometry for neon clusters that were exposed to intense free electron laser pulses with the wavelength of 62 nm, which induce optical transition from the ground state (2s2 2p6) to an excited state (2s2 2p5 nl ) in the Ne atoms. In contrast to Ne+ ions produced by two-photon absorption from isolated Ne atoms, the Ne+ ion yield from Ne clusters shows a linear dependence on the laser intensity (I). We discuss the ionization mechanisms which give the linear behaviour with respect to I and expected features in the electron emission spectrum.

  9. Mass-analyzed threshold ionization (MATI) spectroscopy of atoms and molecules using VUV synchrotron radiation.

    PubMed

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R; Ahmed, Musahid

    2009-12-31

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N(2), O(2), N(2)O, H(2)O, C(2)H(2), and C(6)H(6). MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N(2) and O(2) are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  10. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules using VUV Synchrotron Radiation

    SciTech Connect

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-01-28

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly-formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric-field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational stateresolved MATI spectra of N2 and O2 are reported and spectral characteristics are discussed in comparison with previously-reported threshold photoelectron spectroscopic studies. While MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser based sources, this work demonstrates that MATI spectroscopy performed with widely tunable VUV radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  11. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N2 and O2 are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  12. Elliptical polarization favors long quantum orbits in high-order above-threshold ionization of noble gases.

    PubMed

    Lai, XuanYang; Wang, ChuanLiang; Chen, YongJu; Hu, ZiLong; Quan, Wei; Liu, XiaoJun; Chen, Jing; Cheng, Ya; Xu, ZhiZhan; Becker, Wilhelm

    2013-01-25

    We demonstrate the significant role of long quantum orbits in strong-field atomic processes by investigating experimentally and theoretically the above-threshold ionization spectra of noble gases in intense elliptically polarized laser pulses. With increasing laser ellipticity, the yields of different energy regions of the measured electron spectrum in high-order above-threshold ionization drop at different rates. The experimental features can be reproduced by a theoretical simulation based on quantum-orbit theory, revealing that increasing ellipticity favors the contributions of the long quantum orbits in the high-order above-threshold ionization process.

  13. Investigation of hydrogen bonding in 3-methylindole · H 2O cluster by mass analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.

    2004-05-01

    The adiabatic ionization energies and the threshold ion vibrational spectra of 3-methylindole and the 3-methylindole · H 2O cluster and the hydrogen bonding energy of the latter have been measured with mass analyzed threshold ionization (MATI) technique. Dissociation of the cluster has been detected as a breakdown of the threshold ion signal at the parent mass channel and the simultaneous increase of the signal at the fragment mass channel. Comparison with our previous work on indole · H 2O shows that there is only a small influence of the methyl group on the ionization energy and the hydrogen bonding strength.

  14. Fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He-.

    PubMed

    Wang, Liming; Li, Chun; Yan, Zong-Chao; Drake, G W F

    2014-12-31

    The fine structure and ionization energy of the 1s2s2p (4)P state of the helium negative ion He(-) are calculated in Hylleraas coordinates, including relativistic and QED corrections up to O(α(4)mc(2)), O((μ/M)α(4)mc(2)), O(α(5)mc(2)), and O((μ/M)α(5)mc(2)). Higher order corrections are estimated for the ionization energy. A comparison is made with other calculations and experiments. We find that the present results for the fine structure splittings agree with experiment very well. However, the calculated ionization energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical uncertainty in the ionization energy is much less than the experimental accuracy.

  15. Is the Kohn-Sham Oscillator Strength Exact at the Ionization Threshold?

    NASA Astrophysics Data System (ADS)

    Yang, Zenghui; van Faassen, Meta; Burke, Kieron

    2009-03-01

    It is well-established that the highest occupied orbital of the exact Kohn-Sham potential of any system is at -I, where I is the ionization energy. Therefore, in optical response, the non-interacting Kohn-Sham electrons in the ground-state potential have a first ionization threshold that exactly matches that of the real system[1]. We show that corresponding the Kohn-Sham oscillator strength is not exact at the first ionization threshold by explicit demonstration for the helium atom. We use a simple fit of the entire photoabsorption spectrum of both the Kohn-Sham potential for helium and that of real helium. We use oscillator strength sum rules[2] to determine the fit parameters, so this fit should be generally useful. [1] M. A. L. Marques, C. A. Ullrich, F. Nogueira, et al. Time-Dependent Density Functional Theory. Springer-Verlag, Berlin, 2006 [2] U. Fano and J. W. Cooper. Rev. Mod. Phys., 40(3), 441-507, 1968

  16. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  17. Attosecond transient absorption spectroscopy of helium above the N =2 ionization threshold

    NASA Astrophysics Data System (ADS)

    Petersson, C. L. M.; Argenti, Luca; Martín, Fernando

    2017-07-01

    Attosecond transient absorption spectroscopy (ATAS) allows for the study of electron dynamics in atoms and molecules with attosecond time resolution. Previous works reported in the literature have made use of ATAS to image and control such dynamics in the single-channel ionization continuum of helium; in particular, in the vicinity of the doubly excited autoionizing states lying between the N =1 and N =2 thresholds. In this work, we have extended these studies to autoionizing states lying above the N =2 threshold, where several ionization channels are open. From an accurate solution of the time-dependent Schrödinger equation, we predict the appearance of pronounced one-photon beatings between the 3 s n p states and the adjacent 1Se and 1De resonances, as well as, more surprisingly, two-photon beatings between the 3 s 3 p doubly excited state and the 1Po nonresonant continuum. Both effects lead to a significant distortion of the 3 s n p Fano profiles and to a strong variation of these profiles with the pump-probe delay, thus demonstrating control of the corresponding multichannel two-electron correlated wave packets, in the same way as reported for resonances lying below the N =2 threshold.

  18. Mass-analyzed threshold ionization of an excited state of lanthanum dioxide

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Liu, Yang; Zhang, Changhua; Li, Shenggang; Dixon, David A.; Yang, Dong-Sheng

    2012-07-01

    LaO2 was produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio electronic structure calculations. The calculations included density functional theory, second-order perturbation theory, coupled cluster theory, and complete active space self-consistent field methods. The adiabatic ionization energy of the molecule and vibrational frequencies of the molecule and its cation were measured accurately for the first time from the MATI spectrum. Numerous ionization processes of lanthanum dioxide, peroxide, and superoxide were considered; the 3B2 ← 4B2 electronic transition of the dioxide was assigned upon comparison with the observed spectrum. The ionization energy and O-La-O bending frequency of the 4B2 neutral state are 4.9760 (6) eV and 92 cm-1, respectively. The La-O stretching and O-La-O bending frequencies of the 3B2 cationic state are 656 and 122 cm-1, respectively. The 4B2 state is formed by two electron transfer from lanthanum to oxygen atoms, and the 3B2 state is produced by the further removal of a lanthanum 6s-based electron.

  19. Determination of precise pyrimidine cationic structure by vacuum ultraviolet mass-analyzed threshold ionization spectroscopy.

    PubMed

    Kim, Jae Han; Lee, Ji Hye; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2014-01-28

    The vibrational spectrum of a pyrimidine cation in the ground electronic state was obtained using vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. Accurate ionization energy of pyrimidine was determined from the 0-0 band position in the VUV-MATI spectrum and was measured by varying the PFI field to the zero field limit, which is 75,258 ± 7 cm(-1) (9.3308 eV). The spectrum displayed a large number of vibrational peaks, which could be nearly completely assigned through Franck-Condon analysis performed with variations of geometrical parameters at the B3LYP/cc-pVTZ level. Based on the excellent agreement between experimental and calculated results, the definite geometry of the pyrimidine cation in the ground electronic state was determined to be a planar structure with C2v symmetry with a decreased N-N distance in the ring.

  20. Mass-analyzed Threshold Ionization Spectroscopy of Rotamers of p-ethoxyphenol Cations and Configuration Effect

    NASA Astrophysics Data System (ADS)

    Zheng, Qiu-sha; Fang, Teng I.; Zhang, Bing; Bih Tzeng, Wen

    2009-12-01

    Two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopy was used to record the vibrationally resolved cation spectra of the selected rotamers of p-ethoxyphenol. The adiabatic ionization energies of the trans and cis rotamers are determined to be 61565 ± 5 and 61670 ± 5 cm-1, which are less than that of p-methoxyphenol by 645 and 643 cm-1, respectively. Analysis on the MATI spectra of the selected rotamers of p-ethoxyphenol cation shows that the relative orientation of the ethoxy group has little effect on the in-plane ring vibrations. The low-frequency OC2H5 bending vibrations appear to be active for both forms of the cation.

  1. Communication: On the first ionization threshold of the C2H radical.

    PubMed

    Gans, B; Garcia, G A; Holzmeier, F; Krüger, J; Röder, A; Lopes, A; Fittschen, C; Loison, J-C; Alcaraz, C

    2017-01-07

    The slow photoelectron spectrum of the ethynyl radical has been recorded for the first time by using the DESIRS beamline of the SOLEIL synchrotron facility. Ethynyl was generated using a microwave discharge flow tube. The observation of the X(+)Π3←XΣ+2 transition allowed the first direct measurement of the adiabatic ionization threshold of this radical (EI = 11.641(5) eV). The experimental results are supported by ab initio calculations. Our preliminary investigation of the cationic ground state potential energy surfaces predicts a non-negligible Renner-Teller effect which has not been discussed previously.

  2. Reducing the dimensionality of grid based methods for electron-atom scattering calculations below ionization threshold

    NASA Astrophysics Data System (ADS)

    Benda, Jakub; Houfek, Karel

    2017-04-01

    For total energies below the ionization threshold it is possible to dramatically reduce the computational burden of the solution of the electron-atom scattering problem based on grid methods combined with the exterior complex scaling. As in the R-matrix method, the problem can be split into the inner and outer problem, where the outer problem considers only the energetically accessible asymptotic channels. The (N + 1)-electron inner problem is coupled to the one-electron outer problems for every channel, resulting in a matrix that scales only linearly with size of the outer grid.

  3. Threshold for thermal ionization of an aluminum surface by pulsed megagauss magnetic field.

    PubMed

    Awe, T J; Bauer, B S; Fuelling, S; Siemon, R E

    2010-01-22

    The first measurement of the threshold for thermal ionization of the surface of thick metal by pulsed magnetic field (B) is reported. Thick aluminum-with depth greater than the magnetic skin layer-was pulsed with partial differential B/ partial differential t from 30-80 MG/micros. Novel loads avoided nonthermal plasma (from electron avalanche, or energetic particles or photons from arcs). Thermal plasma forms from 6061-alloy aluminum when the surface magnetic field reaches 2.2 MG, in qualitative agreement with numerical simulation results by Garanin et al. [J. Appl. Mech. Tech. Phys. 46, 153 (2005)].

  4. Threshold behavior in metastable dissociation of multi-photon ionized thymine and uracil

    NASA Astrophysics Data System (ADS)

    Pandey, R.; Ryszka, M.; da Fonseca Cunha, T.; Lalande, M.; Dampc, M.; Limão-Vieira, P.; Mason, N. J.; Poully, J. C.; Eden, S.

    2017-09-01

    Microsecond-timescale HNCO loss has been observed from single-color multi-photon ionized pyrimidine nucleobases in the gas phase. Photon energy thresholds for the metastable channels have been measured at 5.55 ± 0.02 eV for thymine and 5.57 ± 0.02 eV for uracil. We argue that these results can be attributed to accessing the molecules' S1 states with additional vibrational energy matching the threshold energy for HNCO loss from the radical cation. Combined with previous photoionization energies, this enables the S1 adiabatic energies to be deduced: 3.67 ± 0.07 eV for thymine and 3.77 ± 0.07 eV for uracil. These values are consistent with recent calculations.

  5. Benchmark theoretical study of the ionization threshold of benzene and oligoacenes

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Claes, L.; Kryachko, E. S.; François, J.-P.

    2003-08-01

    In straightforward continuation of Green's function studies of the ultraviolet photoelectron spectra of polycyclic aromatic compounds [Deleuze et al., J. Chem. Phys. 115, 5859 (2001); M. S. Deleuze, ibid. 116, 7012 (2002)], we present a benchmark theoretical determination of the ionization thresholds of benzene, naphthalene, anthracene, naphthacene (tetracene), pentacene, and hexacene, within chemical accuracy [0.02-0.07 eV]. The vertical ionization potentials of these compounds have been obtained from series of single-point calculations at the Hartree-Fock, second-, third-, and partial fourth-order Møller-Plesset (MP2, MP3, MP4SDQ) levels, and from coupled cluster calculations including single and double excitations (CCSD) as well as a perturbative estimate of connected triple excitations [CCSD(T)], using basis sets of improving quality, introducing up to 510, 790, 1070, 1350, 1630, and 1910 basis functions in the computations, respectively. A focal point analysis of the convergence of the calculated ionization potentials has been performed in order to extrapolate the CCSD(T) results to an asymptotically (cc-pV∞Z) complete basis set. The present results confirm the adequacy of the outer-valence Green's function scheme for strongly correlated systems. Adiabatic ionization energies have been further determined by incorporating Beck-three-parameter Lee-Yang-Parr functional corrections for zero-point vibrational energies and for geometrical relaxations. Extension of the analysis to the CCSD(T)/cc-pV∞Z level shows that the energy minimum form of the benzene radical cation is an obtuse structure related to the 2B2g state. Isotopic shifts of the adiabatic ionization potentials, due to deuterium substitution of hydrogens, have also been discussed.

  6. Vibrations of pyrazine and its ion as studied by threshold ionization spectroscopy

    SciTech Connect

    Zhu, L.; Johnson, P. )

    1993-08-15

    The pump--probe threshold ionization photoelectron spectra of pyrazine have been recorded using nine different vibrations of [ital S][sub 1] as intermediate resonances. The extensive vibrational structure in these spectra of the ionic ground state have enabled the measurement of 12 of its vibrational frequencies and their assignments. Three new vibrational assignments of [ital S][sub 1] are also made. MP2/6-31G* calculations of the vibrational frequencies of the neutral ground, [ital S][sub 1], and the ionic ground state are compared with the experimental values, finding that certain vibrations of [ital S][sub 1] and the ion which engage in extensive vibronic coupling are not properly determined by the calculated force field. Most vibrational frequencies are accurately reproduced, however. Variations in the complexity of the threshold ionization spectra with the level of [ital S][sub 1] excitation indicate that internal vibrational relaxation is taking place at a very low energy in that state, possibly involving vibronic interactions and mixing with the triplet manifold.

  7. Mass-Analyzed Threshold Ionization and Structures of M_3C_2(M=Sc, La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Mourad, Roudjane; Yang, D. S.

    2011-06-01

    M_3C_2 (M=Sc, La) clusters are produced by laser vaporization in a pulsed metal-cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of M_3C_2 (M=Sc, La) exhibit a weak 0-0 transition, indicating a significant geometry difference between the neutral and ionized clusters. The ionization energies of Sc_2C_2 and La_3C_2 are measured to be 36398 (5) and 30051(5) Cm-1, respectively. In addition, the spectra of the two clusters display a number of vibrational intervals that are associated with M_3 deformations. Preliminary data analysis shows that both clusters have a C2v bi-pyramid structure in the neutral state and a D3h bi-pyramid structure in the ion state, and the spectra may be assigned to the ^1A'_1 (D3h)← ^2B_2 (C2v) transitions.

  8. Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Wu, Jui Yang; Zhang, Shudong; Tzeng, Wen Bih

    2012-11-01

    We applied the resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of 1-fluoronaphthalene (1FN) and 2-fluoronaphthalene (2FN) by ionizing via several intermediate vibronic states. The adiabatic ionization energies of 1FN and 2FN are found to be 66 194 and 66 771 ± 5 cm-1, respectively. Distinct MATI bands resulting from in-plane ring deformation are found at 437, 517, 703, and 779 cm-1 for 1FN; and 286, 455, 494, 764, and 1031 cm-1 for 2FN. Frequencies of these modes are slightly greater than the corresponding ones in the vibronic spectra. This indicates that the molecular geometry in the cationic D0 state is slightly more rigid than that in the neutral S1 state. Comparing the present experimental data with those of naphthalene suggests that the frequency difference of each mode depends on the vibrational pattern, location of the F atom, and degree of the F atom involved in the overall vibration.

  9. Nonconstant ponderomotive energy in above-threshold ionization by intense short laser pulses

    NASA Astrophysics Data System (ADS)

    Della Picca, R.; Gramajo, A. A.; Garibotti, C. R.; López, S. D.; Arbó, D. G.

    2016-02-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field of a short laser pulse to the energy balance in atomic ionization processes. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to preserve a stationary energy conservation rule, which is used to predict the position of the energy peaks observed in the photoelectron (PE) spectra. For a plane wave and a flattop pulse, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy Up. However, for a short pulse with a fast changing intensity, the stationary approximation loses its validity. We check these concepts by studying first the PE spectrum within the semiclassical model (SCM) for multiple-step pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times mapping the pulse envelope. We also analyze the PE spectrum for a realistic sine-squared envelope within the Coulomb-Volkov and ab initio calculations solving the time-dependent Schrödinger equation. We found that the electron emission amplitudes produced at different times interfere with each other producing, in this way, a new additional pattern that modulates the above-threshold ionization (ATI) peaks.

  10. The threshold photoelectron spectrum of cyanovinylacetylene leads to an upward revision of the ionization energy

    NASA Astrophysics Data System (ADS)

    Holzmeier, Fabian; Lang, Melanie; Fischer, Ingo; Hemberger, Patrick

    2015-10-01

    Cyanovinylacetylene C5H3N was investigated by threshold photoelectron spectroscopy. The ionization energy (IE) was determined to be 10.04 eV. This value constitutes an upward revision of the earlier value of 9.33 eV. For both stereoisomers (trans and cis) computations predict very similar IEs and spectra. At 11.08 eV and 11.17 eV excited cationic states are observed. For the precursor 3-bromopyridine an IE of 9.34 eV was obtained. The appearance energy AE0K (3-bromopyridine, 3-pyridyl+) was determined to be 11.71 eV and a bond dissociation energy of the Csbnd Br bond in the 3-bromopyridine cation of 229 kJ mol-1 was derived.

  11. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  12. Interference effects in above-threshold ionization from diatomic molecules: Determining the internuclear separation

    SciTech Connect

    Hetzheim, H.; Figueira de Morisson Faria, C.; Becker, W.

    2007-08-15

    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.

  13. Quantum path analysis of high-order above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Kopold, R.; Becker, W.; Kleber, M.

    2000-05-01

    High-order above-threshold ionization spectra are calculated via an improved Keldysh approximation that takes rescattering into account. An approximate method of evaluating the crucial multidimensional integral proceeds via the saddle point method. The saddle points define complex orbits in position space that depart from the ion and return to it to rescatter. The real parts of these orbits are very closely related to the trajectories of the simple-man model. The spectra are analyzed in terms of these quantum orbits whose constructive and destructive interferences generate the spectrum's intricate structures. In most spectral regions, the six trajectories having the shortest travel times between start and return already provide an excellent approximation to the exact calculation. In exceptional cases, more orbits are required. The quantum orbits provide an illuminating illustration of the quantum mechanical path integral.

  14. Phase space path-integral formulation of the above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2013-04-01

    Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salières et al., Science 292, 902 (2001)], 10.1126/science.108836. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

  15. High-order above-threshold ionization beyond the first-order Born approximation

    NASA Astrophysics Data System (ADS)

    Čerkić, A.; Hasović, E.; Milošević, D. B.; Becker, W.

    2009-03-01

    In the improved strong-field approximation, which describes high-order above-threshold ionization (HATI), the rescattering of the ionized electron on the parent ion is described within the first-order Born approximation. The low-frequency approximation for laser-assisted scattering goes beyond the first Born approximation. In the present paper, we derive the low-frequency approximation for HATI. The rescattering amplitude in the first Born approximation is replaced by the exact scattering amplitude calculated on the energy shell. Our numerical results for the angle-resolved HATI energy spectra show that the difference between the improved strong-field approximation and the low-frequency approximation is significant for scattering away from the laser polarization axis. In the context of quantum-orbit theory and the uniform approximation, we also show that on the back-rescattering ridge, the rescattering T -matrix element can be factorized into the product of the incoming flux and the elastic-scattering cross section so that the latter can be extracted from the angle- and energy-resolved HATI spectra.

  16. High-order above-threshold ionization of argon: Plateau resonances and the Floquet quasienergy spectrum

    SciTech Connect

    Potvliege, R. M.; Vucic, Svetlana

    2006-08-15

    The Floquet quasienergy spectrum of argon in a strong laser field of 800 nm wavelength is calculated for intensities up to 7x10{sup 13} W cm{sup -2}, and beyond for some states, using a discrete complex basis set. Many of the dressed excited states of interest shift nonponderomotively in complicated ways but keep an ionization width narrow enough to produce sharp enhancements of above-threshold ionization (ATI) through Stark-shift-induced resonances. The quasienergy map is compared to high-resolution ATI spectra for 120 fs Ti:sapphire pulses [Nandor et al., Phys. Rev. A 60, R1771 (1999)]. The plateau enhancements happen at intensities where the dressed ground state is in resonance or in the wing of resonances with dressed excited states. The resonant dressed states are identified. In many cases, the same state is responsible for an enhancement of ATI in the low as well as the high orders. No evidence is found for enhancements that are not concomitant with any curve crossing and could thereby be interpreted as channel-closing enhancement.

  17. Measurement of relative cross sections for simultaneous ionization and excitation of the helium 4 2s and 4 2p states

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.

    1972-01-01

    The relative cross sections for simultaneous ionization and excitation of helium by 200-eV electrons into the 4 2s and 4 2p states were measured via a fast delayed coincidence technique. Results show good agreement with the relative cross sections for single electron excitation of helium and hydrogen. An application of the results of the measurement to the development of ultraviolet intensity standard is suggested. This technique involves the use of known branching ratios, a visible light flux reference, and the measured relative cross sections.

  18. Correspondence of below-threshold high-order-harmonic generation and frustrated tunneling ionization

    NASA Astrophysics Data System (ADS)

    Xiong, Wei-Hao; Xiao, Xiang-Ru; Peng, Liang-You; Gong, Qihuang

    2016-07-01

    Among many of the nonlinear phenomena induced by strong laser pulses, two of the important processes are the harmonic generation and the creation of neutral atoms in the Rydberg states. We carry out a joint study of the below-threshold high-order-harmonic (BTH) generation and the production of low-lying Rydberg atoms driven by an intense few-cycle midinfrared laser pulse. Our results are based on the numerical solution to the three-dimensional time-dependent Schrödinger equation within the single active electron approximation and a semiclassical simulation. The yields of BTH and low-lying Rydberg atoms are found to have a similar carrier envelope phase dependence. We find that both processes can be faithfully described semiclassically in the deep tunneling regime. The trajectory analysis shows that these two processes share the same series of trajectories and can be simultaneously manipulated by the driving pulse shape. Our finding bridges the below-threshold high-order-harmonic generation and the frustrated tunneling ionization.

  19. Experimental investigation of the electron impact ionization cross-section behaviour near threshold

    SciTech Connect

    Winkler, C.; Maerk, T.D.

    1995-12-31

    The shape of the electron impact ionization cross-section near the threshold and the appearance energies AE of atomic or molecular ions are of fundamental interest in atomic physics as well as in many applications, e.g. in plasma physics. A large number of experiments and several theoretical approaches have already been presented, which predict either a linear dependences or a cross-section given by {rho} {proportional_to} (E{sub e}-AE){sup 1.13}, as reported for the first time by Wannier. Indeed, until today it is not yet clear what dependence actually has to be assumed; especially in the experiments two serious problems arise, namely the determination of the absolute energy scale and the influence of the energy spread on the measured curve. In this work a further attempt is made to deduce the shape of the ionisation cross-section near threshold and the appearance energy from experimental data obtained by using a novel molecular beam apparatus in combination with a time-of-flight technique.

  20. Photoionization of iodine atoms: Rydberg series which converge to the I{sup +}({sup 1}S{sub 0})<-I({sup 2}P{sub 3/2}) threshold

    SciTech Connect

    Eypper, Marie; Innocenti, Fabrizio; Morris, Alan; Dyke, John M.; Stranges, Stefano; West, John B.; King, George C.

    2010-06-28

    Relative partial photoionization cross sections and angular distribution parameters {beta} have been measured for the first and fourth (5p){sup -1} photoelectron (PE) bands of atomic iodine by performing angle-resolved constant-ionic-state (CIS) measurements on these PE bands between the {sup 1}D{sub 2} and {sup 1}S{sub 0} (5p){sup -1} ionic thresholds in the photon energy region of 12.9-14.1 eV. Rydberg series arising from the 5p{yields}ns and 5p{yields}nd excitations are observed in both the first PE band, I{sup +}({sup 3}P{sub 2})<-I({sup 2}P{sub 3/2}), and the fourth PE band, I{sup +}({sup 1}D{sub 2})<-I({sup 2}P{sub 3/2}), CIS spectra. For each Rydberg state, the resonance energy, quantum defect, linewidth, line shape, and photoelectron angular distribution parameter {beta} have been determined. For the {beta}-plots for each PE band, only resonances corresponding to 5p{yields}nd excitations are observed; no resonances were seen at photon energies corresponding to the 5p{yields}ns resonances in the CIS spectra. The {beta}-plots are interpreted in terms of the parity unfavored channel with j{sub t}=4 being the major contributor at the 5p{yields}nd resonance positions, where j{sub t} is the quantum number for angular momentum transferred between the molecule, and the ion and photoelectron. Comparison of the results obtained with those published for bromine shows reasonably good agreement for the CIS spectra but poor agreement for the {beta}-plots. It appears that parity unfavored channels are playing a greater role in the valence (np){sup -1} ionization of atomic iodine than in the corresponding ionization of atomic bromine.

  1. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  2. Mass-Analyzed Threshold Ionization of M_2O_2 ( M = ce and Pr)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Dangi, Beni; Rounjane, Mourad; Yang, Dong-Sheng

    2012-06-01

    M_2O_2 ( M = Ce and Pr) is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectra, the adiabatic ionization energy is determined to be 37300(5) cm-1 for Ce2O2, and 37885 (5) cm-1 for Pr2O2. Like group 3 transition metal M2O2 (M=Sc, Y, and La) clusters we reported previously, these lanthanide clusters have a D2h planer structure and the vibrational modes observed are from the in-plane motions. However, the ground and other low-energy electronic states of the lanthanide oxides have a much higher electron spin multiplicity due to the existence of 4f electrons in the Ce and Pr atoms. The 4f electron of Ce atom has significantly lower energies than the 5d or 6s electrons and remain uncoupled in Ce2O2. On the other hand, the energy differences between the 4f and 5d/6s electrons of Pr atom are relatively small, and a 4f → 5d electron promotion is required in the formation of Pr2O2. The electronic transitions responsible for the observed MATI spectra are tentatively determined to be ^4B1u ← ^5Ag for Ce2O2 and ^6B1u ← ^7B2g and ^6B1u ← ^5B1u for Pr2O2.

  3. Above-threshold ionization of hydrogen and hydrogen-like ions by X-ray pulses

    NASA Astrophysics Data System (ADS)

    Bachau, Henri; Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica

    2013-09-01

    This paper adresses the problem of above-threshold ionization (ATI) of hydrogen interacting with an intense X-ray electromagnetic field. Two approaches have been used. In the first approach, we calculate generalized differential and total cross sections based on second-order perturbation theory for the electron interaction with a monochromatic plane wave, with the A 2 and A · P contributions from the nonrelativistic Hamiltonian (including retardation) treated exactly. In the second approach, we solve the time-dependent Schrödinger equation (TDSE) for a pulsed plane wave using a spectral approach with a basis of oneelectron orbitals, calculated with L 2-integrable B-spline functions for the radial coordinate and spherical harmonics Y lm for the angular part. Retardation effects are included up to O(1/c), they induce extra terms forcing the resolution of the TDSE in a three dimensional space. Relativistic effects [of O (1/c 2)] are fully neglected. The isoelectronic series of hydrogen is explored in the range Z = 1 - 5 in both TDSE and perturbative approaches. Photoelectron angular distributions are obtained for photon energies of 1 keV and 3 keV for hydrogen, and photon energy of 25 keV for the hydrogenic ion B4+. Perturbative and TDSE calculations are compared.

  4. Above-threshold ionization of hydrogen and hydrogen-like ions by X-ray pulses

    NASA Astrophysics Data System (ADS)

    Bachau, Henri; Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica

    2013-09-01

    This paper adresses the problem of above-threshold ionization (ATI) of hydrogen interacting with an intense X-ray electromagnetic field. Two approaches have been used. In the first approach, we calculate generalized differential and total cross sections based on second-order perturbation theory for the electron interaction with a monochromatic plane wave, with the A 2 and A · P contributions from the nonrelativistic Hamiltonian (including retardation) treated exactly. In the second approach, we solve the time-dependent Schrödinger equation (TDSE) for a pulsed plane wave using a spectral approach with a basis of oneelectron orbitals, calculated with L 2-integrable B-spline functions for the radial coordinate and spherical harmonics Y lm for the angular part. Retardation effects are included up to O(1/ c), they induce extra terms forcing the resolution of the TDSE in a three dimensional space. Relativistic effects [of O (1/ c 2)] are fully neglected. The isoelectronic series of hydrogen is explored in the range Z = 1 - 5 in both TDSE and perturbative approaches. Photoelectron angular distributions are obtained for photon energies of 1 keV and 3 keV for hydrogen, and photon energy of 25 keV for the hydrogenic ion B4+. Perturbative and TDSE calculations are compared.

  5. Resonancelike enhancement in high-order above-threshold ionization of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okunishi, M.; Hao, X.; Ito, Y.; Chen, J.; Yang, Y.; Lucchese, R. R.; Zhang, M.; Yan, B.; Li, W. D.; Ding, D.; Ueda, K.

    2016-04-01

    We investigate the resonance-like enhancement (RLE) in high-order above-threshold ionization (ATI) spectra of the polyatomic molecules C2H4 and C2H6 . In the spectrum-intensity maps, strong and weak RLE areas emerge alternatively for both C2H4 and C2H6 but in different sequences. Theoretical calculations using the strong-field approximation reproduce the experimental observation and analysis shows that the different characteristics of the two molecules can be attributed to interference effects of molecular orbitals with different symmetries. For C2H4 , the RLE structures are attributed to C-C centers of the highest occupied molecular orbital (HOMO) orbital. For C2H6 , in contrast, the C-C centers of the HOMO and HOMO-1 orbitals do not contribute to the RLE due to destructive interference but the hydrogen centers of the bonding HOMO-1 orbital give rise to the multiple RLE regions. In addition, clear experimental evidence of the existence of two types of the RLE and their dependence on the parity of ground state is shown. Our result, which strongly supports the channel-closing mechanism of the RLE, for the first time reveals the important role of low-lying orbitals and the differing roles of different atomic centers in the high-order ATI spectrum of molecules.

  6. Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential

    SciTech Connect

    Arbo, Diego G.; Ishikawa, Kenichi L.; Schiessl, Klaus; Persson, Emil; Burgdoerfer, Joachim

    2010-10-15

    We analyze the photoelectron emission spectrum in atomic above-threshold ionization by a linearly polarized short-laser pulse. Direct electrons can be characterized by both intracycle and intercycle interferences. The former results from the coherent superposition of two different electron trajectories released in the same optical cycle, whereas the latter is the consequence of the superposition of multiple trajectories released in different cycles. In the present article, a semiclassical analytical expression for the complete (both intracycle and intercycle) interference pattern is derived. We show that the recently proposed semiclassical description in terms of a diffraction process at a time grating remains qualitatively unchanged in the presence of the long-range Coulomb potential. The latter causes only a phase shift of the intracycle interference pattern. We verify the predictions of the semiclassical model by comparison with full three-dimensional (3D) time-dependent Schroedinger equation (TDSE) solutions. One key finding is that the subcycle interference structures originating from trajectories launched within a time interval of less than 1 femtosecond should be experimentally observable also in low-resolution spectra for longer multicycle pulses.

  7. Ce-PROMOTED Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Cao, Wenjin; Yang, Dong-Sheng

    2015-06-01

    Ce(C_2H_2) and Ce(C_4H_6) complexes were observed in the reaction of Ce atom with ethylene in a supersonic molecular beam source and investigated by mass-analyzed threshold ionization spectroscopy (MATI) and theoretical calculations. Preliminary data analysis shows that Ce(C_2H_2) has a triangle structure (C2v) with Ce binding to C_2H_2 in a two-fold mode and Ce(C_4H_6) has a five-membered metallacyclic structure (Cs) with Ce binding to the two terminal carbon atoms of butadiene. The ground states of both species are triplets with a 4f16s1 Ce-based electron configuration and those of the corresponding ions are doublets from the removal of the 6s1 electron. The Ce(C_2H_2) complex is formed by ethylene dehydrogenation, whereas Ce(C_4H_6) by ethylene dehydrogenation and carbon-carbon bond coupling. The MATI spectra of Ce(C_2H_2) and Ce(C_4H_6) are rather similar to those of the corresponding La complexes previously observed by our group, except that the spectra of the Ce complexes exhibit two electronic transitions with almost identical vibrational intervals. This observation suggests that the existence of a 4f electron results in an increased complexity of the electronic spectra and states of the lanthanide hydrocarbons.

