Science.gov

Sample records for 2u-globulin hyaline droplet

  1. Rapid postexposure decay of. cap alpha. /sub 2u/-globulin and hyaline droplets in the kidneys of gasoline-treated male rats

    SciTech Connect

    Garg, B.D.; Olson, M.J.; Demyan, W.F.; Roy, A.K.

    1988-01-01

    Renal ..cap alpha../sub 2u/-globulin content increased to 210% of control within 18 h of a single oral dose of gasoline (2.0 ml/kg) in male rats; maximal levels (320% of control) were attained following gasoline administration for 3 d. Increases in renal ..cap alpha../sub 2u/-globulin caused by gasoline were accompanied by concurrent proliferation of hyaline droplets. However, within 3 d of terminating gasoline administration renal ..cap alpha../sub2u/-globulin content decreased to the same level as that in unexposed rats, although renal hyaline droplet number returned to pretreatment levels somewhat more slowly. The conjoint effect of postexposure recovery and estradiol (an inhibitor of hepatic ..cap alpha../sub 2u/-globulin synthesis) administration was also determined in male rats. On postexposure of 3, 6, and 9, estradiol treatment (1 mg/kg, sc, 4 d, starting on d 9 of gasoline treatment) decreased renal ..cap alpha../sub 2u/-globulin content to 75%, 59%, and 48%, respectively, of that in rats allowed to recover from gasoline with no hormone treatment. Hepatic ..cap alpha../sub 2u/-globulin content in estradiol-treated rats was decreased by 74%, 97%, and 96% at the same intervals. Estradiol treatment during recovery from gasoline also appeared to increase the removal of accumulated hyaline droplets from the renal cortex. Thus, accumulation of ..cap alpha../sub 2u/-globulin-containing hyaline droplets after subacute exposure of male rats to gasoline is rapidly reversible, dependent on continuous exposure to gasoline and maintenance of the normal rate of hepatic ..cap alpha../sub 2u/-globulin synthesis. These results emphasize the dynamic state of renal cortical hyaline droplets and suggest strongly that gasoline hydrocarbons cause hyaline droplet accumulation by prolonging the half-time degradation of ..cap alpha../sub 2u/-globulin.

  2. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  3. Androgen regulated expression of the alpha 2u-globulin gene in pancreatic hepatocytes of rat

    PubMed Central

    1990-01-01

    Under a copper-deficient regimen, pancreatic cells in the adult rat can be found to undergo differentiation into hepatocytes. Pancreatic hepatocytes induced in male and female rats were examined for the expression of the androgen-inducible hepatic protein, alpha 2u- globulin. Alpha 2u-Globulin protein was demonstrable by immunoperoxidase method in all the pancreatic hepatocytes of male rats. Northern blot analysis confirmed the presence of 1.3 kb alpha 2u- globulin mRNA transcript in the pancreas of male rats with hepatocytes. Orchiectomy resulted in marked decrease of alpha 2u-globulin protein and its mRNA. Administration of dihydrotestosterone to castrated rats resulted in increased levels of alpha 2u-globulin mRNA and the amount of alpha 2u-globulin protein in the pancreatic hepatocytes. Unlike normal males, in intact and ovariectomized females alpha 2u-globulin was not detectable in pancreatic hepatocytes. These results indicate that similar to hepatic parenchymal cells pancreatic hepatocytes synthesize alpha 2u-globulin under androgenic regulation. Furthermore, unlike in liver where it is expressed predominantly in perivenular and midlobular hepatocytes, there is no localized difference in the expression of this gene in the transdifferentiated pancreatic hepatocytes. PMID:1688854

  4. Morphological characteristics of a transplantable histiocytic sarcoma (HS-J) in F344 rats and appearance of renal tubular hyaline droplets in HS-J-bearing rats.

    PubMed

    Yamate, J; Tsujino, K; Kumagai, D; Nakatsuji, S; Kuwamura, M; Kotani, T; Sakuma, S

    1997-01-01

    A transplantable tumour (HS-J) was established from a spontaneous histiocytic sarcoma found in a 24-month-old male F344 rat. Serial transplantations (seven generations) were made in syngeneic male and female rats by means of intraperitoneal or subcutaneous implants, with a 100% take rate. Rats given HS-J implants developed large nodules locally, with metastasis to distant organs. HS-J tumours consisted mainly of round to oval cells with abundant cytoplasm, arranged in a compact sheet. Enzyme- and immuno-histochemical examination showed that neoplastic cells reacted with ED1 (rat monocyte/macrophage-specific antibody), lysozyme, alpha 1-antitrypsin and lysosomal enzymes (acid phosphatase and non-specific esterase), indicating derivation from cells of the monocyte/macrophage lineage. The majority of neoplastic cells were negative for ED2 (rat tissue macrophage-specific antibody). Abnormal accumulations of hyaline droplets in the proximal renal tubular epithelial cells were seen in HS-J-bearing rats. The droplets were faintly immunopositive for lysozyme, but negative for alpha-2u globulin and albumin. It was considered that excessive production of the protein by tumour cells might lead to subsequent overload in renal tubules. HS-J may prove beneficial for studying the biological behaviour of monocyte/macrophage-derived tumours in the rat.

  5. d-Limonene-induced male rat-specific nephrotoxicity: Evaluation of the association between d-limonene and alpha 2u-globulin

    SciTech Connect

    Lehman-McKeeman, L.D.; Rodriguez, P.A.; Takigiku, R.; Caudill, D.; Fey, M.L.

    1989-06-15

    d-Limonene is a naturally occurring monoterpene, which when dosed orally, causes a male rat-specific nephrotoxicity manifested acutely as the exacerbation of protein droplets in proximal tubule cells. Experiments were conducted to examine the retention of (/sup 14/C)d-limonene in male and female rat kidney, to determine whether d-limonene or one or more of its metabolites associates with the male rat-specific protein, alpha 2u-globulin, and if so, to identify the bound material. The results indicated that, 24 hr after oral administration of 3 mmol d-limonene/kg, the renal concentration of d-limonene equivalents was approximately 2.5 times higher in male rats than in female rats. Equilibrium dialysis in the presence or absence of sodium dodecyl sulfate indicated that approximately 40% of the d-limonene equivalents in male rat kidney associated with proteins in a reversible manner, whereas no significant association was observed between d-limonene equivalents and female rat kidney proteins. Association between d-limonene and male rat kidney proteins was characterized by high-performance gel filtration and reverse-phase chromatography. Gel filtration HPLC indicated that d-limonene in male rat kidney is associated with a protein fraction having a molecular weight of approximately 20,000. Separation of alpha 2u-globulin from other kidney proteins by reverse-phase HPLC indicated that d-limonene associated with a protein present only in male rat kidney which was definitively identified as alpha 2u-globulin by amino acid sequencing. The major metabolite associated with alpha 2u-globulin was d-limonene-1,2-oxide. Parent d-limonene was also identified as a minor component in the alpha 2u-globulin fraction.

  6. Nucleotide sequences required for the regulation of a rat alpha 2u-globulin gene by glucocorticoids.

    PubMed Central

    Addison, W R; Kurtz, D T

    1986-01-01

    alpha 2u-Globulin is a rat protein of as yet unknown function whose synthesis can be induced by glucocorticoids and several other hormones. Induction by glucocorticoids is a secondary response to the hormone: protein synthesis is required before the hormone can exert its stimulatory effect on alpha 2u-globulin transcription. We have used the linker-scanning mutagenesis procedure, followed by transfer of the mutant genes into mouse L-cells for analysis of their phenotype, to determine sequences within a cloned alpha 2u-globulin promoter that are required for its regulation by glucocorticoids. Mutations between positions -115 and -160 abolish or greatly reduce the inducibility of alpha 2u-globulin by the hormone. Mutations just upstream from this region, between positions -177 and -220, have an opposite effect; they increase induction two- to fourfold. Images PMID:2431290

  7. Comparative study regarding the association of alpha 2U globulin with the nephrotoxic mechanism of certain petroleum-based air force fuels. Final report, 1 July 1990-31 August 1993

    SciTech Connect

    Eurell, T.E.

    1993-08-31

    Adult male rats have a strain, dose, and time-dependent renal proximal tubular degeneration induced by certain hydrocarbon compounds. We used rat strain variation (Fisher 344 and NCI Black Reiter) and different hydrocarbon compounds (JP-4, JP-8, decalin and trimethylpentane) to investigate the hydrocarbon-induced nephrotoxic response. Histochemical and morphometric evaluation of NCI-Black Reiter rats exposed to decalin and JP-8 indicated that this strain undergoes an intermediate form of the hydrocarbon-induced nephrotoxicity when compared to the albino Fisher 344 strain. The intermediate nephrotoxic response of the NCI-Black Reiter rat was characterized by approximately a two-fold increase in the number of acid phosphatase reactive lysosomes in renal tubular cells. The NBR rats did not demonstrate an increase in the size of the individual lysosomes, however, a characteristic lysosomal aggregation pattern occurred in renal tubular cells following hydrocarbon exposure. Light and electron microscopic immunohistochemistry revealed increased levels of A2U reactive sites in the renal tubular cell of F344 male rats exposed to decalin, trimethylpentane, JP-4 and JP-8. The nephrotoxic effect of decalin, trimethylpentane, JP-4 and JP-8 appeared to be equivalent as judged by renal tubular lysosomal alterations and increased A2U immunoreactive sites. Most lysosomal proteins in either control or treated animals were not reactive with specific antibodies against A2U. The relative number of A2U reactive sites per unit area did riot increase as lysosomes enlarged or became angular in response to hydrocarbon exposure. Alpha 2U globulin, Hyaline droplet nephropathy, Rats, Petroleum fuels, JP-4, JP-8, Cytoskeleton, Immunohistochemistry.

  8. EFFECTS OF FOUR TRIHALOMETHANES ON DNA STRAND BREAKS, RENAL HYALINE DROPLET FORMATION AND SERUM TESTOSTERONE IN MALE F-344 RATS

    EPA Science Inventory

    All four possible trihalomethanes (THMs) containing bromine and chlorine, as well as perchloroethylene (PCE), were evaluated for their ability to produce DNA strand breaks, a2u-globulin rich renal deposits, and testosterone changes in male F-344 rats. Rats received daily equimola...

  9. Effects of a major androgen-dependent urinary protein,. alpha. 2u-globulin on the pituitary-gonadal axis and hypothalamic monoamines in adult male mice

    SciTech Connect

    Ghosh, P.K.; Chandrashekar, V.; Steger, R. Bartke, A. )

    1990-01-01

    The purpose of the present study was to evaluate the effects of alpha-2u-globulin, a sex-dependent male rat urinary protein on pituitary-gonadal functions and hypothalamic monamine contents in male mice. Adult male mice, maintained under standardized laboratory conditions were injected subcutaneously with alpha-2u-globulin or with vehicle daily for 14 days and killed 16 h after the last injection. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and testicular levels of T were measured by radioimmunoassays. The concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in medial basal hypothalamus (MBH) and anterior hypothalamus (AH) were measured by high performance liquid chromatography. Administration of alpha-2u-globulin led to a significant increase in plasma FSH and LH levels. In the MBH of alpha-2u-globulin treated mice, there were significant elevations of NE, DA and 5-HT contents. In the AH, both DA and 5-HT contents were decreased while NE content remained unaltered.

  10. Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships

    SciTech Connect

    Borghoff, S.J.; Miller, A.B.; Bowen, J.P.; Swenberg, J.A. )

    1991-02-01

    alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of (3H)TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with (3H)TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the (3H)TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding.

  11. Comparative study regarding the association of alpha-2U globulin with the nephrotoxic mechanism of certain petroleum-based Air Force fuels. Final report, 1 September 1986-31 August 1987

    SciTech Connect

    Eurell, T.E.

    1987-10-27

    Alpha-2U globulin is a low-molecular-weight urinary protein which may be associated with a hydrocarbon-induced proximal tubular cell degeneration in the male rat kidney. A new method was developed to obtain monospecific immunologic reagents for alpha-2U globulin using diafiltration, anion exchange and hydroxylapatite chromatography. Isoelectric focusing techniques were developed to isolate the major isoelectric variants of the alpha-2U globulin molecule and to assess changes in alpha-2U globulin after experimental exposure to hydrocarbon compounds. Alpha-2U globulin was isolated from the urine of albino and pigmented male rats to study strain susceptibility to the nephrotoxic process. An alpha-2u globulin isoelectric variant profile distinguishing albino from non-albino male rats was not apparent, however, strain differences were revealed. Fischer 344 male rats appear to have higher levels of the isoelectric variants than the other strains studied. These findings suggest that if a strain susceptibility to the hydrocarbon-induced nephrotoxic lesion exists, it may be associated with the alpha-2U globulin isoelectric variant profile.

  12. Complex histopathologic response in rat kidney to oral β-myrcene: an unusual dose-related nephrosis and low-dose alpha2u-globulin nephropathy.

    PubMed

    Cesta, Mark F; Hard, Gordon C; Boyce, John T; Ryan, Michael J; Chan, Po C; Sills, Robert C

    2013-01-01

    Oral gavage studies with β-myrcene in male F344 rats showed a complex renal pathology comprising both alpha2u-globulin (α2u-g) nephropathy, an unusual nephrosis involving the outer stripe of outer medulla (OSOM), and an increased incidence of renal tubule tumors by 2 years. In the 90-day and 2-year studies, respectively, α2u-g nephropathy and linear papillary mineralization were observed in males at the two lower doses but were absent from the high dose. Nephrosis was characterized by dilation of the S3 tubules, nuclear enlargement (including karyomegaly), and luminal pyknotic cells, all in the outermost OSOM. Nephrosis was minimal at the higher doses in the 90-day study, but progressed to a severe grade in males dosed with 1,000 mg/kg for 2 years. Renal tubule tumors developed in treated groups with incidences up to 30% in the 250 and 500 mg/kg male dose groups. Tumors at the lower doses in males may have been associated with α2u-g nephropathy, while those at higher doses in both sexes may have been due to the nephrosis. Because β-myrcene induced a complex spectrum of renal pathology, the α2u-g nephropathy mechanism cannot be the sole mechanism of carcinogenesis in these rats.

  13. Comparative study regarding the association of alpha-2u globulin with the nephrotoxic mechanism of certain petroleum-based air force fuels. Annual report 1 Jul 90-30 Jun 91

    SciTech Connect

    Eurell, T.E.

    1991-08-14

    Adult male rats have a dose and time dependent renal proximal tubular degeneration induced by certain hydrocarbon compounds. This degeneration is associated with a low molecular weight urinary protein called alpha 2U globulin. We are using rat strain variation (Fisher 344 and NCI Black Reiter) and different hydrocarbon compounds (JP-4, JP-8, decalin and trimethylpentane) to investigate the hydrocarbon-induced nephrotoxic response. Preliminary histochemical and morphometric evaluation of NCI-Black Reiter rats exposed to JP-8 suggests that this strain undergoes an intermediate form of the hydrocarbon-induced nephrotoxicity when compared to the albino Fisher 344 strain.

  14. Renal hyalin

    PubMed Central

    Lendrum, A. C.; Slidders, W.; Fraser, D. S.

    1972-01-01

    This describes the sodium sulphate-Alcian Blue (SAB) method for staining amyloid in paraffin sections. Its value lies in the possibility of subsequent counterstaining and thus of revealing the structural relationships of amyloid. In the kidney the topical disposition of amyloid closely resembles the disposition of fibrin in the kidney of diabetics; this suggests that upset in vascular permeability plays a part in determining the site of the amyloid deposits. Furthermore, an aging process in amyloid can now be envisaged resembling the aging of extraluminal fibrin. Both materials proceed to a hyalin material that, staining like collagen, merits the name pseudo-collagen. This term we apply to a hyalin, staining like collagen, for which, we can postulate a specific precursor. Images PMID:4114696

  15. Pulmonary hyalinizing granulomas.

    PubMed

    Macedo, E V; Adolph, J

    1985-03-01

    Little has been written about pulmonary hyalinizing granuloma as a cause of nodules in the lungs. In a patient with a past history of carcinoma of the breast, the diagnosis made a significant difference in the prognosis. PMID:2984210

  16. [Pulmonary hyalinizing granuloma].

    PubMed

    Westhoff, M; Litterst, P; Albert, M; Welim, B

    2015-01-01

    Benign lesions as pulmonary hyalinizing granuloma may mimic a malign disease. A 63-year old patient complained dyspnea and a weight loss of 30 kg. CT-thorax scans showed a destructive and infiltrative pulmonary process with pleural thickening. Histologic examination of transbronchial and transthoracic biopsies as well as of biopsies taken by minithoracotomy was not conclusive. Due to further progression the patient underwent a left-sided pleuropneumonectomy despite a VO2 peak of 9 ml/kg/min. Histology revealed DIP-like infiltrations, a histiocytic reaction and hyaline granulomas. Among less than 100 published cases of pulmonary hyaline granuloma a comparable rapid progression with a total functional loss of the affected lung is not reported. Mostly hyalinizing granuloma presents with infiltrations, which may mimic lung cancer, or nodular lesions, partly with cavitations or calcifications. The etiology is unknown, a persistent immunologic response to an antigenic stimulus is discussed. Associations with infections, lymphomas, amyloidosis or IgG4-related disease are reported. Some cases have features of multifocal fibrosis. In the case reported none of these associations could be found. The prognosis of pulmonary hyaline granuloma is regarded as benign. There is no effective treatment yet. Once the diagnosis has been established a conservative approach as well as a resection of nodules and a therapeutic attempt with steroids are an option. Extensive resections as pleuropneumonectomy are an exception. PMID:25599140

  17. Symptomatic pulmonary hyalinizing granuloma.

    PubMed

    Ramirez, J; Mehta, J B; Taylor, R A; Byrd, R P; Roy, T M

    1998-09-01

    An otherwise healthy 37-year-old man came to the emergency room with left-sided dull chest pain of 4 weeks' duration. Physical examination, laboratory studies, and electrocardiogram were all unremarkable. A chest x-ray film revealed calcified pulmonary nodules. Computed tomography of the chest confirmed bilateral parenchymal cavitary lesions. Via limited thoracotomy, a tan nodule measuring 2.5 to 3.0 cm in diameter was excised from the left upper lobe. Histopathologic examination revealed a well circumscribed lesion and extensive lamellar hyalinization. A few foci of finely granular calcification were present within the hyalinizing areas. After surgery and short-term use of nonnarcotic analgesics, the chest pain resolved. Although pulmonary hyalinizing granuloma (PHG) is known to produce cavitating lesions, calcification at multiple sites is also consistent with this diagnosis. Clinicians should remember to include PHG in the differential diagnosis of multiple pulmonary nodules. PMID:9743062

  18. Pulmonary hyalinizing granuloma.

    PubMed

    Yousem, S A; Hochholzer, L

    1987-01-01

    Pulmonary hyalinizing granulomas are distinct fibrosing lesions of lung, having central whorled deposits of lamellar collagen. Twenty-four cases of this unusual pulmonary lesion are reported herein. Hyalinizing granulomas occur in middle-aged persons and are frequently mistaken for metastatic carcinoma radiographically. More than half of the patients had autoimmune phenomena or previous exposures to mycobacterial or fungal antigens. Four patients had sclerosing mediastinitis develop. A progressive debilitating clinical course was related to increasing dyspnea and bilateral disease on chest radiographs. A discussion of the histogenesis and histologic differential diagnosis is presented. PMID:3799538

  19. Pulmonary hyalinizing granuloma.

    PubMed

    Gans, S J; van der Elst, A M; Straks, W

    1988-04-01

    A patient with pulmonary hyalinizing granuloma (PHG) is presented. PHG is a rare disease with very specific histological characteristics. Roentgenograms display multiple bilateral pulmonary nodules which may be cavitated. Evidence exists that the nodules are the result of an exaggerated chronic immune response. The course of the disease is generally favourable. PHG should be considered in patients showing multiple bilateral pulmonary nodules. PMID:2456228

  20. [Multiple pulmonary hyalinizing granuloma].

    PubMed

    Haro, M; Ruiz, J; Vila, X; Avellanet, M; Izquierdo, J

    1994-01-01

    The causes of multiple pulmonary nodules are many, with metastasis being the most feared. A rare but possible etiology, however, is hyalinizing multiple granuloma. We present a case that allows us to review this condition and its course, as well as a variety of associated immunological changes and possible complications. PMID:8087395

  1. Pulmonary hyalinizing granuloma.

    PubMed

    Maijub, A G; Giltman, L I; Verner, J L; Peace, R J

    1985-03-01

    We describe a recent case of pulmonary hyalinizing granuloma presenting classically in a young black American female. The diagnosis was made by histopathologic examination. The etiology of this entity remains elusive, however, an abnormal response involving the immune system to an undefined agent (or agents) is the most likely explanation. PMID:3977139

  2. Juvenile hyaline fibromatosis.

    PubMed

    Larralde, M; Santos-Muñoz, A; Calb, I; Magariños, C

    2001-01-01

    Juvenile hyaline fibromatosis (JHF) is a rare autosomal recessive disease with onset in infancy or early childhood. It is characterized by papulonodular skin lesions, soft tissue masses, gingival hypertrophy, and flexion contractures of the large joints. The light and electron microscopic features are very distinctive. Here we report an 8-month-old boy with characteristic stiffness of the knees and elbows and pink confluent papules on the paranasal folds, and periauricular and perianal regions. He also had hard nodules all over the scalp and around the mouth, and severe gingival hypertrophy. Histologic and ultrastructural features were typical of JHF. Clinical features, pathology, and physiology are discussed.

  3. Hyaline fibromatosis syndrome: cutaneous manifestations*

    PubMed Central

    Marques, Silvio Alencar; Stolf, Hamilton Ometto; Polizel, Juliana Ocanha; Munhoz, Tânia; Brandão, Marcela Calixto; Marques, Mariangela Esther Alencar

    2016-01-01

    Hyaline fibromatosis syndrome is the current name for clinical manifestations of diseases previously known as “infantile systemic hyalinosis” and “juvenile hyaline fibromatosis”. The authors report representative clinical cases of each one of the above subtypes with emphasis on cutaneous manifestations and difficulties for early diagnosis in this syndrome, essentially of multidisciplinary approach. PMID:27192526

  4. Recurrent pulmonary hyalinizing granuloma.

    PubMed

    Arruda, Guilherme D'Andréa Saba; Carvalho, Paulo César Ribeiro de; Andrade, Mara Patrícia Guilhermino de; Cusmanich, Maurício Campos; Bandeira, Gustavo; Tozaki, Felipe Shigueo Passos

    2010-01-01

    We report the case of a 61-year-old male patient who underwent surgical excision of a lung mass for anatomopathological study. The patient had previously presented with fever, dry cough, and chest pain, together with lung masses detected by chest X-ray, and had undergone thoracotomy for diagnostic investigation on two occasions (1976 and 1981), although a conclusive diagnosis had not been made. A CT scan of the chest revealed large masses with areas of calcification in both lung fields. The anatomopathological study was consistent with pulmonary hyalinizing granuloma. In the postoperative period, the patient experienced several episodes of bronchospasm, which was reversible with the use of symptomatic medication. At this writing, the patient was receiving maintenance therapy with prednisone (40 mg/day) and had shown clinical improvement. PMID:21085833

  5. Pulmonary hyalinizing granuloma.

    PubMed

    Engleman, P; Liebow, A A; Gmelich, J; Friedman, P J

    1977-06-01

    Twenty patients with pulmonary nodules consisting of concentric hyaline lamellae, usually accompanied by perivascular collections of plasma cells and lymphocytes, were studied. In most instances, the lesions were multiple, bilateral, and mildly symptomatic. Many of these nodules showed all of the staining characteristics of amyloid, but others had an atypical birefringence pattern. No infectious agents were identified, and no consistent pattern of dysproteinemia was observed. Two of the patients had prior histories of tuberculosis. In other cases, the nodules were of unknown origin and pathogenesis. Four cases were complicated by sclerosing mediastinitis, and one, by retroperitoneal fibrosis and amyloidosis. Our current working hypothesis is that these lesions represent an exaggerated and, possibly, continuing immune response, perhaps to one of a number of agents. PMID:262110

  6. Lymph node hyalinization in elderly Japanese.

    PubMed

    Taniguchi, I; Murakami, G; Sato, A; Fujiwara, D; Ichikawa, H; Yajima, T; Kohama, G

    2003-10-01

    Lymph node hyalinization has been comprehensively investigated using specimens obtained from elderly Japanese and white Americans. Onion-peel lesions and associated meshwork areas were often found in the medullary sinus of the thoracic node (mediastinal-type hyalinization), while eosinophilic, glassy and spotty lesions were consistently seen in B lymphocyte areas of the pelvic node (pelvic-type hyalinization). The mediastinal-type hyalinization was comprised of thin collagen fibrils (ca 50 nm in diameter), whereas the pelvic-type hyalinization had thick fibrils (ca 150 nm in diameter). This difference seemed to be consistent with a difference in composite collagen fibrils of vascular walls between the thoracic and pelvic regions. The pelvic-type hyalinization was often or sometimes seen in other nodes, such as cervical, axillary, abdominal and inguinal nodes, especially in white Americans. The mediastinal-type hyalinization, usually in combination with a sinus filled with anthracotic macrophages, tended to be observed in Japanese more frequently than in white Americans. Anthracosis seemed to be connected to the pathogenesis of the hyalinization. On the other hand, because the lesion was weakly positive for Factor VIII immunohistochemistry and because lesions were located along thin vessels, the pelvic-type hyalinization seemed to originate from vascular degeneration in the nodal cortex. Due to the high incidence and large proportion in total volume of the node, the hyalinization seems to be one of the major events that diminish the nodal filtration function and ruin the node with aging. PMID:12973685

  7. Pulmonary hyalinizing granuloma with hydronephrosis.

    PubMed

    Hashimoto, Seiji; Fujii, Wataru; Takahashi, Tatsurou; Shiroshita, Koichi; Sakurai, Tetsuo; Ueda, Takahiro; Kawata, Tetsuya

    2002-06-01

    A 49-year-old man was admitted for the evaluation of a bilateral mass shadow in his chest X-ray film. No definitive diagnosis was established either by brushing cytology or biopsy through bronchoscopy. No malignancies were suggested by general work-up. Both masses were surgically removed, and were diagnosed as pulmonary hyalinizing granuloma (PHG). Fifteen months later, low grade fever continued and the renal function decreased. Laboratory examinations revealed bilateral hydronephrosis with polyclonal hypergammaglobulinemia. The findings of abdominal CT and urography were compatible with retroperitoneal fibrosis. Steroid treatment completely reversed the initial abnormality in laboratory data and the symptoms disappeared. PMID:12135180

  8. Pulmonary hyalinizing granuloma in HIV/AIDS.

    PubMed

    Liu, Theresa; Kyrollos, Maggy; Kravcik, Stephen

    2007-09-01

    A 55-year-old man who was recently diagnosed with HIV/AIDS developed multiple bilateral pulmonary nodules after starting highly active antiretroviral therapy. Workup confirmed the diagnosis of pulmonary hyalinizing granuloma. This is the first described case of pulmonary hyalinizing granuloma in HIV/AIDS, and may represent a rare form of immune reconstitution inflammatory syndrome. PMID:18923729

  9. Pulmonary hyalinizing granuloma in HIV/AIDS

    PubMed Central

    Liu, Theresa; Kyrollos, Maggy; Kravcik, Stephen

    2007-01-01

    A 55-year-old man who was recently diagnosed with HIV/AIDS developed multiple bilateral pulmonary nodules after starting highly active antiretroviral therapy. Workup confirmed the diagnosis of pulmonary hyalinizing granuloma. This is the first described case of pulmonary hyalinizing granuloma in HIV/AIDS, and may represent a rare form of immune reconstitution inflammatory syndrome. PMID:18923729

  10. Pulmonary hyalinizing granuloma mimicking lung carcinoma.

    PubMed

    Basoglu, A; Findik, S; Celik, B; Yildiz, L

    2006-06-01

    Pulmonary hyalinizing granuloma has rarely been reported and is a benign entity of unknown origin. The chest radiograph reveals multiple and frequently bilateral pulmonary nodules. We describe a patient with pulmonary hyalinizing granuloma who presented with a central mass in the left lung mimicking lung carcinoma. PMID:16755455

  11. Pulmonary Hyalinizing Granuloma Mimicking Metastatic Lung Cancer

    PubMed Central

    Düzgün, Nuri; Kurtipek, Ercan; Esme, Hıdır; Eren Karanis, Meryem İlkay; Tolu, İsmet

    2015-01-01

    Pulmonary hyalinizing granuloma is a very rare benign condition, which usually manifests as solitary and sometimes as multiple pulmonary nodules. Deposition of immune complexes in the lung parenchyma due to hypersensitivity reactions is implicated in the etiology of pulmonary hyalinizing granuloma. A 59-year-old female patient who presented to our clinic with complaints of chest pain and cough had bilateral, multiple, and rounded lesions with regular margins suggesting metastatic lung disease. A transthoracic needle biopsy of the nodule was performed in the left pulmonary anterior segment. Biopsy showed no malignancy. Since no diagnosis was made by the biopsy, the patient underwent a video-assisted thoracic surgery. The wedge biopsy reported pulmonary hyalinizing granuloma. We aimed to present the diagnosis and treatment stages of our patient who was diagnosed with pulmonary hyalinizing granuloma in the light of literature review. PMID:26347384

  12. Pulmonary Hyalinizing Granuloma Mimicking Metastatic Lung Cancer.

    PubMed

    Düzgün, Nuri; Kurtipek, Ercan; Esme, Hıdır; Eren Karanis, Meryem İlkay; Tolu, İsmet

    2015-01-01

    Pulmonary hyalinizing granuloma is a very rare benign condition, which usually manifests as solitary and sometimes as multiple pulmonary nodules. Deposition of immune complexes in the lung parenchyma due to hypersensitivity reactions is implicated in the etiology of pulmonary hyalinizing granuloma. A 59-year-old female patient who presented to our clinic with complaints of chest pain and cough had bilateral, multiple, and rounded lesions with regular margins suggesting metastatic lung disease. A transthoracic needle biopsy of the nodule was performed in the left pulmonary anterior segment. Biopsy showed no malignancy. Since no diagnosis was made by the biopsy, the patient underwent a video-assisted thoracic surgery. The wedge biopsy reported pulmonary hyalinizing granuloma. We aimed to present the diagnosis and treatment stages of our patient who was diagnosed with pulmonary hyalinizing granuloma in the light of literature review. PMID:26347384

  13. [Pulmonary hyalinizing granuloma mimicking pulmonary carcinoma].

    PubMed

    Uçvet, Ahmet; Tözüm, Halil; Gürsoy, Soner; Gülle, Ali Alper; Yaldiz, Sadik; Aydoğdu Dinç, Zekiye

    2006-01-01

    Pulmonary hyalinizing granuloma is a rare fibrosing nodular disease of the lung characterized by solitary or multiple pulmonary nodules. They can occur after inflammatory or post-inflammatory changes. A 60 years old asymptomatic patient admitted to our clinic because of a solid mass of 6 cm in his routine chest radiography. A lobectomy was performed and the histological diagnosis was reported as pulmonary hyalinizing granuloma. This case, mimicking pulmonary carcinoma, is rarely found in the literature. PMID:16615022

  14. Chondroid syringoma with hyaline cell change.

    PubMed

    Banerjee, S S; Harris, M; Eyden, B P; Howell, S; Wells, S; Mainwaring, A R

    1993-03-01

    Four cases of chondroid syringoma containing large numbers of hyaline or plasmacytoid cells are described. Three cases occurred in the hand and one in the foot. Hyaline cells are commonly seen in mixed tumours and myoepitheliomas of salivary glands and rarely in chondroid syringomas. The hyaline-cell change in three of the cases initially caused diagnostic difficulties and the possibility of sarcoma was raised in two cases. In addition to the characteristic hyaline cells, the presence of tubulo-glandulo-ductal structures, benign squamous epithelium and myxochondroid stroma aided diagnosis. Immunohistochemically, the hyaline cells exhibited positivity for vimentin, cytokeratin, S-100 protein, carcino-embryonic antigen, focal glial fibrillary acidic protein (3 cases), neuron-specific enolase (3 cases) and focal alpha-smooth muscle actin (2 cases). Occasional cells were Ber EP4 positive (2 cases). In some cells, a striking peripheral ring-like positivity for cytokeratin and S-100 protein was noted. Ultrastructurally, desmosomes, varying numbers of tonofibrils and non-bundling intermediate filaments were seen. Scanty fine filaments with vague focal densities were detected in some cells. Our studies suggest that the hyaline cells represent modified epithelial as well as myoepithelial cells. One of our cases also exhibited collagenous spherulosis.

  15. P-Nitrobenzoic acid alpha2u nephropathy in 13-week studies is not associated with renal carcinogenesis in 2-year feed studies.

    PubMed

    Williams, K D; Dunnick, J; Horton, J; Greenwell, A; Eldridge, S R; Elwell, M; Sills, R C

    2001-01-01

    The objective of this study was to characterize the renal toxicity and carcinogenicity of p-nitrobenzoic acid in F344 rats. Dose levels in 13-week and 2-year studies ranged from 630-10,000 ppm and 1,250-5,000 ppm, respectively. At 13 weeks, renal lesions included minimal to mild hyaline droplet accumulation in male rats and karyomegaly in male and female rats. At 2 years, renal lesions included proximal tubule epithelial cell hyperplasia in male rats and oncocytic hyperplasia in high-dose male and female rats, and a decreased severity of nephropathy in males and females. The hvaline droplets in renal tubular epithelial cells of male rats at 13 weeks were morphologically similar to those described in alpha2u-globulin nephropathy. Using immunohistochemical methods, alpha2u-globulin accumulation was associated with the hyaline droplets. In addition, at 13 weeks, cell proliferation as detected by PCNA immunohistochemistry was significantly increased in males exposed to 5,000 and 10,000 ppm when compared to controls. Cytotoxicity associated with alpha2U-globulin nephropathy such as single-cell necrosis of the P2 segment epithelium or accumulation of granular casts in the outer medulla did not occur in the 13-week study. In addition, chronic treatment related nephrotoxic lesions attributed to accumulation of alpha2u-globulin such as linear foci of mineralization within the renal papilla, hyperplasia of the renal pelvis urothelium and kidney tumors were not observed. Although there was histologic evidence of alpha2u-globulin accumulation in male rats at 13 weeks, the minimal severity of nephropathy suggests that the degree of cytotoxicity was below the threshold, which would contribute to the development of renal tumors at 2 years.

  16. A case of pulmonary hyalinizing granuloma.

    PubMed

    Anazawa, Y; Nagai, H; Motomiya, M; Isawa, T; Saito, Y; Takahashi, T; Kawabata, Y

    1992-05-01

    A case of pulmonary hyalinizing granuloma was presented. The patient was a 37-year-old male who was found to have abnormal chest roentgenograms showing multiple pulmonary nodules taken at the annual chest mass survey in October 1989. The largest nodule measured 35 mm in diameter. He was asymptomatic. No definite diagnosis was established either by brushing cytology, biopsy through bronchoscopy or percutaneous needle biopsy. No abnormalities were found in the GI tract, the urogenital system or the bone. Brain CT indicated an iso-density area surrounded by low density in the left fronto-parietal region. Two nodules of the lingula removed by open lung biopsy revealed a homogeneous cut surface. Histological diagnosis was pulmonary hyalinizing granuloma, consisting of hyalinized collagen fibers and bundles infiltrated with chronic inflammatory cells. No therapeutic effect was recognized with prednisolone. Craniotomy was performed and the brain lesion was removed. Anaplastic astrocytoma was the diagnosis. The brain lesion had no etiological correlation with pulmonary hyalinizing granuloma. Pulmonary hyalinizing granuloma itself is a rare benign disease with no specific therapy and is important in the differential diagnosis of lung diseases showing multiple pulmonary nodules. PMID:1280866

  17. Hyaline Fibromatosis Syndrome: A Rare Inherited Disorder.

    PubMed

    Mantri, Meeta Dipak; Pradeep, Mahajan M; Kalpesh, Patil O; Pranavsinh, Raj J

    2016-01-01

    Hyaline fibromatosis syndrome (HFS) is rare autosomal recessive disease characterized by the deposition of amorphous hyaline material in skin and visceral organs. It represents a disease spectrum with infantile systemic hyalinosis (ISH) being the severe form and juvenile hyaline fibromatosis (JHF) being the mild form. Dermatologic manifestations include thickened skin, perianal nodules, and facial papules, gingival hyperplasia, large subcutaneous tumors on the scalp, hyperpigmented plaques over the metacarpophalangeal joints and malleoli, and joint contractures. ISH shows a severe visceral involvement, recurrent infections, and early death. We report a case of 2.5-year-old female patient who presented with HFS who had overlapping features of both ISH and JHF. To the best of our knowledge, very few cases of HFS have been reported in Indian literature till date. PMID:27688461

  18. A case of juvenile hyaline fibromatosis.

    PubMed

    Yayli, Savaş; Uncu, Sibel; Alpay, Köksal; Yildiz, Kadriye; Cimşit, Gülseren; Bahadir, Sevgi

    2006-04-01

    Juvenile hyaline fibromatosis (JHF) is a rare, autosomally-recessive disease characterized by papulonodular skin lesions, soft tissue masses, joint contractures, gingival hypertrophy and osteolytic bone lesions. Its onset is in infancy or early childhood. The most commonly affected sites are the nose, chin, ears, scalp, back and knees. The accumulation of an amorphous, hyaline material is typical in the skin and the other organs. Herein, we report a 14-month-old boy who presented with confluent pink papules on the paranasal folds and the chin, and nodular lesions on the periauricular and perianal regions. He had gingival hypertrophy and contractures of the shoulders, knees and elbows. He also had third-degree consanguineous parents. Histopathological studies confirmed the diagnosis of JHF with the presence of increased numbers of fibroblasts embedded in a hyalinized connective tissue stroma.

  19. Hyaline Fibromatosis Syndrome: A Rare Inherited Disorder

    PubMed Central

    Mantri, Meeta Dipak; Pradeep, Mahajan M; Kalpesh, Patil O; Pranavsinh, Raj J

    2016-01-01

    Hyaline fibromatosis syndrome (HFS) is rare autosomal recessive disease characterized by the deposition of amorphous hyaline material in skin and visceral organs. It represents a disease spectrum with infantile systemic hyalinosis (ISH) being the severe form and juvenile hyaline fibromatosis (JHF) being the mild form. Dermatologic manifestations include thickened skin, perianal nodules, and facial papules, gingival hyperplasia, large subcutaneous tumors on the scalp, hyperpigmented plaques over the metacarpophalangeal joints and malleoli, and joint contractures. ISH shows a severe visceral involvement, recurrent infections, and early death. We report a case of 2.5-year-old female patient who presented with HFS who had overlapping features of both ISH and JHF. To the best of our knowledge, very few cases of HFS have been reported in Indian literature till date. PMID:27688461

  20. Hyaline Fibromatosis Syndrome: A Rare Inherited Disorder

    PubMed Central

    Mantri, Meeta Dipak; Pradeep, Mahajan M; Kalpesh, Patil O; Pranavsinh, Raj J

    2016-01-01

    Hyaline fibromatosis syndrome (HFS) is rare autosomal recessive disease characterized by the deposition of amorphous hyaline material in skin and visceral organs. It represents a disease spectrum with infantile systemic hyalinosis (ISH) being the severe form and juvenile hyaline fibromatosis (JHF) being the mild form. Dermatologic manifestations include thickened skin, perianal nodules, and facial papules, gingival hyperplasia, large subcutaneous tumors on the scalp, hyperpigmented plaques over the metacarpophalangeal joints and malleoli, and joint contractures. ISH shows a severe visceral involvement, recurrent infections, and early death. We report a case of 2.5-year-old female patient who presented with HFS who had overlapping features of both ISH and JHF. To the best of our knowledge, very few cases of HFS have been reported in Indian literature till date.

  1. [A case of multiple pulmonary hyalinizing granuloma].

    PubMed

    Wierzbicka, Martyna; Kuś, Jan; Langfort, Renata

    2002-01-01

    Pulmonary hyalinizing granulomata are unusual, noninfectious lesions of the lung of uncertain etiology. The pathologic entity may represent a peculiar form of pulmonary immune reaction. We report the history of a 23-year-old woman who had nodular lesions in the right lung without any other abnormalities. Non-invasive procedures didn't yield diagnosis. Thoracotomy was performed. During intraoperative microscopic examination of one of 4 nodules, neoplastic disease was excluded. Remaining 3 nodules were also resected. The pulmonary hyalinizing granuloma was recognised in the histological examination. Follow-up after 12 months didn't reveal recurrence. PMID:12148183

  2. AB 73. Pulmonary hyalinizing granuloma: case report

    PubMed Central

    Papaemmanouil, Stiliani; Cheva, Aggeliki; Dimitriadis, John; Sakkas, Leonidas

    2012-01-01

    Background Pulmonary hyalinizing granuloma is an unusual condition, characterized by fibrosing nodules, consisting of the either unilateral or bilateral central whorled deposits of lamellar collagen hyaline. Although the etiology is uncertain there are evidences that suggest an autoimmune origin. Clinically and with imaging techniques it may be minic primary or metastatic carcinoma or nodular amyloidosis. Patients and methods We report case of 74 years old woman who admitted in our hospital with cough, dyspnea and chest pain. A CT scan of the chest revealed a mass located in the middle lobe of the right lung. The patient underwent thoracotomy for surgical excision of the mass macroscopic examination of the excised lobe revealed a well-circumscribed firm, grayish-white mass, measuring 3.1 cm × 2 cm × 1.3 cm. The sections were examined with H+E, PAS, and Congo-Red and followed by immunohistochemical study for Amyloid A and P, CD138, κ and λ light chains. Results The microscopic examination with H+E showed that the lung parenchyma presented extensive hyaline fibrosis PAS positive, areas of calcification and foci of bone metaplasia, accompanied by an inflammatory reaction. Congo-Red stain was positive but screening for birefringent material under polarized light was negative. Amyloid A and P were negative. The plasma calls were positive for CD138, κ and λ light chains. These histological findings were consistent with diagnosis of pulmonary hyalinizing granuloma. Conclusions The pulmonary hyalinizing granuloma should be considered in the differential diagnosis of pulmonary nodules or masses, even when they are cavitary or contain calcifications.

