Science.gov

Sample records for 2x nm node

  1. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  2. 9nm node wafer defect inspection using visible light

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford L.

    2014-04-01

    Over the past 2 years, we have developed a common optical-path, 532 nm laser epi-illumination diffraction phase microscope (epi-DPM) and successfully applied it to detect different types of defects down to 20 by 100 nm in a 22nm node intentional defect array (IDA) wafer. An image post-processing method called 2DISC, using image frame 2nd order differential, image stitching, and convolution, was used to significantly improve sensitivity of the measured images. To address 9nm node IDA wafer inspection, we updated our system with a highly stable 405 nm diode laser. By using the 2DISC method, we detected parallel bridge defects in the 9nm node wafer. To further enhance detectability, we are exploring 3D wafer scanning, white-light illumination, and dark-field inspection.

  3. 28nm node process optimization: a lithography centric view

    NASA Astrophysics Data System (ADS)

    Seltmann, Rolf

    2014-10-01

    Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.

  4. Considerations for fine hole patterning for the 7nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  5. Resist reflow process for arbitrary 32 nm node pattern

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; An, Ilsin; Oh, Hye-Keun

    2008-03-01

    In order to shrink down the contact hole which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are made by RRP, but RRP was limited to be used only for contact hole patterns. The same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple 1-dimensional patterns, but 2-dimensional proximity conflict patterns are difficult to make in general. Specially, the data split with proximity correction needs a lot of attention for double patterning. 32 nm node arbitrary patterns can be easily made by using RRP without complex data split.

  6. Resist Reflow Process for 32 nm Node Arbitrary Pattern

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; An, Ilsin; Oh, Hye-Keun

    2009-04-01

    In order to decrease the size of contact holes, which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are generated by RRP, but the use of RRP was limited to only contact hole patterns. The use of the same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple one-dimensional patterns, but two-dimensional proximity conflict patterns are difficult to generate in general. In particular, the data split with proximity correction requires much attention for double patterning. 32 nm node arbitrary patterns could be generated using RRP without complex data splits when high-index fluid immersion lithography [numerical aperture (NA) 1.55] is used.

  7. Taking the X Architecture to the 65-nm technology node

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Smayling, Michael C.; Arora, Narain; Nagata, Toshiyuki; Duane, Michael P.; Shah, Santosh; Keston, Harris J.; Oemardani, Shiany

    2004-05-01

    The X Architecture is a new way of orienting the interconnect on an integrated circuit using diagonal pathways, as well as the traditional right-angle, or Manhattan, configuration. By enabling designs with significantly less wire and fewer vias, the X Architecture can provide substantial improvements in chip performance, power consumption and cost. Members of the X Initiative semiconductor supply chain consortium have demonstrated the production worthiness of the X Architecture at the 130-nm and 90-nm process technology nodes. This paper presents an assessment of the manufacturing readiness of the X Architecture for the 65-nm technology node. The extent to which current production capabilities in mask writing, lithography, wafer processing, inspection and metrology can be used is discussed using the results from a 65-nm test chip. The project was a collaborative effort amongst a number of companies in the IC fabrication supply chain. Applied Materials fabricated the 65-nm X Architecture test chip at its Maydan Technology Center and leveraged the technology of other X Initiative members. Cadence Design Systems provided the test structure design and chip validation tools, Dai Nippon Printing produced the masks and Canon"s imaging system was employed for the photolithography.

  8. Polymer and Material Design for Lithography From 50 nm Node to the sub-16 nm Node

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter

    2012-02-01

    Microlithography is one of the technologies which enabled the Information Age. Developing at the intersection of optical physics, polymer science and photochemistry, the need for ever smaller high fidelity patterns to build integrated circuits is currently pushing the technology evolution from 193 nm immersion lithography to extreme ultraviolet lithography (13.5 nm) to alternate patterning technologies such as directed self assembly (DSA) of block copolymers. Essential to the success of this progression is a rapid application of new concepts and materials in polymer science. We will discuss the requirements for 193 immersion lithography and how advanced acrylic random polymers are being designed with chemical amplification functionality to meet these needs. The special requirements of a water immersion lithography led to the invention and rapid commercial application of surface assembled embedded barrier layer polymers. Design of polymers for EUV lithography is having to respond to much different challenges, prominent being the dearth of photons in the exposure step, and the other being how to maximize the efficiency of photoacid production. In parallel, alternative lithographic approaches are being developed using directed self assembly of block copolymers which realize pattern frequency multiplication. We will update with our progress in the applications of polymers designed for DSA.

  9. Application of atomic force microscope to 65-nm node photomasks

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Itou, Yasutoshi; Yoshioka, Nobuyuki; Matsuyama, Katsuhiro; Dawson, Dean J.

    2004-08-01

    The technology node of semiconductor device production is progressing to 65nm generation. For the 65nm photomasks, the target specifications of defect size and repair accuracy are 52nm and 7nm, respectively. Especially, real defects on photomasks are not only simple two-dimensional patterns but also three-dimensional shapes such as phase shift defects and contamination, thus we need to recognize defect shapes accurately. Additionally, AAPSM's Cr patterns overhang, and we have to measure defects on three-dimensional shapes. To evaluate them, we use an AFM metrology system, Dimension X3D (Veeco), having both precise CD measurement repeatability (2nm) and high resolution for defects. In this report, we show the performance of the AFM metrology system. First, we evaluated CD metrology performance, CD repeatbility about four type photomasks: NEGA-BIM, POSI-BIM, KrF-HT and ArF-HT, and all masks met specifications. Next, we evaluated defect pattern shapes and AAPSM and CPL mask patterns. Consequently, we have confirmed that the AFM metrology system has high performance for 65nm photomasks.

  10. Reflective electron-beam lithography performance for the 10nm logic node

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Gubiotti, Thomas; Sun, Jeff; Cheung, Anthony; Yang, Jason; McCord, Mark; Petric, Paul; Carroll, Allen; Ummethala, Upendra; Hale, Layton; Hench, John; Kojima, Shinichi; Mieher, Walter; Bevis, Chris F.

    2012-11-01

    Maskless electron beam lithography has the potential to extend semiconductor manufacturing to the sub-10 nm technology node. KLA-Tencor is currently developing Reflective Electron Beam Lithography (REBL) for high-volume 10 nm logic (16 nm HP). This paper reviews progress in the development of the REBL system towards its goal of 100 wph throughput for High Volume Lithography (HVL) at the 2X and 1X nm nodes. In this paper we introduce the Digital Pattern Generator (DPG) with integrated CMOS and MEMs lenslets that was manufactured at TSMC and IMEC. For REBL, the DPG is integrated to KLA-Tencor pattern generating software that can be programmed to produce complex, gray-scaled lithography patterns. Additionally, we show printing results for a range of interesting lithography patterns using Time Domain Imaging (TDI). Previously, KLA-Tencor reported on the development of a Reflective Electron Beam Lithography (REBL) tool for maskless lithography at and below the 22 nm technology node1. Since that time, the REBL team and its partners (TSMC, IMEC) have made good progress towards developing the REBL system and Digital Pattern Generator (DPG) for direct write lithography. Traditionally, e-beam direct write lithography has been too slow for most lithography applications. Ebeam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the continued uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for HVL.

  11. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  12. Megasonic cleaning: possible solutions for 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Shende, Hrishi; Singh, Sherjang; Baugh, James; Mann, Raunak; Dietze, Uwe; Dress, Peter

    2011-11-01

    Megasonic energy transfer to the photomask surface is indirectly controlled by process parameters that provide an effective handle to physical force distribution on the photomask surface. A better understanding of the influence of these parameters on the physical force distribution and their effect on pattern damage of fragile mask features can help optimize megasonic energy transfer as well as assist in extending this cleaning technology beyond the 22nm node. In this paper we have specifically studied the effect of higher megasonic frequencies (3 & 4MHz) and media gasification on pattern damage; the effect of cleaning chemistry, media volume flow rate, process time, and nozzle distance to the mask surface during the dispense is also discussed. Megasonic energy characterization is performed by measuring the acoustic energy as well as cavitation created by megasonic energy through sonoluminescence measurements.

  13. Advanced metrology for the 14 nm node double patterning lithography

    NASA Astrophysics Data System (ADS)

    Carau, D.; Bouyssou, R.; Dezauzier, C.; Besacier, M.; Gourgon, C.

    2014-05-01

    In microelectronics the two crucial parameters for the lithography step are the critical dimension, which is the width of the smallest printable pattern, and the misalignment error of the reticle, called overlay. For the 14 nm node, the limit of scanner resolution can be overcome by the double patterning technique, which requires a maximum overlay error between the two reticles of 3 nm [1]. The current approach in the measurements of critical dimension and overlay is to treat them separately, but it has become much more complex in the double patterning context, since they are no longer independent. In this paper, a strategy of a common measurement is developed. The aim of the strategy is to measure simultaneously overlay and critical dimension in the metal level double patterning grating before the second etch process. The scatterometry technique is well known for critical dimension measurement. This study demonstrates that the overlay between the two gratings can also be deduced. Thanks to this original scatterometry-based method, it becomes possible to provide information on the lithography step quality before the second etch process; therefore the lithography can be reworked if it is necessary.

  14. OPC structures for maskshops qualification for the CMOS65nm and CMOS45nm nodes

    NASA Astrophysics Data System (ADS)

    Sundermann, Frank; Trouiller, Yorick; Urbani, Jean-Christophe; Couderc, Christophe; Belledent, Jérôme; Borjon, Amandine; Foussadier, Franck; Gardin, Christian; LeCam, Laurent; Rody, Yves; Saied, Mazen; Yesilada, Emek; Martinelli, Catherine; Wilkinson, Bill; Vautrin, Florent; Morgana, Nicolo; Robert, Frederic; Montgomery, Patrick; Kerrien, Gurwan; Planchot, Jonathan; Farys, Vincent; Di Maria, Jean-Luc

    2007-02-01

    Several qualification stages are required for new maskshop tools, first step is done by the maskshop internally. Taking a new writer for example, the maskshop will review the basic factory and site acceptance tests, including CD uniformity, CD linearity, local CD errors and registration errors. The second step is to have dedicated OPC (Optical Proximity Correction) structures from the wafer fab. These dedicated OPC structures will be measured by the maskshop to get a reticle CD metrology trend line. With this trend line, we can: - ensure the stability at reticle level of the maskshop processes - put in place a matching procedure to guarantee the same OPC signature at reticle level in case of any internal maskshop process change or new maskshop evaluation. Changes that require qualification could be process changes for capacity reasons, like introducing a new writer or a new manufacturing line, or for capability reasons, like a new process (new developer tool for example) introduction. Most advanced levels will have dedicated OPC structures. Also dedicated maskshop processes will be monitored with these specific OPC structures. In this paper, we will follow in detail the different reticle CD measurements of dedicated OPC structures for the three advanced logic levels of the 65nm node: poly level, contact level and metal level. The related maskshop's processes are - for poly: eaPSM 193nm with a nega CAR (Chemically Amplified Resist) process for Clear Field L/S (Lines & Space) reticles - for contact: eaPSM 193nm with a posi CAR process for Dark Field Holes reticles - for metal1: eaPSM 193nm with a posi CAR process for Dark Field L/S reticles. For all these structures, CD linearity, CD through pitch, length effects, and pattern density effects will be monitored. To average the metrology errors, the structures are placed twice on the reticle. The first part of this paper will describe the different OPC structures. These OPC structures are close to the DRM (Design Rule

  15. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Bryniarski, Casey A.; Popescu, Gabriel; Goddard, Lynford L.

    2015-03-01

    We recently built a 405nm laser based optical interferometry system for 9nm node patterned wafer defect inspection. Defects with volumes smaller than 15nm by 90nm by 35nm have been detected. The success of defect detection relied on accurate mechanical scanning of the wafer and custom engineered image denoising post-processing. To further improve the detection sensitivity, we designed a higher precision XYZ scanning stage and replaced the laser source with an incoherent LED to remove the speckle noise. With these system modifications, we successfully detected both defects and surface contamination particles in bright-field imaging mode. Recently, we have upgraded this system for interferometric defect inspection.

  16. Low-k/copper integration scheme suitable for ULSI manufacturing from 90nm to 45nm nodes

    NASA Astrophysics Data System (ADS)

    Nogami, T.; Lane, S.; Fukasawa, M.; Ida, K.; Angyal, M.; Chanda, K.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan, M.; Dziobkowski, C.; Fitzsimmons, J.; Flaitz, P.; Grill, A.; Gill, J.; Inoue, K.; Klymko, N.; Kumar, K.; Labelle, C.; Lane, M.; Li, B.; Liniger, E.; Madon, A.; Malone, K.; Martin, J.; McGahay, V.; McLaughlin, P.; Melville, I.; Minami, M.; Molis, S.; Nguyen, S.; Penny, C.; Restaino, D.; Sakamoto, A.; Sankar, M.; Sherwood, M.; Simonyi, E.; Shimooka, Y.; Tai, L.; Widodo, J.; Wildman, H.; Ono, M.; McHerron, D.; Nye, H.; Davis, C.; Sankaran, S.; Edelstein, D.; Ivers, T.

    2005-11-01

    This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.

  17. Revisit pattern collapse for 14nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Higgins, Craig; Raghunathan, Ananthan; Hartley, John G.; Goldfarb, Dario L.; Kato, Hirokazu; Petrillo, Karen; Colburn, Matthew E.; Schefske, Jeffrey; Wood, Obert; Wallow, Thomas I.

    2011-04-01

    In this study, we have analyzed new data sets of pattern collapse obtained from 300 mm wafers which were coated with a process-of-record (POR) EUV resist and exposed by an EUV Alpha-Demo tool (ADT) and a Vistec VB300 e-beam exposure tool. In order to minimize any processing effects on pattern collapse, the same POR EUV track process was applied to both exposures. A key metric of our analysis is the critical aspect ratio of collapse (CARC)1. We found that CARC of POR EUV resist decreases monotonically with spacing, in the range of ~1.8-2.2 at ~32-54 nm space (60-80 nm pitch) for EUV, and ~1.5-2.1 at ~16-50 nm space (~46-80 nm pitch) for e-beam. We also estimated an apparent Young's modulus of POR EUV resist by fitting a collapse model2 to the CARC data. The resulting modulus ~0.30 GPa was much smaller than the modulus of typical polymer glasses (~1.0-5.0 GPa). Our findings suggest that due to a significant decrease of resist mechanical properties and a sharp increase in capillary force, it will be challenging to maintain aspect ratios above 2.0 for sub-30 nm resist spacing (sub-60 nm pitches). For patterning at these dimensions, alternate processes and materials will become increasingly necessary, e.g. surfactant-based rinse solutions3 and other approaches.

  18. HVM metrology challenges towards the 5nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin

    2016-03-01

    This paper will provide a high level overview of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry. First, we will take a broad view of the needs of patterned defect, critical dimensional (CD/3D) and films metrology, and present the extensive list of applications for which metrology solutions are needed. Commonalities and differences among the various applications will be shown. We will then report on the gating technical limits of the most important of these metrology solutions to address the metrology challenges of future nodes, highlighting key metrology technology gaps requiring industry attention and investment.