  8. Mass-Analyzed Threshold Ionization Spectroscopy and Spin-Orbit Coupling of Cerium-Hydrocarbon Complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Schmidt, Michael W.; Gordon, Mark S.; Yang, Dong-Sheng

    2017-06-01

    Ce(C_{2}H_{2}) and Ce(C_{4}H_{6}) are produced by the Ce-mediated ethylene activation and investigated by mass-analyzed threshold ionization (MATI) spectroscopy, isotopic substitutions, and relativistic quantum chemical computations. The MATI spectrum of Ce(C_{2}H_{2}) exhibits two nearly identical band systems separated by 128 \\wn, and that of Ce(C_{4}H_{6}) shows three similar band systems separated by 55 and 105 \\wn. These separations are not affected by deuteration. The observed band systems for the two Ce-hydrocarbon species are attributed to the spin-orbit splitting arising from interactions of triplet and singlet states. Ce(C_{2}H_{2}) is a metallacyclopropene in C_{2v} symmetry, and Ce(C_{4}H_{6}) is a metallacyclopentene in C_{s} symmetry. The low-energy valence electron configurations of the neutral and ionic states of each species are Ce 4f^{1}6s^{1} and Ce 4f^{1}, respectively. The remaining two electrons that are associated with the isolated Ce atom or ion are spin paired in a molecular orbital that is a bonding combination between a Ce 5d orbital and a hydrocarbon π* antibonding orbital.

  9. Spin-dependent effects in high-order above-threshold ionization: spin-orbit interaction and exchange effects

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2017-08-01

    Spin-dependent effects in atomic processes can be caused by the spin-orbit interaction or/and by the requirement that the wave function of identical electrons is antisymmetric. Such effects are usually neglected in strong-field physics. We show two examples, supported by theoretical results and numerical calculations, in which these effects are important. The first one is based on strong-field ionization of Xe atoms by a bicircular field. The corresponding momentum distribution of spin-polarized electrons emitted in the above-threshold ionization process exhibits wavelength-dependent fast oscillations. For longer wavelengths and small electron emission angle there is a wide photoelectron kinetic energy region in which the spin asymmetry parameter changes continuously from large positive to large negative values. In addition, the emission time of such electrons in high-order above-threshold ionization is determined on the attosecond time scale. The second process considered is high-order above-threshold ionization of excited Li+ ions. We have found that in this case, even in the absence of spin-orbit coupling, the photoelectron momentum distribution strongly depends on the initial spin state. In the singlet state we have characteristic minima, which are caused by the destructive interference of the direct and exchange rescattering amplitudes. Such minima are absent in the triplet state.

  10. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    PubMed Central

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-01-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules. PMID:28218294

  11. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH(2+) by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH(2+) reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  12. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  13. Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets

    NASA Astrophysics Data System (ADS)

    Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladžić, Azra; Čerkić, Aner; Busuladžić, Mustafa

    2015-03-01

    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.

  14. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment.

    PubMed

    Agnese, R; Anderson, A J; Aramaki, T; Asai, M; Baker, W; Balakishiyeva, D; Barker, D; Basu Thakur, R; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Calkins, R; Cerdeno, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Ghaith, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jardin, D; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Leder, A; Loer, B; Lopez Asamar, E; Lukens, P; Mahapatra, R; Mandic, V; Mast, N; Mirabolfathi, N; Moffatt, R A; Morales Mendoza, J D; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Roberts, A; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Toback, D; Underwood, R; Upadhyayula, S; Villano, A N; Welliver, B; Wilson, J S; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2016-02-19

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5  GeV/c^{2}.

  15. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment

    DOE PAGES

    Agnese, R.

    2016-02-17

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Lastly, new parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c2.

  16. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    NASA Astrophysics Data System (ADS)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.; SuperCDMS Collaboration

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV /c2 .

  17. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment

    SciTech Connect

    Agnese, R.

    2016-02-17

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Lastly, new parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c2.

  18. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    PubMed Central

    Zhang, Zhe-Wei; Xiao, Jing; Luo, Wei; Wang, Bo-Han; Chen, Ji-Min

    2015-01-01

    Background: Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR). Methods: Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine. A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses. Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis, while real-time polymerase chain reaction (RT-PCR) assessed changes in messenger RNA levels of p53 and downstream targets responding to IR. Finally, terminal deoxynucleotidyl transferase-dUTP nick end labeling assay. Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis. All of the data were analyzed with a two-tailed Student's t-test. Results: Immunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation of γH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation. Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis. RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes. The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells. Conclusion: Caffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis. PMID:26521794

  19. Ce-PROMOTED Bond Activation of Propene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Yang, Dong-Sheng

    2016-06-01

    The reaction of Ce + propene (CH2=CH-CH3) was carried out in a laser-ablation supersonic molecular beam source. CeC_2H_2, CeC_3H_4, CeC_3H_6, CeC_4H_6, CeC_6H10, and CeC_6H12 were identified by photoionization time-of-flight mass spectrometric measurements, and their structures and electronic states were investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. The metal complexes containing two or three carbon atoms were formed by the C-C bond breakage (CeC_2H_2), dehydrogenation (CeC_3H_4), or metal insertion into a C-H bond (CeC_3H_6) of a propene molecule. The larger complexes with four to six carbons are formed through secondary reactions involving C-C bond coupling and dehydrogenation. The ground electronic states of the neutral CeC_2H_2, CeC_3H_4, CeC_3H_6, and CeC_4H_6 complexes are triplets with a 4f16s1 electron configuration on the Ce center, and those of the corresponding ions are doublet with a 4f1 configuration. Their MATI spectra are much more complex than those of the corresponding La species formed in the La + propene reaction previously observed by our group. The spectral complexity arises from possibly multiple electronic transitions due to the existence of a 4f electron of the Ce atom which could be located in any one of the seven f-atomic orbitals or involved in considerable spin-orbit interactions.

  20. Above-threshold ionization with highly charged ions in superstrong laser fields. I. Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    Aiming at the investigation of above-threshold ionization in superstrong laser fields with highly charged ions, we develop a Coulomb-corrected strong-field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation, treating the Coulomb potential perturbatively in the phase of the quasiclassical wave function of the continuum electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed, employing velocity and length gauge. Direct ionization of a hydrogenlike system in a strong linearly polarized laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terent'ev imaginary-time method is discussed.

  1. Observation of mass analyzed threshold ionization using synchrotron radiation on a new-style time of flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Wang, Yanmei; Cao, Zhenzhou; Zhang, Bing; Wang, Sisheng; Kong, Ruihong; Zhao, Yujie; Shan, Xiaobing; Sheng, Liusi

    2007-04-01

    We have developed an efficient and applicable apparatus that combines mass-analyzed threshold ionization (MATI) with continuous molecular-beam mass spectrometry using tunable vacuum ultraviolet synchrotron radiation at National Synchrotron Radiation Laboratory. The new design, in which the spoiling field and the pulsed ionization field are perpendicular to each other, can obtain efficiently the ionic spectra of molecule. The MATI spectra of Ar and N2 have been recorded in the energy region between 15.5 and 17.5eV to illustrate the feasibility of this scheme. With its unique features, the important experiment considerations are potentially a powerful tool for study of information of ionization energies and ionic states of complex organic compounds.

  2. One-color two-photon mass-analyzed threshold ionization spectroscopy of ethyl bromide through a dissociative intermediate state

    NASA Astrophysics Data System (ADS)

    Tang, Bifeng; Zhang, Song; Wang, Yanmei; Tang, Ying; Zhang, Bing

    2005-10-01

    Mass-analyzed threshold ionization (MATI) spectra of ethyl bromide were obtained using one-color two-photon ionization through a dissociative intermediate state. Accurate values for the adiabatic ionization energy have been obtained, 83099±5 and 85454±5cm-1 for the X˜1E2 and X˜2E2 states of the ethyl bromide cation, respectively, giving a splitting of 2355±10cm-1. Compared with conventional photoelectron data, the two-photon MATI spectrum exhibited a more extensive vibrational structure with a higher resolution, mainly containing the modes involving the dissociation coordinate. The observed modes were analyzed and discussed in terms of wave packet evolving on the potential-energy surface of the dissociative state.

  3. Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C—H bond activation of propene

    NASA Astrophysics Data System (ADS)

    Kumari, Sudesh; Cao, Wenjin; Hewage, Dilrukshi; Silva, Ruchira; Yang, Dong-Sheng

    2017-02-01

    La(C3H4) and La(C3H6) are observed from the reaction of laser-vaporized La atoms with propene by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. Two isomers of La(C3H4) are identified as methyl-lanthanacyclopropene [La(CHCCH3)] (Cs) and lanthanacyclobutene [La(CHCHCH2)] (C1); La(C3H6) is determined to be H—La(η3-allyl) (Cs), a C—H bond inserted species. All three metal-hydrocarbon radicals prefer a doublet ground state with a La 6s-based electron configuration. Ionization of the neutral doublet state of each of these radicals produces a singlet ion state by removing the La-based 6s electron. The threshold ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. The formation of the three radicals is investigated by density functional theory computations. The inserted species is formed by La inserting into an allylic C—H bond and lanthanacyclopropene by concerted vinylic H2 elimination, whereas lanthanacyclobutene involves both allylic and vinylic dehydrogenations. The inserted species is identified as an intermediate for the formation of lanthanacyclobutene.

  4. Photoelectron angular distributions in molecular above threshold ionization by two colour circularly polarized ultrashort UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-10-01

    Photoionization of an aligned molecular ion H? has been investigated with two colour circularly polarized ultrashort UV laser pulses by numerically solving the corresponding time dependent Schrödinger equation. Photoelectron angular distributions (PADs) in molecular above threshold ionization (MATI) exhibit: (i) asymmetry resulting from interference of coherent electron wave packets from multiple pathway ionization, which depends critically on the relative carrier envelope phase (CEP) ? between the two colour laser pulses and photoelectron kinetic energies; (ii) rotation with respect to the molecular symmetry axes due to effects of the nonspherical two center Coulomb potential. Such features are described by multi-photon perturbative theoretical ionization models. The ionization probability is functions of both the CEP ? and the angle ? between the electron emission and the molecular axis. The influence of pulse intensity and ellipticity on PADs in MATI is also investigated. It is found that the asymmetry depends on the pulse intensity whereas the rotation angle is shown to be sensitive to the pulse ellipticity, both reflecting the orientation dependence of molecular ionization probabilities.

  5. Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 4-chlorostyrene

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Huang, Hsin Hsuan; Lin, King Chuen; Tzeng, Wen Bih

    2017-08-01

    The first electronic excitation and adiabatic ionization energies of 35Cl and 37Cl 4-chlorostyrene were similar, with values of 33,977 ± 2 and 67,972 ± 5 cm-1, respectively. The general features in the obtained vibronic and cation spectra of the two isotopologues were similar. A frequency shift of 1-5 cm-1 was observed on many active vibrations of the 35Cl and 37Cl isotopologues of 4-chlorostyrene in the S1 and D0 states. This frequency difference at each mode may reflect the degree of Cl atom involvement in the overall vibration.

  6. Electron-hydrogen atom-impact 1s{yields}2s and 1s{yields}2p excitation with screened Coulomb interaction between the n=2 and n=3 excitation thresholds

    SciTech Connect

    Zhang Songbin; Chen Xiangjun; Wang Jianguo; Janev, R. K.

    2011-03-15

    The effects of Coulomb interaction screening on electron-hydrogen atom 1S {yields} 2S and 1S {yields} 2p excitation scattering between the n = 2 and n = 3 excitation thresholds have been investigated by using the R-matrix method with pseudostates. The excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 9 a.u., as a result of the convergence of S-type and some p- and D-type Feshbach resonances to the varying 3S or 3p thresholds, and due to the crossover of some other p-, D- and all F-type Feshbach resonances into shape-type resonances when they pass across the 3S or 3p threshold at certain critical values of D. The noncrossover of some p- and D-type Feshbach resonances into shape-type resonances at the 3S (or 3p for those of D-type) threshold is at variance with the behavior of these types of resonances at the 2S (2p for those of D-type) threshold, which results from the threefold splitting of the n = 3 hydrogenic level and, consequently, the more complex nature of the configuration mixing in the n = 3 threshold region. The evolution of the total 1S {yields} 2S, 1S {yields} 2p, and 2S {yields} 2p excitation collision strengths, when the screening strength varies, is presented and discussed.

  7. Electron ionization of the nucleobases adenine and hypoxanthine near the threshold: a combined experimental and theoretical study.

    PubMed

    Dawley, M Michele; Tanzer, Katrin; Cantrell, William A; Plattner, Peter; Brinkmann, Nicole R; Scheier, Paul; Denifl, Stephan; Ptasińska, Sylwia

    2014-12-07

    Electron ionization of the DNA nucleobase, adenine, and the tRNA nucleobase, hypoxanthine, was investigated near the threshold region (∼5-20 eV) using a high-resolution hemispherical electron monochromator and a quadrupole mass spectrometer. Ion efficiency curves of the threshold regions and the corresponding appearance energies (AEs) are presented for the parent cations and the five most abundant fragment cations of each molecule. The experimental ionization energies (IEs) of adenine and hypoxanthine were determined to be 8.70 ± 0.3 eV and 8.88 ± 0.5 eV, respectively. Quantum chemical calculations (B3LYP/6-311+G(2d,p)) yielded a vertical IE of 8.08 eV and an adiabatic IE of 8.07 eV for adenine and a vertical IE of 8.51 eV and an adiabatic IE of 8.36 eV for hypoxanthine, and the lowest energy optimized structures of the fragment cations and their respective neutral species were calculated. The enthalpies of the possible reactions from the adenine and hypoxanthine cations were also obtained computationally, which assisted in determining the most likely electron ionization pathways leading to the major fragment cations. Our results suggest that the imidazole ring is more stable than the pyrimidine ring in several of the fragmentation reactions from both adenine and hypoxanthine. This electron ionization study contributes to the understanding of the biological effects of electrons on nucleobases and to the database of the electronic properties of biomolecules, which is necessary for modeling the damage of DNA in living cells that is induced by ionizing radiation.

  8. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  9. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline

    NASA Astrophysics Data System (ADS)

    Lin, Jung Lee; Huang, Chen-Jso; Lin, Cheng-Huang; Tzeng, Wen Bih

    2007-07-01

    We report the resonant two-photon ionization and mass-analyzed threshold ionization (MATI) spectra of m-methoxyaniline and o-methoxyaniline. The vibronic features of m-methoxyaniline are built on 34308 ± 2 and 34495 ± 2 cm -1 corresponding to the origins of the S 1 ← S 0 electronic transition ( E1's) of the cis and trans rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 59983 ± 5 and 60879 ± 5 cm -1 for these two species. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are 33875 ± 2 and 58678 ± 5 cm -1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S 1 and cationic ground D 0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH 2 and OCH 3 substituents.

  10. Above-threshold ionization in neon produced by combining optical and bichromatic XUV femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2017-01-01

    We consider the ionization of neon induced by a femtosecond laser pulse composed of overlapping, linearly polarized bichromatic extreme ultraviolet and infrared fields. In particular, we study the effects of infrared light on a two-pathway ionization scheme for which Ne 2 s22 p53 s 1P is used as the intermediate state. Using time-dependent calculations, supported by a theoretical approach based on the strong-field approximation, we analyze the ionization probability and the photoelectron angular distributions associated with the different sidebands of the ionization spectrum. Complex oscillations of the angular distribution anisotropy parameters as a function of the infrared light intensity are revealed. Finally, we demonstrate that coherent control of the asymmetry is achievable by tuning the infrared frequency to a nearby electronic transition.

  11. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    SciTech Connect

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states of the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].

  12. Study of the upper spin--orbit state of the chloroiodomethane cation by mass-analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2006-11-01

    The vibrational spectrum of CH 2ClI + in the upper spin-orbit state was obtained by one-photon mass-analyzed threshold ionization (MATI) spectrometry. The accurate ionization energy of the upper spin-orbit state was determined to be 10.3045 ± 0.0006 eV. The energy gap between the upper and lower spin-orbit states was 0.5539 ± 0.0012 eV. The frequency of the Cl-C-I bending mode was found to be most affected by the spin-orbit interaction. This suggests that the avoided crossing between the lower and upper spin-orbit states occurs along a direction close to the Cl-C-I bending coordinate.

  13. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of hexafluorobenzene: The Jahn-Teller effect and vibrational analysis

    NASA Astrophysics Data System (ADS)

    Kwon, Chan Ho; Kim, Myung Soo

    2004-06-01

    One-photon mass-analyzed threshold ionization (MATI) spectrum of hexafluorobenzene was obtained by using vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The ionization energy of hexafluorobenzene determined from the position of the 0-0 band was 9.9108±0.0006 eV. To aid the spectral analysis, the Jahn-Teller coupling parameters for four e2g modes of C6F6+ in the ground electronic state were calculated from the topographical data of the potential energy surface obtained at the density functional theory (DFT) level. These were used in the initial calculation of the energies of the Jahn-Teller states and upgraded through the multimode fit to the experimental data. Excellent agreement between the experimental and calculated frequencies was achieved. The vibrations which are not linear Jahn-Teller active were observed and could be assigned by referring to the frequencies obtained at the DFT level.

  14. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of vinyl bromide: Franck-Condon analysis and vibrational assignment

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2003-09-01

    Vibrational spectrum of vinyl bromide cation in the ground electronic state was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy using coherent vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. From MATI spectrum, ionization energy to the ground state of the cation was determined to be 9.8171±0.0006 eV (79 180±5 cm-1). Almost complete vibrational assignments for the peaks in the MATI spectrum were possible by utilizing vibrational frequencies and Franck-Condon factors calculated at the Becke three parameter Lee-Yang-Parr (B3LYP)/6-311++G(df,pd) level. Franck-Condon analysis for one-photon MATI spectra is especially useful because calculations of only the ground electronic states are involved while that for two-photon MATI spectra requires excited state calculations.

  15. Measurement of the photoionization spectra and ionization thresholds of the H sub 2 CN and D sub 2 CN radicals

    SciTech Connect

    Nesbitt, F.L.; Marston, G.; Stief, L.J. ); Wickramaaratchi, M.A.; Tao, W.; Klemm, R.B. )

    1991-10-03

    The photoionization spectra of the H{sub 2}CN and D{sub 2}CN radicals were obtained by photoionization mass spectroscopy (PIMS) using synchrotron radiation. The radicals were generated by the reaction of N with CH{sub 3} and CD{sub 3}, respectively. For both H{sub 2}CN and D{sub 2}CN a prominent feature was observed near 118.6 nm (10.5 eV) and the ionization threshold was determined to be 9.4 {plus minus} 0.1 eV; both features provide additional signatures for identifying H{sub 2}CN in complex systems. By use of a corrected value for {Delta}H{sub f} (H{sub 2}CN) derived from a recent electron affinity measurement and other available measured or calculated thermochemical quantities for H{sub 2}CN and HCNH radicals and radical ions, a value of 10.8 {plus minus} 0.6 eV for the ionization energy of H{sub 2}CN was derived. The much lower value derived for the ionization energy of HCNH (6.8 and 7.0 eV for the cis and trans isomers, respectively) is consistent with the product of the N + CH{sub 3} reaction being the H{sub 2}CN isomer and not HCNH. The ionization threshold observed at 9.4 eV is attributed to autoionization arising from high Rydberg states of H{sub 2}CN which couple into vibrationally excited states of the linear HCNH{sup +} ground state of the ion. Also discussed are the roles of the H{sub 2}CN radical and HCNH{sup +} radical ion in the chemistry of the atmosphere of Titan and in interstellar clouds.

  16. Valence photoionization and resonant Auger decay of Sb{sub 4} clusters at resonances below the 4d ionization threshold

    SciTech Connect

    Urpelainen, S.; Niskanen, J.; Kettunen, J. A.; Huttula, M.; Aksela, H.

    2011-01-15

    The valence photoionization and resonant Auger decay at 4d resonances below the 4d ionization threshold in Sb{sub 4} clusters have been studied experimentally by means of photoelectron spectroscopy. The 4d absorption spectrum in the photon energy region from 30 to 36 eV has been recorded using the constant ionic state (CIS) partial electron yield (PEY), and the CIS spectra for various ionic states are presented. The photoelectron spectra at various resonant positions are recorded, and the results and their interpretation are presented. The findings provide experimental proof of the previous assignment of the various structures of the inner valence photoelectron spectrum.

  17. Electron-nuclear correlation in above-threshold double ionization of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Zhang, Wenbin; Gong, Xiaochun; Song, Qiying; Lin, Kang; Ji, Qinying; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2017-03-01

    We report on the experimental observation of photon energy sharing among two electrons and two ions ejected from a doubly ionized molecule exposed to an intense ultraviolet femtosecond laser pulse. Although two electrons are successively released one after the other, bridged by the nuclear motion via their interactions, photon energy sharing among four particles is observed as multiple energy conservation lines in their joint energy spectrum. For sequential double ionization of H2, the electron-nuclear joint energy spectrum allows us to identify three pathways towards the charge-resonance enhanced ionization of the stretching H2+ in strong laser fields. By counting the photon number absorbed by the molecule, we trace the accessibility, enhancement, and suppression of various pathways. The correlated electron-nuclear motion provides profound insights of the complicated strong-field dynamics of molecules.

  18. The threshold laws for electron-atom and positron-atom impact ionization

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1983-01-01

    The Coulomb-dipole theory is employed to derive a threshold law for the lowest energy needed for the separation of three particles from one another. The study focuses on an electron impinging on a neutral atom, and the dipole is formed between an inner electron and the nucleus. The analytical dependence of the transition matrix element on energy is reduced to lowest order to obtain the threshold law, with the inner electron providing a shield for the nucleus. Experimental results using the LAMPF accelerator to produce a high energy beam of H- ions, which are then exposed to an optical laser beam to detach the negative H- ion, are discussed. The threshold level is found to be confined to the region defined by the upper bound of the inverse square of the Coulomb-dipole region. Difficulties in exact experimental confirmation of the threshold are considered.

  19. Effects of ionizing radiation on auditory and visual thresholds. Technical report, 9 Oct 87-28 May 91

    SciTech Connect

    Hienz, R.D.

    1992-03-01

    An experimental analysis of the effects of low-dose ionizing radiation on sensory and motor function was conducted in baboons. Animals were trained using a reaction time procedure to respond to near-threshold acoustic and visual stimuli, and quantitative assessments were made of radiation-induced changes in absolute auditory and visual thresholds and reaction times. Animals received multiple exposures at single fractionated dose levels of 1, 2, and 5 Gy. Single exposures at higher exposure levels of 10 and 15 Gy were also examined. 100-200 cGy exposures produced transient changes in reaction times. Transient Increases in reaction times occurred following low-dose exposures, usually within 1-3 weeks following the exposure. These increases typically recovered to normal baseline levels within 2-3 weeks. 1000 and 1500 cGy exposures produced long-term hearing deficits which were not frequency-specific. The severe hearing loss was most likely due to a sensorineural deficit, since complete loss of function of the tympanic membrane or middle ear ossicles would be expected to produce a hearing loss about 50-55 dB. These higher radiation doses have had less of an effect on visual intensity thresholds, producing a 5-lO dB deficit in visual thresholds. No physical damage to the cornea iris lens or retina was observed.

  20. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  1. Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Hsin Chang; Shiung, Kui Shiu; Jin, Bih Yaw; Tzeng, Wen Bih

    2013-11-01

    We apply the resonant two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) techniques to record the vibronic and cation spectra of m-chloroanisole. The vibronic features appear in two series, built on 35,822 ± 2 and 35,868 ± 2 cm-1, corresponding to the origins of the S1 ← S0 electronic transition (E1's) of the two rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 67,645 ± 5 and 68,008 ± 5 cm-1 for these two isomeric species. Comparing these data with those of anisole, we find that the chlorine substitution at the meta position leads to a red shift in the E1 and a blue shift in the IE. The observed R2PI and MATI bands mainly result from the in-plane ring deformation and substituent-sensitive bending vibrations of these species in the electronically excited S1 and cationic ground D0 states.

  2. Angle-dependent molecular above-threshold ionization with ultrashort intense linearly and circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2011-07-01

    We present molecular above-threshold ionization (MATI) spectra generated by ultrashort intense linearly and circularly polarized laser pulses from nonperturbative numerical solutions of the corresponding time-dependent Schrödinger equation in the molecular-ion H2+. It is found that high-order MATI spectra with maximum kinetic energy 32Up, where Up=I0/4meω02 is the ponderomotive energy at intensity I0 and frequency ω0, can be obtained in H2+ at great internuclear distances R for both linear and circular polarizations. Quasiclassical laser-induced collision models confirm that such high-order MATIs mainly result from a collision with neighboring ions of the ionized electron. Interference patterns in the high-order MATI spectra are critically sensitive to both the internuclear distance R of the molecules and the polarizations of the driving laser pulses. Moreover, with few-cycle laser pulses, the carrier-envelope phase sensitivity of MATI angular distributions is also investigated for varying internuclear distances R. At critical internuclear distances for charge-resonance-enhanced ionization, we also find that enhanced interference patterns occur.

  3. Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2012-08-01

    M3O4 (M = Sc, Y, and La) were produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and electronic structure calculations. Adiabatic ionization energies (AIEs) of the neutral clusters and vibrational frequencies of the cations were measured accurately for the first time from the MATI spectra. Five possible structural isomers of M3O4 were considered in the calculations and spectral analysis. A cage-like structure in C3v point group was identified as the most stable one. The structure is formed by fusing three M2O2 fragments together, each sharing two O-M bonds with others. The ground electronic state of the neutral clusters is 2A1 with the unpaired electron being largely a metal-based s character. Ionization of the 2A1 state yields a 1A1 ion state in a similar geometry to the neutral cluster. The AIEs of the clusters are 4.4556 (6), 4.0586(6), and 3.4750(6) eV for M = Sc, Y, and La, respectively. The observed vibrational modes of the cations include metal-oxygen stretching, metal triangle breathing, and oxygen-metal-oxygen rocking in the frequency range of 200-800 cm-1.

  4. Mass-Analyzed Threshold Ionization of Lanthanum Oxide Clusters: La_2O_2 and La_3O_4

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Sergiy; Yang, Dong-Sheng

    2009-06-01

    Lanthanum oxide clusters are produced by laser vaporization in a pulsed cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of La_2O_2 and La_3O_4 exhibit a very strong 0-0 transition, indicating similar geometries for the neutral and ionized clusters and a very weakly bonding or non-bonding electron ejected from an outmost molecular orbital. The ionization energies of La_2O_2 and La_3O_4 are measured to be 36937(5) and 28028(5) cm^{-1}, respectively. In addition, the spectra of both clusters display a number of vibrational intervals that are associated with metal-metal, metal-oxygen, and oxygen-oxygen vibrations. Preliminary data analysis shows that the La_2O_2 cluster has a D_{2h} planar structure and La_3O_4 has a C_{3v} cage-like structure, both with alternating La-O-La bonds. The spectra may be assigned to the ^2Ag←^1Ag transition in the case of La_2O_2 and ^1A_1←^2A_1 in La_3O_4 .

  5. Mass-analyzed threshold ionization spectroscopy of p-methylphenol and p-ethylphenol cations and the alkyl substitution effect

    NASA Astrophysics Data System (ADS)

    Lin, Jung Lee; Li, Changyong; Tzeng, Wen Bih

    2004-06-01

    The mass-analyzed threshold ionization (MATI) spectra of p-methylphenol and p-ethylphenol have been recorded by ionizing via various vibronic levels. The adiabatic ionization energies (IEs) of p-methylphenol and p-ethylphenol are determined to be 65918±5 and 65628±5 cm-1, which are less than that of phenol by 2707 and 2997 cm-1, respectively. This redshift indicates that the interaction between the alkyl group and the ring of alkylphenols in the cationic D0 state is greater than that in the neutral S0 state. Moreover, a longer alkyl group gives rise to a greater redshift in the IE. Analysis of the MATI spectra shows that most of the active modes are related to the in-plane ring vibrations of these two cations. However, the length of the alkyl group has an insignificant effect on the frequency of the observed ring vibrations. No band with frequency less than 350 cm-1 is observed for the p-methylphenol cation. In contrast, many low-frequency bands resulting from the characteristic motions (e.g., the C-C2H5 torsion and C-C2H5 and C-OH bending vibrations) appear in the MATI spectra of p-ethylphenol. The present results show that the ethyl group enhances the substituent-sensitive and many large-amplitude vibrations of the cation.

  6. Angle-dependent molecular above-threshold ionization with ultrashort intense linearly and circularly polarized laser pulses

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-07-15

    We present molecular above-threshold ionization (MATI) spectra generated by ultrashort intense linearly and circularly polarized laser pulses from nonperturbative numerical solutions of the corresponding time-dependent Schroedinger equation in the molecular-ion H{sub 2}{sup +}. It is found that high-order MATI spectra with maximum kinetic energy 32U{sub p}, where U{sub p}=I{sub 0}/4m{sub e}{omega}{sub 0}{sup 2} is the ponderomotive energy at intensity I{sub 0} and frequency {omega}{sub 0}, can be obtained in H{sub 2}{sup +} at great internuclear distances R for both linear and circular polarizations. Quasiclassical laser-induced collision models confirm that such high-order MATIs mainly result from a collision with neighboring ions of the ionized electron. Interference patterns in the high-order MATI spectra are critically sensitive to both the internuclear distance R of the molecules and the polarizations of the driving laser pulses. Moreover, with few-cycle laser pulses, the carrier-envelope phase sensitivity of MATI angular distributions is also investigated for varying internuclear distances R. At critical internuclear distances for charge-resonance-enhanced ionization, we also find that enhanced interference patterns occur.

  7. Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect

    NASA Astrophysics Data System (ADS)

    Huang, Jiangou; Li, Changyong; Tzeng, Wen Bih

    2005-10-01

    The adiabatic ionization energy of p-methylanisole is measured to be 63 972 ± 5 cm -1, which is red-shifted with respect to those of anisole and toluene. This indicates that the interaction of either CH 3 or OCH 3 group with the ring is stronger in the cationic D 0 state than that in the neutral S 0 state. Most of the observed MATI bands result from in-plane ring vibrations. The frequencies of vibrations 9b, 6a, and 1 of the p-methylanisole cation are found to be 407, 515, and 811 cm -1, respectively.

  8. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  9. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  10. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  11. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  12. Numerical observation of two sets of low-order harmonics near the ionization threshold

    NASA Astrophysics Data System (ADS)

    Xiong, Wei-Hao; Jin, Jian-Zhao; Peng, Liang-You; Gong, Qihuang

    2017-08-01

    The bound states of atoms play important roles during the interaction with a strong laser pulse. In the present work, we observe a set of harmonics which are not located at the usual odd harmonics. These harmonics can be clearly identified when the driving frequency is resonant with the excited states. The observed set of harmonics become stronger than the usual odd harmonics for a rather long laser pulse at a moderate intensity. From ab initio calculations, we find that an atom can be resonantly pumped to the excited states during the interaction with lasers at some wavelengths. After the excitation, the electrons can be ionized from these excited states and then recombine to the ground state, which leads to another set of harmonic peaks near the atomic ionization potential. We investigate the role of different laser wavelengths as well as atomic potentials. In addition, we find that the phases of these harmonics are far more sensitive than the usual harmonics when we change the parameters of the driving pulse, which can cause a large divergent angle. The parameter dependence of the phases of these harmonics is interpreted through an intuitive model.

  13. Above-threshold ionization of Mg by linearly and circularly polarized laser fields: Origin of the subpeaks in the photoelectron energy spectra

    SciTech Connect

    Nakajima, Takashi; Buica, Gabriela

    2006-08-15

    We theoretically investigate above-threshold ionization of Mg by linearly and circularly polarized fs laser pulses. We find that the above-threshold ionization peaks are accompanied by small subpeaks for both linearly and circularly polarized pulses. We interpret the physical origin of the subpeaks as above-threshold ionization from the low-lying bound states which are far off-resonantly excited by the spectral wing of the pulse. This interpretation is confirmed by our comparative numerical studies. Furthermore, we provide a clear explanation of why this kind of subpeak in the photoelectron energy spectra has not been reported for smaller photon energies with Mg and other commonly used atoms such as H and rare gas atoms.

  14. Effect of rescattering potential on the high-energy above-threshold ionization of a model-H atom

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Wang, G.-L.; Zhang, Z.-R.; Zhao, S.-F.

    2017-01-01

    The high-energy above-threshold ionization of a model-H atom (with 1s state and the same binding energy as H atom) in a few-cycle laser pulse is investigated by using the improved strong-field approximation (ISFA), where the spherical shell potential is used as the rescattering potential. The results obtained from numerically solving time-dependent Schrödinger equation(TDSE) are regarded as the benchmark results. Our results show that the energy distributions in high-energy region obtained from ISFA calculations using the spherical shell potential may either match or be better than those from ISFA using Yukawa potential and zero-range potential in the laser with wavelengths of 800 and 1200 nm. In addition, the influence of the rescattering potential on the density of probability at different ejection angles is also discussed in this paper.