  3. Pulmonary hyalinizing granuloma. Electron microscopic and immunologic studies.

    PubMed

    Guccion, J G; Rohatgi, P K; Saini, N

    1984-04-01

    We present a case of pulmonary hyalinizing granuloma (PHG). On light microscopy, the pulmonary nodular lesions consisted of extracellular, eosinophilic hyaline lamellae. Histochemical stains of the hyaline lamellae for amyloid were focally positive and the diagnosis of amyloidosis was seriously considered; however, on electron microscopic examination, the hyaline lamellae consisted of electrondense, compact, amorphous material quite unlike fibrillar amyloid. Although circulating immune complexes containing IgA were detected in our patient, immunoperoxidase stains did not reveal immunoglobulins in the hyaline lamellae. This case illustrates the value of electron microscopy in differentiating PHG from amyloidosis and supports the hypothesis that PHG represents an exaggerated immune response. PMID:6200274

  4. A quantitative model for hyaline membrane disease.

    PubMed

    Rojas, J; Green, R S; Fannon, L; Olssen, T; Lindstrom, D P; Stahlman, M T; Cotton, R B

    1982-01-01

    A model based on the course of 31 infants with uncomplicated hyaline membrane disease is described. Based on data collected over the first 12 hr of life, it predicts the course of an infant for the next 60 hr, and estimates the outcome in terms of length of oxygen requirement and assisted ventilation. For the construction of the model, right-to-left intra- and extra-pulmonary shunting, expressed as venous admixture, was considered as the principal mechanism of hypoxemia in hyaline membrane disease and mean applied proximal airway pressure was used to quantify management. The model provides an objective estimate of severity early in the course of disease, uses variables routinely available in an intensive care unit, and its use would strengthen the interpretation of clinical studies in which the comparability of experimental and control groups is critical. PMID:7070873

  5. Pulmonary hyalinizing granuloma associated with Aspergillus infection.

    PubMed

    Pinckard, J Keith; Rosenbluth, Daniel B; Patel, Kishor; Dehner, Louis P; Pfeifer, John D

    2003-01-01

    A 38-year-old immunocompetent man with occupational exposure to Aspergillus presented with dyspnea, pleuritic chest pain, and hemoptysis. Chest roentgenograms and computed tomography scans demonstrated multiple pulmonary nodules bilaterally. An initial set of bronchial washing cultures grew Aspergillus fumigatus, serologic testing showed an elevated anti-Aspergillus titer, and immunodiffusion testing was positive for antibody against A. fumigatus and A. niger. There was no microbiologic or serologic evidence of infection by other pathogens, and no clinical or laboratory evidence of autoimmune disease. An open lung biopsy was diagnostic of pulmonary hyalinizing granuloma. This novel association with Aspergillus infection not only expands the spectrum of pathogens linked to pulmonary hyalinizing granuloma but also documents a new pattern of lung disease that can be caused by Aspergillus. PMID:12598920

  6. [Pulmonary hyalinizing granuloma diagnosed by thoracoscopy].

    PubMed

    Kadoyama, C; Yokosuka, T; Otsuji, M; Suzuki, M

    1999-06-01

    A 36-year-old woman was examined by our hospital for pulmonary coin shadows in both lungs, as disclosed on chest X-ray films. She had no subjective complaints other than allergic rhinitis, but exhibited hypergam-maglobulinemia, particularly in IgE. Inhalative allergen tests were positive for three types of allergens, but no autoimmune disease was detected. Although transbronchial and percutaneous fine needle biopsies failed to obtain enough specimens because of the wandering shadow a thoracoscopic biopsy was effective because of the subpleural location of the target lesions. The histologic findings were consistent with pulmonary hyalinizing granuloma, with extensive, hyalinized lamellar collagen bundles arranged haphazardly in the central area. Infiltration by lymphocytes and plasma cells, together with the destruction of bronchiolar and vessel walls, were observed in the marginal areas. No amyloid deposits or lymphocytic monoclonality were observed in the lesion. Twenty-five months after the biopsy, the patient's clinical and radiographic data had not changed. PMID:10434548

  7. Juvenile hyaline fibromatosis: a case report.

    PubMed

    Karaçal, Naci; Gülçelik, Nevzat; Yildiz, Kadriye; Mungan, Sevdegül; Kutlu, Necmettin

    2005-07-01

    Juvenile hyaline fibromatosis ( JHF ) is a rare autosomal recessive disease characterized by papulonodular skin lesions, gingival hyperplasia, joint contractures, and bone lesions. The skin lesions may consist of multiple large tumors, commonly on the scalp and around the neck, and small pearly, pink papules and plaques on the trunk, chin, ears, and around the nostrils. Here, we report a 2-year-old boy with characteristic stiffness of the knees and elbows and pink confluent papules on the paranasal folds, and periauricular and perianal regions. He also had hard nodules all over the scalp and around the mouth, and severe gingival hyperplasia. The lesions were totally excised and clinicopathological diagnosis was JHF.

  8. Pulmonary hyalinizing granuloma presenting with dysphagia.

    PubMed

    Khilnani, G C; Kumar, A; Gupta, S Datta; Surendranath, A; Sharma, S

    2003-05-01

    We describe a middle aged, non-smoking female who presented with dysphagia and underwent repeated endoscopies and oesophageal dilatation for a period of six months without any response. On imaging she was found to be having a lobulated mass with a radiological differential diagnosis of malignancy, lymphoma or a rare inflammatory lesion. After an inconclusive CT guided biopsy the patient underwent thoracoscopy on which an unresectable mass was found. The biopsy from the mass revealed pulmonary hyalinizing granuloma (PHG). To best of our knowledge this is the first case of PHG presenting as dysphagia reported in the English Literature. Literature on this rare entity is reviewed. PMID:12974440

  9. [Pulmonary hyalinizing granuloma: review of two cases].

    PubMed

    Hantous-Zannad, S; Zidi, A; Boussema, F; Mestiri, I; Ben Hassine, R; Cherif, O; Kammoun, N; Ben Miled-M'rad, K

    2004-01-01

    Pulmonary hyalinizing granuloma is a rare fibrosing nodular disease of the lung characterized by solitary or multiples pulmonary nodules. This report describes two cases of this rare disorder. MRI was available in one case. For the first case, the stability of the lesions and past history of retroperitoneal fibrosis suggested the diagnosis. For the second case, open lung biopsy was required for diagnosis. When multiple nodules are present, metastatic disease cannot be excluded and biopsy may be required. Evolution is usually benign but follow up is necessary. PMID:15332013

  10. Pulmonary hyalinizing granuloma with Castleman's disease.

    PubMed

    Atagi, S; Sakatani, M; Akira, M; Yamamoto, S; Ueda, E

    1994-11-01

    A case of pulmonary hyalinizing granuloma (PHG) with Castleman's disease in a 43-year-old man is presented. He was asymptomatic, but the disease was recognized due to a routine chest roentgenographic study. Anemia, multiple lymphadenopathy, hypoalbuminemia and polyclonal hypergamma-globulinemia were observed. Histological examination of cervical lymph nodes revealed the plasma cell type of Castleman's disease. The diagnosis of PHG was confirmed by video-assisted thoracoscopical lung biopsy, and the immuno-histochemical staining of lamellar fibrosis for types I and III collagen was positive. PMID:7849383

  11. Dancing Droplets

    NASA Astrophysics Data System (ADS)

    Cira, Nate; Prakash, Manu

    2013-11-01

    Inspired by the observation of intricate and beautifully dynamic patterns generated by food coloring on corona treated glass slides, we have investigated the behavior of propylene glycol and water droplets on clean glass surfaces. These droplets exhibit a range of interesting behaviors including long distance attraction or repulsion, and chasing/fleeing upon contact. We present explanations for each of these behaviors, and propose a detailed model for the long distance interactions based on vapor facilitated coupling. Finally we use our understanding to create several novel devices which: passively sort droplets by surface tension, spontaneously align droplets, drive droplets in circles, and cause droplets to bounce on a vertical surface. The simplicity of this system lends it particularly well to application as a toy model for physical systems with force fields and biological systems such as chemotaxis and motility.

  12. Swimming Droplets

    NASA Astrophysics Data System (ADS)

    Maass, Corinna C.; Krüger, Carsten; Herminghaus, Stephan; Bahr, Christian

    2016-03-01

    Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.

  13. [Pulmonary hyalinizing granuloma with massive infiltration of lymphocytes].

    PubMed

    Fujishima, N; Takada, T; Moriyama, H; Saito, Y; Suzuki, E; Yoshiya, K; Yamato, Y; Kourakata, H; Honma, T; Gejyo, F

    2001-12-01

    A 39-year-old man was admitted to our hospital for examination of multiple nodules and infiltrates on a chest radiograph. His chest HRCT revealed multiple nodules with or without thick- or thin-walled cavities. Specimens obtained by video-assisted thoracoscopic biopsy showed bundles of hyalinized collagen fibers, some of which contained accumulated plasma cells in the center. The nodules were surrounded by massive lymphoid cells which formed germinal centers. These findings are compatible with pulmonary hyalinizing granuloma. The lymphoid cells looked uniform in some areas and had infiltrated along the bronchioles and small vessels and into the intralobular septa in a manner resembling pulmonary lymphoma or pseudolymphoma. The findings suggested that pulmonary hyalinizing granuloma may overlap pulmonary lymphoma. The disease has shown no progression for four years although no treatment has been given. PMID:11875809

  14. A case of pulmonary hyalinizing granuloma associated with posterior uveitis.

    PubMed

    Esme, Hidir; Ermis, Sitki Samet; Fidan, Fatma; Unlu, Mehmet; Dilek, Fatma Husniye

    2004-09-01

    A 48-year-old male was admitted to our hospital because of abnormal pulmonary shadows and a decrease in visual acuity. He had a history of tuberculosis 20 years ago. The chest roentgenogram showed multiple pulmonary nodules throughout both lung fields. No definitive diagnosis was established either by brushing cytology or biopsy through bronchoscopy or percutaneous needle biopsy. Pathological examination of open lung biopsy specimen revealed that extensive, hyalinized lamellar collagen bundles arranged in whorls, parallel arrays. Plasma cells and lymphocytes were found between the collagen bands and germinal centers were seen at the periphery of the lesion. A definitive diagnosis of pulmonary hyalinizing granuloma was made on the basis of these histopathological findings. Although there is no established treatment for pulmonary hyalinizing granuloma, during 1 month of follow-up, posterior uveitis mildly resolved with glucocorticoid treatment and there had been a slight increase in visual acuity. PMID:15329468

  15. Hyaline cell-rich chondroid syringoma of the finger.

    PubMed

    Ramaswamy, A S; Yenni, V V; Wilfred, Clement; Manjunatha, H K; Shilpa, K

    2011-03-01

    A mixed tumor is a neoplasm that has microscopic features of both epithelial and mesenchymal differentiation. Such mixed tumors are known as pleomorphic adenomas in the salivary glands, and their cutaneous counterparts are called chondroid syringomas. These tumors commonly occur in the head and neck region of middle-aged men. Hyaline cell-rich chondroid syringoma is a rare benign variant of chondroid syringoma composed of cells with eosinophilic hyaline cytoplasm and plasmacytoid features, the origin of which remains elusive. Although very few cases have been reported in literature, it is important to be aware of this entity so as to avoid misdiagnosis on histopathological examination. In this report we present a case of hyaline cell-rich chondroid syringoma occurring in the finger.

  16. Subpleural pulmonary hyalinizing granuloma presenting as a solitary pulmonary nodule.

    PubMed

    Na, Kook Joo; Song, Sang Yun; Kim, Jo Heon; Kim, Young Chul

    2007-08-01

    We introduce a case of pulmonary hyalinizing granuloma presented as a solitary pulmonary nodule located subpleurally. The patient was a 57-year-old man who had abnormal chest roentgenograms showing a solitary pulmonary nodule in the right lower lung field. The nodule was resected for definitive diagnosis and histopathologically proved to be pulmonary hyalinizing granuloma. In previously reported cases, most patients had ill-defined margins and usually bilateral, multiple lesions radiographically. In our case, the subpleural location is an uncommon location of this rare entity. PMID:17762348

  17. Pulmonary hyalinizing granuloma: an unusual association with multiple sclerosis.

    PubMed

    John, P G; Rahman, J; Payne, C B

    1995-10-01

    Pulmonary hyalinizing granuloma (PHG) is a rare entity included in the differential diagnosis of pulmonary nodules of unknown origin. The pathologic entity may represent a peculiar form of pulmonary immune reaction. We report the case of a 40-year-old white woman who had nodular lesions in both lung bases after a 10-year history of multiple sclerosis. An open lung biopsy was required to make the diagnosis. The association of pulmonary hyalinizing granuloma with multiple sclerosis could be coincidental, but since there is a possibility of immune reaction in the pathogenesis of both diseases, the association may be significant. PMID:7481968

  18. High-resolution CT findings in pulmonary hyalinizing granuloma.

    PubMed

    Shibata, Yoshihiro; Kobayashi, Takeshi; Hattori, Yuki; Matsui, Osamu; Gabata, Toshifumi; Tamori, Shunichi; Minato, Hiroshi; Ohta, Yasuhiko

    2007-11-01

    A 47-year-old man with pulmonary hyalinizing granuloma is herein presented. The patient, whose chief complaint was a mild cough, was found by chest radiograph to have multiple bilateral nodules. Subsequent high-resolution computed tomography demonstrated multiple slightly irregular nodules, perinodular ground-glass opacity, peribronchovascular interstitial thickening, and cysts. A mild enlargement of systemic lymph nodes was also noted. Laboratory tests disclosed a slight elevation in the C-reactive protein, gamma-globulin, interleukin-6, and soluble interleukin-2 receptor levels. A histopathologic examination of the specimen yielded from a thoracoscopic lung biopsy resulted in a definite diagnosis of pulmonary hyalinizing granuloma. PMID:18043399

  19. Gastric hyalinization as a possible consequence of corrosive injury.

    PubMed

    Kazsuba, A; Vitéz, A; Gáll, J; Máthé, L; Ludmány, E; Krasznai, G

    2000-04-01

    We report a case of gastric obstruction due to hyalinization of the antrum. The endoscopic appearance of the lesion was suggestive of Crohn's disease or gastric neoplasm. Biopsy showed pseudopolypous gastritis with ulceration and fibroid granulation. Surgery was carried out to relieve the obstruction. Examination of the resected specimen showed massive hyalinization of all layers of the antral wall with circular collagenous infiltration and a normal duodenal bulb. The question of hyaloid gastritis as a unique entity is raised. Subsequently, information from the patient revealed the cause: voluntary acid ingestion causing corrosive injury. PMID:10774977

  20. Droplet microfluidics.

    PubMed

    Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P

    2008-02-01

    Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.

  1. Pulmonary epithelial permeability in hyaline-membrane disease

    SciTech Connect

    Jefferies, A.L.; Coates, G.; O'Brodovich, H.

    1984-10-25

    Neonatal hyaline-membrane disease is complicated by pulmonary edema, yet left atrial pressures are normal. Alveolar-capillary-membrane permeability may therefore be increased. To assess pulmonary epithelial permeability, we measured the pulmonary clearance and half-life of aerosolized /sup 99m/Tc-diethylenetriamine pentacetate (/sup 99m/Tc-DTPA) on 31 occasions in 15 intubated premature infants with hyaline-membrane disease. Three infants with respiratory failure due to other diseases were studied on four occasions. All studies of infants with hyaline-membrane disease that were performed in the first 72 hours of life demonstrated a biphasic clearance curve with a rapid-phase half-life of 1.6 +/- 0.6 minutes (mean +/- S.D.). As these infants recovered, the curve became monophasic with a half-life of 56.0 +/- 32.1 minutes. Two infants remained dependent on oxygen and ventilator support and had persistent biphasic curves with a rapid-phase half-life of 1.5 +/- 0.7 minutes. All infants without hyaline-membrane disease had monophasic curves with a half-life of 65.4 +/- 33.6 minutes. Using a similar technique, we observed that newborn lambs and piglets have a monophasic pulmonary clearance of /sup 99m/Tc-DTPA (114 +/- 59 minutes in lambs and 52.5 +/- 16.3 minutes in piglets). We conclude that the lungs of neonates with hyaline-membrane disease are abnormally permeable to small solutes and that this abnormality persists in infants with subsequent chronic lung disease.

  2. Hyaline-cell cartilage (chondroid) in the heads of teleosts.

    PubMed

    Benjamin, M

    1989-01-01

    The structure and distribution of hyaline-cell cartilage (chondroid) (HCC) in the heads of teleosts has been studied in 48 species from 16 families. The tissue is pale-staining and has closely-packed, hyaline cells that are separated by a small quantity of matrix. The matrix has only a mild affinity for alcian blue and the cells are not shrunken within lacunae. Two subtypes of the tissue are here described--fibrohyaline-cell cartilage (chondroid) where collagen fibres are prominent in the matrix, and lipohyaline-cell cartilage where fat and hyaline cells are intermingled. An elastic hyaline-cell cartilage has been described previously. Associations of HCC with dense fibrous connective tissue, mucochondroid, hyaline cartilage and bone are described. Lists are provided of membrane and cartilages bones to which the tissue is attached and of species in which it is common. Suitable 'type examples' for reference and for further study include the cartilage in the rostral folds of the red-tailed black shark, Labeo bicolor and the flying fox, Epalzeorhynchus kalopterus. HCC occurs in lips and rostral folds, in pre-palatine and submaxillary menisci, in ligaments, at the anterior end of the basihyal, in the pectoral girdle, in adhesive discs, in gill arches, beneath the basioccipital chewing pad, in barbels, next to the facial nerve, around the olfactory region and in the core of the nasal skin flaps. It is a particularly important tissue in cyprinids and related fish, and enormous masses of it are present in the black shark, Morulius chrysophekadion and the Hong Kong pleco, Pseudogastromyzon myersi. It acts as a damper against the contractions of the heart or the pressure of occluding pharyngeal teeth, and it provides the mouth region of bottom-dwelling, algal eaters with flexible support. In relation to Schaffer's classification of supporting tissues, I confirm a distinction between HCC and Zellknorpel.

  3. Droplet Growth

    NASA Astrophysics Data System (ADS)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  4. Droplet microactuator system

    NASA Technical Reports Server (NTRS)

    Pamula, Vamsee K. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Eckhardt, Allen E. (Inventor); Paik, Philip Y. (Inventor)

    2010-01-01

    The present invention relates to a droplet microactuator system. According to one embodiment, the droplet microactuator system includes: (a) a droplet microactuator configured to conduct droplet operations; (b) a magnetic field source arranged to immobilize magnetically responsive beads in a droplet during droplet operations; (c) a sensor configured in a sensing relationship with the droplet microactuator, such that the sensor is capable of sensing a signal from and/or a property of one or more droplets on the droplet microactuator; and (d) one or more processors electronically coupled to the droplet microactuator and programmed to control electrowetting-mediated droplet operations on the droplet actuator and process electronic signals from the sensor.

  5. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  6. Multiple pulmonary hyalinizing granulomas associated with systemic idiopathic fibrosis.

    PubMed

    Kuramochi, S; Kawai, T; Yakumaru, K; Mikata, A; Torikata, C; Kasuga, Y; Fujiwara, T

    1991-05-01

    A 41-year-old man with progressive nodular infiltration of the lung of about 2 years' duration died of cardiac and respiratory failure. Autopsy revealed bilateral multiple pulmonary hyalinizing granulomas (PHGs) diagnosed on the basis of the characteristic dense hyaline collagen bundles with nonspecific inflammatory infiltration. Constrictive pericarditis, retroperitoneal fibrosis, mediastinal fibrosis, fibrous thickening of the peritoneal and pleural surfaces, and fibrosis of soft tissue of the neck, flank, and hepatic hilar region were present, therefore, a diagnosis of systemic idiopathic fibrosis was made. The patient had anti-thyroglobulin and anti-thyroid microsomal antibodies and lymphocytic thyroiditis. The inflammatory process of PHG of the present case was active and the clinical course was progressive. PHG seems to be a lesion belonging to the systemic idiopathic fibrosis complex. Immunologic abnormalities may be related to PHG and systemic idiopathic fibrosis. PMID:1714226

  7. Hyalinizing granuloma: an unusual case of a pulmonary mass.

    PubMed

    Brandão, Viviane; Marchiori, Edson; Zanetti, Gláucia; Abdalla, Guilherme; Ventura, Nina; Constantino, Carolina Lamas; Pereira, Mariana Leite; Martins, Pedro; Canellas, Rodrigo; Muccillo, Antonio; Varella de Oliveira, Romulo

    2010-01-01

    We describe the case of pulmonary hyalinizing granuloma in a 34-year-old asymptomatic man who presented with a pulmonary nodule apparent by chest radiography and computed tomography (CT). He had a history of previous treatment for tuberculosis. His laboratory data were normal. Bronchoscopy and CT-guided percutaneous transthoracic fine needle aspiration cytology were inconclusive. The diagnosis was revealed after the histopathological examination of an open lung biopsy. PMID:20592998

  8. Pulmonary hyalinizing granuloma and retroperitoneal fibrosis in an adolescent.

    PubMed

    Young, Adam S; Binkovitz, Larry A; Adler, Brent H; Nicol, Kathleen K; Rennebohm, Robert M

    2007-01-01

    We describe a 15-year-old boy who developed pulmonary hyalinizing granuloma (PHG) and retroperitoneal fibrosis (RPF). His PHG and RPF were not associated with histoplasmosis or tuberculosis and appeared to represent idiopathic autoimmune phenomena. This is the first reported case of PHG in a pediatric patient and the fourth reported co-occurrence of PHG and RPF. The use of F-18 fluorodeoxyglucose positron emission tomography in the diagnostic and follow-up evaluation of PHG is reported. PMID:17061085

  9. Hyalinizing Granuloma: An Unusual Case of a Pulmonary Mass

    PubMed Central

    Brandão, Viviane; Marchiori, Edson; Zanetti, Gláucia; Abdalla, Guilherme; Ventura, Nina; Constantino, Carolina Lamas; Pereira, Mariana Leite; Martins, Pedro; Canellas, Rodrigo; Muccillo, Antonio; Varella de Oliveira, Romulo

    2010-01-01

    We describe the case of pulmonary hyalinizing granuloma in a 34-year-old asymptomatic man who presented with a pulmonary nodule apparent by chest radiography and computed tomography (CT). He had a history of previous treatment for tuberculosis. His laboratory data were normal. Bronchoscopy and CT-guided percutaneous transthoracic fine needle aspiration cytology were inconclusive. The diagnosis was revealed after the histopathological examination of an open lung biopsy. PMID:20592998

  10. Three new species of Trichoderma with hyaline ascospores from China.

    PubMed

    Zhu, Z X; Zhuang, W Y

    2015-01-01

    Collections of Trichoderma having hyaline ascospores from different areas of China were examined. Using combined analyses of morphological data, culture characters and phylogenetic information based on rDNA sequences of partial nuc translation elongation factor 1-α encoding gene (TEF1-α) and the gene encoding the second largest nuc RNA polymerase subunit (RPB2), three new species, Trichoderma applanatum, T. oligosporum and T. sinoluteum, were discovered and are described. Trichoderma applanatum produces continuous flat to pulvinate, white to cream stromata with dense orange or pale brown ostioles, and simple acremonium-like to verticillium-like conidiophores, belongs to the Hypocreanum clade and is closely related to T. decipiens. Trichoderma oligosporum forms reddish brown stromata with a downy surface, hyaline conidia and gliocladium-like conidiophores, and is closely related to but distinct from T. crystalligenum in the Psychrophila clade. Trichoderma sinoluteum, as a member of the Polysporum clade, is characterized by pale yellow stromata, white pustulate conidiomata, pachybasium-like conidiophores, and hyaline conidia. Differences between the new species and their close relatives are discussed.

  11. Pulmonary Hyalinizing Granuloma Associated with Idiopathic Thrombocytopenic Purpura

    PubMed Central

    Coleman, Christopher; Nassar, Aziza; McComb, Barbara

    2014-01-01

    Pulmonary hyalinizing granuloma (PHG) is a rare, benign lung disease of unknown etiology. It manifests as discrete, rounded nodules within the lung parenchyma. A 39-year-old woman presented for investigation after pulmonary nodules were found incidentally. Chest computed tomography showed multiple, discrete, non-enhancing pulmonary nodules bilaterally. Positron emission tomography (PET) was negative. Biopsy demonstrated a non-specific lymphoplasmacytic infiltrate. Open resection yielded two nodules consistent with hyalinizing granulomas. The differential for multiple pulmonary nodules is broad. PET scan can help rule out metastatic disease, although some cancers are not hypermetabolic on PET. Furthermore, some non-malignant conditions, including hyalinizing granuloma, can show increased activity on PET. PHG should be included in the differential of multiple pulmonary nodules, especially if nodule stability can be demonstrated and/or needle biopsies are non-diagnostic. Associated immune-mediated conditions, such as idiopathic thrombocytopenic purpura (ITP) in our patient, may also favor HG. In this case report we find an association between PHG and ITP. PMID:24744965

  12. Pulmonary hyalinizing granuloma associated with idiopathic thrombocytopenic purpura.

    PubMed

    Coleman, Christopher; Nassar, Aziza; McComb, Barbara

    2014-01-01

    Pulmonary hyalinizing granuloma (PHG) is a rare, benign lung disease of unknown etiology. It manifests as discrete, rounded nodules within the lung parenchyma. A 39-year-old woman presented for investigation after pulmonary nodules were found incidentally. Chest computed tomography showed multiple, discrete, non-enhancing pulmonary nodules bilaterally. Positron emission tomography (PET) was negative. Biopsy demonstrated a non-specific lymphoplasmacytic infiltrate. Open resection yielded two nodules consistent with hyalinizing granulomas. The differential for multiple pulmonary nodules is broad. PET scan can help rule out metastatic disease, although some cancers are not hypermetabolic on PET. Furthermore, some non-malignant conditions, including hyalinizing granuloma, can show increased activity on PET. PHG should be included in the differential of multiple pulmonary nodules, especially if nodule stability can be demonstrated and/or needle biopsies are non-diagnostic. Associated immune-mediated conditions, such as idiopathic thrombocytopenic purpura (ITP) in our patient, may also favor HG. In this case report we find an association between PHG and ITP. PMID:24744965

  13. Pulmonary hyalinizing granuloma. A limited form of Wegener's granulomatosis?

    PubMed

    Gorini, M; Forloni, F; Pezzoli, A; Pezzica, E

    1998-01-01

    Pulmonary hyalinizing granuloma is an uncommon disease that consists of slowly enlarging nodules in the pulmonary parenchyma. It occurs rarely: in fact, fewer than 70 case reports have been published in the past 20 years. It is important however in the differential diagnosis of lung diseases manifesting multiple pulmonary nodules. The etiology and pathogenesis of this disorder are unknown. Evidence suggests that the nodules could be the result of a chronic exaggerated immune response to infectious agents or to any other process in which antigen-antibody complexes are involved. More than 50% of the patients reported have evidence of autoimmune phenomena, e.g. positive antinuclear antibodies, a positive rheumatoid factor, or circulating immune complexes. The present report describes, for the first time, a case of pulmonary hyalinizing granuloma in which the patient had antineutrophil cytoplasmic autoantibodies with a granular cytoplasmatic pattern with typical central accentuation of fluorescence intensity and negative nuclei. The presence of antineutrophil cytoplasmic autoantibodies suggests that pulmonary hyalinizing granuloma could be regarded as a localized, non-evolving, form of Wegener's granulomatosis or a purely granulomatous Wegener's granulomatosis. PMID:9859576

  14. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  15. Pulmonary and systemic arterial pressure in hyaline membrane disease.

    PubMed Central

    Skinner, J R; Boys, R J; Hunter, S; Hey, E N

    1992-01-01

    Systolic pulmonary arterial pressure was determined serially over the first 10 days of life in 33 babies with hyaline membrane disease by measuring the peak velocity of pansystolic tricuspid valve regurgitation, using Doppler ultrasound, and applying the Bernoulli equation. Results are presented in age groups 0-12, 13-36, 37-72, and 73-96 hours respectively. The incidence of tricuspid valve regurgitation was 92, 97, 80, and 64% (falling to 35% by day 10) compared with 53, 50, 31, and 0% in 17 healthy premature infants. In comparing healthy babies with those with hyaline membrane disease, no allowance was made for right atrial pressure. The derived 'right ventricle to right atrial (RV-RA) pressure difference', was expressed as a ratio of systemic arterial (systolic) pressure. Over the first three days, this ratio fell much faster in the healthy babies. Values were 0.78:1, 0.77:1, and 0.72:1 in babies with hyaline membrane disease and 0.87:1, 0.53:1, and 0.44:1 in healthy babies. Ductal patency was prolonged in babies with hyaline membrane disease (75% on day 4 compared with 6% in healthy babies). The incidence of bidirectional ductal flow, indicating balanced pulmonary and systemic arterial pressures, was 79, 53, 30, and 20%, and in healthy babies was 41% at 0-12 hours and zero thereafter. Pulmonary arterial pressure was then calculated by adding a right atrial pressure estimate of 5 mm Hg to the RV-RA difference when the babies were ventilated. Babies of lower gestation had lower values. The pulmonary: systemic arterial pressure ratio showed considerable temporal variability, but fell with age and was raised by high mean airway pressure and pneumothorax (through a reduction in systemic pressure), and less noticeably by carbon dioxide tension. It did not correlate significantly with other indices of disease severity. Hyaline membrane disease is associated with delayed postnatal circulatory adaptation characterized by pulmonary hypertension, systemic hypotension, and

  16. Droplet organelles?

    PubMed

    Courchaine, Edward M; Lu, Alice; Neugebauer, Karla M

    2016-08-01

    Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.

  17. Droplet organelles?

    PubMed

    Courchaine, Edward M; Lu, Alice; Neugebauer, Karla M

    2016-08-01

    Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology. PMID:27357569

  18. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  19. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    PubMed

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies. PMID:17586107

  20. Pulmonary hyalinizing granuloma: a cause of pulmonary nodules.

    PubMed

    Chalaoui, J; Grégoire, P; Sylvestre, J; Lefebvre, R; Amyot, R

    1984-07-01

    The radiological and histological appearance of pulmonary hyalinizing granuloma (PHG) and its pathogenesis are described. The histological features bear a striking resemblance to fibrosing mediastinitis. Patients present clinically with nonspecific respiratory or general symptoms. Slowly growing solitary or, more often, multiple nodules are found on radiographs of the chest, suggesting neoplastic disease. Four patients with PHG are described. Four patients with PHG are described. One had lesions in the kidneys that were pathologically identical to those of PHG. There is no clear etiology for this disease, but from the cases reported here and those reported previously it is postulated that diverse etiologic factors might lead to a common immunological response. Inflammatory agents such as tubercle bacilli or fungal organisms (e.g., Histoplasma), or a collagen or autoimmune disease may act as trigger mechanisms for the induction of PHG. PMID:6203137

  1. Immunologic abnormalities in two patients with pulmonary hyalinizing granuloma.

    PubMed

    Schlosnagle, D C; Check, I J; Sewell, C W; Plummer, A; York, R M; Hunter, R L

    1982-08-01

    Pulmonary hyalinizing granuloma (PHG) is a disease of slowly enlarging pulmonary nodules made up of dense bundles of collagen accompanied by an infiltrate of chronic inflammatory cells. The etiology is unknown. Although it has been suggested that the lesions represent an exaggerated immune response to unidentified agents, results of a detailed immunologic work-up of these patients have not been published. This report presents the laboratory findings of two patients with biopsy-proven PHG who have been followed four and eighteen years. Autoantibodies were detected (antinuclear antibody, rheumatoid factor, and positive antiglobulin tests), although clinically there was no evidence of a specific collagen-vascular disorder. Both patients had elevated levels of circulating immune complexes. These data suggest that immune complex mechanisms may be important in the pathogenesis of PHG. PMID:7102822

  2. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.

  3. Dynamics of skirting droplets

    NASA Astrophysics Data System (ADS)

    Akers, Caleb; Hale, Jacob

    2014-11-01

    It has been observed that non-coalescence between a droplet and pool of like fluid can be prolonged or inhibited by sustained relative motion between the two fluids. In this study, we quantitatively describe the motion of freely moving droplets that skirt across the surface of a still pool of like fluid. Droplets of different sizes and small Weber number were directed horizontally onto the pool surface. After stabilization of the droplet shape after impact, the droplets smoothly moved across the surface, slowing until coalescence. Using high-speed imaging, we recorded the droplet's trajectory from a top-down view as well as side views both slightly above and below the fluid surface. The droplets' speed is observed to decrease exponentially, with the smaller droplets slowing down at a greater rate. Droplets infused with neutral density micro beads showed that the droplet rolls along the surface of the pool. A qualitative model of this motion is presented.

  4. Pulmonary hyalinizing granuloma with ureteric fibrosis: A case report and review of relevant literature.

    PubMed

    Agrawal, D; Deshpande, R; Maheshwari, S; Patel, A; Udwadia, Z F

    2006-01-01

    A 52-year-old, asymptomatic patient presented with bilateral lung nodules on chest radiograph. She was diagnosed to have "pulmonary hyalinizing granuloma" on an open lung biopsy. We review the clinical features of this rare disease. PMID:16970297

  5. Mesenchymal stem cells display different gene expression profiles compared to hyaline and elastic chondrocytes

    PubMed Central

    Zhai, Li-Jie; Zhao, Ke-Qing; Wang, Zhi-Qiang; Feng, Ya; Xing, Shuang-Chun

    2011-01-01

    Cartilage has a poor intrinsic repair capacity, requiring surgical intervention to effect biological repair. Tissue engineering technologies or regenerative medicine strategies are currently being employed to address cartilage repair. Mesenchymal stem cells (MSCs) are considered to be an excellent cell source for this application. However, the different gene expression profiles between the MSCs and differentiated cartilage remain unclear. In this report, we first examined the gene expression profiles between the MSCs, hyaline and elastic chondrocytes, and then identify candidate genes, which may be important in the process of MSC differentiation into hyaline and elastic cartilage. Several hundred differentially expressed genes were screened initially by microarray, including 417 simultaneously up-regulated genes in both hyaline and elastic chondrocytes, with 313 down-regulated genes. Several genes were identified that were up-regulated in hyaline chondrocytes while down-regulated in elastic chondrocytes. Both RT-PCR and western blot analysis were consistent with those results obtained by microarray analysis. Chondromodulinl (Chm1) was found to be highly expressed in MSCs differentiating to hyaline and elastic cartilage. Both collagen type II, alpha 1 (Col2a1) and cartilage homeo protein 1 (Cart1) were also highly upregulated and may be important early differentiation of MSCs to hyaline cartilage. PMID:21394289

  6. Hyalin is a Cell Adhesion Molecule Involved in Mediating Archenteron - Blastocoel Roof Attachment

    PubMed Central

    Carroll, Edward J.; Hutchins-Carroll, Virginia; Coyle-Thompson, Catherine; Oppenheimer, Steven B.

    2008-01-01

    Summary The U. S. National Institutes of Health has designated the sea urchin embryo as a model organism because about twenty-five discoveries in this system have led to insights into the physiology of higher organisms, including humans. Hyalin is a large glycoprotein in the hyaline layer of sea urchin embryos that functions to maintain general adhesive relationships in the developing embryo. It consists of the hyalin repeat domain that has been identified in organisms as diverse as bacteria, worms, flies, mice, sea urchins and humans. Here we show, using a polyclonal antibody raised against the 11.6 S species of hyalin, that it localizes at the tip of the archenteron and on the roof of the blastocoel exactly where these two structures bond in an adhesive interaction that has been of interest for over a century. In addition, the antibody blocks the interaction between the archenteron tip and blastocoel roof. These results, in addition to other recent findings from this laboratory that will be discussed, suggest that hyalin is involved in mediating this cellular interaction. This is the first demonstration that suggests that hyalin is a specific cell adhesion molecule that may function as such in many organisms, including humans. PMID:18262230

  7. A new droplet generator

    NASA Technical Reports Server (NTRS)

    Slack, W. E.

    1982-01-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  8. A new droplet generator

    NASA Astrophysics Data System (ADS)

    Slack, W. E.

    1982-03-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  9. On the functional organisation of hyaline articular cartilage.

    PubMed

    Pieper, K S; Fehrmann, P; Vergani, G; Herrmann, M

    1995-01-01

    Function of agonists and antagonists and the centering effect of the muscles on the connected joint result in constant changes of the site of load. Based on a model it is assumed that chondric cells organise in form of "functional units" within the single layers of the hyaline tectorial cartilage. In each case a small number of those units is subject to the rhythm of load and relief in a fixed period of time given. After 24-hour-culture of small pieces of cartilage in Ham's F-10 medium erected cilia are found on the predominantly ciliated chondrocytes with this indicating relief of pressure. In these cells massive glycogen synthesis and an active Golgi apparatus are present. In parallel, chondrones are found in which cellular contact functions via a cilium. Time-dependent glycogen occurs in these cells too. Cells having almost the same synthesis time course of the glycogen join up to form "functional units", which are particularly involved in the biomechanic cartilage behavior in the radiar cell zone. PMID:11322284

  10. An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case.

    PubMed

    Sung, J H; Ramirez-Lassepas, M; Mastri, A R; Larkin, S M

    1980-03-01

    A 21-year-old woman with an unusual, progressive, degenerative neurological disorder is described. The disorder is characterized clinically by behavioral abnormality, peculiar involuntary movements, and ataxia starting in early childhood and subsequent development of dementia, choreoathetosis, rectal and bladder incontinence, bulbar and spinal muscular weakness, pes cavus, kyphoscoliosis, and generalized seizures. The clinical manifestations are correlated, with widespread pathological changes affecting almost all neuronal systems. The pathological changes are discussed in relation to the wide spectrum of "multisystem atrophies." Particular attention is directed to the ubiquitous occurrence of a novel intranuclear, eosinophilic, hyaline inclusion in almost all types of central, peripheral, and autonomic neurons. The ubiquitous neuronal involvement seems to explain the diffuse multiple system degeneration. The pathogenesis of the neuronal inclusions is unknown, but it is speculated that the disorder may represent a metabolic abnormality affecting the nuclear protein of neurons, rather than a viral infection. The pathological features, consisting of the neuronal intranuclear hyaline inclusions associated with multiple system atrophy, have not hitherto been described, and "neuronal intranuclear hyaline inclusion disease" is proposed as a name for the disorder. Rectal biopsy demonstrating the intranuclear hyaline inclusions in ganglion cells of the hyenteric plexuses may serve as a diagnostic procedure for the disorder. PMID:6154779

  11. Effects of three hydrocarbons on the histologic structure of male rat kidneys. Final report, 1 July 1993-30 June 1994

    SciTech Connect

    Eurell, T.E.

    1994-08-31

    Using a lysosome specific, acid phosphatase stain developed by our research team, F344 and NBR male rats were found to respond to decalin, JP-4 and JP-8 exposure. Hydrocarbon-induced renal tubular lysosomal alterations were more closely related to the length of exposure rather than the strain of experimental animal. The NBR rats (extended exposure) had significantly enlarged lysosomes that would often be located in the basal aspect of the renal tubular epithelial cell in a manner similar to the characteristic F344 male rat response, whereas, the F344 rats (short exposure) showed groups of perinuclear lysosomal aggregates in a manner similar to the characteristic NBR male rat response. This effect could not be detected using, HE, LMBBF, and MH stains. This finding is important in regards to the controversy of alpha 2U-globulin's association with hyaline droplet nephropathy because: (1) the NBR rat demonstrates significant lysosomal alterations following extended hydrocarbon exposure in the presence of negligible concentrations of androgen-dependent alpha 2U-globulin and (2) the F344 rat demonstrates minimal lysosomal alteration following short hydrocarbon exposure in the presence of high concentrations of androgen-dependent alpha 2U-globulin. Immunohistochemical studies of renal tubular epithelial cells from NBR and F344 male rats exposed to decalin. JP-4 and JP-8 revealed that the microtubules of the cytoskeleton form a characteristic aggregate pattern in the apical portion of the cell in association with hydrocarbon-induced lysosomal alterations. The nephrotoxic effect of decalin, JP-4 and JP-8 appeared to be equivalent as judged by renal tubular lysosomal and cytoskeletal alterations.

  12. Hyaline membrane disease is underreported in a linked birth-infant death certificate database.

    PubMed Central

    Hamvas, A; Kwong, P; DeBaun, M; Schramm, W; Cole, F S

    1998-01-01

    OBJECTIVE: This study compared the Missouri State Department of Health linked birth-infant death certificate database and medical records with respect to recording hyaline membrane disease in very low-birth-weight infants. METHODS: We reviewed the records for all 976 infants weighing 500 to 1500 g who were born to St. Louis, Mo, residents in 1989, 1991, and 1992. RESULTS: Eighteen percent of the birth certificates and 54% of the medical records documented hyaline membrane disease, resulting in 34% sensitivity and 99% specificity. CONCLUSIONS: The Missouri State Department of Health birth-infant death certificate database underestimates the incidence of hyaline membrane disease, which suggest that national statistics for the disease are also underestimated. PMID:9736884

  13. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  14. Hyalinizing trabecular tumor of the thyroid gland: characteristic features on ultrasonography.

    PubMed

    Kobayashi, Kaoru; Hirokawa, Mitsuyoshi; Jikuzono, Tomoo; Fukata, Shuji; Amino, Nobuyuki; Miyauchi, Akira; Nakamura, Yasushi

    2007-03-01

    We report a case of hyalinizing trabecular tumor of the thyroid gland and describe the characteristic ultrasonographic features of this tumor. This was a rare tumor of follicular cell origin with a trabecular pattern of growth and marked intratrabecular hyalinization. The tumor had an irregular shape, a delicately jagged border, and hypoechoic and heterogeneous internal echoes on B-mode ultrasonography. Very rich intratumoral blood flow, the so-called "tumor inferno" was evident on power Doppler ultrasonography. In the clinical management of thyroid nodules, clinicians should be aware of this peculiar type of thyroid tumor and its characteristic ultrasonographic findings.

  15. Radiology-Pathology Conference: pulmonary hyalinizing granuloma associated with lupus-like anticoagulant and Morvan's Syndrome.