  19. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  20. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  1. Characterization of 32nm node BEOL grating structures using scatterometry

    NASA Astrophysics Data System (ADS)

    Zangooie, Shahin; Sendelbach, Matthew; Angyal, Matthew; Archie, Charles; Vaid, Alok; Matthew, Itty; Herrera, Pedro

    2008-03-01

    Implementations of scatterometry in the back end of the line (BEOL) of the devices requires design of advanced measurement targets with attention to CMP ground rule constraints as well as model simplicity details. In this paper we outline basic design rules for scatterometry back end targets by stacking and staggering measurement pads to reduce metal pattern density in the horizontal plane of the device and to avoid progressive dishing problems along the vertical direction. Furthermore, important characteristics of the copper shapes in terms of their opaqueness and uniformity are discussed. It is shown that the M1 copper thicknesses larger than 100 nm are more than sufficient for accurate back end scatterometry implementations eliminating the need for modeling of contributions from the buried layers. AFM and ellipsometry line scans also show that the copper pads are sufficiently uniform with a sweet spot area of around 20 μm. Hence, accurate scatterometry can be done with negligible edge and/or dishing contributions if the measurement spot is placed any where within the sweet spot area. Reference metrology utilizing CD-SEM and CD-AFM techniques prove accuracy of the optical solutions for the develop inspect and final inspect grating structures. The total measurement uncertainty (TMU) values for the process of record line width are of the order of 0.77 nm and 0.35 nm at the develop inspect and final inspect levels, respectively.

  2. Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.; Gorelick, Jerry L.; Berg, M. D.; Kim, H.; LaBel, K.; Friendlich, M.; Koga, R.; George, J.; Crain, S.; Yu, P.; Reed, R. A.

    2006-01-01

    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer.

  3. 22 nm node wafer inspection using diffraction phase microscopy and image post-processing

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Popescu, Gabriel; Goddard, Lynford L.

    2013-04-01

    We applied epi-illumination diffraction phase microscopy to measure the amplitude and phase of the scattered field from a SEMATECH 22 nm node intentional defect array (IDA) wafer. We used several imaging processing techniques to remove the wafer's underlying structure and reduce both the spatial and temporal noise and eliminate the system calibration error to produce stretched panoramic amplitude and phase images. From the stretched images, we detected defects down to 20 nm × 160 nm for a parallel bridge, 20 nm × 100 nm for perpendicular bridge, and 35 nm × 70 nm for an isolated dot.

  4. Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi

    2014-10-01

    The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.

  5. Achieving CDU requirement for 90-nm technology node and beyond with advanced mask making process technology

    NASA Astrophysics Data System (ADS)

    Tzu, San-De; Chang, Chung-Hsing; Chen, Wen-Chi; Kliem, Karl-Heinz; Hudek, Peter; Beyer, Dirk

    2005-01-01

    For 90nm node and beyond technology generations, one of the most critical challenges is how to meet the local CD uniformity (proximity) and global CD uniformity (GCDU) requirements within the exposure field. Both of them must be well controlled in the mask making process: (1) proximity effect and, (2) exposure pattern loading effect, or the so-called e-beam "fogging effect". In this paper, we report a method to improve our global CDU by means of a long range fogging compensation together with the Leica SB350 MW. This exposure tool is operated at 50keV and 1nm design grid. The proximity correction is done by the software - package "PROXECCO" from PDF Solutions. We have developed a unique correction method to reduce the fogging effect in dependency of the pattern density of the mask. This allows us to meet our customers" CDU specifications for the 90nm node and beyond.

  6. Particle removal challenges with EUV patterned mask for the sub-22nm HP node

    SciTech Connect

    Rastegar, A.; Eichenlaub, S.; Kadaksham, A. J.; Lee, B.; House, M.; Huh, S.; Cha, B.; Yun, H.; Mochi, I.; Goldberg, K. A.

    2010-03-12

    The particle removal efficiency (PRE) of cleaning processes diminishes whenever the minimum defect size for a specific technology node becomes smaller. For the sub-22 nm half-pitch (HP) node, it was demonstrated that exposure to high power megasonic up to 200 W/cm{sup 2} did not damage 60 nm wide TaBN absorber lines corresponding to the 16 nm HP node on wafer. An ammonium hydroxide mixture and megasonics removes {ge}50 nm SiO{sub 2} particles with a very high PRE, A sulfuric acid hydrogen peroxide mixture (SPM) in addition to ammonium hydroxide mixture (APM) and megasonic is required to remove {ge}28 nm SiO{sub 2} particles with a high PRE. Time-of-flight secondary ion mass spectroscopy (TOFSIMS) studies show that the presence of O{sub 2} during a vacuum ultraviolet (VUV) ({lambda} = 172 nm) surface conditioning step will result in both surface oxidation and Ru removal, which drastically reduce extreme ultraviolet (EUV) mask life time under multiple cleanings. New EUV mask cleaning processes show negligible or no EUV reflectivity loss and no increase in surface roughness after up to 15 cleaning cycles. Reviewing of defect with a high current density scanning electron microscope (SEM) drastically reduces PRE and deforms SiO{sub 2} particles. 28 nm SiO{sub 2} particles on EUV masks age very fast and will deform over time, Care must be taken when reviewing EUV mask defects by SEM. Potentially new particles should be identified to calibrate short wavelength inspection tools, Based on actinic image review, 50 nm SiO{sub 2} particles on top of the EUV mask will be printed on the wafer.

  7. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  8. Considering mask pellicle effect for more accurate OPC model at 45nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo

    2008-11-01

    Now it comes to the 45nm technology node, which should be the first generation of the immersion micro-lithography. And the brand-new lithography tool makes many optical effects, which can be ignored at 90nm and 65nm nodes, now have significant impact on the pattern transmission process from design to silicon. Among all the effects, one that needs to be pay attention to is the mask pellicle effect's impact on the critical dimension variation. With the implement of hyper-NA lithography tools, light transmits the mask pellicle vertically is not a good approximation now, and the image blurring induced by the mask pellicle should be taken into account in the computational microlithography. In this works, we investigate how the mask pellicle impacts the accuracy of the OPC model. And we will show that considering the extremely tight critical dimension control spec for 45nm generation node, to take the mask pellicle effect into the OPC model now becomes necessary.

  9. CP element based design for 14nm node EBDW high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Machida, Yasuhide; Sugatani, Shinji; Takita, Hiroshi; Hoshino, Hiromi; Hino, Toshio; Ito, Masaru; Yamada, Akio; Iizuka, Tetsuya; Komatsu, Satoshi; Ikeda, Makoto; Asada, Kunihiro

    2012-03-01

    We had previously established CP (character projection) based EBDW technology for 65nm and 45nm device production. And recently we have confirmed the resolution of 14nm L&S patterns which meets 14nm and beyond node logic requirement with CP exposure. From these production achievement and resolution potential, with multi-beam EBDW and CP function, MCC [1] could be one of the most promising technologies for future high volume manufacturing if exposure throughput was drastically enhanced. We have set target throughput as 100 WPH to meet HVM (high volume manufacturing) requirement. Our designed parameters to attain 100 WPH for 14nm result in 150 beams, 10cluster, 100 Giga shots/wafer, 250A/cm^2 and 75uC/cm^2. In addition to multi-beam, drastic exposure shot reduction is indispensable to attain 100 WPH for 14nm node. We have aggressively targeted 100 Giga shot count which is equivalent to covering 300mm wafer with 0.8um x 0.8um square fairly large tile. All device circuit blocks should be structured with only CP defined parts and we should trace back to upstream design flow to RTL. We call this methodology "CP element based design". In near future, Litho-Friendly restricted design would be commonly used [3] [4]. Our CP defined tile based regular layout would be highly compatible with these ultra-regular design approaches. The primal design factors are Logic cell, Memory macro and random interconnect. We have established concepts to accomplish high volume production with CP-based EBDW at 14nm technology node.

  10. Model based hint for litho hotspot fixing beyond 20nm node

    NASA Astrophysics Data System (ADS)

    Kang, Jae-Hyun; Kim, Byung-Moo; Ha, Naya; Choi, Hung bok; Kim, Kee sup; Mohamed, Sarah; Madkour, Kareem; ElManhawy, Wael; Lee, Evan; Brunet, Jean-Marie; Kwan, Joe

    2013-03-01

    As technology nodes scale beyond 20nm node, design complexity increases and printability issues become more critical and hard for RET techniques to fix. It is now mandatory for designers to run lithography checks prior to tape out and acceptance by the foundry. As lithography compliance became a sign-off criterion, lithography hotspots are increasingly treated like DRC violations. In the case of lithography hotspot, layout edges that should be moved to fix the hotspot are not necessarily the edges directly touching it. As a result of that, providing the designer with a suggested layout movements to fix the lithography hotspot is becoming a necessity. Software solutions generating hints should be accurate and fast. In this paper we are presenting a methodology for providing hints to the designers to fix Litho-hotspots in the 20nm and beyond.

  11. Immersion and dry scanner extensions for sub-10nm production nodes

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.

    2015-03-01

    Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.

  12. Holistic overlay control for multi-patterning process layers at the 10nm and 7nm nodes

    NASA Astrophysics Data System (ADS)

    Verstappen, Leon; Mos, Evert; Wardenier, Peter; Megens, Henry; Schmitt-Weaver, Emil; Bhattacharyya, Kaustuve; Adam, Omer; Grzela, Grzegorz; van Heijst, Joost; Willems, Lotte; Wildenberg, Jochem; Ignatova, Velislava; Chen, Albert; Elich, Frank; Rajasekharan, Bijoy; Vergaij-Huizer, Lydia; Lewis, Brian; Kea, Marc; Mulkens, Jan

    2016-03-01

    Multi-patterning lithography at the 10-nm and 7-nm nodes is driving the allowed overlay error down to extreme low values. Advanced high order overlay correction schemes are needed to control the process variability. Additionally the increase of the number of split layers results in an exponential increase of metrology complexity of the total overlay and alignment tree. At the same time, the process stack includes more hard-mask steps and becomes more and more complex, with as consequence that the setup and verification of the overlay metrology recipe becomes more critical. All of the above require a holistic approach that addresses total overlay optimization from process design to process setup and control in volume manufacturing. In this paper we will present the holistic overlay control flow designed for 10-nm and 7-nm nodes and illustrate the achievable ultimate overlay performance for a logic and DRAM use case. As figure 1 illustrates we will explain the details of the steps in the holistic flow. Overlay accuracy is the driver for target design and metrology tool optimization like wavelength and polarization. We will show that it is essential to include processing effects like etching and CMP which can result in a physical asymmetry of the bottom grating of diffraction based overlay targets. We will introduce a new method to create a reference overlay map, based on metrology data using multiple wavelengths and polarization settings. A similar approach is developed for the wafer alignment step. The overlay fingerprint correction using linear or high order correction per exposure (CPE) has a large amount of parameters. It is critical to balance the metrology noise with the ultimate correction model and the related metrology sampling scheme. Similar approach is needed for the wafer align step. Both for overlay control as well as alignment we have developed methods which include efficient use of metrology time, available for an in the litho-cluster integrated

  13. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  14. Line Edge Roughness Reduction Using Resist Reflow Process for 22 nm Node Extreme Ultraviolet Lithography

    NASA Astrophysics Data System (ADS)

    Cho, In Wook; Kim, Hyunsu; You, Jee-Hye; Oh, Hye-Keun

    2010-03-01

    Extreme ultraviolet lithography (EUVL) has been developed and studied for a sub-22 nm semiconductor device. It is difficult to obtain a smooth sub-22 nm pattern because line edge roughness (LER) and linewidth roughness (LWR) cannot be controlled well. According to the 2008 ITRS roadmap, LER has to be below 1.3 nm to achieve a 22 nm node for EUVL. In our previous work, the resist reflow process (RRP), in which the resist is baked above the glass transition temperature (Tg), was very helpful for reducing LER and LWR for EUVL. LER and LWR could be decreased from ˜6 to ˜1 nm. As RRP time progresses, however, the critical dimension could become wider because the developed resist can flow more easily when the temperature is above Tg. Therefore, another method is suggested to solve this problem. The developed resist, which is intentionally designed with a 1:3 line and space (L/S) (11:33 nm) pattern, is baked above Tg. As a result, LER and LWR can be smoothed by RRP and we could achieve a 22 nm 1:1 L/S pattern with a small LER.

  15. Critical Dimension Control for 32 nm Node Random Contact Hole Array Using Resist Reflow Process

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; Kang, Young-Min; Hong, Joo-Yoo; Oh, Hye-Keun

    2008-02-01

    A 50 nm contact hole (CH) random array fabricated by resist reflow process (RRP) was studied to produce 32 nm node devices. RRP is widely used for mass production of semiconductor devices, but RRP has some restrictions because the reflow strongly depends on the array, pitch, and shape of CH. Thus, we must have full knowledge on pattern dependency after RRP, and we need to have an optimum optical proximity corrected mask including RRP to compensate the pattern dependency in random array. To fabricate optimum optical proximity- and RRP-corrected mask, we must have a better understanding of how much resist flows and CH locations after RRP. A simulation is carried out to correctly predict the RRP result by including RRP parameters such as viscosity, adhesion force, surface tension, and location of CH. As a result, we obtained uniform 50 nm CH patterns even for the random and differently shaped CH arrays by optical proximity-corrected RRP.

  16. Non-chemical cleaning technology for sub-90nm design node photomask manufacturing

    NASA Astrophysics Data System (ADS)

    Hoyeh, Star; Chen, Richard; Kozuma, Makoto; Kuo, Joann; Huang, Torey; Chen, Frank F.

    2006-10-01

    Cleaning chemistry residue in photomask manufacturing is one of root causes to generate HAZE over surface of photomask for 193nm and shorter wavelength exposure tools. In order to reduce the residue, chemical free process is one of targets in photomask industry. In this paper novel clean technology without sulfuric acid and ammonia chemical are shown to manufacture sub-90nm node photomask. Photo and E-beam resist were removed by plasma and ozone water clean instead of sulfuric acid. SPM and APM in final clean sequence before defect inspection were substituted with ozone water and hydrogen water respectively. The clean performance was demonstrated in real production of 193nm phase shift mask. Sulfate and Ammonia residue after final clean were controlled same as blank material level without any clean process.

  17. The SEMATECH Berkeley microfield exposure tool: learning a the 22-nm node and beyond

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Hudyma, Russ; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; McClinton, Brittany; Miyakawa, Ryan; Montgomery, Warren; Roller, John; Wallow, Tom; Wurm, Stefan

    2009-02-16

    Microfield exposure tools (METs) continue to playa dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the SEMATECH Berkeley 0.3-NA MET operating as a SEMATECH resist and mask test center. Here we present an update summarizing the latest resist test and characterization results. The relatively small numerical aperture and limited illumination settings expected from 1st generation EUV production tools make resist resolution a critical issue even at the 32-nm node. In this presentation, sub 22 nm half pitch imaging results of EUV resists are reported. We also present contact hole printing at the 30-nm level. Although resist development has progressed relatively well in the areas of resolution and sensitivity, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of system-level contributors to the LER observed from the SEMA TECH Berkeley microfield tool.