  15. Dynamical medium depletion in high-order above-threshold ionization with few-cycle laser pulses

    SciTech Connect

    Altucci, C.; Velotta, R.; Tosa, V.; Nam, C.H.

    2004-12-01

    The influence of dynamical medium depletion in high-order above-threshold ionization (ATI) in left/right asymmetry of photoelectron energy spectra is analyzed. Based on a classical analysis of high-order ATI electrons produced by few-cycle laser pulses, calculated asymmetry maps of electron spectra reproduce very well the experimental results reported in Lindner et al. [Phys. Rev. Lett. 92, 113001 (2004)], utilized for determining the Guoy phase shift of few-cycle laser pulses. The anomalous behavior of the high-energy part of the ATI electron spectra is, then, fully understood in terms of earlier medium depletion occurring in the leading edge of the laser pulse. In order to correctly reproduce the experimental findings a physical temporal envelope of the laser pulse, which only vanishes at the infinity, plays a crucial role.

  16. Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold.

    PubMed

    Kothe, Alexander; Wilke, Martin; Moguilevski, Alexandre; Engel, Nicholas; Winter, Bernd; Kiyan, Igor Yu; Aziz, Emad F

    2015-01-21

    We explore the early-time electronic relaxation in NaI aqueous solution exposed to a short UV laser pulse. Rather than initiating the charge transfer reaction by resonant photoexcitation of iodide, in the present time-resolved photoelectron spectroscopy study the charge-transfer-to-solvent (CTTS) states are populated via electronic excitation above the vacuum level. By analyzing the temporal evolution of electron yields from ionization of two transient species, assigned to CTTS and its first excited state, we determine both their ultrafast population and relaxation dynamics. Comparison with resonant-excitation studies shows that the highly excited initial states exhibit similar relaxation characteristics as found for resonant excitation. Implications for structure and dynamical response of the hydration cage are discussed.

  17. Spectroscopy and Ionization Thresholds of Isoelectronic 1-PHENYLALLYL and Benzylallenyl Resonance Stabilized Radicals

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Kidwell, Nathan; Buchanan, Evan; Zwier, Timothy S.; Zgierski, Marek

    2011-06-01

    In recent years it has been proposed that resonance-stabilized radicals (RSRs) may play an important role as intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs). RSRs gain extra stability by delocalizing the unpaired electron through a neighboring conjugated π-system. Because of this extra stability, RSRs are able to build up in concentration, allowing for the creation of larger, more complex systems through their recombination with other RSRs. Mass-selective two-color resonant two-photon ionization spectra of two RSRs, phenylallyl and benzylallenyl radicals, have been recorded under jet-cooled conditions. These two radicals, while sharing the same radical conjugation, have unique properties. The phenylallyl and benzylallenyl radicals were respectively produced via discharge of trans-β-methylstyrene and benzylallene in argon prior to supersonic expansion. The D0-D1 origin of the phenylallyl radical was found at 19204 wn and was found to have a strong vertical ionization energy of 6.905(2) eV. By comparison, the benzylallenyl radical has an origin at 19703 wn and, while showing similar Franck-Condon activity to phenylallyl, has an IP curve indicative of a large geometry change between the ground state and the ion 7.50(2) eV. Visible-visible holeburning was used to show that each radical exists in one conformeric form in the expansion. The CH stretch region of each radical was taken using D0-Resonant Ion Dip Infrared Spectroscopy in a novel four laser experiment. A combination of this and DFT calculations was used to show that each radical exists in a trans geometry.

  18. LETTER TO THE EDITOR: Correlations between ionization cross sections and threshold energies in electron-, positron-, proton- and antiproton-atom collisions

    NASA Astrophysics Data System (ADS)

    Van Reeth, P.; Humberston, J. W.; Laricchia, G.

    2001-04-01

    Strong correlations between the direct single-ionization cross sections and the target ionization energies are found for electron, positron, proton and antiproton impact on the noble gases. These correlations, extending from near threshold to high projectile energies, are similar to those previously observed for positronium formation, namely σ = Aexp (-BEth), where σ is the cross section for each process, Eth is the relevant threshold energy and A and B are functions of the excess energy of the projectile. The generality of this form for the four projectiles is suggestive of a common underlying fundamental aspect of the collisions.

  19. Threshold Ionization of La(C_5H_8) Formed by La-MEDIATED Dehydrogenation of 1-PENTENE

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Zhang, Yuchen; Yang, Dong-Sheng

    2016-06-01

    La(C_5H_8) was formed by La reaction with 1-pentene (CH2=CH-CH2-CH3) in a laser-vaporization supersonic molecular beam source and characterized with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectrum displays an origin band at 38988 (5) wn and three vibrational intervals of 130, 294, and 415 wn. The La(C_5H_8) complex is identified as a five-membered metallacycle in C1 point group, with the doublet and singlet being the lowest energy states of the neutral and cation, respectively. The energy at 38998 wn corresponds to the adiabatic ionization energy of the complex, and the three vibration intervals in the order of the frequency increase are assigned to the terminal CH_3 torsion, asymmetric La-ligand stretch, and symmetric La-ligand stretch excitation of the ion. The La + 1-penetene reaction will also be compared with La reactions with other five-carbon hydrocarbon molecules, such as isoprene, 1-pentyne, and 1,4-pentadiene.

  20. Mass-analyzed threshold ionization spectroscopy of the rotamers of p-n-propylphenol cations and configuration effect

    NASA Astrophysics Data System (ADS)

    Li, Changyong; Lin, Jung Lee; Tzeng, Wen Bih

    2005-01-01

    Two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopy was used to record the vibrationally resolved cation spectra of the selected rotamers of p-n-propylphenol. The adiabatic ionization energies of the trans, gauche-A, and gauche-B rotamers are determined to be 65 283±5, 65 385±5, and 65 369±5 cm-1, which are less than that of phenol by 3342, 3240, and 3256 cm-1, respectively. This suggests that the n-propyl substitution causes a greater degree in lowering the energy level in the cationic than the neutral ground state. Analysis on the MATI spectra of the selected rotamers of p-n-propylphenol cation shows that the relative orientation of the p-n-alkyl group has little effect on the in-plane ring vibrations. However, the low-frequency C3H7 bending vibrations appear to be active only for the two gauche forms of the cation.

  1. Threshold ionization, structural isomers, and electronic states of M2O2 (M = Sc, Y, and La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2014-06-01

    M2O2 (M = Sc, Y, and La) were synthesized in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio calculations. Adiabatic ionization energies (AIEs) and several vibrational frequencies were measured accurately for the first time from the MATI spectra. Six possible structural isomers of M2O2 were considered in the calculations and the three converged structures were used in the spectral analysis. A planar cyclic structure in D2h point group was predicted to be the most stable one by the theory and observed by the experiment. The cyclic structure is formed by joining two MO2 fragments together through two shared oxygen atoms. In forming the ground state clusters, each metal atom loses two (n - 1)d electrons and as a result, has only one ns electron in the metal-based valence orbital. The ground electronic state of Sc2O2 is 1Ag, and those of Y2O2 and La2O2 are 3B1u. Ionization of both 1Ag and 3B1u neutral states yields the 2Ag ion state by removing one of the two ns electrons, and the resultant ion has a similar geometry to the neutral cluster. The AIEs of the clusters are 5.5752 (6), 5.2639 (6), 4.5795 (6) eV for M = Sc, Y, and La, respectively. The vibrational frequencies of the observed modes, including O-M and M-M stretches, are in the range of 200-800 cm-1.

  2. Core-excitonic lines at the Al 2p surface optical-absorption threshold of AlAs and AlP

    NASA Astrophysics Data System (ADS)

    Kelly, M. K.; Niles, D. W.; Perfetti, P.; Colavita, E.; Savoia, A.; Margaritondo, G.; Henzler, M.

    1985-10-01

    The optical-absorption spectra of AlAs and AlP exhibit unusual features-strong Al 2p core-excitonic lines. The data were obtained with synchrotron-radiation photoemission in the partial-yield mode. The analysis was based on the approach proposed by Johnson, Fock, Ley, and Cardona for AlSb and on Onodera and Toyozawa's exciton theory.

  3. Above-threshold ionization with highly charged ions in superstrong laser fields. II. Relativistic Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    We develop a relativistic Coulomb-corrected strong-field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogenlike ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogenlike system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analog of the Perelomov-Popov-Terent'ev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.

  4. Above-threshold ionization and laser-induced electron diffraction in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Ciappina, Marcelo F.; Wolter, Benjamin; Biegert, Jens; Lewenstein, Maciej

    2016-10-01

    Strong-field photoemission and electron recollision provide a viable route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal resolution. However, since an ab initio treatment of even the simplest diatomic systems is beyond today's capabilities, approximate qualitative descriptions are warranted. In this paper, we develop such a theoretical approach to model the photoelectrons resulting from intense laser-molecule interaction. We present a general theory for symmetric diatomic molecules in the single active electron approximation that, amongst other capabilities, allows adjusting both the internuclear separation and molecular potential in a direct and simple way. More importantly, we derive an analytic approximate solution of the time-dependent Schrödinger equation (TDSE), based on a generalized strong-field approximation (SFA) version. Using that approach, we obtain expressions for electron emitted transition amplitudes from two different molecular centers, and accelerated then in the strong laser field. In addition, our approach directly underpins different underlying physical processes that correspond to (i) direct tunneling ionization; (ii) electron rescattering on the center of origin; and, finally, (iii) electron rescattering on a different center. One innovative aspect of our theory is the fact that the dipole matrix elements are free from nonphysical gauge and coordinate system-dependent terms: this is achieved by adapting the coordinate system, in which SFA is performed, to the center from which the corresponding part of the time-dependent wave function originates. Our analytic results agree very well with the numerical solution of the full three-dimensional TDSE for the H2 + molecule. Moreover, the theoretical model was applied to describe laser-induced electron diffraction measurements of O2 + molecules, obtained at ICFO, and reproduces the main features of the experiment very well. Our approach can be extended in

  5. Photodissociation yield spectroscopy of vinyl bromide cation generated by mass-analyzed threshold ionization: Vibrational spectroscopy and decay dynamics in the B ˜ state

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2007-04-01

    A new technique [mass-analyzed threshold ionization (MATI)-photodissociation yield spectroscopy] to probe bound excited states of a cation was developed, which measures photodissociation yield of the cation generated by mass-analyzed threshold ionization. A vibrational spectrum of vinyl bromide cation in the B ˜ state was obtained using this technique. Optical resolution in the low vibrational energy range of the spectrum was far better than in conventional MATI spectra. The origin of the B ˜ state was found at 2.2578±0.0003eV above the first ionization onset. Almost complete vibrational assignment was possible for peaks appearing in the spectrum. Analysis of time-of-flight profiles of C2H3+ product ion obtained with different laser polarization angles suggested that photoexcited vinyl bromide cation remained in the B ˜ state for several hundred picoseconds prior to internal conversion to the ground state and dissociation therein.

  6. Accurate computation of above threshold ionization spectra for stretched {{\\rm{H}}}_{2}^{+} in strong laser fields

    NASA Astrophysics Data System (ADS)

    Liang, Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2017-09-01

    Investigations on the simplest benchmark system {{{H}}}2+ can reveal most underlying mechanisms for the intricate dynamics of molecular systems induced by strong laser pulses. However, due to the two-center Coulomb potential and the highly nonlinear nature of the electron dynamics, the accurate computation of the above threshold ionization spectra remains challenging, especially at large internuclear distances and high laser intensities. In the present work, we implement a new Gauss-quadrature approximation (GA) in the framework of finite element discrete variable representation to solve the time-dependent Schrödinger equation of {{{H}}}2+ in strong laser fields. By using this GA, one can arrive at a matrix representation of the first derivative operator that keeps its anti-hermiticity. This crucial feature allows a very stable propagation of the wavefunction under the usual Lanczos scheme. Combining with a wavefunction splitting in the asymptotic region, we show that our present numerical method can reliably deal with the electronic dynamics of stretched molecules at large internuclear distances for high laser intensities and long pulse durations. Accurate photoelectron momentum distributions under these conditions are presented and the distinct features due to the two-center potential are discussed.

  7. Above-threshold ionization of noble gases in elliptically polarized fields: Effects of atomic polarization on photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, YanLan; Yu, ShaoGang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2017-06-01

    We theoretically investigate the atomic polarization effect on photoelectron angular distributions (PADs) in above-threshold ionization of noble gases with elliptically polarized laser fields at wavelength of 800 nm, ellipticity of 0.25, and intensity of 1.5 ×1014W/cm2 . Simulations based on a semiclassical model that includes both the ionic Coulomb potential and the atomic polarization effect show surprisingly little difference between PADs for Ar, Kr, and Xe, which is in good agreement with recent experimental observations. Our calculations reveal that the atomic polarization effect increases the distance of the tunnel exit point of the photoelectron to the parent ion and weakens the strength of the interaction between the parent ion and the photoelectron on its subsequent classical propagation. As a result, the forward-scattering electrons which contribute to the main lobes in PADs are substantially suppressed. Our results indicate that the insensitivity of PADs for Ar, Kr, and Xe may be closely related to the influence of the atomic polarization effect on the photoelectron dynamics in the strong laser field.

  8. Controlling high-order harmonic generation and above-threshold ionization with an attosecond-pulse train

    SciTech Connect

    Figueira de Morisson Faria, C.; Salieres, P.; Villain, P.; Lewenstein, M.

    2006-11-15

    We perform a detailed analysis of how high-order harmonic generation (HHG) and above-threshold ionization (ATI) can be controlled by a time-delayed attosecond-pulse train superposed to a strong, near-infrared laser field. In particular we show that the high-order harmonic and photoelectron intensities, the high-order harmonic plateau structure and cutoff energies, and the ATI angular distributions can be manipulated by changing this delay. This is a direct consequence of the fact that the attosecond pulse train can be employed as a tool for constraining the instant an electronic wave packet is ejected in the continuum. A change in such initial conditions strongly affects its subsequent motion in the laser field, and thus HHG and ATI. In our studies, we employ the strong-field approximation and explain the features observed in terms of interference effects between various electron quantum orbits. Our results are in agreement with recent experimental findings and theoretical studies employing purely numerical methods.

  9. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    NASA Astrophysics Data System (ADS)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  10. Surface modification of hexatriacontane by CF_4 plasmas studied by optical emission and threshold ionization mass spectrometries

    NASA Astrophysics Data System (ADS)

    Poncin-Epaillard, F.; Wang, W.; Ausserré, D.; Scharzenbach, W.; Derouard, J.; Sadeghi, N.

    1998-11-01

    The behavior of tetrafluoromethane microwave plasma (2% argon included) has been studied by emission spectroscopy during the treatment of hexatriacontane, a model for high density polyethylene. The evolution of the densities of F* atoms, and CF, CF^*2, radicals has been followed by using the actinometric technique with 2% argon added to the gas. The surface properties, such as surface energy and surface roughness were correlated to the emission intensity of reactives species in the plasma gas phase. We found that the evolution of the fluorinated species emissions in the plasma gas phase can be a direct indication of the surface modifications by the plasma. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions. Threshold ionization mass spectroscopy is applied to detect the fluorine atoms and CFx radicals. Time resolved measurements in pulsed plasma, give access to the decay rate of F atoms concentration in the afterglow, and to their sticking coefficient on different surfaces. The influences of the discharge parameters and of the surfaces (metal, silicon or hexatriacontane) in contact with the plasma are investigated. The results show that the plasma generated ions and/or UV radiations highly enhance the reactivity of the F atoms on polymer surface.

  11. Absolute partial and total electron-impact-ionization cross sections for CF4 from threshold up to 500 eV

    NASA Astrophysics Data System (ADS)

    Ma, Ce; Bruce, M. R.; Bonham, R. A.

    1991-09-01

    Electron-impact dissociative ionization of tetrafluoromethane (CF4) was studied with the use of a pulsed electron beam time-of-flight apparatus. The absolute partial ionization cross sections of CF+3, CF+2, CF2+3, CF+, CF2+2, F+, and C+ were measured from threshold up to 500 eV. The total ionization cross section was obtained by charge weighted summing of all the observed partial ionization cross sections. A total cross section for dissociation into neutral fragments was inferred from our total ionization cross section and the total dissociation cross section of Winters and Inokuti [Phys. Rev. A 25, 1420 (1982)]. The present results for the partial ionization cross sections are as much as 9% (CF+3) to 81% (F+) higher than the previously published absolute measurements of Stephan, Deutsch, and Märk [J. Chem. Phys. 83, 5712 (1985)] at 80 eV, but are in agreement with their recently revised estimates for the singly charged ions. We also found that dissociative ionization was a dominant process for electron-impact energies above 30 eV, accounting for 85% of the total dissociation cross section at 80 eV.

  12. Rotations of molecular photoelectron angular distributions in above threshold ionization of H2+ by intense circularly polarized attosecond UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2014-10-01

    We present molecular photoelectron angular distributions (MPADs) in multi-photon ionization processes by circularly polarized attosecond UV laser pulses. Simulations are performed on the single electron aligned molecular ion H_2^+ by solving corresponding 3D time-dependent Schrödinger equations. Numerical results of molecular above threshold ionization (MATI) show that rotations of MPADs with respect to the molecular and polarization axes depend on pulse intensities and photoelectron kinetic energies. We attribute the rotation to Γ, the difference between parallel and perpendicular ionization probabilities. It is found that in a resonant ionization process, the rotation angle is also a function of the symmetry of intermediate electronic states. The coherent population transfer between the initial and the resonant electronic states is controlled by pulse intensities. Such dependence of rotations on the pulse intensity is absent in Rydberg resonant ionizations as well as in MATI at large energy photons ℏω > Ip, where ω is angular frequency of photons and Ip is the molecular ionization potential. We describe these processes by a multi-photon perturbation theory model. Effects of molecular alignment and pulse ellipticities on rotations are investigated, confirming the essence of the ionization parameter Γ in rotations of MPADs.

  13. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  14. One-photon mass-analyzed threshold ionization spectroscopy (MATI) of cis-dichloroethylene (cis-C2H2Cl2)

    NASA Astrophysics Data System (ADS)

    Bae, Yong Jin; Kim, Myung Soo

    2007-11-01

    A high-quality one-photon mass-analyzed threshold ionization (MATI) spectrum of cis-C2H2Cl2 was obtained by using vacuum ultraviolet radiation generated by four-wave mixing in Kr. The ionization energy determined from the position of the 0-0 band in the spectrum was 9.6578 ± 0.0006 eV. Ten vibrational fundamentals for the cation were identified. Most of the overtones and combinations could be assigned properly by comparing with the quantum chemical calculation results. The equilibrium geometry of the cation was determined through Franck-Condon fit.

  15. Preparing transition-metal clusters in known structural forms: The mass-analyzed threshold ionization spectrum of V3

    NASA Astrophysics Data System (ADS)

    Ford, Mark S.; Mackenzie, Stuart R.

    2005-08-01

    The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44000-45000cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as A1'2 and the V3+ ground state as A2'3, both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying A1'1 excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.

  16. Numerical Analysis of Threshold between Laser-Supported Detonation and Combustion Wave Using Thermal Non-Equilibrium and Multi-Charged Ionization Model

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki; Kumagai, Yuya

    Laser-supported Detonation (LSD), which is one type of Laser-supported Plasma (LSP), is an important phenomenon because it can generate high pressures and temperatures for laser absorption. In this study, using thermal-non-equilibrium model, we numerically simulate LSPs, which are categorized as either LSDs or laser-supported combustion-waves (LSCs). For the analysis model, a two-temperature (heavy particle and electron-temperature) model has been used because the electronic mode excites first in laser absorption and a thermal non-equilibrium state easily arises. In the numerical analysis of the LSDs, laser absorption models are particularly important. Therefore, a multi-charged ionization model is considered to evaluate precisely the propagation and the structure transition of the LSD waves in the proximity of the LSC-LSD threshold. In the new model, the transition of the LSD construction near the threshold, which is indicated by the ionization delay length, becomes more practical.

  17. Strong-field approximation for above-threshold ionization of polyatomic molecules. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Milošević, D. B.

    2014-05-01

    We consider high-order above-threshold ionization of polyatomic molecules by a strong laser field. An improved molecular strong-field approximation which takes into account the electron rescattering off the molecular centers is developed. The presented theory is applied to calculate the photoelectron energy and angular distributions for the ozone molecule. The obtained spectra exhibit pronounced minima, and this is explained as a three-point destructive interference of the rescattered electron wave packets.

  18. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  19. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  20. Above-threshold ionization of helium in the long-wavelength regime: Examining the single-active-electron approximation and the two-electron strong-field approximation

    NASA Astrophysics Data System (ADS)

    Yu, Chuan; Madsen, Lars Bojer

    2017-06-01

    We investigate high-order above-threshold ionization of model helium in the long-wavelength regime up to 2400 nm by solving the two-electron time-dependent Schrödinger equation in one dimension. To bypass the difficulty of solving the multielectron time-dependent Schrödinger equation with the long-wavelength laser interaction, we revisit and examine two typically used theoretical methods: the single-active-electron approximation and the strong-field approximation. For the description of the high-energy rescattered electrons in the ground-state ionic channel, the single-active-electron approximation performs better with increasing ponderomotive energy. Single ionization in the excited-state ionic channels, in general, has much weaker spectral intensity than that in the ground-state ionic channel. The above-threshold-ionization cutoffs in the excited-state ionic channels are clear signatures of two-electron dynamics, which cannot be explained within the single-active-electron approximation. By applying the two-electron strong-field approximation including rescattering and a saddle-point method analysis, we explain the channel-resolved cutoffs, and relate them to elastic and inelastic rescattering processes.

  1. Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores

    SciTech Connect

    Steele, P T; Srivastava, A; Pitesky, M E; Fergenson, D P; Tobias, H J; Gard, E E; Frank, M

    2004-11-30

    Bioaerosol mass spectrometry (BAMS) is being developed to analyze and identify biological aerosols in real-time. Mass spectra of individual Bacillus endospores were measured here with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores this threshold had a mean value of approximately 1 nJ/{micro}m{sup 2} (0.1 J/cm{sup 2}). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.

  2. Calculation of photoionization cross section near auto-ionizing lines and magnesium photoionization cross section near threshold

    NASA Technical Reports Server (NTRS)

    Moore, E. N.; Altick, P. L.

    1972-01-01

    The research performed is briefly reviewed. A simple method was developed for the calculation of continuum states of atoms when autoionization is present. The method was employed to give the first theoretical cross section for beryllium and magnesium; the results indicate that the values used previously at threshold were sometimes seriously in error. These threshold values have potential applications in astrophysical abundance estimates.

  3. Intensity dependence of the H{sub 2}{sup +} ionization rates in Ti:sapphire laser fields above the Coulomb-explosion threshold

    SciTech Connect

    Sabzyan, Hassan; Vafaee, Mohsen

    2005-06-15

    Ionization rates of the hydrogen molecular ion H{sub 2}{sup +} under linearly polarized pulse of intense laser fields are simulated by direct solution of the fixed-nuclei time-dependent Schroedinger equation for the Ti:sapphire laser lines {lambda}=790 and 800 nm at high intensities starting from just above the Coulomb explosion threshold (i.e., 6.0x10{sup 13}, 1.0x10{sup 14}, 3.2x10{sup 14}, and 1.4x10{sup 15} W cm{sup -2}). Results obtained in this research exhibit a high degree of complexity for the R-dependent enhanced ionization rates for the H{sub 2}{sup +} system in these intense laser fields. The R-dependent ionization peaks move towards small internuclear distances and their structure becomes simpler and smoother with the increase in the intensity of the laser pulse, i.e., with the decrease in the Keldysh parameter. Results obtained in this research are comparable to and even more reliable than the results of other theoretical calculations reported recently and successfully simulate the experimental ionization data.

  4. Strong-field above-threshold ionization in laser-irradiated C60: The signatures of orbital symmetry and intramolecular interference

    NASA Astrophysics Data System (ADS)

    Usachenko, Vladimir; Kim, Vyacheslav; Pyak, Pavel

    2015-05-01

    We report about the results of our theoretical study of strong-field (multiphoton) above-threshold ionization (ATI) in laser-irradiated carbon fullerene molecule C60 under condition of relevant experiment. The problem is addressed within the velocity-gauge (VG) formulation of molecular strong-field approximation (SFA) essentially exploiting the density-functional-theory (DFT) method for numerical composition of initial (laser-free) molecular state using the routines of GAUSSIAN-03 code. The results of our present VG-SFA calculation for C60 photoelectron energy spectra (PES) demonstrate two distinct (well-separated) and pronounced local interference minima - in the low-energy and the high-energy domains of produced PES - both arising due to destructive intramolecular (multislit) quantum interference of strong-field ionization corresponding to photoelectron emission from multiple separate atomic centers.

  5. Cascade L-shell soft-x-ray emission as incident x-ray photons are tuned across the 1s ionization threshold

    SciTech Connect

    Sokaras, D.; Andrianis, M.; Lagoyannis, A.; Kochur, A. G.; Mueller, M.; Kolbe, M.; Beckhoff, B.; Mantler, M.; Zarkadas, Ch.; Karydas, A. G.

    2011-05-15

    The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.

  6. Threshold ionization spectroscopy of H2O, HDO and D2O and low-lying vibrational levels of HDO+ and D2O+

    NASA Astrophysics Data System (ADS)

    Lauzin, Clément; Jacovella, Ugo; Merkt, Frédéric

    2015-12-01

    Rotationally resolved photoelectron spectra of jet-cooled H2O, HDO and D2O have been recorded near the origin of the ? photoionising transition following single-photon ionization using the complementary techniques of mass-analysed threshold-ionization (MATI) and pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy. A gas mixture of H2O, HDO and D2O with Ar was obtained by mixing H2O (ℓ) and D2O (ℓ) in a reservoir and bubbling Ar gas through the mixture. To unambiguously assign the photoelectron bands to H2O, HDO or D2O, the PFI-ZEKE photoelectron spectra of the mixture were compared to MATI spectra and to spectra of H2O. Analysis of the rotational structure of the origin bands (v+1 = 0, v2+ = 0, v+3 = 0) ← (v1 = 0, v2 = 0, v3 = 0) of H2O, HDO and D2O and of the transitions to the (010), (020) and (100) levels of D2O+ and the first excited level of the O-D stretching mode of HDO+ provided new information on the photoionization dynamics of water and the energy level structure of HDO+ and D2O+.

  7. Mass analyzed threshold ionization spectroscopy of deuterium substituted N-methylaniline and N-ethylaniline cations: isotope effect on transition energy and large amplitude vibrations

    NASA Astrophysics Data System (ADS)

    Lin, Jieli; Lin, Jung Lee; Tzeng, Wen Bih

    2003-12-01

    We have recorded the resonant two-photon ionization (R2PI) and mass analyzed threshold ionization (MATI) spectra of deuterium substituted N-methylaniline (NMA-d1) and N-ethylaniline (NEA-d1) to investigate the influence of the N-deuteration on the transition energy and the large amplitude alkyl vibration. The origin of the S 1←S 0 electronic transition (EE) and the adiabatic ionization energy (IE) of NMA-d1 are determined to be 33,294 ± 1 and 59,801 ± 5 cm -1, whereas those of NEA-d1 are 33,301 ± 1 and 59,185 ± 5 cm -1, respectively. Comparing these data with those of NMA and NEA suggests that N-deuteration give rise to a blue shift of 2-4 cm -1 in the EE and a red shift of 19-21 cm -1 in the IE. These isotope shifts are little affected by the length of the alkyl group attached to the nitrogen atom. The present results also show that the N-deuteration influences more on the large amplitude motions of the CH 3 torsion, the C 2H 5 bending, and the N-inversion than the localized benzene ring vibrations.

  8. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization.

    PubMed

    Fetić, B; Milošević, D B

    2017-05-01

    Time evolution of the bound state of a molecular hydrogen cation in an intense, linearly polarized laser field is investigated by solving the full three-dimensional time-dependent Schrödinger equation. Our method is based on the Born-Oppenheimer and dipole approximations, and the wave function is expanded in finite series using B-spline functions and spherical harmonics in prolate spheroidal coordinates. After solving the stationary Schrödinger equation, the initial state is propagated under the influence of the laser field employing the Crank-Nicolson propagator. Using this method we calculate and present high-harmonic photon spectra and above-threshold ionization angle-resolved electron spectra.

  9. Long-range Coulomb effect in above-threshold ionization of Ne subject to few-cycle and multicycle laser fields

    NASA Astrophysics Data System (ADS)

    Xu, SongPo; Quan, Wei; Chen, YongJu; Xiao, ZhiLei; Wang, YanLan; Kang, HuiPeng; Hua, LinQiang; Gong, Cheng; Lai, XuanYang; Liu, XiaoJun; Hao, XiaoLei; Hu, ShiLin; Chen, Jing

    2017-06-01

    The long-range Coulomb effect (LRCE) is demonstrated experimentally and theoretically by investigating the pulse duration dependence of low-energy structure (LES) in above-threshold ionization of Ne. It is found experimentally that at 800 nm the LES shows itself as a double-hump structure (DHS) in momentum distribution of singly charged ion for Ne, and moreover, this structure is more prominent for multicycle laser fields than for few-cycle cases. This result can be reproduced and explained qualitatively with a semiclassical model and attributed to the paramount role of LRCE. That is to say, after the laser field vanishes, the electrons decelerate while flying away from the core by the long-range tail of Coulomb potential, which eventually makes DHS less notable.

  10. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    SciTech Connect

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 {times} 10{sup 12}W/cm{sup 2} to 2 {times} 10{sup 14}W/cm{sup 2}. The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 {times} 10{sup 13}W/cm{sup 2}, the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory.

  11. The ionization threshold of N,N,Nscript,Nscript-tetramethyl-p-phenylenediamine in dense fluid ethane; effects of fluid density and temperature

    NASA Astrophysics Data System (ADS)

    Faidas, H.; Christophorou, L. G.; Datskos, P. G.; McCorkle, D. L.

    1989-06-01

    The ionization threshold IF of N,N,N',N'-tetramethyl-p-phenylenediamine in ethane, has been measured in the density (ρ) range 0.15-13.30 M/l and over the temperature (T) range 295-413 K, using a multiphoton ionization conductivity technique. The IF was found to be a function of both ρ and T in the ranges studied. At a fixed T (=373 K), IF was found first to decrease with increasing ρ and then to level off at densities of ˜10 M/l. For ρ≥11 M/l and T=295 K, the IF was found to increase with increasing density. At constant density (ρ=5.90 M/l ) IF decreased with increasing T between 323 and 413 K. These results are analyzed and discussed in relation to the effect of ρ and T on the electron conduction band energy V0 and the medium polarization energy P+. The changes in the IF with ρ are attributed to the dependence of V0 and P+ on ρ, while the dependence of IF on T is attributed to the effects of T on V0 rather than on P+.

  12. DFT-Supported Threshold Ionization Study of Chromium Biphenyl Complexes: Unveiling the Mechanisms of Substituent Influence on Redox Properties of Sandwich Compounds.

    PubMed

    Ketkov, Sergey Yu; Tzeng, Sheng-Yuan; Wu, Pei-Ying; Markin, Gennady V; Tzeng, Wen-Bih

    2017-07-05

    High-resolution mass-analyzed threshold ionization (MATI) spectra of (η(6) -Ph2 )2 Cr and (η(6) -Ph2 )(η(6) -PhMe)Cr demonstrate that the Ph groups work as electron donors, decreasing the ionization energy of the gas-phase bisarene complexes. In contrast to electrochemical data, a close similarity of the Ph and Me group effects on the oxidation of free sandwich molecules has been revealed. However, DFT calculations testify for the opposite shifts of the electron density caused by the Me and Ph substituents in the neutral complexes, the latter behaving as an electron-accepting fragment. On the contrary, in the bisarene cations, the Ph group becomes a stronger donor than methyl. This change provides the similar substituent effects observed with the MATI experiment. On the other hand, the well-documented opposite influence of the Me and Ph fragments on the redox potential of the (η(6) -arene)2 Cr(+/0) couple in solution appears to be a result of solvation effects but not intramolecular interactions as shown for the first time in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Threshold Ionization Spectroscopy of La(CH_{3}CN) and La(C_{4}H_{9}CN) Radicals Formed by la Reactions with Alkane Nitriles

    NASA Astrophysics Data System (ADS)

    Ullah, Ahamed; Kim, Jong Hyun; Cao, Wenjin; Yang, Dong-Sheng

    2017-06-01

    La atom reactions with acetonitrile (CH_{3}CN) and pentanenitrile (C_{4}H_{9}CN) are carried out in a laser-vaporization supersonic molecular beam source. Metal-containing species are observed using time-of-flight mass spectrometry. In this talk, we report the mass-analyzed threshold ionization (MATI) spectroscopic characterization of two metal-containing radicals, La(CH_{3}CN) and La(C_{4}H_{9}CN), formed by La associations with acetonitrile and pentanenitrile, respectively. Adiabatic ionization energies of the two La-alkane nitrile species and their vibrational frequencies are measured from the MATI spectra. Metal-ligand binding modes and molecular structures are investigated by comparing the spectroscopic measurements with density functional theory calculations and spectral simulations. For both alkane nitriles, the preferred La binding site is identified to be the nitrile group with a π-bind mode, the resultant metal complexes are three-membered metallacycles. While a single isomer is observed for La(CH_{3}CN), two rotational conformers are identified for La(C_{4}H_{9}CN). The binding and structures of these metal-alkane nitrile radicals are different from those formed by metal ion reactions, where metal ions were reported to favor σ binding with the nitrogen atom. K. Eller, W. Zummack, H. Schwarz, L. M. Roth, B. S. Freiser, J. Am. Chem. Soc., 1991, 113, 833-839

  14. One-photon mass-analyzed threshold ionization spectroscopy of 2-bromopropene (2-C3H5Br): Analysis of vibration and internal rotation in the cation

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2003-12-01

    Vibrational spectrum of 2-C3H5Br cation in the ground electronic state was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy using coherent vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. From the MATI spectra, ionization energy of 2-C3H5Br to the ionic ground state has been determined to be 9.4377±0.0006 eV. Vibrational assignments have been made by comparing with the vibrational frequencies and Franck-Condon factors calculated at the B3LYP and BP86 levels with the 6-311++G(3df,3pd) basis set. Several low-frequency bands have been assigned to the torsional motion of the methyl group in the cation. Energies of the torsional states and relative transition intensities to these states have been reproduced well by a one-dimensional rotor model. The torsional barrier and internal rotational constant have been determined to be 80.0 and 5.13 cm-1, respectively.