    PubMed

    Winger, David I; Spiegler, Peter; Trow, Terence K; Goyal, Amit; Yu, Huiying; Yung, Elizabeth; Katz, Douglas S

    2007-01-01

    Pulmonary hyalinizing granulomata are rare, noninfectious, fibrosing lesions of the lung, which can mimic metastatic disease radiographically. Their etiology is unknown, but they may be caused by an exaggerated immune response. We report the radiology, long clinical course, and pathology of a patient with pulmonary hyalinizing granuloma who presented with initially asymptomatic pulmonary nodules. Over a 10-year period, the patient developed multiple insidious autoimmune phenomena, including lupus anticoagulant, neuromyotonia, demyelinating sensorimotor polyneuropathy, and eventually, Morvan's syndrome. Such an association has not been previously published to our knowledge. PMID:17599621

  16. Oral pulse or hyaline ring granuloma: A case report and a brief review

    PubMed Central

    Acharya, Swetha; Hallikeri, Kaveri; Anehosur, Ventakesh; Okade, Akshatha

    2015-01-01

    Pulse or hyaline ring granulomas are rare but are well-defined oral and extraoral lesions due to implantation of the cellulose moiety of plant foods in contrast starch components. A unique form as reactive gingival growth showing histologic features of oral pulse or hyaline ring granuloma (OPHRG) which had resulted from implantation of food particles of plant or vegetable origin into the periodontium has been illustrated. Such a presentation is attributable to compromised periodontal health and poor oral hygiene favoring the implantation of food particles has been described here along with a literature update on OPHRG. PMID:26229277

  17. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  18. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  19. Wettability effects on droplet coalescence

    NASA Astrophysics Data System (ADS)

    Graham, Percival; de Pauw, Dennis; Dolatabadi, Ali

    2012-11-01

    Droplet impingement has been studied since 1895, with the works of A.M. Worthington. Throughout the past century, a variety of interesting phenomena have been uncovered. These include the bouncing of droplets off of each other or liquid pools, intricate droplet splashing mechanics, and droplets bouncing off of superhydrophobic surfaces; to name a few. In addition to intricate phenomena, droplet dynamics are relevant to many engineering applications, such as painting, spray coating ink-jet printing, and ice accumulation. These fields all involve interactions between droplets; therefore, studying droplet coalescence would benefit them greatly. The works presented include the coalescence of droplets with different impact conditions, various offsets, and at different wettabilities. Surface wettabilities studied are hydrophilic, hydrophobic and superhydrophobic. Fascinating phenomena observed include, bouncing of the impinging droplet off of the sessile droplet, sliding of the impinging droplet along the sessile droplet, and induced detachment on the sessile droplet on superhydrophobic surfaces. In order to capture the maximum spreading of the merged droplets, models related to coalescence of droplets in air and maximum spreading of a single droplet are combined to yield a new model to predict the maximum spreading of head-on droplet impact. Based on the free surface, and accuracy of the analytical model, droplet impact could be viewed as a mix of droplet coalescence in a gaseous media and droplet impact on a dry surface. Funding from NSERC.

  20. Water droplets also swim!

    NASA Astrophysics Data System (ADS)

    van der Linden, Marjolein; Izri, Ziane; Michelin, Sébastien; Dauchot, Olivier

    2015-03-01

    Recently there has been a surge of interest in producing artificial swimmers. One possible path is to produce self-propelling droplets in a liquid phase. The self-propulsion often relies on complex mechanisms at the droplet interface, involving chemical reactions and the adsorption-desorption kinetics of the surfactant. Here, we report the spontaneous swimming of droplets in a very simple system: water droplets immersed in an oil-surfactant medium. The swimmers consist of pure water, with no additional chemical species inside: water droplets also swim! The swimming is very robust: the droplets are able to transport cargo such as large colloids, salt crystals, and even cells. In this talk we discuss the origin of the spontaneous motion. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. By generalizing a recently proposed instability mechanism, we explain how spontaneous motion emerges in this system at sufficiently large Péclet number. Our water droplets in an oil-surfactant medium constitute the first experimental realization of spontaneous motion of isotropic particles driven by this instability mechanism.

  1. Pulmonary hyalinizing granuloma: a rare cause of a solitary pulmonary nodule.

    PubMed

    Eschelman, D J; Blickman, J G; Lazar, H L; O'Keane, J C; Schechter, M

    1991-04-01

    Pulmonary hyalinizing granulomata are unusual, noninfectious lesions of the lung of uncertain etiology that probably represent an exaggerated immune response. They present radiographically as noncalcified solitary or multiple pulmonary nodules, thereby mimicking primary or metastatic malignancy. The article discusses a case of this rare entity that presented as a solitary pulmonary nodule. PMID:1713275

  2. On the nature of hyaline zones in the cytoplasm of Amoeba proteus.

    PubMed

    Korohoda, W; Stockem, W

    1975-07-01

    Investigations with the Nomarski DIC (differential interferece contrast) microscope and the electron microscope on the nature of hyaline zones in the cytoplasm of Amoeba proteus revealed that these regions represent pure ground cytoplasm. Differences between specimens 1) treated with 2% ethanol, 2) released from high hydrostatic pressure or 3) preincubated at 35 degrees C for 30 minutes could not be observed. Only dying cells undergoing lysis contained a watery solution within the zones of hyaline appearance. The existence of a so-called cell surface complex composed of the plasma membrane and an electron dense filamentous layer of groundplasm was demonstrated by the electron microscopical analysis of narcotized and pre-heated amoebae. This complex corresponds morphologically to the cell surface complexes in tissue cells. Hence it seems possible that the cell surface complex of amoebae is also responsible for changes of the cell shape and movements of the cell membrane. Observations with the DIC microscope also revealed the existence of two types of hyaline caps in A. proteus: in pseudopodia extending during normal locomotion the hyaline cap consists of pure ground cytoplasm, whereas in specimens showing fountain-like streaming the cap is built up by a large vacuole containing a watery fluid. PMID:1196142

  3. Droplet Combustion Experiment (DCE)

    NASA Technical Reports Server (NTRS)

    Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Williams, Forman A.

    1998-01-01

    The first space-based experiments were performed on the combustion of free, individual liquid fuel droplets in oxidizing atmospheres. The fuel was heptane, with initial droplet diameters ranging about from 1 mm to 4 mm. The atmospheres were mixtures of helium and oxygen, at pressures of 1.00, 0.50 and 0.25 bar, with oxygen mole fractions between 20% and 40%, as well as normal Spacelab cabin air. The temperatures of the atmospheres and of the initial liquid fuel were nominally 300 K. A total of 44 droplets were burned successfully on the two flights, 8 on the shortened STS-83 mission and 36 on STS-94. The results spanned the full range of heptane droplet combustion behavior, from radiative flame extinction at larger droplet diameters in the more dilute atmospheres to diffusive extinction in the less dilute atmospheres, with the droplet disappearing prior to flame extinction at the highest oxygen concentrations. Quasisteady histories of droplet diameters were observed along with unsteady histories of flame diameters. New and detailed information was obtained on burning rates, flame characteristics and soot behavior. The results have motivated new computational and theoretical investigations of droplet combustion, improving knowledge of the chemical kinetics, fluid mechanics and heat and mass transfer processes involved in burning liquid fuels.

  4. Liquid droplet generation

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Orme, Melissa; Farnham, Tony; Vandiep, G. Pham; Huerre, P.

    1989-01-01

    A pre-prototype segment of a droplet sheet generator for a liquid droplet radiator was designed, constructed and tested. The ability to achieve a uniform, non-diverging droplet sheet is limited by manufacturing tolerances on nozzle parallelism. For an array of 100, 100 micrometer diameters nozzles spaced 5 stream diameters apart, typical standard deviations in stream alignment were plus or minus 10 mrad. The drop to drop fractional speed variations of the drops in typical streams were similar and independent of position in the array. The absolute value of the speed dispersion depended on the amplitude of the disturbance applied to the stream. A second generation preliminary design of a 5200 stream segment of a droplet sheet generator was completed. The design is based on information developed during testing of the pre-prototype segment, along with the results of an acoustical analysis for the stagnation cavity pressure fluctuations used to break-up the streams into droplets.

  5. Universal fluid droplet ejector

    DOEpatents

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  6. Supercritical microgravity droplet vaporization

    NASA Technical Reports Server (NTRS)

    Hartfield, J.; Curtis, E.; Farrell, P.

    1990-01-01

    Supercritical droplet vaporization is an important issue in many combustion systems, such as liquid fueled rockets and compression-ignition (diesel) engines. In order to study the details of droplet behavior at these conditions, an experiment was designed to provide a gas phase environment which is above the critical pressure and critical temperature of a single liquid droplet. In general, the droplet begins as a cold droplet in the hot, high pressure environment. In order to eliminate disruptions to the droplet by convective motion in the gas, forced and natural convection gas motion are required to be small. Implementation of this requirement for forced convection is straightforward, while reduction of natural convection is achieved by reduction in the g-level for the experiment. The resulting experiment consists of a rig which can stably position a droplet without restraint in a high-pressure, high temperature gas field in microgravity. The microgravity field is currently achieved by dropping the device in the NASA Lewis 2.2 second drop tower. The performance of the experimental device and results to date are presented.

  7. Reactive Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Bouret, Y.; Celestini, F.

    2016-05-01

    We experimentally investigate the reactivity of Leidenfrost droplets with their supporting substrates. Several organic liquids are put into contact with a copper substrate heated above their Leidenfrost temperature. As the liquid evaporates, the gaseous flow cleans the superficial copper oxide formed at the substrate surface and the reaction maintains a native copper spot below the evaporating droplet. The copper spot can reach several times the droplet size for the most reactive organic compounds. This study shows an interesting coupling between the physics of the Leidenfrost effect and the mechanics of reactive flows. Different applications are proposed such as drop motion tracking and vapor flow monitoring.

  8. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.

  9. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  10. Universal fluid droplet ejector

    DOEpatents

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  11. Functions of the Coacervate Droplets

    NASA Astrophysics Data System (ADS)

    Okihana, Hiroyuki; Ponnamperuma, Cyril

    1982-12-01

    Functions of coacervate droplets as protocells are studied by using synthetic polymers. The coacervate droplets were made from PVA-A and PVA-S. When glycine or diglycine were in the surrounding medium, the coacervate droplets concentrated them. The concentration of glycine in the coacervate droplets was higher than that of diglycine. When this mixture was irradiated by UV light, the coacervate droplets protected them from the photochemical decomposition.

  12. Microscopic Rayleigh Droplet Beams

    NASA Astrophysics Data System (ADS)

    Doak, R. B.

    2005-11-01

    A periodically triggered Rayleigh Droplet Beam (RDB) delivers a perfectly linear and periodic stream of identical, monoenergetic droplets that are phase-locked to the trigger signal. The droplet diameter and spacing are easily adjusted of choice of nozzle diameter and trigger frequency. Any liquid of low viscosity may be emloyed as the beam fluid. Although the field of nanofluidics is expanding rapidly, little effort has yet been devoted to ``external flows'' such as RDB's. At ASU we have generated RDB's of water and methanol down to 2 microns in droplet diameter. Nozzle clogging is the sole impediment to smaller droplets. Microscopic Rayleigh droplet beams offer tremendous potential for fundamental physical measurements, fluid dynamics research, and nanofabrication. This talk will describe the apparatus and techniques used at ASU to generate RDB's (surprisingly simple and inexpensive), discuss the triboelectric phenomena that play a role (surprisingly significant), present some initial experimental fluid dynamics measurements, and briefly survey RDB applications. Our particular interest in RDB's is as microscopic transport systems to deliver hydrated, undenatured proteins into vacuum for structure determination via serial diffraction of x-rays or electrons. This may offer the first general method for structure determination of non-crystallizable proteins.

  13. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  14. [The therapeutic use of pulmonary surfactant in neonatal hyaline membrane disease].

    PubMed

    Lozano-González, C H; Piña-Ceballos, V M; Beyer-Obezo, J; Gutiérrez-Martín, A; Martínez-Hinojosa, B; Flores-Támez, M E

    1993-07-01

    Preliminary report of our experience with the therapeutic use of pulmonary surfactant in newborn infants of less than 30 weeks gestation with hyaline membrane disease. The use of pulmonary surfactant was held under the "rescue" modality, with up to 36 hours of postnatal life. The blood gas changes are described and the assisted ventilation progress, as well as the general response on the clinical condition of each case. Discussion in centered in the risk of use and in the criteria for prescribing the therapeutic pulmonary surfactant. It is concluded that meeting the recommended requirements for its use, the pulmonary surfactant is a therapeutic alternative in the treatment of hyaline membrane disease in newborn infants of less than 33 weeks gestation, being different the immediate ventilatory response in terms of therapeutic control, with one or other forms of pulmonary exogenous surfactant, without differences in the final result.

  15. Pulmonary hyalinizing granuloma detected in a family member after confirmation of tuberculosis in his father.

    PubMed

    Matsuoka, Katsunari; Imanishi, Naoko; Matsuoka, Takahisa; Nagai, Shinjiro; Ueda, Mitsuhiro; Miyamoto, Yoshihiro

    2014-01-01

    Pulmonary hyalinizing granuloma (PHG) is an uncommon lung disease that usually presents as bilateral multiple nodules, and more rarely as a solitary nodule. An exaggerated immune response to antigenic stimuli resulting from infection or an autoimmune process has been suggested as the cause of PHG. Here, we describe a rare case of solitary PHG that was detected in a family member after tuberculosis had been confirmed in his father, without any background of infectious disease or autoimmune abnormality. PMID:23903707

  16. [Differential diagnosis of multiple pulmonary coin lesions--pulmonary hyaline granuloma].

    PubMed

    Banaschak, S; Müller, K M

    1996-02-01

    In addition to metastases, the differential diagnosis of pulmonary nodules also includes tuberculosis, sarcoidosis, and silicosis. Rarer diseases such as amyloid tumors, rheumatic nodules, and plasma-cell granulomas can, depending on the clinical situation, be the cause of this finding. For the example of the clinical picture of pulmonary hyalinizing granuloma, the differential diagnosis of multiple pulmonary nodules is illustrated under consideration of the pathognomonic, morphologic observations. PMID:8868595

  17. [Trabecular hyalinizing adenoma of the thyroid (HAT): A report of two cases].

    PubMed

    Román-González, Alejandro; Simón-Duque, Carlos; Camilo-Pérez, Juan; Vélez-Hoyo, Alejandro

    2016-01-01

    The hyalinizing trabecular adenoma is a rare lesion of the thyroid. There is controversy in the literature about the correct name for this disease. Dr. Carney defended the benign nature of this condition and therefore continues calling it adenoma, the World Health Organization calls for the potential of tumor malignancy, and others qualify it as a variant of papillary carcinoma based on the presence of rearranged in transformation/papillary thyroid carcinoma (RET/PTC) rearrangements. In Latin America there are few reported cases. Two cases of hyalinizing trabecular adenoma are reported. The first is a 40-year-old woman with a thyroid nodule of 3x3 cm. The immunohistochemistry was positive for thyroglobulin and calcitonin and negative for cytokeratin 19 and chromogranin. The second case is a 36-year-old patient with a thyroid nodule of 4x4 cm with an immunohistochemical pattern identical to the first case. Trabecular hyalinizing adenoma is a benign disease, easily confused with papillary or medullary thyroid carcinoma. Awareness of this entity will allow a better classification and management of thyroid conditions. PMID:26927651

  18. Nematic droplets on fibers

    NASA Astrophysics Data System (ADS)

    Batista, V. M. O.; Silvestre, N. M.; Telo da Gama, M. M.

    2015-12-01

    The emergence of new techniques for the fabrication of nematic droplets with nontrivial topology provides new routes for the assembly of responsive devices. Here we explore some of the properties of nematic droplets on fibers, which constitute the basic units of a type of device that is able to respond to external stimuli, including the detection of gases. We perform a numerical study of spherical nematic droplets on fibers. We analyze the equilibrium textures for homogeneous and hybrid boundary conditions and find that in some cases the nematic avoids the nucleation of topological defects, which would provide a different optical response. We consider in detail a homeotropic nematic droplet wrapped around a fiber with planar anchoring. We investigate the effect of an electric field on the texture of this droplet. In the presence of a dc field, the system undergoes an orientational transition above a given threshold Ec, for which a ring defect is transformed into a figure-eight defect. We also consider ac fields, at high and low frequencies, and find that the textures are similar to those observed for static fields, in contrast with recently reported experiments.

  19. Microfluidic devices for droplet injection

    NASA Astrophysics Data System (ADS)

    Aubrecht, Donald; Akartuna, Ilke; Weitz, David

    2012-02-01

    As picoliter-scale reaction vessels, microfluidic water-in-oil emulsions have found application for high-throughput, large-sample number analyses. Often, the biological or chemical system under investigation needs to be encapsulated into droplets to prevent cross contamination prior to the introduction of reaction reagents. Previous techniques of picoinjection or droplet synchronization and merging enable the addition of reagents to individual droplets, but present limitations on what can be added to each droplet. We present microfluidic devices that couple the strengths of picoinjection and droplet merging, allowing us to selectively add precise volume to our droplet reactions.

  20. Droplet lasing spectroscopy applied to droplet stream flames

    SciTech Connect

    Santangelo, P.J.; Kennedy, I.M.

    1999-04-01

    Droplet lasing spectroscopy (DLS) has been applied to the measurement of droplet size and vaporization rates in both reacting and non-reacting rectilinear droplet streams. A Berglund-Liu droplet generator was used to generate a stream of droplets, approximately 63 microns in diameter and 6.5 droplet diameters apart. Ethanol, methanol, and a pentane/ethanol mixture were doped with Rhodamine 6G. Lasing spectra were examined in the steady-state combustion regime. In the pentane/ethanol case the measurements were carried out in a sooting region of the flame. In some cases, vaporization rates were high enough to measure the rate from consecutive droplets, yielding a quasi-instantaneous measurement. In all cases, the D{sup 2} law of droplet vaporization was evident. In addition, photographs of the flames yielded measurements of flame height and thickness.

  1. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  2. The Walking Droplet Instability

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Steen, Paul

    2013-11-01

    A droplet of liquid that partially wets a solid substrate assumes a spherical-cap equilibrium shape. We show that the spherical-cap with a mobile contact-line is unstable to a non-axisymmetric disturbance and we characterize the instability mechanism, as it depends upon the wetting properties of the substrate. We then solve the hydrodynamic problem for inviscid motions showing that the flow associated with the instability correlates with horizontal motion of the droplet's center-of-mass. We calculate the resulting ``walking speed.'' A novel feature is that the energy conversion mechanism is not unique, so long as the contact-line is mobilized. Hence, the walking droplet instability is potentially significant to a number of industrial applications, such as self-cleansing surfaces or energy harvesting devices.

  3. Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria

    PubMed Central

    Pielach, Anna; Leroux, Olivier; Domozych, David S.; Knox, J. Paul; Popper, Zoë A.

    2014-01-01

    Background and Aims Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. Methods Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). Key Results Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. Conclusions The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular

  4. Chip-based droplet sorting

    DOEpatents

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  5. Sessile nanofluid droplet drying.

    PubMed

    Zhong, Xin; Crivoi, Alexandru; Duan, Fei

    2015-03-01

    Nanofluid droplet evaporation has gained much audience nowadays due to its wide applications in painting, coating, surface patterning, particle deposition, etc. This paper reviews the drying progress and deposition formation from the evaporative sessile droplets with the suspended insoluble solutes, especially nanoparticles. The main content covers the evaporation fundamental, the particle self-assembly, and deposition patterns in sessile nanofluid droplet. Both experimental and theoretical studies are presented. The effects of the type, concentration and size of nanoparticles on the spreading and evaporative dynamics are elucidated at first, serving the basis for the understanding of particle motion and deposition process which are introduced afterward. Stressing on particle assembly and production of desirable residue patterns, we express abundant experimental interventions, various types of deposits, and the effects on nanoparticle deposition. The review ends with the introduction of theoretical investigations, including the Navier-Stokes equations in terms of solutions, the Diffusion Limited Aggregation approach, the Kinetic Monte Carlo method, and the Dynamical Density Functional Theory. Nanoparticles have shown great influences in spreading, evaporation rate, evaporation regime, fluid flow and pattern formation of sessile droplets. Under different experimental conditions, various deposition patterns can be formed. The existing theoretical approaches are able to predict fluid dynamics, particle motion and deposition patterns in the particular cases. On the basis of further understanding of the effects of fluid dynamics and particle motion, the desirable patterns can be obtained with appropriate experimental regulations. PMID:25578408

  6. Lipid droplets go nuclear.

    PubMed

    Farese, Robert V; Walther, Tobias C

    2016-01-01

    Lipid droplets (LDs) are sometimes found in the nucleus of some cells. In this issue, Ohsaki et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507122) show that the nuclear membrane, promyelocytic leukemia bodies, and the protein PML-II play a role in nuclear LD formation, suggesting functional relationships between these structures. PMID:26728852

  7. Pulmonary hyalinizing granuloma with laryngeal and subcutaneous involvement: report of a case successfully treated with glucocorticoids.

    PubMed

    Shinohara, Takeshi; Kaneko, Takeshi; Miyazawa, Naoki; Nakatani, Yukio; Nishiyama, Harumi; Shoji, Akira; Ishigatsubo, Yoshiaki

    2004-01-01

    We report a case of pulmonary hyalinizing granuloma (PHG) with laryngeal and subcutaneous involvement. A 43-year-old man was admitted to our hospital for assessment of hoarseness. Cervical and chest computed tomography, respectively, revealed a laryngeal tumor and two pulmonary masses. Specimens obtained from the pulmonary masses were compatible with PHG. The histopathology of biopsy specimens from both the laryngeal tumor and a subcutaneous tumor resembled that of the resected lung masses. Although there is no established treatment for PHG, the laryngeal tumor was diminished and all other lesions disappeared with glucocorticoid treatment. PMID:14964583

  8. Pulmonary hyalinizing granuloma. Bilateral pulmonary nodules associated with chronic idiopathic thrombocytopenic purpura.

    PubMed

    Satti, Mohamed B; Batouk, Abdelnasir A; Abdelaziz, Muntasir M; Ahmad, Mohamed F; Abdelaal, Mohamed A

    2005-09-01

    We report a case of a 30-year-old female who had been treated periodically with steroids for idiopathic thrombocytopenic purpura ITP over the last 10 years. Recently, during the course of investigation, she was found to have incidental asymptomatic multiple pulmonary nodules on chest CT. Following a needle biopsy to exclude malignancy, 2 nodules were excised and were histologically confirmed as pulmonary hyalinizing granuloma PHG. The remaining 2 nodules regressed on increasing her dose of steroids. The case is discussed with emphasis on the histological and radiological differential diagnosis, in addition to including ITP among the spectrum of immunologic conditions associated with PHG. PMID:16155671

  9. [A case of pulmonary hyalinizing granuloma with its occupational history of dust exposure].

    PubMed

    Kido, M; Kajiki, A; Nagata, N; Manabe, H; Iwata, Y

    1995-03-01

    Multiple pulmonary nodules were found in a patient who had an occupational history of coal mining for eleven years and road construction for fifteen years. An open lung biopsy was performed, because nodules had increased in size compared to previous ones and a trasbronchial biopsy was not diagnostic. The nodules were composed of dense concentric lamellar collagenous structures with a serpentine pattern surrounded by an infiltration of histiocytes, lymphocytes and plasma cells with Russel bodies. These findings are compatible with pulmonary hyalinizing granuloma (PHG) named by Liebow A. A. The etiopathogenetic mechanism and the difference between PHG and silicotic nodule is discussed. PMID:7724907

  10. Non-diagnosed pulmonary hyalinizing granuloma (PHG) as a cause of sudden unexpected death.

    PubMed

    Preuss, J; Woenckhaus, C; Thierauf, A; Strehler, M; Madea, B

    2008-08-01

    Pulmonary hyalinizing granuloma (PHG), a very rare benign tumour of the lungs, was first reported in 1977. We present a PHG of a 32-year-old woman from Yemen who collapsed 1 day after her arrival in Germany. Tuberculosis was suspected and the health authorities nearly closed part of one of the major international airports in Europe. However, this drastic measure was avoided by autopsy and a correct interpretation of the solid-elastic and well-circumscribed lung tumour as not characteristic for tuberculosis. Although the final diagnosis of PHG was only achieved after histology, this case strongly illustrates the necessity of a profound morphological training of forensic physicians. PMID:18621495

  11. Hyalinizing clear cell carcinoma of the oral cavity and of the parotid gland.

    PubMed

    Rinaldo, A; McLaren, K M; Boccato, P; Maran, A G

    1999-01-01

    Hyalinizing clear cell carcinoma (HCCC) is a rare, recently described tumor of salivary gland origin. Differential diagnosis includes benign lesions as clear cell change in a pleomorphic adenoma or in oncocytoma and malignant tumors - i.e. epithelial-myoepithelial carcinoma, polymorphous low-grade adenocarcinoma, mucoepidermoid carcinoma, clear cell acinic carcinoma, clear cell squamous carcinoma, clear cell malignant melanoma, clear cell odontogenic carcinoma, clear cell rhabdomyosarcoma, sebaceous carcinoma and metastasis of renal carcinoma. A favorable prognosis after wide local excision has been evidenced. Three new cases of HCCC (2 in the oral cavity and 1 in the parotid gland) are presented.

  12. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  13. Hyaline cells in a benign chondroid syringoma. Report of a case and findings by conventional and electron microscopy.

    PubMed

    Mambo, N C

    1984-06-01

    This report describes the features of a benign chondroid syringoma removed from a foot of a 34-year-old woman. Histologic examination showed that an acidophilic hyaline cell was the predominant cell type; keratinocytes and cells with clear to foamy cytoplasms were less abundant. The hyaline cells and keratinocytes were within a chondroid and myxoid stroma. Ultrastructural study revealed large numbers of pale epithelial cells whose cytoplasms were loaded with intermediate filaments and dark cells with many tonofilaments. Intermediate transition forms between the pale and dark cells were also identified, as were myoepithelial cells with intermediate filaments, and secretory cells. These cells were also lodged in a chondroid and myxoid matrix. This study showed that acidophilic hyaline cells are of both epithelial and myoepithelial origin and that both may be responsible for laying down the matrix.

  14. Diffraction of walking droplets

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2014-11-01

    We present results from our revisitation of the experiment of a walking droplet passing through a single slit, originally investigated by Couder & Fort (PRL, 2006). On each passage, the walker's trajectory is deviated as a result of the spatial confinement of its guiding wave. We explore the role of the droplet size and the bath's vibration amplitude on both the dynamics and statistics. We find the behavior to be remarkably sensitive to these control parameters. A complex physical picture emerges. The authors gratefully acknowledge the financial support of the NSF through Grant CMMI-1333242, DMH through the NSF Graduate Research Fellowship Program, and GP through the Programma Operativo Regionale (POR) Calabria - FSE 2007/2013.

  15. Talocalcaneal Joint Middle Facet Coalition Resection With Interposition of a Juvenile Hyaline Cartilage Graft.

    PubMed

    Tower, Dyane E; Wood, Ryan W; Vaardahl, Michael D

    2015-01-01

    Talocalcaneal joint middle facet coalition is the most common tarsal coalition, occurring in ≤2% of the population. Fewer than 50% of involved feet obtain lasting relief of symptoms after nonoperative treatment, and surgical intervention is commonly used to relieve symptoms, increase the range of motion, improve function, reconstruct concomitant pes planovalgus, and prevent future arthrosis from occurring at the surrounding joints. Several approaches to surgical intervention are available for patients with middle facet coalitions, ranging from resection to hindfoot arthrodesis. We present a series of 4 cases, in 3 adolescent patients, of talocalcaneal joint middle facet coalition resection with interposition of a particulate juvenile hyaline cartilaginous allograft (DeNovo(®) NT Natural Tissue Graft, Zimmer, Inc., Warsaw, IN). With a mean follow-up period of 42.8 ± 2.9 (range 41 to 47) months, the 3 adolescent patients in the present series were doing well with improved subtalar joint motion and decreased pain, and 1 foot showed no bony regrowth on a follow-up computed tomography scan. The use of a particulate juvenile hyaline cartilaginous allograft as interposition material after talocalcaneal middle facet coalition resection combined with adjunct procedures to address concomitant pes planovalgus resulted in good short-term outcomes in 4 feet in 3 adolescent patients. PMID:25922335

  16. Hyaline membrane disease and surfactant protein, SAP-35, in diabetes in pregnancy.

    PubMed

    Nogee, L; McMahan, M; Whitsett, J A

    1988-10-01

    Surfactant-associated protein of Mr 28,000 to 35,000 (SAP-35) is an abundant glycoprotein present in the alveolus of the lung, which imparts both structural organization to surfactant phospholipids and provides regulatory information controlling surfactant phospholipid secretion and metabolism. SAP-35 expression is enhanced by 3'-5'-cyclic adenosine monophosphate and epidermal growth factor during perinatal differentiation of type II epithelial cells. Its synthesis and RNA are also controlled by a variety of inhibitory factors, which include transforming growth factor and insulin. Glucocorticoids both enhance and inhibit SAP-35 expression in fetal lung explants. There is evidence that fetal hyperinsulinemia or hyperglycemia, or both, inhibit the morphologic differentiation of the type II epithelial cell in association with decreased phospholipid surfactant synthesis or secretion. Insulin is also a potent inhibitor of SAP-35 expression in fetal lung tissue, and decreased SAP-35 was previously noted in amniotic fluid of patients with diabetes during pregnancy. Recent progress in the management of diabetes in pregnancy, characterized by more rigorous metabolic control, has decreased the risk of hyaline membrane disease for the infant of the diabetic mother and is associated with normal levels of SAP-35 in amniotic fluid. Hyaline membrane disease remains a major cause of morbidity in infants of diabetic mothers but may also reflect a higher incidence of premature delivery, cesarean section, and asphyxia at delivery as well as inhibition of pulmonary surfactant phospholipid synthesis or expression of the surfactant protein SAP-35.

  17. Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs

    PubMed Central

    Yamashita, Akihiro; Morioka, Miho; Yahara, Yasuhito; Okada, Minoru; Kobayashi, Tomohito; Kuriyama, Shinichi; Matsuda, Shuichi; Tsumaki, Noriyuki

    2015-01-01

    Summary Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects. PMID:25733017

  18. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    PubMed

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed.

  19. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  20. Droplet microfluidics based microseparation systems.

    PubMed

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  1. Rapidly pulsed helium droplet source

    SciTech Connect

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin; Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  2. Maze Solving by Chemotactic Droplets

    SciTech Connect

    Lagzi, Istvan; Soh, Siowling; Wesson, Paul J.; Browne, Kevin P.; Grzybowski, Bartosz A.

    2010-01-11

    Droplets emitting surface-active chemicals exhibit chemotaxis toward low-pH regions. Such droplets are self-propelled and navigate through a complex maze to seek a source of acid placed at one of the maze’s exits. In doing so, the droplets find the shortest path through the maze. Chemotaxis and maze solving are due to an interplay between acid/base chemistry and surface tension effects.

  3. Enhanced Jumping-Droplet Departure.

    PubMed

    Kim, Moon-Kyung; Cha, Hyeongyun; Birbarah, Patrick; Chavan, Shreyas; Zhong, Chen; Xu, Yuehan; Miljkovic, Nenad

    2015-12-15

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demonstrated to enhance heat transfer, anti-icing, and self-cleaning efficiency and is governed by the theoretical inertial-capillary scaled jumping speed (U). When two droplets coalesce, the experimentally measured jumping speed (Uexp) is fundamentally limited by the internal fluid dynamics during the coalescence process (Uexp < 0.23U). Here, we theoretically and experimentally demonstrate multidroplet (>2) coalescence as an avenue to break the two-droplet speed limit. Using side-view and top-view high-speed imaging to study more than 1000 jumping events on a copper oxide nanostructured superhydrophobic surface, we verify that droplet jumping occurs as a result of three fundamentally different mechanisms: (1) coalescence between two droplets, (2) coalescence among more than two droplets (multidroplet), and (3) coalescence between one or more droplets on the surface and a returning droplet that has already departed (multihop). We measured droplet-jumping speeds for a wide range of droplet radii (5-50 μm) and demonstrated that while the two-droplet capillary-to-inertial energy conversion mechanism is not identical to that of multidroplet jumping, speeds above the theoretical two-droplet limit (>0.23U) can be achieved. However, we discovered that multihop coalescence resulted in drastically reduced jumping speeds (≪0.23U) due to adverse momentum contributions from returning droplets. To quantify the impact of enhanced jumping speed on heat-transfer performance, we developed a condensation critical heat flux model to show that modest jumping speed enhancements of 50% using multidroplet jumping can enhance performance by up to 40%. Our results provide a starting point for the

  4. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  5. Significance of droplet-droplet interactions in droplet streams: Atmospheric to supercritical conditions

    NASA Astrophysics Data System (ADS)

    Connon, Corinne Shirley

    In an effort to optimize liquid fuel combustion a considerable amount of research has been directed towards the atomization of large liquid masses into small droplets to increase the surface area available for vaporization. The current work uses a single linear array of moving droplets of uniform size and spacing to investigate the behavior of interacting droplets. A series of experiments, over a range of ambient conditions, demonstrate how a lead droplet alters the environment experienced by its trailing neighbor. This behavior is of particular interest for droplet groups under high pressure and temperature, where experimental data has been limited. Gas phase velocity and vapor concentration measurements show that as the space between adjacent droplets decreases entrainment of fluid towards the axis of motion is reduced. Trapped gases create a gaseous cylinder, composed of ambient gas and fuel vapor, which surrounds and moves with the droplet stream. As ambient pressure increase, the oscillatory behavior of the lead droplet wake begins to interfere with its trailing neighbor. Loss of stream stability and enhanced droplet stripping in part result from these oscillating wakes. However, acceleration of droplet stripping is mainly produced by liquid and gas density similarity, which increases the centrifugal stress and the growth rate of capillary waves. Further, injection of subcritical droplets into an ambient environment at temperatures and pressures above the liquid droplet critical point shows behavior not greatly different from the results obtained at high ambient pressures. The similarity results from thermal heatup times exceeding the breakup times generated from the severe aerodynamics encountered at high ambient density and high liquid-gas relative velocities.

  6. Fine-needle aspiration cytology of pleomorphic hyalinized angiectatic tumor: A case report.

    PubMed

    Lin, Oscar; Crapanzano, John P

    2005-04-01

    Pleomorphic hyalinized angiectatic tumor (PHAT) of soft parts is a neoplasm characterized by spindle and pleomorphic cells associated with an angiectatic vasculature. We describe the cytological findings of a fine-needle aspiration biopsy (FNAB) from the right medial knee of a 45-yr-old woman. The aspirate material was entirely submitted in Cytolit solution. The specimen was moderately cellular and was comprised of spindle cells in a background of fibrinous material. The cells varied from small, bland spindle cells with a fine chromatin pattern and inconspicuous nucleoli to larger pleomorphic cells with coarser chromatin and occasional intranuclear inclusions. Most of the cells were arranged singly with sporadic small cluster formation with indistinct cell borders. Rare mononuclear inflammatory cells morphologically compatible with mast cells were identified. The differential diagnosis include solitary fibrous tumor (SFT) and ancient schwannoma, which also shows fibrous-like material and spindle cells that may have intranuclear inclusions.

  7. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    SciTech Connect

    Bagratashvili, Viktor N; Bagratashvili, N V; Omel'chenko, A I; Sviridov, A P; Sobol', E N; Tsypina, S I; Gapontsev, V P; Minaev, V P; Samartsev, I E; Makhmutova, G Sh

    2001-06-30

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 {mu}m is studied. The laser-induced bleaching (at 1.56 {mu}m) and darkening (at 0.97 {mu}m) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  8. Pulmonary small lymphocytic lymphoma (mucosa-associated lymphoid tissue type) associated with pulmonary hyalinizing granuloma.

    PubMed

    Ren, Y; Raitz, E N; Lee, K R; Pingleton, S K; Tawfik, O

    2001-09-01

    A case of pulmonary hyalinizing granuloma (PHG) and concomitant low-grade, small lymphocytic lymphoma of the lung is presented. This is the first occurrence of pulmonary lymphoma in patients with PHG ever reported. The infiltrates around a left lower lobe nodule with left pleural effusion and thickening seen on chest CT were histologically proven to be lymphomatous infiltrates of the lung, pleura, and chest wall muscle. We believe that the lymphoma developed around the nodule and spread to the pleura and muscle in our patient. When infiltrates around the nodules, pleural effusion, or adenopathy are developed in a patient with proven PHG, close follow-up, biopsy, or careful cytology should be seriously considered to rule out a developing lymphoma. PMID:11555545

  9. Pulmonary hyalinizing granuloma mimicking multiple lung metastases: report of fluorodeoxyglucose positron emission findings.

    PubMed

    Lien, Chi-Tun; Yang, Chih-Jen; Yang, Sheau-Fang; Chou, Shah-Hwa; Huang, Ming-Shyan

    2010-05-01

    Pulmonary hyalinizing granuloma (PHG) is a rare disease characterized by multiple bilateral pulmonary nodules of uncertain etiology. We describe a 71-year-old female patient with thyroid papillary carcinoma in whom bilateral pulmonary nodules were found during a routine chest radiography examination. Subsequent fluorodeoxyglucose positron emission tomography/computed tomography scan gave the impression of multiple pulmonary metastases based on high maximum standardized uptake value. She underwent video-assisted thoracoscopic surgery with wedge resection, and PHG was diagnosed on the basis of histopathologic findings. To our knowledge, this is the first report of PHG developing in a patient as a solid cancer, mimicking multiple pulmonary metastases. We also present the first description of positron emission tomography in PHG, according to a Medline search. PMID:20351580

  10. Experiments examining drag in linear droplet packets

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. V.; Dunn-Rankin, D.

    1992-01-01

    This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.

  11. Droplet Burns in the Fiber-Supported Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A fuel droplet burns in the Fiber-Supported Droplet Combustion (FSDC) Experiment on STS-94, July 4 1997, MET:02/19:20 (approximate). This experiment, performed in the Middeck Glovebox, allows us to study the burning of fuels such as n-heptane, n-decane, methanol, ethanol, methanol/water mixtures, and heptane/hexadecane mixtures in droplets as large as 6 mm (nearly 1/4 inch). In this sequence, you see the burn of a 5mm droplet of n-heptane, in a 30% O2/He environment at 1 atmosphere pressure. The droplet (looking bright pink because of reflected light) hangs suspended from the supporting fiber. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (279KB JPEG, 1350 x 2026 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300175.html.

  12. Leidenfrost levitation: beyond droplets

    PubMed Central

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A.; Spafford, Jonathon; Michael, Grant E.; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect – a droplet can be levitated by its own vapor layer on a sufficiently hot surface – we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces. PMID:23150770

  13. Leidenfrost levitation: beyond droplets.

    PubMed

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A; Spafford, Jonathon; Michael, Grant E; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect - a droplet can be levitated by its own vapor layer on a sufficiently hot surface - we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces.

  14. Lossless droplet transfer of droplet-based microfluidic analysis

    DOEpatents

    Kelly, Ryan T; Tang, Keqi; Page, Jason S; Smith, Richard D

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  15. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  16. Droplet resonator based optofluidic microlasers

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Jonáš, Alexandr; Aas, Mehdi; Karadag, Yasin; Brzobohatý, Oto; Ježek, Jan; Pilát, Zdeněk.; Zemánek, Pavel; Anand, Suman; McGloin, David

    2014-03-01

    We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. We also report lasing in airborne, Rhodamine B-doped glycerolwater droplets which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Furthermore, biological lasing in droplets supported by a superhydrophobic surface is demonstrated using a solution of Venus variant of the yellow fluorescent protein or E. Coli bacterial cells expressing stably the Venus protein. Our results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.

  17. Levitation of liquid sodium droplets

    SciTech Connect

    Roy, S.S.; Cramb, A.W.; Hoburg, J.F.; Lally, B.

    1995-12-01

    Droplets of liquid sodium ranging from 1.2 to 2.1 g, immersed in mineral oil, were levitated in an electromagnetic field. The experimental setup was designed and constructed to levitate small metal droplets at audio frequencies. The levitated droplet was found to be very stable inside the inductor, and the equilibrium shape attained by the droplet in the electromagnetic field was measured during the experiment. A surface coupled mathematical model was used to calculate the self-consistent equilibrium droplet shape of liquid sodium under the influence of an electromagnetic field. The predicted shapes of the metal droplet and the position of the droplet inside the inductor compare well with the experimental data. The idea of casting metals and alloys without any physical contact has generated a lot of interest in the metals industry, especially in the production of metals/alloys that are highly reactive and have a very high melting point. Containerless casting can be achieved by levitating or pushing the liquid metal from the surface of the container.

  18. Bacterial encountering with oil droplet

    NASA Astrophysics Data System (ADS)

    Sheng, Jian; Molaei, Mehdi

    2014-11-01

    Encountering of microorganisms with rising oil droplets in aqueous environments is the first and one of the critical steps in the biodegradation of crude oil. Several factors such as droplet sizes, rising velocity, surfactant, and motility of bacteria are expected to affect the encounter rate. We establish well controlled microfluidic devices by applying layer-by-layer technique that allows us to produce horizontal micro droplets with different sizes. The encounter rates of passive particles, motile and non-motile bacteria with these droplets are measured by high speed microscopy. The effects of mobility and motility of these particles on encounter rates are assessed quantitatively. Meanwhile, we visualize reorientation of the particle due to flow filed around the oil droplet. Results show that the motile bacteria have higher probabilities to interact with an oil droplet compare to the passive particles. Ongoing analyses focus on the effect of shear rates, angular dispersion, curvatures of streamlines, and the swimming velocity of bacteria. The ratios of the encounter area to the entire droplet surface at various flow regimes will also been measured. GoMRI.

  19. The prevention of hyaline membrane disease (HMD) in the preterm fetal lamb through the static inflation of the lungs: the conditioning of the fetal lungs.

    PubMed

    Kolobow, T; Solca, M; Presenti, A; Buckhold, D; Pierce, J D

    1980-01-01

    Preterm fetal lambs of a gestational are highly susceptible to hyaline membrane disease were placed on apneic oxygenation while keeping the umbilical circulation intact and still connected to the mother ewe for the removal of metabolically produced CO2. After 4-6 hrs the total lung compliance and the chest x-ray films had markedly improved, allowing normal pulmonary ventilation with a mechanical ventilator. Fetuses older than 135 days gestation were later extubated and allowed to breathe room air unassisted. Fetuses 134 days gestation and younger were kept on mechanical ventilation. None of the animals so treated developed hyaline membrane disease. We believe pulmonary conditioning is an important tool in the prevention and the treatment of hyaline membrane disease. In this animal model we have shown that hyaline membrane disease is a preventable and curable disease.

  20. Blood droplet dynamics--I.

    PubMed

    Pizzola, P A; Roth, S; De Forest, P R

    1986-01-01

    The interpretation of bloodstain patterns at crime scenes has received increased attention in recent years. Important to an understanding of this is knowledge of the fundamentals of blood droplet formation and impact dynamics. A review of the literature reveals that a considerable amount of work has been done with aqueous drop dynamics. Workers in the forensic science area seem to have been unaware of this. In addition, some of the most important and comprehensive early work with blood droplet dynamics seems to have been forgotten. It is not cited in more recent publications dealing with bloodstain pattern interpretation. This literature is reviewed and discussed as well. The present study presents results of experiments with blood droplet dynamics and high-speed photographs of blood droplet impacts on stationary target surfaces. Some longstanding misconceptions of importance to forensic scientists engaged in crime scene reconstruction are discussed. PMID:3944577

  1. Droplet combustion at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Williams, F. A.

    1988-01-01

    The current work involves theoretical analyses of the effects identified, experiments in the NASA Lewis drop towers performed in the middeck areas of the Space Shuttle. In addition, there is laboratory work associated with the design of the flight apparatus. Calculations have shown that some of the test-matrix data can be obtained in drop towers, and some are achievable only in the space experiments. The apparatus consists of a droplet dispensing device (syringes), a droplet positioning device (opposing, retractable, hollow needles), a droplet ignition device (two matched pairs of retractable spark electrodes), gas and liquid handling systems, a data acquisition system (mainly giving motion-picture records of the combustion in two orthogonal views, one with backlighting for droplet resolution), and associated electronics.