  18. Negative-tone imaging (NTI) at the 22nm node: process and material development

    NASA Astrophysics Data System (ADS)

    Cantone, Jason; Petrillo, Karen; Xu, Yongan; Landie, Guillaume; Kawakami, Shinichiro; Dunn, Shannon; Colburn, Matt

    2011-04-01

    With 22nm logic node arriving prior to EUV implementation, alternative immersion optical lithographic processes are required to drive down to smaller feature sizes. There is an ongoing effort to examine the application of the negative tone imaging (NTI) process for current and future nodes. Although NTI has previously shown difficulties with respect to swelling, high chemical reactivity with oxygen, and the need for special equipment needed for the solvent-based development, NTI photoresists (PR) typically exhibit stronger adhesion to silicon than that of positive tone photoresists (a characteristic that helps mitigate pattern collapse). We will provide suggestions on how to improve the image quality, as well as the resulting defectivity, for desired geometries. This paper will primarily focus on the full litho process optimization and demonstrate repeatable, and manufacturable critical dimension uniformity (CDU), and defectivity optimization for trench and via structures.

  19. EUV and optical lithographic pattern shift at the 5nm node

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Thiruvengadam, Sathish; Cantone, Jason R.; Civay, Deniz E.; Schroeder, Uwe P.

    2016-03-01

    At the 5 nm technology node there are competing strategies for patterning: high-NA EUV, double patterning 0.33 NA EUV and a combination of optical self-aligned solutions with EUV. This paper investigates the impact of pattern shift based on the selected patterning strategy. A logic standard cell connection between TS and M0 is simulated to determine the impact of lithographic pattern shift on the overlay budget. At 5 nm node dimensions, high-NA EUV is necessary to expose the most critical layers with a single lithography exposure. The impact of high-NA EUV lithography is illustrated by comparing the pattern shift resulting from 0.33 NA vs. 0.5x NA. For the example 5 nm transistor, cost-beneficial lithography layers are patterned with EUV and the other layers are patterned optically. Both EUV and optical lithography simulations are performed to determine the maximum net pattern shift. Here, lithographic pattern shift is quantified in terms of through-focus error as well as pattern-placement error. The overlay error associated with a hybrid optical/self-aligned and EUV cut patterning scheme is compared with the results of an all EUV solution, providing an assessment of two potential patterning solutions and their impact the overall overlay budget.

  20. Mask aspects of EUVL imaging at 27nm node and below

    NASA Astrophysics Data System (ADS)

    Davydova, Natalia; van Setten, Eelco; Han, Sang-In; van de Kerkhof, Mark; de Kruif, Robert; Oorschot, Dorothe; Zimmerman, John; Lammers, Ad; Connolly, Brid; Driessen, Frank; van Oosten, Anton; Dusa, Mircea; van Dommelen, Youri; Harned, Noreen; Jiang, Jiong; Liu, Wei; Kang, Hoyoung; Liu, Hua-yu

    2011-11-01

    EUVL requires the use of reflective optics including a reflective mask. The mask consists of an absorber layer pattern on top of a reflecting multilayer, tuned for 13.53 nm. The EUVL mask is a complex optical element with many parameters contributing the final wafer image quality. Specifically, the oblique incidence of light, in combination with the small ratio of wavelength to mask topography, causes a number of effects which are unique to EUV, such as an HV CD offset. These so-called shadowing effects can be corrected by means of OPC, but also need to be considered in the mask stack design. In this paper we will present an overview of the mask contributors to imaging performance at the 27 nm node and below, such as CD uniformity, multilayer and absorber stack composition, thickness and reflectivity. We will consider basic OPC and resulting MEEF and contrast. These parameters will be reviewed in the context of real-life scanner parameters both for the NXE:3100 and NXE:3300 system configurations. The predictions will be compared to exposure results on NXE:3100 tools, with NA=0.25 for different masks. Using this comparison we will extrapolate the predictions to NXE:3300, with NA=0.33. Based on the lithographic investigation, expected requirements for EUV mask parameters will be proposed for 22 nm node EUV lithography, to provide guidance for mask manufacturers to support the introduction of EUV High Volume Manufacturing.

  1. Immersion defectivity study with volume production immersion lithography tool for 45 nm node and below

    NASA Astrophysics Data System (ADS)

    Nakano, Katsushi; Nagaoka, Shiro; Yoshida, Masato; Iriuchijima, Yasuhiro; Fujiwara, Tomoharu; Shiraishi, Kenichi; Owa, Soichi

    2008-03-01

    Volume production of 45nm node devices utilizing Nikon's S610C immersion lithography tool has started. Important to the success in achieving high-yields in volume production with immersion lithography has been defectivity reduction. In this study we evaluate several methods of defectivity reduction. The tools used in our defectivity analysis included a dedicated immersion cluster tools consisting of a Nikon S610C, a volume production immersion exposure tool with NA of 1.3, and a resist coater-developer LITHIUS i+ from TEL. In our initial procedure we evaluated defectivity behavior by comparing on a topcoat-less resist process to a conventional topcoat process. Because of its simplicity the topcoatless resist shows lower defect levels than the topcoat process. In a second study we evaluated the defect reduction by introducing the TEL bevel rinse and pre-immersion bevel cleaning techniques. This technique was shown to successfully reduce the defect levels by reducing the particles at the wafer bevel region. For the third defect reduction method, two types of tool cleaning processes are shown. Finally, we discuss the overall defectivity behavior at the 45nm node. To facilitate an understanding of the root cause of the defects, defect source analysis (DSA) was applied to separate the defects into three classes according to the source of defects. DSA analysis revealed that more than 99% of defects relate to material and process, and less than 1% of the defects relate to the exposure tool. Material and process optimization by collaborative work between exposure tool vendors, track vendors and material vendors is a key for success of 45nm node device manufacturing.

  2. Top coat less resist process development for contact layer of 40nm node logic devices

    NASA Astrophysics Data System (ADS)

    Fujita, Masafumi; Uchiyama, Takayuki; Furusho, Tetsunari; Otsuka, Takahisa; Tsuchiya, Katsuhiro

    2010-04-01

    ArF immersion lithography has been introduced in mass production of 55nm node devices and beyond as the post ArF dry lithography. Due to the existence of water between the resist film and lens, we have many concerns such as leaching of PAG and quencher from resist film into immersion water, resist film swelling by water, keeping water in the immersion hood to avoid water droplets coming in contact with the wafer, and so on. We have applied to the ArF dry resist process an immersion topcoat (TC) process in order to ensure the hydrophobic property as well as one for protecting the surface. We investigate the TC-less resist process with an aim to improve CoO, the yield and productivity in mass production of immersion lithography. In this paper, we will report TC-less resist process development for the contact layer of 40nm node logic devices. It is important to control the resist surface condition to reduce pattern defects, in particular in the case of the contact layer. We evaluated defectivity and lithography performance of TC-less resist with changing hydrophobicity before and after development. Hydrophobicity of TC-less resist was controlled by changing additives with TC functions introduced into conventional ArF dry resist. However, the hydrophobicity control was not sufficient to reduce the number of Blob defects compared with the TC process. Therefore, we introduced Advanced Defect Reduction (ADR) rinse, which was a new developer rinse technique that is effective against hydrophobic surfaces. We have realized Blob defect reduction by hydrophobicity control and ADR rinse. Furthermore, we will report device performance, yield, and immersion defect data at 40nm node logic devices with TC-less resist process.

  3. RET masks for patterning 45nm node contact hole using ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Chen, J. Fung; Van Den Broeke, Doug; En Tszng, Shih; Shieh, Jason; Hsu, Stephen; Shi, Xuelong

    2006-05-01

    Immersion exposure system with the numerical aperture (NA) greater than unity effectively extends the printing resolution limit without the need of shrinking the exposure wavelength. From the perspective of imaging contact hole mask, we are convinced that a mature ArF immersion exposure system will be able to meet 45nm node manufacturing requirement. However, from a full-chip mask data processing point of view, a more challenging question could be: how to ensure the intended RET mask to best achieve a production worthy solution? At 45nm, we are using one-fourth of the exposure wavelength for the patterning; there is very little room for error. For full-chip, especially for contact hole mask, we need a robust RET mask strategy to ensure sufficient CD control. A production-worthy RET mask technology should have good imaging performance with advanced exposure system; and, it should base on currently available mask blank material and be compatible with the existing mask making process. In this work, we propose a new type of contact hole RET masks that is capable of 45nm node full-chip manufacturing. Three types of potential RET masks are studied. The 1st type is the conventional 6% attenuated PSM (attPSM) with 0-phase Scattering Bars (SB). The 2nd type is to use CPL mask with both 0- and π-phase SB, and their relative placements are based on interference mapping lithography (IML) under optimized illumination. The 3rd type, here named as 6% CPL, can be thought of as a CPL mask type with 6% transmission on the background but with π-phase SB only. Of those three RET masks, 6% CPL mask has the best performance for printing 45nm contact and via masks. To implement 6% CPL for contact and via mask design, we study several critical process steps starting from the illumination optimization, model-based SB OPC, 3D mask effect, quartz etch depth optimization, side-lobe printability verification, and then to the mask making flow. Additionally, we investigate printability for

  4. Defect avoidance for EUV photomask readiness at the 7 nm node

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rankin, Jed; Narita, Eisuke; Kagawa, Masayuki

    2016-05-01

    Several challenges hinder extreme ultraviolet lithography (EUVL) photomask fabrication and its readiness for high volume manufacturing (HVM). The lack in availability of pristine defect-free blanks as well as the absence of a robust mask repair technique mandates defect mitigation through pattern shift for the production of defect-free photomasks. The work presented here provides a comprehensive look at pattern shift implementation to intersect EUV HVM for the 7 nm technology node. An empirical error budget to compensate for measurement variability and errors, based on the latest HVM inspection and write tool capabilities, is first established and then experimentally verified. The validated error budget is applied to 20 representative EUV blanks and pattern shift is performed on fully functional 7 nm node chip designs. The probability of defect-free masks is explored for various layers, including metal, contact, and gate cut layers. From these results, an assessment is made on the current viability of defect-free EUV masks and what is required to construct a complete defect-free EUV mask set.

  5. Robust complementary technique with multiple-patterning for sub-10 nm node device

    NASA Astrophysics Data System (ADS)

    Oyama, Kenichi; Yamauchi, Shohei; Natori, Sakurako; Hara, Arisa; Yamato, Masatoshi; Yaegashi, Hidetami

    2014-03-01

    Extreme ultraviolet (EUV) lithography is the leading candidate for sub-20nm half-pitch (hp) patterning solution, but the development of a high-output light source is still in progress thereby delaying the adoption of EUV for mass production. The evolution of 193nm immersion lithography-an exposure technology currently used in the mass production of all advanced devices-must therefore be extended, and to this end, self-aligned multiple patterning (SAMP) processes have come to be used to achieve further down scaling. To date, we have demonstrated the effectiveness of self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) as innovative processes and have reported on world-first scaling results at SPIE on several occasions. However, for critical layers in FinFET devices that presume a 1D cell design, there is also a need not just for the scaling of grating patterns but also for line-cutting techniques (grating and cutting). Under the theme of existing- technology extension to sub-10nm logic nodes, this paper presents the potential solutions of sub-10nm hp resolution by self-aligned octuple patterning (SAOP) and discusses the limits of shrink technology in cutting patterns.

  6. Lithographic qualification of high-transmission mask blank for 10nm node and beyond

    NASA Astrophysics Data System (ADS)

    Xu, Yongan; Faure, Tom; Viswanathan, Ramya; Lobb, Granger; Wistrom, Richard; Burns, Sean; Hu, Lin; Graur, Ioana; Bleiman, Ben; Fischer, Dan; Mignot, Yann; Sakamoto, Yoshifumi; Toda, Yusuke; Bolton, John; Bailey, Todd; Felix, Nelson; Arnold, John; Colburn, Matthew

    2016-04-01

    In this paper, we discuss the lithographic qualification of high transmission (High T) mask for Via and contact hole applications in 10nm node and beyond. First, the simulated MEEF and depth of focus (DoF) data are compared between the 6% and High T attnPSM masks with the transmission of High T mask blank varying from 12% to 20%. The 12% High T blank shows significantly better MEEF and larger DoF than those of 6% attnPSM mask blank, which are consistent with our wafer data. However, the simulations show no obvious advantage in MEEF and DoF when the blank transmittance is larger than 12%. From our wafer data, it has been seen that the common process window from High T mask is 40nm bigger than that from the 6% attnPSM mask. In the elongated bar structure with smaller aspect ratio, 1.26, the 12% High T mask shows significantly less develop CD pull back in the major direction. Compared to the High T mask, the optimized new illumination condition for 6% attnPSM shows limited improvement in MEEF and the DoF through pitch. In addition, by using the High T mask blank, we have also investigated the SRAF printing, side lobe printing and the resist profile through cross sections, and no patterning risk has been found for manufacturing. As part of this work new 12% High T mask blank materials and processes were developed, and a brief overview of key mask technology development results have been shared. Overall, it is concluded that the High T mask, 12% transmission, provides the most robust and extendable lithographic solution for 10nm node and beyond.

  7. Scatterometry-based metrology for the 14nm node double patterning lithography

    NASA Astrophysics Data System (ADS)

    Carau, D.; Bouyssou, R.; Ducoté, J.; Dettoni, F.; Ostrovsky, A.; Le Gratiet, B.; Dezauzier, C.; Besacier, M.; Gourgon, C.

    2015-03-01

    Critical dimension and overlay measurements have become a key challenge in microelectronics process control, and the weight of metrology in the success of a patterning technique is increasing. For the 14 nm node, the limit of scanner resolution can be overcome by double patterning, which requires a maximum overlay variability of 3 nm between the two reticles of the first metal level. In the double patterning case of metal layers, critical dimension of line spaces and overlay are no longer independent. In this paper, the possibility of a common measurement after the second lithography is studied. Scatterometry has been used to fit successfully the critical dimension of the two sublevels. As sensitivity to overlay is too low in device-like target, a strategy has been implemented from diffraction-based overlay measurement. So it becomes possible to provide information on the lithography step quality before the second etch process to enable rework if necessary. Finally a scatterometry target has been designed to fit simultaneously the two critical dimensions and overlay. This target, which is designed to maximize overlay sensitivity, has been placed in the next 14 nm CMOS product and is expected to make this scatterometry method even more attractive.

  8. Mask roughness and its implications for LER at the 22- and 16-nm nodes

    SciTech Connect

    Naulleau, Patrick; George, Simi A.; McClinton, Brittany M.

    2010-02-16

    Line-edge roughness (LER) remains the most significant challenge facing the development of extreme ultraviolet (EUV) resist. The mask, however, has been found to be a significant contributor to image-plane LER. This has long been expected based on modeling and has more recently been demonstrated experimentally. Problems arise from both mask-absorber LER as well as mask multilayer roughness leading to random phase variations in the reflected beam and consequently speckle. Understanding the implications this has on mask requirements for the 22-nm half pitch node and below is crucial. Modeling results indicate a replicated surface roughness (RSR) specification of 50 pm and a ruthenium capping layer roughness specification of 440 pm. Moreover, modeling indicates that it is crucial to achieve the current ITRS specifications for mask absorber LER which is significantly smaller than current capabilities.

  9. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Bozler, Carl; Harburg, Daniel V.; Omenetto, Fiorenzo; Rogers, John A.

    2015-01-01

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  10. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  11. Enabling the 14nm node contact patterning using advanced RET solutions

    NASA Astrophysics Data System (ADS)

    Zeggaoui, N.; Landie, G.; Villaret, A.; Farys, V.; Yesilada, E.; Tritchkov, A.; Word, J.