  15. Rotational state selection of a CH3I+ ion beam using vacuum ultraviolet-mass-analyzed threshold ionization spectroscopy: Characterization using photodissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Bae, Yong Jin; Kim, Myung Soo

    2008-03-01

    The ÃA12←X˜E3/22 transition of CH3I + was investigated by photodissociation (PD) of the cation generated by one-photon mass-analyzed threshold ionization (MATI). Compared to the PD spectrum obtained by excitation of the cation in the main 0-0 band in the MATI spectrum, those obtained by excitation of the cations in the satellite structures showed substantially simplified rotational structures for nondegenerate vibronic bands. Spectral simplification occurred because each satellite consisted mostly of cations with one K quantum number. Spectroscopic constants in the ground vibronic state and in the 2135, 2138, 39, and 313 nondegenerate vibrational states in ÃA12 were determined via spectral fitting. Also, those in the 213n61 (n=1?) degenerate state, which had been reported previously, was improved. The K quantum number in each satellite determined by the present high resolution study was compatible with the prediction by the symmetry selection rule for photoionization. That is, the K quantum number of the ion core in high Rydberg states accessed by one-photon excitation was found to be conserved upon pulsed field ionization. This work demonstrates generation of mass-selected, vibronically selected, and K-selected ion beam by one-photon MATI.

  16. Vibrational and Geometric Structures of La{_3}C{_2}O and La{_3}C{_2}O^+ from Masse-Analyzed Threshold Ionization

    NASA Astrophysics Data System (ADS)

    Mourad, Roudjane; Wu, Lu; Yang, D. S.

    2011-06-01

    La{_3}C{_2}O is produced for the first time by laser vaporization in a pulsed cluster source and identified by photoionization time-of-flight mass spectrometry. Vibrationally-resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The adiabatic ionization energy of La{_3}C{_2}O is measured to be 30891(5) Cm-1. The spectra display several short vibrational progressions, and these progressions are associated mainly with La-La, La-C and La{_3}C{_2}O stretching excitations. The electron-spin multiplicities and molecular symmetries of La{_3}C{_2}O and La{_3}C{_2}O^+ are determined by combining the experimental measurements with ab initio calculations at MP2 level. Preliminary data analysis shows that the ^1A_1 ← ^2A_1 transition is responsible for the observed MATI spectra. The cluster has C2v symmetry with La{_3}C{_2}O in a bi-pyramid structure and oxygen being attached to the La_3 plane.

  17. Threshold ionization, structural isomers, and electronic states of M{sub 2}O{sub 2} (M = Sc, Y, and La)

    SciTech Connect

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2014-06-14

    M{sub 2}O{sub 2} (M = Sc, Y, and La) were synthesized in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio calculations. Adiabatic ionization energies (AIEs) and several vibrational frequencies were measured accurately for the first time from the MATI spectra. Six possible structural isomers of M{sub 2}O{sub 2} were considered in the calculations and the three converged structures were used in the spectral analysis. A planar cyclic structure in D{sub 2h} point group was predicted to be the most stable one by the theory and observed by the experiment. The cyclic structure is formed by joining two MO{sub 2} fragments together through two shared oxygen atoms. In forming the ground state clusters, each metal atom loses two (n − 1)d electrons and as a result, has only one ns electron in the metal-based valence orbital. The ground electronic state of Sc{sub 2}O{sub 2} is {sup 1}A{sub g}, and those of Y{sub 2}O{sub 2} and La{sub 2}O{sub 2} are {sup 3}B{sub 1u}. Ionization of both {sup 1}A{sub g} and {sup 3}B{sub 1u} neutral states yields the {sup 2}A{sub g} ion state by removing one of the two ns electrons, and the resultant ion has a similar geometry to the neutral cluster. The AIEs of the clusters are 5.5752 (6), 5.2639 (6), 4.5795 (6) eV for M = Sc, Y, and La, respectively. The vibrational frequencies of the observed modes, including O-M and M-M stretches, are in the range of 200–800 cm{sup −1}.

  18. Yttrium-Assisted C-H and C-C Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    The reaction between Y atom and ethylene (CH2=CH2) was performed in a laser-ablation supersonic molecular beam source. Y(C2H2), Y(C2H4), and Y(C4H6) were observed by time-of-flight mass spectrometry and investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. Y(C2H2) is formed by hydrogen elimination, Y(C2H4) by simple association, and La(C4H6) by C-C bond coupling and dehydrogenation. Both Y(C2H2) and Y(C2H4) have a C2v triangular structure with a C=C double bond in Y(C2H2) and a C-C single bond in Y(C2H4). Y(C4H6) has a five-membered metallacyclic structure (Cs) with Y binding to the two terminal carbon atoms of butene, which is the exactly same as that of Y(C4H6) formed in the Y + 1-butene reaction. For all three complexes, ionization has a small effect on the metal-carbon bond lengths because the rejected electron has basically a Y 5s character. The adiabatic ionization energies are measured to be 45679(5) wn for Y(C2H2), 45603(5) wn for Y(C2H4) and 43475(5) wn for Y(C4H6). The metal-ligand stretching frequencies of the three complexes are also measured from the MATI spectra.

  19. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; Schoeffler, Markus; Schmidt, Lothar; Prior, Michael; Doerner, Reinhard

    2017-08-01

    We studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kinetic energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Traces of a possible breakdown of the Born-Oppenheimer approximation are observed near threshold.

  20. Photoionization from the 5p {sup 2}P{sub 3/2} state of rubidium

    SciTech Connect

    Nadeem, Ali; Haq, S. U.

    2011-06-15

    We report two-step photoionization studies from the 5p {sup 2}P{sub 3/2} excited state of rubidium using two dye lasers simultaneously pumped by a common Nd:YAG laser in conjunction with a thermionic diode ion detector. The photoionization cross section at the first ionization threshold is measured as 18.8 {+-} 3 Mb and at excess energies of 0.013, 0.106, 0.229, and 0.329 eV is measured as 15, 13.6, 12.6, and 12.5 Mb, respectively. The measured value of the photoionization cross section at the threshold is used to calibrate the oscillator strengths of the 5p {sup 2}P{sub 3/2}{yields}nd {sup 2}D{sub 5/2} (22 {<=}n{<=} 52) Rydberg transitions.

  1. Indomethacin lowers the threshold thermal exposure for hyperthermic radiosensitization and heat-shock inhibition of ionizing radiation-induced activation of NF-kappaB.

    PubMed

    Locke, J E; Bradbury, C M; Wei, S J; Shah, S; Rene, L M; Clemens, R A; Roti Roti, J; Horikoshi, N; Gius, D

    2002-06-01

    It is well established that salicylate and several other non-steroidal anti-inflammatory agents (NSAID), including indomethacin, can activate the heat-shock response, albeit at high concentrations. This is significant since heat shock significantly alters the cellular cytotoxic response to ionizing radiation (IR). It was previously shown that heat shock, as well as NSAIDs, inhibits IR-induced activation of NF-kappaB and that NF-kappaB protects against IR-induced cytotoxicity. Hence, it is hypothesized that pretreatment with indomethacin before heating will lower the temperature and heating times required to inhibit the activation of NF-kappaB and induce significant hyperthermic radiosensitization. Experiments were performed in HeLa cell lines and the DNA-binding activity was determined by EMSA. Cellular radiosensitivity was determined by clonogenic assay. HeLa cells pretreated with indomethacin showed a decrease in the temperature-time combination necessary to inhibit IR-induction of NF-kappaB DNA binding. In addition, clonogenic cell survival assays using identical conditions showed an indomethacin dose-dependent enhancement of hyperthermic radiosensitization. Thus, similar concentrations of indomethacin both lowered the threshold thermal exposure to inhibit activation of NF-kappaB DNA-binding and increased the sensitivity of tumour cells to hyperthermic radiosensitization-induced cytotoxicity. In HeLa cells treated with N-alpha-tosylphenylalanyl-chloromethyl ketone (TPCK), a serine protease inhibitor that blocks activation of NF-kappaB, an increase in radiosensitivity was observed. Interestingly, no additional cell killing was observed when heat shock was added to cells treated with TPCK before IR, suggesting a possible common cytotoxic pathway. The results demonstrate that indomethacin lowers the temperature-time conbination necessary to induce several physiological processes associated with the heat-shock response. Furthermore, NSAID may be potential adjuvants

  2. High-order harmonic generation and above-threshold ionization in H: Calculations using expansions over field-free state-specific wave functions

    NASA Astrophysics Data System (ADS)

    Dionissopoulou, S.; Mercouris, Th.; Lyras, A.; Komninos, Y.; Nicolaides, C. A.

    1995-04-01

    We have computed the above-threshold ionization and the emitted harmonic spectra of H interacting with short laser pulses, with photon energies ranging from 1.16 to 5.44 eV and with peak intensities ranging from 6×1013 to 7×1014 W/cm2, by solving the time-dependent Schrödinger equation (TDSE). The method of solution involves the expansion of the time-dependent wave function Ψ(r-->,t) over the exact wave functions of the discrete and the continuous spectrum, computed numerically, and the subsequent integration of the resulting coupled first-order differential equations by a Taylor series expansion technique. This state-specific approach (SSA) to the solution of the TDSE allows systematic understanding of convergence as a function of the number and type of the field-free states for each value of the laser frequency (ω) and peak intensity (I0). For example, the method allows practical numerical study of the degree of participation of high (n,l) (l=0,1,...,n-1) Rydberg, as well as of high-energy scattering states for each partial wave. For the harmonic spectra, comparisons are made between the results obtained by the SSA and those obtained in recent years by a number of researchers from the application of finite-difference grid methods. As regards economy, a general observation is that in the SSA the necessary number of partial waves is smaller than that required in the grid methods. Predictions are made for the case of ħω=2 eV, I0=2×1014 W/cm2, in the context of a study of the effect of the pulse shape on the harmonic-generation spectrum. It is shown that the number of harmonics and the appearance of the plateau depend on the duration of the peak intensity.

  3. Negative photoion spectroscopy of freon molecules in the vicinity of the Cl 2p edge

    SciTech Connect

    Scully, S.W.J.; Mackie, R.A.; Browning, R.; Dunn, K.F.; Latimer, C.J.

    2004-10-01

    Polar photodissociation of CF{sub n}Cl{sub 4-n} (n=0-2) has been studied using synchrotron radiation within the energy range 195-217 eV. The first observations of negative photoion fragments from these molecules after core excitation are reported. In addition to observing a number of previously known resonances two additional resonant states, just above the Cl 2p ionization limit, are observed and play an important role in the polar photodissociation process. The difficulties in identifying these above threshold spin-split features using negative photoion spectroscopy are discussed.

  4. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  5. One-photon mass-analyzed threshold ionization spectroscopy of CH2BrI: Extensive bending progression, reduced steric effect, and spin-orbit effect in the cation

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Hyoseok; Lee, Yoon Sup; Kim, Myung Soo

    2005-07-01

    One-photon mass-analyzed threshold ionization (MATI) spectrum of CH2BrI was obtained using coherent vacuum-ultraviolet radiation generated by four-wave difference-frequency mixing in Kr. Unlike CH2ClI investigated previously, a very extensive bending (Br-C-I) progression was observed. Vibrational frequencies of CH2BrI+ were measured from the spectra and the vibrational assignments were made by utilizing frequencies calculated by the density-functional-theory (DFT) method using relativistic effective core potentials with and without the spin-orbit terms. A noticeable spin-orbit effect on the vibrational frequencies was observed from the DFT calculations, even though its influence was not so dramatic as in CH2ClI+. A simple explanation based on the bonding characteristics of the molecular orbitals involved in the ionization is presented to account for the above differences between the MATI spectra of CH2BrI and CH2ClI. The 0-0 band of the CH2BrI spectrum could be identified through the use of combined data from calculations and experiments. The adiabatic ionization energy determined from the position of this band was 9.5944±0.0006eV, which was significantly smaller than the vertical ionization energy reported previously.

  6. Mass-analyzed threshold ionization study of vinyl bromide cation in the first excited electronic state using vacuum-ultraviolet radiation generated by four-wave mixing in Hg

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2005-11-01

    The vibrational spectrum of the vinyl bromide cation in the first excited electronic state ÃA'2 was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy. The use of an improved vacuum-ultraviolet radiation source based on four-wave sum frequency mixing in Hg resulted in excellent sensitivity for MATI signals. From the MATI spectrum, the ionization energy to the ÃA'2 state of the cation was determined to be 10.9150±0.0006eV. Nearly complete vibrational assignments for the MATI peaks were possible by utilizing the vibrational frequencies and Franck-Condon factors calculated at the density-functional theory (DFT) and time-dependent DFT/B3LYP levels with the 6-311+G(df,p) basis set.

  7. Zero kinetic energy spectroscopy: mass-analyzed threshold ionization spectra of chromium sandwich complexes with alkylbenzenes, (η(6)-RPh)(2)Cr (R = Me, Et, i-Pr, t-Bu).

    PubMed

    Ketkov, Sergey Y; Selzle, Heinrich L; Cloke, F Geoffrey N; Markin, Gennady V; Shevelev, Yury A; Domrachev, Georgy A; Schlag, Edward W

    2010-10-28

    For over 25 years zero kinetic energy (ZEKE) spectroscopy has yielded a rich foundation of high-resolution results of molecular ions. This was based on the discovery in the late 60's of long-lived ion states throughout the ionization continuum of molecular ions. Here, an example is chosen from another fundamental system pioneered at this university. The mass-analyzed threshold ionization (MATI) spectra of jet-cooled chromium bisarene complexes (η(6)-RPh)(2)Cr (R = Me (1), Et (2), i-Pr (3), and t-Bu (4)) have been measured and interpreted on the basis of DFT calculations. The MATI spectra of complexes 1 and 2 appear to reveal features arising from ionizations of the isomers formed by the rotation of one arene ring relative to the other. The 1 and 2 MATI spectra show two intense peaks corresponding to the 0(0)(0) ionizations with inverse intensity ratios. As indicated by the DFT calculations, the intensity ratio change on going from 1 to 2 results from different isomers contributing to each MATI peak. The ionization energies corresponding to the 0(0)(0) peaks are 42746 ± 5 and 42809 ± 5 cm(-1) for compound 1 and 42379 ± 5 and 42463 ± 5 cm(-1) for complex 2. The 1 and 2 spectra show also the weaker features representing transitions to the vibrationally excited cationic levels, the signals of individual rotamers being detected and assigned on the basis of calculated vibrational frequencies. The MATI spectra of compounds 3 and 4 reveal only one strong peak because of close ionization potentials of the isomers contributing to the MATI signal. The 3 and 4 ionization energies are 42104 ± 5 and 41917 ± 5 cm(-1), respectively. The precise values of ionization energies obtained from the MATI spectra reveal a nonlinear dependence of the IE on the number of Me groups in the alkyl substituents of (η(6)-RPh)(2)Cr. This can be explained by an increase in the molecular zero point energies on methylation of the substituents.

  8. Analysis of the (1)A' S1 ← (1)A' S0 and (2)A' D0 ← (1)A' S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy.

    PubMed

    Krüger, Sascha; Grotemeyer, Jürgen

    2016-03-14

    Resonance enhanced multiphoton ionization (REMPI) and mass analyzed threshold ionization (MATI) spectroscopy have been applied in order to investigate the vibrational structure of 1,2-dichloro-4-fluorobenzene (1,2,4-DCFB) in its first excited state (S1) and the cationic ground state (D0). The selection of the state prior to ionization resulted in MATI spectra with different intensity distributions thus giving access to many vibrational levels. To support the experimental findings, geometry optimizations and frequency analyses at DFT (density functional) and TDDFT (time-dependent density functional) levels of theory have been applied. Additionally, a multidimensional Franck-Condon approach has been used to calculate the vibrational intensities from the DFT calculations. An excellent agreement between simulated and measured REMPI and MATI spectra allowed for a confident assignment of vibrational levels and mechanisms active during excitation and ionization. In order to avoid any ambiguity regarding the assignment of the vibrational bands to normal modes, Duschinsky normal mode analysis has been performed to correlate the ground state (S0) normal modes of 1,2,4-DCFB with the benzene derived Wilson nomenclature. From the REMPI spectra the electronic excitation energy (EE) of 1,2-dichloro-4-fluorobenzene could be determined to be 35 714 ± 2 cm(-1) while the MATI spectra yielded the adiabatic ionization energy (IE) of 1,2-dichloro-4-fluorobenzene which could be determined to be 73 332 ± 7 cm(-1).

  9. Ionization branching ratio control with a resonance attosecond clock.

    PubMed

    Argenti, Luca; Lindroth, Eva

    2010-07-30

    We investigate the possibility to monitor the dynamics of autoionizing states in real-time and control the yields of different ionization channels in helium by simulating extreme ultraviolet (XUV) pump IR-probe experiments focused on the N=2 threshold. The XUV pulse creates a coherent superposition of doubly excited states which is found to decay by ejecting electrons in bursts. Prominent interference fringes in the photoelectron angular distribution of the 2s and 2p ionization channels are observed, along with significant out-of-phase quantum beats in the yields of the corresponding parent ions.

  10. Ionization Branching Ratio Control with a Resonance Attosecond Clock

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Lindroth, Eva

    2010-07-01

    We investigate the possibility to monitor the dynamics of autoionizing states in real-time and control the yields of different ionization channels in helium by simulating extreme ultraviolet (XUV) pump IR-probe experiments focused on the N=2 threshold. The XUV pulse creates a coherent superposition of doubly excited states which is found to decay by ejecting electrons in bursts. Prominent interference fringes in the photoelectron angular distribution of the 2s and 2p ionization channels are observed, along with significant out-of-phase quantum beats in the yields of the corresponding parent ions.

  11. Theoretical electron impact elastic, ionization and total cross sections for silicon hydrides, SiHx (x = 1, 2, 3, 4) and disilane, Si2H6 from threshold to 5 keV

    NASA Astrophysics Data System (ADS)

    Vinodkumar, M.; Limbachiya, C.; Korot, K.; Joshipura, K. N.

    2008-07-01

    In this article we report comprehensive calculations of total elastic (Qel), and total ionization cross sections, (Qion), on silicon hydrides SiHx (x = 1 4) and disilane, Si2H6 on electron impact at energies from circa threshold to 2000 eV and total (complete) cross sections (QT) up to 5 keV. Spherical complex optical potential (SCOP) formalism is employed to evaluate Qel and QT. Total ionization cross sections, Qion, are derived from total inelastic cross sections, Qinel, using our complex spherical potential ionization contribution (CSP-ic) method. Dependence of QT on the dipole polarizability of the target and incident energy is presented for these targets through analytical formula, using which calculation of QT is extended up to 5 keV. Comparison of QT for all these targets is carried out to present a general theoretical picture of collision processes and also to visualize the dependence of QT on the total number of electrons in the target and hence on the geometrical size of the target. Present calculations also provide information on the excitation processes of these targets. Present results are compared with available experimental and other theoretical data wherever available and overall good agreement is observed. There is probably no data for total elastic and total (complete) cross sections for SiHx (x = 2-3) in the present energy range and hence reported for the first time.

  12. One-photon mass-analyzed threshold ionization spectroscopy of 2-chloropropene (2-C3H5Cl) and its vibrational assignment based on the density-functional theory calculations

    NASA Astrophysics Data System (ADS)

    Bae, Yong Jin; Lee, Mina; Kim, Myung Soo

    2005-07-01

    A high-quality mass-analyzed threshold ionization (MATI) spectrum of 2-chloropropene, 2-C3H5Cl, is reported. Its ionization energy determined for the first time from the 0-0 band position was 9.5395±0.0006eV. Almost all the peaks in the MATI spectrum could be vibrationally assigned utilizing the frequencies calculated at the B3LYP /6-311++G(3df,3pd) level and the Franck-Condon factors calculated with the molecular parameters obtained at the same level. In particular, the observed methyl torsional progression could be reproduced very well through quantum-mechanical calculations using the molecular parameters obtained at this level. Dramatic lowering of the torsional barrier inferred from the experimental data was entirely compatible with the B3LYP /6-311++G(3df,3pd) results. The torsional barrier and the internal rotational constant determined by fits to six torsional peaks were 53.6 and 5.20cm-1, respectively. A brief discussion at the level of molecular orbital is presented to account for the dramatic lowering of the torsional barrier upon ionization.

  13. Regular series of doubly excited states inside two-electron continua: Application to 2s2-hole states in neon above the Ne2+1s22s22p4 and 1s22s2p5 thresholds

    NASA Astrophysics Data System (ADS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2011-02-01

    We report results of many-electron calculations that predict the presence of a regular series of autoionizing doubly excited states (DESs) of 1Posymmetry embedded inside one- as well as two-electron continua of neon, in the range of excitation 105.9-121.9 eV above the ground state. The limit of 121.9 eV represents the two-electron ionization threshold (TEIT) labeled by Ne2+ 1s22p6 1S. The wave functions of these unstable states and their properties are computed according to the theoretical framework, which is explained and justified in the text. Their formal structure is (ψcore)1S⊗Φ(r1→,r2→)1Po, where both ψcore and Φ(r⃗1,r⃗2) are correlated wave functions, the latter being represented reasonably accurately by a self-consistently obtained superposition of nsnp and np(n+1)d configurations n=3-7. By fitting the calculated lowest energies at each value of n, (five states), an effective hydrogenic formula is obtained, which gives the whole energy spectrum up to the TEIT. The autoionization widths are small and decrease with excitation energy. Oscillator strengths for the excitation of these narrow resonance states by absorption of one photon are also small. Because of their electronic structure, these states are compared to 1Po DESs in He, which were found in the 1980s to constitute a regular ladder with wave-function characteristics that tend to those of the so-called Wannier state at threshold. In the present case, the presence of the core and the concomitant interactions do not permit the emergence of such geometrical features.

  14. K selection in one-photon mass-analyzed threshold ionization of CH3I and CD3I to the X~ 2E3/2 state cations

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Bae, Yong Jin; Kim, Myung Soo

    2008-01-01

    One-photon mass-analyzed threshold ionization (MATI) spectra for the X˜E3/22 states of CH3I+ and CD3I + were measured using vacuum ultraviolet radiation generated by four-wave mixing in Kr. Spin-orbit density functional theory calculations at the B3LYP/aug-cc-pVTZ level and spin-orbit/Jahn-Teller calculations were made to aid vibrational assignment. Each vibrational band consisted of several peaks due to different ΔK transitions, which could be assigned by using molecular parameters determined in the previous high resolution photodissociation spectroscopic study. Possibility of generating mass-selected, vibronically selected and K-selected ion beam with decent intensity by one-photon MATI was demonstrated. The ionization energies to the X˜E3/22 states of CH3I + and CD3I+ corrected for the rotational contribution were 9.5386±0.0006 and 9.5415±0.0006eV, respectively.

  15. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    NASA Astrophysics Data System (ADS)

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  16. Vibrational assignment and Franck-Condon analysis of the mass-analyzed threshold ionization (MATI) spectrum of CH2ClI: The effect of strong spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Hyoseok; Lee, Yoon Sup; Kim, Myung Soo

    2005-06-01

    Detailed analysis of the one-photon mass-analyzed threshold ionization (MATI) spectrum of CH2ClI is presented. This includes the determination of the ionization energy of CH2ClI, complete vibrational assignments, and quantum-chemical calculations at the spin-orbit density-functional-theory (SODFT) level with various basis sets. Relativistic effective core potentials with effective spin-orbit operators can be used in SODFT calculations to treat the spin-orbit term on an equal footing with other relativistic effects and electron correlations. The comparison of calculated and experimental vibrational frequencies indicate that the spin-orbit effects are essential for the reasonable description of the CH2ClI+ cation. Geometrical parameters and thus the molecular shape of the cation are greatly influenced by the spin-orbit effects even for the ground state. Calculated geometrical parameters deviate substantially for different basis sets or effective core potentials. In an effort to derive the exact geometrical parameters for this cation, SODFT geometries were further improved utilizing Franck-Condon fit of the MATI spectral pattern. This empirical fitting produced the well-converged set of geometrical parameters that are quite insensitive to the choice of SODFT calculations. The C-I bond length and the Cl-C-I bond angle show large deviations among different SODFT calculations, but the empirical spectral fitting yields 2.191±0.003Å for the C-I bond length and 107.09±0.09° for the Cl-C-I angle. Those fitted geometrical parameters along with the experimental vibrational frequencies could serve as a useful reference in calibrating relativistic quantum-chemical methods for radicals.

  17. Rotationally resolved spectroscopy of the A~ 2A1<--X~ 2B1 transition of H2S+ above the barrier to linearity using the mass-analyzed threshold ionization photofragment excitation technique

    NASA Astrophysics Data System (ADS)

    Han, Songhee; Kang, Tae Yeon; Kim, Sang Kyu

    2010-03-01

    The à A21←X˜ B21 transitions of H2S+ above the barrier to linearity have been investigated with the energy resolution high enough to identify individual rotational transition lines for the first time. The rotational cooling of the cation is achieved either by the direct ionization or mass-analyzed threshold ionization (MATI) technique employed in the vacuum-ultraviolet laser excitation of the jet-cooled H2S. Subsequent photoexcitation leads to the H2S+→H2+S+ dissociation and the S+ product yield taken as a function of the excitation energy gives the photofragment excitation (PHOFEX) spectra. The combined use of MATI and PHOFEX techniques greatly simplifies the spectrum allowing the accurate identification of the rotationally resolved bands which is otherwise a formidable task due to the intrinsic complexity of the à A21←X˜ B21 transition. Highly excited states of Ã(0,7,0), Ã(0,8,0), and Ã(0,9,0) vibronic levels with different K quantum numbers which are located above the barrier to linearity are thoroughly investigated. The bent-to-quasilinear transition of H2S+ above the barrier to linearity shows the characteristics of the Renner-Teller effect, showing the large A rotational constant and strong intensity borrowing of the highly vibrationally excited ground levels such as X˜(0,23,0) or X˜(0,24,0) in the dipole-allowed excitation. Spectroscopic parameters of term values, rotational, and spin-orbit coupling constants are precisely determined in this work, providing the most quantitative spectroscopic structure of the H2S+ to date. Quantum-state dependent photodissociation dynamics are also discussed from spectral features of PHOFEX.

  18. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  19. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  20. Gas-to-cluster effects in S 2p-excited SF{sub 6}

    SciTech Connect

    Flesch, Roman; Serdaroglu, Ertugrul; Ruehl, Eckart; Brykalova, Xenia O.; Kan, Elena I.; Klyushina, Ekaterina S.; Krivosenko, Yuri S.; Pavlychev, Andrey A.

    2013-04-14

    High resolution X-ray spectroscopic studies on free SF{sub 6} molecules and SF{sub 6} clusters near the S 2p ionization thresholds are reported. Spectral changes occurring in clusters for the intense molecular-like S 2p{sub 1/2,3/2}{yields} 6a{sub 1g}-, 2t{sub 2g}-, and 4e{sub g}-resonances are examined in detail. Neither gas-to-cluster spectral shifts nor changes in peak shape are observed for the pre-edge 6a{sub 1g}-band. Significant changes in band shape and distinct gas-to-cluster shifts occur in the S 2p{sub 1/2,3/2}{yields} 2t{sub 2g}- and 4e{sub g}-transitions. These are found in the S 2p-ionization continua. The quasiatomic approach is used to assign the experimental results. It is shown that a convolution of asymmetric and symmetric contributions from Lorentzian and Gaussian line shapes allows us to model the spectral distribution of oscillator strength for the S 2p{sub 1/2,3/2}{yields} 2t{sub 2g}-, and 4e{sub g}-transitions. The asymmetry is due to trapping of the photoelectron within the finite size potential barrier. The Lorentzian contribution is found to be dominating in the line shape of the S 2p{yields} 2t{sub 2g}- and 4e{sub g}-bands. The spectroscopic parameters of the spin-orbit components of both the 2t{sub 2g}- and 4e{sub g}-bands are extracted and their gas-to-cluster changes are analyzed. The photoelectron trapping times in free and clustered SF{sub 6} molecules are determined. Specifically, it is shown that spectral changes in clusters reflected in core-to-valence-transitions are due to a superposition of the singly scattered photoelectron waves at the neighboring molecules with the primary and multiply scattered waves within the molecular cage.

  1. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  2. 2p2 Team News

    NASA Astrophysics Data System (ADS)

    Jones, H.

    2000-06-01

    The 2p2 Team continued towards the implementation at the 2.2-m of the same BOB (Broker for Observation Blocks) observing interface as seen at other ESO telescopes. This requires an interface to be written between the existing BOB software and the non-VLT compatible control software for the Wide-Field Imager (WFI) and 2.2-m. Cristian Urrutia, Tatiana Paz and Eduardo Robledo are heading its development. With this software in place, observers can use the VLT Phase 2 Proposal Preparation System (P2PP) for definition of their exposures, whether they are for Visitor or Service Mode.

  3. Gas-Liquid Correlation of Ionization Energies.

    DTIC Science & Technology

    1984-04-01

    ions and water. The threshold and reorganization energies of the hydrated electron are calculated from threshold energies of anions and their absorption...hydroxide ions and water. The threshold and reorganization energies of the hydrated electron are calculated from threshold energies of anions and their...threshold energy of the hydrated electron. 2. Free energy of emission and gas-phase ionization Consider the photoelectron emission by an aqueous

  4. Threshold Digraphs

    PubMed Central

    Cloteaux, Brian; LaMar, M. Drew; Moseman, Elizabeth; Shook, James

    2014-01-01

    A digraph whose degree sequence has a unique vertex labeled realization is called threshold. In this paper we present several characterizations of threshold digraphs and their degree sequences, and show these characterizations to be equivalent. Using this result, we obtain a new, short proof of the Fulkerson-Chen theorem on degree sequences of general digraphs. PMID:26601029

  5. Controlling Two-Electron Threshold Dynamics in Double Photoionization of Lithium by Initial-State Preparation

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Schuricke, M.; Steinmann, J.; Albrecht, J.; Ullrich, J.; Ben-Itzhak, I.; Zouros, T. J. M.; Colgan, J.; Pindzola, M. S.; Dorn, A.

    2009-09-01

    Double photoionization (DPI) and ionization-excitation (IE) of Li(2s) and Li(2p), state-prepared and aligned in a magneto-optical trap, were explored in a reaction microscope at the free-electron laser in Hamburg (FLASH). From 6 to 12 eV above threshold (ℏω=85, 91 eV), total as well as differential DPI cross sections were observed to critically depend on the initial state and, in particular, on the alignment of the 2p orbital with respect to the VUV-light polarization, whereas no effect is seen for IE. The alignment sensitivity is traced back to dynamical electron correlation at threshold.

  6. Controlling Two-Electron Threshold Dynamics in Double Photoionization of Lithium by Initial-State Preparation

    SciTech Connect

    Zhu, G.; Schuricke, M.; Steinmann, J.; Albrecht, J.; Dorn, A.; Ullrich, J.; Ben-Itzhak, I.; Zouros, T. J. M.; Colgan, J.; Pindzola, M. S.

    2009-09-04

    Double photoionization (DPI) and ionization-excitation (IE) of Li(2s) and Li(2p), state-prepared and aligned in a magneto-optical trap, were explored in a reaction microscope at the free-electron laser in Hamburg (FLASH). From 6 to 12 eV above threshold ((Planck constant/2pi)omega=85, 91 eV), total as well as differential DPI cross sections were observed to critically depend on the initial state and, in particular, on the alignment of the 2p orbital with respect to the VUV-light polarization, whereas no effect is seen for IE. The alignment sensitivity is traced back to dynamical electron correlation at threshold.