  2. Droplets engulfing on a filament

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Yu, Meng; Zhou, Zhengping; Bedarkar, Amol; Zhao, Youhao

    2014-03-01

    Two immiscible droplets wetting on a filament may assume engulfing, partial-engulfing, or non-engulfing morphology that depends on the wetting behavior and geometries of the resulting droplet-on-filament system. This paper studies the wetting behavior of two immiscible droplets contacting and sitting symmetrically on a straight filament. A set of ordinary differential equations (ODEs) is formulated for determining the wetting morphology of the droplet-on-filament system. In the limiting case of engulfing or non-engulfing, the morphology of the droplet-on-filament system is determined in explicit form. In the case of partial-engulfing, surface finite element method is further employed for determining the wetting morphology, surface energy, and internal pressures of droplets of the system. Numerical scaling study is performed to explore their dependencies upon the wetting properties and geometries of the system. The study can be applicable for analysis and design of textiles with tailorable wetting properties and development of novel multifunctional fibrous materials for environmental protection such as oil-spill sorption, etc.

  3. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage.

    PubMed Central

    Gardner, D L; O'Connor, P; Oates, K

    1981-01-01

    Fifty seven blocks of cartilage excised from the femoral condyles of 20 beagle dogs, and whole lower ends of 5 guinea-pig femora, were examined at -195 degrees (78 K), by scanning electron microscopy. The unfixed tissue, taken into slushy nitrogen at -210 degrees (63 K), was not exposed to atmospheric air after quenching and remained fully hydrated throughout long periods of observation. Images susceptible to analysis were obtained from washed and from unwashed cartilage surfaces. Preliminary coating with gold or with aluminium, known to be possible without exposing cold cartilage surfaces to changes in temperature likely to cause water loss by sublimation, was valuable in minimising charging and in facilitating the recording of electron images at higher magnifications. Although examination was possible without coating, the resultant images were of low resolution. Microscopy revealed a pattern of secondary surface irregularities of tertiary elevations closely resembling those seen by the conventional scanning electron microscopy of fixed, dehydrated hyaline cartilage. However, the pattern of tertiary surface structures was predominantly that of elevations, not of hollows. Quaternary surface ridges were common on the surfaces of excised dog cartilage blocks and were not seen on the surfaces of guinea-pig cartilage which remained on the femoral condyles. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:7024225

  4. Dysplastic follicular dendritic cells in hyaline-vascular Castleman disease: a rare occurrence creating diagnostic difficulty.

    PubMed

    Medina, Edward A; Fuehrer, Neil E; Miller, Frank R; Kinney, Marsha C; Higgins, Russell A

    2016-09-01

    Follicular dendritic cell (FDC) proliferations and dysplastic FDCs can be seen in Hyaline-vascular Castleman disease (HVCD). The association between HVCD and FDC sarcoma is well-documented; dysplastic FDCs may be precursors to FDC sarcoma. Herein, we describe a case of HVCD with strikingly large and dysplastic FDCs, which raised the differential of Hodgkin lymphoma and other neoplasms. Scattered dysplastic FDCs were predominantly in germinal centers and mantle zones, and rarely in interfollicular areas. Although occasional germinal centers contained increased FDCs, no mass forming proliferations were present to suggest FDC sarcoma. Immunostaining demonstrated that the atypical FDCs expressed CD21, clusterin and CXCL13, but not CD23, S100, pankeratin or CD30; they aberrantly expressed epidermal growth factor receptor (EGFR). The present case demonstrates that dysplastic FDCs may be present as isolated cells that require immunophenotyping to distinguish them from malignant entities with similar morphologic features. A variety of FDC markers is required to confirm their origin as the expression of any single marker is not assured, as occurred in this case. Pathologists need be aware of FDC proliferations in HVCD because of their association with FDC sarcoma. Aberrant EGFR expression by dysplastic FDCs may indicate that they are pre-neoplastic and necessitate long-term patient follow-up. PMID:27593552

  5. Uniform-droplet spray forming

    SciTech Connect

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon; Ando, T.

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  6. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  7. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  8. Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo

    PubMed Central

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E.; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  9. Droplets merging through wireless ultrasonic actuation.

    PubMed

    Nayak, Praveen Priyaranjan; Kar, Durga Prasanna; Bhuyan, Satyanarayan

    2016-01-01

    A new technique of droplets merging through wireless ultrasonic actuation has been proposed and experimentally investigated in this work. The proposed method is based on the principle of resonant inductive coupling and piezoelectric resonance. When a mechanical vibration is excited in a piezoelectric plate, the ultrasonic vibration transmitted to the droplets placed on its surface and induces merging. It has been observed that the merging rate of water droplets depends on the operating frequency, mechanical vibration of piezoelectric plate, separation distance between the droplets, and volume of droplets. The investigated technique of droplets merging through piezoelectric actuation is quite useful for microfluidics, chemical and biomedical engineering applications.

  10. Renal histopathology in toxicity and carcinogenicity studies with tert-butyl alcohol administered in drinking water to F344 rats: a pathology working group review and re-evaluation.

    PubMed

    Hard, Gordon C; Bruner, Richard H; Cohen, Samuel M; Pletcher, John M; Regan, Karen S

    2011-04-01

    An independent Pathology Working Group (PWG) re-evaluated the kidney changes in National Toxicology Program (NTP) toxicology/carcinogenicity studies of tert-butyl alcohol (TBA) in F344/N rats to determine possible mode(s) of action underlying renal tubule tumors in male rats at 2-years. In the 13-week study, the PWG confirmed that the normal pattern of round hyaline droplets in proximal convoluted tubules was replaced by angular droplet accumulation, and identified precursors of granular casts in the outer medulla, changes typical of alpha(2u)-globulin (α(2u)-g) nephropathy. In the 2-year study, the PWG confirmed the NTP observation of increased renal tubule tumors in treated male groups. Linear papillary mineralization, another hallmark of the α(2u)-g pathway was present only in treated male rats. Chronic progressive nephropathy (CPN) was exacerbated in high-dose males and females, with a relationship between advanced grades of CPN and renal tumor occurrence. Hyperplasia of the papilla lining was a component of CPN in both sexes, but there was no pelvic urothelial hyperplasia. High-dose females showed no TBA-related nephrotoxicity. The PWG concluded that both α(2u)-g nephropathy and exacerbated CPN modes of action were operative in TBA renal tumorigenicity in male rats, neither of which has relevance for human cancer risk.

  11. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance

  12. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  13. The Droplet Combustion Experiment (DCE)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (167KB, 5-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300166.html.

  14. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  15. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  16. Chronic toxicity studies on 1,3,5-trinitrobenzene in Fischer 344 rats. Final report, 1 May 1993-30 April 1995

    SciTech Connect

    Reddy, T.V.; Daniel, F.B.; Olson, G.R.; Wiechman, B.; Torsella, J.

    1996-02-01

    Chronic toxic effects of I ,3,5-tnnitriotrobenzene (TNB) in male and female Fischer rats were evaluated by feeding certified powdered laboratory chow diet supplemented with varied concentrations of TNB (0, 5, 60 and 300 mg/kg diet). The study was designed to accommodate three interim sacrifices (10 rats/group/sex) at 90, 180 and 365 days. The final sacrifice was performed after two years. All data related to these interim sacrifices are presented independently in appendices J to L. The calculated average TNB consumption for females was 0.23, 2.68 and 13.31 mg/kg/day and was 0.22, 2.64 and 13.44 mg/kg/day for males. Terminal body weights were significantly decreased in both sexes in the 300 mg/kg group. Relative spleen weights were decreased in both sexes in the 300 mg/kg group while brain weights were increased in females in this same group. Methemoglobin was increased in both sexes in the 300 mg/kg group while other hematological effects noted at the interim sacrifice times were not evident at two years. Histopathological examinations suggested treatment related changes in both sexes involving the kidneys (cytoplasmic/hyaline droplets) in the 60 and 300 mg/kg groups and the spleen (erythroid cell hyperplasia and pigment deposition) in the 300 mg/kg group. The cytoplasmic/hyaline droplets were characterized by immunohistochemistry as alpha-2u-globulin. These renal droplets were also noted at the interim sacrifice times. A no observed adverse effect level (NOAEL) was established in this study at 2.68 mg/kg b.w./day for F-344 rats administered TNB for two years.

  17. Persisting water droplets on water surfaces.

    PubMed

    Klyuzhin, Ivan S; Ienna, Federico; Roeder, Brandon; Wexler, Adam; Pollack, Gerald H

    2010-11-11

    Droplets of various liquids may float on the respective surfaces for extended periods of time prior to coalescence. We explored the features of delayed coalescence in highly purified water. Droplets several millimeters in diameter were released from a nozzle onto a water surface. Results showed that droplets had float times up to hundreds of milliseconds. When the droplets did coalesce, they did so in stepwise fashion, with periods of quiescence interspersed between periods of coalescence. Up to six steps were noted before the droplet finally vanished. Droplets were released in a series, which allowed the detection of unexpected abrupt float-time changes throughout the duration of the series. Factors such as electrostatic charge, droplet size, and sideways motion had considerable effect on droplet lifetime, as did reduction of pressure, which also diminished the number of steps needed for coalescence. On the basis of present observations and recent reports, a possible mechanism for noncoalescence is considered. PMID:20961076

  18. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations.

    PubMed

    You, David J; Yoon, Jeong-Yeol

    2012-01-01

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using "wire-guided" method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  19. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    PubMed Central

    2012-01-01

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  20. Two rare entities in the same palate lesion: hyalinizing-type clear cell carcinoma and necrotizing sialometaplasia.

    PubMed

    Arpaci, Rabia Bozdoğan; Kara, Tuba; Porgali, Canan; Serinsoz, Ebru; Polat, Ayse; Vayisoglu, Yusuf; Ozcan, Cengiz

    2014-05-01

    Hyalinizing clear cell carcinoma is a low-grade malignant epithelial neoplasm of the salivary glands. The tumor has epithelial cells and lacks myoepithelial cells. Necrotizing sialometaplasia is a benign, self-limiting lesion of the salivary glands. The clinical and histologic features mimic those of mucoepidermoid carcinoma or squamous cell carcinoma. The importance of these entities are the rarity of both of them and their potential to be misdiagnosed as other lesions. Pathologists and clinicians should be aware of these entities to prevent misdiagnosis. This is the first clinical report of 2 rare and consecutive different entities of the same location on the hard palate to our knowledge.

  1. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  2. Droplet Combustion and Soot Formation in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1994-01-01

    One of the most complex processes involved in the combustion ot liquid fuels is the formation of soot. A well characterized flow field and simplified flame structure can improve considerably the understanding of soot formation processes. The simplest flame shape to analyze for a droplet is spherical with its associated one-dimensional flow field. It is a fundamental limit and the oldest and most often analyzed configuration of droplet combustion. Spherical symmetry in the droplet burning process will arise when there is no relative motion between the droplet and ambience or uneven heating around the droplet periphery, and buoyancy effects are negligible. The flame and droplet are then concentric with each other and there is no liquid circulation within the droplet. An understanding of the effect of soot on droplet combustion should therefore benefit from this simplified configuration. Soot formed during spherically symmetric droplet combustion, however, has only recently drawn attention and it appears to be one of the few aspects associated with droplet combustion which have not yet been thoroughly investigated. For this review, the broad subject of droplet combustion is narrowed considerably by restricting attention specifically to soot combined with spherically symmetric droplet burning processes that are promoted.

  3. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics. PMID:27461899

  4. Sophisticated compound droplets on fiber networks

    NASA Astrophysics Data System (ADS)

    Weyer, Floriane; Lismont, Marjorie; Dreesen, Laurent; Vandewalle, Nicolas

    2015-11-01

    Droplets on fibers are part of our everyday lives. Indeed, many phenomena involve drops and fibers such as the formation of dew droplets on a spiderweb, the trapping of water droplets on cactus spines or the dyeing of cotton or wool fibers. Therefore, this topic has been widely studied in the recent years and it appears that droplets on fibers can be the starting point for an open digital microfluidics. We study the behavior of soapy water droplets on a fiber array. When a droplet slides along a vertical fiber and encounters a horizontal fiber, it can either stick there or continue its way. In the latter case, the droplet releases a tiny residue. We study the volume of these residues depending on the geometry of the node. By using this technique, a large number of small droplets can be trapped at the nodes of a fiber array. These residues can be encapsulated and collected by an oil droplet in order to create a multicompound droplet. Moreover, by using optical fibers, we can provoke and detect the fluorescence of the inner droplets. Fibers provide therefore an original way to study compound droplets and multiple reactions. F. Weyer is financially supported by an FNRS grant. This work is also supported by the FRFC 2.4504.12.

  5. Water droplet impact on elastic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Weisensee, Patricia B.; Tian, Junjiao; Miljkovic, Nenad; King, William P.

    2016-07-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5–7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  6. Reactions in droplets in microfluidic channels.

    PubMed

    Song, Helen; Chen, Delai L; Ismagilov, Rustem F

    2006-11-13

    Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights.

  7. The epididymis, cytoplasmic droplets and male fertility

    PubMed Central

    Cooper, Trevor G

    2011-01-01

    The potential of spermatozoa to become motile during post-testicular maturation, and the relationship between the cytoplasmic droplet and fertilizing capacity are reviewed. Post-testicular maturation of spermatozoa involves the autonomous induction of motility, which can occur in vivo in testes with occluded excurrent ducts and in vitro in testicular explants, and artefactual changes in morphology that appear to occur in the testis in vitro. Both modifications may reflect time-dependent oxidation of disulphide bonds of head and tail proteins. Regulatory volume decrease (RVD), which counters sperm swelling at ejaculation, is discussed in relation to loss of cytoplasmic droplets and consequences for fertility. It is postulated that: (i) fertile males possess spermatozoa with sufficient osmolytes to drive RVD at ejaculation, permitting the droplet to round up and pinch off without membrane rupture; and (ii) infertile males possess spermatozoa with insufficient osmolytes so that RVD is inadequate, the droplet swells and the resulting flagellar angulation prevents droplet loss. Droplet retention at ejaculation is a harbinger of infertility caused by failure of the spermatozoon to negotiate the uterotubal junction or mucous and reach the egg. In this hypothesis, the epididymis regulates fertility indirectly by the extent of osmolyte provision to spermatozoa, which influences RVD and therefore droplet loss. Man is an exception, because ejaculated human spermatozoa retain their droplets. This may reflect their short midpiece, approximating head length, permitting a swollen droplet to extend along the entire midpiece; this not only obviates droplet migration and flagellar angulation but also hampers droplet loss. PMID:21076437

  8. Formation and Levitation of Unconfined Droplet Clusters

    NASA Technical Reports Server (NTRS)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  9. Droplet Vorticity Alignment in Model Polymer Blends

    NASA Astrophysics Data System (ADS)

    Migler, Kalman

    2000-03-01

    The shear induced deformation of polymeric droplets in an immiscible polymeric matrix is studied using a transparent rotating plate-plate device. We consider the case where the viscosity ratio of the two phases is near unity, but the elasticity ratio of the droplet to the matrix is of order 10^2. This is achieved by using a matrix of PDMS and a droplet of a PIB based Boger fluid. In the limit of weak shear and small droplets, the droplet alignment is along the shear direction, whereas for strong shear and large droplets, the alignment is along the vorticity direction. There is a range of conditions for which alignment can be along either axis. For droplets aligned along the vorticity axis, the distribution of aspect ratios is broad. The transformation from flow alignment to vorticity alignment upon commencement of shear flow has been observed and correlates with the time scale for development of normal forces in the Boger fluid.

  10. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  11. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  12. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    PubMed

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb. PMID:26430588

  13. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study

    PubMed Central

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V. N.; Poh, Chueh Loo; Wang, Dong-An

    2015-01-01

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair. PMID:26549401

  14. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension

    PubMed Central

    Balkovec, Christian; Adams, Michael A.; Dolan, Patricia; McGill, Stuart M.

    2015-01-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone–disk–bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage–bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb. PMID:26430588

  15. [A case of pulmonary hyalinizing granuloma with high-grade uptake on FDG-PET mimicking metastatic lung cancer].

    PubMed

    Kaneta, Toshikado; Saito, Atsushi; Akiyama, Takayoshi; Takahashi, Youko; Takahashi, Ryuji; Kudou, Kazuhiro

    2009-10-01

    A 28-year-old man was referred to Hakodate Municipal Hospital for examination of multiple pulmonary nodules detected on a medical check-up. His chest CT demonstrated well-defined multiple nodules with random distribution. 18-fluorodeoxyglucose positron emission tomography (FDG-PET) showed abnormal uptake in the pulmonary nodules and the hilar, mediastinal lymph node. No other accumulation was observed outside the thorax. Transbronchial lung biopsy did not yield a diagnosis. Based on the high accumulation on FDG-PET, we suspected a malignant tumor and performed right S4 wedge resection under video assisted thoracoscopy. Considering the histologocal and immunohistological findings, we diagnosed pulmonary hyalinizing granuloma. No treatment was given and subsequently stable disease was obtained on chest radiography. The follow-up FDG-PET showed standardized uptake value reduction. Pulmonary hyalinizing granuloma is infrequent and benign, but has been reported to possibly progress to lymphoproliferative disease. Consequently, FDG-PET is valuable to evaluate the activity of the disease itself and the possibility of transition. PMID:19882922

  16. Hyalinizing Spindle Cell Tumor with Giant Rosettes with Pulmonary Metastasis After a Long Hiatus: A Case Report

    PubMed Central

    Chang, Eundeok; Lee, Eunjung; Shin, Okran; Kang, Changsuk; Kim, Joon Mee; Chu, Young Chae

    2004-01-01

    "Hyalinizing spindle cell tumor with giant rosettes" (HSCTGR) is a recently described tumor, which is regarded as an unusual variant of low-grade fibromyxoid sarcoma. Proof of a metastatic potential was lacking. The patient in the report was a 35-yr-old woman who showed multiple bilateral pulmonary nodules with massive pleural effusion in the right side. She had a history of a mass excision in the right thigh 11 yrs ago at another hospital, which was reported as a "leiomyoma". Two years before this presentation, the patient received a routine chest radiograph which demonstrated bilateral multiple pulmonary nodules. A lobectomy of the left upper lung was performed. The histological findings revealed a well-circumscribed nodule that was characterized by a spindle-shaped fibrous to hyalinized stroma with criss-crossing short fascicles and giant collagen rosettes surrounded by a rim of spindle-shaped cells. Electron microscopy confirmed the fibroblastic nature of the tumor. This case, in addition to at least two other cases reported in the literature, demonstrates that the HSCTGR is a malignant neoplasm with the capacity to metastasize after a long hiatus. PMID:15308860

  17. [Molecular heterogeneity of proteoglycan aggregates of human hyalin cartilage in normal conditions and in systemic bone dysplasia].

    PubMed

    Feshchenko, S P; Krasnopol'skaia, K D; Rebrin, I A; Rudakov, S S

    1989-01-01

    Components of proteoglycan aggregates of human hyalin cartilage were studied under conditions of normal state and in some forms of osteochondrodysplasia. Extraction of uronic acids and protein from the tissue, amount of fractions and electrophoretic mobility of proteoglycan monomers, rations protein/glycosaminoglycans, keratan sulfate/chondroitin sulfate, a level and type of sulfatation as well as molecular mass of chondroitin sulfate, amino acid composition of rod protein, heterogeneity of binding proteins (concerning their isoelectric points and molecular masses) and immunoreactivity of protein moiety in proteoglycan aggregates were studied in rib cartilage, knee joint and ala ossis ilii. Structural parameters of proteoglycan aggregates proved to be dissimilar and depended on cartilage localization and age of the donors. Impairments in the rate of chondroitin sulfate sulfatation were detected in achondrogenesis of the II type and in diastrophic dysplasia; an extraction ability and amount of proteoglycan fractions, relative content of glycosaminoglycans and binding proteins were altered in some other forms of osteochondrodysplasias. Numerous biochemical markers of extracellular matrix deterioration were detected, which are typical for various morphofunctional alterations in hyalin cartilage--hyperproliferative reactions, tissue prematuration, persistence of the embryonal type of metabolism. PMID:2472707

  18. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.

    PubMed

    Lee, Sangmin; Hong, Seok Jun; Yoo, Hyung Jung; Ahn, Jae Hyun; Cho, Dong-il Dan

    2013-06-01

    Droplet-based microfluidics is receiving much attention in biomedical research area due to its advantage in uniform size droplet generation. Our previous results have reported that droplet size plays an important role in drug delivery actuated by flagellated bacteria. Recently, many research groups have been reported the size-dependent separation of emulsion droplets by a microfluidic system. In this paper, an integrated microfluidic system is proposed to produce and sort specificsized droplets sequentially. Operation of the system relies on two microfluidic transport processes: initial generation of droplets by hydrodynamic focusing and subsequent separation of droplets by a T-junction channel. The microfluidic system is fabricated by the SU-8 rapid prototyping method and poly-di-methyl-siloxane (PDMS) replica molding. A biodegradable polymer, poly-capro-lactone (PCL), is used for the droplet material. Using the proposed integrated microfluidic system, specific-sized droplets which can be delivered by flagellated bacteria are successfully generated and obtained. PMID:23858958

  19. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  20. Shape-Shifting Droplet Networks.

    PubMed

    Zhang, T; Wan, Duanduan; Schwarz, J M; Bowick, M J

    2016-03-11

    We consider a three-dimensional network of aqueous droplets joined by single lipid bilayers to form a cohesive, tissuelike material. The droplets in these networks can be programed to have distinct osmolarities so that osmotic gradients generate internal stresses via local fluid flows to cause the network to change shape. We discover, using molecular dynamics simulations, a reversible folding-unfolding process by adding an osmotic interaction with the surrounding environment which necessarily evolves dynamically as the shape of the network changes. This discovery is the next important step towards osmotic robotics in this system. We also explore analytically and numerically how the networks become faceted via buckling and how quasi-one-dimensional networks become three dimensional. PMID:27015513

  1. Shape-Shifting Droplet Networks

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Wan, Duanduan; Schwarz, J. M.; Bowick, M. J.

    2016-03-01

    We consider a three-dimensional network of aqueous droplets joined by single lipid bilayers to form a cohesive, tissuelike material. The droplets in these networks can be programed to have distinct osmolarities so that osmotic gradients generate internal stresses via local fluid flows to cause the network to change shape. We discover, using molecular dynamics simulations, a reversible folding-unfolding process by adding an osmotic interaction with the surrounding environment which necessarily evolves dynamically as the shape of the network changes. This discovery is the next important step towards osmotic robotics in this system. We also explore analytically and numerically how the networks become faceted via buckling and how quasi-one-dimensional networks become three dimensional.

  2. Recent developments in droplet epitaxy

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Abbarchi, Marco; Noda, Takeshi; Sakoda, Kazuaki

    2014-05-15

    The droplet epitaxy allows for self-assembly of lattice-matched GaAs quantum dots (QDs) with high quality and high uniformity. In this article, we show our efforts to realize the GaAs QDs with excellent optical properties. After the optimization of the several growth processes, we achieved current-injection lasing in the GaAs QDs. In addition, formation of further advanced nanostructure is presented.

  3. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  4. Vortices catapult droplets in atomization

    SciTech Connect

    Jerome, J. John Soundar Zaleski, Stéphane; Hoepffner, Jérôme; Marty, Sylvain; Matas, Jean-Philippe

    2013-11-15

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave—just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  5. Vortices catapult droplets in atomization

    NASA Astrophysics Data System (ADS)

    Jerome, J. John Soundar; Marty, Sylvain; Matas, Jean-Philippe; Zaleski, Stéphane; Hoepffner, Jérôme

    2013-11-01

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave—just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  6. Compound droplet manipulations on fiber arrays

    NASA Astrophysics Data System (ADS)

    Weyer, Floriane; Lismont, Marjorie; Dreesen, Laurent; Vandewalle, Nicolas

    2014-11-01

    Recent works demonstrated that fibers are the basis of an open digital microfluidics. Indeed, various processes such as droplet motion, fragmentation, trapping, releasing, mixing and encapsulation can be constructed on fiber arrays. However, addressing a large number of tiny droplets resulting from the mixing of several liquid components is still a challenge. Here we show that it is possible to manipulate tiny droplets reaching a high level of complexity. Wetting droplets are known to glide along vertical fibers. When a droplet reaches an horizontal fiber, it sticks at the crossing if capillary overcomes gravity. Otherwise, the droplet continues its way, crosses the node and leaves a tiny residue. Therefore, a vertical fiber decorated with a series of horizontal fibers will retain residual droplets at the successive nodes. An oil droplet, sliding on the vertical fiber, is able to collect the residues. Thus a multicompound droplet is created. The volume of the residual droplets has been studied and seems to be related to the diameters of both vertical and horizontal fibers. Moreover, the conditions under which the residues are released have been investigated in order to understand the formation of such a fluidic object. F. Weyer is financially supported by an FNRS grant. This work is also supported by the FRFC 2.4504.12.

  7. Insight into instabilities in burning droplets

    NASA Astrophysics Data System (ADS)

    Miglani, Ankur; Basu, Saptarshi; Kumar, Ranganathan

    2014-03-01

    The complex multiscale physics of nano-particle laden functional droplets in a reacting environment is of fundamental and applied significance for a wide variety of applications ranging from thermal sprays to pharmaceutics to modern day combustors using new brands of bio-fuels. Formation of homogenous nucleated bubbles at the superheat limit inside vaporizing droplets (with or without nanoparticles) represents an unstable system. Here we show that self-induced boiling in burning functional pendant droplets can produce severe volumetric shape oscillations. Internal pressure build-up due to ebullition activity ejects bubbles from the droplet domain causing undulations on the droplet surface and oscillations in bulk. Through experiments, we establish that the degree of droplet deformation depends on the frequency and intensity of these bubble expulsion events. In a distinct regime of single isolated bubble residing in the droplet, however, pre-ejection transient time is identified by Darrieus-Landau evaporative instability, where bubble-droplet system behaves as a synchronized driver-driven system with bulk bubble-shape oscillations being imposed on the droplet. The agglomeration of nanophase additives modulates the flow structures within the droplet and also influences the bubble inception and growth leading to different levels of instabilities.

  8. Modeling of non-spherical droplet dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn C.

    1993-07-01

    A two-dimensional time-dependent computer code based on the modified Arbitrary Lagrangian Eulerian (ALE) technique, has been developed to simulate non-spherical droplet dynamics and evaporation under convective flows at real rocket combustion chamber conditions. The equations of mass, momentum, energy and species are simultaneously solved for both liquid and gas phases with an accurate dynamic interface tracking. The jump boundary conditions across the deforming droplet surface are obtained by applying the integral forms of conservation of mass, momentum, and energy. At each time step, the interface geometry and flow properties at the droplet surface are implicitly solved by satisfying the interface boundary conditions. A Lagrangian technique was developed to track the arbitrarily moving interface between the liquid droplet and the external gas. An elliptic grid generator is adopted to dynamically reconstruct grids both inside and outside the droplet surface. This code has been used to study droplet oscillation, droplet deformation/breakup, nonspherical droplet evaporation in both low and high pressure convective flows. This presentation briefly describes the numerical algorithm for modeling of the nonspherical droplet dynamics and demonstrates the representative simulation results of nonspherical droplet evaporation at low and high pressure convective flows. Potential applications of this code to rocket combustor design and performance predictions are discussed.

  9. Bouncing of polymeric droplets on liquid interfaces.

    PubMed

    Gier, S; Dorbolo, S; Terwagne, D; Vandewalle, N; Wagner, C

    2012-12-01

    The effect of polymers on the bouncing behavior of droplets in a highly viscous, vertically shaken silicone oil bath was investigated in this study. Droplets of a sample liquid were carefully placed on a vibrating bath that was maintained well below the threshold of Faraday waves. The bouncing threshold of the plate acceleration depended on the acceleration frequency. For pure water droplets and droplets of aqueous polymer solutions, a minimum acceleration amplitude was observed in the acceleration threshold curves as a function of frequency. The bouncing acceleration amplitude for a droplet of a dilute aqueous polymer solution was higher than the acceleration amplitude for a pure water droplet. Measurements of the center of mass trajectory and the droplet deformations showed that the controlling parameter in the bouncing process was the oscillating elongational rate of the droplet. This parameter can be directly related to the elongational viscosity of the polymeric samples. The large elongational viscosity of the polymer solution droplets suppressed large droplet deformations, resulting in less chaotic bouncing. PMID:23368045

  10. ULV droplet spectra: comparative analysis of six droplet collection methods.

    PubMed

    Brown, J R; Breaud, T P; Chew, V

    1990-12-01

    Three distances (1.2, 3.0 and 7.6 m) and 4 methods (complete diagonal swing, impinger, top diagonal swing and vertical swing) were compared in analyzing the droplet spectra of electrically generated ULV aerosol clouds. There were no significant differences among the 4 methods and no interaction between method and distance. However, when compared over distance, the percent variability indicated the complete diagonal swing provided the most consistent results. Two additional methods (pendulum and settling chamber) were compared with the original 4 methods at 1.2 m only. At this distance, there was no significant difference among the 6 methods.

  11. A parameterization of cloud droplet nucleation

    SciTech Connect

    Ghan, S.J.; Chuang, C.C.; Penner, J.E.

    1994-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-interactions, the droplet nucleation process must be adequately represented. Ghan et al. have introduced a droplet nucleation parameterization for a single aerosol type that offers certain advantages over the popular Twomey parameterization. Here we describe the generalization of that parameterization to the case of multiple aerosol types, with estimation of aerosol mass as well as number activated.

  12. How faceted liquid droplets grow tails.

    PubMed

    Guttman, Shani; Sapir, Zvi; Schultz, Moty; Butenko, Alexander V; Ocko, Benjamin M; Deutsch, Moshe; Sloutskin, Eli

    2016-01-19

    Liquid droplets, widely encountered in everyday life, have no flat facets. Here we show that water-dispersed oil droplets can be reversibly temperature-tuned to icosahedral and other faceted shapes, hitherto unreported for liquid droplets. These shape changes are shown to originate in the interplay between interfacial tension and the elasticity of the droplet's 2-nm-thick interfacial monolayer, which crystallizes at some T = Ts above the oil's melting point, with the droplet's bulk remaining liquid. Strikingly, at still-lower temperatures, this interfacial freezing (IF) effect also causes droplets to deform, split, and grow tails. Our findings provide deep insights into molecular-scale elasticity and allow formation of emulsions of tunable stability for directed self-assembly of complex-shaped particles and other future technologies. PMID:26733673

  13. Droplet Impact on Inclined, Planar Surfaces

    NASA Astrophysics Data System (ADS)

    Neitzel, G. Paul; Carroll, Phares

    2010-11-01

    The impact of a liquid droplet on a planar surface is of interest in a variety of applications ranging from droplet-impingement cooling to forensic blood-spatter analysis. An experimental system capable of generating liquid droplets of varying diameters and velocities of relevance to the latter of these applications has been developed for use in an educational context by secondary-school students. Experiments have been performed to quantify droplet patterns corresponding to several relevant dimensionless parameters, i.e., the Weber number, contact angle, impact/inclination angle, and roughness ratio. Results show that characteristics of droplet collisions, namely the eccentricity of the splash zone and creation of spines from a droplet's corona, can be attributed to and predicted by these dimensionless parameters for the range of inclination angle, Weber number, and impact surfaces included in the present study.

  14. Ceramic liquid droplets stabilized in vacuum

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Tsuruta, Y.; Yonezawa, Y.; Ohsawa, T.; Koinuma, H.; Matsumoto, Y.

    2007-02-01

    We have studied the ceramic liquid droplet of CuOx-added BiOx at high temperature in vacuum. CuOx always floated on the BiOx as a surfactant and suppressed the evaporation of volatile BiOx liquid droplets. A clear liquid behavior of the BiOx droplets was directly observed by in situ laser microscope, with numerous liquid droplets growing by the coalescences in accordance with Marangoni's [Nuovo Cimento Ser. 2, 239 (1872)] effect involved with the precursor film. We have also found a unique absorption of CaO into the BiOx liquid droplets, based on which a reliable process has been established for an atomically flat surface of MgO(001). These results open a broad window of opportunity to tailor not only a chemical interaction on oxide surface but also a liquid droplet dynamics in vacuum.

  15. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  16. Bouncing droplets on a billiard table.

    PubMed

    Shirokoff, David

    2013-03-01

    In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.

  17. Oscillatory combustion of liquid monopropellant droplets

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Faeth, G. M.

    1976-01-01

    A theoretical investigation was conducted on the open-loop combustion response of monopropellant droplets and sprays to imposed pressure oscillations. The theoretical model was solved as a perturbation analysis through first order, yielding linear response results. Unsteady gas phase effects were considered in some cases, but the bulk of the calculations assumed a quasi-steady gas phase. Calculations were conducted using properties corresponding to hydrazine decomposition. Zero-order results agreed with earlier measurements of hydrazine droplet burning in combustion gases. The droplet response was greatest (exceeding unity in some cases) for large droplets with liquid phase temperature gradients; at frequencies near the characteristic frequency of the liquid phase thermal wave. The response of a spray is less than that of its largest droplet, however, a relatively small percentage of large droplets provides a substantial response (exceeding unity in some cases).

  18. Bouncing droplets on a billiard table

    NASA Astrophysics Data System (ADS)

    Shirokoff, David

    2013-03-01

    In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.

  19. Electropermanent magnet actuation for droplet ferromicrofluidics

    PubMed Central

    Padovani, José I.; Jeffrey, Stefanie S.; Howe, Roger T.

    2016-01-01

    Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 104 kA/m2. Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets. Maximum droplet displacement velocities of up to 300 µm/s are obtained under flow and no-flow conditions. Electropermanent magnet-activated droplet sorting under continuous flow is demonstrated using a split-junction microfluidic design. PMID:27583301

  20. Droplet Deformation Prediction with the Droplet Deormation and Break Up Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  1. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  2. Droplet Vaporization in a Supercritical Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Curtis, E. W.; Farrell, P. V.

    1987-01-01

    A model is presented which describes single liquid droplet vaporization at nearly critical liquid pressures and temperatures. A modified Redlich-Kwong equation of state is used to evaluate the fugacities and liquid and vapor mole fractions at the interface under the assumption of interface equilibrium. Results obtained for different droplet sizes and conditions indicate significant differences in behavior in comparison with low-pressure quasi-steady droplet vaporization.

  3. Self-propelled chemotactic ionic liquid droplets.

    PubMed

    Francis, Wayne; Fay, Cormac; Florea, Larisa; Diamond, Dermot

    2015-02-11

    Herein we report the chemotactic behaviour of self-propelled droplets composed solely of the ionic liquid trihexyl(tetradecyl)phosphonium chloride ([P(6,6,6,14)][Cl]). These droplets spontaneously move along an aqueous-air boundary in the direction of chloride gradients to specific destinations due to asymmetric release of [P(6,6,6,14)](+) cationic surfactant from the droplet into the aqueous phase.

  4. Impingement of Water Droplets on a Sphere

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Saper, Paul G.; Kadow, Charles F.

    1955-01-01

    Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere.

  5. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  6. Droplet actuation in an electrified microfluidic network.

    PubMed

    Wehking, Jonathan D; Kumar, Ranganathan

    2015-02-01

    This work demonstrates that liquid droplet emulsions in a microchannel can be deformed, decelerated and/or pinned by applying a suitable electrical potential. By concentrating a potential gradient at the corners, we show that different droplets can be passively binned by size and on demand in a branched microfluidic device. The deformation, deceleration, squeezing and release of droplets in a three-dimensional numerical simulation are qualitatively verified by experiments in a PDMS microfluidic device. The forces required for pinning or binning a droplet provide a delicate balance between hydrodynamics and the electric field, and are obtained using appropriate non-dimensional parameters. PMID:25435073

  7. Fiber Supported Droplet Combustion-2 (FSDC-2)

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato; Dietrich, Daniel; Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Shaw, Benjamin D.; Williams, Forman A.

    1998-01-01

    Experimental results for the burning characteristics of fiber supported, liquid droplets in ambient Shuttle cabin air (21% oxygen, 1 bar pressure) were obtained from the Glove Box Facility aboard the STS-94/MSL-1 mission using the Fiber Supported Droplet Combustion - 2 (FSDC-2) apparatus. The combustion of individual droplets of methanol/water mixtures, ethanol, ethanol/water azeotrope, n-heptane, n-decane, and n-heptane/n-hexadecane mixtures were studied in quiescent air. The effects of low velocity, laminar gas phase forced convection on the combustion of individual droplets of n-heptane and n-decane were investigated and interactions of two droplet-arrays of n-heptane and n-decane droplets were also studied with and without gas phase convective flow. Initial diameters ranging from about 2mm to over 6mm were burned on 80-100 micron silicon fibers. In addition to phenomenological observations, quantitative data were obtained in the form of backlit images of the burning droplets, overall flame images, and radiometric combustion emission measurements as a function of the burning time in each experiment. In all, 124 of the 129 attempted experiments (or about twice the number of experiments originally planned for the STS-94/MSL-1 mission) were conducted successfully. The experimental results contribute new observations on the combustion properties of pure alkanes, binary alkane mixtures, and simple alcohols for droplet sizes not studied previously, including measurements on individual droplets and two-droplet arrays, inclusive of the effects of forced gas phase convection. New phenomena characterized experimentally for the first time include radiative extinction of droplet burning for alkanes and the "twin effect" which occurs as a result of interactions during the combustion of two-droplet arrays. Numerical modeling of isolated droplet combustion phenomenon has been conducted for methanol/water mixtures, n-heptane, and n-heptane/n-hexadecane mixtures, and results

  8. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; T'ien, James S.; Dietrich, Daniel L.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY) ) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  9. Colliding droplets: a short film presentation

    SciTech Connect

    Hendricks, C.D.

    1981-12-22

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets. The experiments will be discussed and a short movie film presentation of some of the impacts will be shown.

  10. Compound droplet manipulations on fiber arrays.

    PubMed

    Weyer, F; Lismont, M; Dreesen, L; Vandewalle, N

    2015-09-28

    Recent works demonstrated that fiber arrays may constitute new means of designing open digital microfluidic systems. Various processes, such as droplet motion, fragmentation, trapping, release, mixing and encapsulation, may be achieved on fiber arrays. However, handling a large number of tiny droplets resulting from the mixing of several liquid components is required for developing microreactors, smart sensors or microemulsifying drugs. Here, we show that the manipulation of tiny droplets onto fiber networks allows for creating compound droplets with a high complexity level. Moreover, this cost-effective and adjustable method may also be implemented with optical fibers in order to develop fluorescence-based biosensor.

  11. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Dietrich, Daniel L.; T'ien, James S.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY)) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  12. Pulmonary hyalinizing granulomas in a patient with malignant lymphoma, with development nine years later of multiple myeloma and systemic amyloidosis.

    PubMed

    Drasin, H; Blume, M R; Rosenbaum, E H; Klein, H Z

    1979-07-01

    In our patient, multiple bilateral nodular pulmonary densities appeared on a chest x-ray at the time of diagnosis of stage IV diffuse lymphocytic lymphoma. After localized radiation therapy, the patient received no further systemic therapy. The pulmonary nodules slowly became larger and more numerous. Nine years later the patient developed proven multiple myeloma. Pulmonary hyalinizing granulomas have not heretofore been associated with proven lymphoreticular neoplasia, although this has long been suspected. The occurrence of two B-cell tumors at different points in time associated with systemic amyloidosis is an extremely rare event. The authors discuss the possibility that these conditions represent an abnormality in a common cell of origin with differing expression over time. Coincidence, however, remains a likely explanation for the different immunopathies that occurred in our patient. PMID:582294

  13. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland.

    PubMed

    Antonescu, Cristina R; Katabi, Nora; Zhang, Lei; Sung, Yun Shao; Seethala, Raja R; Jordan, Richard C; Perez-Ordoñez, Bayardo; Have, Cherry; Asa, Sylvia L; Leong, Iona T; Bradley, Grace; Klieb, Hagen; Weinreb, Ilan

    2011-07-01

    Hyalinizing clear-cell carcinoma (HCCC) is a rare, low-grade salivary gland tumor with distinctive clear-cell morphology and pattern of hyalinization as well as focal mucinous differentiation. However, histological overlap exists with other salivary gland tumors, such as epithelial-myoepithelial carcinoma (EMCa), salivary myoepithelial carcinoma, and mucoepidermoid carcinoma (MEC). The potential relationship between HCCC and its morphological mimics has not been yet investigated at the genetic level. In this study, we conducted a molecular analysis for the presence of rearrangements in MAML2, commonly seen in MECs, and EWSR1, involved in "soft tissue myoepithelial tumors" (SMET) by fusion with POU5F1, PBX1, or ZNF444. Fluorescence in situ hybridization (FISH) was performed on 23 HCCC cases for abnormalities in MAML2, EWSR1, FUS, POU5F1, PBX1, and ZNF444. FISH for MAML2 was negative in all cases (0 of 14), including those with mucinous differentiation (0 of 7). An EWSR1 rearrangement was identified in 18 of 22 HCCCs (82%), while no break-apart signals were seen in FUS, POU5F1, PBX1, or ZNF444. 3'RACE on an EWSR1 rearranged HCCC identified an EWSR1-ATF1 fusion, which was confirmed by RT-PCR. ATF1 involvement was further confirmed by FISH analysis in 13 of 14 EWSR1-rearranged HCCC cases (93%). In contrast, all control cases tested, including among others 5 EMCa and 3 MEC with clear cells, were negative for EWSR1 and ATF1 rearrangements. The presence of EWSR1-ATF1 fusion in most HCCCs reliably separates these tumors from its histological mimics. The distinction from MEC is particularly important, as conventional MEC grading schemes overgrade these indolent HCCCs, potentially impacting on treatment.

  14. EWSR1 genetic rearrangements in salivary gland tumors: a specific and very common feature of hyalinizing clear cell carcinoma.