    2015-09-01

    The 14nm node designs is getting more sophisticated, and printability issues become more critical which need more advanced techniques to fix. One of the most critical processes is the contact patterning due to the very aggressive design rules and the process window which becomes quickly limited. Despite the large number of RET applied, some hotspot configurations remain challenging. It becomes increasingly challenging to achieve sufficient process windows around the hot spots just using conventional process such as OPC and rule-based SRAF insertion. Although, it might be desirable to apply Inverse Lithography Technique (ILT) on all hot spots to guarantee ideal mask quality. However, because of the high number of hot spots to repair in the design, that solution might be much time consuming in term of OPC and mask processing. In this paper we present a hybrid OPC solution based on local ILT usage around hot spots. It is named as Local Printability Enhancement (LPE) flow. First, conventional OPC and SRAF placement is applied on the whole design. Then, we apply LPE solution only on the remaining problematic hot spots of the design. The LPE flow also takes into account the mask rules so that it maintains the mask rule check (MRC) compliance through the borders of the repaired hot spot's areas. We will demonstrate that the LPE flow enlarges the process window around hot spots and gives better lithography quality than baseline. The simulation results are confirmed on silicon wafer where all the hot spots are printed. We will demonstrate that LPE flow enlarges the depth of focus of the most challenging hot spot by 30nm compared to POR conventional solution. Because the proposed flow applies ILT solution on very local hot spot areas, the total OPC run time remains acceptable from manufacturing side.

  12. Hybrid OPC modeling with SEM contour technique for 10nm node process

    NASA Astrophysics Data System (ADS)

    Hitomi, Keiichiro; Halle, Scott; Miller, Marshal; Graur, Ioana; Saulnier, Nicole; Dunn, Derren; Okai, Nobuhiro; Hotta, Shoji; Yamaguchi, Atsuko; Komuro, Hitoshi; Ishimoto, Toru; Koshihara, Shunsuke; Hojo, Yutaka

    2014-03-01

    Hybrid OPC modeling is investigated using both CDs from 1D and simple 2D structures and contours extracted from complex 2D structures, which are obtained by a Critical Dimension-Scanning Electron Microscope (CD-SEM). Recent studies have addressed some of key issues needed for the implementation of contour extraction, including an edge detection algorithm consistent with conventional CD measurements, contour averaging and contour alignment. Firstly, pattern contours obtained from CD-SEM images were used to complement traditional site driven CD metrology for the calibration of OPC models for both metal and contact layers of 10 nm-node logic device, developed in Albany Nano-Tech. The accuracy of hybrid OPC model was compared with that of conventional OPC model, which was created with only CD data. Accuracy of the model, defined as total error root-mean-square (RMS), was improved by 23% with the use of hybrid OPC modeling for contact layer and 18% for metal layer, respectively. Pattern specific benefit of hybrid modeling was also examined. Resist shrink correction was applied to contours extracted from CD-SEM images in order to improve accuracy of the contours, and shrink corrected contours were used for OPC modeling. The accuracy of OPC model with shrink correction was compared with that without shrink correction, and total error RMS was decreased by 0.2nm (12%) with shrink correction technique. Variation of model accuracy among 8 modeling runs with different model calibration patterns was reduced by applying shrink correction. The shrink correction of contours can improve accuracy and stability of OPC model.

  13. AltPSM contact hole application at DRAM 4xnm nodes with dry 193nm lithography

    NASA Astrophysics Data System (ADS)

    Noelscher, Christoph; Henkel, Thomas; Jauzion-Graverolle, Franck; Hennig, Mario; Morgana, Nicolo; Schlief, Ralph; Moukara, Molela; Koehle, Roderick; Neubauer, Ralf

    2008-03-01

    To avoid expensive immersion lithography and to further use existing dry tools for critical contact layer lithography at 4Xnm DRAM nodes the application of altPSM is investigated and compared to attPSM. Simulations and experiments with several test masks showed that by use of altPSM with suitable 0°/180° coloring and assist placement 30nm smaller contacts can be resolved through pitch with sufficient process windows (PW). This holds for arrays of contacts with variable lengths through short and long side pitches. A further benefit is the lower mask error enhancement factor (MEEF). Nevertheless 3D mask errors (ME) consume benefits in the PW and the assist placement and coloring of the main features (MF) put some constraints on the chip design. An altPSM compatible 4Xnm full-chip layout was realized without loss of chip area. Mask making showed very convincing results with respect to CDU, etch depth uniformity and defectiveness. The printed intra-field CD uniformity was comparable to attPSM despite the smaller target CDs. Room for improvement is identified in OPC accuracy and in automatic assist placement and sizing.

  14. Defects caused by blank masks and repair solution with nanomachining for 20nm node

    NASA Astrophysics Data System (ADS)

    Lee, HyeMi; Kim, ByungJu; Kim, MunSik; Jung, HoYong; Kim, Sang Pyo; Yim, DongGyu

    2014-09-01

    As the number of masks per wafer product set is increasing and low k1 lithography requires tight mask specifications, the patterning process below sub 20nm tech. node for critical layers will be much more expensive compared with previous tech. generations. Besides, the improved resolution and the zero defect level are necessary to meet tighter specifications on a mask and these resulted in the increased the blank mask price as well as the mask fabrication cost. Unfortunately, in spite of expensive price of blank masks, the certain number of defects on the blank mask is transformed into the mask defects and its ratio is increased. But using high quality blank mask is not a good idea to avoid defects on the blank mask because the price of a blank mask is proportional to specifications related to defect level. Furthermore, particular defects generated from the specific process during manufacturing a blank mask are detected as a smaller defect than real size by blank inspection tools because of its physical properties. As a result, it is almost impossible to prevent defects caused by blank masks during the mask manufacturing. In this paper, blank defect types which is evolved into mask defects and its unique characteristics are observed. Also, the repair issues are reviewed such as the pattern damage according to the defect types and the repair solution is suggested to satisfy the AIMS (Arial Image Measurement System) specification using a nanomachining tool.

  15. Device parameter optimization for sub-20 nm node HK/MG-last bulk FinFETs

    NASA Astrophysics Data System (ADS)

    Miao, Xu; Huaxiang, Yin; Huilong, Zhu; Xiaolong, Ma; Weijia, Xu; Yongkui, Zhang; Zhiguo, Zhao; Jun, Luo; Hong, Yang; Chunlong, Li; Lingkuan, Meng; Peizhen, Hong; Jinjuan, Xiang; Jianfeng, Gao; Qiang, Xu; Wenjuan, Xiong; Dahai, Wang; Junfeng, Li; Chao, Zhao; Dapeng, Chen; Simon, Yang; Tianchun, Ye

    2015-04-01

    Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin Fin structure with a tapered sidewall shows better performance than the normal Fin structure. The punch through stop layer (PTSL) and source drain extension (SDE) doping profiles are carefully optimized. The device without SDE annealing shows a larger drive current than that with SDE annealing due to better Si crystal regrowth in the amorphous Fin structure after source/drain implantation. The band-edged MG has a better short channel effect immunity, but the lower effective work function (EWF) MG shows a larger driveability. A tradeoff choice for different EWF MGs should be carefully designed for the device's scaling. Project supported by the National 02 IC Projects and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

  16. Lithographic imaging-driven pattern edge placement errors at the 10-nm node

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Sakamoto, Julia A.; Palmer, Shane R.; Renwick, Stephen P.

    2016-04-01

    As new microelectronic designs are being developed, the demands on image overlay and pattern dimension control are compounded by requirements that pattern edge placement errors (EPEs) be at a single-nanometer levels. Scanner performance plays a key role in determining location of the pattern edges at different device layers, not only through overlay but also through imaging performance. The imaging contributes to edge displacement through the variations of the image dimensions and by shifting the images from their target locations. We discuss various aspects of advanced image control relevant to a 10-nm node integrated circuit design. We review a range of issues of pattern edge placement directly linked to pattern imaging. We analyze the impact of different pattern design and scanner-related edge displacement drivers. We present two examples of imaging strategies to pattern logic device metal layer cuts. We analyze EPEs of the cut images resulting from optimized layout design and scanner setup, and we draw conclusions on edge placement control versus imaging performance requirements.

  17. Model based multilayers fix for litho hotspots beyond 20nm node

    NASA Astrophysics Data System (ADS)

    Rabie, Asmaa; Madkour, Kareem; George, Kirolos; ElManhawy, Wael; Brunet, Jean-Marie; Kwan, Joe

    2014-03-01

    Sub-20nm node designs are getting more sophisticated, and printability issues become more critical which need more advanced techniques to fix. It is mandatory for designers to run lithography checks before tapeout, and it is very challenging to fix all of the generated hotspots manually without introducing unintentional hotspots, or DPT violations. This paper presents a methodology for fixing hotspots on DPT layouts, using the same Model Based Hints (MBH) engine used for detecting hotspots. The fix is based on DRC and DPT constrained minimum movement of edges causing the hotspot, which guarantees that the fix does not violate any of the specified DRC or DPT constraints, nor does it need recoloring. The fix is extended along multilayers to fulfill the specified DRC and DPT constraints and guarantees circuit connectivity along the layers stack. This multilayers approach fixes hotspots that were impossible to fix previously. This methodology is demonstrated on industrial designs, where real hotspots were fixed and the fixing rate is reported.

  18. Evaluation of ArF lithography for 45-nm node implant layers

    NASA Astrophysics Data System (ADS)

    Bailey, T. C.; Maynollo, J.; Perez, J. J.; Popova, I.; Zhang, B.

    2007-03-01

    Scaling of designs to the 45nm or future nodes presents challenges for KrF lithography. The purpose of this work was to explore several aspects of ArF lithography for implant layers. A comparison of dark loss seen in a KrF resist and TARC system to that seen in an ArF system showed significant differences. While the KrF resist yielded dark loss that varied with CD and pitch, the ArF resist showed very little dark loss and no significant variation through the design space. ArF resist were observed to have marginal adhesion to various substrates. Improvements in adhesion performance were shown by pre-treating the substrate with various processes, of which an ozone clean provided the best results. Optimization of the HMDS priming conditions also improved adhesion, and it was observed that the HMDS reaction proceeds at different rates on different subsatrates, which is particularly important for implant layers where the resist must adhere to both Si and SiO II. The effect of ArF resist profile with varying reflectivity swing position is shown, and some investigation into reflectivity optimization techniques was performed. Low-index ArF TARC was shown to reduce the CD variation over polysilicon topography, and wet developable BARC was demonstrated to provide consistent profiles on both Si and SiO II substrates. Finally, a comparison of ArF and KrF resists after As implant indicates that the ArF resist showed similar shrinkage performance to the KrF resist.

  19. Estimate design sensitivity to process variation for the 14nm node

    NASA Astrophysics Data System (ADS)

    Landié, Guillaume; Farys, Vincent

    2016-03-01

    Looking for the highest density and best performance, the 14nm technological node saw the development of aggressive designs, with design rules as close as possible to the limit of the process. Edge placement error (EPE) budget is now tighter and Reticle Enhancement Techniques (RET) must take into account the highest number of parameters to be able to get the best printability and guaranty yield requirements. Overlay is a parameter that must be taken into account earlier during the design library development to avoid design structures presenting a high risk of performance failure. This paper presents a method taking into account the overlay variation and the Resist Image simulation across the process window variation to estimate the design sensitivity to overlay. Areas in the design are classified with specific metrics, from the highest to the lowest overlay sensitivity. This classification can be used to evaluate the robustness of a full chip product to process variability or to work with designers during the design library development. The ultimate goal is to evaluate critical structures in different contexts and report the most critical ones. In this paper, we study layers interacting together, such as Contact/Poly area overlap or Contact/Active distance. ASML-Brion tooling allowed simulating the different resist contours and applying the overlay value to one of the layers. Lithography Manufacturability Check (LMC) detectors are then set to extract the desired values for analysis. Two different approaches have been investigated. The first one is a systematic overlay where we apply the same overlay everywhere on the design. The second one is using a real overlay map which has been measured and applied to the LMC tools. The data are then post-processed and compared to the design target to create a classification and show the error distribution. Figure:

  20. Model-based assist feature placement for 32nm and 22nm technology nodes using inverse mask technology

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Painter, Benjamin; Kerchner, Chip

    2009-10-01

    Inverse imaging has been long known to provide a true mathematical solution to the mask design problem. However, it is often times marred by problems like high run-time, mask manufacturability costs, and non-invertible models. In this paper, we propose a mask synthesis flow for advanced lithography nodes, which capitalizes on the inverse mask solution while still overcoming all the above problems. Our technique uses inverse mask technology (IMT) to calculate an inverse mask field containing all the useful information about the AF solution. This field is fed to a polygon placement algorithm to obtain initial AF placements, which are then cooptimized with the main features during an OPC/AF print-fix routine to obtain the final mask solution. The proposed flow enables process window maximization via IMT while guaranteeing fully MRC compliant masks. We present several results demonstrating the superiority of this approach. We also compare our IMT-AFs with the best AF solution obtained using extensive brute-force search (via a first principles simulator, S-litho), and prove that our solution is optimum.

  1. The performances of different overlay mark types at 65nm node on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Tseng, H. T.; Lin, Ling-Chieh; Huang, I. H.; Lin, Benjamin S.; Huang, Chin-Chou K.; Huang, Chien-Jen

    2005-05-01

    The integrated circuit (IC) manufacturing factories have measured overlay with conventional "box-in-box" (BiB) or "frame-in-frame" (FiF) structures for many years. Since UMC played as a roll of world class IC foundry service provider, tighter and tighter alignment accuracy specs need to be achieved from generation to generation to meet any kind of customers' requirement, especially according to International Technology Roadmap for Semiconductors (ITRS) 2003 METROLOGY section1. The process noises resulting from dishing, overlay mark damaging by chemical mechanism polishing (CMP), and the variation of film thickness during deposition are factors which can be very problematic in mark alignment. For example, the conventional "box-in-box" overlay marks could be damaged easily by CMP, because the less local pattern density and wide feature width of the box induce either dishing or asymmetric damages for the measurement targets, which will make the overlay measurement varied and difficult. After Advanced Imaging Metrology (AIM) overlay targets was introduced by KLA-Tencor, studies in the past shown AIM was more robust in overlay metrology than conventional FiF or BiB targets. In this study, the applications of AIM overlay marks under different process conditions will be discussed and compared with the conventional overlay targets. To evaluate the overlay mark performance against process variation on 65nm technology node in 300-mm wafer, three critical layers were chosen in this study. These three layers were Poly, Contact, and Cu-Metal. The overlay targets used for performance comparison were BiB and Non-Segmented AIM (NS AIM) marks. We compared the overlay mark performance on two main areas. The first one was total measurement uncertainty (TMU)3 related items that include Tool Induced Shift (TIS) variability, precision, and matching. The other area is the target robustness against process variations. Based on the present study AIM mark demonstrated an equal or better

  2. Data preparation solution for e-beam multiple pass exposure: reaching sub-22nm nodes with a tool dedicated to 45 nm

    NASA Astrophysics Data System (ADS)

    Martin, Luc; Manakli, Serdar; Bayle, Sébastien; Choi, Kang-Hoon; Gutsch, Manuela; Pradelles, Jonathan; Bustos, Jessy