  7. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  8. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  9. Ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  10. Threshold photoelectron spectrum of the Argon 3s satellites

    SciTech Connect

    Medhurst, L.J.; Von Wittenau, A.S.; van Zee, R.D.; Zhang, J.S.; Liu, S.H.; Shirley, D.A.; Lindle, D.W.

    1989-07-01

    Lately a variety of techniques have studied the electron correlation satellites with binding energies between the Argon 3s binding energy (29.24 eV) and the 2p/sup /minus/2/ ionization potential (43.38 eV). One of these techniques, Threshold Photoelectron Spectroscopy, with /approximately/90 meV FWHM resolution, revealed at least 25 individual electronic states. All of these could contribute to any other satellite spectrum, and this helped explain some discrepancies between previous measurements. This technique has been applied to the same region with higher resolution (<60 meV at the Ar 3s/sup /minus/1/peak). In this higher resolution spectrum at least 29 individual electronic states are present. In some cases the multiplet splitting is observed. 12 refs., 2 figs.

  11. Calculations for electron-impact excitation and ionization of beryllium

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Fursa, Dmitry V.; Bray, Igor

    2016-12-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudostate and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the {(2s2p)}3P and {(2s2p)}1P states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.

  12. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  13. LETTER TO THE EDITOR: The electron-impact ionization of ? ions

    NASA Astrophysics Data System (ADS)

    Thomason, J. W. G.; Peart, B.

    1998-02-01

    The absolute cross section for the ionization of 0953-4075/31/4/013/img2 from threshold to 400 eV has been measured using an electron beam modulation technique. The results are significantly higher than those of Crandall et al, and are in good agreement with recent convergent close-coupling and pseudo-state R-matrix calculations by Badnell et al for the direct contribution to the cross section below 80 eV. In addition, a fast energy-scanning technique has been employed to make detailed measurements of the cross section between 65 and 117 eV. Considerable structure due to indirect ionization was revealed and many of the individual features can be identified with particular autoionization processes involving the excitation of a 2p electron.

  14. Electron ionization of H2O

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2008-11-01

    Relative partial ionization cross-sections and precursor-specific relative partial ionization cross-sections for fragment ions formed by electron ionization of H2O have been measured using time-of-flight mass spectrometry coupled with a 2D ion coincidence technique. We report data for the formation of H+, H2+, O2+, O+ and OH+ relative to the formation of H2O+, as a function of ionizing electron energy from 30 to 200 eV. This data includes, for the first time, measurements on the formation all positive ion pairs and ion triples by dissociative multiple electron ionization of H2O. Through determinations of the kinetic energy release involved in ion pair formation we provide further evidence that indirect processes contribute significantly to the yield of H+ + OH+ ion pairs below the vertical double ionization threshold.

  15. Extremely high magnetic-field sensitivity of charge transport in the Mn/SiO2/p-Si hybrid structure

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Smolyakov, D. A.; Gustaitsev, A. O.; Rautskii, M. V.; Lukyanenko, A. V.; Volochaev, M. N.; Varnakov, S. N.; Yakovlev, I. A.; Ovchinnikov, S. G.

    2017-01-01

    We report on abrupt changes in dc resistance and impedance of a diode with the Schottky barrier based on the Mn/SiO2/p-Si structure in a magnetic field. It was observed that at low temperatures the dc and ac resistances of the device change by a factor of more than 106 with an increase in a magnetic field to 200 mT. The strong effect of the magnetic field is observed only above the threshold forward bias across the diode. The ratios between ac and dc magnetoresistances can be tuned from almost zero to 108% by varying the bias. To explain the diversity of magnetotransport phenomena observed in the Mn/SiO2/p-Si structure, it is necessary to attract several mechanisms, which possibly work in different regions of the structure. The anomalously strong magnetotransport effects are attributed to the magnetic-field-dependent impact ionization in the bulk of a Si substrate. At the same time, the conditions for this process are specified by structure composition, which, in turn, affects the current through each structure region. The effect of magnetic field attributed to suppression of impact ionization via two mechanisms leads to an increase in the carrier energy required for initiation of impact ionization. The first mechanism is related to displacement of acceptor levels toward higher energies relative to the top of the valence band and the other mechanism is associated with the Lorentz forces affecting carrier trajectories between scatterings events. The estimated contributions of these two mechanisms are similar. The proposed structure is a good candidate for application in CMOS technology-compatible magnetic- and electric-field sensors and switching devices.

  16. Anonymity in P2P Systems

    NASA Astrophysics Data System (ADS)

    Manzanares-Lopez, Pilar; Muñoz-Gea, Juan Pedro; Malgosa-Sanahuja, Josemaria; Sanchez-Aarnoutse, Juan Carlos

    In the last years, the use of peer-to-peer (P2P) applications to share and exchange knowledge among people around the world has experienced an exponential growth. Therefore, it is understandable that, like in any successful communication mechanism used by a lot of humans being, the anonymity can be a desirable characteristic in this scenario. Anonymity in P2P networks can be obtained by means of different methods, although the most significant ones are broadcast protocols, dining-cryptographer (DC) nets and multiple-hop paths. Each of these methods can be tunable in order to build a real anonymity P2P application. In addition, there is a mathematical tool called entropy that can be used in some scenarios to quantify anonymity in communication networks. In some cases, it can be calculated analytically but in others it is necessary to use simulation to obtain the network entropy.

  17. 2p radioactivity studied by tracking technique

    SciTech Connect

    Mukha, Ivan

    2010-06-01

    The recent advance in experimental studies of short-lived exotic nuclei beyond the proton drip line is presented. In particular, in-flight decays of proton-unbound nuclei with picosecond lifetimes can be probed by a novel technique which tracks all decay products precisely, and the decay vertices as well as the angular correlations of the fragments are deduced from the measured trajectories. The corresponding pioneering experiment which identified a previously-unknown isotope {sup 19}Mg and its two-proton (2p) radioactivity as well as studied the reference 2p decay of the known isotope {sup 16}Ne is described. Systematic studies of other 2p precursors beyond the proton drip line are foreseen with this powerful technique whose sensitivity is larger by factor of 30 in comparison with a conventional invariant-mass method. The 2p radioactivity candidates {sup 30}Ar, {sup 34}Ca and {sup 26}S are discussed. Information about the respective one-proton unbound nuclei can be obtained with this technique by evaluating proton-heavy-fragment correlations. Systematic studies of nuclei beyond the proton drip line, e.g., the well-known proton resonances above the 'waiting points' in the astrophysical rp-process, {sup 69}Br and {sup 73}Br are feasible.

  18. Threshold Graph Limits and Random Threshold Graphs

    PubMed Central

    Diaconis, Persi; Holmes, Susan; Janson, Svante

    2010-01-01

    We study the limit theory of large threshold graphs and apply this to a variety of models for random threshold graphs. The results give a nice set of examples for the emerging theory of graph limits. PMID:20811581

  19. Outer-shell photodetachment of the metastable Be{sup -} 1s{sup 2}2s2p{sup 2} {sup 4}P{sup e} state

    SciTech Connect

    Sanz-Vicario, Jose Luis; Lindroth, Eva

    2003-07-01

    We report calculated photodetachment cross sections from the metastable Be{sup -} 1s{sup 2}2s2p{sup 2} {sup 4}P{sup e} state in the photon energy range 0-10 eV. Outer-shell photodetachment takes place in this energy range, which includes the double-ionization threshold Be{sup +}({sup 2}S{sup e}) at {approx}7 eV as well as doubly excited thresholds of the residual atom up to the Be(1s{sup 2}2p4f) threshold at {approx}10 eV. Therefore, triply excited states of Be{sup -} are reached within the selected photon energy. We have implemented the complex scaled configuration interaction method along with a model potential for the 1s{sup 2} core to uncover the first series of Be{sup -} {sup 4}L{sup o} resonant states. In this work, four {sup 4}P{sup o}, seven {sup 4}D{sup o}, and two {sup 4}S{sup o} resonances are reported and we compare our cross section with other previous theoretical calculations, that reported none or, at most, two resonances.

  20. Data Sharing in P2P Systems

    NASA Astrophysics Data System (ADS)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    In this chapter, we survey P2P data sharing systems. All along, we focus on the evolution from simple file-sharing systems, with limited functionalities, to Peer Data Management Systems (PDMS) that support advanced applications with more sophisticated data management techniques. Advanced P2P applications are dealing with semantically rich data (e.g., XML documents, relational tables), using a high-level SQL-like query language. We start our survey with an overview over the existing P2P network architectures, and the associated routing protocols. Then, we discuss data indexing techniques based on their distribution degree and the semantics they can capture from the underlying data. We also discuss schema management techniques which allow integrating heterogeneous data. We conclude by discussing the techniques proposed for processing complex queries (e.g., range and join queries). Complex query facilities are necessary for advanced applications which require a high level of search expressiveness. This last part shows the lack of querying techniques that allow for an approximate query answering.

  1. Correlation and relativistic effects in 2p photoelectron spectra of sodium atoms from the initial state 2{p}^{6}3p

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobin; Shi, Yinglong; Xing, Yongzhong; Lu, Feiping; Chen, Zhanbin

    2017-02-01

    We investigate the 2p photoelectron spectra of sodium atoms with the initial state 2{p}63p at a photon energy of 54 eV. The analysis is performed based on the multi-configuration Dirac–Fock method. Special attention is given to the influences of correlation and relativistic effects on the spectra structures. To explore the nature and importance of such influences, calculations were performed based on detailed analyses of the thresholds, relative intensities and corresponding data calculated in the nonrelativistic limit.

  2. Threshold law for positron-atom impact ionisation

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.

  3. Field ionization of Rydberg atoms for high-brightness electron and ion beams

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Speirs, R. W.; Grimmel, J.; Sparkes, B. M.; Comparat, D.; Scholten, R. E.

    2017-06-01

    We present an ionization mechanism for use in a cold atom electron source with the goal of producing highly monochromatic electron beams. We experimentally produce a map of the Stark states of 85Rb below the ionization threshold and identify states that undergo selective field ionization. The properties of an electron beam produced by field-assisted ionization of such states are quantified. A theoretical framework is established to predict the improvement to beam quality when ionization is conducted above the ionization threshold, where ionization conditions are typically more favorable than below the threshold. Calculations suggest that selective ionization of Rydberg states may offer a pathway to the production of high-brightness, highly monochromatic ion and electron beams.

  4. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  5. Absolute oscillator strengths for the valence and inner (P 2p,2s) shell photoabsorption, photoionization, and ionic photofragmentation of PF 3

    NASA Astrophysics Data System (ADS)

    Au, Jennifer W.; Brion, C. E.

    1997-08-01

    Absolute oscillator strengths (cross-sections) for the photoabsorption of phosphorus pentafluoride (PF 5) have been measured for the first time in the valence and phosphorus 2p discrete regions using high-resolution (0.0-0.1 eV fwhm), dipole ( e, e) spectroscopy. Long-range data (10-300 eV) have also been obtained at lower resolution (1 eV fwhm), from which the absolute oscillator strength scale has been determined using the valence-shell Thomas-Reiche-Kuhn sum-rule. The accuracy of the present measurement has been tested using the S(-2) sum rule normalization. Evaluation of the S(-2) sum using the presently reported absolute photoabsorption oscillator strength data gives a dipole polarizabilit for PF 5 in good agreement with the experimental value. The photoionization efficiencies, photoion branching ratios, and absolute partial oscillator strengths for molecular and dissociative photoionization have also been determined for PF 5 by dipole ( e, e+ion) coincidence spectroscopy from the first ionization threshold up to and above the phosphorus 2p edge.

  6. Threshold π- production on the deuteron

    NASA Astrophysics Data System (ADS)

    Strandberg, B.; Annand, J. R. M.; Briscoe, W.; Feldman, G.; Fissum, K.; Hansen, K.; Isaksson, L.; Myers, L.; O'Reilly, G. V.

    2016-11-01

    An experiment that aims to measure the π- photoproduction cross-section σ(E) on the deuteron γ + 2H → π- + 2p near threshold is discussed. The main concepts of the experimental technique are presented alongside some preliminary signals.

  7. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  8. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  9. Threshold quantum cryptography

    SciTech Connect

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  10. Characterization of the CDMS Ionization Readout

    NASA Astrophysics Data System (ADS)

    Phipps, Arran

    2007-10-01

    Current cosmological models predict that a large portion of the total mass of the universe, about eighty percent, consists of putative dark matter. Theory predicts this dark matter may be in the form of particles constantly passing through the Earth. A class of these particles may interact with ordinary matter, earning the name weakly-interacting massive particles (WIMPs). The Cryogenic Dark Matter Search (CDMS) aims to directly detect the existence of WIMPs. CDMS has designed ZIP (Z-dependent Ionization & Phonon) detectors which measure phonon production and ionization of an interaction, making it possible to determine the interacting particle. The low-energy threshold of the ZIP detectors is determined by the signal-to-noise ratio of the ionization readout. A characterization of the signal-to-noise ratio of the ionization readout, along with possible modifications for improved sensitivity will be presented.

  11. Ionization and positronium formation in noble gases

    SciTech Connect

    Marler, J.P.; Sullivan, J.P.; Surko, C.M.

    2005-02-01

    Absolute measurements are presented for the positron-impact cross sections for direct ionization and positronium formation of noble gas atoms in the range of energies from threshold to 90 eV. The experiment uses a cold, trap-based positron beam and the technique of studying positron scattering in a strong magnetic field. The current data show generally good, quantitative agreement with previous measurements taken using a qualitatively different method. However, significant differences in the cross sections for both direct ionization and positronium formation are also observed. An analysis is presented that yields another, independent measurement of the direct ionization and positronium formation cross sections that is in agreement with the present, direct measurements to within {+-}10% for argon, krypton, and xenon. Comparison with available theoretical predictions yields good quantitative agreement for direct ionization cross sections, and qualitative agreement in the case of positronium formation.

  12. Dead space approximation for impact ionization in silicon

    NASA Astrophysics Data System (ADS)

    Spinelli, A.; Pacelli, A.; Lacaita, A. L.

    1996-12-01

    We demonstrate the validity of the dead space approximation for impact ionization in silicon. Monte Carlo simulations are used to obtain realistic ionization probabilities, and the corresponding avalanche gain in constant field structures is computed. We show that the hard-threshold dead space model is in good agreement with a more refined model taking into account soft-threshold effects, if an effective threshold energy of 3 eV is adopted for electrons. We also show that hole nonlocal effects do not significantly affect the result.

  13. Benchmark calculations for electron-impact excitation and ionization of beryllium

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Fursa, Dmitry V.; Bray, Igor

    2016-09-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium for energies from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with previous results based on nonperturbative convergent pseudostate and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a shape resonance. The ionization from the (2 s 2 p) 3 P and (2 s 2 p) 1 P states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications. This work was supported by the United States National Science Foundation (OZ and KB) and the Australian Research Council (DVF and IB).

  14. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  15. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  16. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  17. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton

    SciTech Connect

    Andersson, E.; Hedin, L.; Rubensson, J.-E.; Karlsson, L.; Feifel, R.; Fritzsche, S.; Linusson, P.; Eland, J. H. D.

    2010-10-15

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr{sup +}, and one involving single Auger transitions from Kr{sup 2+} created by direct single-photon double ionization. The decay of the 3d{sup 9} {sup 2}D{sub 5/2,3/2} states in Kr{sup +} has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s{sup 2}4p{sup 3} {sup 4}S, {sup 2}D, and {sup 2}P states of Kr{sup 3+} are analyzed and energies of seven intermediate states in Kr{sup 2+} are given. A preliminary investigation of the decay paths from Kr{sup +} 3d{sup 9}4p{sup 5}nl shake-up states has also been carried out.

  18. Effects of Ionizing Radiation on Auditory and Visual Thresholds

    DTIC Science & Technology

    1992-03-01

    intact organism. A direct assessment of functional alterations in the intact organism as a result of radiation exposure, however, can be provided by a...motor function in non-human primates. There are data (reviewed by Kimmeldorf and Hunt; ref 3) suggesting that alterations in auditory and visual...Old World monkeys (Cercopithecinae). Amer. J. Rhya. Anthrop ., 1973, X 357-364. 6. Fay, R.R. Auditory frequency discrimination in vertebrates. 1

  19. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  20. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  1. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  2. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  3. HRS Threshold Adjustment Test

    NASA Astrophysics Data System (ADS)

    Skapik, Joe

    1991-07-01

    This test will determine the optimal, non-standard discriminator thresholds for the few anomalous channels on each HRS detector. A 15 second flat field observation followed by a 210 second dark count is performed at each of 10 discriminator threshold values for each detector. The result of the test will be the optimal threshold values to be entered into the PDB. Edited 4/30/91 to add comments to disable/re-enable cross-talk tables.

  4. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  5. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; de Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; van den Bergh, P.; van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-05-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  6. Measurement of the first ionization potential of astatine by laser ionization spectroscopy.

    PubMed

    Rothe, S; Andreyev, A N; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yuri; Köster, U; Lane, J F W; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt, K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  7. Determination of the first ionization potential of berkelium and californium by resonance ionization mass spectroscopy

    SciTech Connect

    Nunnemann, M.; Eberhardt, K.; Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J. V.; Naehler, A.; Passler, G.; Trautmann, N.

    1997-01-15

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential (IP) of transuranium elements. Small amounts of material ({approx_equal}0.4 ng) are sufficient for these measurements due to the high sensitivity of RIMS enabling the investigation of the actinides beyond plutonium, which are accessible only in limited amounts and difficult to handle due to their high radioactivity. The method presented takes advantage of the dependence of the ionization threshold on an external static electric field. With samples of 10{sup 12} atoms of {sup 249}Bk and {sup 249}Cf experimental values for the first ionization potentials of IP{sub Bk}=49989(2) cm{sup -1} and IP{sub Cf}=50665(2) cm{sup -1} were obtained.

  8. Determination of the first ionization potential of berkelium and californium by resonance ionization mass spectroscopy

    SciTech Connect

    Nunnemann, M.; Eberhardt, K.; Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Naehler, A.; Passler, G.; Trautmann, N.

    1997-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential ({ital IP}) of transuranium elements. Small amounts of material ({approx}0.4ng) are sufficient for these measurements due to the high sensitivity of RIMS enabling the investigation of the actinides beyond plutonium, which are accessible only in limited amounts and difficult to handle due to their high radioactivity. The method presented takes advantage of the dependence of the ionization threshold on an external static electric field. With samples of 10{sup 12} atoms of {sup 249}Bk and {sup 249}Cf experimental values for the first ionization potentials of IP{sub Bk}=49989(2)cm{sup {minus}1} and IP{sub Cf}=50665(2)cm{sup {minus}1} were obtained. {copyright} {ital 1997 American Institute of Physics.}

  9. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  10. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  11. Threshold Concepts in Economics

    ERIC Educational Resources Information Center

    Shanahan, Martin

    2016-01-01

    Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…

  12. Pausing at the Threshold

    ERIC Educational Resources Information Center

    Morgan, Patrick K.

    2015-01-01

    Since about 2003, the notion of threshold concepts--the central ideas in any field that change how learners think about other ideas--have become difficult to escape at library conferences and in general information literacy discourse. Their visibility will likely only increase because threshold concepts figure prominently in the Framework for…

  13. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  14. Providing VoD Streaming Using P2P Networks

    NASA Astrophysics Data System (ADS)

    Pedro Muñoz-Gea, Juan; Malgosa-Sanahuja, Josemaria; Manzanares-Lopez, Pilar; Carlos Sanchez-Aarnoutse, Juan

    Overlays and P2P systems, initially developed to support IP multicast and file-sharing, have moved beyond that functionality. They are also proving to be key technologies for the delivery of video streaming. Recently, there have been a number of successful deployments for "live" P2P streaming. However, the question remains open whether similar P2P technologies can be used to provide VoD (Video-On-Demand) services. A P2P VoD service is more challenging to design than a P2P live streaming system because the system should allow users arriving at arbitrary times to watch (arbitrary parts of) the video.

  15. Risk Management of P2P Internet Financing Service Platform

    NASA Astrophysics Data System (ADS)

    Yalei, Li

    2017-09-01

    Since 2005, the world’s first P2P Internet financing service platform Zopa in UK was introduced, in the development of “Internet +” trend, P2P Internet financing service platform has been developed rapidly. In 2007, China’s first P2P platform “filming loan” was established, marking the P2P Internet financing service platform to enter China and the rapid development. At the same time, China’s P2P Internet financing service platform also appeared in different forms of risk. This paper focuses on the analysis of the causes of risk of P2P Internet financing service platform and the performance of risk management process. It provides a solution to the Internet risk management plan, and explains the risk management system of the whole P2P Internet financing service platform and the future development direction.

  16. The perils of thresholding

    NASA Astrophysics Data System (ADS)

    Font-Clos, Francesc; Pruessner, Gunnar; Moloney, Nicholas R.; Deluca, Anna

    2015-04-01

    The thresholding of time series of activity or intensity is frequently used to define and differentiate events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain small scale physics from the supposed true asymptotic events. Thresholding the birth-death process, however, introduces a scaling region into the event size distribution, which is characterized by an exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result, numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In the present case, the exponents and the spurious nature of the scaling region can be determined analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The analysis also suggests a procedure for detecting the influence of the threshold by means of a data collapse involving the threshold-imposed scale.

  17. Threshold concepts in prosthetics.

    PubMed

    Hill, Sophie

    2016-11-24

    Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education. © The International Society for Prosthetics and Orthotics 2016.

  18. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  19. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  20. Threshold Photodetachment in a Repulsive Potential

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Rohlén, J.; Hultgren, H.; Kiyan, I. Yu.; Pegg, D. J.; Walter, C. W.; Hanstorp, D.

    2012-01-01

    We report on the first experimental observation of a new threshold behavior observed in the 5G2 partial channel in photodetachment of K-. It arises from the repulsive polarization interaction between the detached electron and the residual K(5G2) atom, which has a large negative dipole polarizability. In order to account for the observation in the K(5G2) channel, we have developed a semiclassical model that predicts an exponential energy dependence for the cross section. The measurements were made with collinear laser-ion beams and a resonance ionization detection scheme.

  1. A Scalable P2P Video Streaming Framework

    NASA Astrophysics Data System (ADS)

    Lee, Ivan

    Peer-to-peer (P2P) networking technique represents a vast potential to overcome many constraints in the conventional content distribution networks, especially for the real-time applications such as P2P streaming. In this chapter, a P2P streaming system is examined, and the proposed system combines multiple-description source coding technique and a scalable streaming infrastructure. The proposed system aims to gradually offload congested traffic from a centralized bottleneck to the under-utilized P2P networks and hence, provides seamless transitions from client/server streaming to centralized P2P streaming and to decentralized P2P streaming. The performance of the proposed framework is evaluated in terms of video frame loss rate, which reflects the probability of freeze video frames.

  2. Efficient circular thresholding.

    PubMed

    Lai, Yu-Kun; Rosin, Paul L

    2014-03-01

    Otsu's algorithm for thresholding images is widely used, and the computational complexity of determining the threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to determine the optimal threshold in O(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor image classification, and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 data set, outperforming the state-of-the-art result by 4.3%.

  3. Supporting Collaboration and Creativity Through Mobile P2P Computing

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Adam; Datta, Anwitaman; Żaczek, Łukasz; Rzadca, Krzysztof

    Among many potential applications of mobile P2P systems, collaboration applications are among the most prominent. Examples of applications such as Groove (although not intended for mobile networks), collaboration tools for disaster recovery (the WORKPAD project), and Skype's collaboration extensions, all demonstrate the potential of P2P collaborative applications. Yet, the development of such applications for mobile P2P systems is still difficult because of the lack of middleware.

  4. Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana; Pal, Sourav

    2015-07-14

    Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.

  5. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  6. Ultrafast polychromatic ionization of dielectric solids

    NASA Astrophysics Data System (ADS)

    Jürgens, P.; Jupé, M.; Gyamfi, M.; Ristau, D.

    2016-12-01

    The modeling of the laser-induced damage processes can be divided into thermal and electronic processes. Especially, electronic damage seems to be well understood. In corresponding models, the damage threshold is linked to the excitation of valence electrons into the conduction band, and often the damage is obtained if a critical density of free electrons is exceeded. For the modeling of the electronic excitation, rate equation models are applied which can vary in the different terms representing different excitation channels. According to the current state of the art, photoionization and avalanche ionization contribute the major part to the ionization process, and consequently the determination of laser-induced damage thresholds is based on the calculation of the respective terms. For the theoretical description of both, well established models are available. For the quantitative calculation of the photoionization, the Keldysh theory is used most frequently, and for the avalanche processes the Drude theory is often applied. Both, Drude and Keldysh theory calculations depend on the laser frequency and use a monochromatic approach. For most applications the monochromatic description matches very well with the experimental findings, but in the range of few-cycle pulses the necessary broadening of the laser emission spectrum leads to high uncertainty for the calculation. In this paper, a novel polychromatic approach is presented including photo- and avalanche ionization as well as the critical electron density. The simulation combines different ionization channels in a Monte-Carlo procedure according to the frequency distribution of the spectrum. The resulting influence on the wavelength and material dependency is discussed in detail for various pulse shapes and pulse durations. The main focus of the investigation is concentrated on the specific characteristics in the dispersion and material dependency of the laser-induced damage threshold respecting the polychromatic

  7. Toward improved ionizing radiation safety standards.

    PubMed

    Raabe, Otto G

    2011-07-01

    Ionizing radiation safety standards developed by the International Commission on Radiological Protection (ICRP) during the past 50-plus years have provided guidance for effective protection of workers and the public from the potentially harmful effects of exposure to ionizing radiation, including cancer. Earlier standards were based primarily on radiation dose rate to organs of the body. More recent recommendations have calculated cancer risk as a function of cumulative dose using a linear no-threshold cancer risk model based on the acute high dose rate exposures received by the Japanese atomic bomb survivors. The underlying assumption in these current recommendations is that risk of radiation-induced cancer is proportional to cumulative dose without threshold. In conflict with this position are the studies of protracted exposures from internally-deposited radionuclides in people and laboratory animals that have demonstrated that cancer induction risk is a function of average dose rate for protracted exposures to ionizing radiation. At lower average dose rates, cancer latency can exceed natural lifespan leading to a virtual threshold. This forum statement proposes that the conflict of these two cancer risk models is explained by the fact that the increased risk of cancer observed in the atomic bomb survivor studies was primarily the result of acute high dose rate promotion of ongoing biological processes that lead to cancer rather than cancer induction. In addition, ionizing radiation-induced cancer is not the result of a simple stochastic event in a single living cell but rather a complex deterministic systemic effect in living tissues. It is recommended that the ICRP consider revising its position in light of this important distinction between cancer promotion and cancer induction.

  8. Hydrodynamics of sediment threshold

    NASA Astrophysics Data System (ADS)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  9. An intense polarized beam by a laser ionization injection

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of: (1) producing the neutral hydrogen beam by Lorentz stripping; (2) excitation of the neutral hydrogen beam with a laser; and (3) ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98 percent and a polarization of 80 percent can be expected by an intense laser beam from a free electron laser (FEL).

  10. A Remedy for Network Operators against Increasing P2P Traffic: Enabling Packet Cache for P2P Applications

    NASA Astrophysics Data System (ADS)

    Nakao, Akihiro; Sasaki, Kengo; Yamamoto, Shu

    We observe that P2P traffic has peculiar characteristics as opposed to the other type of traffic such as web browsing and file transfer. Since they exploit swarm effect — a multitude of end points downloading the same content piece by piece nearly at the same time, thus, increasing the effectiveness of caching — the same pieces of data end up traversing the network over and over again within mostly a short time window. In the light of this observation, we propose a network layer packet-level caching for reducing the volume of emerging P2P traffic, transparently to the P2P applications — without affecting operations of the P2P applications at all — rather than banning it, restricting it, or modifying P2P systems themselves. Unlike the other caching techniques, we aim to provide as generic a caching mechanism as possible at network layer — without knowing much detail of P2P application protocols — to extend applicability to arbitrary P2P protocols. Our preliminary evaluation shows that our approach is expected to reduce a significant amount of P2P traffic transparently to P2P applications.

  11. Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Malyshev, A. V.; Tupitsyn, I. I.; Shabaev, V. M.; Kozhedub, Y. S.; Plunien, G.; Brandau, C.; Stöhlker, Th.

    2016-05-01

    Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z =8 -92 . The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large-scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions is significantly improved.

  12. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  13. Superconductivity in noncentrosymmetric A g2P d3S

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Okabe, H.; Matsushita, Y.; Isobe, M.; Takayama-Muromachi, E.

    2017-05-01

    We have successfully synthesized the single crystal of A g2P d3S , which exhibits superconductivity with the transition temperature of Tc=2.25 K . A g2P d3S crystallizes in the space group P 4132 with the filled β -Mn structure, which has no inversion symmetry. The value of the Ginzburg-Landau parameter κGL indicates that A g2P d3S is a type-II superconductor. Δ C (Tc) /γnTc=1.50 and 2 Δ /kBTc=3.48 from the heat-capacity analyses indicate that A g2P d3S is a weak-coupling Bardeen-Cooper-Schrieffer (BCS) superconductor with an isotropic superconducting gap. On the other hand, the violation of the Werthamer-Helfand-Hohenberg curve in the H -T phase diagram implies A g2P d3S is not a typical BCS superconductor.

  14. Site-specific fragmentation caused by core-level photoionization in F(3)SiCH(2)CH(2)Si(CH(3))(3) vapor: comparison between Si:1s and 2p photoionizations by means of photoelectron-photoion-photoion triple-coincidence spectroscopy.

    PubMed

    Nagaoka, Shin-ichi; Takemoto, Mai; Prümper, Georg; Fukuzawa, Hironobu; Tamenori, Yusuke; Suzuki, Isao H; Ueda, Kiyoshi

    2008-11-28

    Site-specific fragmentation caused by Si:1s and 2p core-level photoionizations in F(3)SiCH(2)CH(2)Si(CH(3))(3) vapor was studied by energy-selected-photoelectron photoion-photoion triple-coincidence spectroscopy. The difference between the chemical shifts of the two Si sites is larger for the 1s ionization than for the 2p (2s) ionization. The fragmentation caused by the Si:1s ionization is more violent than that caused by the Si:2p ionization. The ions and ion pairs showing high site specificity for the Si:1s ionization belong to small fragments compared to those in the Si:2p ionization. Criteria for high site-specificity in fragmentation are discussed in conjunction with the present results.

  15. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  16. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    SciTech Connect

    Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-07

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K{sup −2} and core ionization-core excitation K{sup −2}V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K{sup −2}V spectrum is assigned to a K{sup −2}π{sup ∗} state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K{sup −1}V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K{sup −2} threshold Rydberg resonances have been also identified, and among them a K{sup −2}σ{sup ∗} resonance characterized by a large amount of 2s/2p hybridization, and double K{sup −2}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ{sup ∗} shape resonance and double excitation K{sup −1}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} resonances, all being positioned above the threshold.

  17. Linear polarization of the 2p{sup 5}3s{yields}2p{sup 6} lines following the inner-shell photoionization of sodiumlike ions

    SciTech Connect

    Inal, M.K.; Surzhykov, A.; Fritzsche, S.

    2005-10-15

    The inner-shell photoionization of highly charged, many-electron ions and their subsequent radiative decay are studied theoretically within the multiconfiguration Dirac-Fock approach. Special attention is paid to the linear polarization of the characteristic x-ray radiation. Detailed calculations have been carried out, in particular for the 2p{sup 5}3s{yields}2p{sup 6} radiative transitions following ionization of the 2p electron of the sodiumlike iron Fe{sup 15+} and uranium U{sup 81+} ions. For these elements, the inner-shell photoionization was found to induce the (relatively) low linear polarization of the subsequently emitted photons which is strongly affected, moreover, by the higher-order (nondipole) effects in the electron-photon interaction.

  18. Electron impact ionization of Ar/sup 8 +/

    SciTech Connect

    Defrance, P.; Rachafi, S.; Jureta, J.; Meyer, F.; Chantrenne, S.

    1986-01-01

    Absolute electron impact ionization cross-sections have been measured for the Neon-like Ar/sup 8 +/ in the energy range from below the threshold for the metastable state to 2500 eV. No contribution of metastable states is observed. The results are well reproduced by the Distorted Wave Born Approximation. 12 refs., 1 fig.

  19. Search of truncation of (N-1) electron basis containing full connected triple excitations in computing main and satellite ionization potentials via Fock-space coupled cluster approach.