    PubMed

    Shah, Akeesha A; LeGallo, Robin D; van Zante, Annemieke; Frierson, Henry F; Mills, Stacey E; Berean, Kenneth W; Mentrikoski, Mark J; Stelow, Edward B

    2013-04-01

    The Ewing sarcoma breakpoint region 1 (EWSR1) is translocated in many sarcomas. Recently, its rearrangement has been described in salivary gland hyalinizing clear cell carcinomas (HCCCs) and in a subset of soft tissue myoepitheliomas. This study examines the presence of the EWSR1 rearrangement in a variety of salivary gland lesions including classic myoepitheliomas and HCCCs. Using a tissue microarray and whole-mount sections, fluorescence in situ hybridization (FISH) was performed on a variety of salivary gland lesions including HCCCs. The EWSR1 rearrangement was detected in 87% of HCCCs (13 of 15); all other salivary gland lesions including classic myoepitheliomas had intact EWSR1. Patients with HCCCs with rearranged EWSR1 included 1 man, 10 women, and 2 of unknown sex. Ages ranged from 35 to 83 years; the tumor size ranged from 0.8 to 5.5 cm, and the involved locations included: palate (2), base of the tongue (2), mandible (2), submandibular gland (2), lip (1), floor of the mouth (1), sublingual gland (1), inner cheek (1), and nasopharynx (1). All HCCCs were composed of sheets and nests of monotonous cells with clear cytoplasm within a hyalinized stroma. All tested cases were immunoreactive with antibodies to p63 and were nonreactive with antibodies to more conventional myoepithelial antigens (e.g., smooth muscle actin and S100 protein). These findings show that the EWSR1 rearrangement is almost a defining feature of HCCCs and also confirm that classic salivary gland myoepitheliomas are distinct from these tumors and do not share a pathogenetic relationship with their soft tissue counterparts. PMID:23426124

  15. Unusual remodeling of the hyalinization band in vulval lichen sclerosus by type V collagen and ECM 1 protein

    PubMed Central

    Godoy, Charles A.P.; Teodoro, Walcy R.; Velosa, Ana Paula P.; Garippo, Ana Lucia; Eher, Esmeralda Miristeni; Parra, Edwin Roger; Sotto, Mirian N.; Capelozzi, Vera L.

    2015-01-01

    OBJECTIVES: The vulva is the primary site affected in lichen sclerosus, a chronic dermatosis in women that is histologically characterized by a zone of collagen remodeling in the superior dermis. The normal physiological properties of the vulva depend on the assembly of collagen types I (COLI), III (COLIII) and V (COLV), which form heterotypic fibers, and extracellular matrix protein interactions. COLV regulates the heterotypic fiber diameter, and the preservation of its properties is important for maintaining normal tissue architecture and function. In the current work, we analyzed the expression of COLV and its relationship with COLI, COLIII, elastic fibers and extracellular matrix protein 1 in vulvar biopsies from patients with lichen sclerosus. METHODS: Skin biopsies from 21 patients with lichen sclerosus, classified according to Hewitt histological criteria, were studied and compared to clinically normal vulvar tissue (N=21). Morphology, immunohistochemistry, immunofluorescence, 3D reconstruction and morphometric analysis of COLI, COLIII, COLV deposition, elastic fibers and extracellular matrix 1 expression in a zone of collagen remodeling in the superior dermis were performed. RESULTS: A significant decrease of elastic fibers and extracellular matrix 1 protein was present in the hyalinization zone of lichen sclerosus compared to healthy controls. The non-homogeneous distribution of collagen fibers visualized under immunofluorescence in the hyalinization zone of lichen sclerosus and control skin was confirmed by histomorphometry. Lichen sclerosus dermis shows a significant increase of COLI, COLIII and COLV expression compared to the healthy controls. Significant inverse associations were found between elastic fibers and COLV and between COLV and extracellular matrix 1 expression. A direct association was found between elastic fiber content and extracellular matrix 1 expression. Tridimensional reconstruction of the heterotypic fibers of the lichen sclerosus

  16. Freezing of stratospheric aerosol droplets

    SciTech Connect

    Luo, B.; Peter, T.; Crutzen, P. )

    1994-06-22

    The authors discuss the freezing of sulfuric acid droplets under stratospheric conditions from a thermodynamic point of view. They argue that the primary candidate for freezing is likely to be sulfuric acid tetrahydrate (H[sub 2]SO[sub 4][center dot]4H[sub 2]O). Their theoretical results suggest that the homogeneous freezing rate of this molecule is too low at stratospheric temperatures to explain measured results. Thus experimental values are likely to be due to heterogeneous freezing. This means that an appropriate nuclei must be present for freezing to commence, and has implications also for the formation of nitric acid trihydrates in the stratosphere.

  17. Droplet charging for wet scrubbers.

    PubMed

    Pilat, Michael J; Lukas, John C

    2004-01-01

    Water droplet charge/mass of wet scrubbers was measured over the direct charging applied potential range of 0-20 kV, 30-70 pounds per square inch gauge (206.8-482.6 kPa) water pressure, and with spiral, impingement, and whirl nozzles. The measured charge/mass ranged from -0.0005 to 0.2 microcoulomb/gm and was directly related to the applied voltage. The water charge/mass was a function of the spray nozzle, with the smaller orifice lower-flow nozzles having the higher charge/mass.

  18. Effect of droplet interaction on droplet-laden turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Kuerten, J. G. M.; Vreman, A. W.

    2015-05-01

    We present results of direct numerical simulation of heat transfer and droplet concentration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a differentially heated channel. In particular, we study the effects of droplet collisions by comparing results of simulations with and without droplet collision model for several overall droplet volume fractions. The results show that droplet collisions have a large influence on droplet concentration. Maximum local concentrations, which occur close to the walls of the channel, are reduced by almost an order of magnitude for the case with the highest overall volume fraction. In addition, the positive skewness of the local volume fraction is reduced by a factor of two near the walls. These findings show the importance of including four-way coupling, even in cases where the overall droplet volume fraction is only on the order of 10-4 and the Stokes number in wall units is only about 10. In spite of this large effect of droplet collisions on droplet concentration, the effect on the overall heat transfer between the walls of the channel is not more than approximately 17%. That the effect on the overall heat transfer is relatively small can be explained by the lower heat exchange area between droplets and gas in the near-wall areas, which results in a higher temperature difference between droplets and surrounding gas.

  19. Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet

    NASA Astrophysics Data System (ADS)

    Randall, Greg; Blue, Brent

    2012-11-01

    Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (< 5%) but undesirable droplet stretching. This work shows that by using macromolecular emulsifiers to strengthen the droplet's interfaces, (proteins, tunable peptides, or biotinylated streptavidin) droplet stretching can be greatly inhibited. Proof-of-principle experiments are performed in either a stagnant density-matched aquarium or a vertical channel of buoyancy-driven droplets in a ~kV/cm electric field. A scaling analysis is given from a fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.

  20. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  1. Digital droplet PCR on disk.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Geltman, Marcel; Schwemmer, Frank; Wadle, Simon; Domínguez-Garrido, Elena; López, María; Cervera-Acedo, Cristina; Santibáñez, Paula; von Stetten, Felix; Zengerle, Roland; Paust, Nils

    2016-01-01

    Existing systems for digital droplet PCR (ddPCR) either suffer from low integration or are difficult to introduce to mass fabrication. Here we present an integrated system that is compatible to mass fabrication and combines emulsification, PCR, and fluorescence readout in a single chamber within a disposable cartridge (disk). Droplets are generated by injecting the sample into fluorinated oil via centrifugal step emulsification. The resulting emulsion is aligned in the PCR and readout zone by capillary action. During thermocycling, gas bubbles generated by degassing are removed by capillary driven transport through tapered regions in the PCR chamber. Thereby, the positioning of the emulsion within the readout zone of the PCR chamber is ensured at any time and no bubbles are present during readout. Manual handling of the disk solely requires pipetting of oil and PCR mix into the inlet structures, placing the disk into the thermocycler and subsequently into a microarray scanner. The functionality of the ddPCR process chain is demonstrated by quantitative detection of the cystic fibrosis causing mutation p.Phe508del, which is of interest for non-invasive prenatal testing (NIPT). The mutation was detected in a concentration range spanning four orders of magnitude. We envision that this work will lay the base for the development of highly integrated sample-to-digital-answer PCR systems that can be employed in routine clinical diagnosis. PMID:26610263

  2. Droplet Microfluidics for Virus Discovery

    NASA Astrophysics Data System (ADS)

    Rotem, Assaf; Cockrell, Shelley; Guo, Mira; Pipas, James; Weitz, David

    2012-02-01

    The ability to detect, isolate, and characterize an infectious agent is important for diagnosing and curing infectious diseases. Detecting new viral diseases is a challenge because the number of virus particles is often low and/or localized to a small subset of cells. Even if a new virus is detected, it is difficult to isolate it from clinical or environmental samples where multiple viruses are present each with very different properties. Isolation is crucial for whole genome sequencing because reconstructing a genome from fragments of many different genomes is practically impossible. We present a Droplet Microfluidics platform that can detect, isolate and sequence single viral genomes from complex samples containing mixtures of many viruses. We use metagenomic information about the sample of mixed viruses to select a short genomic sequence whose genome we are interested in characterizing. We then encapsulate single virions from the same sample in picoliter volume droplets and screen for successful PCR amplification of the sequence of interest. The selected drops are pooled and their contents sequenced to reconstruct the genome of interest. This method provides a general tool for detecting, isolating and sequencing genetic elements in clinical and environmental samples.

  3. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  4. Vortices catapult droplets in atomization

    NASA Astrophysics Data System (ADS)

    John Soundar Jerome, J.; Marty, Sylvain; Matas, Jean-Philippe; Zaleski, Stephane; Hoepffner, Jerome

    2013-11-01

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks-up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave-just where the liquid film is now located; the liquid film is blown-up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event.

  5. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  6. Effect of droplet shape on ring stains from dried liquid

    NASA Astrophysics Data System (ADS)

    Santiago, Melvin; Brown, Katherine; Mathur, Harsh

    A landmark experimental paper on coffee stains by Deegan et al included a simple theoretical analysis of circular droplets. The analysis was based on a model informally called the Maxwell House equations. It describes the evolving height profile of the droplet, the evaporation of the solvent and the outflow of solute to the rim of the droplet. Since typical droplets are not circles, here we extend the analysis to more general shapes. We find that for thin droplets the height profile may be determined by solving Poisson's equation in a domain corresponding to the footprint of the droplet. Evaporation is treated in a simple approximation via an electrostatic analogy and is dominated by the sharp edges of the droplet. Assuming zero vorticity allows us to analyze the solvent flow in droplets of arbitrary shape. We compare circular droplets to other shapes including long linear droplets, ring shaped droplets and droplets with an elliptical footprint

  7. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  8. Binary droplet collision at high Weber number.

    PubMed

    Pan, Kuo-Long; Chou, Ping-Chung; Tseng, Yu-Jen

    2009-09-01

    By using the techniques developed for generating high-speed droplets, we have systematically investigated binary droplet collision when the Weber number (We) was increased from the range usually tested in previous studies on the order of 10 to a much larger value of about 5100 for water (a droplet at 23 m/s with a diameter of 0.7 mm). Various liquids were also used to explore the effects of viscosity and surface tension. Specifically, beyond the well-known regimes at moderate We's, which exhibited coalescence, separation, and separation followed by satellite droplets, we found different behaviors showing a fingering lamella, separation after fingering, breakup of outer fingers, and prompt splattering into multiple secondary droplets as We was increased. The critical Weber numbers that mark the boundaries between these impact regimes are identified. The specific impact behaviors, such as fingering and prompt splattering or splashing, share essential similarity with those also observed in droplet-surface impacts, whereas substantial variations in the transition boundaries may result from the disparity of the boundary conditions at impacts. To compare the outcomes of both types of collisions, a simple model based on energy conservation was carried out to predict the maximum diameter of an expanding liquid disk for a binary droplet collision. The results oppose the dominance of viscous drag, as proposed by previous studies, as the main deceleration force to effect a Rayleigh-Taylor instability and ensuing periphery fingers, which may further lead to the formations of satellite droplets. PMID:19905206

  9. Orientation Dependence of Jumping Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Berrier, Austin; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    On nanostructured superhydrophobic surfaces, microscopic condensate exhibits out-of-plane jumping that minimizes the average droplet size for maximal phase-change heat transfer. This jumping-droplet phenomenon occurs independently of gravity and is due to surface energy being partially converted to kinetic energy upon coalescence events. Although the initial departure of the jumping droplets is independent of gravity, the subsequent trajectories exhibit a dependence upon the orientation of the substrate. The drop size distribution of jumping-droplet condensation growing on a superhydrophobic substrate was characterized for both horizontal and vertical surface orientations. With the horizontal orientation, jumping condensate returns to the substrate by gravity. While this can result in chain reactions with other droplets to trigger further jumping events, eventually the rebounding droplets become too large to jump and are stuck on the surface. In contrast, droplets jumping off a vertically oriented surface do not return to the substrate. For this reason, the maximum droplet diameters during condensation growth were found to be significantly larger on the horizontally oriented superhydrophobic surface than on the vertical orientation.

  10. Dynamic morphologies of microscale droplet interface bilayers.

    PubMed

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Venkatesan, Guru A; Sarles, Stephen A; Hayes, Douglas G; Collier, C Patrick

    2014-04-21

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers (μDIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the μDIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and fission: when forming μDIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform shrinking: when using the lipid-in method (lipids in water phase) to form μDIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and unzipping: finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces. PMID:24647872

  11. Binary droplet collision at high Weber number

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Long; Chou, Ping-Chung; Tseng, Yu-Jen

    2009-09-01

    By using the techniques developed for generating high-speed droplets, we have systematically investigated binary droplet collision when the Weber number (We) was increased from the range usually tested in previous studies on the order of 10 to a much larger value of about 5100 for water (a droplet at 23 m/s with a diameter of 0.7 mm). Various liquids were also used to explore the effects of viscosity and surface tension. Specifically, beyond the well-known regimes at moderate We’s, which exhibited coalescence, separation, and separation followed by satellite droplets, we found different behaviors showing a fingering lamella, separation after fingering, breakup of outer fingers, and prompt splattering into multiple secondary droplets as We was increased. The critical Weber numbers that mark the boundaries between these impact regimes are identified. The specific impact behaviors, such as fingering and prompt splattering or splashing, share essential similarity with those also observed in droplet-surface impacts, whereas substantial variations in the transition boundaries may result from the disparity of the boundary conditions at impacts. To compare the outcomes of both types of collisions, a simple model based on energy conservation was carried out to predict the maximum diameter of an expanding liquid disk for a binary droplet collision. The results oppose the dominance of viscous drag, as proposed by previous studies, as the main deceleration force to effect a Rayleigh-Taylor instability and ensuing periphery fingers, which may further lead to the formations of satellite droplets.

  12. On the lifetimes of evaporating droplets

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Stauber, Jutta; Duffy, Brian; Sefiane, Khellil

    2013-11-01

    The evaporation of a fluid droplet on a solid substrate is a practically important problem which has been the subject of considerable research in recent years, much of it motivated by a range of technological applications, such as the application of pesticides to plants, DNA microarray analysis, inkjet printing, micro-fabrication, and spray cooling. In particular, the lifetime of a fluid droplet is not only of fundamental scientific interest, but is also important in a number of technological applications, such as inkjet printing and spray cooling applications (in which shorter droplet lifetimes are often needed) and the application of pesticides to plants (in which longer droplet lifetimes are often needed). In this talk we will analyse the lifetimes of fluid droplets evaporating in a variety of modes and, in particular, show that the widely believed folklore that the lifetime of a droplet is always longer than that of an identical droplet evaporating in the constant radius (i.e. pinned contact line) mode and shorter than that of an identical droplet evaporating in the constant angle mode is not, in general, true.

  13. Dynamic Morphologies of Microscale Droplet Interface Bilayers

    SciTech Connect

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A; Venkatesan, Guru; Hayes, Douglas G; Collier, Pat

    2014-01-01

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.

  14. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-11-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  15. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  16. Fiber-Supported Droplet Combustion Experiment-2

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1998-01-01

    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical

  17. Capillary droplet propulsion on a fibre.

    PubMed

    Haefner, Sabrina; Bäumchen, Oliver; Jacobs, Karin

    2015-09-21

    A viscous liquid film coating a fibre becomes unstable and decays into droplets due to the Rayleigh-Plateau instability (RPI). Here, we report on the generation of uniform droplets on a hydrophobized fibre by taking advantage of this effect. In the late stages of liquid column breakup, a three-phase contact line can be formed at one side of the droplet by spontaneous rupture of the thinning film. The resulting capillary imbalance leads to droplet propulsion along the fibre. We study the dynamics and the dewetting speed of the droplet as a function of molecular weight as well as temperature and compare to a force balance model based on purely viscous dissipation.

  18. Kinetics of complex plasma with liquid droplets

    SciTech Connect

    Misra, Shikha; Sodha, M. S.; Mishra, S. K.

    2013-12-15

    This paper provides a theoretical basis for the reduction of electron density by spray of water (or other liquids) in hot plasma. This phenomenon has been observed in a hypersonic flight experiment for relief of radio black out, caused by high ionization in the plasma sheath of a hypersonic vehicle, re-entering the atmosphere. The analysis incorporates a rather little known phenomenon for de-charging of the droplets, viz., evaporation of ions from the surface and includes the charge balance on the droplets and number cum energy balance of electrons, ions, and neutral molecules; the energy balance of the evaporating droplets has also been taken into account. The analysis has been applied to a realistic situation and the transient variations of the charge and radius of water droplets, and other plasma parameters have been obtained and discussed. The analysis through made in the context of water droplets is applicable to all liquids.

  19. Droplet microfluidics in (bio)chemical analysis.

    PubMed

    Basova, Evgenia Yu; Foret, Frantisek

    2015-01-01

    Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation. It can improve not only the analysis scale, possibility for sensitivity improvement, and reduced consumption of chemical and biological reagents, but also the speed of performing a variety of unit operations. At present, microfluidic platforms can reproducibly generate monodisperse droplet populations at kHz or higher rates with droplet sizes suitable for high-throughput experiments, single-cell detection or even single molecule analysis. In addition to being used as microreactors with volume in the micro- to femtoliter range, droplet based systems have also been used to directly synthesize particles and encapsulate biological entities for biomedicine and biotechnology applications. This minireview summarizes various droplet microfluidics operations and applications for (bio)chemical assays described in the literature during the past few years.

  20. HEPATIC STELLATE CELL LIPID DROPLETS: A SPECIALIZED LIPID DROPLET FOR RETINOID STORAGE

    PubMed Central

    Blaner, William S.; O’Byrne, Sheila M.; Wongsiriroj, Nuttaporn; Kluwe, Johannes; D’Ambrosio, Diana; Jiang, Hongfeng; Schwabe, Robert F.; Hillman, Elizabeth M.C.; Piantedosi, Roseann; Libien, Jenny

    2009-01-01

    The majority of retinoid (vitamin A and its metabolites) present in the body of a healthy vertebrate is contained within lipid droplets present in the cytoplasm of hepatic stellate cells (HSCs). Two types of lipid droplets have been identified through histological analysis of HSCs within the liver: smaller droplets bounded by a unit membrane and larger membrane-free droplets. Dietary retinoid intake but not triglyceride intake markedly influences the number and size of HSC lipid droplets. The lipids present in rat HSC lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Retinyl ester and triglyceride are present at similar concentrations, and together these two classes of lipid account for approximately three-quarters of the total lipid in HSC lipid droplets. Both adipocyte-differentiation related protein and TIP47 have been identified by immunohistochemical analysis to be present in HSC lipid droplets. Lecithin:retinol acyltransferase (LRAT), an enzyme responsible for all retinyl ester synthesis within the liver, is required for HSC lipid droplet formation, since Lrat-deficient mice completely lack HSC lipid droplets. When HSCs become activated in response to hepatic injury, the lipid droplets and their retinoid contents are rapidly lost. Although loss of HSC lipid droplets is a hallmark of developing liver disease, it is not known whether this contributes to disease development or occurs simply as a consequence of disease progression. Collectively, the available information suggests that HSC lipid droplets are specialized organelles for hepatic retinoid storage and that loss of HSC lipid droplets may contribute to the development of hepatic disease. PMID:19071229

  1. The Lipid-Droplet Proteome Reveals that Droplets Are a Protein-Storage Depot

    SciTech Connect

    Cermelli, Silvia; Guo, Yi; Gross, Steven P.; Welte, Michael

    2006-09-19

    Lipid droplets are ubiquitous organelles that are among the basic building blocks of eukaryotic cells. Despite central roles for cholesterol homeostasis and lipid metabolism, their function and protein composition are poorly understood. Results: We purified lipid droplets from Drosophila embryos and analyzed the associated proteins by capillary LC-MS-MS. Important functional groups include enzymes involved in lipid metabolism, signaling molecules, and proteins related to membrane trafficking. Unexpectedly, histones H2A, H2Av, and H2B were present. Using biochemistry, genetics, real-time imaging, and cell biology, we confirm that roughly 50% of certain embryonic histones are physically attached to lipid droplets, a localization conserved in other fly species. Histone association with droplets starts during oogenesis and is prominent in early embryos, but it is undetectable in later stages or in cultured cells. Histones on droplets are not irreversibly trapped; quantitation of droplet histone levels and transplantation experiments suggest that histones are transferred from droplets to nuclei as development proceeds. When this maternal store of histones is unavailable because lipid droplets are mislocalized, zygotic histone production starts prematurely. Conclusions: Because we uncover a striking proteomic similarity of Drosophila droplets to mammalian lipid droplets, Drosophila likely provides a good model for understanding droplet function in general. Our analysis also reveals a new function for these organelles; the massive nature of histone association with droplets and its developmental time-course suggest that droplets sequester maternally provided proteins until they are needed. We propose that lipid droplets can serve as transient storage depots for proteins that lack appropriate binding partners in the cell. Such sequestration may provide a general cellular strategy for handling excess proteins.

  2. Droplet migration characteristics in confined oscillatory microflows.

    PubMed

    Chaudhury, Kaustav; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-01

    We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement patterns observed through the comprehensive simulation studies. These results can be of profound importance in designing droplet based microfluidic systems in an oscillatory flow environment.

  3. Two Droplets on Wire Approaching Ignition

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Fiber-Supported Droplet Combustion (FSDC) uses two droplets positioned on the fiber wire, instead of the usual one. Two droplets more closely simulates the environment in engines, which ignite many fuel droplets at once. The behavior of the burning was also unexpected -- the droplets moved together after ignition, generating quite a bit of data for understanding the interaction of fuel droplets while they burn. This MPEG movie (1.3 MB) shows a time-lapse of this burn (3x speed). Because FSDC is backlit (the bright glow behind the drops), you carnot see the glow of the droplets while they burn -- instead, you see them shrink! The small blobs left on the wire after the burn are the beads used to center the fuel droplet on the wire. This image was taken on STS-94, July 12, 1997, MET:10/19:13 (approximate). FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations planned for the International Space Station. (1.3MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300178.html.

  4. Dynamic wetting of viscoelastic droplets

    NASA Astrophysics Data System (ADS)

    Wang, Yuli; Minh, Do-Quang; Amberg, Gustav

    2015-10-01

    We conduct numerical experiments on spreading of viscoelastic droplets on a flat surface. Our work considers a Giesekus fluid characterized by a shear-thinning viscosity and an Oldroyd-B fluid, which is close to a Boger fluid with constant viscosity. Our results qualitatively agree with experimental observations in that both shear thinning and elasticity enhances contact line motion, and that the contact line motion of the Boger fluid obeys the Tanner-Voinov-Hoffman relation. Excluding inertia, the spreading speed shows strong dependence on rheological properties, such as the viscosity ratio between the solvent and the polymer suspension, and the polymeric relaxation time. We also discuss how elasticity can affect contact line motion. The molecular migration theory proposed in the literature is not able to explain the agreement between our simulations and experimental results.

  5. Numerical simulations of pendant droplets

    NASA Astrophysics Data System (ADS)

    Pena, Carlos; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir; Shin, Seungwon

    2015-11-01

    We simulate the evolution of a three-dimensional pendant droplet through pinch-off using a new parallel two-phase flow solver called BLUE. The parallelization of the code is based on the technique of algebraic domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  6. Dynamic wetting of viscoelastic droplets.

    PubMed

    Wang, Yuli; Minh, Do-Quang; Amberg, Gustav

    2015-10-01

    We conduct numerical experiments on spreading of viscoelastic droplets on a flat surface. Our work considers a Giesekus fluid characterized by a shear-thinning viscosity and an Oldroyd-B fluid, which is close to a Boger fluid with constant viscosity. Our results qualitatively agree with experimental observations in that both shear thinning and elasticity enhances contact line motion, and that the contact line motion of the Boger fluid obeys the Tanner-Voinov-Hoffman relation. Excluding inertia, the spreading speed shows strong dependence on rheological properties, such as the viscosity ratio between the solvent and the polymer suspension, and the polymeric relaxation time. We also discuss how elasticity can affect contact line motion. The molecular migration theory proposed in the literature is not able to explain the agreement between our simulations and experimental results. PMID:26565327

  7. Liquid droplet heat exchanger studies

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Hedges, D. E.; Yungster, S.

    1987-01-01

    Recent analytical and experimental investigations of the liquid droplet heat exchanger (LDHX) concept for space power applications are described. The performance of the LDHX is compared to that of a conventional heat exchanger for heat rejection applications in a Brayton cycle, using the mass-specific heat exchanger effectiveness as a figure of merit. It is shown that the LDHX has an order of magnitude advantage over the conventional heat exchanger. Furthermore, significant improvement in cycle efficiency and power to mass ratio is possible. Two-phase flow experiments in a laboratory scale LDHX, using air and water as the two media, show very good agreement with the quasi-one-dimensional model used in the parametric studies.

  8. Directional Movement of Droplets in Grooves: Suspended or Immersed?

    PubMed Central

    Xu, Wei; Lan, Zhong; Peng, Benli; Wen, Rongfu; Chen, Yansong; Ma, Xuehu

    2016-01-01

    The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications. PMID:26743167

  9. Directional Movement of Droplets in Grooves: Suspended or Immersed?

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Lan, Zhong; Peng, Benli; Wen, Rongfu; Chen, Yansong; Ma, Xuehu

    2016-01-01

    The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.

  10. Self-propelled droplet behavior during condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin; Zhu, Bei; Zhang, Xuan

    2016-05-01

    Self-propelled droplet motion has applications in various engineering fields such as self-cleaning surfaces, heat transfer enhancement, and anti-icing methods. A superhydrophobic surface was fabricated using two simultaneous chemical reactions with droplet condensation experiments performed on the horizontal superhydrophobic surface to characterize the droplet behavior. The droplet behavior is classified into three types based on their motion features and leftover marks as immobile droplet coalescence, self-propelled droplet jumping, and self-propelled droplet sweeping. This study focuses on the droplet sweeping that occurs due to the ultra-small rolling angle of the superhydrophobic surface, where the resulting droplet sweeps along the surface, merging with all the droplets it meets and leaving a long, narrow, clear track with a large droplet at the end of the track. An easy method is developed to predict the droplet sweeping direction based on the relative positions of the droplets just before coalescence. The droplet sweeping always absorbs dozens of droplets and is not limited by the surface structures; thus, this sweeping has many useful applications. In addition, the relationships between the droplet behavior and the number of participating droplets are also analyzed statistically.

  11. Droplet vaporization in supercritical pressure environments

    NASA Astrophysics Data System (ADS)

    Farrell, Patrick V.; Peters, Bruce D.

    For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher. This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity.

  12. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  13. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.

  14. Ferrofluid Droplet Formation by Vibratory Stimulation

    NASA Astrophysics Data System (ADS)

    Bock, Paul; Hsu, Chang-Fang; Ashgriz, Nasser

    1996-11-01

    A new technique for the formation of ferrofluid droplets is developed. A vertically applied magnetic field is used to cause instabilities and then eventual droplet formation from a pool of ferrofluid. The magnetic field is created by a flat solenoid wrapped around a soft iron core. Instabilities are excited on the ferrofluid surface by applying a field strength below a critical strength for droplet formation. The ferrofluid is then subjected to vertical vibration. The surface vibration is achieved by mounting the ferrofluid container to a speaker. The frequency of this vibration is on the order of 10 Hz. This technique allows the variation of the droplet spacing, by changing the frequency of the pool oscillation, and the variation of the droplet size by changing the strength of the magnetic field. The main advantage of this technique over presently available droplet generators is that it does not require any orfices. The droplets can be formed directly from the surface of a pool of liquid. This eliminates the need for manufacturing minute orfices which may also be plugged easily.

  15. Droplet spreading on chemically heterogeneous substrates

    NASA Astrophysics Data System (ADS)

    Vellingiri, Rajagopal; Savva, Nikos; Kalliadasis, Serafim

    2011-09-01

    Consider the spreading dynamics of a two-dimensional droplet over chemically heterogeneous substrates. Assuming small slopes and strong surface tension effects, a long-wave expansion of the Stokes equations yields a single evolution equation for the droplet thickness. The contact line singularity is removed by assuming slip at the liquid-solid interface. The chemical nature of the substrate is incorporated by local variations in the microscopic contact angle, which appear as boundary conditions in the governing equation. By asymptotically matching the flow in the bulk of the droplet with the flow in the vicinity of the contact lines, we obtain a set of coupled ordinary differential equations for the locations of the two droplet fronts. We verify the validity of our matching procedure by comparing the solutions of the ordinary differential equations with solutions of the full governing equation. The droplet dynamics is examined in detail via a phase-plane analysis. A number of interesting features that are not present in chemically homogeneous substrates are found, such as the existence of multiple equilibria, the pinning of the droplet fronts at localized chemical features, and the possibility for the droplet fronts to exhibit a stick-slip behavior.

  16. Droplet size of cooling tower fog.

    PubMed

    Rothman, T; Ledbetter, J O

    1975-01-01

    Fog from cooling towers causes problems of visibility and icing along roadways adjacent to the towers; moreover, the visible plume from the towers offers difficulty in that it is equated by much of the public with air pollution. It is desirable to know the size of the fog droplets in order to plan abatement procedures and to determine the airborne lifetimes of such fogs. The methodology involved capturing the droplets on slides coated with a vaseline-mineral oil mixture, making photomicrographs of the droplets, counting and sizing the droplets into eight droplet diameter increments; namely less than 5 mum, 5-10 mum, 10-20 mum, 20-40 mum, 40-60 mum, 60-80 mum, 80-100 mum, and greater than 100 mum. The resulting distribution was similar to that for natural fogs and clouds; i.e., it was bi-modal, the first mode at less than 5 mum containing the vast majority of the droplets, and the second at 20-40 mum. This study agrees with others that the size distribution of a fog in a saturated environment is continuously changing, with the smaller droplets tending to evaporate and the larger ones tending to grow, thus shifting the second mode toward larger sizes.

  17. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.

    PubMed

    Schutzius, Thomas M; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces. PMID:26536959

  18. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation. PMID:21500859

  19. Bütschli dynamic droplet system.

    PubMed

    Armstrong, Rachel; Hanczyc, Martin

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model for further investigation into the development of a technology with living properties. Otto Bütschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We reconstructed the Bütschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water to the oil phase), qualify this system as an example of living technology. The analysis of the Bütschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life investigations but also for possible real-world applications in architectural practice. PMID:23834593

  20. The absence of type II collagen and changes in proteoglycan structure of hyaline cartilage in a case of Langer-Saldino achondrogenesis.

    PubMed

    Feshchenko, S P; Rebrin, I A; Sokolnik, V P; Sher, B M; Sokolov, B P; Kalinin, V N; Lazjuk, G I

    1989-04-01

    Structural analysis of hyaline cartilage extracellular matrix components from the ribs and knee joint of a stillborn female with type II achondrogenesis was carried out. The absence of type II collagen, a decrease in the amount of proteoglycans (PG), and structural changes in PG, namely, increased electrophoretic mobility of PG, lower relative content of chondroitin 4-sulfate (Ch4-S), lower molecular weight and decreased total chondroitin sulfate (ChS) sulfation, were detected. Increased amounts of type I and type III collagens, atypical for hyaline cartilage, were revealed. Among the link proteins (LPs), a large protein with a mol. wt. of 48 kDa was predominant. Molecular and cellular mechanisms of the pathogenesis of achondrogenesis ("chondrogenesis imperfecta") are discussed. The data obtained suggest that the primary defect in type II achondrogenesis involves ChS or type II collagen synthesis. PMID:2714779

  1. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  2. Photoacoustic spectral characterization of perfluorocarbon droplets

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2012-02-01

    Perfluorocarbon droplets containing optical absorbing nanoparticles have been developed for use as theranostic agents (for both imaging and therapy) and as dual-mode contrast agents. Droplets can be used as photoacoustic contrast agents, vaporized via optical irradiation, then the resulting bubbles can be used as ultrasound imaging and therapeutic agents. The photoacoustic signals from micron-sized droplets containing silica coated gold nanospheres were measured using ultra-high frequencies (100-1000 MHz). The spectra of droplets embedded in a gelatin phantom were compared to a theoretical model which calculates the pressure wave from a spherical homogenous liquid undergoing thermoelastic expansion resulting from laser absorption. The location of the spectral features of the theoretical model and experimental spectra were in agreement after accounting for increases in the droplet sound speed with frequency. The agreement between experiment and model indicate that droplets (which have negligible optical absorption in the visible and infrared spectra by themselves) emitted pressure waves related to the droplet composition and size, and was independent of the physical characteristics of the optical absorbing nanoparticles. The diameter of individual droplets was calculated using three independent methods: the time domain photoacoustic signal, the time domain pulse echo ultrasound signal, and a fit to the photoacoustic model, then compared to the diameter as measured by optical microscopy. It was found the photoacoustic and ultrasound methods calculated diameters an average of 2.6% of each other, and 8.8% lower than that measured using optical microscopy. The discrepancy between the calculated diameters and the optical measurements may be due to the difficulty in resolving the droplet edges after being embedded in the translucent gelatin medium.

  3. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  4. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  5. Fog, plant leaves and deposition of droplets

    NASA Astrophysics Data System (ADS)

    Konrad, W.; Ebner, M.; Traiser, C.; Roth-Nebelsick, A.

    2010-07-01

    For various plants and animals, the accumulation of fog or dew droplets constitutes an essential part of their water supply. Understanding how water droplets deposited by fog or dew events interact with plant or animal surfaces is essential for gaining insight into the functionality of these surfaces. Besides being interesting within the realm of biology, this knowledge is indispensable for technical applications. Frequently, it is advantageous to know (i) the growth rate of a droplet attached by surface tension to a surface which grows due to a given influx of fog particles, (ii) the maximum volume and (iii) the "lifespan" of a droplet before it detaches from the surface or starts to slide down along the plant surface, driven by gravity. Starting from principles of physics, we calculate quantitative expressions addressing questions (i) to (iii) for droplets which are attached to surfaces characterised by a high degree of symmetry, such as horizontally oriented or inclined planes, sections of spheres, cones and rotationally symmetric crevices. Furthermore, we treat the behaviour of droplets attached to a surface of non-constant contact angle. Although real surfaces never meet their geometric idealisations, results based on these often represent suitable and useful approximations to reality. Finally, we apply our results to Stipagrostis sabulicola, a dune grass of the Namib desert which satisfies its water demand solely by capturing fog and dew droplets. Pictures taken with a scanning electron microscope show that the stem of S. sabulicola is longitudinally built up by alternating elevated and countersunk strips. Filling gaps in the experimental observation with theoretical speculation, the following picture emerges: Assuming that the elevated strips exhibit a higher contact angle than the countersunk strips, water droplets being deposited on the elevated strips are drawn towards the latter. The lower contact angle which prevails there increases the droplets

  6. Undercooling and crystallization behaviour of antimony droplets

    NASA Technical Reports Server (NTRS)

    Graves, J. A.; Perepezko, J. H.

    1986-01-01

    The droplet emulsion technique is presently used to examine the undercooling and crystallization behavior of pure antimony. Control of droplet size and applied cooling rate allowed maximum undercooling to be extended from 0.08 to 0.23 T(m). A droplet coating was produced by means of emulsification which appears to furnish a favorable crystallographic matching for effective nucleation catalysis of a metastable simple cubic structure. Thermal analysis shows the melting temperature of the single cubic phase to be about 625 C.

  7. Fog droplet distribution functions for lidar.

    PubMed

    Mallow, J V

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  8. Fog droplet distribution functions for lidar

    SciTech Connect

    Mallow, J.V.

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  9. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence

    NASA Astrophysics Data System (ADS)

    Peng, Benli; Wang, Sifang; Lan, Zhong; Xu, Wei; Wen, Rongfu; Ma, Xuehu

    2013-04-01

    Droplet jumping from condensing surfaces induced by droplet coalescence during dropwise condensation of mixed steam on a superhydrophobic surface can significantly enhance condensation heat transfer of mixed steam with non-condensable gas. This phenomenon was visually observed and theoretically analyzed in the present paper. The dynamic evolution of droplet and the velocity distribution inside the droplet during coalescence were simulated using multiphase lattice Boltzmann method. The energy distribution released by droplet coalescence was calculated statistically, and the jumping height induced by droplet coalescence on a superhydrophobic surface was predicted based on the energy conservation method. The theoretical predictions obtained by the modified model proposed in this paper agree well with the experimental observations.

  10. The effects of turbulence on droplet drag and secondary droplet breakup

    NASA Technical Reports Server (NTRS)

    Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.

    1994-01-01

    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.

  11. The design and performance of a multi-stream droplet generator for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Orme, Melissa; Farnham, T.; Van Diep, G. Pham; Muntz, E. P.; White, Alan

    1987-01-01

    Results are presented for the performance capabilities of a multistream droplet generator suitable for use in a spacecraft liquid droplet radiator heat-rejection system. The nozzle-motion mode of stream perturbation initiation was tested with a single droplet stream and found to produce data similar to those generated with the resonant cavity mode of perturbation. Tests then proceeded to a 26-orifice array; the streams of the array responded to the perturbation satisfactorily, forming uniformly separated drops.

  12. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants

    PubMed Central

    Zhang, Zijun; McCaffery, J Michael; Spencer, Richard G S; Francomano, Clair A

    2004-01-01

    Cartilage engineering is a strategic experimental goal for the treatment of multiple joint diseases. Based on the process of embryonic chondrogenesis, we hypothesized that cartilage could be engineered by condensing chondrocytes in pellet culture and, in the present study, examined the quality of regenerated cartilage in direct comparison with native cartilage. Chondrocytes isolated from the sterna of chick embryos were cultured in pellets (4 × 106 cells per pellet) for 2 weeks. Cartilage explants from the same source were cultured as controls. After 2 weeks, the regenerated cartilage from pellet culture had a disc shape and was on average 9 mm at the longest diameter. The chondrocyte phenotype was stabilized in pellet culture as shown by the synthesis of type II collagen and aggrecan, which was the same intensity as in the explant after 7 days in culture. During culture, chondrocytes also continuously synthesized type IX collagen. Type X collagen was negatively stained in both pellets and explants. Except for fibril orientation, collagen fibril diameter and density in the engineered cartilage were comparable with the native cartilage. In conclusion, hyaline cartilage engineered by chondrocytes in pellet culture, without the transformation of cell phenotypes and scaffold materials, shares similarities with native cartilage in cellular distribution, matrix composition and density, and ultrastructure. PMID:15379928

  13. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature.

    PubMed

    Changchien, Yi-Che; Bocskai, Pál; Kovács, Ilona; Hargitai, Zoltán; Kollár, Sándor; Török, Miklós

    2014-12-01

    Pleomorphic hyalinizing angiectatic tumor (PHAT) is a recently described, non-metastasizing tumor of uncertain lineage. This tumor distributes equally between the genders and has a predilection for the subcutaneous soft tissue, particularly in lower extremity, other locations are rare. Based on the recent literature, PHAT is suspected to encompass the morphological spectrum with other tumors such as myxoinflammatory fibroblastic sarcoma (MIFS) and hemosiderotic fibrolipomatous tumor (HFLT), although cytogenetic data remain inconsistent. We report a case of PHAT that arose in the upper arm with unusual morphology which showed ganglion-like cells similar to Reed-Sternberg-like cells found in MIFS. The tumor had strong immunohistochemical expression of CD34, CD99, and was negative for S-100. The ganglion-like cells were positive for both CD34 and CD68 but negative for CD30. The translocation between chromosome 1 and 10, a frequent finding of MIFS and HFLT, was not identified by FISH excluding the possibility of hybrid PHAT and MIFS. We conclude FISH can be a potential useful tool to separate PHAT with atypical morphology from hybrid tumor in doubted cases. Due to the rarity of PHAT and lack of consistent pathogenetic signatures, more cases and further studies will be needed to elucidate the pathogenesis and nature of this tumor.

  14. Selectively splitting a droplet using superhydrophobic stripes on hydrophilic surfaces.

    PubMed

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Zhou, Feng

    2015-06-01

    Superhydrophobic patterns were fabricated on hydrophilic surfaces by selective painting. The impinging process of water droplets on these hybrid surfaces was investigated. The droplet can be split by impinging on the hydrophilic surface with a single stripe at a high velocity. The time to split the droplet is independent of the impact velocity and it is smaller than the contact time of a droplet impinging on the fully superhydrophobic surface. The volume ratios of the split mini-droplets could be precisely controlled by adjusting the landing position of the original droplet. The droplet could be split uniformly into more mini-marbles by increasing the stripe numbers. PMID:25946666

  15. Quasistatic packings of droplets in flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.

  16. Evaporation of liquid droplets from a surface of anodized aluminum

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Feoktistov, D. V.; Orlova, E. G.

    2016-01-01

    The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.

  17. On-demand electrostatic droplet charging and sorting

    PubMed Central

    Ahn, Byungwook; Lee, Kangsun; Panchapakesan, Rajagopal; Oh, Kwang W.

    2011-01-01

    This study reports a droplet-based microfluidic device for on-demand electrostatic droplet charging and sorting. This device combines two independent modules: one is a hydrodynamic flow focusing structure to generate water-in-oil droplets, and the other is the two paired-electrodes for charging and sorting of the droplets. Depending on the polarity on charging electrodes, water-in-oil droplets can be electrostatically charged positively or negatively, followed by automatic real-time electric sorting. This approach will be useful when preformed droplets, with a positive, a negative, or with no charge, need to be manipulated for further on-chip droplet manipulation. PMID:21772936

  18. On-demand electrostatic droplet charging and sorting.

    PubMed

    Ahn, Byungwook; Lee, Kangsun; Panchapakesan, Rajagopal; Oh, Kwang W

    2011-06-01

    This study reports a droplet-based microfluidic device for on-demand electrostatic droplet charging and sorting. This device combines two independent modules: one is a hydrodynamic flow focusing structure to generate water-in-oil droplets, and the other is the two paired-electrodes for charging and sorting of the droplets. Depending on the polarity on charging electrodes, water-in-oil droplets can be electrostatically charged positively or negatively, followed by automatic real-time electric sorting. This approach will be useful when preformed droplets, with a positive, a negative, or with no charge, need to be manipulated for further on-chip droplet manipulation.