    2011-04-01

    Electron Beam Direct Write (EBDW) lithography is used in the IC manufacturing industry to sustain optical lithography for prototyping applications and low volume manufacturing. It is also used in R&D to develop advanced technologies, ahead of mass production. As microelectronics is now moving towards the 32nm node and beyond, the specifications in terms of dimension control and roughness becomes tighter. In addition, the shrink of the size and pitch of features significantly reduces the process window of lithographic tools. In EBDW, the standard proximity effects corrections only based on dose modulation show difficulties to provide the required Energy Latitude for patterning structures designed below 45nm. A new approach is thus needed to improve the process window of EBDW lithography and push its resolution capabilities. In previous papers, a new writing strategy based on multiple pass exposure has been introduced and optimized to pattern critical dense lines. This new technique consists in adding small electron Resolution Improvement Features (eRIFs) on top of the nominal structures. Then this new design is exposed in two successive passes with optimized doses. Previous studies were led to evaluate this new writing technique and establish rules to optimize the design of the eRIF. Significant improvements have already been demonstrated on SRAM and Logic structures down to the 16nm node. These results were obtained with a tool dedicated to the 45nm node. The next step of this work is thus to automatically implement the eRIF to correct large-scale layouts. In this paper, a new data preparation flow is set up for EBDW lithography. It uses the eRIF solution as a full advanced correction method for critical structures. The specific correction rules established in our previous studies are implemented to improve the CD control and the patterning of corners and line ends. Moreover, the dose and shape of the eRIFs are automatically tuned to best fit the nominal design

  3. Implementation of double dipole lithography for 45-nm node poly and diffusion layer manufacturing with 0.93NA

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Hsiu; Hsu, Michael; Hsu, Stephen; Lu, Bo-Jou; Cheng, Yung-Feng; Chou, Yueh-Lin; Yang, Chuen-Huei

    2007-05-01

    The double dipole lithography (DDL) has been proven to be one of the resolution enhancement technologies for 45 nm node. In this paper, we have implemented a full-chip DDL process for 45nm node using ArF immersion lithography. Immersion exposure system can effectively enlarge the process DoF (depth of focus). Combining with dipole illumination can help us to reach smaller k1 value (~0.31) and meet the process requirements of poly and diffusion layers on 45nm node by using only 0.93 NA exposure tool. However, from a full-chip processing point of view, the more challenging question should be: how to calibrate a good model from two exposure and decompose original design to separate mask sets? Does the image performance achieve a production worthy standard? At 45nm node, we are using one-fourth of the exposure wavelength for the patterning; there is very little room for error. For DDL full-chip processing, we need a robust application strategy to ensure a very tight CD control. We implemented an integrated RET solution that combines DDL along with polarization, immersion system, and model based OPC to meet full-chip manufacturing requirement. This is to be a dual-exposure mask solution for 45nm node - X-dipole exposure for vertical mask and horizontal for Y-dipole. We show a process design flow starting from the design rule analysis, layout decomposition, model-based OPC, manufacturing reliability check, and then to the mask data preparation. All of the work has been implemented using MaskWeaver TM geometry engine. Additionally, we investigated printability for through-pitch line features, ASIC logic, and SRAM cell design patterns. Different circuit layout needs dedicated special OPC treatment. To characterize the related process performance, we use mask enhancement error factor (MEEF), process window (PW), and critical dimension uniformity (CDU) to analyze the simulation data. Since we used the tri-tone Att-PSM, the mask making flow and spec was also taking into

  4. DOE experiment for scattering bars optimization at the 90nm node

    NASA Astrophysics Data System (ADS)

    Bouton, G.; Connolly, B.; Courboin, D.; Di Giacomo, A.; Gasnier, F.; Lallement, R.; Parker, D.; Pindo, M.; Richoilley, J. C.; Royere, F.; Rameau-Savio, A.; Tissier, M.

    2011-03-01

    Scattering bars (SB) are sub-resolution lines added to the original database during Resolution Enhancement Techniques (RET) treatments. Their goal is stabilizing the CD of the adjacent polygons (by suppressing or reducing secondary diffraction waves). SB increase the process window in the litho process by lowering the first derivative of the CD. Moreover, the detailed knowledge of SB behavior around the fab working point is a must for future shrinks and for preparing the next technology nodes. SB are inserted in the generation of critical levels for STMicroelectronics 90 nm technology embedded memories before invoking the Model for Optical Proximity Corrections (MBOPC). This allows the software to calculate their contribution to the intensity in the aerial image and integrate their effects in Edge Proximity Error (EPE) corrections. However the Rule-Based insertion of these assist features still leaves behind occurrences of conflicting priorities as in the image below. (See manuscript PDF)Detection of Hot Spots in 2D simulations for die treatment validation (done on BRION equipment on each critical level before mask making) is in most cases correlated with SB singularities, at least for CD non-uniformity, bridging issues and necking in correspondence with OPC fragmentation effects. Within the framework of the MaXSSIMM project, we established a joint STMicroelectronics and Toppan Photomasks team to explore the influence of assist features (CD, distance), convex and concave corner rounding and CD uniformity by means of specific test patterns. The proposed study concerns the algorithms used to define the mask shop input as well as the physical mask etching. A set of test cases, based on elementary test patterns, each one including a list of geometrical variations, has been defined. As the number of configurations becomes rapidly very large (tens of thousands) we had to apply Design of Experiments (DOE) algorithms in order to reduce the number of measurements to a

  5. Nodes

    NASA Technical Reports Server (NTRS)

    Hanson, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    Nodes is a technology demonstration mission that is scheduled for launch to the International SpaceStation no earlier than Nov.19, 2015. The two Nodes satellites will be deployed from the Station in early 2016 todemonstrate new network capabilities critical to the operation of swarms of spacecraft. They will demonstrate the ability ofmulti spacecraft swarms to receive and distribute ground commands, exchange information periodically, andautonomously configure the network by determining which spacecraft should communicate with the ground each day ofthe mission.

  6. Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction

    SciTech Connect

    Zhang, Peng; Istratov, Andrei A.; Weber, Eicke R.; Kisielowski, Christian; He, Haifeng; Nelson, Chris; Spence, John C.H

    2006-01-01

    Using the energy-filtered convergent-beam electron diffraction !CBED" technique in a transmission electron microscope, the authors report here a direct measurement of the lattice parameters of uniaxially strained silicon as close as 25 nm below the gate in a 65 nm node p-type metal-oxide-semiconductor field-effect transistor with SiGe source and drain. It is found that the dominant strain component (0.58%) is compressive along the source-drain direction. The compressive stress is 1.1 GPa along this direction. These findings demonstrate that CBED can serve as a strain metrology technique for the development of strained silicon device technology

  7. An investigation into scalability and compliance for triple patterning with stitches for metal 1 at the 14nm node

    NASA Astrophysics Data System (ADS)

    Cork, Christopher; Miloslavsky, Alexander; Friedberg, Paul; Luk-Pat, Gerry

    2013-04-01

    Lithographers had hoped that single patterning would be enabled at the 20nm node by way of EUV lithography. However, due to delays in EUV readiness, double patterning with 193i lithography is currently relied upon for volume production for the 20nm node's metal 1 layer. At the 14nm and likely at the 10nm node, LE-LE-LE triple patterning technology (TPT) is one of the favored options [1,2] for patterning local interconnect and Metal 1 layers. While previous research has focused on TPT for contact mask, metal layers offer new challenges and opportunities, in particular the ability to decompose design polygons across more than one mask. The extra flexibility offered by the third mask and ability to leverage polygon stitching both serve to improve compliance. However, ensuring TPT compliance - the task of finding a 3-color mask decomposition for a design - is still a difficult task. Moreover, scalability concerns multiply the difficulty of triple patterning decomposition which is an NP-complete problem. Indeed previous work shows that network sizes above a few thousand nodes or polygons start to take significantly longer times to compute [3], making full chip decomposition for arbitrary layouts impractical. In practice Metal 1 layouts can be considered as two separate problem domains, namely: decomposition of standard cells and decomposition of IP blocks. Standard cells typically include only a few 10's of polygons and should be amenable to fast decomposition. Successive design iterations should resolve compliance issues and improve packing density. Density improvements are multiplied repeatedly as standard cells are placed multiple times. IP blocks, on the other hand, may involve very large networks. This paper evaluates multiple approaches to triple patterning decomposition for the Metal 1 layer. The benefits of polygon stitching, in particular, the ability to resolve commonly encountered non-compliant layout configurations and improve packing density, are weighed

  8. Integration of e-beam direct write in BEOL processes of 28nm SRAM technology node using mix and match

    NASA Astrophysics Data System (ADS)

    Gutsch, Manuela; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2014-10-01

    Many efforts were spent in the development of EUV technologies, but from a customer point of view EUV is still behind expectations. In parallel since years maskless lithography is included in the ITRS roadmap wherein multi electron beam direct patterning is considered as an alternative or complementary approach for patterning of advanced technology nodes. The process of multi beam exposures can be emulated by single beam technologies available in the field. While variable shape-beam direct writers are already used for niche applications, the integration capability of e-beam direct write at advanced nodes has not been proven, yet. In this study the e-beam lithography was implemented in the BEoL processes of the 28nm SRAM technology. Integrated 300mm wafers with a 28nm back-end of line (BEoL) stack from GLOBALFOUNDRIES, Dresden, were used for the experiments. For the patterning of the Metal layer a Mix and Match concept based on the sequence litho - etch - litho - etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. E-beam patterning results of BEoL Metal and Via layers are presented using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMS-CNT. Etch results are shown and compared to the POR. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  9. Practical proof of CP element based design for 14nm node and beyond

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Takita, Hiroshi; Ikeno, Rimon; Osawa, Morimi; Kojima, Yoshinori; Sugatani, Shinji; Hoshino, Hiromi; Hino, Toshio; Ito, Masaru; Iizuka, Tetsuya; Komatsu, Satoshi; Ikeda, Makoto; Asada, Kunihiro

    2013-03-01

    To realize HVM (High Volume Manufacturing) with CP (Character Projection) based EBDW, the shot count reduction is the essential key. All device circuits should be composed with predefined character parts and we call this methodology "CP element based design". In our previous work, we presented following three concepts [2]. 1) Memory: We reported the prospects of affordability for the CP-stencil resource. 2) Logic cell: We adopted a multi-cell clustering approach in the physical synthesis. 3) Random interconnect: We proposed an ultra-regular layout scheme using fixed size wiring tiles containing repeated tracks and cutting points at the tile edges. In this paper, we will report the experimental proofs in these methodologies. In full chip layout, CP stencil resource management is critical key. From the MCC-POC (Proof of Concept) result [1], we assumed total available CP stencil resource as 9000um2. We should manage to layout all circuit macros within this restriction. Especially the issues in assignment of CP-stencil resource for the memory macros are the most important as they consume considerable degree of resource because of the various line-ups such as 1RW-, 2RW-SRAMs, Resister Files and ROM which require several varieties of large size peripheral circuits. Furthermore the memory macros typically take large area of more than 40% of die area in the forefront logic LSI products so that the shot count increase impact is serious. To realize CP-stencil resource saving we had constructed automatic CP analyzing system. We developed two types of extraction mode of simple division by block and layout repeatability recognition. By properly controlling these models based upon each peripheral circuit characteristics, we could minimize the consumption of CP stencil resources. The estimation for 14nm technology node had been performed based on the analysis of practical memory compiler. The required resource for memory macro is proved to be affordable value which is 60% of full

  10. Extreme ultraviolet mask defect inspection with a half pitch 16-nm node using simulated projection electron microscope images

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Amano, Tsuyoshi; Hirano, Ryoichi; Terasawa, Tsuneo; Watanabe, Hidehiro

    2013-04-01

    According to an International Technology Roadmap for Semiconductors (ITRS-2012) update, the sensitivity requirement for an extreme ultraviolet (EUV) mask pattern inspection system is to be less than 18 nm for half pitch (hp) 16-nm node devices. The inspection sensitivity of extrusion and intrusion defects on hp 64-nm line-and-space patterned EUV mask were investigated using simulated projection electron microscope (PEM) images. The obtained defect images showed that the optimization of current density and image processing techniques were essential for the detection of defects. Extrusion and intrusion defects 16 nm in size were detected on images formed by 3000 electrons per pixel. The landing energy also greatly influenced the defect detection efficiency. These influences were different for extrusion and intrusion defects. These results were in good agreement with experimentally obtained yield curves of the mask materials and the elevation angles of the defects. These results suggest that the PEM technique has a potential to detect 16-nm size defects on an hp 64-nm patterned EUV mask.

  11. DSA patterning options for FinFET formation at 7nm node

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Chun C.; Franke, Elliott; Lie, Fee Li; Sieg, Stuart; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Guillorn, Michael; Burns, Sean; Hetzer, David; Ko, Akiteru; Arnold, John; Colburn, Matthew

    2016-03-01

    Several 27nm-pitch directed self-assembly (DSA) processes targeting fin formation for FinFET device fabrication are studied in a 300mm pilot line environment, including chemoepitaxy for a conventional Fin arrays, graphoepitaxy for a customization approach and a hybrid approach for self-aligned Fin cut. The trade-off between each DSA flow is discussed in terms of placement error, Fin CD/profile uniformity, and restricted design. Challenges in pattern transfer are observed and process optimization are discussed. Finally, silicon Fins with 100nm depth and on-target CD using different DSA options with either lithographic or self-aligned customization approach are demonstrated.

  12. Minimizing linewidth roughness for 22-nm node patterning with step-and-flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Schmid, Gerard M.; Khusnatdinov, Niyaz; Brooks, Cynthia B.; LaBrake, Dwayne; Thompson, Ecron; Resnick, Douglas J.

    2008-03-01

    Imprint lithography achieves high resolution patterning with low roughness by avoiding the tradeoff between pattern quality and process throughput - a tradeoff that limits the capability of photolithography with chemically amplified resists. This work demonstrates the use of ZEP520A electron-beam resist for fabrication of imprint masks (templates). It is shown that high resolution, low roughness patterns can be robustly transferred from imprint mask to imprint resist, and from imprint resist through etch transfer into the underlying substrate. Through improvements to the electron-beam patterning process, 22 nm half-pitch patterns are routinely achieved with linewidth roughness (LWR) of just 2.6 nm, 3σ

  13. Photon flux requirements for EUV reticle imaging microscopy in the 22 and 16 nm nodes

    SciTech Connect

    Wintz, D.; Goldberg, K. A.; Mochi, I.; Huh, S.

    2010-03-12

    EUV-wavelength actinic microscopy yields detailed information about EUV mask patterns, architectures, defects, and the performance of defect repair strategies, without the complications of photoresist imaging. The measured aerial image intensity profiles provide valuable feedback to improve mask and lithography system modeling methods. In order to understand the photon-flux-dependent pattern measurement limits of EUV mask-imaging microscopy, we have investigated the effects of shot noise on aerial image linewidth measurements for lines in the 22 and 16-nm generations. Using a simple model of image formation near the resolution limit, we probe the influence of photon shot noise on the measured, apparent line roughness. With this methodology, we arrive at general flux density requirements independent of the specific EUV microscope configurations. Analytical and statistical analysis of aerial image simulations in the 22 and 16-nm generations reveal the trade-offs between photon energy density (controllable with exposure time), effective pixel dimension on the CCO (controlled by the microscope's magnification ratio), and image log slope (ILS). We find that shot-noise-induced linewidth roughness (LWR) varies imersely with the square root of the photon energy density, and is proportional to the imaging magnification ratio. While high magnification is necessary for adequate spatial resolution, for a given flux density, higher magnification ratios have diminishing benefits. With practical imaging parameters, we find that in order to achieve an LWR (3{sigma}) value of 5% of linewidth for dense, 88-nm mask features with 80% aerial image contrast and 13.5-nm effective pixel width (1000x magnification ratio), a peak photon flux of approximately 1400 photons per pixel per exposure is required.