    PubMed

    Adhikari, Kalipada; Chattopadhyay, Sudip; De, Barin Kumar; Sharma, Amitava; Nath, Ranendu Kumar; Sinha, Dhiman

    2013-06-05

    A valence-universal multireference coupled cluster (VUMRCC) theory, realized via the eigenvalue independent partitioning (EIP) route, has been implemented with full inclusion of triples excitations for computing and analyzing the entire main and several satellite peaks in the ionization potential spectra of several molecules. The EIP-VUMRCC method, unlike the traditional VUMRCC theory, allows divergence-free homing-in to satellite roots which would otherwise have been plagued by intruders, and is thus numerically more robust to obtain more efficient and dependable computational schemes allowing more extensive use of the approach. The computed ionization potentials (IPs) as a result of truncation of the (N-1) electron basis manifold involving virtual functions such as 2h-p and 3h-2p by different energy thresholds varying from 5 to 15 a.u. with 1 a.u. intervals as well as thresholds such as 20, 25, and 30 a.u. have been carefully looked into. Cutoff at around 25 a.u. turns out to be an optimal threshold. Molecules such as C2H4 and C2H2 (X = D,T), and N2 and CO (X = D,T,Q) with Dunning's cc-pVXZ bases have been investigated to determine all main and 2h-p shake-up and 3h-2p double shake-up satellite IPs. We believe that the present work will pave the way to a wider application of the method by providing main and satellite IPs for some problematic N-electron closed shell systems.

  20. Elaborating on Threshold Concepts

    ERIC Educational Resources Information Center

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  1. Reading at the Threshold

    ERIC Educational Resources Information Center

    Gogan, Brian

    2013-01-01

    Recent considerations of threshold concepts in the rhetoric and writing studies discipline fail to consider the role that reading plays in the learning of student writers. This article reports results from a three-part, two-year, empirical study of seventy-five learners enrolled across four sections of a writing-intensive course. The course…

  2. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  3. Universal threshold for femtosecond laser ablation with oblique illumination

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Long; Cheng, Weibo; Petrarca, Massimo; Polynkin, Pavel

    2016-10-01

    We quantify the dependence of the single-shot ablation threshold on the angle of incidence and polarization of a femtosecond laser beam, for three dissimilar solid-state materials: a metal, a dielectric, and a semiconductor. Using the constant, linear value of the index of refraction, we calculate the laser fluence transmitted through the air-material interface at the point of ablation threshold. We show that, in spite of the highly nonlinear ionization dynamics involved in the ablation process, the so defined transmitted threshold fluence is universally independent of the angle of incidence and polarization of the laser beam for all three material types. We suggest that angular dependence of ablation threshold can be utilized for profiling fluence distributions in ultra-intense femtosecond laser beams.

  4. Trisomy 2p: Analysis of unusual phenotypic findings

    SciTech Connect

    Lurie, I.W.; Ilyina, H.G.; Gurevich, D.B.

    1995-01-16

    We present three probands with partial trisomies 2p21-23 due to ins(4;2)(q21;p21p23) pat, 2p23-pter due to t(2;4)(p23;q35)mat, and 2p21-pter due to t(2;11)(p21;q23.3)mat. More than 50 cases of partial trisomy 2p have been reviewed and some abnormalities, unusual for most other types of structural autosomal imbalance, have been found in patients with inherited forms of 2p trisomy and in their non-karyotyped sibs. Neural tube defects (anencephaly, occipital encephalocele, and spina bifida) were found in five probands and 4/6 affected non-karyotyped sibs. The only triplicated segment common to all was 2p24. Different forms of {open_quotes}broncho-pulmonary a/hypoplasia{close_quotes} (including two cases of lung agenesis) were described in four patients (overlapping triplicated segment was 2p21-p25). Three patients (with overlapping triplicated segment 2p23-p25) had diaphragmatic hernia. Abnormal rotation of the heart or L-transposition of large vessels (with or without visceral heterotaxia) was found in two infants (overlapping triplicated segment 2p23-p24). In two patients with common triplicated segment 2p22.3-p25, neuroblastoma has been described. The occurrence of all these defects may be explained either by the action of the same gene(s) mapped to 2p24 or by action of some independent factors located in different segments of the short arm. Although the latter hypothesis is much less probable, it can not be rejected at the present time. We propose the existence of a genetic system controlling surveillance of an abnormal embryo to explain the phenotypic differences between patients with the same imbalance within a family. In some {open_quotes}restrictive{close_quotes} combinations the abnormal embryos will die, although in {open_quotes}permissive{close_quotes} combinations they can survive. 47 refs., 2 figs., 3 tabs.

  5. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  6. The 2S(+) - 2P separation in KO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Dyall, Kenneth G.

    1991-01-01

    The 2S(+) - 2P separation in KO is investigated using large basis sets and high levels of correlation treatment. Relativistic effects are included at the Dirac-Fock level and reduce the separation only slightly. The basis set superposition error is considered in detail. On the basis of these calculations, our best estimate places the 2p sub 3/2 state about 200 cm(exp -1) above the ground 2 sigma(+) state in agreement with our previous estimate.

  7. Phosphorylation of Chs2p regulates interaction with COPII

    PubMed Central

    Jakobsen, Mia Kyed; Cheng, Zhiliang; Lam, Sheung Kwan; Roth-Johnson, Elizabeth; Barfield, Robyn M.; Schekman, Randy

    2013-01-01

    Summary Trafficking of the chitin synthase Chs2p from the endoplasmic reticulum (ER) to the bud-neck in late mitosis is tightly regulated by the cell cycle via phosphorylation of serine residues in the N-terminus of the protein. Here, we describe the effects of Chs2p phosphorylation on the interaction with coat protein complex II (COPII). Identification of a cdc5ts mutant, which fails to transport Chs2p–3xGFP to the bud-neck and instead accumulates the protein in intracellular puncta, led us to discover that Chs2p–3xGFP accumulates at ER exit sites in metaphase-arrested wild-type cells. Using an in vitro ER vesicle formation assay we showed that phosphorylation of Chs2p by the cyclin-dependent kinase CDK1 prevents packaging into COPII vesicles, whereas dephosphorylation of Chs2p by the phosphatase Cdc14p stimulates selection into the vesicles. We found that the cytoplasmic N-terminal domain of Chs2p, which contains the CDK1 phosphorylation sites, interacts with the COPII component Sec24p in a yeast two-hybrid assay and that phosphomimetic substitutions of serines at the CDK1 consensus sites reduces the interaction. Our data suggest that dephosphorylation functions as a molecular switch for regulated ER exit of Chs2p. PMID:23525003

  8. Network Awareness in P2P-TV Applications

    NASA Astrophysics Data System (ADS)

    Traverso, Stefano; Leonardi, Emilio; Mellia, Marco; Meo, Michela

    The increasing popularity of applications for video-streaming based on P2P paradigm (P2P-TV) is raising the interest of both broadcasters and network operators. The former see a promising technology to reduce the cost of streaming content over the Internet, while offering a world-wide service. The latter instead fear that the traffic offered by these applications can grow without control, affecting other services, and possibly causing network congestion and collapse. The “Network-Aware P2P-TV Application over Wise Networks” FP7 project aims at studying and developing a novel P2P-TV application offering the chance to broadcast high definition video to broadcasters and to carefully manage the traffic offered by peers to the network, therefore avoiding worries to Internet providers about network overload. In such context, we design a simulator to evaluate performance of different P2P-TV solutions, to compare them both considering end-users’ and network providers’ perspectives, such as quality of service perceived by subscribers and link utilization. In this paper, we provide some results that show how effective can be a network aware P2P-TV system.

  9. Improving P2P live-content delivery using SVC

    NASA Astrophysics Data System (ADS)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  10. Upper Hybrid Effects in Artificial Ionization

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B. E.

    2014-12-01

    A most fascinating result of recent ionospheric experiments has been the discovery of artificial ionization by Pedersen et al. (GRL, 37, L02106, 2010). The Artificial Ionospheric Layers (AIL) were the result of F-region O-mode HF irradiation using the HAARP ionospheric heater operating at 3.6 MW power. As demonstrated by Eliasson et al. (JGR, 117, A10321, 2012) the physics controlling the observed phenomenon and its threshold can be summarized as: " Collisional ionization due to high energy (~ 20 eV) electron tails generated by the interaction of strong Langmuir turbulence with plasma heated at the upper hybrid resonance and transported at the reflection height". The objective of the current presentation is to explore the role of the upper hybrid heating in the formation of AIL and its implications to future experiments involving HF heaters operating in middle and equatorial latitudes.

  11. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  12. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  14. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  15. Associative ionization reactions involving excited atoms in nitrogen plasma

    SciTech Connect

    Popov, N. A.

    2009-05-15

    A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N({sup 2}P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N({sup 2}P) + O({sup 3}P) {yields} e + NO{sup +}. The calculated results agree well with available experimental data.

  16. Elaborating on threshold concepts

    NASA Astrophysics Data System (ADS)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-09-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account for both the important and the problematic characteristics of TCs in terms of the Knowledge/Strategies/Mental Models Framework defined in previous work.

  17. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  18. Polyphosphides NbMn/sub 2/P/sub 12/, MoMn/sub 2/P/sub 12/, and WMn/sub 2/P/sub 12/ with TiMn/sub 2/P/sub 12/-type structure

    SciTech Connect

    Scholz, U.D.; Jeitschko, W.; Reehuis, M.

    1988-06-01

    The title compounds are new and were prepared by reaction of the elemental components in a tin flux. They crystallize with the monoclinic (C2/c) TiMn/sub 2/P/sub 12/-type structure, which was refined for NbMn/sub 2/P/sub 12/ (R = 0.044 for 70 variable parameters and 1688 structure factors) and MoMn/sub 2/P/sub 12/ (R = 0.020 for 70 variables and 2871 F values). Chemical bonding in these compounds can be rationalized on the basis of classical two-electron bonds. In this simple bonding model the Mn atoms with octahedral P coordination (d/sup 2/sp/sup 3/hybrid) obtain a (low spin) d/sup 5/ system. They are displaced from the centers of their P octahedra to permit Mn-Mn bonding (Mn-Mn distances of 285.1 and 287.7 pm for the Nb and Mo compounds, respectively), thus compensating their spins. The early transition-metal atoms have square-antiprismatic P coordination (d/sup 4/sp/sup 3/ hybrid). In this model their fifth d orbital is filled with one (Nb) or two (Mo, W) electrons. Consequently MoMn/sub 2/P/sub 12/ and WMn/sub 2/P/sub 12/ are diamagnetic, while NbMn/sub 2/P/sub 12/ shows paramagnetism with a magnetic moment of ..mu.. = 1.96 ..mu../sub B/. The metallic conductivity of the three compounds is rationalized by the overlap of bonding and antibonding bands (semimetal). None of the compounds TMn/sub 2/P/sub 12/ (T = Ti, Nb, Mo, W) becomes superconducting down to 1.8 K.

  19. Three-photon near-threshold photoionization dynamics of isooctane

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Underwood, David F.; Lipsky, Sanford; Blank, David A.

    2005-08-01

    The electron survival probability following three-photon (9.3eV total) near-threshold photoionization of neat isooctane is measured with sub-50fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5TW/cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  20. Three-photon near-threshold photoionization dynamics of isooctane.

    PubMed

    Healy, Andrew T; Underwood, David F; Lipsky, Sanford; Blank, David A

    2005-08-01

    The electron survival probability following three-photon (9.3 eV total) near-threshold photoionization of neat isooctane is measured with sub-50 fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5 TW cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  1. Resonance ionization detection of combustion radicals

    SciTech Connect

    Cool, T.A.

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  2. Laser-based measurement of transition probabilities of neon 2p 53s-2p 53p transitions

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takashi; Goto, Chiaki; Uetani, Yasunori; Fukuda, Kuniya

    1985-01-01

    By using the magic-angle, pulsed-excitation method in the presence of a magnetic field, the authors have measured the branching ratios for 2p 53s-2p 53p transitions in neon. By combining values for the lifetime of the upper levels with the branching ratios, they have determined the transition probabilities of 31 transitions. The results are in good agreement with those from emission spectroscopy of a high-pressure are plasma by Bridges and Wiese.

  3. Vision thresholds revisited

    NASA Astrophysics Data System (ADS)

    Garstang, R. H.

    1999-05-01

    During and just after World War II there was intense interest in the threshold for seeing faint sources against illuminated backgrounds. Knoll, Tousey and Hulburt (1946, 1948) determined the threshold for (effectively) point sources seen against backgrounds ranging in brightness from darkness to subdued daylight. Blackwell (1946) gave contrast ratios for sources of various sizes ranging from point sources up to circular disks of 6 degrees diameter, all seen against the same range of brightnesses, and determined by a very large number of visual observations made by a team of observers. I have combined the two sets of results, and represented them by an improvement on the theoretical formula for threshold illuminance as a function of background brightness which was suggested by Hecht (1934). My formula agrees very well with the observations, and is very suitable for incorporation into computer programs. Applications have been made to problems where the background brightness is caused by light pollution, and the source size is determined by the seeing. These include the optimum magnification and limiting magnitude of telescopes, and the analysis of visual limiting magnitudes determined by Bowen (1947) to determine the night sky brightness at Mount Wilson in 1947.

  4. Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-08-01

    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.

  5. Size Effect in the Ionization Energy of PAH Clusters

    PubMed Central

    2017-01-01

    We report the first experimental measurement of the near-threshold photoionization spectra of polycyclic aromatic hydrocarbon clusters made of pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron–photoion coincidence spectrometry with a VUV synchrotron beamline. The experimental results of the ionization energy are compared to calculated ones obtained from simulations using dedicated electronic structure treatment for large ionized molecular clusters. Experiment and theory consistently find a decrease of the ionization energy with cluster size. The inclusion of temperature effects in the simulations leads to a lowering of this energy and to quantitative agreement with the experiment. In the case of pyrene, both theory and experiment show a discontinuity in the IE trend for the hexamer. This work demonstrates the ability of the models to describe the electronic structure of PAH clusters and suggests that these species are ionized in astronomical environments where they are thought to be present. PMID:28742357

  6. Ionization spectra of highly Stark-shifted rubidium Rydberg states

    NASA Astrophysics Data System (ADS)

    Grimmel, Jens; Stecker, Markus; Kaiser, Manuel; Karlewski, Florian; Torralbo-Campo, Lara; Günther, Andreas; Fortágh, József

    2017-07-01

    We report on the observation and numerical calculation of ionization spectra of highly Stark-shifted Rydberg states of rubidium beyond the classical ionization threshold. In the numerical calculations, a complex absorbing potential (CAP) allows us to predict the energy levels and ionization rates of Rydberg states in this regime. Our approach of adjusting the CAP to the external electric field reduces the number of free parameters from one per resonance to a single one. Furthermore, we have measured the ionization spectra of magneto-optically trapped rubidium atoms which are excited to principal quantum numbers of 43 and 70 at various electric fields. The emerging ions are detected using an ion optics. We find good agreement between the numerically and experimentally obtained spectra.

  7. Electron impact double ionization cross sections of light elements

    NASA Astrophysics Data System (ADS)

    Talukder, M. R.; Haque, A. K. F.; Uddin, M. A.

    2009-06-01

    A simple user-friendly semiempirical model is proposed to calculate electron impact double ionization cross sections of He, Li, Li+, B+, C+, C3+, O, O2+, O3+, Ne, Ne+, Ne2+, Na, Mg, Al3+, S, and Arq+ (q=0-7) targets for the incident electron energies from threshold to 106 eV. The contributions in the total double ionization cross sections from the direct double ionization and inner-shell ionization processes are taken into account on the basis of experimental data considered. The results of the present analysis are compared with the available experimental data and theoretical calculations. The model is found successful for the description of experimental cross sections. Since, this model may be a prudent selection to meet the demand level in plasma modeling due to its simple inherent structure.

  8. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    SciTech Connect

    Gupta, Dhanoj; Antony, Bobby

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  9. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  10. Determinants of Default in P2P Lending

    PubMed Central

    2015-01-01

    This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans’ data collected from Lending Club (N = 24,449) from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower’s debt level. PMID:26425854

  11. 2P Vortex Wake Pattern in Vortex-Induced Vibration

    NASA Astrophysics Data System (ADS)

    Govardhan, R.; Williamson, C. H. K.

    1999-11-01

    Flow-visualization in the free vibration experiments of Khalak & Williamson (1997,1999) indicated the existence of the 2P wake vortex pattern (2 pairs of vortices per cycle; as defined in the forced vibration experiments of Williamson & Roshko, 1988), in support of Brika & Laneville (1993), although these visualization techniques are distinctly unclear at high Reynolds numbers (Re ~10^3-10^4 ). Forced vibrations [Sheridan et al. (1998), Techet et al. (1998)] show the 2P mode under some conditions. However, a large number of accurate numerical simulations, at low Re ~200, as well as 2D simulations at higher Re ~500 (Blackburn & Henderson 1999), clearly do not find the 2P mode. There has thus been some debate as to the existence of the 2P mode as a steady state pattern. Hence, DPIV measurements in the wake of the elastically-mounted cylinder have been performed to finally resolve this question. The present results show that the 2P mode is remarkably repeatable and continues indefinitely. The reason for this apparent disparity between experiments and DNS therefore seems to be either a Reynolds number effect or the fact that the computed flow is constrained to be 2D. Further, it is shown that this pattern corresponds with the splitting of a region of vorticity due to the strain rate field of neighbouring vortices. wake patterns show interesting differences. Supported by ONR Contracts N00014-94-1-1197 & N00014-95-1-0332.

  12. Managing Linguistic Data Summaries in Advanced P2P Applications

    NASA Astrophysics Data System (ADS)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    As the amount of stored data increases, data localization techniques become no longer sufficient in P2P systems. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this chapter, we describe a solution for managing linguistic data summaries in advanced P2P applications which are dealing with semantically rich data. The produced summaries are synthetic, multidimensional views over relational tables. The novelty of this proposal relies on the double summary exploitation in distributed P2P systems. First, as semantic indexes, they support locating relevant nodes based on their data descriptions. Second, due to their intelligibility, these summaries can be directly queried and thus approximately answer a query without the need for exploring original data. The proposed solution consists first in defining a summary model for hierarchical P2P systems. Second, appropriate algorithms for summary creation and maintenance are presented. A query processing mechanism, which relies on summary querying, is then proposed to demonstrate the benefits that might be obtained from summary exploitation.

  13. Protecting Data Privacy in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Jawad, Mohamed; Serrano-Alvarado, Patricia; Valduriez, Patrick

    P2P systems are increasingly used for efficient, scalable data sharing. Popular applications focus on massive file sharing. However, advanced applications such as online communities (e.g., medical or research communities) need to share private or sensitive data. Currently, in P2P systems, untrusted peers can easily violate data privacy by using data for malicious purposes (e.g., fraudulence, profiling). To prevent such behavior, the well accepted Hippocratic database principle states that data owners should specify the purpose for which their data will be collected. In this paper, we apply such principles as well as reputation techniques to support purpose and trust in structured P2P systems. Hippocratic databases enforce purpose-based privacy while reputation techniques guarantee trust. We propose a P2P data privacy model which combines the Hippocratic principles and the trust notions. We also present the algorithms of PriServ, a DHT-based P2P privacy service which supports this model and prevents data privacy violation. We show, in a performance evaluation, that PriServ introduces a small overhead.

  14. An efficient query mechanism base on P2P networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Mu, Aiqin; Zhao, Defang

    2013-07-01

    How to implement the efficient query is the key problem deployed on P2P networks. This paper analyses the shortage of several query algorithm, and presents a new algorithm DDI, which means distributed searching with double indices. It discusses the popularity of documents and the linking status of the networks, and calculates the availability of the nodes in whole network, determines the route of the query process. It compares the items of time using, the quantity of requests and update information by the emulate experiments. Along with the rapid development of computer network technology, peer-to-peer (referred to as P2P) network research has gradually become mature, and it is widely used in different fields, some large P2P computing project has entered the implementation stage. At present, many more popular software systems such as Gnutella, Freenet, Napster are deployed based on P2P technology. How to achieve effective information query has become one of the key problems of P2P research.

  15. Determinants of Default in P2P Lending.

    PubMed

    Serrano-Cinca, Carlos; Gutiérrez-Nieto, Begoña; López-Palacios, Luz

    2015-01-01

    This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans' data collected from Lending Club (N = 24,449) from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower's debt level.

  16. Effect of bound electron wave packet displacement on the multiphoton ionization of a lithium atom

    NASA Astrophysics Data System (ADS)

    Jheng, Shih-Da; Jiang, T. F.

    2017-10-01

    We study numerically the strong-field single ionization of a Li atom over a wide range of wavelengths (400 nm–1600 nm) in the multiphoton regime. By observing the behavior of the ionization probabilities and the occupation of excited states, we found that the occupied 2p state in different wavelength regimes exhibit different bound electron wave packet motion. The motion is in phase in the long-wavelength regime, out of phase in the short-wavelength regime and lagged when the wavelength is close to resonance with the 2p state. We then demonstrate how these different motions of the bound electron wave packet affect the ionization probability.

  17. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  18. Market Design for a P2P Backup System

    NASA Astrophysics Data System (ADS)

    Seuken, Sven; Charles, Denis; Chickering, Max; Puri, Sidd

    Peer-to-peer (P2P) backup systems are an attractive alternative to server-based systems because the immense costs of large data centers can be saved by using idle resources on millions of private computers instead. This paper presents the design and theoretical analysis of a market for a P2P backup system. While our long-term goal is an open resource exchange market using real money, here we consider a system where monetary transfers are prohibited. A user who wants to backup his data must in return supply some of his resources (storage space, upload and download bandwidth) to the system.We propose a hybrid P2P architecture where all backup data is transferred directly between peers, but a dedicated server coordinates all operations and maintains meta-data. We achieve high reliability guarantees while keeping our data replication factor low by adopting sophisticated erasure coding technology (cf., [2]).

  19. High Performance Rh2P Electrocatalyst for Efficient Water Splitting.

    PubMed

    Duan, Haohong; Li, Dongguo; Tang, Yan; He, Yang; Fang, Ji Shu; Wang, Rongyue; Lv, Haifeng; Lopes, Pietro P; Paulikas, Arvydas P; Li, Haoyi; Mao, Scott X; Wang, Chong-Min; Markovic, Nenad M; Li, Jun; Stamenkovic, Vojislav R; Li, Yadong

    2017-03-26

    Search for active, stable and cost-efficient electrocataltysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM), which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.

  20. Fragrance material review on 2-(p-tolyloxy)ethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(p-tolyloxy)ethyl acetate when used as a fragrance ingredient is presented. 2-(p-tolyloxy)ethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-tolyloxy)ethyl acetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  1. Threshold Concepts in Research Education and Evidence of Threshold Crossing

    ERIC Educational Resources Information Center

    Kiley, Margaret; Wisker, Gina

    2009-01-01

    Most work on threshold concepts has hitherto related to discipline-specific undergraduate education, however, the idea of generic doctoral-level threshold concepts appeared to us to provide a strong and useful framework to support research learning and teaching at the graduate level. The early work regarding research-level threshold concepts is…

  2. Threshold Concepts in Research Education and Evidence of Threshold Crossing

    ERIC Educational Resources Information Center

    Kiley, Margaret; Wisker, Gina

    2009-01-01

    Most work on threshold concepts has hitherto related to discipline-specific undergraduate education, however, the idea of generic doctoral-level threshold concepts appeared to us to provide a strong and useful framework to support research learning and teaching at the graduate level. The early work regarding research-level threshold concepts is…

  3. Radiation threshold levels for noise degradation of photodiodes. Technical report

    SciTech Connect

    Aukerman, L.W.; Vernon, F.L.; Song, Y.

    1986-09-30

    Space radiation can increase the noise of photodiodes as a result of either a sustained ionizing-dose-rate effect or displacement damage. Elementary, straightforward models are presented for calculating radiation threshold levels and rad hit susceptibility. Radiation-effects experiments that verify these models are discussed. Calculations for room-temperature silicon p-i-n photodetectors, an avalanche photodiode, and a hypothetical cooled staring detector indicate that this damage mechanism should not be ignored for space and nuclear environments.

  4. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    NASA Astrophysics Data System (ADS)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  5. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  6. Mini Magnetospheric Plasma Propulsion (M2P2)

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Winglee, Robert

    2000-01-01

    The M2P2 concept is based on the transfer of momentum from the solar wind to an artificial magnetic field structure like that naturally occurs at all magnetized planets in the Solar System, called the magnetosphere. The objectives of this program include the following: (1) Demonstrate artificial magnetospheric inflation through cold plasma filling in vacuum; (2) Demonstrate deflection of a surrogate solar wind by an artificial magnetosphere in the laboratory vacuum chamber; (3) Compare theoretical calculations for thrust forces with laboratory measurements; (4) Develop flight control algorithms for planning mission specific trajectories; and (5) Develop M2P2 system concept.

  7. The Social Impact of P2P Systems

    NASA Astrophysics Data System (ADS)

    Glorioso, Andrea; Pagallo, Ugo; Ruffo, Giancarlo

    The chapter deals with the social impact of P2P systems in light of a bidirectional connection by which technological developments influence, in a complex and often unpredictable way, the social environment whereas the dynamic evolution of the latter does affect technological progress. From this perspective, the aim is to deepen legal issues, sociological trends, economical aspects, and political dimensions of P2P technology, along with some of its next possible outputs, in order to assess one of the most compelling alternatives to the traditional frame of highly centralized human interaction.

  8. Optical thresholding and Max Operation

    DTIC Science & Technology

    Thresholding and Max operations are essential elements in the implementation of neural networks. Although there have been several optical...implementations of neural networks, the thresholding functions are performed electronically. Optical thresholding and Max operations have the advantages of...we propose and study the properties of self-oscillation in nonlinear optical (NLO) four-wave mixing (FWM) and NLO resonators for parallel optical thresholding and Max operation.

  9. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  10. Polarized Proton Target for the g2p Experiment

    NASA Astrophysics Data System (ADS)

    Cummings, Melissa

    2013-04-01

    The g2^p experiment was completed in Jefferson Lab's Hall A in the spring of 2012. These data will provide the first measurement of the proton's g2 structure function in the region 0.02 < Q^2 < 0.2 GeV^2. A large scale installation was required for the g2^p experiment, including a polarized ammonia (NH3) target never before used in Hall A. Based on the principle of Dynamic Nuclear Polarization (DNP), microwave pumping is used to polarize irradiated ammonia in a high magnetic field at a temperature of 1K. In order to achieve the proposed kinematic range, the target magnet field was used at both 2.5,and 5,. Few studies of DNP have been done previously with a target field of 2.5,, making these data of particular interest. In addition, an experiment to measure the proton form factor ratio (GE/GM) ran concurrently with the g2^p experiment and required a different target polarization direction. Therefore, a rotatable target chamber was needed for transition between configurations. This talk will introduce the concept of DNP and describe the unique challenges faced in the design of the g2^p target. Performance indicators such as polarization decay rate and anneal time will be presented along with preliminary polarimetry results.

  11. Measurement and Analysis of P2P IPTV Program Resource

    PubMed Central

    Chen, Xingshu; Wang, Haizhou; Zhang, Qi

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs. PMID:24772008

  12. Measurement and analysis of P2P IPTV program resource.

    PubMed

    Wang, Wenxian; Chen, Xingshu; Wang, Haizhou; Zhang, Qi; Wang, Cheng

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs.

  13. Triple Photoionization of Neon Near Threshold

    NASA Astrophysics Data System (ADS)

    Bluett, J. B.; Whitfield, S. B.; Lukić, D.; Sellin, I. A.; Azuma, Y.; Wehlitz, R.

    2002-05-01

    The threshold behavior of the triple ionization cross-section of neon was investigated using monochromatized synchotron radiation and ion time-of-flight spectroscopy. The absolute cross-section is found to follow the Wannier power law(G.H. Wannier, Phys. Rev. 90), 817 (1953). in E with an exponent of 2.27 0.25 that has a range of validity of 5.5 eV. This result is consistent with the exponent of 2.162 predicted by theory and is also consistent with the findings of Samson and Angel(J.A.R. Samson and G.C. Angel, Phys. Lett. 61), 1584 (1988).. Further tests were performed over a range of 25 eV to determine the possibility of resonances and a secondary power law for energies above 5.5 eV.

  14. Electron-impact dissociation and ionization of CN+ ions

    NASA Astrophysics Data System (ADS)

    Belic, D. S.; Urbain, X.; Cherkani-Hassani, H.; Defrance, P.

    2017-05-01

    Absolute cross sections are reported for electron-impact ionization and dissociation of CN+ ions. Simple ionization to CN2 + ions and formation of singly charged C+ and N+ and doubly charged C2 + and N2 + fragments have been investigated. The animated electron-ion crossed-beam method has been applied in the energy range from the respective reaction thresholds up to 2.5 keV. The maximum of the simple ionization cross section is found to be (5.37 ±0.14 ) ×10-18 cm2 at 115 eV. The maximum total cross sections for N+ and C+ fragment production are found to be (22.2 ±2.7 ) ×10-17 and (18.9 ±1.2 ) ×10-17 cm2 at 85 eV, respectively. By performing careful magnetic field scans of the collected ions, contributions of dissociative excitation and dissociative ionization to the C+ and N+ fragment production are determined separately. The cross sections for asymmetric dissociative ionization to C2 + and N2 + are found to be more than one order of magnitude smaller. The kinetic energy release distributions are determined for all dissociation processes at selected electron energies. These distributions, together with the energy thresholds, provide additional information about the ground and excited states of the molecular ion.

  15. Laser threshold magnetometry

    NASA Astrophysics Data System (ADS)

    Jeske, Jan; Cole, Jared H.; Greentree, Andrew D.

    2016-01-01

    We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV-) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV- centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometer (LTM). We predict that an NV--based LTM with a volume of 1 mm3 can achieve shot-noise limited dc sensitivity of 1.86 fT /\\sqrt{{{Hz}}} and ac sensitivity of 3.97 fT /\\sqrt{{{Hz}}}.

  16. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  17. Breit-Pauli energy levels belonging to 2p 4, 2s2p 5, 2p 6, 2p 33ℓ configurations and all E1 transitions among these levels in Mg V

    NASA Astrophysics Data System (ADS)

    Deb, N. C.; Hibbert, A.

    2007-07-01

    We present accurate oscillator strengths, line strengths and radiative rates for 1073 E1 transitions among the 86 levels belonging to 2s 22p 4, 2s2p 5, 2p 6, and 2s 22p 3( 4S o, 2D o, 2P o)3ℓ configurations in Mg V. We have used 1s and 2s Hartree-Fock orbitals, re-optimized 2p on 2p 3( 2D o)3s 3D o and optimized 3s,3p,3d orbitals on real states. Sixteen additional orbitals up to 8d are optimized either as a correction to n = 3 physical orbitals or as a correlation orbital. A very large set of configurations including up to three electron promotions are used to account for all important correlation effects. All of the main five terms in the Breit-Pauli operator (except the orbit-orbit interaction) are included in order to account for the relativistic effects. Small adjustments to the diagonal elements of the Hamiltonian matrix are made to bring the calculated energies within a few cm -1 of the corresponding NIST recommended data wherever available. The calculated oscillator strengths, line strengths, and radiative rates for almost all of the E1 transitions show excellent agreement with the corresponding MCDF results of Fischer. The recent results of Bhatia et al. are found to be consistently higher by 20-45%. The accuracy of the present calculation is considered to be better than the NIST accuracy ratings for various transitions.

  18. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  19. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  20. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  1. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  2. Three-body multiparameter correlations in electron-ion ionization

    SciTech Connect

    Golden, D.E.; Song, L.; Zhang, Y.; Mueller, D.W. )

    1993-06-05

    We have constructed an apparatus to measure multiparameter angular correlation between reaction products following electron impact ionization of ionic targets to obtain alignment and orientation information. With molecular targets, ground and excited state potential energy diagrams may also be obtained. For incident energies sufficiently large compared to the ionization energy, we will also study final-state interactions between the charged projectile and the outgoing electrons. We will measure the momentum of all raction products and provide a stringent experimental test of near threshold three-body theory which could lead to a general theoretical treatment for three particles interacting via a Coloumb field.

  3. Three-body multiparameter correlations in electron-ion ionization

    NASA Astrophysics Data System (ADS)

    Golden, D. E.; Song, L.; Zhang, Y.; Mueller, D. W.

    1993-06-01

    We have constructed an apparatus to measure multiparameter angular correlation between reaction products following electron impact ionization of ionic targets to obtain alignment and orientation information. With molecular targets, ground and excited state potential energy diagrams may also be obtained. For incident energies sufficiently large compared to the ionization energy, we will also study final-state interactions between the charged projectile and the outgoing electrons. We will measure the momentum of all raction products and provide a stringent experimental test of near threshold three-body theory which could lead to a general theoretical treatment for three particles interacting via a Coloumb field.

  4. Localized versus delocalized excitations just above the 3d threshold in krypton clusters studied by Auger electron spectroscopy.

    PubMed

    Tchaplyguine, M; Kivimäki, A; Peredkov, S; Sorensen, S L; Ohrwall, G; Schulz, J; Lundwall, M; Rander, T; Lindblad, A; Rosso, A; Svensson, S; Mårtensson, N; Björneholm, O

    2007-09-28

    We present Auger spectroscopy studies of large krypton clusters excited by soft x-ray photons with energies on and just above the 3d(52) ionization threshold. The deexcitation spectra contain new features as compared to the spectra measured both below and far above threshold. Possible origins of these extra features, which stay at constant kinetic energies, are discussed: (1) normal Auger process with a postcollision interaction induced energy shift, (2) recapture of photoelectrons into high Rydberg orbitals after Auger decay, and (3) excitation into the conduction band (or "internal" ionization) followed by Auger decay. The first two schemes are ruled out, hence internal ionization remains the most probable explanation.