  19. Heat transfer studies on the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Nelson, M.

    1987-01-01

    This paper examines radiation transfer in the droplet sheet of a liquid droplet radiator including non-isotropic scattering by the droplets. Non-isotropic scattering becomes significant for small droplets (diameter less than 0.1 mm) and for low emissivity liquids. For droplets with an emittance of 0.1 and for a droplet sheet optical depth or 5, the radiated power varies by about 12 percent, depending on whether scattering is predominantly forward or backward. An experimental measurement of the power emitted by a cylindrical cloud of heated droplets of silicone fluid is also reported. The measured cloud emissivity correlates, within experimental error, with the analytical model.

  20. Numerical Simulations of Acoustically Driven, Burning Droplets

    NASA Technical Reports Server (NTRS)

    Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)

    1999-01-01

    This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.

  1. Droplet Breakup in Expansion-contraction Microchannels.

    PubMed

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  2. How faceted liquid droplets grow tails

    PubMed Central

    Guttman, Shani; Sapir, Zvi; Schultz, Moty; Butenko, Alexander V.; Ocko, Benjamin M.; Deutsch, Moshe; Sloutskin, Eli

    2016-01-01

    Liquid droplets, widely encountered in everyday life, have no flat facets. Here we show that water-dispersed oil droplets can be reversibly temperature-tuned to icosahedral and other faceted shapes, hitherto unreported for liquid droplets. These shape changes are shown to originate in the interplay between interfacial tension and the elasticity of the droplet’s 2-nm-thick interfacial monolayer, which crystallizes at some T = Ts above the oil’s melting point, with the droplet’s bulk remaining liquid. Strikingly, at still-lower temperatures, this interfacial freezing (IF) effect also causes droplets to deform, split, and grow tails. Our findings provide deep insights into molecular-scale elasticity and allow formation of emulsions of tunable stability for directed self-assembly of complex-shaped particles and other future technologies. PMID:26733673

  3. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1979-01-01

    The general problem of spray combustion was investigated. The combustion of bipropellent droplets; combustion of hydrozine fuels; and combustion of sprays were studied. A model was developed to predict mean velocities and temperatures in a combusting gas jet.

  4. Droplet Microfluidics for Artificial Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Punnamaraju, Srikoundinya; Steckl, Andrew

    2012-02-01

    Droplet interface bilayer is a versatile approach that allows formation of artificial lipid bilayer membrane at the interface of two lipid monolayer coated aqueous droplets in a lipid filled oil medium. Versatility exists in the form of voltage control of DIB area, ability of forming networks of DIBs, volume control of droplets and lipid-oil, and ease of reformation. Significant effect of voltage on the area and capacitance of DIB as well as DIB networks are characterized using simultaneous optical and electrical recordings. Mechanisms behind voltage-induced effects on DIBs are investigated. Photo induced effect on the DIB membrane porosity is obtained by incorporating UVC-sensitive photo-polymerizable lipids in DIB. Photo-induced effects can be extended for in-vitro studies of triggered release of encapsulated contents across membranes. A droplet based low voltage digital microfluidic platform is developed to automate DIB formation, which could potentially be used for forming arrays of lipid bilayer membranes.

  5. Transformation of oil droplets into giant vesicles.

    PubMed

    Sheng, Li; Kurihara, Kensuke

    2016-06-14

    We propose a protocell model in which compartments are constructed via a new process involving the formation of robust vesicles using an autocatalytic, self-reproducing oil droplet system as a 'scaffold'. PMID:27152371

  6. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  7. Impact of droplet on superheated surfaces

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Staat, Hendrik J. J.; Tran, Tuan; Prosperetti, Andrea; Sun, Chao

    2012-11-01

    At impact of a liquid droplet on a smooth surface heated way above the liquid's boiling point, the droplet spreads without any surface contact, floating on its own (Leidenfrost-type) vapor layer, and then bounces back. We show that the dimensionless maximum spreading factor Γ, defined by the ratio of the maximal spreading diameter and the droplet diameter, shows a universal scaling Γ ~ Weγ with the Weber number We - regardless of surface temperature and of liquid properties - which is much steeper than that for the impact on non-heated (hydrophilic or hydrophobic) surfaces, for which γ = 1 / 4 . Based on the idea that the vapor shooting out of the gap between the droplet and the superheated surface drags the liquid outwards, we derive scaling laws for the spreading factor Γ, the vapor layer thickness, and the vapor flow velocity.

  8. Droplet Breakup in Expansion-contraction Microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-02-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices.

  9. Immersed Boundary Simulations of Active Fluid Droplets

    PubMed Central

    Hawkins, Rhoda J.

    2016-01-01

    We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609

  10. Immersed Boundary Simulations of Active Fluid Droplets.

    PubMed

    Whitfield, Carl A; Hawkins, Rhoda J

    2016-01-01

    We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609

  11. Dispensing nano-pico droplets of ferrofluids

    NASA Astrophysics Data System (ADS)

    Irajizad, Peyman; Farokhnia, Nazanin; Ghasemi, Hadi

    2015-11-01

    Dispensing miniature volumes of a ferrofluid is of fundamental and practical importance for diverse applications ranging from biomedical devices, optics, and self-assembly of materials. Current dispensing systems are based on microfluidics flow-focusing approaches or acoustic actuation requiring complicated structures. A simple method is presented to continuously dispense the miniature droplets from a ferrofluid reservoir. Once a jet of the ferrofluid is subjected to a constrained flux through a membrane and an inhomogeneous magnetic field, the jet experiences a curvature-driven instability and transforms to a droplet. Ferrofluid droplets in the range of 0.1-1000 nl are dispensed with tunable dispensing frequencies. A model is developed that predicts the dispensed volume of the ferrofluid droplets with an excellent agreement with the measurements.

  12. Substrate Curvature Gradient Drives Rapid Droplet Motion

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-01

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

  13. Substrate curvature gradient drives rapid droplet motion.

    PubMed

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces. PMID:25062213

  14. Droplet impact on falling liquid films

    NASA Astrophysics Data System (ADS)

    Matar, Omar; Che, Zhizhao; Zadrazil, Ivan; Hewitt, Geoffrey; Markides, Christos

    2013-11-01

    Droplet impact is a ubiquitous phenomenon in nature, and has a wide range of applications; these include inkjet printing, spray painting, and surface cleaning. In this study, we examine the impact of droplets on falling liquid films, which is an event that occurs in various two-phase flows, such as annular flows and spray cooling. High-speed photography is used to visualise droplet impact, and associated phenomena, on a uniform falling liquid film, which is created on a flat substrate with controllable thickness and flow speed. Different phenomena are observed and analysed for droplet impact at different impact speeds, angles, and film thicknesses and flow speeds. The results of the present work are part of a programme to elucidate the complex dynamics of multiphase flows and to develop validated numerical tools for accurate predictions. EPSRC Programme Grant EP/K003976/1.

  15. Biofilm Formation in Microscopic Double Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Weitz, David

    2012-02-01

    In natural, medical, and industrial settings, there exist surface-associated communities of bacteria known as biofilms. These highly structured films are composed of bacterial cells embedded within self-produced extracellular matrix, usually composed of exopolysaccharides, proteins, and nucleic acids; this matrix serves to protect the bacterial community from antibiotics and environmental stressors. Here, we form biofilms encapsulated within monodisperse, microscopically-sized double emulsion droplets using microfluidics. The bacteria self-organize at the inner liquid-liquid droplet interfaces, multiply, and differentiate into extracellular matrix-producing cells, forming manifold three-dimensional shell-within-a-shell structures of biofilms, templated upon the inner core of spherical liquid droplets. By using microfluidics to encapsulate bacterial cells, we have the ability to view individual cells multiplying in microscopically-sized droplets, which allows for high-throughput analysis in studying the genetic program leading to biofilm development, or cell signaling that induces differentiation.

  16. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  17. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  18. Modeling of spray droplets deformation and breakup

    NASA Technical Reports Server (NTRS)

    Ibrahim, E. A.; Yang, H. Q.; Przekwas, A. J.

    1993-01-01

    A droplet deformation and breakup (DDB) model is proposed to study shear-type mechanism of spray droplets in pure extentional flows. A numerical solution of the DDB model equation is obtained using a fourth-order Runge-Kutta initial-value solver. The predictions of the DDB model as well as semianalytical and the Taylor analogy models are compared with the experimental data (Krzeczkowski, 1980) for shear breakup, which depict the dimensionless deformation of the drop vs dimensionless time.

  19. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  20. Numerical simulation of droplet impact on interfaces

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Che, Zhizhao; Matar, Omar; Shin, Seungwon; Chergui, Jalel; Juric, Damir

    2015-11-01

    Simulations of three-dimensional droplet impact on interfaces are carried out using BLUE, a massively-parallel code based on a hybrid Front-Tracking/Level-Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. High resolution numerical results show fine details and features of droplet ejection, crown formation and rim instability observed under similar experimental conditions. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  1. Effect of oil droplet size on activation energy for coalescence of oil droplets in an O/W emulsion.

    PubMed

    Miyagawa, Yayoi; Katsuki, Kazutaka; Matsuno, Ryuichi; Adachi, Shuji

    2015-01-01

    The activation energy of a reasonable order of magnitude was estimated for the coalescence of oil droplets in an O/W emulsion by formulating the balance of forces acting on a droplet that crosses over the potential barrier to coalesce with another droplet by the DLVO theory and Stokes' law. An emulsion with smaller oil droplets was shown to be more stable.

  2. Colloidal particles embedded in liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Melchert, Drew; Sadati, Monirosadat; Zhou, Ye; de Pablo, Juan J.

    In this work, we encapsulate polystyrene and silica particles in nematic liquid crystal (LC) droplets dispersed in water using microfluidic glass capillary devices. While polystyrene particles induce planar anchoring on the surface, silica particles, treated with DMOAP, create homeotropic anchoring of the LC molecules at their surface. Sodium dodecyl sulfate (SDS) is added to the aqueous phase to stabilize LC droplets and promote a radial configuration with point defect in the center of LC droplet. Our experimental and computational studies show that, when trapped inside the LC droplets, particles with both anchoring types become mostly localized at the defect point (at the center) and interact with the radial configuration. Interestingly, a twisting structure is observed for polystyrene particle with strong planar anchoring. Although localization of the particles at the droplet center is the most stable state and with the lowest free energy, off-center positions also emerge, displacing the defect point from the center to near the surface of a radial droplet. - Corresponding author - Second affiliation: Argonne National Laboratory, Argonne, IL 60439, USA.

  3. Droplet microfluidics driven by gradients of confinement

    PubMed Central

    Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.

    2013-01-01

    The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169

  4. A pipette dispenses a charged droplet

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Horim; Im, Do Jin; Kang, In Seok; Kang, Kwan Hyoung

    2012-11-01

    Micropipettes are widely used in many scientific and engineering fields. However, it is hardly known that a droplet dispensed from a plastic pipette tip has a considerable amount of charges (order of 10-10 C). Here we report that the charged droplet is dispensed from a commercial and disposable plastic pipette tip and this charge is originated from the natural electrification between a solution and the inner surface of the pipette tip. The charge amount is dependent on not only the physicochemical properties of a solution (e.g., pH and a concentration) but also dispensing environments (e.g., atmospheric humidity and type of commercial pipette tip). To investigate the effects of the charge on the droplet dispensing, we calculate the electrical force between the droplet and the pipette tip though numerical simulation. The micropipette users especially, who are dealing with discrete droplets in their experiments, should consider this charge effect in their dispensing of a droplet. This work was supported by the National Research Foundation of Korea (NRF) Grant No. R0A-2007-000-20098-0 funded by the Korea government (MEST) and No. 20090083510 through Multiphenomena CFD Engineering Research Center.

  5. Gel-like double-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Guzowski, Jan; Korczyk, Piotr; Garstecki, Piotr; Stone, Howard

    2015-11-01

    We experimentally study the problem of packing of micro-droplets inside a droplet of another immiscible liquid phase. We use microfluidics to encapsulate multiple monodisperse aqueous segments inside a drop of oil. For small numbers N (N<10) of the aqueous droplets and at their volume fraction in oil exceeding the close-packing threshold we observe multiple metastable structures with well-defined point-group symmetries. We attribute the observed metastability to the deformability of the droplets which leads to effective many-body interactions and energy barriers for rearrangement. By changing the composition of the oil phase we find that when the surface tensions of the droplets and of the encapsulating phase are comparable, the energy barriers are high enough to trap elongated structures or even linear chains, independently of N. However, when the surface tension of the encapsulating phase is much larger than that of the droplets, non-spherical morphologies are stable only at sufficiently high N. In such a case multiple internal interfaces can hold stresses and prevent relaxation of the global deformations which leads to a plastic, gel-like behavior. Our findings can serve as guidelines for synthesis of functional particles as well as for designing biomimetic materials, e.g. for tissue engineering. J.G. acknowledges financial support from Polish Ministry of Science provided within the framework Mobility Plus.

  6. Droplet microfluidics with a nanoemulsion continuous phase.

    PubMed

    Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A

    2016-07-01

    We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.

  7. Caustics and the growth of droplets

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Ravichandran, S.; Ray, Samriddhi; Deepu, P.

    Caustics are formed when inertial particles of very different velocities collide in a flow, and are a consequence of the dissipative nature of particle motion in a suspension. Using a model vortex-dominated flow with heavy droplets in a saturated environment, we suggest that sling caustics form only within a neighbourhood around a vortex, the square of whose radius is proportional to the product of circulation and particle inertia. Droplets starting close to this critical radius congregate very close together, resulting in large spikes in (Lagrangian) number density. Allowing for merger when droplets collide, we show that droplets starting out close to the critical radius display a much more rapid growth in size than those starting elsewhere, and a large fraction of the large droplets are those that originate within the caustics-forming region. We test these predictions in a two-dimensional simulation of turbulent flow. We hope that our study will be of interest in long-standing problems of physical interest such as the mechanism of broadening of droplet spectra in a turbulent flow. Support from the Ministry of Earth Sciences, Government of India for the project Coupled physical processes in the Bay of Bengal and monsoon air-sea interaction under OMM is gratefully acknowledged.

  8. Nanoliter droplet vitrification for oocyte cryopreservation

    PubMed Central

    Zhang, Xiaohui; Khimji, Imran; Shao, Lei; Safaee, Hooman; Desai, Khanjan; Keles, Hasan Onur; Gurkan, Umut Atakan; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2011-01-01

    Aim Oocyte cryopreservation remains largely experimental, with live birth rates of only 2–4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. Materials & methods An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. Results Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes. PMID:22188180

  9. DNA Adsorption Kinetics in Evaporating Droplets

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohua; Li, Bingquan; Chen, Yong; Shew, Chwen-Yang; Samuilov, V. A.; Seo, Y.-S.; Baron, Joseph; Sokolov, J.; Rafailovich, M.

    2004-03-01

    The evaporation kinetics of droplets containing DNA was studied as a function of DNA concentration. The contact angle and overall droplet morphology were observed using a KSV contact angle goniometer as a function of time. Simultaneously, the DNA distribution and adsorption kinetics were measured with confocal microscopy. The DNA droplets were stained with ethidium bromide solution and deposited on various material covered silicon surfaces. Up to 3 stages were found during DNA droplet drying process, depending on the DNA concentration and the size of the droplet. The results also show that a ring is formed at the air/solid /liquid interface in a manner similar to that reported for a colloidal suspension by Robert D. Deegan et.al. [Robert D.Deegan et. al. Nature, Vol 389, Oct.1997] The phase transition happened during those 3 stages were detected by applying electrical field surrounding the drying droplet. Possible transition stages were detected by thermal analysis also. AFM scan was done at each drying stage to detect the deposition morphology. The absorbed amount of DNA was obtained by measuring the intensity on the ring. [Supported by NSF-MRSEC program (DMR-9632525)

  10. Studies of droplet burning and extinction

    NASA Technical Reports Server (NTRS)

    Williams, Forman A.

    1993-01-01

    A project on droplet combustion, pursued jointly with F.L. Dryer of Princeton University, has now been in progress for many years. The project involves experiments on the burning of single droplets in various atmospheres, mainly at normal atmosperic pressure and below, performed in drop towers and designed to be performed aboard space-based platforms such as the Space Shuttle or the Space Station. It also involves numerical computations on droplet burning, performed mainly at Princeton, and asymptotic analyses of droplet burning, performed mainly at UCSD. The focus of the studies rests primarily on time-dependent droplet-burning characteristics and on extinction phenomena. The presentation to be given here concerns the recent research on application of asymptotic methods to investigation of the flame structure and extinction of hydrocarbon droplets. These theoretical studies are investigating the extent to which combustion of higher hydrocarbons - heptane, in particular - can be described by four-step reduced chemistry of the kind that has achieved a good degree of success for methane flames. The studies have progressed to a point at which a number of definite conclusions can now be stated. These conclusions and the reasoning that led to them are outlined here.

  11. Studies of droplet burning and extinction

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1995-01-01

    A project on droplet combustion, pursued jointly with F. L. Dryer of Princeton University, has now been in progress for many years. The project involves experiments on the burning of single droplets in various atmospheres, mainly at normal atmospheric pressure and below, performed in drop towers and designed to be performed aboard space-based platforms such as the Space Shuttle or the Space Station and currently manifest for Spacelab in the MSL-1 flight of the Space Shuttle in April of 1997. It also involves numerical computations on droplet burning, performed mainly at Princeton, and asymptotic analyses of droplet burning, performed mainly at UCSD. The focus of the studies rests primarily on time-dependent droplet-burning characteristics and on extinction phenomena. The presentation to be given here concerns the recent research on application of asymptotic methods to investigation of the flame structure and extinction of alcohol droplets. These theoretical studies are relevant to the second of the proposed space-flight tests and are currently investigating the extent to which combustion of alcohols can be described by four-step reduced chemistry similar to that which has achieved a good degree of success for alkane flames. These studies have progressed to a point at which a number of definite conclusions can now be stated. These conclusions and the reasoning that led to them are outlined.

  12. Dictyostelium Lipid Droplets Host Novel Proteins

    PubMed Central

    Du, Xiaoli; Barisch, Caroline; Paschke, Peggy; Herrfurth, Cornelia; Bertinetti, Oliver; Pawolleck, Nadine; Otto, Heike; Rühling, Harald; Feussner, Ivo; Herberg, Friedrich W.

    2013-01-01

    Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane. PMID:24036346

  13. Droplet Suspended on a Wire Begins Ignition

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Fiber Supported Droplet Combustion Experiment completing a number of successful burns on STS-94, July 11, 1997, MET:9/17:40 (approximate). The photo shows a droplet of 95% heptane and 5% hexadecane, suspended and positioned by the fiber wire, just as it is being ignited by the glowing coil beneath. Study of the physical properties of burning fuel from this experiment is expected to contribute to more efficient use of fossil fuels and reduction of combustion by-products on Earth. The sequence is from a time-lapse movie (34 seconds condensed to 12 seconds), and clearly shows particles emanating from the droplet during the burn. The droplet shrank to nothing as it was consumed. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.2 MB, 11-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300180.html.

  14. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysis and Recovery

    PubMed Central

    Labanieh, Louai; Nguyen, Thi N.; Zhao, Weian; Kang, Dong-Ku

    2016-01-01

    We describe the design, fabrication and use of a dual-layered microfluidic device for ultrahigh-throughput droplet trapping, analysis, and recovery using droplet buoyancy. To demonstrate the utility of this device for digital quantification of analytes, we quantify the number of droplets, which contain a β-galactosidase-conjugated bead among more than 100,000 immobilized droplets. In addition, we demonstrate that this device can be used for droplet clustering and real-time analysis by clustering several droplets together into microwells and monitoring diffusion of fluorescein, a product of the enzymatic reaction of β-galactosidase and its fluorogenic substrate FDG, between droplets. PMID:27134760

  15. Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays

    NASA Technical Reports Server (NTRS)

    Chiu, H. H.

    1989-01-01

    The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.

  16. Characterization of electrode alignment for optimal droplet charging and actuation in droplet-based microfluidic system.

    PubMed

    Ahn, Myung Mo; Im, Do Jin; Yoo, Byeong Sun; Kang, In Seok

    2015-09-01

    The actuation method using electric force as a driving force is utilized widely in droplet-based microfluidic systems. In this work, the effects of charging electrode alignment on direct charging of a droplet on electrified electrodes and a subsequent electrophoretic control of the droplet are investigated. The charging characteristics of a droplet according to different electrode alignments are quantitatively examined through experiments and systematic numerical simulations with varying distances and angles between the two electrodes. The droplet charge acquired from the electrified electrode is directly proportional to the distance and barely affected by the angle between the two electrodes. This implies that the primary consideration of electrode alignment in microfluidic devices is the distance between electrodes and the insignificant effect of angle provides a great degree of freedom in designing such devices. Not only the droplet charge acquired from the electrode but also the force exerted on the droplet is analyzed. Finally, the implications and design guidance for microfluidic systems are discussed with an electrophoresis of a charged droplet method-based digital microfluidic device.

  17. Statics of polymer droplets on deformable surfaces.

    PubMed

    Léonforte, F; Müller, M

    2011-12-01

    The equilibrium properties of polymer droplets on a soft deformable surface are investigated by molecular dynamics simulations of a bead-spring model. The surface consists of a polymer brush with irreversibly end-tethered linear homopolymer chains onto a flat solid substrate. We tune the softness of the surface by varying the grafting density. Droplets are comprised of bead-spring polymers of various chain lengths. First, both systems, brush and polymer liquid, are studied independently in order to determine their static and dynamic properties. In particular, using a numerical implementation of an AFM experiment, we measure the shear modulus of the brush surface and compare the results to theoretical predictions. Then, we study the wetting behavior of polymer droplets with different surface/drop compatibility and on substrates that differ in softness. Density profiles reveal, under certain conditions, the formation of a wetting ridge beneath the three-phase contact line. Cap-shaped droplets and cylindrical droplets are also compared to estimate the effect of the line tension with respect to the droplet size. Finally, the results of the simulations are compared to a phenomenological free-energy calculation that accounts for the surface tensions and the compliance of the soft substrate. Depending on the surface/drop compatibility, surface softness, and drop size, a transition between two regimes is observed: from one where the drop surface energy balances the adhesion with the surface, which is the classical Young-Dupré wetting regime, to another one where a coupling occurs between adhesion, droplet and surface elastic energies.

  18. Transient burning of a convective fuel droplet

    SciTech Connect

    Wu, Guang; Sirignano, William A.

    2010-05-15

    The transient burning of an n-octane fuel droplet in a hot gas stream at 20 atmosphere pressure is numerically studied, with considerations of droplet regression, deceleration due to the drag of the droplet, internal circulation inside the droplet, variable properties, non-uniform surface temperature, and the effect of surface tension. An initial envelope flame is found to remain envelope in time, and an initial wake flame is always transitioned into an envelope flame at a later time, with the normalized transition delay controlled by the initial Reynolds number and the initial Damkohler number. The initial flame shape is primarily determined by the initial Damkohler number, which has a critical value of Da{sub 0}=1.02. The burning rates are modified by the transition, and are influenced by the intensity of forced convection which is determined by initial Reynolds number. The influence of surface tension is also studied as the surface temperature is non-uniform. Surface tension affects the liquid motion at the droplet surface significantly and affects the change of surface temperature and burning rate modestly. The influence of surface tension generally increases with increasing initial Reynolds number within the range without droplet breakup. We also studied cases with constant relative velocity between the air stream and the droplet. The results show that in these cases the initial envelope flame still remains envelope, but the evolution from an initial wake flame to an envelope flame is inhibited. Validation of our analysis is made by comparing with a published porous-sphere experiment Raghavan et al. (2005) which used methanol fuel. (author)

  19. Development of a droplet breakup model considering aerodynamic and droplet collision effects

    NASA Technical Reports Server (NTRS)

    Wert, K. L.; Jacobs, H. R.

    1993-01-01

    A model is currently under development to predict the occurrence and outcome of spray droplet breakup induced by aerodynamic forces and droplet collisions. It is speculated that these phenomena may be significant in determining the droplet size distribution in a spray subjected to acoustic velocity fluctuations. The goal is to integrate this breakup model into a larger spray model in order to examine the effects of combustion instabilities on liquid rocket motor fuel sprays. The model is composed of three fundamental components: a dynamic equation governing the deformation of the droplet, a criterion for breakage based on the amount of deformation energy stored in the droplet and an energy balance based equation to predict the Sauter mean diameter of the fragments resulting from breakup. Comparison with published data for aerodynamic breakup indicates good agreement in terms of predicting the occurrence of breakup. However, the model significantly over predicts the size of the resulting fragments. This portion of the model is still under development.

  20. Interaction of droplets in recirculation regions within microfluidic systems

    NASA Astrophysics Data System (ADS)

    Ghazi, Nastaran; Hosseini, Ashkan; Shojaei-Zadeh, Shahab

    2012-11-01

    We investigate the interaction of oil droplets in continuous water phase as they travel across the streamlines of a recirculation region using microfluidic devices. Oil droplets are first generated using hydrodynamic focusing and then enter a recirculation region. The droplets then keep recirculating until they are pushed out by the incoming ones. We show that the frequency of droplet generation, viscosity contrast (oil to water), and geometry determine which droplets to stay in the recirculation region and which one to leave. Using flow field simulations, we investigate the migration of droplets and their trajectories based on the geometry of the recirculation region, the bubble size, and fluid properties. Under favorable conditions, when droplets interact within the recirculation region for long enough time, the film thickness that separates the two interfaces reduces and droplets will coalesce. The proposed design thus provides a suitable platform to study droplet coalescence within microfluidic devices.

  1. Bouncing of a Droplet on Superhydrophobic Surface in AC Electrowetting

    NASA Astrophysics Data System (ADS)

    Kang, Kwan Hyoung; Lee, Seung Jun; Hong, Jiwoo

    2009-11-01

    Oscillation of a droplet is induced in ac electrowetting by time-dependent electrical wetting tension. A droplet placed on a superhydrophobic surface bounces up like a rubber ball when an ac signal is applied. The bouncing pattern is highly frequency dependent. We investigated how the shape deformation and bouncing of a droplet are affected by applied frequency. The droplet motion is analyzed with the spectral method. The droplet is modeled as a simple linear oscillator, and the mass and spring constants are determined based on analytical results. We found that bouncing occurs periodically at a resonance frequency of the droplet. The motion of a sessile droplet released from a fixed shape is analyzed based on the phase field method. The numerical results show qualitative agreement with the experimental results for a bouncing droplet. Details on the flow field inside a bouncing droplet will be discussed based on numerical results.

  2. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  3. Droplet confinement and leakage: Causes, underlying effects, and amelioration strategies

    PubMed Central

    Debon, Aaron P.; Wootton, Robert C. R.

    2015-01-01

    The applicability of droplet-based microfluidic systems to many research fields stems from the fact that droplets are generally considered individual and self-contained reaction vessels. This study demonstrates that, more often than not, the integrity of droplets is not complete, and depends on a range of factors including surfactant type and concentration, the micro-channel surface, droplet storage conditions, and the flow rates used to form and process droplets. Herein, a model microfluidic device is used for droplet generation and storage to allow the comparative study of forty-four different oil/surfactant conditions. Assessment of droplet stability under these conditions suggests a diversity of different droplet failure modes. These failure modes have been classified into families depending on the underlying effect, with both numerical and qualitative models being used to describe the causative effect and to provide practical solutions for droplet failure amelioration in microfluidic systems. PMID:26015831

  4. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities.

    PubMed

    Ley, C J; Ekman, S; Hansson, K; Björnsdóttir, S; Boyde, A

    2014-03-25

    Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA) in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining) and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC), articular calcified cartilage (ACC), subchondral bone (SCB) and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  5. A Unique Case of Pulmonary Hyalinizing Granuloma Associated With FDG-avid PET Scan and Deep Venous Thrombosis.

    PubMed

    Khalid, Imran; Stone, Chad; Kvale, Paul

    2009-04-01

    An 83-year-old obese woman with a 60-pack-year smoking history was referred for evaluation of an abnormal chest radiograph [chest x-ray (CXR)]. Her past medical history was significant for recurrent deep venous thrombosis without any predisposing factors. CXR showed a large mass in the right mid lung and another nodule at the right apex, highly suspicious for a neoplastic process. These were not present on a CXR from 2 years earlier. An fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) scan revealed that all lesions were strongly FDG-avid. Six CT-guided core-needle lung biopsy specimens were obtained from the lung mass and all contained dense, lamellar, or "ropy" keloid-like collagen bundles arranged in a haphazard pattern. The biopsy specimens lacked significant necrosis and granulomas. Congo red stain with polarization was also negative for amyloid. The diagnosis of pulmonary hyalinizing granuloma (PHG) was made. A complete hypercoagulable workup was performed but no underlying abnormalities were found, including a negative lupus anticoagulant and malignancy workup. The patient was maintained on warfarin and followed with serial CT scans for 1 year, with spontaneous regression in the lung mass. The case is unique as it is the first case that reports an association of PHG with recurrent deep venous thrombosis in the absence of autoimmune or procoagulant factors and emphasizes the need for life-long anticoagulation in such scenarios. Also, we report the FDG-avid PET scan findings here that are novel for this disease in adults and add PHG to the list of diseases causing false-positive PET scans when malignancy is suspected. PMID:23168510

  6. Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas

    2014-05-01

    The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume

  7. Thermocapillary migration of an isolated droplet and interaction of two droplets in zero gravity

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali; Kalendar, Abdulrahim

    2016-09-01

    Fluid transfer within a stagnant liquid presents a significant challenge in zero-gravity conditions due to the lack of buoyancy effects. This challenge can be overcome by the utilisation of the Marangoni effect, or more specifically thermocapillary migration. The thermocapillary migration of droplets is driven by temperature gradients within the multiphase system which bring about a surface tension gradient driving the flow from the cold to the hot region. The migration speed of the droplet is significantly impacted by the heat transfer both inside the droplet and in its surroundings. This paper presents the analysis of drop movement in a stagnant liquid using computational fluid dynamics (CFD). The commercial software package Ansys-Fluent v.13 [1] is used to solve the governing continuum conservation equations for two-phase flow using the Volume of Fluid (VOF) method to track the liquid/liquid interface in 2D domain. This approach has been shown to be a valuable tool for studying the phenomena of liquid-liquid interaction. A strong agreement has been found with experimental observations conducted in microgravity. The inherent velocity of drops has been found to decrease with increasing Marangoni number. This finding is in line with the previous space experiments of Xie et al. (2005) [2] and in contrast to the numerical results of Ma (1999) [3] using the same liquid for the droplet and the host liquid. Data obtained in the present numerical study has been used to derive an expression predicting the scaled droplet velocity as a function of Marangoni number. A numerical study of the interaction of two spherical droplets undergoing thermocapillary migration in microgravity is also presented. The temperature thrust from the leading droplet towards the trailing droplet was found to disturb its migration velocity, but the trailing droplet was found to have no influence on the migration of the leading droplet.

  8. Modeling the coalescence of sessile droplets

    PubMed Central

    Sellier, M.; Trelluyer, E.

    2009-01-01

    This paper proposes a simple scenario to describe the coalescence of sessile droplets. This scenario predicts a power-law growth of the bridge between the droplets. The exponent of this power law depends on the driving mechanism for the spreading of each droplet. To validate this simple idea, the coalescence is simulated numerically and a basic experiment is performed. The fluid dynamics problem is formulated in the lubrication approximation framework and the governing equations are solved in the commercial finite element software COMSOL. Although a direct comparison of the numerical results with experiment is difficult because of the sensitivity of the coalescence to the initial and operating conditions, the key features of the event are qualitatively captured by the simulation and the characteristic time scale of the dynamics recovered. The experiment consists of inducing coalescence by pumping a droplet through a substrate which grows and ultimately coalesces with another droplet resting on the substrate. The coalescence was recorded using high-speed imaging and also confirmed the power-law growth of the neck. PMID:19693347

  9. Droplet Number Concentration Value Added Product

    2015-08-06

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers andmore » Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  10. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  11. Droplet Number Concentration Value Added Product

    SciTech Connect

    Chitra Sivaraman, PNNL

    2015-08-06

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).

  12. Bubbles and droplets in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yecko, Philip

    2006-11-01

    In this work, the behavior of ferrofluid droplets and of bubbles rising in a ferrofluid is studied using direct numerical simulations based on a volume of fluid (VOF) method. A ferrofluid is a suspension of small (5--15 nm) magnetic particles in a carrier liquid which may be water or a hydrocarbon oil, stabilized against settling by Brownian motion and against agglomeration by coating each particle with a layer of surfactant. Although their main application is the fluid O-ring found in computer hard disk drives, ferrofluids have been more recently recognized for their use in micro- and nano-fluidic pumping, and applications to drug delivery are under investigation. Because ferrofluids are opaque, numerical simulations offer a unique opportunity to visualize flows that cannot be easily visualized experimentally, yet little effort has been directed to numerical simulations of realistic magnetic fluids. In this work, we develop and test a multiphase simulation code, based on Surfer, which can dynamically follow the behavior of small numbers of droplets, bubbles or layers of ferrofluid and ordinary viscous fluid for so-called linear magnetic material. In the rising bubble tests, we quantify the vertical elongation of the bubble and the resulting reduction in drag and rise time. In the falling droplet experiments, we demonstrate the effect of variable magnetic properties on the shape and trajectory of the droplet, including the instability threshold where droplet fission occurs.

  13. Structural Transitions in Cholesteric Liquid Crystal Droplets.

    PubMed

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A; Rahimi, Mohammad; Roberts, Tyler F; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L; de Pablo, Juan J

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  14. Modelling NOx emissions of single droplet combustion

    NASA Astrophysics Data System (ADS)

    Moesl, Klaus G.; Schwing, Joachim E.; Sattelmayer, Thomas

    2012-02-01

    An approach for modelling and simulation of the generation of nitrogen oxide (NOx) in the gas phase surrounding single burning droplets is presented. Assuming spherical symmetry (no gravity, no forced convection), the governing equations are derived first. Then simplifications are introduced and it is proven that they are appropriate. The influences of the initial droplet diameter, the ambient conditions, and the droplet pre-vapourisation on NOx are investigated. The fuel of choice is n-decane (C10H22) as it resembles kerosene and diesel fuel best, and the complexity of the reaction mechanism is manageable. Combinations of C10H22 mechanisms and well-established NOx kinetics are evaluated in detail and validated for their applicability in the context of this work. The conducted simulations of droplet combustion in an atmosphere of hot exhaust gas show that NOx formation (by mass of fuel) increases linearly with the droplet diameter. There is a trade-off between available oxygen and ambient temperature. Increasing the equivalence ratio of the exhaust gas leads to higher NOx emissions in the very lean regime, but to lower emissions if the equivalence ratio exceeds 0.85. Pre-vapourisation of fuel at ambient conditions becomes beneficial with respect to NOx emissions only if the degree of vapourisation is above a minimum limit. If less fuel is vapourised before ignition, the NOx emissions remain almost unaffected.

  15. Simulating droplet motion on virtual leaf surfaces

    PubMed Central

    Mayo, Lisa C.; McCue, Scott W.; Moroney, Timothy J.; Forster, W. Alison; Kempthorne, Daryl M.; Belward, John A.; Turner, Ian W.

    2015-01-01

    A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261 (doi:10.1017/S0022112001007133)) with the addition of a disjoining pressure term, describes the gravity- and curvature-driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet's path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force. PMID:26064657

  16. The dynamics of laser droplet generation.

    PubMed

    Krese, Blaz; Perc, Matjaz; Govekar, Edvard

    2010-03-01

    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force, and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.

  17. Simulation of sliding of liquid droplets

    NASA Astrophysics Data System (ADS)

    Alen, Saif Khan; Farhat, Nazia; Rahman, Md. Ashiqur

    2016-07-01

    Numerical simulations of sliding behavior of liquid droplets on flat and periodic microgrooved surfaces with a range of groove geometry are conducted. A numerical model is developed which is capable of predicting the critical sliding angle of the drop by comparing the advancing and the receding angles obtained from numerical and experimental findings. The effect of microgroove topography, droplet size and inclination angle on the droplet sliding characteristics is analysed. Using an open-source platform (Surface Evolver), a 3D drop-shape model is developed to numerically determine the drop stability and contact angle hysteresis on tilted surfaces. In this numerical model, the three phase contact line of the drop is obtained by numerically calculating the vertex force and local contact angle at each vertex of the base contour. Several numerical models are developed based on various assumptions of base contour shape (circular or elliptical) and implementation of gravitational force to the droplet. Droplet shapes and critical sliding angles, obtained from these numerical models, are compared with those of experimental results and are found to be in very good agreement.

  18. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  19. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  20. New mechanisms of macroion-induced disintegration of charged droplets

    NASA Astrophysics Data System (ADS)

    Consta, Styliani; Oh, Myong In; Malevanets, Anatoly

    2016-10-01

    Molecular modeling has revealed that the presence of charged macromolecules (macroions) in liquid droplets dramatically changes the pathways of droplet fission. These mechanisms are not captured by the traditional theories such as ion-evaporation and charge-residue models. We review the general mechanisms by which macroions emerge from droplets and the factors that determine the droplet fission. These mechanisms include counter-intuitive "star" droplet formations and extrusion of linear macroions from droplets. These findings may play a direct role in determining macromolecule charge states in electrospray mass spectrometry experiments.

  1. Studies of experiments on droplet burning at reduced gravity

    SciTech Connect

    Williams, F.A.

    1983-06-01

    The advantages of reduced gravity investigation of droplet burning are discussed. Drop tower tests of droplet combustion are summarized. A design for droplet burning experiments in space shuttles is presented. A preloaded syringe dispenses the droplet which is dislodged mechanically or electrostatically. The positioning is electrostatic, with six electrodes operated individually or in pairs, manually or with servocontrol. After the droplet is at rest and the fields turned off, the retractable ignition electrodes are energized. The combustion is recorded by camera with backlight designed to give accurate droplet size. (ESA)

  2. Droplet Dynamics of a Flowing Emulsion System

    NASA Astrophysics Data System (ADS)

    Cypull, Olivia; Feitosa, Klebert

    The inner workings of glassy systems have long been a topic of interest for soft material scientists. Similarities between the jamming behavior of emulsions and the glass transition of glassy systems have prompted the conjecture that they might share the same underlying mechanism. Here we study a dense oil-in-water emulsion system forced to flow through a narrow microchannel. By matching the index of refraction of the two phases, we image the internal dynamics of the droplets in a confocal microscope. At low velocity speeds, we find that the velocity along the edge of the microchannel was not significantly different than then the average droplet velocity in the bulk suggesting a near plug flow. By contrast the droplets near the edge experienced more movement perpendicular to the flow indicating the fluidization effect of the confining walls.

  3. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  4. Rapid growth of cloud droplets by turbulence.

    PubMed

    Dallas, V; Vassilicos, J C

    2011-10-01

    Assuming perfect collision efficiency, we demonstrate that turbulence can initiate and sustain the rapid growth of very small water droplets in air even when these droplets are too small to cluster, and even without having to take gravity and small-scale intermittency into account. This is because the range of local Stokes numbers of identical droplets in the turbulent flow field is broad enough even when small-scale intermittency is neglected. This demonstration is given for turbulence which is one order of magnitude less intense than is typical in warm clouds but with a volume fraction which, even though small, is nevertheless large enough for an estimated a priori frequency of collisions to be ten times larger than in warm clouds. However, the time of growth in these conditions turns out to be one order of magnitude smaller than in warm clouds.

  5. Lattice-Boltzmann simulations of droplet evaporation.

    PubMed

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M

    2014-11-01

    We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. PMID:25186667

  6. String-merging of meso- viscoelastic droplets

    NASA Astrophysics Data System (ADS)

    Xu, Yuanze; Xu, Jianmao

    2007-03-01

    Great challenge exists in the multi-scale rheological modeling of immiscible polyblends with non-linear morphology changes, including viscoelastic drop break-up and collapse. A new type mechanism of merging and coalescence, called string-merging of meso- viscoelastic droplets was described and analyzed. By iterative stretching and relaxation in a four-roll mill rheometer, one droplet containing high molar mass PIB (polyisobutene), was separated into two droplets connected by a string in a dumbbell shape suspending in polydimethylsiloxane (PDMS) medium. In quiescent state, the string pulled the two spheres merging closer and collapsed into one spherical drop finally. The process exhibits interesting features, different from capillary breakup mechanism. By adding the viscoelasticity of the systems to the force balance of Laplace force and viscous drag, the phenomenon may be well analyzed. The necessity to involve the microscopic consideration of the highly oriented entangled state are discussed.

  7. Versatile microfluidic droplets array for bioanalysis.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods. PMID:25525675

  8. Dielectrophoretic levitation of droplets and bubbles

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  9. Versatile microfluidic droplets array for bioanalysis.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods.

  10. Oil droplet collisions with marine snow: effect of manipulating droplet size

    NASA Astrophysics Data System (ADS)

    Lambert, R. A.; Variano, E. A.

    2013-12-01

    Solid particle aggregates in the ocean, such as marine snow, can scavenge oil droplets as they are transported in the ocean, resulting in the removal of oil from the water column. Often, chemical dispersant is applied to oil spills to manipulate the oil droplet size; we study how such manipulations affect the rate at which oil is removed from the water column by collision with marine snow. We model the collision process using the particle pair methodology. Three dominant collision mechanisms are considered for particle pairs in the ocean environment: turbulent shear, differential settling and Brownian motion. A comparison of the removal rate of oil from the water column for large and small droplets size is conducted at constant volume fraction. The results of the study show that, for a constant volume of oil, droplet size does alter the amount of oil removed from the water column during collisions with marine snow, and that a greater amount of oil is removed when the droplets are large. This finding holds regardless of which collision mechanism is considered. Of the three mechanisms, differential settling results in the largest constant-volume removal rate (since oil droplets rise while marine floc settle downward) while Brownian diffusion results in the lowest removal rate. These finding suggest that using chemical dispersant on deep-sea oil spills to reduce droplet size will reduce the total volume of oil that becomes attached to marine snow and reduce the amount removed from the water column by this mechanism.

  11. Droplet Merging by Use of Droplet Velocity Difference due to Viscosity or Size Difference

    NASA Astrophysics Data System (ADS)

    Jin, Byungju; Kim, Young Won; Yoo, Jung Yul

    2008-11-01

    We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. Further, it is noted that two droplets of the same viscosity but of different size can be readily merged. Thus, the objective of the present study is to propose a simple and highly efficient nanoliter- or picoliter-size droplet-merging method which uses velocity difference induced by droplet viscosity or size difference in a microfluidic channel. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. For the quantitative measurement of the velocity difference of the droplets, micro-PIV is used. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  12. Droplet Combustion in a Slow Convective Flow

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Hicks, M. C.; Kaib, N.; Ackerman, M.; Haggard, J. B., Jr.; Williams, F. A.