  14. Accurate mask model implementation in optical proximity correction model for 14-nm nodes and beyond

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2016-04-01

    In a previous work, we demonstrated that the current optical proximity correction model assuming the mask pattern to be analogous to the designed data is no longer valid. An extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason, an accurate mask model has been calibrated for a 14-nm logic gate level. A model with a total RMS of 1.38 nm at mask level was obtained. Two-dimensional structures, such as line-end shortening and corner rounding, were well predicted using scanning electron microscopy pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects, and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular.

  15. Accurate mask model implementation in OPC model for 14nm nodes and beyond

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2015-10-01

    In a previous work [1] we demonstrated that current OPC model assuming the mask pattern to be analogous to the designed data is no longer valid. Indeed as depicted in figure 1, an extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason an accurate mask model, for a 14nm logic gate level has been calibrated. A model with a total RMS of 1.38nm at mask level was obtained. 2D structures such as line-end shortening and corner rounding were well predicted using SEM pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular, as depicted in figure 2.

  16. Process variation challenges and resolution in the negative-tone develop double patterning for 20nm and below technology node

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David

    2015-03-01

    Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and

  17. Design verification for sub-70-nm DRAM nodes via metal fix using E-beam direct write

    NASA Astrophysics Data System (ADS)

    Keil, K.; Jaschinsky, P.; Hohle, C.; Choi, K.-H.; Schneider, R.; Tesauro, M.; Thrum, F.; Zimmermann, R.; Kretz, J.

    2009-01-01

    Because of mask cost reduction, electron beam direct write (EBDW) is implemented for special applications such as rapid prototyping or small volume production in semiconductor industry. One of the most promising applications for EBDW is design verification by means of metal fix. Due to write time constrains, Mix & Match solutions have to be developed at smaller nodes. This study reports on several Mix and Match processes for the integration of E-Beam lithography into the optical litho process flow of Qimonda's 70 nm and 58 nm DRAM nodes. Different metal layers have been patterned in part with DUV litho followed by E-Beam litho using a 50 kV Vistec SB3050 shaped electron beam direct writer. All hardmask patterns were then simultaneously transferred into the DRAM stack. After full chip processing a yield study comprising electrical device characterization and defect investigation was performed. We show detailed results including CD and OVL as well as improvements of the alignment mark recognition. The yield of the E-Beam processed chips was found to be within the range of wafer-to-wafer fluctuation of the POR hardware. We also report on metal fix by electrical cutting of selected diodes in large chip scales which usually cannot be accessed with FIB methods. In summary, we show the capability of EBDW for quick and flexible design verification.

  18. Impact of EUV patterning scenario on different design styles and their ground rules for 7nm/5nm node BEOL layers

    NASA Astrophysics Data System (ADS)

    Chiou, Tsann-Bim; Chen, Alek C.; Dusa, Mircea; Tseng, Shih-En

    2016-03-01

    As the IC industry moves forward to 7nm or 5nm node, the minimum pitch of back-end-of-line (BEOL) layers could be near 30nm. Extreme ultraviolet (EUV) could be the most cost effective solution for patterning critical metal and via layers. Patterning of the critical layers would need greater than 4x exposures using ArFi lithography, leading to severe cost and yield issues. There are two potential design options, one-dimension (1D) and two-dimension (2D), for metal 1 layer. EUV's single exposure option offers superior image quality especially for the 2D design style, but scalability of a 2D design is limited by EUV with a fixed numerical aperture (NA). The single exposure of EUV is an appropriate patterning solution for printing a 1D design directly, but maintaining critical dimension uniformity (CDU) of lines and line-ends is a challenge. Scalability of the 1D design is also limited by the single exposure option. The 1D design can be patterned through a spacer film deposition to gain superior line CD control, followed by printing a cut or block pattern to create the line-ends. Since the minimum pitch of cut/block patterns is generally larger than the metal pitch, EUV's single exposure option has a potential to print the cut/block pattern at smaller pitch and resolution and offers an opportunity to further design shrink. An elongated via design helps design scalability due to an insensitive overlay error contribution to via-to-metal contact area and encroachment.

  19. Evaluation of compact models for negative-tone development layers at 20/14nm nodes

    NASA Astrophysics Data System (ADS)

    Chen, Ao; Foong, Yee Mei; Zhang, Dong Qing; Zhang, Hongxin; Chung, Angeline; Fryer, David; Deng, Yunfei; Medvedev, Dmitry; Granik, Yuri

    2015-03-01

    With the introduction of negative tone develop (NTD) resists to production lithography nodes, multiple NTD resist modeling challenges have surpassed the accuracy limits of the existing modeling infrastructure developed for the positive polarity process. We report the evaluation of two NTD resist modeling algorithms. The new modeling terms represent, from the first principles, the NTD resist mechanisms of horizontal shrink and horizontal development bias. Horizontal shrink describes the impact of the physical process of out-gassing on remaining resist edge location. Horizontal development bias accounts for the differential in the peak and minimum development rate with exposure intensity observed in NTD formulations. We review specific patterning characteristics by feature type, modeling accuracy impact presented by these NTD mechanisms, and their description in our compact models (Compact Model 1, CM1). All the new terms complement the accuracy advantage observed with existing CM1 resist modeling infrastructure. The new terms were tested on various NTD layers. The results demonstrate consistent model accuracy improvement for both calibration and verification. Furthermore, typical NTD model fitting challenges, such as large SRAF-induced wafer CD jump, can be overcome by the new NTD terms. Finally, we propose a joint-tuning approach for the calibration of compact models for the NTD resist.

  20. Evaluation of lens heating effect in high transmission NTD processes at the 20nm technology node

    NASA Astrophysics Data System (ADS)

    Jeon, Bumhwan; Lee, Sam; Subramany, Lokesh; Li, Chen; Pal, Shyam; Meyers, Sheldon; Mehta, Sohan; Wei, Yayi; Cho, David R.

    2014-04-01

    The NTD (Negative Tone Developer) process has been embraced as a viable alternative to traditionally, more conventional, positive tone develop processes. Advanced technology nodes have necessitated the adopting of NTD processes to achieve such tight design specifications in critical dimensions. Dark field contact layers are prime candidates for NTD processing due to its high imaging contrast. However, reticles used in NTD processes are highly transparent. The transmission rate of those masks can be over 85%. Consequently, lens heating effects result in a non-trivial impact that can limit NTD usability in a high volume mass production environment. At the same time, Source Mask Optimized (SMO) freeform pupils have become popular. This can also result in untoward lens heating effects which are localized in the lens. This can result in a unique drift behavior with each Zernike throughout the exposing of wafers. In this paper, we present our experience and lessons learned from lens heating with NTD processes. The results of this study indicate that lens heating makes impact on drift behavior of each Zernike during exposure while source pupil shape make an impact on the amplitude of Zernike drift. Existing lens models should be finely tuned to establish the correct compensation for drift. Computational modeling for lens heating can be considered as one of these opportunities. Pattern shapes, such as dense and iso pattern, can have different drift behavior during lens heating.

  1. Advanced gate CDU control in sub-28nm node using poly slot process by scatterometry metrology

    NASA Astrophysics Data System (ADS)

    Tzai, Wei-Jhe; Chen, Howard; Lin, Jun-Jin; Huang, Yu-Hao; Yu, Chun-Chi; Lin, Ching-Hung Bert; Yoo, Sungchul; Huang, Chien-Jen Eros; Mihardja, Lanny

    2013-04-01

    Scatterometry-based metrology is a well proven method to measure and monitor the critical dimensions of interest in advanced sub-28nm process development and high volume manufacturing [1][3][4][6][7]. In this paper, a proposed solution to control and achieve the optimal gate critical dimension uniformity (CDU) was explored. The proposed solution is named a novel scatterometry slot gate CDU control flow. High performance measurement and control during the slot gate step is critical as it directly controls the poly line cut profile to the active area which then directly impacts the final device performance. The proposed flow incorporates scatterometry-based CD (SCD) measurement feedback and feed forward to the Automation Process Control (APC) system, further process recipe fine tuning utilizing the data feedback and forward, and two dimensional (2D) and three dimensional (3D) scatterometry-based CD (SCD) measurement of gate after developer inspection (ADI) and after etch inspection (AEI) [1]. The methodologies and experiment results presented in this study started from the process development through the SCD model optimization of the DOE wafers, to the final implementation of the process control flow and measurement loop into the production line to evaluate its capability for long term in-line monitoring in high volume manufacturing environment. The result showed significant improvement in the gate CD uniformity that met the sub-28nm process manufacturing requirement.

  2. The Magnitude of Potential Exposure-Tool-Induced Critical Dimension and Overlay Errors in Double Dipole Lithography for the 65-nm and 45-nm Technology Nodes

    NASA Astrophysics Data System (ADS)

    Chiou, Tsann-Bim; Chen, Alek C.; Tseng, Shih-En; Eurlings, Mark; Hendrickx, Eric; Hsu, Stephen

    2004-06-01

    Double dipole lithography (DDL, DDL is a trademark of ASML Masktools.) is a viable imaging solution for the 65-nm and 45-nm technology nodes, when using ArF exposure tools. By taking advantage of the extreme off-axis illumination of the dipole, the demonstrated, small critical dimension (CD) can be resolved with a good process window. In this case k1 will be 0.31 when applying formula k1 = (minimum half pitch) × (wavelength, λ)/(numerical aperture, NA), the Rayleigh’s resolution equation with minimum half pitch of 80 nm as well as wavelength and NA of 193 nm and 0.75, respectively. The detailed CD measurement data and process window analysis can be seen. The ability of the dipole to resolve this CD, however, applies only to structures that are perpendicular to the orientation of the dipole; i.e., the x-dipole (or horizontal dipole) resolves small, vertical lines and spaces [S. Hsu, N. Corcoran, M. Eurlings, W. Knose, T. Laidig, K. E. Wampler, S. Roy, X. Shi, M. Hsu, J. F. Chen, J. Finders, R. J. Socha and M. Dusa: SPIE 4691 (2002), 476]. The use of the pattern decomposition [S. Hsu, N. Corcoran, M. Eurlings, W. Knose, T. Laidig, K. E. Wampler, S. Roy, X. Shi, M. Hsu, J. F. Chen, J. Finders, R. J. Socha and M. Dusa: SPIE 4691 (2002) 476, S. Hsu, J. F. Chen, N. Cororan, W. Knose, D. J. Van Den Broeke, T. Laidig, K. E. Wampler, X. Shi, M. Hsu, M. Eurlings, J. Finders, T. B. Chiou, R. J. Socha, W. Conley, Y. W. Hsieh, S. Tuan and F. Hsieh: SPIE 5040 (2003) 215] and double exposure of the x-dipole and the y-dipole respectively, make it possible to image an arbitrary device pattern. DDL allows integrated circuit (IC) manufacturers to maintain their roadmaps for shrinking device technology, while extending the use of ArF technology. Compared with other low-k1 imaging solutions, DDL has the advantage of using standard mask technologies, such as binary masks or 6% attenuated phase shift masks (PSMs). Because of the lower cost and faster turn-around time of these masks

  3. Electromagnetic field modeling for defect detection in 7 nm node patterned wafers

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Kedi; Davoudzadeh, Nima; Wang, Xiaozhen; Goddard, Lynford L.

    2016-03-01

    By 2017, the critical dimension in patterned wafers will shrink down to 7 nm, which brings great challenges to optics-based defect inspection techniques, due to the ever-decreasing signal to noise ratio with respect to defect size. To continue pushing forward the optics-based metrology technique, it is of great importance to analyze the full characteristics of the scattering field of a wafer with a defect and then to find the most sensitive signal type. In this article, the vector boundary element method is firstly introduced to calculate the scattering field of a patterned wafer at a specific objective plane, after which a vector imaging theory is introduced to calculate the field at an image plane for an imaging system with a high numerical aperture objective lens. The above methods enable the effective modeling of the image for an arbitrary vectorial scattering electromagnetic field coming from the defect pattern of the wafer.

  4. Lithographic imaging-driven pattern edge placement errors at 10nm node

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Renwick, Stephen P.; Palmer, Shane R.; Sakamoto, Julia A.; Slonaker, Steven D.

    2016-03-01

    Demand for ever increasing level of microelectronics integration continues unabated, driving the reduction of the integrated circuit critical dimensions, and escalating requirements for image overlay and pattern dimension control. The challenges to meet these demands are compounded by requirement that pattern edge placement errors be at single nanometer levels. Layout design together with the patterning tools performance play key roles in determining location of the pattern edges at different device layers. However, complexities of the layout design often lead to stringent tradeoffs for viable optical proximity correction and imaging strategy solutions. As a result, in addition to scanner overlay performance, pattern imaging plays a key role in the pattern edge placement. The imaging contributes to edge displacement by impacting the image dimensions and by shifting the images relative to their target locations. In this report we discuss various aspects of advanced image control at 10 nm integrated circuit design rules. We analyze the impact of pattern design and scanner performance on pattern edges. We present an example of complex, three step litho-etch patterning involving immersion scanners. We draw conclusion on edge placement control when complex images interact with wafer topography.

  5. Advances with the new AIMS fab 193 2nd generation: a system for the 65 nm node including immersion

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Poortinga, E.; Doornmalen, H. v.; Schmid, R.; Scherubl, T.; Harnisch, W.

    2005-06-01

    The Aerial Image Measurement System, AIMS, for 193nm lithography emulation is established as a standard for the rapid prediction of wafer printability for critical structures including dense patterns and defects or repairs on masks. The main benefit of AIMS is to save expensive image qualification consisting of test wafer exposures followed by wafer CD-SEM resist or wafer analysis. By adjustment of numerical aperture (NA), illumination type and partial coherence (σ) to match any given stepper/ scanner, AIMS predicts the printability of 193nm reticles such as binary with, or without OPC and phase shifting. A new AIMS fab 193 second generation system with a maximum NA of 0.93 is now available. Improvements in field uniformity, stability over time, measurement automation and higher throughput meet the challenging requirements of the 65nm node. A new function, "Global CD Map" can be applied to automatically measure and analyse the global CD uniformity of repeating structures across a reticle. With the options of extended depth-of-focus (EDOF) software and the upcoming linear polarisation capability in the illumination the new AIMS fab 193 second generation system is able to cover both dry and immersion requirements for NA < 1. Rigorous simulations have been performed to study the effects of polarisation for imaging by comparing the aerial image of the AIMS to the resist image of the scanner.