  5. The nature of psychological thresholds.

    PubMed

    Rouder, Jeffrey N; Morey, Richard D

    2009-07-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted. Consequently, phenomena such as subliminal priming and perception have a reduced theoretical basis. The authors propose a process-neutral definition of threshold that allows for graded perception and activation throughout the system. Thresholds correspond to maximum stimulus intensities such that the distribution of mental states does not differ from that when an appropriate baseline stimulus is presented. In practice, thresholds are maximum intensities such that the probability distribution on behavioral events does not differ from that from baseline. These thresholds, which the authors call task thresholds, may be estimated with modified item response psychometric measurement models. Copyright (c) 2009 APA, all rights reserved.

  6. Chromosome 2 (2p16) abnormalities in Carney complex tumours

    PubMed Central

    Matyakhina, L; Pack, S; Kirschner, L; Pak, E; Mannan, P; Jaikumar, J; Taymans, S; Sandrini, F; Carney, J; Stratakis, C

    2003-01-01

    Carney complex (CNC) is an autosomal dominant multiple endocrine neoplasia and lentiginosis syndrome characterised by spotty skin pigmentation, cardiac, skin, and breast myxomas, and a variety of endocrine and other tumours. The disease is genetically heterogeneous; two loci have been mapped to chromosomes 17q22–24 (the CNC1 locus) and 2p16 (CNC2). Mutations in the PRKAR1A tumour suppressor gene were recently found in CNC1 mapping kindreds, while the CNC2 and perhaps other genes remain unidentified. Analysis of tumour chromosome rearrangements is a useful tool for uncovering genes with a role in tumorigenesis and/or tumour progression. CGH analysis showed a low level 2p amplification recurrently in four of eight CNC tumours; one tumour showed specific amplification of the 2p16-p23 region only. To define more precisely the 2p amplicon in these and other tumours, we completed the genomic mapping of the CNC2 region, and analysed 46 tumour samples from CNC patients with and without PRKAR1A mutations by fluorescence in situ hybridisation (FISH) using bacterial artificial chromosomes (BACs). Consistent cytogenetic changes of the region were detected in 40 (87%) of the samples analysed. Twenty-four samples (60%) showed amplification of the region represented as homogeneously stained regions (HSRs). The size of the amplicon varied from case to case, and frequently from cell to cell in the same tumour. Three tumours (8%) showed both amplification and deletion of the region in their cells. Thirteen tumours (32%) showed deletions only. These molecular cytogenetic changes included the region that is covered by BACs 400-P-14 and 514-O-11 and, in the genetic map, corresponds to an area flanked by polymorphic markers D2S2251 and D2S2292; other BACs on the centromeric and telomeric end of this region were included in varying degrees. We conclude that cytogenetic changes of the 2p16 chromosomal region that harbours the CNC2 locus are frequently observed in tumours from CNC

  7. Diffuse ionizing radiation within HH jets

    SciTech Connect

    Esquivel, A.; Raga, A. C. E-mail: raga@nucleares.unam.mx

    2013-12-20

    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  8. Oscillatory threshold logic.

    PubMed

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

  9. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  10. Extreme ultraviolet ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization, and electron energy-loss spectra

    SciTech Connect

    Buchta, D.; Stienkemeier, F.; Mudrich, M.; Krishnan, S. R.; Moshammer, R.; Brauer, N. B.; Drabbels, M.; O’Keeffe, P.; Coreno, M.; Devetta, M.; Di Fraia, M.; Callegari, C.; Richter, R.; Prince, K. C.; Ullrich, J.

    2013-08-28

    The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He{sup +}, He{sub 2}{sup +}, and He{sub 3}{sup +}. Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

  11. Fine Structure of the Upsilon 2p States.

    NASA Astrophysics Data System (ADS)

    Lovelock, Dale Michael John

    1990-01-01

    The Columbia-Stony Brook (CUSB) collaboration has measured the photon spectrum resulting from the decays Upsilon (3S)togamma + hadrons using the CUSB-II BGO calorimeter. The spectrum contains the signal from the electromagnetic transitions Upsilon (3S)togammachi _{b,J=0,1,2} (2P). From this signal the masses of the chi_{b}(2P) states were determined to be 10268.0 +/- 0.8, 10255.4 +/- 0.8, and 10233.9 +/- 1.2 MeV for the J = 2, 1, and 0 states respectively. The ratio of the mass splittings, (M_{chi _{b2}} - M_{chi_{b1}} )/(M_{chi_{b1 }} - M_ {chi_{b0}}) imply that the long range confining piece of the inter-quark potential transforms as a Lorentz scalar.

  12. Mathematical modeling of "2P" mode vortex wakes

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Stremler, Mark; Schnipper, Teis; Andersen, Anders

    2010-11-01

    The "2P" mode vortex wake, in which two vortex pairs are generated per shedding cycle, is a commonly occurring wake structure behind oscillating bluff bodies. We will present an idealized model of these wakes that consists of a singly-periodic Hamiltonian system of four point vortices. The system is made integrable with an imposed spatial symmetry that is motivated by the experimentally observed wake structure. This model generalizes our previous work by allowing for unequal vortex strengths in the shed pairs. Comparisons with experimental wakes generated by a flapping foil in a flowing soap film show that this model can be used to characterize the vortex trajectories in "2P" mode wakes and to estimate the experimental vortex strengths.

  13. Supporting seamless mobility for P2P live streaming.

    PubMed

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  14. Supporting Seamless Mobility for P2P Live Streaming

    PubMed Central

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme. PMID:24977171

  15. K2P Potassium Channels, Mysterious and Paradoxically Exciting

    PubMed Central

    Goldstein, Steve A. N.

    2013-01-01

    New evidence reveals that the common electrolyte disorder hypokalemia can induce K2P1 channels that are normally selective for K+ to break the rules and conduct Na+. This defiant behavior leads to paradoxical depolarization of many cells in the heart, increasing the risk for lethal arrhythmia. The new research resolves a mystery uncovered 50 years ago and bestows an array of new riddles. Here, I discuss how K2P1 might achieve this alchemy—through stable residence of the K+ selectivity filter in a Na+-conductive state between its open and C-inactive configurations—and predict that other K+ channels and environmental stimuli will be discovered to produce the same excitatory misconduct. PMID:21868351

  16. Aquatic Toxicity of Decontaminating Solutions DS-2/DS-2P

    DTIC Science & Technology

    1994-09-01

    toxicity of the DS-2 and DS-2P mixtures on Daphnia magna, (water flea), Pimephales promelas (fathead minnow), Eisenia foetida (earthwonm) and...checked graphically using the same procedure described in the daphnia methods. 2.3 Earthworm Assay Earthworm toxicity testing utiiizcd Eisenia foetida as...graphically using the same proccdure described in the daphnia methods. 2.3 Er.thworm Assay Earthworm toxicity testing utilized Eisenia foetida as the

  17. DNA Compaction by Yeast Mitochondrial Protein ABF2p

    SciTech Connect

    Friddle, R W; Klare, J E; Noy, A; Corzett, M; Balhorn, R; Baskin, R J; Martin, S S; Baldwin, E P

    2003-05-09

    We used high resolution Atomic Force Microscopy (AFM) to image compaction of linear and circular DNA by the yeast mitochondrial protein ABF2p , which plays a major role in maintaining mitochondrial DNA. AFM images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At high concentration of ABF2p DNA collapses into a tight globular structure. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of ABF2p. We also derived a polymer statistical mechanics model that gives quantitative description of compaction observed in our experiments. This model shows that a number of sharp bends in the DNA backbone is often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for ABF2. Our studies indicate that ABF2 compacts DNA through a novel mechanism that involves bending of DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance.

  18. Pure P2P mediation system: A mappings discovery approach

    NASA Astrophysics Data System (ADS)

    selma, El yahyaoui El idrissi; Zellou, Ahmed; Idri, Ali

    2015-02-01

    The information integration systems consist in offering a uniform interface to provide access to a set of autonomous and distributed information sources. The most important advantage of this system is that it allows users to specify what they want, rather than thinking about how to get the responses. The works realized in this area have particular leads to two major classes of integration systems: the mediation systems based on the paradigm mediator / adapter and peer to peer systems (P2P). The combination of both systems has led to a third type; is the mediation P2P systems. The P2P systems are large-scale systems, self-organized and distributed. They allow the resource management in a completely decentralized way. However, the integration of structured information sources, heterogeneous and distributed proves to be a complex problem. The objective of this work is to propose an approach to resolve conflicts and establish a mapping between the heterogeneous elements. This approach is based on clustering; the latter is to group similar Peers that share common information in the same subnet. Thus, to facilitate the heterogeneity, we introduced three additional layers of our hierarchy of peers: internal schema, external schema and Schema directory peer. We used linguistic techniques, and precisely the name correspondence technique, that is based on the similarity of names to propose a correspondence.

  19. Load Balancing in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yingwu

    In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.

  20. Uniform Sampling for Directed P2P Networks

    NASA Astrophysics Data System (ADS)

    Hall, Cyrus; Carzaniga, Antonio

    Selecting a random peer with uniform probability across a peer-to-peer (P2P) network is a fundamental function for unstructured search, data replication, and monitoring algorithms. Such uniform sampling is supported by several techniques. However, current techniques suffer from sample bias and limited applicability. In this paper, we present a sampling algorithm that achieves a desired uniformity while making essentially no assumptions about the underlying P2P network. This algorithm, called doubly stochastic converge (DSC), iteratively adjusts the probabilities of crossing each link in the network during a random walk, such that the resulting transition matrix is doubly stochastic. DSC is fully decentralized and is designed to work on both directed and undirected topologies, making it suitable for virtually any P2P network. Our simulations show that DSC converges quickly on a wide variety of topologies, and that the random walks needed for sampling are short for most topologies. In simulation studies with FreePastry, we show that DSC is resilient to high levels of churn, while incurring a minimal sample bias.

  1. An Overlapping Structured P2P for REIK Overlay Network

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Song, Jingjing; Yu, Jiguo

    REIK is based on a ring which embedded an inverse Kautz digraph, to enable multi-path P2P routing. It has the constant degree and the logarithmic diameter DHT scheme with constant congestion and Byzantine fault tolerance. However, REIK did not consider the interconnection of many independent smaller networks. In this paper, we propose a new approach to build overlay network, OLS-REIK which is an overlapping structured P2P for REIK overlay network. It is a more flexible interconnecting different REIK network. Peers can belong to several rings, allowing this interconnection. By connecting smaller structured overlay networks in an unstructured way, it provides a cost effective alternative to hierarchical structured P2P systems requiring costly merging. Routing of lookup messages is performed as in REIK within one ring, but a peer belonging to several rings forwards the request to the different rings it belongs to. Furthermore a small number of across point is enough to ensure a high exhaustiveness level.

  2. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  3. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  4. Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold

    NASA Astrophysics Data System (ADS)

    Zhou, Bingchang; McDonnell, Mark D.

    2015-02-01

    The problem of optimising the threshold levels in multilevel threshold system subject to multiplicative Gaussian and uniform noise is considered. Similar to previous results for additive noise, we find a bifurcation phenomenon in the optimal threshold values, as the noise intensity changes. This occurs when the number of threshold units is greater than one. We also study the optimal thresholds for combined additive and multiplicative Gaussian noise, and find that all threshold levels need to be identical to optimise the system when the additive noise intensity is a constant. However, this identical value is not equal to the signal mean, unlike the case of additive noise. When the multiplicative noise intensity is instead held constant, the optimal threshold levels are not all identical for small additive noise intensity but are all equal to zero for large additive noise intensity. The model and our results are potentially relevant for sensor network design and understanding neurobiological sensory neurons such as in the peripheral auditory system.

  5. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity.

    PubMed

    Kabacik, Sylwia; Ortega-Molina, Ana; Efeyan, Alejo; Finnon, Paul; Bouffler, Simon; Serrano, Manuel; Badie, Christophe

    2011-04-01

    Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.

  6. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  7. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  8. Ultrafast molecular dynamics of dissociative ionization in OCS probed by soft x-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ramadhan, Ali; Wales, Benji; Karimi, Reza; Gauthier, Isabelle; MacDonald, Michael; Zuin, Lucia; Sanderson, Joe

    2016-11-01

    Soft x-rays (90-173 eV) from the 3rd generation Canadian Light Source have been used in conjunction with a multi coincidence time and position sensitive detection apparatus to observe the dissociative ionization of OCS. By varying the x-ray energy we can compare dynamics from direct and Auger ionization processes, and access ionization channels which result in two or three body breakup, from 2+ to 4+ ionization states. We make several new observations for the 3+ state such as kinetic energy release limited by photon energy, and using Dalitz plots we can see evidence of timescale effects between the direct and Auger ionization process for the first time. Finally, using Dalitz plots for OCS4+ we observe for the first time that breakup involving an O2+ ion can only proceed from out of equilibrium nuclear arrangement for S(2p) Auger ionization.

  9. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  10. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  11. Probabilistic Threshold Criterion

    SciTech Connect

    Gresshoff, M; Hrousis, C A

    2010-03-09

    The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.

  12. Learning foraging thresholds for lizards

    SciTech Connect

    Goldberg, L.A.; Hart, W.E.; Wilson, D.B.

    1996-01-12

    This work gives a proof of convergence for a randomized learning algorithm that describes how anoles (lizards found in the Carribean) learn a foraging threshold distance. This model assumes that an anole will pursue a prey if and only if it is within this threshold of the anole`s perch. This learning algorithm was proposed by the biologist Roughgarden and his colleagues. They experimentally confirmed that this algorithm quickly converges to the foraging threshold that is predicted by optimal foraging theory our analysis provides an analytic confirmation that the learning algorithm converses to this optimal foraging threshold with high probability.

  13. Chirp control of multi-photon resonance ionization and charge-resonance enhanced ionization on molecular harmonic generation

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Li, Wenliang; Feng, Liqiang

    2017-05-01

    The effects of the multi-photon resonance ionization (MPRI) and the charge-resonance enhanced ionization (CREI) on the molecular high-order harmonic generation (MHHG) from H2+ have been investigated by using the chirped pulses. It is found that the MHHG only comes from the MPRI in the shorter pulse duration. As the pulse duration increases, both the MPRI and the CREI contribute to the MHHG. But the MPRI plays the main role in the generations of the above-threshold harmonics and the CREI mainly contributes to the below-threshold harmonics. With the introductions of the up-chirped and the down-chirped pulses, the contributions of the MHHG from the CREI and the MPRI can be enhanced, respectively. Finally, the isotopic investigation (e.g. T2+) shows that due to the slower nuclear motion of the heavy nuclei, the contributions of MHHG from the CERI can be suppressed in the heavy nuclei.

  14. Global model including multistep ionizations in helium plasmas

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2016-12-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.

  15. Ionization energy and active cation vibrations of trans-2-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Tzeng, Sheng Yuan; Hsu, Ya Chu; Tzeng, Wen Bih

    2017-02-01

    We applied the two-color resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of trans-2-fluorostyrene by ionizing via six intermediate vibronic levels. The adiabatic ionization energy was determined to be 69 304 ± 5 cm-1. The distinct MATI bands at 67, 124, 242, 355, 737, 806, 833, and 993 cm-1 were assigned to the active cation vibrations related to out-of-plane substituent-sensitive bending vibrations and in-plane ring deformation and bending motions. Many combination vibrations were also observed. Our experimental results suggest that the molecular geometry and vibrational coordinates of the trans-2-fluorostyrene cation in the D0 state resemble those of the neutral species in the S1 state.

  16. Total and ionization cross sections of electron scattering by fluorocarbons

    NASA Astrophysics Data System (ADS)

    Antony, B. K.; Joshipura, K. N.; Mason, N. J.

    2005-02-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF4, C2F4, C2F6, C3F8 and CF3I and the CFx (x = 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CFx (x = 1-3) radicals presented here are first estimates on these species.

  17. P2P Reputation Management Through Social Networking

    NASA Astrophysics Data System (ADS)

    Despotovic, Zoran

    Reputation systems offer a viable solution to the problem of risk reduction in online communities, in situation in which other mechanism such as litigation or security cannot help. Building on the assumption that its participating entities engage in repeated interactions, a reputation system can either signal what happened in the past or aggregate the past feedback in such a way as to influence the future actions of the concerned entity. In the former case, the concerned entity's behavior is seen as static, while the sent signal is expected to be indicative of the entity's future actions. In the latter case, behavior is dynamic in the sense that the entity can adjust it given the observed feedback, while the purpose of the reputation system is to induce adjustments according to the designer's needs. In this chapter, we discuss these two classes of solutions in detail. In particular, we investigate how they apply to P2P networks, what additional problems and difficulties the P2P environment introduces and what scalable solutions to these problems the current research offers.

  18. Fragrance material review on 2-p-tolylethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-p-tolylethanol when used as a fragrance ingredient is presented. 2-p-tolylethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group-C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Precision lifetime measurements of the 2p levels in lithium

    SciTech Connect

    Berry, H.G.; Kurtz, C.; Tanner, C.E.

    1995-08-01

    These measurements are motivated by the theoretical challenges posed by lithium. The three-electron lithium atom is one of the simplest atomic systems with which to test atomic structure calculations. Recently, there were several ab initio calculations of the lithium 2s-2p oscillator strengths, which agree to 0.15%. However, the theoretical results differ by 5 sigma from the precise fast-beam-laser lifetime measurement of Gaupp and Andra (Berlin). Hence the need for a new independent and precise measurement. Improvements were added to the fast beam laser techniques developed for cesium in order to measure the lithium 2p state lifetime. Although the technique is similar to that of cesium, the lithium atom presents a few new complications. Since the atom is lighter, it travels more quickly through the interaction and detection regions. Therefore, the 670 nm wavelength requires a dye laser to produce sufficient intensity to populate the excited state. Unfortunately, the intensity of the dye laser is inherently less stable than that of a diode laser. Another complication is that the ion-beam intensity is much more sensitive to fluctuations in the accelerating voltage. Two detectors were added: one to monitor the ion-beam intensity, and the other to monitor the laser power. With the information from the additional detectors, a new data analysis scheme was developed. Sufficient data were taken to evaluate the benefits of the new detectors. No additional work is planned at Argonne for this experiment.

  20. Ecohydrology on the Threshold?

    NASA Astrophysics Data System (ADS)

    Wainwright, John

    2013-04-01

    This presentation suggests that there are three major limitations to the development of ecohydrology as a coherent disciplinary area. One of the principal controls and feedbacks on patterns of plants and water in the environment is the form of the landscape and landscape-forming processes. Yet (eco)geomorphology is typically overlooked as a topic for ecohydrological investigation. Thus, the process domains used to explain patterns is typically overly restricted. As surface change controls the connectivity of other process, this restriction is significant. However, even when surface change is incorporated, there is often an emphasis on subdisciplinary areas, so that the investigation of patterns across process domains is not carried out in a holistic way. For example, studies of the feedbacks of vegetation on flow resistance are carried out significantly differently when considering wind and water flows (and indeed differently for water flows on hillslopes compared to in channels). Human action is the most important global control on ecohydrology, either from a top-down perspective through climate change, or from a bottom-up perspective through land use and land-use change. The actions of people on ecohydrological and ecogeomorphic processes, though, are typically considered in a static way. Techniques of agent-based modelling are being developed to overcome this limitation, but there need to be parallel developments in field techniques to address the data requirements and empirical underpinnings of such approaches. I argue that to cross the threshold into becoming a more mature discipline ecohydrology/ecogeomorphology needs to take on board the limitations of representations of process, pattern and people. Using examples from studies of land degradation in drylands, as well as from more temperate settings, I will suggest how progress may start to be made.

  1. Life below the threshold.

    PubMed

    Castro, C

    1991-01-01

    This article explains that malnutrition, poor health, and limited educational opportunities plague Philippine children -- especially female children -- from families living below the poverty threshold. Nearly 70% of households in the Philippines do not meet the required daily level of nutritional intake. Because it is often -- and incorrectly -- assumed that women's nutritional requirements are lower than men's, women suffer higher rates of malnutrition and poor health. A 1987 study revealed that 11.7% of all elementary students were underweight and 13.9% had stunted growths. Among elementary-school girls, 17% were malnourished and 40% suffered from anemia (among lactating mothers, more than 1/2 are anemic). A 1988 Program for Decentralized Educational Development study showed that grade VI students learn only about 1/2 of what they are supposed to learn. 30% of the children enrolled in grade school drop out before they reach their senior year. The Department of Education, Culture and Sports estimates that some 2.56 million students dropped out of school in l989. That same year, some 3.7 million children were counted as part of the labor force. In Manila alone, some 60,000 children work the streets, whether doing odd jobs or begging, or turning to crime or prostitution. the article tells the story of a 12 year-old girl named Ging, a 4th grader at a public school and the oldest child in a poor family of 6 children. The undernourished Ging dreams of a good future for her family and sees education as a way out of poverty; unfortunately, her time after school is spend working in the streets or looking after her family. She considers herself luckier than many of the other children working in the streets, since she at least has a family.

  2. Electron impact-induced ionization and dissociation of the freon-12 molecule

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Agafonova, A. S.; Snegurskii, A. V.

    2010-12-01

    An experimental technique is described, and the relative cross sections of the single and dissociative electron-impact ionizations of the freon-12 molecule (CCl2F2) in the near-threshold energy range are obtained. The experiment is performed on a device that provides the mass separation and recording of ions with a monopole mass spectrometer. The mass spectrum of the freon-12 molecule is measured at various ionizing-electron energies, and the relative cross sections of dissociative ionization are measured for the most intense ion fragments, including isotope-containing fragments. The threshold dependences of these cross sections are used to determine the appearance potentials of the ion fragments. The isotope shift in the thresh-old appearance energies of ion fragments [C35ClF2]+ and [C37ClF2]+ is measured for the first time.

  3. Nanocluster ionization energies and work function of aluminum, and their temperature dependence

    SciTech Connect

    Halder, Avik; Kresin, Vitaly V.

    2015-10-28

    Ionization threshold energies of Al{sub n} (n = 32-95) nanoclusters are determined by laser ionization of free neutral metal clusters thermalized to several temperatures in the range from 65 K to 230 K. The photoion yield curves of cold clusters follow a quadratic energy dependence above threshold, in agreement with the Fowler law of surface photoemission. Accurate data collection and analysis procedures make it possible to resolve very small (few parts in a thousand) temperature-induced shifts in the ionization energies. Extrapolation of the data to the bulk limit enables a determination of the thermal shift of the polycrystalline metal work function, found to be in excellent agreement with theoretical prediction based on the influence of thermal expansion. Small clusters display somewhat larger thermal shifts, reflecting their greater susceptibility to thermal expansion. Ionization studies of free size-resolved nanoclusters facilitate understanding of the interplay of surface, electronic, and lattice properties under contamination-free conditions.

  4. Overlapping photo-ionized doubly excited resonance series for Li+ ion

    NASA Astrophysics Data System (ADS)

    Fang, T. K.; Gao, X.; Chang, T. N.

    2017-06-01

    Based on two different approaches, the B-spline-based K-matrix method and the eigenchannel R-matrix method, we present a detailed theoretical study on the photoionization from the ground and bound excited 1s2s{}1S and 1s2p{}1P states of an Li+ ion to continua between the N = 2 and N = 3 thresholds, dominated by overlapping doubly excited resonance series embedded in multiple singly ionized channels. The nearly identical theoretical spectra from these two different calculations, together with the excellent agreement between the length and velocity results, suggests that our study has successfully led to a reliable estimate of the Li+ photoionization spectra. In addition to identifying all overlapping doubly excited autoionization series, our calculated spectrum is in good agreement with the only observed data for two broad resonances. Our study has also shown that the strong interaction between neighboring resonances from different resonance series, which is responsible for the level crossing for in the He atom, is substantially smaller due to a stronger nuclear attraction to atomic electrons for the two-electron ions.

  5. Kinetics of the Reactions of F((sup 2)P) and Cl((sup 2)P) with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Nicovich, J. M.

    1997-01-01

    The kinetics of the reactions of HNO3 with fluorine (k(sub 1)) and Chlorine (k(sub 2)) atoms have been studied by using a time-resolved long-path laser absorption technique to monitor the appearance of product NO3 radicals following 351-nm pulsed laser photolysis of X2/HNO3/He mixtures (X = F,Cl). Absolute rate coefficients for the F((sup 2)P) + HNO reaction have been determined over the temperature range 260-373 K. Between 260 and 320 K, the data are adequately represented by the Arrhenius expression k(sub 1)(T) = (6.0 +/- 2.6) x 10(exp -12) exp[(40 +/- 120)/T]cu cm/(molecule.s). Between 335 and 373 K, the rate coefficient is found to be (2.0 +/- 0.3) x 10(exp -11)cu cm/(molecule.s) independent of temperature. The observed temperature dependence suggests that reaction proceeds via competing direct abstraction and complex pathways. No NO3 production was observed in the experiments with X equals Cl, thus establishing that k(sub 2)(298 K) is less than 2 x 10(exp -16) cu cm/(molecule.s). The Cl((sup 2)P) + HNO reaction was also investigated by using a pulsed laser photolysis-resonance fluorescence technique to monitor the decay of Cl((sup 2)P). Upper limit values for k(sub 2) obtained from these experiments, in units of 10(exp -16)cu cm/(molecule.s), are 13 at 298 K and 10 at 400 K.

  6. Kinetics of the Reactions of F((sup 2)P) and Cl((sup 2)P) with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Nicovich, J. M.

    1997-01-01

    The kinetics of the reactions of HNO3 with fluorine (k(sub 1)) and Chlorine (k(sub 2)) atoms have been studied by using a time-resolved long-path laser absorption technique to monitor the appearance of product NO3 radicals following 351-nm pulsed laser photolysis of X2/HNO3/He mixtures (X = F,Cl). Absolute rate coefficients for the F((sup 2)P) + HNO reaction have been determined over the temperature range 260-373 K. Between 260 and 320 K, the data are adequately represented by the Arrhenius expression k(sub 1)(T) = (6.0 +/- 2.6) x 10(exp -12) exp[(40 +/- 120)/T]cu cm/(molecule.s). Between 335 and 373 K, the rate coefficient is found to be (2.0 +/- 0.3) x 10(exp -11)cu cm/(molecule.s) independent of temperature. The observed temperature dependence suggests that reaction proceeds via competing direct abstraction and complex pathways. No NO3 production was observed in the experiments with X equals Cl, thus establishing that k(sub 2)(298 K) is less than 2 x 10(exp -16) cu cm/(molecule.s). The Cl((sup 2)P) + HNO reaction was also investigated by using a pulsed laser photolysis-resonance fluorescence technique to monitor the decay of Cl((sup 2)P). Upper limit values for k(sub 2) obtained from these experiments, in units of 10(exp -16)cu cm/(molecule.s), are 13 at 298 K and 10 at 400 K.

  7. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  8. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  9. Threshold Concepts and Information Literacy

    ERIC Educational Resources Information Center

    Townsend, Lori; Brunetti, Korey; Hofer, Amy R.

    2011-01-01

    What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…

  10. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  11. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  12. Single and double K-shell resonant photoionization and Auger decay of 1s → 2p excited states of O+-O4+

    NASA Astrophysics Data System (ADS)

    Zeng, Jiaolong; Li, Yongjun; Liu, Pengfei; Gao, Cheng; Yuan, Jianmin

    2017-09-01

    In this work, single and double photoionization cross sections in the vicinity of 1s → 2p resonances are investigated theoretically for quantum states belonging to the ground and first excited configurations of O+-O4+. R-matrix method has been employed to obtain the single ionization cross section, whereas the double ionization cross sections are obtained by the branching ratios of the direct double Auger decay to the total Auger decay. By analyzing possible double ionization pathways, we conclude that the double photoionization originates predominately from the direct double Auger decay of the K-shell resonant states. Our theoretical work diagnosed the population fraction of the quantum state prepared in a recent experiment and successfully interpreted the experimental observations on both single and double photoionization cross sections.

  13. Measured branching ratios for O II2D and 2P transitions in the wavelength range 530 to 800 A. [airglow spectroscopy

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Cunningham, A. J.; Christensen, A. B.

    1981-01-01

    Branching ratios for four sets of extreme ultraviolet transitions terminating on the 2D0 and 2P0 metastable levels of ionized oxygen have been measured. The emissions were excited in both an open window hollow cathode and a capillary discharge lamp, and the branching ratios were derived from the observed intensity ratios of the multiplet pairs. The results are in good agreement with theoretical values and compare favorably, within experimental uncertainties, with line ratios obtained by EUV spectroscopy of the airglow.

  14. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  15. P2P Approach for Web Services Publishing and Discovery

    NASA Astrophysics Data System (ADS)

    Islam, Mohmammad Towhidul; Akon, Mursalin; Shen, Xuemin (Sherman)

    Web service is an emerging paradigm for distributing business applications from different platforms to a wide variety of clients. The critical factor in seamlessly accessing web services is to discover the appropriate service and the related service providers. Unfortunately, current web service technologies use centralized directory to keep the service index, which is not scalable and at the same time vulnerable to single point of failure. Peer to peer system is a popular decentralized architecture which can be used for key look up service with scalability and self organization. Thus there is an opportunity to intersect the P2P framework with web services to provide the scalable solution. In this chapter, we discuss the key methods to deploy web services using the peer-to-peer technology.

  16. Considerations on stress triaxiality variation for 2P armor steel

    NASA Astrophysics Data System (ADS)

    Zichil, V.; Coseru, A.; Nedeff, F.; Tomozei, C.

    2017-05-01

    Stress triaxiality is considered an invariant of stress, defined as the ratio of hydrostatic stress (hydrostatic pressure by other authors) and the equivalent stress (usually calculated using von Mises criterion). If the values of the main three stresses have comparable sizes, stress triaxiality can be also calculated using the first invariant of the stress tensor. Despite that the stress triaxiality is an invariant, the authors have determined experimentally and analytically its variation with the force at the tensile test, but also with the radius of notches caused in the specimen. 2P armor steel being used in lightweight armor, these notches occur after shocks with foreign objects. Furthermore, the authors have revealed the stress triaxiality variation function of the test type. The tests were performed on tensile specimens loaded for tensile test, pure torsion test, 25% tensile - 75% torsion test, 50% tensile - 50% torsion test, 75% tensile - 25% torsion test. The mathematical model used was designed by Xue.

  17. Threshold processes of sodium ion emission from NaAu surface alloy

    NASA Astrophysics Data System (ADS)

    Knat'ko, M. V.; Lapushkin, M. N.

    2015-04-01

    We have studied threshold processes of Na+ ion emission from a semiconductor Na x Au y film formed on the surface of a gold substrate. In contrast to the classical notions of threshold processes involved in the surface ionization of alkali metal ions from heated metal surfaces, the diffusion exchange of atomic species between the surface and volume of the Na x Au y film ensures stable emission of Na+ ions from the substrate in the region of threshold temperatures. A diffusion mechanism of self-regulation of the surface coverage of alkali metal in the Na x Au y film is proposed.

  18. Electronic structure of Fe2P(10 1 bar 0) studied by soft X-ray photoelectron spectroscopy and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugizaki, Y.; Motoyama, H.; Edamoto, K.; Ozawa, K.

    2017-10-01

    The electronic structure of Fe2P(10 1 bar 0) has been investigated by photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The surface prepared by cycles of Ar+ ion sputtering and annealing at 500-800 °C showed a c(2 × 2) low-energy electron diffraction (LEED) pattern. An Fe 3d-P 3p hybrid band (main band) and a satellite were observed at 0-4 eV and 5-8 eV, respectively, in PES spectra of c(2 × 2) Fe2P(10 1 bar 0). The main band showed a clear cut-off at the Fermi edge, indicating the metallic nature of Fe2P. The satellite intensity showed a resonant maximum around the Fe 3p threshold, suggesting that the satellite is caused through a shake-up process. Three types of surface-shifted components were found in P 2p PES spectra. All the P 2p peaks have symmetric line shapes, while the Fe 2p PES and Fe L-edge XAS spectra have asymmetric line shapes, suggesting that the electronic states around the Fermi level are mostly composed of Fe 3d components. These results suggest that the stabilization of the electronic structure at metal sites through the bonding with P atoms is ineffective on Fe2P(10 1 bar 0), as in the case of Fe2P(0001).

  19. Two-photon double ionization of the helium atom by ultrashort pulses

    SciTech Connect

    Palacios, Alicia; Horner, Daniel A; Rescigno, Thomas N; McCurdy, C William

    2010-05-14

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate \\textit{ab initio} calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  20. Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype

    NASA Technical Reports Server (NTRS)

    Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.

  1. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis.

    PubMed

    Carr, Michael I; Jones, Stephen N

    2016-12-01

    The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.

  2. Effects of ionizing radiation on CCD's

    NASA Technical Reports Server (NTRS)

    Hartsell, G. A.; Robinson, D. A.; Collins, D. R.