    2001-01-01

    The objective of the present flight experiment definition study is to investigate the effects of slow forced convective flows on the dynamics of isolated single droplet combustion and is designed to complement the quiescent, microgravity droplet combustion experiments (DCE-1 and DCE-2) of Williams and Dryer. The fuels selected for this study are the same as those of DCE, namely, a sooting alkane fuel (heptane) and a non-sooting alcohol (methanol), and imposed flow rates are chosen between 0 and 20 cm/s with varying ambient oxygen concentrations and pressures. Within this velocity range, both accelerating and decelerating flow effects will also be investigated. Two different approaches to generate the forced flow are currently under development in ground-based facilities; the first is a flow tunnel concept where the forced flow is imposed against a stationary droplet, and in the second a tethered droplet is translated at a specified velocity in a quiescent ambient medium. Depending upon the engineering feasibility a selection will be made between these two approaches so that the experiment can be accommodated in the Multiple Droplet Combustion Apparatus (MDCA) currently being designed for the International Space Station. Recently, we have finished designing and fabricating the experimental rigs using both the above mentioned concepts. The flow tunnel concept is implemented in a 2.2 second drop tower rig. Preliminary experiments have been carried out using heptane and methanol in air at atmospheric pressure. The translating droplet apparatus is scheduled to be tested in the 5 second drop facility in the near future. This report presents some of the experimental results obtained for heptane.

  13. Dynamics of infectious disease transmission by inhalable respiratory droplets.

    PubMed

    Stilianakis, Nikolaos I; Drossinos, Yannis

    2010-09-01

    Transmission of respiratory infectious diseases in humans, for instance influenza, occurs by several modes. Respiratory droplets provide a vector of transmission of an infectious pathogen that may contribute to different transmission modes. An epidemiological model incorporating the dynamics of inhalable respiratory droplets is developed to assess their relevance in the infectious process. Inhalable respiratory droplets are divided into respirable droplets, with droplet diameter less than 10 microm, and inspirable droplets, with diameter in the range 10-100 microm: both droplet classes may be inhaled or settle. Droplet dynamics is determined by their physical properties (size), whereas population dynamics is determined by, among other parameters, the pathogen infectivity and the host contact rates. Three model influenza epidemic scenarios, mediated by different airborne or settled droplet classes, are analysed. The scenarios are distinguished by the characteristic times associated with breathing at contact and with hand-to-face contact. The scenarios suggest that airborne transmission, mediated by respirable droplets, provides the dominant transmission mode in middle and long-term epidemics, whereas inspirable droplets, be they airborne or settled, characterize short-term epidemics with high attack rates. The model neglects close-contact transmission by droplet sprays (direct projection onto facial mucous membranes), retaining close-contact transmission by inspirable droplets.

  14. Rebound of continuous droplet streams from an immiscible liquid pool

    NASA Astrophysics Data System (ADS)

    Doak, William J.; Laiacona, Danielle M.; German, Guy K.; Chiarot, Paul R.

    2016-05-01

    We report on the rebound of high velocity continuous water droplet streams from the surface of an immiscible oil pool. The droplets have diameters and velocities of less than 90 μm and 15 m/s, respectively, and were created at frequencies up to 60 kHz. The impact and rebound of continuous droplet streams at this scale and velocity have been largely unexplored. This regime bridges the gap between single drop and jet impacts. The impinging droplets create a divot at the surface of the oil pool that had a common characteristic shape across a wide-range of droplet and oil properties. After impact, the reflected droplets maintain the same uniformity and periodicity of the incoming droplets but have significantly lower velocity and kinetic energy. This was solely attributed to the generation of a flow induced in the viscous oil pool by the impacting droplets. Unlike normally directed impact of millimeter-scale droplets with a solid surface, our results show that an air film does not appear to be maintained beneath the droplets during impact. This suggests direct contact between the droplets and the surface of the oil pool. A ballistic failure limit, correlated with the Weber number, was identified where the rebound was suppressed and the droplets were driven through the oil surface. A secondary failure mode was identified for aperiodic incoming streams. Startup effects and early time dynamics of the rebounding droplet stream were also investigated.

  15. Dynamics of Fattening and Thinning 2D Sessile Droplets.

    PubMed

    Pradas, M; Savva, N; Benziger, J B; Kevrekidis, I G; Kalliadasis, S

    2016-05-17

    We investigate the dynamics of a droplet on a planar substrate as the droplet volume changes dynamically due to liquid being pumped in or out through a pore. We adopt a diffuse-interface formulation which is appropriately modified to account for a localized inflow-outflow boundary condition (the pore) at the bottom of the droplet, hence allowing to dynamically control its volume, as the droplet moves on a flat substrate with a periodic chemical pattern. We find that the droplet undergoes a stick-slip motion as the volume is increased (fattening droplet) which can be monitored by tracking the droplet contact points. If we then switch over to outflow conditions (thinning droplet), the droplet follows a different path (i.e., the distance of the droplet midpoint from the pore location evolves differently), giving rise to a hysteretic behavior. By means of geometrical arguments, we are able to theoretically construct the full bifurcation diagram of the droplet equilibria (positions and droplet shapes) as the droplet volume is changed, finding excellent agreement with time-dependent computations of our diffuse-interface model.

  16. Electrostatic Effects on Droplet Suspensions

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Fernandez, Arturo; Esmaeeli, Asghar

    2002-11-01

    Direct numerical simulations are used to examine the effect of electric fields on the behavior of a suspensions of drops in channels. The effect of the electric field is modeled using the "leaky dielectric" model, coupled with the full Navier-Stokes equations. The governing equations are solved using a front-tracking/finite volume technique. The method has been validated by detailed comparison with previous results for the axisymmetric interactions of two drops in Stokes flow. An extensive set of two-dimensional simulations has allowed us to explore the effect of the conductivity and permittivity ratios in some detail. The interaction of two drops is controlled by two effects. The drops are driven together due to the charge distribution on the surface. Since the net charge of the drops is zero, the drops see each other as dipoles. This dielectrophoretic motion always leads to drops attraction. The second effect is fluid motion driven by tangential stresses at the fluid interface. The fluid motion depends on the relative magnitude of the permittivity and conductivity ratios. When the permittivity ratio is higher than the conductivity ratio, the tangential forces induce flow from the poles of the drops to the equator. If the center of two such drops lies on a line parallel to the electric field, the flow drains from the region between the drops and they attract each other. When the ratios are equal, no tangential motion is induced and the drops attract each other by dielectrophoretic motion. When an electric field is applied to many drops suspended in a channel flow, drops first attract each other pair-wise and some drops move to the wall. If the forces are strong (compared to the fluid shear) the drops can form columns or fibers, spanning the channel and blocking the two-dimensional flow. Electronic "fibration" of suspensions has been observed in a number of systems, including dispersion of milk droplets and red blood cells. If the attractive forces are weak

  17. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    EPA Science Inventory

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  18. One-to-one encapsulation based on alternating droplet generation

    PubMed Central

    Hirama, Hirotada; Torii, Toru

    2015-01-01

    This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion. PMID:26487193

  19. Light Driven Formation and Rupture of Droplet Bilayers

    PubMed Central

    Dixit, Sanhita S.; Kim, Hanyoup; Vasilyev, Arseny; Eid, Aya; Faris, Gregory W.

    2010-01-01

    We demonstrate optical manipulation of nanoliter aqueous droplets containing surfactant or lipid molecules and immersed in an organic liquid using near infrared light. The resulting emulsion droplets are manipulated using both the thermocapillary effect and convective fluid motion. Droplet pair-interactions induced in the emulsion upon optical initiation and control provide direct observations of the coalescence steps in intricate detail. Droplet-droplet adhesion (bilayer formation) is observed under several conditions. Selective bilayer rupture is also realized using the same infrared laser. The technique provides a novel approach to study thin film drainage and interface stability in emulsion dynamics. The formation of stable lipid bilayers at the adhesion interface between interacting water droplets can provide an optical platform to build droplet-based lipid bilayer assays. The technique also has relevance for understanding and improving microfluidics applications by devising Petri dish based droplet assays requiring no substrate fabrication. PMID:20361732

  20. One-to-one encapsulation based on alternating droplet generation

    NASA Astrophysics Data System (ADS)

    Hirama, Hirotada; Torii, Toru

    2015-10-01

    This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion.

  1. Steady-state droplet size in montmorillonite stabilised emulsions.

    PubMed

    Ganley, William J; van Duijneveldt, Jeroen S

    2016-08-14

    The formation of hexadecane-in-water emulsions stabilised by montmorillonite platelets was studied. In this system the platelets form a monolayer around the droplets and the droplet size decreases with increasing platelet volume fraction. However, the number of platelets present exceeds that required for monolayer coverage. The kinetics of emulsification were investigated and coalescence of droplets during turbulent mixing was found to continue even after the droplets had reached their ultimate size. Non-spherical droplets, resulting from arrested coalescence, were not observed suggesting that particles may be desorbing from the interface during the turbulent flow. A kinetic model based on a competition between droplet break-up and coalescence, mediated by particle adsorption and desorption, reproduces experimental trends in droplet diameter. The model can be used to predict the most efficient formulation to minimise droplet diameters for given materials and mixing conditions and sheds light on the processes occurring during emulsification in this system. PMID:27407026

  2. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  3. Hydrodynamic dispensing and electrical manipulation of attolitre droplets

    PubMed Central

    Zhang, Yanzhen; Zhu, Benliang; Liu, Yonghong; Wittstock, Gunther

    2016-01-01

    Dispensing and manipulation of small droplets is important in bioassays, chemical analysis and patterning of functional inks. So far, dispensing of small droplets has been achieved by squeezing the liquid out of a small orifice similar in size to the droplets. Here we report that instead of squeezing the liquid out, small droplets can also be dispensed advantageously from large orifices by draining the liquid out of a drop suspended from a nozzle. The droplet volume is adjustable from attolitre to microlitre. More importantly, the method can handle suspensions and liquids with viscosities as high as thousands mPa s markedly increasing the range of applicable liquids for controlled dispensing. Furthermore, the movement of the dispensed droplets is controllable by the direction and the strength of an electric field potentially allowing the use of the droplet for extracting analytes from small sample volume or placing a droplet onto a pre-patterned surface. PMID:27514279

  4. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  5. Hydrodynamic dispensing and electrical manipulation of attolitre droplets.

    PubMed

    Zhang, Yanzhen; Zhu, Benliang; Liu, Yonghong; Wittstock, Gunther

    2016-01-01

    Dispensing and manipulation of small droplets is important in bioassays, chemical analysis and patterning of functional inks. So far, dispensing of small droplets has been achieved by squeezing the liquid out of a small orifice similar in size to the droplets. Here we report that instead of squeezing the liquid out, small droplets can also be dispensed advantageously from large orifices by draining the liquid out of a drop suspended from a nozzle. The droplet volume is adjustable from attolitre to microlitre. More importantly, the method can handle suspensions and liquids with viscosities as high as thousands mPa s markedly increasing the range of applicable liquids for controlled dispensing. Furthermore, the movement of the dispensed droplets is controllable by the direction and the strength of an electric field potentially allowing the use of the droplet for extracting analytes from small sample volume or placing a droplet onto a pre-patterned surface. PMID:27514279

  6. Combinatorial microfluidic droplet engineering for biomimetic material synthesis

    PubMed Central

    Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.

    2016-01-01

    Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine. PMID:27730209

  7. Hydrodynamic dispensing and electrical manipulation of attolitre droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhen; Zhu, Benliang; Liu, Yonghong; Wittstock, Gunther

    2016-08-01

    Dispensing and manipulation of small droplets is important in bioassays, chemical analysis and patterning of functional inks. So far, dispensing of small droplets has been achieved by squeezing the liquid out of a small orifice similar in size to the droplets. Here we report that instead of squeezing the liquid out, small droplets can also be dispensed advantageously from large orifices by draining the liquid out of a drop suspended from a nozzle. The droplet volume is adjustable from attolitre to microlitre. More importantly, the method can handle suspensions and liquids with viscosities as high as thousands mPa s markedly increasing the range of applicable liquids for controlled dispensing. Furthermore, the movement of the dispensed droplets is controllable by the direction and the strength of an electric field potentially allowing the use of the droplet for extracting analytes from small sample volume or placing a droplet onto a pre-patterned surface.

  8. Droplet sorting in a loop of flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan; Herminghaus, Stephan; Brinkmann, Martin

    2013-07-01

    Motivated by recent experiments, we numerically study the droplet traffic in microfluidic channels forming an asymmetric loop with a long and a short arm. The loop is connected to an inlet and an outlet channel by two right angled T-junctions. Assuming flat channels, we employ the boundary element method (BEM) to numerically solve the two-dimensional Darcy equation that governs two phase flow in the Hele-Shaw limit. The occurrence of different sorting regimes is summarized in sorting diagrams in terms of droplet size, distance between consecutive droplets in the inlet channel, and loop asymmetry for mobility ratios of the liquid phases larger and smaller than one. For large droplet distances, the traffic is regulated by the ratio of the total hydraulic resistances of the long and short arms. At high droplet densities and below a critical droplet size, droplet-droplet collisions are observed for both mobility ratios.

  9. Droplet traffic at a simple junction at low capillary numbers.

    PubMed

    Engl, Wilfried; Roche, Matthieu; Colin, Annie; Panizza, Pascal; Ajdari, Armand

    2005-11-11

    We report that, when a train of confined droplets flowing through a channel reaches a junction, the droplets either are alternately distributed between the different outlets or all collect into the shortest one. We argue that this behavior is due to the hydrodynamic feedback of droplets in the different outlets on the selection process occurring at the junction. A "mean field" model, yielding semiquantitative results, offers a first guide to predict droplet traffic in branched networks.

  10. Fluorescent photography of spray droplets using a laser light source

    NASA Technical Reports Server (NTRS)

    Groeneweg, J.; Hiroyasu, H.; Sowls, R.

    1969-01-01

    Monochromatic laser emission transformed by a fluorescent process into droplet emission over a wavelength band provides high light intensities for obtaining adequate time resolution to stop droplet motion in photographic spray studies. Experiments showed that the Q-switched laser-optical harmonic generator combination produced sharp, well-exposed droplet images.

  11. Synchronized Reinjection and Coalescence of Droplets in Microfluidics

    NASA Astrophysics Data System (ADS)

    Lee, Manhee; Collins, Jesse; Aubrecht, Donald; Kim, Shinhyun; Lin, Tina; Rotem, Assaf; Solomon, Laura; Weitz, David; Manoharan, Vinothan

    2012-02-01

    In droplet-based microfluidics, one of the essential techniques is controlled addition of desired materials into the droplets. This is best achieved through the coalescence of pairs of droplets, and therefore various methods of coalescence have been developed over the last decade. However, the coalescence of two different droplets made independently in different devices still remains a challenging problem, primarily because it is difficult to synchronize the reinjection of the different droplets before their coalescence. In addition, typical coalescers require some specific conditions such as uniform droplet-droplet distances and constant flow rate, which hinders the flexible use of coalescers in practical applications. Here we present a straightforward method for synchronizing reinjection of two kinds of droplets and coalescing them. We employ a home-made emulsion collector operated by hydrostatic pressure to reinject droplets into a device, where two kinds of droplets are driven into two opposing T-junction alternatively and then pairs of droplets are merged at the new coalescer proposed here. We use the technique to create droplets with a controlled number of colloidal particles inside, so that we can observe their self-assembly into a cluster.

  12. Droplet pairing and coalescence control for generation of combinatorial signals

    NASA Astrophysics Data System (ADS)

    Um, Eujin; Rogers, Matthew; Stone, Howard

    2013-03-01

    A co-flowing aqueous phase with an immiscible oil phase in a microchannel generates uniformly spaced, monodisperse droplets, which retain their shape by not touching each other or by being stabilized with surfactants at the oil-water interface. However, droplet coalescence is required in many advanced applications, which can be achieved by a complex channel geometry or size differences in the droplets, and as well as by procedures to reduce the effect of a surfactant. These approaches, again, hinder the stability of droplets further downstream. We designed a microchannel which consistently inserts gas-bubble between droplets so that pairing and coalescence of droplets occurs even in the presence of surfactant, and yet prevents unwanted merging with other droplets. Aqueous droplets placed between the bubbles alter their relative speeds and spacing, and consequently we study the change in the number of droplet pairings in relation to the characteristics of the bubbles and the volume of aqueous droplets. By integrating this approach with droplets of different materials, we can program the output sequence of droplet compositions, and such complex combinatorial signals generated are aimed for concentration gradient generation and dynamic stimulation of biological cells with chemicals.

  13. Versatile on-demand droplet generation for controlled encapsulation

    PubMed Central

    Rhee, Minsoung; Liu, Peng; Meagher, Robert J.; Light, Yooli K.; Singh, Anup K.

    2014-01-01

    We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis. PMID:25379072

  14. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  15. Electrocoalescence based serial dilution of microfluidic droplets.

    PubMed

    Bhattacharjee, Biddut; Vanapalli, Siva A

    2014-07-01

    Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.

  16. Microfluidic droplet enrichment for targeted sequencing

    PubMed Central

    Eastburn, Dennis J.; Huang, Yong; Pellegrino, Maurizio; Sciambi, Adam; Ptáček, Louis J.; Abate, Adam R.

    2015-01-01

    Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications. PMID:25873629

  17. Emulsions Droplet Capture Mechanism in Porous Media

    NASA Astrophysics Data System (ADS)

    Zeidani, Khalil; Polikar, Marcel

    2006-03-01

    This study was undertaken to investigate the physics of emulsion flow in porous media. The objective of experiments were to study the applicability of oil-in-water emulsion as a plugging agent in the vicinity of the well bore for thousands of Canadian gas wells that are continuously leaking gas to surface. The motion of oil droplets and the capture mechanisms were investigated through visualized experiments. Well-characterized emulsions were injected into a micro model resembling a two parallel plate model packed with glass beads. Effects of emulsion properties and wettability of the medium were studied on a plugging mechanism. The results demonstrate the reduction in permeability mainly due to droplets size exclusion compared to the pore constrictions. Also, smaller droplets may lodge and coalesce in pores crevices thereby accelerating the blockage process. Moreover, more viscous emulsions are more effective compared with the less viscous ones due to combined effects of capillary and viscous forces. The deposition of droplets was adjusted through utilizing different preflush solutions. Criteria were set for enhancing emulsion penetration depth thereby defining the extent of the blocked region. In conclusion, this work characterizes the physics of emulsion flow in porous media and demonstrates its application as a novel sealant in near well bore region. The novelty, which constitutes a step-change in technology, is a method that emplaces an emulsion at a desired location in underground media.

  18. The Physics of Foams, Droplets and Bubbles

    ERIC Educational Resources Information Center

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  19. Electrocoalescence based serial dilution of microfluidic droplets

    PubMed Central

    Bhattacharjee, Biddut; Vanapalli, Siva A.

    2014-01-01

    Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops. PMID:25379096

  20. Evaporation-Driven Bioassays in Suspended Droplets.

    PubMed

    Hernandez-Perez, Ruth; Fan, Z Hugh; Garcia-Cordero, Jose L

    2016-07-19

    The microtiter plate has been an essential tool for diagnostics, high-throughput screening, and biological assays. We present an alternative platform to perform bioassays in a microplate format that exploits evaporation to drive assay reactions. Our method consists of droplets suspended on plastic pillars; reactions occur in these droplets instead of the wells. The pillars are fabricated by milling, and the rough surface created by this fabrication method pins the droplet to a constant contact line during the assay and also acts as a hydrophobic surface. Upon evaporation, natural convection arising from Marangoni currents mixes solutions in the droplet, which speeds up assay reactions, decreases assay times, and increases limits of detection. As a proof of concept we implemented two colorimetric assays to detect glucose and proteins in only 1.5 μL, without any external devices for mixing and with a digital microscope as a readout mechanism. Our platform is an ideal alternative to the microtiter plate, works with different volumes, is compatible with commercially available reagent dispensers and plate-readers, and could have broad applications in diagnostics and high-throughput screening. PMID:27331825

  1. Surface tension of evaporating nanofluid droplets

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  2. Two Droplets Burning Side by Side

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Fiber-Supported Droplet Combustion (FSDC) experiment team got more than twice as many burns have been completed as were originally scheduled for STS-95. This image was taken July 12, 1997, MET:10/08:13 (approximate). As shown here, scientists were able to burn two droplets side by side, more closely mimicking behavior of burning fuel in an engine. This shows ignition of a single drop that subsequently burned while a fan blew through the chamber, giving the scientists data on burning with convection, but no buoyancy -- an important distinction when you're trying to solve a problem by breaking it into parts. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 11-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300176.html.

  3. Droplet freezing experiments in stearic acid-water emulsions, role of the droplet-medium interface

    SciTech Connect

    Cordiez, J.P.; Grange, G.; Mutaftschiev, B.

    1982-02-01

    Droplets of stearic acid emulsions in water, stabilized with cationic or anionic emulsifiers, undergoing freezing-melting cycles with constant temperature scanning rate, freeze as monocrystals and independently from one another, even when visible clustering takes place. The study of the nucleation kinetics by differential scanning calorimetry shows that nucleation threshold (critical undercooling) depends on the nature of the emulsifier, adsorbed at the droplet-medium interface. 30 references.

  4. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair

    PubMed Central

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing

    2014-01-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. PMID:25154784

  5. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    PubMed

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair.

  6. An interface tracking model for droplet electrocoalescence.

    SciTech Connect

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  7. A DROPLET MODEL OF QUIESCENT PROMINENCE DOWNFLOWS

    SciTech Connect

    Haerendel, G.; Berger, T.

    2011-04-20

    Observations of quiescent prominences with the Solar Optical Telescope on the Hinode satellite have revealed the ubiquitous existence of downflows forming coherent thin and highly structured vertically oriented threads with velocities between 10 and 20 km s{sup -1}. Their widths range between 300 and 500 km. They are often initiated at the top of the visible prominence, but sometimes also at intermediate level. We propose that the downflows are made of plasma packets that squeeze themselves through the dominantly horizontal field under the action of gravity. Their origin is assumed to be hot plasma supplied from either inside or the immediate vicinity of the prominence and condensing at its top. Under compression and further cooling, the matter overflows to the flanks of the prominence dragging its magnetic field with it. Under the increasing action of gravity, vertical structures are forming which eventually disconnect from the field of the inflow channel thus forming finite plasma packets. This process is reminiscent of water flowing over a mountain ridge and breaking up into a multitude of droplets. Like water droplets being subject to air drag, the falling plasma droplets experience a drag force by the horizontal prominence field and assume a steady vertical velocity. This happens via the excitation of Alfven waves. Lateral confinement by the prominence field determines their spatial extent. The small scales of the droplets and the directional balance of their internal tangled magnetic fields can explain the absence of appreciable vertical components in magnetic field measurements. On the basis of the observed width and vertical speed of the downflows and by adopting a prominence field of about 8 G, we derive central density and temperature of the droplets, which turn out to be quite consistent with known prominence characteristics. In the formulation of the drag force a dimensionless 'magnetic drag coefficient' has been introduced with a value well below unity.

  8. Collision of oil droplets with marine aggregates: Effect of droplet size

    NASA Astrophysics Data System (ADS)

    Lambert, Ruth A.; Variano, Evan A.

    2016-05-01

    Interactions between oil droplets and marine particle aggregates, such as marine snow, may affect the behavior of oil spills. Marine snow is known to scavenge fine particles from the water column, and has the potential to scavenge oil droplets in the same manner. To determine the degree to which such a process is important in the evolution of oil spills, we quantify the collision of oil droplets and marine aggregates using existing collision rate equations. Results show that interaction of drops and aggregates can substantially influence the drop size distribution, but like all such processes this result is sensitive to the local concentration of oil and aggregates. The analysis also shows that as the size distribution of oil droplets shifts toward larger droplets, a greater fraction of the total oil volume collides with marine aggregates. This result is robust to a variety of different assumptions in the collision model. Results also show that there is not always a dominant collision mechanism. For example, when droplets and aggregates are both close to 10 μm in radius, shear and differential settling contribute nearly equally to the collision rate. This overlap suggests that further research on the interaction of shear and differential settling could be useful.

  9. Evaporation of ethanol/water droplets: examining the temporal evolution of droplet size, composition and temperature.

    PubMed

    Hopkins, Rebecca J; Reid, Jonathan P

    2005-09-01

    The evolving size, composition, and temperature of evaporating ethanol/water aerosol droplets 25-57 microm in radius are probed by cavity enhanced Raman scattering (CERS) and laser induced fluorescence. This represents the first study in which the evolving composition of volatile droplets has been probed with spatial selectivity on the millisecond time scale, providing a new strategy for exploring mass and heat transfer in aerosols. The Raman scattering intensity is shown to depend exponentially on species concentration due to the stimulated nature of the CERS technique, providing a sensitive measure of the concentration of the volatile ethanol component. The accuracy with which we can determine droplet size, composition, and temperature is discussed. We demonstrate that the CERS measurements of evolving size and composition of droplets falling in a train can be used to characterize, and thus avoid, droplet coagulation. By varying the surrounding gas pressure (7-77 kPa), we investigate the dependence of the rate of evaporation on the rate of gas diffusion, and behavior consistent with gas diffusion-limited evaporation is observed. We suggest that such measurements can allow the determination of the vapor pressures of components within the droplet and can allow the determination of activity coefficients of volatile species.

  10. Shock wave induced evaporation of water droplets in a gas-droplet mixture

    NASA Astrophysics Data System (ADS)

    Goossens, H. W. J.; Cleijne, J. W.; Smolders, H. J.; van Dongen, M. E. H.

    1988-01-01

    A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = less than 2, and droplet radii in the range of 1-5 microns, the major part of the evaporation process is governed by a balance between heat conduction and vapor diffusion. The formation of a fog by means of an unsteady adiabatic expansion of humid nitrogen is described. Experimental results of shock induced evaporation are shown for shock Mach numbers from 1.2 to 2.1, droplet mass fraction of 0.005, and initial droplet radii of 1-1.4 microns. The expected linear relation between droplet radius squared and time during evaporation is observed. Characteristic evaporation times appear to be strongly dependent on shock strength. A variation of about two decades, predicted by theory, was experimentally observed for the Mach number range studied.

  11. Testing of detector papers with CW liquid-agent droplets of known diameter. Droplets generator, calibration, and procedures. Technical note

    SciTech Connect

    Thoraval, D.; Bovenkamp, J.W.; Bets, R.W.; Preston, J.M.; Hart, L.G.

    1986-01-01

    The droplet generator used at DREO to test the color-producing ability of detector papers with CW-agent droplets of known diameter is described. The calibration of the equipment, the droplet size consistency and the procedure used to test the CW-agent-detector papers are discussed.

  12. Effect of droplet-induced breakdown on CARS temperature measurements

    SciTech Connect

    Dunn-Rankin, D. ); Switzer, G.L. ); Obringer, C.A.; Jackson, T. )

    1990-07-20

    This research examines the potential for coherent anti-Stokes Raman scattering (CARS) to rovide reliable gas temperature measurements in the presence of liquid droplets. The droplets cause dielectric breakdown by focusing the CARS laser beams. This breakdown produces a plasma that can disrupt or obscure the CARS signal. Specifically, we examine the influence of laser induced breakdown on the CARS signal, and we determine the importance of droplet position relative to the CARS focal volume and droplet concentration on the reliability of CARS temperature measurements in droplet-laden flows. In addition, we propose a reliable data reduction procedure to minimize the disruptive influence of laser induced breakdown on CARS temperature.

  13. A soft microchannel decreases polydispersity of droplet generation.

    PubMed

    Pang, Yan; Kim, Hyoungsoo; Liu, Zhaomiao; Stone, Howard A

    2014-10-21

    We study the effect of softness of the microchannel on the process of droplet generation in two-phase flows in a T-junction microchannel. One side of the microchannel has a flexible thin PDMS layer, which vibrates naturally while droplets are generated; the deformation frequency coincides with the frequency of droplet formation. Furthermore, we compare the polydispersity of water-in-oil droplets formed with a microchannel with one soft wall with those formed in a conventional rigid microchannel. We show that deformation of the soft wall reduces the polydispersity in the droplet size. PMID:25144377

  14. On microtransport phenomena in minute droplets: A critical review

    SciTech Connect

    Aydin, O.; Yang, W.J.

    2000-05-01

    Liquid droplets are abundant in nature and industry. Their industrial applications are very broad. They appear in the forms of sessile, impinging, and hanging/suspending droplets, undergoing evaporation or solidification depending upon ambient conditions. In the present article, a critical review is presented for the important literature pertinent to microtransport phenomena in minute droplets. Thermocapillarity is the principal motivating force in convective heat and mass transfer, phase change, and instability inside the droplets, supplemented in part by the buoyancy force. The dimensionless governing parameters are identified and their roles in droplet transport phenomena are determined. This article includes 135 references.

  15. Stability of a pendant droplet in gas metal arc welding

    SciTech Connect

    Murray, P.E.

    1998-07-01

    The authors develop a model of metal transfer in gas metal arc welding and compute the critical mass of a pendant droplet in order to ascertain the size and frequency of droplets detaching from the consumable metal electrode. These results are used to predict the mode of metal transfer for a range of voltage and current encompassing free flight transfer, and the transition between globular and spray transfer. This model includes an efficient method to compute the stability of a pendant droplet and the location of the liquid bridge connecting the primary droplet and the residual liquid remaining after detachment of the primary droplet.

  16. Optical heterodyne measurement of cloud droplet size distributions.

    PubMed

    Gollub, J P; Chabay, L; Flygare, W H

    1973-12-01

    Optical heterodyne spectra of laser light quasi-elastically scattered by falling water droplets (1-10-micro radius) in a diffusion cloud chamber were used to determine the droplet size distribution. The rate of fall depends on radius in a known way, thus yielding a heterodyne spectrum manifesting a distribution of Doppler shifts. This spectrum, in conjunction with the calculated Mie scattering intensity as a function of droplet radius, provides a direct measure of the droplet size distribution for droplets large enough that Brownian motion is negligible. The experiments described in this paper demonstrate the technique and establish the potential for further more quantitative studies of size distributions.

  17. Velocity and rotation measurements in acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  18. Investigations of Abrupt Movements of Optically Trapped Water Droplets

    NASA Astrophysics Data System (ADS)

    Murphy, Shawntel; McCann, Lowell I.

    2007-03-01

    We have used a single beam optical trap (optical tweezers) to capture individual water droplets in air. A 3-dimensional viewing system consisting of a two axis microscope allows the trapped droplet to be viewed from the top and the side simultaneously. The position of the droplet is determined with a digital camera at a rate up to 700Hz. We have observed abrupt movements along the beam in two situations: As a pure water droplet evaporates, the movements occur at specific size intervals as the diameter decreases. For non-evaporating saltwater droplets the movements rapidly occur for certain ranges of beam power, and not at all for other ranges of power.

  19. Electric-Field-Enhanced Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  20. Rapid and continuous magnetic separation in droplet microfluidic devices

    PubMed Central

    Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H.

    2015-01-01

    We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries. PMID:25501881

  1. Interfacial stability and shape change of anisotropic endoskeleton droplets.

    PubMed

    Caggioni, Marco; Bayles, Alexandra V; Lenis, Jessica; Furst, Eric M; Spicer, Patrick T

    2014-10-14

    The delivery of suspended active ingredients to a surface is a central function of numerous commercial cosmetic, drug, and agricultural formulations. Many products use liquid droplets as a delivery vehicle but, because interfacial tension keeps droplets spherical, these materials cannot exploit the benefits of anisotropic shape and shape change offered by solid colloids. In this work, individual droplet manipulation is used to produce viscoelastic droplets that can stably retain non-spherical shapes by balancing the Laplace pressure of the liquid-liquid interface with the elasticity of an internal crystalline network. A stability criterion is developed for idealized spherocylindrical droplets and shown to agree with experimental data for varying droplet size and rheology. Shape change can be induced in the anisotropic droplets by upsetting the balance of droplet interfacial tension and internal rheology. Using dilution to increase the interfacial tension shows that external stimuli can trigger collapse and shape change in these droplets. The droplets wrap around substrates during collapse, improving contact and adhesion. The model is used to develop design criteria for production of droplets with tunable response.

  2. Construction and manipulation of functional three-dimensional droplet networks.

    PubMed

    Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj

    2014-01-28

    Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues. PMID:24341760

  3. Combustion of Interacting Droplet Arrays in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Nagaishi, H.; Honma, S.; Ikeda, K.

    2001-01-01

    Investigations into droplet interactions date back to Rex et al. Annamalai and Ryan and Annamalai published extensive reviews of droplet array and cloud combustion studies. In the majority of the reviewed studies, the authors examined the change in the burning rate constant, k, (relative to that of the single droplet) that results from interactions. More recently, Niioka and co-workers have examined ignition and flame propagation along arrays of interacting droplets with the goal of relating these phenomena in this simplified geometry to the more practical spray configuration. Our work has focussed on droplet interactions under conditions where flame extinction occurs at a finite droplet diameter. In our previous work, we reported that in normal gravity, reduced pressure conditions, droplet interactions improved flame stability and extended flammability limits (by inference). In our recent work, we examine droplet interactions under conditions where the flame extinguishes at a finite droplet diameter in microgravity. The microgravity experiments were in the NASA GRC 2.2 and 5.2 second drop towers, and the JAMIC (Japan Microgravity Center) 10 second drop tower. We also present progress on a numerical model of single droplet combustion that is in the process of being extended to model a binary droplet array.

  4. Multiphase bioreaction microsystem with automated on-chip droplet operation.

    PubMed

    Wang, Fang; Burns, Mark A

    2010-05-21

    A droplet-based bioreaction microsystem has been developed with automated droplet generation and confinement. On-chip electronic sensing is employed to track the position of the droplets by sensing the oil/aqueous interface in real time. The sensing signal is also used to control the pneumatic supply for moving as well as automatically generating four different nanolitre-sized droplets. The actual size of droplets is very close to the designed droplet size with a standard deviation less than 3% of the droplet size. The automated droplet generation can be completed in less than 2 s, which is 5 times faster than using manual operation that takes at least 10 s. Droplets can also be automatically confined in the reaction region with feedback pneumatic control and digital or analog sensing. As an example bioreaction, PCR has been successfully performed in the automated generated droplets. Although the amplification yield was slightly reduced with the droplet confinement, especially while using the analog sensing method, adding additional reagents effectively alleviated this inhibition.

  5. Liquid droplet radiator program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Presler, A. F.; Coles, C. E.; Diem-Kirsop, P. S.; White, K. A., III

    1985-01-01

    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.

  6. Oscillating blood droplets--implications for crime scene reconstruction.

    PubMed

    Raymond, M A; Smith, E R; Liesegang, J

    1996-01-01

    Traditionally, the analysis of blood spatter on surfaces in the reconstruction of crime scenes relies on the assumption that blood droplets are spherical when they strike the surface. This paper explores the effects of their shape on the reconstruction of trajectories from their impact pattern, and reports a theoretical analysis of the lifetime of droplet oscillations. Oscillations damp quickly in blood droplets due to the viscosity. The analysis provides ranges of velocities and distances from the point of droplet projection within which it is unreliable to assume the droplets are spherical when they stain a surface. Non-spherical droplet stains predict incorrect positioning of the droplet projection point. Experimental data are presented to show that the estimates apply in practice. PMID:8789933

  7. Sorting and Manipulation of Magnetic Droplets in Continuous Flow

    NASA Astrophysics Data System (ADS)

    Al-Hetlani, Entesar; Hatt, Oliver J.; Vojtíšek, Martin; Tarn, Mark D.; Iles, Alexander; Pamme, Nicole

    2010-12-01

    We report the rapid on-chip generation and subsequent manipulation of magnetic droplets in continuous flow. Magnetic droplets were formed using aqueous-based ferrofluid as the dispersed phase and fluorocarbon oil as the continuous phase. Droplet manipulation was demonstrated with simple permanent magnets using two microfluidic platforms: (i) flow focusing droplet generation followed by their splitting into daughter droplets containing different amounts of magnetic nanoparticles, and (ii) droplet generation at a T-junction and their downstream deflection across a chamber for sorting based on the applied magnetic field and magnetite loading of the droplet. Both systems show great potential for performing a wide range of high throughput continuous flow processes including sample dilution, cell sorting and screening, and microparticle fabrication.

  8. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  9. Oscillating blood droplets--implications for crime scene reconstruction.

    PubMed

    Raymond, M A; Smith, E R; Liesegang, J

    1996-01-01

    Traditionally, the analysis of blood spatter on surfaces in the reconstruction of crime scenes relies on the assumption that blood droplets are spherical when they strike the surface. This paper explores the effects of their shape on the reconstruction of trajectories from their impact pattern, and reports a theoretical analysis of the lifetime of droplet oscillations. Oscillations damp quickly in blood droplets due to the viscosity. The analysis provides ranges of velocities and distances from the point of droplet projection within which it is unreliable to assume the droplets are spherical when they stain a surface. Non-spherical droplet stains predict incorrect positioning of the droplet projection point. Experimental data are presented to show that the estimates apply in practice.

  10. Effective doping of low energy ions into superfluid helium droplets

    PubMed Central

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-01-01

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 104 ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 105/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies. PMID:26298127

  11. Image processing system to analyze droplet distributions in sprays

    NASA Technical Reports Server (NTRS)

    Bertollini, Gary P.; Oberdier, Larry M.; Lee, Yong H.

    1987-01-01

    An image processing system was developed which automatically analyzes the size distributions in fuel spray video images. Images are generated by using pulsed laser light to freeze droplet motion in the spray sample volume under study. This coherent illumination source produces images which contain droplet diffraction patterns representing the droplets degree of focus. The analysis is performed by extracting feature data describing droplet diffraction patterns in the images. This allows the system to select droplets from image anomalies and measure only those droplets considered in focus. Unique features of the system are the totally automated analysis and droplet feature measurement from the grayscale image. The feature extraction and image restoration algorithms used in the system are described. Preliminary performance data is also given for two experiments. One experiment gives a comparison between a synthesized distribution measured manually and automatically. The second experiment compares a real spray distribution measured using current methods against the automatic system.

  12. Tactic, reactive, and functional droplets outside of equilibrium.

    PubMed

    Lach, Sławomir; Yoon, Seok Min; Grzybowski, Bartosz A

    2016-08-22

    Under non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells. There are also first exciting examples of active droplets connected into larger, tissue-like systems supporting droplet-to-droplet communication, and giving rise to collective material properties. As practical applications of droplets also begin to appear (e.g., in single-cell diagnostics, new methods of electricity generation, optofluidics, or sensors), it appears timely to review and systematize progress in this highly interdisciplinary area of chemical research, and also think about the avenues (and the roadblocks) for future work.

  13. Numerical simulation of natural convection in a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Bartashevich, M. V.; Marchuk, I. V.; Kabov, O. A.

    2012-06-01

    Heat transfer in a sessile liquid droplet was studied with numerical methods. A computer code was developed for solving the problem of convection in an axisymmetric hemispherical droplet and in a spherical layer as well. The problem of establishing an equilibrium state in a droplet was solved using several variables: temperature, stream function, and vorticity. Simulation was performed for droplets of water, ethyl alcohol, and model liquids. Variable parameters: intensity of heat transfer from droplet surface, Rayleigh and Marangoni dimensionless criteria, and the characteristic temperature difference. It was revealed that the curve of convective flow intensity versus heat transfer intensity at droplet surface has a maximum. A dual-vortex structure was obtained in a stationary hemispherical profile of liquid droplet for the case of close values for thermocapillary and thermogravitational forces. Either thermocapillary or thermogravitational vortex might be dominating phenomena in the flow structure.

  14. Effective doping of low energy ions into superfluid helium droplets

    SciTech Connect

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  15. Effective doping of low energy ions into superfluid helium droplets.

    PubMed

    Zhang, Jie; Chen, Lei; Freund, William M; Kong, Wei

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10(4) ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10(5)/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  16. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  17. Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Aharon, I.; Shaw, B. D.

    1995-01-01

    This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.

  18. Concurrent droplet charging and sorting by electrostatic actuation.

    PubMed

    Ahn, Byungwook; Lee, Kangsun; Louge, Romain; Oh, Kwang W

    2009-01-01

    This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 dropletss by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.

  19. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  20. Droplet Impact onto an Immiscible, Floating Oil Layer: Splash Behavior and Droplet Sizes

    NASA Astrophysics Data System (ADS)

    Murphy, David; Li, Cheng; D'Albignac, Vincent; Morra, David; Katz, Joseph

    2015-11-01

    The high speed impact of a raindrop on a fluid surface at Wed = ρ u2d/ σ>2000 affects environmental processes like marine aerosol production. High speed imaging shows that a floating immiscible oil layer, such as a crude oil slick, modifies the splash behavior. Tests performed for a wide range of layer thicknesses (h), viscosities, and surface and interfacial tensions facilitate behavioral categorization in terms of Weh =ρh u2h/σh and ReFrh =ρd u3d/μhgh, where h and d subscripts refer to layer and droplet properties, respectively. Included are multi-layer/level crowns, and due to the high Oh = μ /(ρσ d)1/2 of oil, formation of an intact ejecta sheet within 50 μs after impact, which subsequently ruptures to form aerosolized oil droplets. High speed holographic microscopy provides the size and spatial distributions of airborne droplets, which are bimodal with peaks at 50 and 225 μm. Small droplets (50 μm) are ejected primarily at shallow angles and remain at low elevation by microligament breakup within the first 50 μs of impact. Larger droplets (225 μm) are ejected at a steeper angle and produced later by breakup of larger ligaments protruding vertically from the splash crown. Small droplet frequency at high elevation increases when crude oil is introduced, mostly as satellite droplets resulting from the large ligament breakup. Funding provided by the Gulf of Mexico Research Initiative.

  1. Analysis of transport mechanisms in dense fuel droplet sprays

    SciTech Connect

    Kleinstreuer, C.