  6. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    SciTech Connect

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  7. Advanced mask inspection optical system (AMOS) using 198.5-nm wavelength for 65-nm (hp) node and beyond: system development and initial state D/D inspection performance

    NASA Astrophysics Data System (ADS)

    Tojo, Toru; Hirano, Ryoich; Tsuchiya, Hideo; Oaki, Junji; Nishizaka, Takeshi; Sanada, Yasushi; Matsuki, Kazuto; Isomura, Ikunao; Ogawa, Riki; Kobayashi, Noboru; Nakashima, Kazuhiro; Sugihara, Shinji; Inoue, Hiromu; Imai, Shinichi; Suzuki, Hitoshi; Sekine, Akihiko; Taya, Makoto; Miwa, Akemi; Yoshioka, Nobuyuki; Ohira, Katsumi; Chung, Dong-Hoon; Otaki, Masao

    2004-12-01

    A novel high-resolution mask inspection platform using DUV wavelength has been developed. This platform is designed to enable the defect inspection of high quality masks for 65nm node used in 193nm lithography. In this paper, newly developed optical system and its performance are reported. The system is operated at wavelength of 198.5nm, which wavelength is nearly equal to 193nm-ArF laser exposure tool. Some defect image data and defect inspection sensitivity due to simulation-base die-to-die (D/D) inspection are shown on standard programmed defect test mask. As an initial state D/D inspection performance, 20-60 nm defects are certified. System capabilities for 65nm node inspection and beyond are also discussed.

  8. Complete data preparation flow for Massively Parallel E-Beam lithography on 28nm node full-field design

    NASA Astrophysics Data System (ADS)

    Fay, Aurélien; Browning, Clyde; Brandt, Pieter; Chartoire, Jacky; Bérard-Bergery, Sébastien; Hazart, Jérôme; Chagoya, Alexandre; Postnikov, Sergei; Saib, Mohamed; Lattard, Ludovic; Schavione, Patrick

    2016-03-01

    Massively parallel mask-less electron beam lithography (MP-EBL) offers a large intrinsic flexibility at a low cost of ownership in comparison to conventional optical lithography tools. This attractive direct-write technique needs a dedicated data preparation flow to correct both electronic and resist processes. Moreover, Data Prep has to be completed in a short enough time to preserve the flexibility advantage of MP-EBL. While the MP-EBL tools have currently entered an advanced stage of development, this paper will focus on the data preparation side of the work for specifically the MAPPER Lithography FLX-1200 tool [1]-[4], using the ASELTA Nanographics Inscale software. The complete flow as well as the methodology used to achieve a full-field layout data preparation, within an acceptable cycle time, will be presented. Layout used for Data Prep evaluation was one of a 28 nm technology node Metal1 chip with a field size of 26x33mm2, compatible with typical stepper/scanner field sizes and wafer stepping plans. Proximity Effect Correction (PEC) was applied to the entire field, which was then exported as a single file to MAPPER Lithography's machine format, containing fractured shapes and dose assignments. The Soft Edge beam to beam stitching method was employed in the specific overlap regions defined by the machine format as well. In addition to PEC, verification of the correction was included as part of the overall data preparation cycle time. This verification step was executed on the machine file format to ensure pattern fidelity and accuracy as late in the flow as possible. Verification over the full chip, involving billions of evaluation points, is performed both at nominal conditions and at Process Window corners in order to ensure proper exposure and process latitude. The complete MP-EBL data preparation flow was demonstrated for a 28 nm node Metal1 layout in 37 hours. The final verification step shows that the Edge Placement Error (EPE) is kept below 2.25 nm

  9. Patterning process exploration of metal 1 layer in 7nm node with 3D patterning flow simulations

    NASA Astrophysics Data System (ADS)

    Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Oulmane, Mohamed; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas

    2015-03-01

    In 7mn node (N7), the logic design requires the critical poly pitch (CPP) of 42-45nm and metal 1 (M1) pitch of 28- 32nm. Such high pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent 3D profile and topology. We use this tool to study the patterning process variations of N7 M1 layer including the overlay control, the critical dimension uniformity (CDU) budget and the lithographic process window (PW). The resulting 3D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field and identify hot spots for dielectric reliability. As an example application, we will report extractions of maximum electric field at M1 tipto- tip which is one of the most critical patterning locations and we will demonstrate the potential of this approach for investigating the impact of process variations on dielectric reliability. We will also present simulations of an alternative M1 patterning flow, with a single exposure block using extreme ultraviolet lithography (EUVL) and analyze its advantages compared to the LE3 block approach.

  10. Hybrid Metrology and 3D-AFM Enhancement for CD Metrology Dedicated to 28 nm Node and Below Requirements

    SciTech Connect

    Foucher, J.; Faurie, P.; Dourthe, L.

    2011-11-10

    The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R and D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials...). Therefore, time for R and D is increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam.In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R and D and production. The final goal for 'chip makers' is to improve yield and save R and D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2{sup nd} part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.

  11. Defect window analysis by using SEM-contour based shape quantifying method for sub-20nm node production

    NASA Astrophysics Data System (ADS)

    Hibino, Daisuke; Hsu, Mingyi; Shindo, Hiroyuki; Izawa, Masayuki; Enomoto, Yuji; Lin, J. F.; Hu, J. R.

    2013-04-01

    The impact on yield loss due to systematic defect which remains after Optical Proximity Correction (OPC) modeling has increased, and achieving an acceptable yield has become more difficult in the leading technology beyond 20 nm node production. Furthermore Process-Window has become narrow because of the complexity of IC design and less process margin. In the past, the systematic defects have been inspected by human-eyes. However the judgment by human-eyes is sometime unstable and not accurate. Moreover an enormous amount of time and labor will have to be expended on the one-by-one judgment for several thousands of hot-spot defects. In order to overcome these difficulties and improve the yield and manufacturability, the automated system, which can quantify the shape difference with high accuracy and speed, is needed. Inspection points could be increased for getting higher yield, if the automated system achieves our goal. Defect Window Analysis (DWA) system by using high-precision-contour extraction from SEM image on real silicon and quantifying method which can calculate the difference between defect pattern and non-defect pattern automatically, which was developed by Hitachi High-Technologies, has been applied to the defect judgment instead of the judgment by human-eyes. The DWA result which describes process behavior might be feedback to design or OPC or mask. This new methodology and evaluation results will be presented in detail in this paper.

  12. Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFET technology

    NASA Astrophysics Data System (ADS)

    Wang, Guilei; Abedin, Ahmad; Moeen, Mahdi; Kolahdouz, Mohammadreza; Luo, Jun; Guo, Yiluan; Chen, Tao; Yin, Huaxiang; Zhu, Huilong; Li, Junfeng; Zhao, Chao; Radamson, Henry H.

    2015-01-01

    SiGe has been widely used as stressors in source/drain (S/D) regions of Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) to enhance the channel mobility. In this study, selectively grown Si1-xGex (0.33 ⩽ x ⩽ 0.35) with boron concentration of 1 × 1020 cm-3 was used to elevate the S/D regions on bulk FinFETs in 14 nm technology node. The epitaxial quality of SiGe layers, SiGe profile and the strain amount of the SiGe layers were investigated. In order to in-situ clean the Si-fins before SiGe epitaxy, a series of prebaking experiments at temperature ranging from 740 to 825 °C were performed. The results showed that the thermal budget needs to be limited to 780-800 °C in order to avoid any damage to the shape of Si-fins but to remove the native oxide which is essential for high epitaxial quality. In this study, a kinetic gas model was also applied to predict the SiGe growth profile on Si-fins with trapezoidal shape. The input parameters for the model include growth temperature, partial pressures of reactant gases and the chip layout. By knowing the epitaxial profile, the strain to the Si-fins exerted by SiGe layers can be calculated. This is important in understanding the carrier transport in the FinFETs. The other benefit of the modeling is that it provides a cost-effective alternative for epitaxy process development as the SiGe profile can be readily predicted for any chip layout in advance.

  13. Simulation study of scaled In0.53Ga0.47As and Si FinFETs for sub-16 nm technology nodes

    NASA Astrophysics Data System (ADS)

    Seoane, N.; Aldegunde, M.; Nagy, D.; Elmessary, M. A.; Indalecio, G.; García-Loureiro, A. J.; Kalna, K.

    2016-07-01

    We investigate the performance and scalability of III-V-OI In0.53Ga0.47As and SOI Si FinFETs using state-of-the-art in-house-built 3D simulation tools. Three different technology nodes specified in the ITRS have been analysed with gate lengths (L G) of 14.0 nm, 12.8 and 10.4 nm for the InGaAs FinFETs and 12.8 nm, 10.7 and 8.1 nm for the Si devices. At a high drain bias, the 12.8 and 10.4 nm InGaAs FinFETs deliver 15% and 13% larger on-currents but 14% larger off-currents than the equivalent 12.8 and 10.7 nm Si FinFETs, respectively. For equivalent gate lengths, both the InGaAs and the Si FinFETs have the same I ON/I OFF ratio (5.9 × 104 when L G = 12.8 nm and 5.7 × 104 when L G = 10.4(10.7) nm). A more pronounced S/D tunnelling affecting the InGaAs FinFETs leads to a larger deterioration in their SS (less than 10%) and DIBL (around 20%) compared to the Si counterparts.

  14. Waveguide effect in high-NA EUV lithography: The key to extending EUV lithography to the 4-nm node

    NASA Astrophysics Data System (ADS)

    Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2015-06-01

    One of the main concerns about EUV lithography is whether or not it can be extended to very high numerical aperture. In this paper, rigorous electromagnetic simulation is first used to show that there is an interesting waveguide effect occurring in the 4-nm feature size regime. An exact mathematical analysis is then presented to explain the effect observed in the simulation. This waveguide effect is applied to simulate the printing of 4-nm lines and spaces with excellent aerial-image contrast and peak intensity. The feasibility of EUV lithography for printing logic circuits containing general two-dimensional patterns with 4-nm feature size is also demonstrated.

  15. Low leakage ZrO2 based capacitors for sub 20 nm dynamic random access memory technology nodes

    NASA Astrophysics Data System (ADS)

    Pešić, Milan; Knebel, Steve; Geyer, Maximilian; Schmelzer, Sebastian; Böttger, Ulrich; Kolomiiets, Nadiia; Afanas'ev, Valeri V.; Cho, Kyuho; Jung, Changhwa; Chang, Jaewan; Lim, Hanjin; Mikolajick, Thomas; Schroeder, Uwe

    2016-02-01

    During dynamic random access memory (DRAM) capacitor scaling, a lot of effort was put searching for new material stacks to overcome the scaling limitations of the current material stack, such as leakage and sufficient capacitance. In this study, very promising results for a SrTiO3 based capacitor with a record low capacitance equivalent thickness value of 0.2 nm at target leakage current are presented. Due to the material properties of SrTiO3 films (high vacancy concentration and low band gap), which are leading to an increased leakage current, a physical thickness of at least 8 nm is required at target leakage specifications. However, this physical thickness would not fit into an 18 nm DRAM structure. Therefore, two different new approaches to develop a new ZrO2 based DRAM capacitor stack by changing the inter-layer material from Al2O3 to SrO and the exchange of the top electrode material from TiN to Pt are presented. A combination of these two approaches leads to a capacitance equivalent thickness value of 0.47 nm. Most importantly, the physical thickness of <5 nm for the dielectric stack is in accordance with the target specifications. Detailed evaluation of the leakage current characteristics leads to a capacitor model which allows the prediction of the electrical behavior with thickness scaling.

  16. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.

    PubMed

    Mojarad, N; Hojeij, M; Wang, L; Gobrecht, J; Ekinci, Y

    2015-03-01

    All nanofabrication methods come with an intrinsic resolution limit, set by their governing physical principles and instrumentation. In the case of extreme ultraviolet (EUV) lithography at 13.5 nm wavelength, this limit is set by light diffraction and is ≈3.5 nm. In the semiconductor industry, the feasibility of reaching this limit is not only a key factor for the current developments in lithography technologies, but also is an important factor in deciding whether photon-based lithography will be used for future high-volume manufacturing. Using EUV-interference lithography we show patterning with 7 nm resolution in making dense periodic line-space structures with 14 nm periodicity. Achieving such a cutting-edge resolution has been possible by integrating a high-quality synchrotron beam, precise nanofabrication of masks, very stable exposures instrumentation, and utilizing effective photoresists. We have carried out exposure on silicon- and hafnium-based photoresists and we demonstrated the extraordinary capability of the latter resist to be used as a hard mask for pattern transfer into Si. Our results confirm the capability of EUV lithography in the reproducible fabrication of dense patterns with single-digit resolution. Moreover, it shows the capability of interference lithography, using transmission gratings, in evaluating the resolution limits of photoresists. PMID:25653148

  17. Black border, mask 3D effects: covering challenges of EUV mask architecture for 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Davydova, Natalia; van Setten, Eelco; de Kruif, Robert; Connolly, Brid; Fukugami, Norihito; Kodera, Yutaka; Morimoto, Hiroaki; Sakata, Yo; Kotani, Jun; Kondo, Shinpei; Imoto, Tomohiro; Rolff, Haiko; Ullrich, Albrecht; Jaganatharaja, Ramasubramanian Kottumakulal; Lammers, Ad; Oorschot, Dorothe; Man, Cheuk-Wah; Schiffelers, Guido; van Dijk, Joep

    2014-10-01

    Photomask is at the heart of a lithographic scanner's optical path. It cannot be left non-optimized from the imaging point of view. In this work we provide new insights on two critical aspects of EUV mask architecture: optimization of absorber for 16 nm half-pitch imaging and a systematic approach to black border EUV and DUV reflectance specifications. Good 16 nm imaging is demonstrated on ASML NXE:3300 EUV scanner. Currently a relatively high dose resist is used for imaging and the dose reduction is desired. Optimization (reduction) of absorber height and mask CD bias can allow for up to 30% dose reduction without essential contrast loss. Disadvantages of absorber height reduction are ~7 nm increase of best focus range through pitch and tighter absorber height mean to target and uniformity requirements. A disadvantage of a smaller reticle CD (down to 14 nm 1x) is manufacturing process uniformity over the reticle. A systematic approach of black border reflections impact on imaging is established. The image border is a pattern free dark area surrounding the image field and preventing exposure of the image field neighborhood on wafer. Currently accepted design of the black border on EUV reticle is an image border where the absorber and multilayer stack are etched down to the substrate and EUV reflectance is reduced to <0.05%. DUV reflectance of such a black border is about 5%. It is shown that a tighter DUV reflectance specification <1.5% is required driven by the impact of DUV reflections from the black border on imaging. NXE:3300 and NXE:3100 experimental imaging results are shown. The need of low DUV wavelength reflectance metrology (in the range 100-300 nm) is demonstrated using an estimated NXE scanner out-of-band DUV spectrum. Promising results of low DUV reflectance of the black border are shown.

  18. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Mojarad, N.; Hojeij, M.; Wang, L.; Gobrecht, J.; Ekinci, Y.