    1975-01-01

    The effects of 1.2 MeV gamma radiation and 20 MeV electrons on the operational characteristics of CCDs are studied. The effects of ionizing radiation on the charge transfer efficiency, dark current, and input/output circuitry are described. The improved radiation hardness of buried channel CCDs is compared to surface channel results. Both ion implanted and epitaxial layer buried channel device results are included. The advantages of using a single thickness SiO2 gate dielectric are described. The threshold voltage shifts and surface state density changes of dry, steam, and HCl doped oxides are discussed. Recent results on the recovery times and total dose effects of high dose rate pulses of 20 MeV electrons are reported.

  3. Ionization and Positronium Formation in Noble Gases

    NASA Astrophysics Data System (ADS)

    Marler, J. P.; Sullivan, J. P.; Surko, C. M.

    2006-11-01

    This paper reviews key results of our recent study [Marler et al., Phys. Rev. A 71, 022701 (2005)] of direct ionization and positronium formation in the noble gases from the thresholds for these processes to 90 eV. Results for argon and xenon are emphasized. The original study also reports similar results for neon and krypton. The experiment uses a cold, trap-based positron beam and scattering in a strong magnetic field to make absolute cross section measurements. Comparison with a detailed set of previous measurements yields reasonably good absolute agreement. A third, independent analysis was used to resolve the remaining discrepancies to a < 5% level in argon, krypton and xenon. Key aspects of the work, comparison with available theory, and open questions for future research are discussed.

  4. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  5. Photoelectron angular distributions from two-photon ionizations of atoms

    NASA Astrophysics Data System (ADS)

    Haber, Louis Hamilton

    Photoelectron angular distributions provide detailed information about interferences between different quantum pathways of photoionization. Measurements of photoelectron energies and angular distributions from two-color two-photon ionizations of atoms using ultrashort pulses of extreme ultraviolet and optical light are performed using a novel, homebuilt experimental instrument. The setup is composed of an amplified femtosecond laser system, a high-order harmonic generation source, and an interaction region with photoelectron velocity map imaging The experimental temporal resolution is determined to be approximately 100 fs. Two different types of two-photon ionizations are investigated. Photoelectron angular distributions from resonant two-photon ionizations of helium are measured using the 15th high-order harmonic to excite from the ground state to either the 1s3p 1P1 state at 23.1 eV or to the 1s4p 1 P1 state at 23.7 eV and either 800, 400, or 267 nm to ionize. The anisotropy parameters allow for the determination of the energy-dependent ratios of radial dipole matrix elements and the phase shift differences between the S and D partial waves. Using available total cross section measurements, the absolute partial cross sections of the 1s3p1P 1 state are obtained, providing the complete information on photoionization. The experimental results are in excellent agreement with theoretical predictions using the one-electron model. Additional experiments are aimed at studying atomic free-free transitions. Two-color two-photon above threshold ionizations of helium and argon are investigated using selected high-order harmonics and perturbative infrared dressing fields. The measured anisotropy parameters and cross section ratios of the positive and negative above threshold ionization sidebands are compared to theoretical predictions using second-order perturbation theory and the soft-photon approximation. In general, deviations between the experimental results and the

  6. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  7. Electron-impact dissociation and ionization of NO+ ions

    NASA Astrophysics Data System (ADS)

    Belic, D. S.; Urbain, X.; Cherkani-Hassani, H.; Defrance, P.

    2016-07-01

    Absolute cross sections for electron-impact ionization and dissociation of NO+ ions are reported. Simple ionization to NO2+ ion and production of singly charged N+ and O+ and doubly charged N2+ and O2+ fragments have been investigated. The animated electron-ion crossed-beam method is applied in the energy range from the respective thresholds up to 2.5 keV. The maximum of the simple ionization cross section is found to be (3.49 ± 0.07) × 10-17 cm2 at 135 eV. The total cross sections for N+ and O+ fragments at the maximum are found to be (13.9 ± 1.0) × 10-17 cm2 and (14.0 ± 1.4) × 10-17 cm2, respectively, both at an energy of 85 eV. By performing careful magnetic field scans of the detected signal, contributions of dissociative excitation and dissociative ionization to N+ and O+ production are determined separately. The cross sections for asymmetric dissociative ionization to N2+ and O2+ are found to be over one order of magnitude smaller. Distributions of the kinetic energy release to the fragments are determined for all dissociation processes.

  8. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  9. Electron Impact Ionization of C_2F_6

    NASA Astrophysics Data System (ADS)

    Iga, Ione; Pereira Sanches, Ivana; Srivastava, Santosh Kumar

    2001-10-01

    Besides CF_4, perfluoroethane, C_2F_6, is also one of the fluorocarbon compounds most frequently used in plasma processing applications. Consequently, the knowledge of the ionization properties of C_2F6 is clearly of interest in order to model the plasma-chemical reactions. Nevertheless, only few partial ionization-cross-section measurements [1,2] for this molecule were reported in the literature. Also, the energy range covered in these studies was very limited (below 120 eV). Recently, we have studied these properties. More specifically, partial ionization cross sections (PICS) for the fragments: C^+, F^+, CF^+, CF_2^+, CF_3^+ and C_2F_5^+, produced by electron impact on C_2F_6, were measured in a single-collision condition from near ionization threshold to 1000 eV. In addition, total ionization cross sections (TICS) are also obtained by summing up the PICS's. The comparison of our measured PICS and derived TICS with available data [1-4] will be presented during the Conference. [1] H. U. Poll, J. Meischner, Contrib. Plasma Phys. 27 (1987) 359. [2] C. Q. Jiao, A Garscadden, P. D. Haaland, Chem. Phys. Lett. 310 (1999) 52. [3] H. Nishimura, W. M. Huo, M. A Ali and Y -K. Kim, J. Chem. Phys. 110 (1999) 3811. [4] L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27 (1998) 1 and references therein.

  10. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  11. Fractal dynamics in the ionization of helium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Xu, Xiulan; Zhang, Yanhui; Cai, Xiangji; Zhao, Guopeng; Kang, Lisha

    2016-11-01

    We study the ionization of helium Rydberg atoms in an electric field above the classical ionization threshold within the semiclassical theory. By introducing a fractal approach to describe the chaotic dynamical behavior of the ionization, we identify the fractal self-similarity structure of the escape time versus the distribution of the initial launch angles of electrons, and find that the self-similarity region shifts toward larger initial launch angles with a decrease in the scaled energy. We connect the fractal structure of the escape time plot to the escape dynamics of ionized electrons. Of particular note is that the fractal dimensions are sensitively controlled by the scaled energy and magnetic field, and exhibit excellent agreement with the chaotic extent of the ionization systems for both helium and hydrogen Rydberg atoms. It is shown that, besides the electric and magnetic fields, core scattering is a primary factor in the fractal dynamics. Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030).

  12. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    PubMed

    Thayer, Kelly M; Beyer, George A

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field.

  13. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  14. Electron impact double ionization of krypton ions (q = 14-17)

    NASA Astrophysics Data System (ADS)

    Khouilid, M.; Cherkani-Hassani, S.; Adimi, N.; Rachafi, S.; Defrance, P.

    2001-08-01

    Absolute cross sections for electron impact double ionization of krypton ions Krq + (q = 14-17) have been measured from threshold to 5 keV. The animated crossed beam method has been employed. Direct double ionization is seen to reduce strongly along the isonuclear sequence. Ionization-autoionization from the inner L-shell is seen to be the dominant process. It is roughly approximated by the semi-empirical Lotz formula assuming total autoionization of the ionic intermediate states. Resonant capture and excitation processes implying the L-shell are also obtained for charge states 14-16.

  15. The cage fragmentation of doubly ionized norbornane: A Born-Oppenheimer molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Knippenberg, S.; Hajgató, B.

    2013-10-01

    Results are reported of Born-Oppenheimer molecular dynamics calculations performed on the singlet dication of norbornane, starting from the neutral ground state geometry. Intramolecular rearrangements and charge dissociation processes, which probably take place in the innermost valence ionization spectrum, are discussed and an analysis by means of natural bond orders and Wiberg bond indices has been performed. The outcome of these simulations and the observed cage fragmentation might explain a tremendous rise of electron-impact (e, 2e) ionization cross sections of norbornane at electron binding energies around the double-ionization threshold.

  16. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  17. Calculations of photoelectron momentum distributions and energy spectra at strong-field multiphoton ionization of sodium

    NASA Astrophysics Data System (ADS)

    Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.

    2017-08-01

    Multiphoton ionization of sodium by a femtosecond laser pulse of 760 nm wavelength and different peak intensities is studied by inspecting the photoelectron angular and momentum distributions and the energy spectra. For this purpose a single-electron model of the atom interacting with the electromagnetic field is used, and the distributions are determined by calculating the evolution of the electron wave function. Beside the most prominent distribution maxima related to the four-photon ionization, the five-photon (above-threshold) ionization peaks are observed. Substructures in the main (nonresonant) maximum in the photoelectron spectra at the four-photon ionization are related to the resonantly enhanced multiphoton ionization via intermediate 4 s, 4 f, 5 p, 5 f and 6 p states.

  18. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    SciTech Connect

    Peng Liangyou; Tan Fang; Gong Qihuang; Pronin, Evgeny A.; Starace, Anthony F.

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.

  19. Accurate determination of the first ionization potential of actinides by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Trautmann, N.

    1994-10-01

    A new method is described for the precise determination of the first ionization potential of elements which are available only in small amounts such as the heavier actinides. It is based on resonance ionization mass spectroscopy (RIMS) in the presence of an external electric field. Extrapolation of the ionization thresholds obtained with different electric field strengths to field strength zero leads directly to the first ionization potential. With samples of 10(exp 12) atoms of Np-237 and Am-243 experimental values for the first ionization potential of neptunium of IP(sub Np) = 6.2655(2) eV and of americium of IP(sub Am) = 5.9738(2) eV were obtained. This technique was also applied to thorium yielding a value of IP(sub Th) = 6.3067(2) eV. In addition the precision of the method was confirmed by the convergences of Rydberg series of americium measured by means of RIMS.

  20. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    PubMed

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  1. Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2015-09-01

    Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.

  2. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  3. Triple Photoionization of Neon and Argon Near Threshold

    NASA Astrophysics Data System (ADS)

    Bluett, Jaques B.; Lukić, Dragan; Sellin, Ivan A.; Whitfield, Scott B.; Wehlitz, Ralf

    2003-05-01

    The threshold behavior of the triple ionization cross-section of neon and argon was investigated using monochromatized synchrotron radiation and ion time-of-flight spectrometry. The Ne^3+ and Ar^3+ cross-sections are found to follow the Wannier power law(G.H. Wannier, Phys. Rev. 90), 817 (1953). consistent with a Wannier exponent of 2.162 predicted by theory. This is also consistent with the findings of Samson and Angel(J.A.R. Samson and G.C. Angel, Phys. Lett. 61), 1584 (1988). for the case of Ne. In the case of argon we find a much shorter range of validity than for neon.

  4. High-resolution threshold photoionization of N2O

    NASA Technical Reports Server (NTRS)

    Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.

    1991-01-01

    Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.

  5. Migration of Dust Particles from Comet 2P Encke

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    2003-01-01

    We investigated the migration of dust particles under the gravitational influence of all planets (except for Pluto), radiation pressure, Poynting-Robertson drag and solar wind drag for Beta equal to 0.002, 0.004, 0.01, 0.05, 0.1, 0.2, and 0.4. For silicate particles such values of Beta correspond to diameters equal to about 200, 100, 40, 9, 4, 2, and 1 microns, respectively. We used the Bulirsh-Stoer method of integration, and the relative error per integration step was taken to be less than lo-'. Initial orbits of the particles were close to the orbit of Comet 2P Encke. We considered initial particles near perihelion (runs denoted as Delta tsub o, = 0), near aphelion (Delta tsub o, = 0.5), and also studied their initial positions when the comet moved for Pa/4 after perihelion passage (such runs are denoted as Delta tsub o, =i 0.25), where Pa is the period of the comet. Variations in time T when perihelion was passed was varied with a step 0.1 day for series 'S' and with a step 1 day for series 'L'. For each Beta we considered N = 101 particles for "S" runs and 150 particles for "L" runs.

  6. Multicast Services over Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Manzanares-Lopez, Pilar; Malgosa-Sanahuja, Josemaria; Muñoz-Gea, Juan Pedro; Sanchez-Aarnoutse, Juan Carlos

    IP multicast functionality was defined as an efficient method to transmit datagrams to a group of receivers. However, although a lot of research work has been done in this technology, IP multicast has not spread out over the Internet as much as expected, reducing its use for local environments (i.e., LANs). The peer-to-peer networks paradigm can be used to overcome the IP multicast limitations. In this new scenario (called Application Layer Multicast or ALM), the multicast functionality is changed from network to application layer. Although ALM solution can be classified into unstructured and structured solutions, the last ones are the best option to offer multicast services due to the effectiveness in the discovery nodes, their mathematical definition and the totally decentralized management. In this chapter we are going to offer a tutorial of the main structured ALM solutions, but introducing two novelties with respect to related surveys in the past: first, the systematic description of most representative structured ALM solution in OverSim (one of the most popular p2p simulation frameworks). Second, some simulation comparatives between flooding-based and tree-based structured ALM solution are also presented.

  7. Threshold photodissociation of Cr+2

    NASA Astrophysics Data System (ADS)

    Lessen, D. E.; Asher, R. L.; Brucat, P. J.

    1991-08-01

    A one-photon photodissociation threshold for supersonically cooled Cr+2 is determined to be 2.13 eV. This threshold provides a strict upper limit to the adiabatic binding energy of the ground state of chromium dimer cation if the initial internal energy of the parent ion may be neglected. From the difference in the IPs of chromium atom and dimer, an upper limit to the dissociation of Cr2 is placed at 1.77 eV.

  8. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  9. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  10. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  11. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  12. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  13. Ionization processes in small quasimolecules: He{sub 2}{sup 2+} (He{sup 2+}+ He)

    SciTech Connect

    Ogurtsov, G. N.; Mikoushkin, V. M.; Ovchinnikov, S. Yu.; Macek, J. H.

    2011-09-15

    The energy spectra of electrons ejected in He{sup 2+}-He collisions were measured in the ion energy range 6-30 keV. Theoretical analysis of the ionization mechanisms has been performed on the basis of the advanced adiabatic approximation for one-electron processes and perturbation theory for two-electron processes. The ionization channel 2p{sigma}{sup 2}{yields} 1s{sigma}nd{sigma}{yields} 1s{sigma}{epsilon}d{sigma} has been revealed, which makes a considerable contribution to the ionization cross section in the keV ion energy range.

  14. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  15. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  16. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect

    Thiyagarajan, Magesh; Thompson, Shane

    2012-04-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then

  17. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  18. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  19. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2(+)(X(2)Σ: v(+) = 1-3; N(+) = 0-3) + Ne → NeH(+) + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    PubMed

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2(+)(X(2)Σ: v(+) = 1-3; N(+) = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2(+)(X(2)Σ: v(+); N(+)) + Ne. Here, we present the integral cross sections [σ(v(+); N(+))'s] for the H2(+)(v(+) = 1-3; N(+) = 0-3) + Ne → NeH(+) + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v(+) = 1, N(+) = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v(+)-vibrational enhancements are observed for σ(v(+) = 1-3, N(+)) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v(+) = 3, N(+)), a careful search leads to the observation of moderate N(+)-rotational enhancements at v(+) = 2: σ(v(+) = 2; N(+) = 0) < σ(v(+) = 2; N(+) = 1) < σ(v(+) = 2; N(+) = 2) < σ(v(+) = 2; N(+) = 3), where the formation of NeH(+) is near thermal-neutral. The σ(v(+) = 1-3, N(+) = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  20. How Hot are Your Ions Really? A Threshold Collision-Induced Dissociation Study of Substituted Benzylpyridinium "Thermometer" Ions

    NASA Astrophysics Data System (ADS)

    Carpenter, John E.; McNary, Christopher P.; Furin, April; Sweeney, Andrew F.; Armentrout, P. B.

    2017-05-01

    The first absolute experimental bond dissociation energies (BDEs) for the main heterolytic bond cleavages of four benzylpyridinium "thermometer" ions are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. In this experiment, substituted benzylpyridinium ions are introduced into the apparatus using an electrospray ionization source, thermalized, and collided with Xe at varied kinetic energies to determine absolute cross-sections for these reactions. Various effects are accounted for, including kinetic shifts, multiple collisions, and internal and kinetic energy distributions. These experimentally measured 0 K BDEs are compared with computationally predicted values at the B3LYP-GD3BJ, M06-GD3, and MP2(full) levels of theory with a 6-311+G(2d,2p) basis set using vibrational frequencies and geometries determined at the B3LYP/6-311+G(d,p) level. Additional dissociation pathways are observed for nitrobenzylpyridinium experimentally and investigated using these same levels of theory. Experimental BDEs are also compared against values in the literature at the AM1, HF, B3LYP, B3P86, and CCSD(T) levels of theory. Of the calculated values obtained in this work, the MP2(full) level of theory with counterpoise corrections best reproduces the experimental results, as do the similar literature CCSD(T) values. Lastly, the survival yield method is used to determine the characteristic temperature (Tchar) of the electrospray source prior to the thermalization region and to confirm efficient thermalization.

  1. Electron-impact ionization and dissociative ionization of biomolecules

    NASA Astrophysics Data System (ADS)

    Huo, Winifred

    2006-05-01

    Oxidative damages by ionizing radiation are the source of radiation-induced damages to human health. It is recognized that secondary electrons play a role in the damage process, particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. The damage can be direct, by creating a DNA lesion, or indirect, by producing radicals that attack the DNA. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. This investigation focuses on ionization and dissociative ionization (DI) of DNA fragments by electron-impact. For ionization we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)]. For DI it is assumed that electron motion is much faster than nuclear motion, allowing DI to be treated as a two-step process and the DI cross section given by the product of the ionization cross section and dissociation probability. The ionization study covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 5%. The result implies that certain properties of the DNA, like the total ionization cross section, are localized properties and an additivity principle may apply. This allows us to obtain properties of a larger molecular system built up from the results of smaller subsystem fragments. The DI of guanine and cytosine has been studied. For guanine, a proton is produced from the channel where the ionized electron originates from a molecular orbital with significant charge density along the N(1)-H bond. The interaction of the proton with cytosine was also studied.

  2. The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p

    PubMed Central

    Stalder, Danièle; Novick, Peter J.

    2016-01-01

    Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling. PMID:26700316

  3. Acid sensitive background potassium channels K2P3.1 and K2P9.1 undergo rapid dynamin-dependent endocytosis

    PubMed Central

    Mant, Alexandra; Williams, Sarah E; O'Kelly, Ita

    2013-01-01

    Acid-sensitive, two-pore domain potassium channels, K2P3.1 and K2P9.1, are implicated in cardiac and nervous tissue responses to hormones, neurotransmitters and drugs. K2P3.1 and K2P9.1 leak potassium from the cell at rest and directly impact membrane potential. Hence altering channel number on the cell surface drives changes in cellular electrical properties. The rate of K2P3.1 and K2P9.1 delivery to and recovery from the plasma membrane determines both channel number at the cell surface and potassium leak from cells. This study examines the endocytosis of K2P3.1 and K2P9.1. Plasma membrane biotinylation was used to follow the fate of internalized GFP-tagged rat K2P3.1 and K2P9.1 transiently expressed in HeLa cells. Confocal fluorescence images were analyzed using Imaris software, which revealed that both channels are endocytosed by a dynamin-dependent mechanism and over the course of 60 min, move progressively toward the nucleus. Endogenous endocytosis of human K2P3.1 and K2P9.1 was examined in the lung carcinoma cell line, A549. Endogenous channels are endocytosed over a similar time-scale to the channels expressed transiently in HeLa cells. These findings both validate the use of recombinant systems and identify an endogenous model system in which K2P3.1 and K2P9.1 trafficking can be further studied. PMID:23807092

  4. Acid sensitive background potassium channels K2P3.1 and K2P9.1 undergo rapid dynamin-dependent endocytosis.

    PubMed

    Mant, Alexandra; Williams, Sarah; O'Kelly, Ita

    2013-01-01

    Acid-sensitive, two-pore domain potassium channels, K(2P)3.1 and K(2P)9.1, are implicated in cardiac and nervous tissue responses to hormones, neurotransmitters and drugs. K(2P)3.1 and K(2P)9.1 leak potassium from the cell at rest and directly impact membrane potential. Hence altering channel number on the cell surface drives changes in cellular electrical properties. The rate of K(2P)3.1 and K(2P)9.1 delivery to and recovery from the plasma membrane determines both channel number at the cell surface and potassium leak from cells. This study examines the endocytosis of K(2P)3.1 and K(2P)9.1. Plasma membrane biotinylation was used to follow the fate of internalized GFP-tagged rat K(2P)3.1 and K(2P)9.1 transiently expressed in HeLa cells. Confocal fluorescence images were analyzed using Imaris software, which revealed that both channels are endocytosed by a dynamin-dependent mechanism and over the course of 60 min, move progressively toward the nucleus. Endogenous endocytosis of human K(2P)3.1 and K(2P)9.1 was examined in the lung carcinoma cell line, A549. Endogenous channels are endocytosed over a similar time-scale to the channels expressed transiently in HeLa cells. These findings both validate the use of recombinant systems and identify an endogenous model system in which K(2P)3.1 and K(2P)9.1 trafficking can be further studied.

  5. Spot detection from MODIS imagery using 2P-CFAR

    NASA Astrophysics Data System (ADS)

    Ding, Xianwen; Li, Xiaofeng

    2015-12-01

    Oil spills are one of the major environmental concerns, especially in the coastal zones of the ocean. Satellite remote sensing imagery has proved to be a useful tool for monitoring oil spills in the marine environment. With its two daily acquisitions and the possibility to obtain near-real-time data free of charge, the Moderate Resolution Imaging Spectroradiometer (MODIS) shows interesting potential as such a cost-effective supplementary tool. Several researches on oil spill detection in MODIS imagery has been carried out for the past few years. Basically, oil spills were manually detected from MODIS imagery [1,2]. The disadvantage of the manual detection method is inefficient and subjective. Shi et al. proposed an oil spill detection method from MODIS imagery by using fuzzy cluster and texture feature extraction [3]. It works in an automatic manner and does not require any priori knowledge of occurrence or the spectral attributes of spills. But its efficiency in very near shore regions is limited. Chen and Zhao detected oil spills from the oil-water contrast ratio image by using a thresholding method [4].They found that the oil-water contrast ratio can be enhanced by replacing the original image with the ratio image of two different band ones in 400-800 nm. To obtain the oil-water contrast ratio image from the MODIS imagery, they selected the oil spill area and the background sea area and then calculated the mean radiance or emissivity value in those areas. By doing so, the automation and the accuracy of the method were reduced. Adamo et al. [5] and Kudryavtsev et al. [6] proposed physical methods for oil spill detection from MODIS imagery acquired in sunglint conditions. These two methods take imaging geometry into consideration and have the aid of other models or functions such as the Cox and Munk (1954) model [7],the CMOD4 model [8,9], the ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric model, and the transfer function, which increase the

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  7. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  8. Comparison of self-injection thresholds in He and N2 and role of self-focusing in LWFA

    NASA Astrophysics Data System (ADS)

    Palla, D.; Baffigi, F.; Brandi, F.; Fulgentini, L.; Koester, P.; Labate, L.; Londrillo, P.; Gizzi, L. A.

    2016-09-01

    We present an experimental study of laser-plasma acceleration in which the injected charge was measured at self-injection threshold for He and N2. We use numerical particle-in-cell simulation to unfold the role of ionization in the self-injection process and to reconstruct the local electrons density from the atomic density and the ionization degree. Comparison of measured and calculated self-injection thresholds yields the dependence of injected charge upon the electron density and sheds light on the possible role of the picosecond pedestal of femtosecond laser pulses in setting the initial charge state of the plasma.

  9. Studies in Above- and Below-Threshold Harmonics in Argon with an Infrared Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Cunningham, Eric; Wu, Yi; Chang, Zenghu

    2016-05-01

    We investigate and compare the above- and below-threshold harmonics in Argon gas using our recently-developed 1 kHz, two-cycle (11.4 fs), 3mJ, and carrier-envelope-phase(CEP)-stable laser at 1.6 μm. Such ultraviolet pulses can serve as pump or probe for studying dynamics in atoms and molecules. Unlike high harmonics with photon energy well above the ionization potential, the mechanism for generating harmonics near the ionization threshold is still under intense investigation. Previous work by Chini et al. on below-threshold harmonics was done using a 0.8 μm few-cycle Ti:Sapphire spectrally-broadened source with energy up to 300 μJ. It has been predicted by theory that free-free transitions dominate the below threshold harmonic generation as the laser wavelength increase from near infrared to mid-infrared. We are therefore interested in investigating how using a longer wavelength laser might lead to changes to the behavior of below-threshold harmonics when we vary various parameters. We report the π-periodity CEP dependence and ellipticity dependence of the above- and below-threshold harmonics. This material was based on work supported by National Science Foundation (1068604), Army Research Office (W911NF-14-1-0383), Air Force Office of Scientific Research (FA9550-15-1-0037) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  10. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  11. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  12. Threshold concepts in dental education.

    PubMed

    Kinchin, I M; Cabot, L B; Kobus, M; Woolford, M

    2011-11-01

    The paper presents a conceptual framework to inform dental education. Drawing from a vast body of research into student learning, the simple model presented here has an explanatory value in describing what is currently observed to happen and a predictive value in guiding future teaching practices. We introduce to dental education the application of threshold concepts that have a transformative role in offering a new vision of the curriculum that helps to move away from the medieval transmission model of higher education towards a dual processing model that better reflects the way in which professionals operate within the discipline. Threshold concepts give a role for the student voice in offering a novice perspective which is paradoxically something that is out of reach of the subject expert. Finally, the application of threshold concepts highlights some of the weaknesses in the competency-based training model of clinical teaching. 2011 John Wiley & Sons A/S.

  13. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  14. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  15. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  16. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  17. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  18. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  19. Energy and charge transfer in ionized argon coated water clusters.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  20. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  1. Thresholds in chemical respiratory sensitisation.

    PubMed

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-03

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the

  2. On computational Gestalt detection thresholds.

    PubMed

    Grompone von Gioi, Rafael; Jakubowicz, Jérémie

    2009-01-01

    The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.

  3. Low Threshold Quantum Dot Lasers.

    PubMed

    Iyer, Veena Hariharan; Mahadevu, Rekha; Pandey, Anshu

    2016-04-07

    Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.

  4. Multiphoton inner-shell ionization of the carbon atom

    NASA Astrophysics Data System (ADS)

    Rey, H. F.; van der Hart, H. W.

    2015-07-01

    We apply time-dependent R -matrix theory to study inner-shell ionization of C atoms in ultrashort high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W /cm2, ionization is dominated by single-photon emission of a 2 ℓ electron, with two-photon emission of a 1 s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2 ℓ contributing about 0.5-1%. Three-photon emission of a 1 s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1 s electron, leaving C+ in either 1 s 2 s 2 p3 or 1 s 2 p4 , is resonantly enhanced by intermediate 1 s 2 s22 p3 states. The results demonstrate the capability of time-dependent R -matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

  5. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  6. Methodology for determination of two new sensory thresholds: Compromised acceptance threshold and rejection threshold.

    PubMed

    Lima Filho, Tarcísio; Minim, Valéria Paula Rodrigues; Silva, Rita de Cássia Dos Santos Navarro da; Della Lucia, Suzana Maria; Minim, Luis Antônio

    2015-10-01

    The existing methodologies for determining thresholds generate unreliable estimates of the point at which the intensity of a stimulus begins to compromise acceptance or result in sensory rejection of a product. Thus, a new methodology was proposed for determination of two new sensory thresholds: the compromised acceptance threshold (CAT) and the rejection threshold (RT). In this new methodology, increasing or decreasing series of stimulus intensity are measured together with a standard stimulus (control sample) by means of acceptance tests. In the present study, the CAT and RT were determined for sucrose concentrations in grape nectar, demonstrating that when reducing the sucrose concentration of grape nectar form 9.00% (w/v) to 6.87% there begins to occur impairment of product acceptance (CAT), and when reducing the sucrose concentration from 9.00% to 3.83% there begins to occur sensory rejection (RT) of the product. When compared to existing threshold determination methodologies, the proposed methodology permitted for calculating, with greater reliability, the points at which compromise of acceptance (CAT) and sensory rejection (RT) of the product begin to occur. In addition to the case study presented, the proposed methodology has a wide range of applications in science and in the food, cosmetic and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Formation of streamer discharges from an isolated ionization column at subbreakdown conditions.

    PubMed

    Liu, Ningyu; Kosar, Burcu; Sadighi, Samaneh; Dwyer, Joseph R; Rassoul, Hamid K

    2012-07-13

    This Letter reports a modeling study on the formation of streamer discharges from an isolated ionization column under subbreakdown condition. Numerical simulations show that positive streamers are able to form from the tip of an ionization column in a uniform applied electric field well below the breakdown threshold field. However, even when the applied field approaches the breakdown threshold field, negative streamers fail to originate from the other tip of the ionization column after the positive streamer has propagated a certain distance. The results reported explain some puzzling observations on streamer discharges in nature such as the predominant initiation of sprites by downward propagating positive streamers and help advance the initiation theories of sprites and lightning.

  8. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  9. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  10. The excited spin state of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Samarasinha, Nalin H.; Fernández, Yan R.; Meech, Karen J.

    2005-05-01

    Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d -1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d -1 ( 2f) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95

  11. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  12. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  13. Crossing Thresholds in Academic Reading

    ERIC Educational Resources Information Center

    Abbott, Rob

    2013-01-01

    This paper looks at the conceptual thresholds in relation to academic reading which might be crossed by undergraduate English Literature students. It is part of a wider study following 16 students through three years of undergraduate study. It uses theoretical ideas from Bakhtin and Foucault to analyse interviews with English lecturers. It…

  14. Threshold Concepts and Pedagogic Representation

    ERIC Educational Resources Information Center

    Meyer, Jan H. F.

    2016-01-01

    Purpose: The purpose of this paper is to present a brief exposure to the development of the threshold concepts framework (TCF), the intention being to illuminate for interested readers a broader landscape of research activity than that perhaps conveyed by the individual contributions to this special edition. Design/Methodology/Approach: There is…

  15. Dynamical orientation effects in atomic ionization by impact of protons and positrons

    NASA Astrophysics Data System (ADS)

    Fregenal, Daniel; Barrachina, Raúl; Bernardi, Guillermo; Suárez, Sergio; Fiol, Juan

    2011-10-01

    Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. This work was partially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Cuyo and Fundacion Balseiro.

  16. Electron- and proton-induced ionization of pyrimidine

    SciTech Connect

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.

  17. Electron- and proton-induced ionization of pyrimidine

    DOE PAGES

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less

  18. Low-energy electron rescattering in laser-induced ionization

    NASA Astrophysics Data System (ADS)

    Becker, W.; Goreslavski, S. P.; Milošević, D. B.; Paulus, G. G.

    2014-10-01

    The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum.

  19. Quantifying ecological thresholds from response surfaces

    Treesearch

    Heather E. Lintz; Bruce McCune; Andrew N. Gray; Katherine A. McCulloh

    2011-01-01

    Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely accepted concept, most empirical methods detect them in time or across geographic space. Although useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding of thresholds detected empirically requires their investigation...

  20. Temperature dependent ablation threshold in silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Thorstensen, Jostein; Erik Foss, Sean

    2012-11-01

    We have experimentally investigated the ablation threshold in silicon as a function of temperature when applying ultrashort laser pulses at three wavelengths. By varying the temperature of a silicon substrate from room temperature to 320 °C, we observe that the ablation threshold for a 3 ps pulse using a wavelength of 1030 nm drops from 0.43 J/cm2 to 0.24 J/cm2, a reduction of 43%. For a wavelength of 515 nm, the ablation threshold drops from 0.22 J/cm2 to 0.15 J/cm2, a reduction of 35%. The observed ablation threshold for pulses at 343 nm remains constant with temperature, at 0.10 J/cm2. These results indicate that substrate heating is a useful technique for lowering the ablation threshold in industrial silicon processing using ultrashort laser pulses in the IR or visible wavelength range. In order to investigate and explain the observed trends, we apply the two-temperature model, a thermodynamic model for investigation of the interaction between silicon and ultrashort laser pulses. Applying the two-temperature model implies thermal equilibrium between optical and acoustic phonons. On the time scales encountered herein, this need not be the case. However, as discussed in the article, the two-temperature model provides valuable insight into the physical processes governing the interaction between the laser light and the silicon. The simulations indicate that ablation occurs when the number density of excited electrons reaches the critical electron density, while the lattice remains well below vaporization temperature. The simulated laser fluence required to reach critical electron density is also found to be temperature dependent. The dominant contributor to increased electron density is, in the majority of the investigated cases, the linear absorption coefficient. Two-photon absorption and impact ionization also generate carriers, but to a lesser extent. As the linear absorption coefficient is temperature dependent, we find that the simulated reduction in