    1991-05-01

    This report deals with numerical analyses of fluid mechanics, heat transfer, mass transfer and particle dynamics of interacting spheres and vaporizing droplets in a linear array or on a 1-D trajectory. Available finite element software has been modified and extended to solve several case studies including closely spaced monodisperse spheres with or without blowing; closely spaced vaporizing fuel droplets; and dynamically interacting vaporizing fuel droplets on a 1-D trajectory. Axisymmetric laminar flow has been assumed for three statically or dynamically interacting spherical solids and vaporizing droplets. Emphasis in this work is evaluating the effects of key system parameters, such as free stream Reynolds number, interparticle spacings, liquid/gas-phase viscosity ratio and variable fluid properties, on interfacial transfer processes and on the particle Nusselt number, vaporization rate and drag coefficient. Computer-generated correlations between integral quantities and system parameters were postulated for blowing spheres and vaporizing droplets. In addition to initial Reynolds number and droplet spacings, variable fluid properties, liquid-phase heating and internal droplet circulation have strong effect on the dynamic behavior of multi-droplet systems. While the lead droplet is most significantly affected by all key parameters, the second and third droplet causes distinct interaction effects which are largely dependent on initial droplet spacings. Applications include spherical-structure/fluid-flow interactions, as well as interacting vaporizing droplets in different sprays related to propulsion systems, irrigation, spray coating, etc. Focusing on fuel droplet sprays, results of the dynamic multi-droplet study can assist in better atomizers and combustion chamber designs which may lead to improved combustion efficiencies, smaller/lighter systems, and reduced pollutant emissions.

  2. Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear.

    PubMed

    Chen, Yongping; Liu, Xiangdong; Zhang, Chengbin; Zhao, Yuanjin

    2015-03-01

    We combine experimental investigation with numerical simulation to explore fundamental hydrodynamic effects of an inner droplet on deformation of a double emulsion droplet under shear. The transient deformation oscillation is found to be intensified by the inner droplet. Especially, we demonstrate that the double emulsion droplet can exhibit both larger and smaller steady deformation than the single-phase droplet, which arises from the competition between the coexisting enhancing and suppressing effects by the inner droplet on the deformation. We further provide a regime diagram to quantitatively recognize the respective dominant regime of these two effects, depending on the capillary number and radius ratio of the inner droplet to the outer one. PMID:25589363

  3. Swimming droplets driven by a surface wave

    PubMed Central

    Ebata, Hiroyuki; Sano, Masaki

    2015-01-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects. PMID:25708871

  4. Swimming droplets driven by a surface wave.

    PubMed

    Ebata, Hiroyuki; Sano, Masaki

    2015-01-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects. PMID:25708871

  5. Vaporization of droplets in premixing chambers

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.

    1980-01-01

    Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.

  6. Stem cell niche engineering through droplet microfluidics.

    PubMed

    Allazetta, Simone; Lutolf, Matthias P

    2015-12-01

    Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.

  7. Engineering particle morphology with microfluidic droplets

    NASA Astrophysics Data System (ADS)

    Kang, Zhanxiao; Kong, Tiantian; Lei, Leyan; Zhu, Pingan; Tian, Xiaowei; Wang, Liqiu

    2016-07-01

    The controlled generation of microparticles with non-spherical features is of increasing importance. Such particles are useful for fundamental studies in areas such as self-assembly, as well as biomedical applications from drug carriers to photonic devices. We propose a simple model that captures the dominating factors controlling the size and morphology of non-spherical particles from phase separated droplets. The validity of our model is verified by comparing the generated non-spherical microparticles by droplet microfluidics. This simple relationship between the dominating factors and the final morphologies enables the production of non-spherical particles with well-defined shapes and tightly-controlled dimensions for a variety of applications from drug delivery vehicles to structural materials.

  8. Melt droplet formation in energetic impacts

    NASA Technical Reports Server (NTRS)

    Vickery, A. M.; Melosh, H. J.

    1991-01-01

    Impacts between rocky bodies at velocities exceeding about 15 km/sec are capable of melting or vaporizing both the impacting object and a portion of the target. Geological materials initially shocked to high pressure approach the liquid-vapor phase boundary from the liquid side as they decompress, breaking up into an expanding spray of liquid droplets. A simple theory is presented for estimating the sizes of these droplets as a function of impactor size and velocity. It is shown that these sizes are consistent with observations of microtektites and spherules found in the Cretaceous-Tertiary boundary layer, the Acraman impact structure, Archean beds in South Africa and lunar regolith. The model may also apply to the formation of chondrules.

  9. Dancing droplets: Chemical space, substrates, and control

    NASA Astrophysics Data System (ADS)

    Cira, Nate; Benusiglio, Adrien; Prakash, Manu

    2015-11-01

    Previously we showed that droplets of propylene glycol and water display remarkable properties when placed on clean glass due to an interplay between surface tension and evaporation. (Cira, Benusiglio, Prakash: Nature, 2015). We showed that these mechanisms apply to a range of two-component mixtures of miscible liquids where one component has both higher surface tension and higher vapor pressure on a variety of high energy surfaces. We now show how this rule can be cheated using a simple trick. We go on to demonstrate applications for cleaning, and show how this system works on substrates prepared only with sunlight. We finish by demonstrating active control of droplets, allowing access to a host of new possibilities.

  10. Acid droplet generation in SRM exhaust clouds

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1983-01-01

    A free energy analysis is applied to the co-condensation/evaporation of H2O and HCl vapors on wettable particles in open air in order to model droplet nucleation in solid rocket motor (SRM) exhaust clouds. Formulations are defined for the free energy change, the drop radius, the saturation ratio, the total number of molecules, and the mean molecular radius in solution, as well as the molecular volume and the concentration range. The free energy release in the phase transition for the AL2O3 nuclei in the SRM exhaust is examined as a function of the HCl molefraction and nucleating particle radius, based on Titan III launch exhaust cloud conditions 90 sec after ignition. The most efficient droplet growth is determined to occur at an HCl molefraction of 0.082 and a particle radius of 0.0000013 cm, i.e. a molality of 5.355.

  11. Droplets and Bubbles in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Anna, Shelley Lynn

    2016-01-01

    Precise, tunable emulsions and foams produced in microfluidic geometries have found wide application in biochemical analysis and materials synthesis and characterization. Superb control of the volume, uniformity, and generation rate of droplets and bubbles arises from unique features of the microscale behavior of fluid interfaces. Fluid interfaces confined within microfluidic channels behave quite differently than their counterparts in unbounded flows. Confinement inhibits capillary instabilities so that breakup occurs by largely quasi-static mechanisms. The three-dimensional flow near confined interfaces in rectangular geometries and feedback effects from resistance changes in the entire microfluidic network play important roles in regulating the interfacial deformation. Timescales for transport of surfactants and particles to interfaces compete with flow timescales at the microscale, providing further opportunity for tuning the interfacial coverage and properties of individual droplets and bubbles.

  12. Swimming droplets driven by a surface wave

    NASA Astrophysics Data System (ADS)

    Ebata, Hiroyuki; Sano, Masaki

    2015-02-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects.

  13. Form factors for Russian doll droplet models

    NASA Astrophysics Data System (ADS)

    Wilemski, G.; Obeidat, A.; Hrahsheh, F.

    2013-05-01

    Molecular dynamics (MD) simulations of nanodroplets containing water and nonane show them to be nonspherical and strongly phase separated. A simple, but realistic model for these "Russian doll" structures is a spherical nonane lens that partially wets a spherical water droplet. This document contains an analytical calculation of the particle form factor P(q) needed to analyze experimental measurements of small angle neutron and x-ray scattering from aerosols of particles with this type of structure. In addition, an exact formulation of the particle form factor is developed for cylindrically symmetric droplets with otherwise arbitrary scattering length density functions. This result will be useful to calculate P(q) directly from MD simulation results. We compare results using both formulations and find excellent agreement between them.

  14. Droplet-model predictions of charge moments

    SciTech Connect

    Myers, W.D.

    1982-04-01

    The Droplet Model expressions for calculating various moments of the nuclear charge distribution are given. There are contributions to the moments from the size and shape of the system, from the internal redistribution induced by the Coulomb repulsion, and from the diffuseness of the surface. A case is made for the use of diffuse charge distributions generated by convolution as an alternative to Fermi-functions.

  15. Droplets and modes of respiratory disease transmission

    NASA Astrophysics Data System (ADS)

    Bourouiba, Lydia

    2014-11-01

    Direct observation of violent expirations such as sneezes and coughs events reveal that such flows are multiphase turbulent buoyant clouds with suspended droplets of various sizes. The effects of ambient conditions indoors, such as moisture and temperature, coupled with the water content of such clouds are key in shaping the pathogen footprint emitted by potentially sick individuals. Such pathogen footprint can change the patterns of respiratory disease transmission. We discuss how the fluid dynamics of violent expirations can help inform how.

  16. Computational Fluid Dynamics of rising droplets

    SciTech Connect

    Wagner, Matthew; Francois, Marianne M.

    2012-09-05

    The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

  17. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel

    PubMed Central

    2011-01-01

    Background Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Methods Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. Results The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p < 0.012). The relative expression level of type-2 collagen, aggrecan, and SOX9 mRNAs was significantly greater in Group II than in the control group (p < 0.023). Conclusions This study demonstrated that spontaneous hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral

  18. Sharpening the surface of magnetic paranematic droplets.

    PubMed

    Tokarev, Alexander; Lee, Wah-Keat; Sevonkaev, Igor; Goia, Dan; Kornev, Konstantin G

    2014-03-28

    In a non-uniform magnetic field, the droplets of colloids of nickel nanorods and nanobeads aggregate to form a cusp at the droplet surface not deforming the entire droplet shape. When the field is removed, nanorods diffuse away and the cusp disappears. Spherical particles can form cusps in a similar way, but they stay aggregated after the release of the field; finally, the aggregates settle down to the bottom of the drop. The X-ray phase contrast imaging reveals that nanorods in the cusps stay parallel to each other without visible spatial order of their centers of mass. The formation of cusps can be explained with a model that includes magnetostatic and surface tension forces. The discovered possibility of controlled assembly and quenching of nanorod orientation under the cusped liquid surface offers vast opportunities for alignment of carbon nanotubes, nanowires and nanoscrolls, prior to spinning them into superstrong and multifunctional fibers. Magnetostatic and electrostatic analogies suggest that a similar ideal alignment can be achieved with the rod-like dipoles subject to a strong electric field. PMID:24800272

  19. A frictional sliding algorithm for liquid droplets

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2016-08-01

    This work presents a new frictional sliding algorithm for liquid menisci in contact with solid substrates. In contrast to solid-solid contact, the liquid-solid contact behavior is governed by the contact line, where a contact angle forms and undergoes hysteresis. The new algorithm admits arbitrary meniscus shapes and arbitrary substrate roughness, heterogeneity and compliance. It is discussed and analyzed in the context of droplet contact, but it also applies to liquid films and solids with surface tension. The droplet is modeled as a stabilized membrane enclosing an incompressible medium. The contact formulation is considered rate-independent such that hydrostatic conditions apply. Three distinct contact algorithms are needed to describe the cases of frictionless surface contact, frictionless line contact and frictional line contact. For the latter, a predictor-corrector algorithm is proposed in order to enforce the contact conditions at the contact line and thus distinguish between the cases of advancing, pinning and receding. The algorithms are discretized within a monolithic finite element formulation. Several numerical examples are presented to illustrate the numerical and physical behavior of sliding droplets.

  20. A mechanistic view of drying suspension droplets.

    PubMed

    van der Kooij, Hanne M; van de Kerkhof, Gea T; Sprakel, Joris

    2016-03-21

    When a dispersion droplet dries, a rich variety of spatial and temporal heterogeneities emerge. Controlling these phenomena is essential for many applications yet requires a thorough understanding of the underlying mechanisms. Although the process of film formation from initially dispersed polymer particles is well documented and is known to involve three main stages - evaporation, particle deformation and coalescence - it is impossible to fully disentangle the effects of particle deformation and coalescence, as these stages are closely linked. We circumvent this problem by studying suspensions of colloidal rubber particles that are incapable of coalescing. Varying the crosslink density allows us to tune the particle deformability in a controlled manner. We develop a theoretical framework of the main regimes and stresses in drying droplets of these suspensions, and validate this framework experimentally. Specifically, we show that changing the particle modulus by less than an order of magnitude can completely alter the stress development and resulting instabilities. Scanning electron microscopy reveals that particle deformability is a key factor in stress mitigation. Our model is the suspension equivalent of the widely used Routh-Russel model for film formation in drying dispersions, with additional focus on lateral nonuniformities such as cracking and wrinkling inherent to the droplet geometry, thus adding a new dimension to the conventional view of particle deformation.

  1. Super-cooled droplet splash image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqing; Barnes, Stuart; Fu, Shan

    2008-11-01

    It is proved that super-cooled large droplets (SLD) impingement onto airfoil have a great effect on aircraft icing. In the research facility of icing wind tunnel at Cranfield University in U.K, a great number of droplet splashing images are captured from aircraft icing experiments in order to understand the process of SLD impacting onto airfoil surfaces. Meanwhile, it also aims to classify the airfoil samples into wet/dry surface to determinate what material of samples is suitable for ice protection onto the aircraft. This paper defines a multi-dimensional feature space to characterize the images as criteria of classification. By k-means algorithm, images can be categorized into dry surface, wet surface, and ambiguous groups. Based on the results of image classification, eight of nine samples succeed to be identified into wet/dry behavior. However, one sample fell to the false identification since the raw images are insufficient to represent the entire droplets splash impact events.

  2. Frost halos from supercooled water droplets

    PubMed Central

    Jung, Stefan; Tiwari, Manish K.; Poulikakos, Dimos

    2012-01-01

    Water freezing on solid surfaces is ubiquitous in nature. Even though icing/frosting impairs the performance and safety in many processes, its mechanism remains inadequately understood. Changing atmospheric conditions, surface properties, the complexity of icing physics, and the unorthodox behavior of water are the primary factors that make icing and frost formation intriguing and difficult to predict. In addition to its unquestioned scientific and practical importance, unraveling the frosting mechanism under different conditions is a prerequisite to develop “icephobic” surfaces, which may avoid ice formation and contamination. In this work we demonstrate that evaporation from a freezing supercooled sessile droplet, which starts explosively due to the sudden latent heat released upon recalescent freezing, generates a condensation halo around the droplet, which crystallizes and drastically affects the surface behavior. The process involves simultaneous multiple phase transitions and may also spread icing by initiating sequential freezing of neighboring droplets in the form of a domino effect and frost propagation. Experiments under controlled humidity conditions using substrates differing up to three orders of magnitude in thermal conductivity establish that a delicate balance between heat diffusion and vapor transport determines the final expanse of the frozen condensate halo, which, in turn, controls frost formation and propagation. PMID:23012410

  3. High-pressure droplet combustion studies

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, M.; Sato, Junichi; Dietrich, Daniel L.; Williams, Forman A.

    1993-01-01

    This is a joint research program, pursued by investigators at the University of Tokyo, UCSD, and NASA Lewis Research Center. The focus is on high-pressure combustion of miscible binary fuel droplets. It involves construction of an experimental apparatus in Tokyo, mating of the apparatus to a NASA-Lewis 2.2-second drop-tower frame in San Diego, and performing experiments in the 2.2-second tower in Cleveland, with experimental results analyzed jointly by the Tokyo, UCSD, and NASA investigators. The project was initiated in December, 1990 and has now involved three periods of drop-tower testing by Mikami at Lewis. The research accomplished thus far concerns the combustion of individual fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially about 1 mm diameter, under free-fall microgravity conditions. Ambient pressures ranged up to 3.0 MPa, extending above the critical pressures of both pure fuels, in room-temperature nitrogen-oxygen atmospheres having oxygen mole fractions X of 0.12 and 0.13. The general objective is to study near-critical and super-critical combustion of these droplets and to see whether three-stage burning, observed at normal gravity, persists at high pressures in microgravity. Results of these investigations will be summarized here; a more complete account soon will be published.

  4. Experimental investigation of interaction processes between droplets and hot walls

    NASA Astrophysics Data System (ADS)

    Karl, A.; Frohn, A.

    2000-04-01

    A detailed experimental investigation of interaction processes of small liquid droplets with hot walls well above the Leidenfrost temperature has been carried out. The experimental method which uses monodisperse droplet streams in combination with a standard video camera allows very detailed observations and measurements with very high time resolution. The main intent of this paper is to study the mechanical behavior of liquid droplets impacting on hot walls well above the Leidenfrost temperature. A better understanding of this process may lead to a better modeling of two-phase flows, especially for applications in fuel preparation processes, combustion processes, and spray cooling. The loss of momentum of the droplets, the droplet deformation, and the onset of droplet disintegration have been investigated. For all experimental results correlations have been developed, which can be used to improve the numerical modeling of two-phase flows. Using the correlation for the loss of momentum a theoretical approximation for the maximum droplet deformation has been deduced, which yields a very good agreement with our own measurements as well as with results reported in the literature. A minimum impinging angle for droplet disintegration has been discovered for small impinging angles. Below this impinging angle no droplet disintegration is observed. This phenomenon is directly related to the energy dissipation at the wall during the interaction process. With the presented work the understanding of basic interaction processes between droplets and hot walls may be improved.

  5. Magnetic-field-induced liquid metal droplet manipulation

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung; Lee, Jeong-Bong

    2015-01-01

    We report magnetic-field-induced liquid metal droplet on-demand manipulation by coating a liquid metal with ferromagnetic materials. The gallium-based liquid metal alloy has a challenging drawback that it is instantly oxidized in ambient air, resulting in surface wetting on most surfaces. When the oxidized surface of the droplet is coated with ferromagnetic materials, it is non-wettable and can be controlled by applying an external magnetic field. We coated the surface of a liquid metal droplet with either an electroplated CoNiMnP layer or an iron (Fe) particle by simply rolling the liquid metal droplet on an Fe particle bed. For a paper towel, the minimum required magnetic flux density to initiate movement of the ~8 μL Fe-particle-coated liquid metal droplet was 50 gauss. Magnetic-field-induced liquid metal droplet manipulation was investigated under both horizontal and vertical magnetic fields. Compared to the CoNiMnP-electroplated liquid metal droplet, the Fe-particle-coated droplet could be well controlled because Fe particles were uniformly coated on the surface of the droplet. With a maximum applied magnetic flux density of ~1,600 gauss, the CoNiMnP layer on the liquid metal broke down, resulting in fragmentation of three smaller droplets, and the Fe particle was detached from the liquid metal surface and was re-coated after the magnetic field had been removed.

  6. Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Easton, John; Tien, James; Dietrich, Daniel

    1999-01-01

    The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that

  7. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  8. Inertial migration of deformable droplets in a microchannel

    SciTech Connect

    Chen, Xiaodong; Xue, Chundong; Hu, Guoqing E-mail: sunjs@nanoctr.cn; Zhang, Li; Jiang, Xingyu; Sun, Jiashu E-mail: sunjs@nanoctr.cn

    2014-11-15

    The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In

  9. Acoustic excitation of droplet combustion in microgravity and normal gravity

    SciTech Connect

    Dattarajan, S.; Lutomirski, A.; Lobbia, R.; Smith, O.I.; Karagozian, A.R.

    2006-01-01

    This experimental study focused on methanol droplet combustion characteristics during exposure to external acoustical perturbations in both normal gravity and microgravity. Emphasis was placed on examination of excitation conditions in which the droplet was situated (1) at or near a velocity antinode (pressure node), where the droplet experienced the greatest effects of velocity perturbations, or (2) at a velocity node (pressure antinode), where the droplet was exposed to minimal velocity fluctuations. Acoustic excitation had a significantly greater influence on droplet-burning rates and flame structures in microgravity than in normal gravity. In normal gravity, acoustic excitation of droplets situated near a pressure node produced only very moderate increases in burning rate (about 11-15% higher than for nonacoustically excited, burning droplets) and produced no significant change in burning rate near a pressure antinode. In microgravity, for the same range in sound pressure level, droplet burning rates increased by over 75 and 200% for droplets situated at or near pressure antinode and pressure node locations, respectively. Observed flame deformation for droplets situated near pressure nodes or antinodes were generally consistent with the notion of acoustic radiation forces arising in connection with acoustic streaming, yet both velocity and pressure perturbations were seen to affect flame behavior, even when the droplet was situated precisely at or extremely close to node or antinode locations. Displacements of the droplet with respect to node or antinode locations were observed to have a measureable effect on droplet burning rates, yet acoustic accelerations associated with such displacements, as an analogy to gravitational acceleration, did not completely explain the significant increases in burning rate resulting from the excitation.

  10. Polarimetric Retrievals of Cloud Droplet Number Concentrations

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Cairns, B.; Hair, J. W.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    Cloud droplet number concentration (CDNC) is one of the most significant microphysical properties of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The IPCC's Fifth Assessment Report continues to consider aerosol-cloud interactions as one of the largest uncertainties in radiative forcing of climate. The SABOR experiment, which was a NASA-led ship and air campaign off the east coast of the United States during July and August of 2014, provided an opportunity for the Research Scanning Polarimeter (RSP) to develop and cross-validate a new approach of sensing CDNC with the High Spectral Resolution Lidar (HSRL). The RSP is an airborne prototype of the Aerosol Polarimetry Sensor (APS) that was on-board the Glory satellite. It is a scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. The distinctive feature of the polarimetric technique is that it does not make any assumption of the liquid water profile within the cloud. The approach involves (1) estimating the droplet size distribution from polarized reflectance observations in the rainbow, (2) using polarized reflectance to estimate above cloud water vapor and total reflectance to find how much near infra-red light is being absorbed in clouds, (3) finding cloud physical thickness from the absorption and cloud top pressure retrievals assuming a saturated mixing ratio for water vapor and (4) determining the cloud droplet number concentration from the physical thickness and droplet size distribution retrievals. An overview of the polarimetric technique will be presented along with the results of applying the new approach to SABOR campaign data. An analysis of the algorithm's performance when compared with the HSRL

  11. Research study of droplet sizing technology leading to the development of an advanced droplet sizing system

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Smart, A. E.; Espinosa, V. E.

    1985-01-01

    An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail.

  12. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    NASA Astrophysics Data System (ADS)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  13. Primary ductal adenocarcinoma of the lacrimal gland, associated with abundant intracytoplasmic lumens containing some eosinophilic hyaline globules: cytological, histological and ultrastructural findings.

    PubMed

    Min, Kyueng-Whan; Park, Hyung Kyu; Kim, Wook Youn; Kim, Wan-Seop; Lim, So Dug; Han, Hye Seung; Hwang, Tae Sook

    2014-10-01

    A primary ductal adenocarcinoma (PDA) of the lacrimal gland is a rare distinct subtype of an epithelial tumor arising in the lacrimal gland. PDA is the counterpart of salivary duct carcinoma (SDC) resembling an invasive ductal carcinoma (IDC) of the breast. In our case, PDA revealed histopathological and immunohistochemical results corresponding to SDC. Interestingly, the tumor cells showed intracytoplasmic vacuoles containing dense eosinophilic hyaline globules at light microscopy. Ultrastructurally, the tumor cells exhibited microvilli-lined intracytoplasmic lumen containing homogenous electron-dense secretory products. A previous study demonstrated that numerous intracytoplasmic lumens of tumor cells are favored breast malignant tumor, similar to the histopathology of PDA, rather than benign lesion. This characteristic finding may be meaningful to diagnose high grade epithelial tumors including PDA.

  14. Hyalinizing clear cell carcinoma of the parotid gland: report of a recurrent case with aggressive cytomorphology and behavior diagnosed on fine-needle cytology sample.

    PubMed

    Fulciniti, Franco; Pia Curcio, Maria; Liguori, Giuseppina; Aquino, Gabriella; Botti, Gerardo; Campanile, Anna Cipolletta; De Cecio, Rossella; Pavone, Ettore; Aversa, Corrado; Perri, Francesco; Caponigro, Francesco; Ionna, Franco

    2014-01-01

    A case of recurrent hyalinizing clear cell carcinoma (HCCC) of the parotid gland in a 46-year-old female is here introduced. The patient had undergone a left superficial parotidectomy 6 months ago in another institution for an alleged benign, circumscribed mass 2.4 cm in diameter of the left parotid gland. Histopathological examination revealed a poorly differentiated HCCC bearing a EWSR-1 translocation on FISH examination. Fine Needle Cytology (FNC) was performed on three separate soft tissue masses in the pre-masseterine area and a cytological diagnosis of recurrent, poorly differentiated, possibly aggressive variant of HCCC, was rendered. FISH performed on a destained Diff Quik stained smear demonstrated an ESWR-1 translocation, which supported the cytopathological diagnosis. The cytomorphologic features and the differential diagnosis of this aggressive variant of HCCC are briefly discussed.

  15. Combustion Of Moving Droplets And Of Droplets Suspended Within A Convective Environment: Transient Numerical Results

    NASA Technical Reports Server (NTRS)

    Gogos, George; Pope, Daniel N.

    2003-01-01

    The problem considered is that of a single-component liquid fuel (n-heptane) droplet undergoing evaporation and combustion in a hot, convective, low pressure, zero-gravity environment of infinite expanse. For a moving droplet, the relative velocity (U(sub infinity)) between the droplet and freestream is subject to change due to the influence of the drag force on the droplet. For a suspended droplet, the relative velocity is kept constant. The governing equations for the gas-phase and the liquid-phase consist of the unsteady, axisymmetric equations of mass, momentum, species (gas-phase only) and energy conservation. Interfacial conservation equations are employed to couple the two phases. Variable properties are used in the gas- and liquid-phase. Multicomponent diffusion in the gas-phase is accounted for by solving the Stefan-Maxwell equations for the species diffusion velocities. A one-step overall reaction is used to model the combustion. The governing equations are discretized using the finite volume and SIMPLEC methods. A colocated grid is adopted. Hyperbolic tangent stretching functions are used to concentrate grid points near the fore and aft lines of symmetry and at the droplet surface in both the gas- and liquid-phase. The discretization equations are solved using the ADI method with the TDMA used on each line of the two alternating directions. Iterations are performed within each time-step until convergence is achieved. The grid spacing, size of the computational domain and time-step were tested to ensure that all solutions are independent of these parameters. A detailed discussion of the numerical model is given.

  16. Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.

    1999-01-01

    Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting

  17. Extensively Myxoid and Hyalinized Sinonasal Capillary Hemangiomas: A Clinicopathologic Study of 16 Cases of a Distinctive and Potentially Confusing Hemangioma Variant.

    PubMed

    Guo, Ruifeng; Folpe, Andrew L

    2015-11-01

    Capillary hemangiomas, the most common vascular tumors of the sinonasal region, are benign endothelial neoplasms, typically growing in an easily recognized lobular pattern. Some sinonasal capillary hemangiomas may show atypical features, such as high cellularity or mitotic activity, and represent more challenging diagnoses. Over the past several years we have seen in consultation a number of examples of sinonasal capillary hemangiomas displaying very striking stromal myxoid change and hyalinization, features that have received scant attention in the past. Available slides from 16 sinonasal capillary hemangiomas previously coded as showing such changes were retrieved from our archives. Submitting diagnoses included "query angiofibroma, rule out malignancy" (N=4), "vascular polyp, rule out malignancy" (N=3), "query malignant vascular tumor" (N=4), "sinonasal hemangiopericytoma" (N=1), and "benign vascular tumor" (N=1). Available radiographic studies often showed worrisome features. Grossly, the tumors ranged from 1.1 to 6.0 cm and appeared as ulcerated, vascular-appearing polyps. Microscopically, the tumors showed striking stromal myxoid change and/or hyalinization, which largely obscured the underlying lobular capillary arrangement. Within this myxohyaline matrix, a florid capillary proliferation was present, frequently with nonatypical mitotic activity. In some instances a branching, "hemangiopericytoma-like" vascular pattern was present in areas. The overall cellularity was low to moderate, and endothelial atypia or hyperchromatism was absent. Ulceration and thrombosis were frequently present. Immunostains to CD31, CD34, and SMA highlighted areas of lobular growth pattern inapparent on the routinely stained slides. Four tested cases were negative for androgen receptors and β-catenin. Follow-up from 12 patients revealed no local recurrences or metastases. Awareness of that sinonasal capillary hemangioma may show these unusual stromal changes, and the use of

  18. Magnetophoretic control of water droplets in bulk ferrofluid

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Bréant, Alexandre; Prakash, Manu

    2015-11-01

    We present a microfluidic platform for 2-D manipulation of water droplets immersed in bulk oil-based ferrofluid. Although non-magnetic, the droplets are exclusively controlled by magnetic fields, without any pressure-driven flow. The diphasic fluid layer is trapped in a submillimeter Hele-Shaw chamber that includes permalloy tracks on its substrate. An in-plane rotating magnetic field magnetizes the permalloy tracks, thus producing local magnetic gradients, while an orthogonal magnetic field magnetizes the bulk ferrofluid. To minimize the magnetostatic energy of the system, droplets are attracted towards the locations of the tracks where ferrofluid is repelled. Using this technique, we demonstrate synchronous propagation of water droplets, analyze PIV data of the bulk ferrofluid flow and study the kinematics of propagation. In addition, we show droplet break-up, merging and derive relevant scaling laws. Finally, we discuss future applications owing to the biocompatibility of the droplets.

  19. Spontaneous electrical charging of droplets by conventional pipetting

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Horim; Im, Do Jin; Kang, In Seok; Lim, Geunbae; Kim, Dong Sung; Kang, Kwan Hyoung

    2013-06-01

    We report that a droplet dispensed from a micropipette almost always has a considerable electrical charge of a magnitude dependent on the constituents of the droplet, on atmospheric humidity and on the coating material of pipette tip. We show that this natural electrification of a droplet originates from the charge separation between a droplet and pipette tip surface by contact with water due to the ionization of surface chemical groups. Charge on a droplet can make it difficult to detach the droplet from the pipette tip, can decrease its surface tension, can affect the chemical characteristics of solutions due to interactions with charged molecules, and can influence the combination and localization of charged bio-molecules; in all cases, the charge may affect results of experiments in which any of these factors is important. Thus, these findings reveal experimental parameters that should be controlled in experiments that use micropipettes.

  20. Investigation of critical burning of fuel droplets. [monopropellants

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Chanin, S.

    1974-01-01

    The steady combustion characteristics of droplets were considered in combustion chamber environments at various pressures, flow conditions, and ambient oxidizer concentrations for a number of hydrocarbon fuels. Using data obtained earlier, predicted gasification rates were within + or - 30% of measurements when the correction for convection was based upon average properties between the liquid surface and the flame around the droplet. Analysis was also completed for the open loop response of monopropellant droplets, based upon earlier strand combustion results. At the limit of large droplets, where the effect of flame curvature is small, the results suggest sufficient response to provide a viable mechanism for combustion instability in the frequency and droplet size range appropriate to practical combustors. Calculations are still in progress for a broader range of droplet sizes, including conditions where active combustion effects are small.

  1. Collective waves in dense and confined microfluidic droplet arrays.

    PubMed

    Schiller, Ulf D; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    2015-08-01

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific 'defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow the modulation of the refractive index of optofluidic crystals, which is a promising approach for the production of dynamically programmable metamaterials. PMID:26107262

  2. Droplet microfluidics--a tool for single-cell analysis.

    PubMed

    Joensson, Haakan N; Andersson Svahn, Helene

    2012-12-01

    Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding.

  3. Generation and mixing of subfemtoliter aqueous droplets on demand.

    PubMed

    Tang, Jianyong; Jofre, Ana M; Kishore, Rani B; Reiner, Joseph E; Greene, Mark E; Lowman, Geoffrey M; Denker, John S; Willis, Christina C C; Helmerson, Kristian; Goldner, Lori S

    2009-10-01

    We describe a novel method of generating monodisperse subfemtoliter aqueous droplets on demand by means of piezoelectric injection. Droplets with volumes down to 200 aL are generated by this technique. The droplets are injected into a low refractive index perfluorocarbon so that they can be optically trapped. We demonstrate the use of optical tweezers to manipulate and mix droplets. For example, using optical tweezers we bring two droplets, one containing a calcium sensitive dye and the other calcium chloride, into contact. The droplets coalesce with a resulting reaction time of about 1 ms. The monodispersity, manipulability, repeatability, small size, and fast mixing afforded by this system offer many opportunities for nanochemistry and observation of chemical reactions on a molecule-by-molecule basis.

  4. Directional electrostatic accretion process employing acoustic droplet formation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1996-01-01

    The present invention is directed to an apparatus for manufacturing a free standing solid metal part. In the present invention metal droplets are produced from a free surface pool of molten metal is when an acoustic wave impacts an acoustic lens that is contiguous with the free standing pool of molten metal. The metal droplets are then charged and deflected toward a target. The build up of the metal droplets combine to form the free standing solid metal part.

  5. Aerosol and cloud droplet number concentrations observed in marine stratocumulus

    SciTech Connect

    Vong, R.J.; Covert, D.S.

    1995-12-01

    The relationship between measurements of cloud droplet number concentration and cloud condensation nuclei (CCN) concentration, as inferred from aerosol size spectra, was investigated at a {open_quote}clean air{close_quote}, marine site (Cheeka Peak) located near the coast of the Olympic Peninsula in Washington State. Preliminary results demonstrated that cloud droplet number increased and droplet diameter decreased as aerosol number concentration (CCN) increased. These results support predictions of a climate cooling due to any future increases in marine aerosol concentrations.

  6. Air parcel random walk and droplet spectra broadening in clouds.

    PubMed

    Turitsyn, K S

    2003-06-01

    We study the effect of turbulent flow on the droplet growth in a cloud during the condensation phase. Using the air parcel model, we describe analytically how the size distribution of droplets evolves at the different stages of parcel movement. We show that turbulent random walk superimposed on an accelerated ascent of the parcel makes the relative width of droplet distribution to grow initially as t(1/2) and then decay as t(-3/2).

  7. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under

  8. Electromagnetic emission of a strongly charged oscillating droplet

    NASA Astrophysics Data System (ADS)

    Grigor'ev, A. I.; Kolbneva, N. Yu.; Shiryaeva, S. O.

    2016-08-01

    Analytical expressions for electric field in the vicinity of an oscillating strongly charged droplet of nonviscous conducting liquid and intensity of electromagnetic radiation are derived in the linear approximation with respect to perturbation amplitude of the droplet surface. Order-of-magnitude estimations of the radiation intensity are presented. The intensity of electromagnetic radiation of a ball lightning that can be simulated using a charged droplet is not related to the surface oscillations.

  9. Capillary effects during droplet impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Pasandideh-Fard, M.; Qiao, Y. M.; Chandra, S.; Mostaghimi, J.

    1996-03-01

    Impact of water droplets on a flat, solid surface was studied using both experiments and numerical simulation. Liquid-solid contact angle was varied in experiments by adding traces of a surfactant to water. Impacting droplets were photographed and liquid-solid contact diameters and contact angles were measured from photographs. A numerical solution of the Navier-Stokes equation using a modified SOLA-VOF method was used to model droplet deformation. Measured values of dynamic contact angles were used as a boundary condition for the numerical model. Impacting droplets spread on the surface until liquid surface tension and viscosity overcame inertial forces, after which they recoiled off the surface. Adding a surfactant did not affect droplet shape during the initial stages of impact, but did increase maximum spread diameter and reduce recoil height. Comparison of computer generated images of impacting droplets with photographs showed that the numerical model modeled droplet shape evolution correctly. Accurate predictions were obtained for droplet contact diameter during spreading and at equilibrium. The model overpredicted droplet contact diameters during recoil. Assuming that dynamic surface tension of surfactant solutions is constant, equaling that of pure water, gave predicted droplet shapes that best agreed with experimental observations. When the contact angle was assumed constant in the model, equal to the measured equilibrium value, predictions were less accurate. A simple analytical model was developed to predict maximum droplet diameter after impact. Model predictions agreed well with experimental measurements reported in the literature. Capillary effects were shown to be negligible during droplet impact when We≫Re1/2.

  10. ARFGAP1 Is Dynamically Associated with Lipid Droplets in Hepatocytes

    PubMed Central

    Alamri, Hussam; Feng, Shi Bo; Kalantari, Fariba; Negi, Sarita; Wong, Amy H. Y.; Mazur, Alexander; Asp, Lennart; Fazel, Ali; Salman, Ayat; Lazaris, Anthoula; Metrakos, Peter; Bergeron, John J. M.; Nilsson, Tommy

    2014-01-01

    The ARF GTPase Activating Protein 1 (ARFGAP1) associates mainly with the cytosolic side of Golgi cisternal membranes where it participates in the formation of both COPI and clathrin-coated vesicles. In this study, we show that ARFGAP1 associates transiently with lipid droplets upon addition of oleate in cultured cells. Also, that addition of cyclic AMP shifts ARFGAP1 from lipid droplets to the Golgi apparatus and that overexpression and knockdown of ARFGAP1 affect lipid droplet formation. Examination of human liver tissue reveals that ARFGAP1 is found associated with lipid droplets at steady state in some but not all hepatocytes. PMID:25397679

  11. On-chip droplet production regimes using surface acoustic waves.

    PubMed

    Brenker, Jason C; Collins, David J; Van Phan, Hoang; Alan, Tuncay; Neild, Adrian

    2016-04-26

    Aqueous droplets suspended in an immiscible carrier fluid are a key tool in microfluidic chemical analysis platforms. The approaches for producing droplets in microfluidic devices can be divided into three general categories: batch emulsification, continuous production and tailored on-demand production. The major distinctions between each category are the rate of production and the degree of control over the droplet formation process in terms of the size and quantity. On-demand methods are highly desirable when, for example, small numbers or even single droplets of one sample type are required at a time. Here, we present a method for the on-demand production of femtolitre droplets, utilising a pressure source generated by high frequency surface acoustic waves (SAW). An increase in the continuous phase flow rate is enabled by a quasi-3D feature at the droplet production nozzle. A wide range of accessible flow rates permits the identification of different physical regimes in which droplets of different dimensions are produced. In the system investigated droplets measuring as little as 200 fl have been produced, ∼1/60th of the minimum volume previously reported. The experimental findings are supported by a numerical model which demonstrates the link between the number of droplets formed and the pulse length used. PMID:27045939

  12. Numerical simulation of filler metal droplets spreading in laser brazing

    NASA Astrophysics Data System (ADS)

    Chen, Yanbin; Feng, Xiaosong; Li, Liqun

    2007-11-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry, and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot. The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  13. Freezing of droplets colliding with a cold surface

    SciTech Connect

    Bhola, R.; Chandra, S.

    1995-12-31

    Impact of droplets of paraffin wax (melting point 70 C) on a polished aluminum surface was studied experimentally. Droplet impact was photographed, and the spread diameter and liquid-solid contact angle measured from photographs. Impact velocity was varied from 0.8 m/s to 2.6 m/s and surface temperature from 23 C to 73 C. For low impact velocities (< 2 m/s) splat edges solidified before droplet spread was complete, restricting movement of liquid. Photographs showed liquid recoiling in the droplet center during impact on a cold surface (23 C); the recoil reduced as the surface temperature approached the melting point of the droplet. When the impact velocity was increased, surface temperature had less effect on droplet spread, and recoil was not observed. A one-dimensional model of droplet solidification was used to derive a dimensionless parameter s*, which was a measure of the thickness of the solid layer formed at the cold surface. Solidification did not affect droplet spreading for s* < 8 {times} 10{sup {minus}3}. A simple energy conservation model was used to predict the maximum extent of liquid droplet spread when solidification was negligible. Predictions from the model were found to agree well with experimental measurements.This is applicable for spray forming of metals.

  14. Spreading dynamics of droplet on an inclined surface

    NASA Astrophysics Data System (ADS)

    Shen, Chaoqun; Yu, Cheng; Chen, Yongping

    2016-06-01

    A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

  15. Dynamic response of vaporizing droplet to pressure oscillation

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2016-06-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  16. The Burning of Large N-Heptane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Manzello, Samuel L.; Choi, Mun Young; Kazakov, Andrei; Dryer, Frederick L.; Dobashi, Ritsu; Hirano, Toshisuke; Ferkul, Paul (Technical Monitor)

    2000-01-01

    Experimental results are presented on the burning and sooting behavior of large n-heptane droplets in air at atmospheric pressure under microgravity conditions. The experiments were performed at the Japanese Microgravity Center (JAMIC) 10 sec dropshaft in Hokkaido, Japan. Soot volume fraction, burning rate, flame standoff and luminosity were measured for droplets of 2.6 mm and 2.9 mm in initial diameter. These are the largest droplets for which soot volume fraction measurements have ever been performed. Previous measurements of soot volume fractions for n-heptane droplets, confined to smaller droplet sizes of less than 1.8 mm, indicated that maximum soot volume fraction increased monotonically with initial droplet size. The new results demonstrate for the first time that sooting tendency is reduced for large droplets as it has been speculated previously but never confirmed experimentally. The lower soot volume fractions for the larger droplets were also accompanied by higher burning rates. The observed phenomenon is believed to be caused by the dimensional influence on radiative heat losses from the flame. Numerical calculations confirm that soot radiation affects the droplet burning behavior.

  17. Dynamics of acoustic droplet vaporization in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Wong, Zheng Z.; Fowlkes, J. Brian; Bull, Joseph L.

    2010-04-01

    Acoustic droplet vaporization is investigated in a theoretical model. This work is motivated by gas embolotherapy, a developmental cancer treatment involving tumor infarction with gas microbubbles that are selectively formed from liquid droplets. The results indicate that there exists a threshold value for initial droplet size below which the bubble evolution is oscillatory and above which it is smooth and asymptotic, and show that the vaporization process affects the subsequent microbubble expansion. Dampening of the bubble expansion is observed for higher viscosity and surface tension, with effects more pronounced for droplet size less than 6 μm in radius.

  18. Induction of protein conformational change inside the charged electrospray droplet.

    PubMed

    Banerjee, Shibdas

    2013-02-01

    The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process.

  19. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    NASA Astrophysics Data System (ADS)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  20. Droplet Mobility Manipulation on Porous Media Using Backpressure.

    PubMed

    Vourdas, N; Pashos, G; Kokkoris, G; Boudouvis, A G; Stathopoulos, V N

    2016-05-31

    Wetting phenomena on hydrophobic surfaces are strongly related to the volume and pressure of gas pockets residing at the solid-liquid interface. In this study, we explore the underlying mechanisms of droplet actuation and mobility manipulation when backpressure is applied through a porous medium under a sessile pinned droplet. Reversible transitions between the initially sticky state and the slippery states are thus incited by modulating the backpressure. The sliding angles of deionized (DI) water and ethanol in DI water droplets of various volumes are presented to quantify the effect of the backpressure on the droplet mobility. For a 50 μL water droplet, the sliding angle decreases from 45 to 0° when the backpressure increases to ca. 0.60 bar. Significantly smaller backpressure levels are required for lower surface energy liquids. We shed light on the droplet actuation and movement mechanisms by means of simulations encompassing the momentum conservation and the continuity equations along with the Cahn-Hilliard phase-field equations in a 2D computational domain. The droplet actuation mechanism entails depinning of the receding contact line and movement by means of forward wave propagation reaching the front of the droplet. Eventually, the droplet skips forward. The contact line depinning is also corroborated by analytical calculations based on the governing vertical force balance, properly modified to incorporate the effect of the backpressure. PMID:27163363