    2015-02-01

    All nanofabrication methods come with an intrinsic resolution limit, set by their governing physical principles and instrumentation. In the case of extreme ultraviolet (EUV) lithography at 13.5 nm wavelength, this limit is set by light diffraction and is ~3.5 nm. In the semiconductor industry, the feasibility of reaching this limit is not only a key factor for the current developments in lithography technologies, but also is an important factor in deciding whether photon-based lithography will be used for future high-volume manufacturing. Using EUV-interference lithography we show patterning with 7 nm resolution in making dense periodic line-space structures with 14 nm periodicity. Achieving such a cutting-edge resolution has been possible by integrating a high-quality synchrotron beam, precise nanofabrication of masks, very stable exposures instrumentation, and utilizing effective photoresists. We have carried out exposure on silicon- and hafnium-based photoresists and we demonstrated the extraordinary capability of the latter resist to be used as a hard mask for pattern transfer into Si. Our results confirm the capability of EUV lithography in the reproducible fabrication of dense patterns with single-digit resolution. Moreover, it shows the capability of interference lithography, using transmission gratings, in evaluating the resolution limits of photoresists.All nanofabrication methods come with an intrinsic resolution limit, set by their governing physical principles and instrumentation. In the case of extreme ultraviolet (EUV) lithography at 13.5 nm wavelength, this limit is set by light diffraction and is ~3.5 nm. In the semiconductor industry, the feasibility of reaching this limit is not only a key factor for the current developments in lithography technologies, but also is an important factor in deciding whether photon-based lithography will be used for future high-volume manufacturing. Using EUV-interference lithography we show patterning with 7 nm

  19. Specifications and methodologies for benchmarking of advanced CD-SEMs at the 90-nm CMOS technology node and beyond

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin D.; Bishop, Michael

    2003-05-01

    In this work, an extremely flexible and simple dissolution rate monitor (DRM) based on inexpensive, commercially available, PC card spectrometers has been built that can be used quite robustly in both fab and laboratory environments for measuring the dissolution behavior of photoreist films. The hardware required in order to construct such a simple apparatus has been discussed along with various experimental configurations that are appropriate for different measurement tasks. A multiwavelength interferometric data analysis software (MIDAS) has been developed in this work that can robustly perform both single wavelength and multiwavelength DRM data analysis. The multiwavelength DRM and MIDAS software have been found to be very useful in analyzing a variety of resist film dissolution phenomena including monitoring films possessing dissolution rates exceeding 100 nm/s and studying resist film surface inhibition/acceleration. Another useful application has been to measure swelling in the processing of photoresists and other polymer thin films. The basic approaches and algorithms used for thin film thickness and dissolution rate determination in the MIDAS software are discussed in this paper. Results from the use of the MIDAS software in various applications are presented.

  20. Impact of the spacer dielectric constant on parasitic RC and design guidelines to optimize DC/AC performance in 10-nm-node Si-nanowire FETs

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Ho; Lee, Sang-Hyun; Kim, Ye-Ram; Jeong, Eui-Young; Yoon, Jun-Sik; Lee, Jeong-Soo; Baek, Rock-Hyun; Jeong, Yoon-Ha

    2015-04-01

    In this paper, we propose an optimized design for Si-nanowire FETs in terms of spacer dielectric constant (κsp), extension length (LEXT), nanowire diameter (Dnw), and operation voltage (VDD) for the sub-10 nm technology node. Using well-calibrated TCAD simulations and analytic RC models, we have quantitatively evaluated geometry-dependent parasitic series resistances (RSD) and capacitances (Cpara). Compared with low-κ spacers, high-κ spacers exhibit a higher on/off-current ratio with a lower RSD, but show severe degradation in their AC performance owing to a higher Cpara. Considering the trade-off between RSD and Cpara, optimal geometry-dependent κsp values at various supply voltages (VDD) are determined using gate delay (CV/I) and current-gain cutoff frequency (fT). We found that as LEXT and VDD decrease and Dnw increases, the optimal κsp value shifts from the high-κ to low-κ regime.

  1. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    SciTech Connect

    Popovici, M. Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M.

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  2. Advanced mask technique to improve bit line CD uniformity of 90 nm node flash memory in low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-doo; Choi, Jae-young; Kim, Jea-hee; Han, Jae-won

    2008-10-01

    As devices size move toward 90nm technology node or below, defining uniform bit line CD of flash devices is one of the most challenging features to print in KrF lithography. There are two principal difficulties in defining bit line on wafer. One is insufficient process margin besides poor resolution compared with ArF lithography. The other is that asymmetric bit line should be made for OPC(Optical Proximity Correction) modeling. Therefore advanced ArF lithography scanner should be used for define bit line with RETs (Resolution Enhancement Techniques) such as immersion lithography, OPC, PSM(Phase Shift Mask), high NA(Numerical Aperture), OAI(Off-Axis Illumination), SRAF(Sub-resolution Assistant Feature), and mask biasing.. Like this, ArF lithography propose the method of enhancing resolution, however, we must spend an enormous amount of CoC(cost of ownership) to utilize ArF photolithography process than KrF. In this paper, we suggest method to improve of bit line CD uniformity, patterned by KrF lithographic process in 90nm sFlash(stand alone Flash) devices. We applied new scheme of mask manufacturing, which is able to realize 2 different types of mask, binary and phase-shift, into one plate. Finally, we could get the more uniform bit lines and we expect to get more stable properties then before applying this technique.

  3. Integration and automation of DoseMapper in a logic fab APC system: application for 45/40/28nm node

    NASA Astrophysics Data System (ADS)

    Le Gratiet, Bertrand; Salagnon, Christophe; de Caunes, Jean; Mikolajczak, Marc; Morin, Vincent; Chojnowski, Nicolas; Sundermann, Frank; Massin, Jean; Pelletier, Alice; Metz, Joel; Blancquaert, Yoann; Bouyssou, Regis; Pelissier, Arthur; Belmont, Olivier; Strapazzon, Anne; Phillips, Anna; Devoivre, Thierry; Bernard, Emilie; Batail, Estelle; Thevenon, Lionel; Bry, Benedicte; Bernard-Granger, Fabrice; Oumina, Ahmed; Baron, Marie-Pierre; Gueze, Didier

    2012-03-01

    The main difficulty related to DoseMapper correction is to generate an appropriate CD datacollection to feed DoseMapper and to generate DoseRecipe in a user friendly way, especially with a complex process mix. We could heavily measure the silicon and create, in feedback mode, the corresponding DoseRecipe. However, such approach in a logic fab becomes a heavy duty due to the number of different masks / product / processes. We have observed that process CD variability is significantly depending on systematic intrawafer and intrafield CD footprints that can be measured and applied has generic pre-correction for any new product/mask process in-line. The applied CD correction is based on a CD (intrafield: Mask + Straylight & intrawafer: Etch Bias) variability "model" handled by the FAB APC (Advanced Process Control). - Individual CD profile correction component are generated "off-line" (1) for Intrafield Mask via automatic CD extraction from a Reticle CD database (2) for Intrafield Straylight via a CD "model" (3) for Intrawafer Etch Bias via engineering input based on process monitoring. - These CD files are handled via the FAB APC/automation system which is remotely taking control of DoseMapper server via WEB services, so that CD profiles are generated "off-line" (before the lot is being processed) and stored in a profile database while DoseRecipes are created "real-time" on demand via the automation when the lot comes to the scanner to be processed. DoseRecipe and CD correction profiles management is done via the APC system. The automated DoseRecipe creation is now running since the beginning of 2011 contributing to bring both intrafield and intrawafer GATE CDu below 1nm 3sigma, for 45/40 & 28nm nodes.

  4. Evaluation and implementation of TeraScan reflected light die-to-database inspection mode for 65nm design node process

    NASA Astrophysics Data System (ADS)

    Hsu, Luke T. H.; Ho, C. H.; Lin, C. C.; Hsu, Vincent; Chen, Ellison; Yu, Paul; Son, Kong

    2005-11-01

    The standard inspection flow typically consists of transmitted light pattern inspection (die-to-die or die-to-database) and STARlightTM (Simultaneous Transmitted And Reflective Light) contamination inspection. The initial introduction of TeraScan (DUV) inspection system was limited to transmitted pattern inspection modes. Hence, complete inspections of critical mask layers required utilizing TeraScan for maximized pattern defect sensitivity and the previous generation TeraStar (UV) for STARlightTM contamination inspection. Recently, the reflective light die-to-database (dbR) inspection mode was introduced on the DUV tool to compliment transmitted light die-to-database (dbT) inspection. The dbR inspection mode provides not only pattern inspection but also contamination inspection capabilities. The intent of this evaluation is to characterize the dbR inspection capability on pattern defects and contaminations. A series of standard programmed defect test plates will be used to evaluate pattern inspection capability and a PSL test plate will be used to determine the contamination performance. Inspection results will be compared to the current inspection process of record (dbT + STARlightTM). Lastly, the learning will be used to develop and implement an optimal dbR inspection flow for selected critical layers of the 65-nm node to meet the inspection criteria and minimize the cycle time.

  5. P2X receptors.

    PubMed

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  6. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)

    NASA Astrophysics Data System (ADS)

    Wang, G. L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C. L.; Zhu, H. L.; Yan, J.; Yin, H. Z.; Li, J. F.; Zhao, C.; Radamson, H. H.

    2013-09-01

    SiGe has been widely used for source/drain (S/D) engineering in pMOSFETs to enhance channel mobility. In this study, selective Si1-xGex growth (0.25 ≤ x ≤ 0.35) with boron concentration of 1-3 × 1020 cm-3 in the process for 22 nm node complementary metal-oxide semiconductor (CMOS) has been investigated and optimized. The growth parameters were carefully tuned to achieve deposition of high quality and highly strained material. The thermal budget was decreased to 800 °C to suppress dopant diffusion, to minimize Si loss in S/D recesses, and to preserve the S/D recess shape. Two layers of Si1-xGex were deposited: a bottom layer with high Ge content (x = 0.35) which filled the recess and a cap layer with low Ge content (x = 0.25) which was elevated in the S/D regions. The elevated SiGe cap layer was intended to be consumed during the Ni-silicidation process in order to avoid strain reduction in the channel region arising from strain relaxation in SiGe S/D. In this study, a kinetic gas model was also applied to predict the pattern dependency of the growth and to determine the epi-profile in different transistor arrays. The input parameters include growth temperature, partial pressures of reactant gases, and chip layout. By using this model, the number of test wafers for epitaxy experiments can be decreased significantly. When the epitaxy process parameters can be readily predicted by the model for epi-profile control in an advanced chip design, fast and cost-effective process development can be achieved.

  7. Density of N2 (X 1Σg+ v = 18) molecules in a dc glow discharge measured by cavity ringdown spectroscopy at 227 nm; validity domain of the technique

    NASA Astrophysics Data System (ADS)

    Macko, P.; Cunge, G.; Sadeghi, N.

    2001-06-01

    The high sensitivity cavity ringdown spectroscopy (CRDS) absorption technique is used to measure the absolute density of the ground state nitrogen molecules in the v'' = 18 vibrational level in a dc glow discharge. The experimental conditions are 2.3 Torr nitrogen pressure, 100 mA current and a discharge tube of 3.6 cm diameter and 80 cm length. The excimer-pumped dye laser is tuned on the Lyman-Birge-Hopfield, N2 (a 1Πg 8-X 1Σg 18) band at 227 nm and absorption rates on spectrally-resolved rotational lines are obtained. The gas temperature deduced from the rotational distribution is 500 K. We measure a total density of (9+/-3.5)×1019 molecules m-3 in the v'' = 18 vibrational level, equivalent to 0.2% of the total nitrogen density. So high density suggests that the v'' = 18 level should be located in the Treanor plateau of the vibrational distribution function. We also analyse the validity domain of the CRDS measurements, regarding the optical saturation due to the high intensity of the laser radiation inside the CRDS cavity and depletion of the absorbing species. If, for our measurements, the linear absorption conditions are fulfilled, we show that very often the optical saturation becomes dominant, inducing a non-single exponential decay of the ringdown signal and leading to an underestimated absorber density.

  8. Impact of pattern dependency of SiGe layers grown selectively in source/drain on the performance of 14 nm node FinFETs

    NASA Astrophysics Data System (ADS)

    Qin, Changliang; Wang, Guilei; Kolahdouz, M.; Luo, Jun; Yin, Huaxing; Yang, Ping; Li, Junfeng; Zhu, Huilong; Chao, Zhao; Ye, Tianchun; Radamson, Henry H.

    2016-10-01

    A complete mapping of 14 nm FinFETs performance over 200 mm wafers was performed and the pattern dependency of SiGe selective growth was calculated using an empirical kinetic molecule model for the reactant precursors. The transistor structures were analyzed by conventional characterization tools and their performance was simulated by considering the process related variations. The applied model presents for the first time a powerful tool for transistor community to predict the SiGe profile and strain modulating over a processed wafer, independent of wafer size.

  9. Optimization of self-aligned double patterning (SADP)-compliant layout designs using pattern matching for 10nm technology nodes and beyond

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.; Schroeder, Uwe Paul; Woo, Youngtag; Zeng, Jia; Madhavan, Sriram; Capodieci, Luigi

    2016-03-01

    A pattern-based methodology for optimizing Self-Aligned Double Patterning (SADP)-compliant layout designs is developed based on detecting cut-induced hotspot patterns and replacing them with pre-characterized fixing solutions. A pattern library with predetermined fixing solutions is built. A pattern-based engine searches for matching patterns in the layout designs. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution, preserving only the design rule check-clean replacements. The methodology is demonstrated on a 10nm routed block. A small library of fourteen patterns reduced the number of cut-induced design rule check violations by 100% and lithography hotspots by 23%.

  10. Single and compact ESD device Beta-Matrix solution based on bidirectional SCR Network in advanced 28/32 nm technology node

    NASA Astrophysics Data System (ADS)

    Bourgeat, Johan; Galy, Philippe

    2013-09-01

    Advanced CMOS technologies, like CMOS32 nm high K metal gate, become more and more sensitive to electrostatic discharge (ESD) phenomenon particularly because of their low overvoltage robustness. In this context, we develop a Beta-Matrix concept [1] which merges six silicon controlled rectifier (SCR) in a same structure and having one single triggering gate N (GN) for a high integration and high flexibility in IO frame. This device is the center of a new protection strategy which combined both local and global protection approach [1]. Also, a specific trigger circuit has been developed to turn-on Beta-Matrix whatever stressed pins during an ESD event and to keep it off when IC is in normal operation mode and is presented in [2]. Both, Beta-Matrix and trigger circuit, make a robust and very efficient ESD network which allows removing all IO placement constraint and power IO [3]. Also, this study is a synthesis of both previous work and a development of new Beta-Matrix topology to improve the device behavior, particularly by improving the uniformity of activation and decreasing triggering voltage of the structure. This work presents results of 3 dimensional TCAD simulations and measurements of transmission line pulse (TLP) and very fast-TLP.

  11. Lymph nodes

    MedlinePlus Videos and Cool Tools

    ... and conveying lymph and by producing various blood cells. Lymph nodes play an important part in the ... the microorganisms being trapped inside collections of lymph cells or nodes. Eventually, these organisms are destroyed and ...

  12. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies.

    PubMed

    Shcherbatko, Anatoly; Foletti, Davide; Poulsen, Kris; Strop, Pavel; Zhu, Guoyun; Hasa-Moreno, Adela; Melton Witt, Jody; Loo, Carole; Krimm, Stellanie; Pios, Ariel; Yu, Jessica; Brown, Colleen; Lee, John K; Stroud, Robert; Rajpal, Arvind; Shelton, David

    2016-06-01

    Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications. PMID:27129281

  13. Connecting Node

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J.; Raboin, Jasen L.; Spexarth, Gary R.

    2009-01-01

    A paper describes the Octanode, a connecting node that facilitates the integration of multiple docking mechanisms, hatches, windows, and internal and external systems with the use of flat surfaces. The Octanode is a 26- faced Great Rhombicuboctahedron Archi medean solid with six octagonshaped panels, eight hexagon-shaped panels, and 12 square panels using three unique, simple, flat shapes to construct a spherical approximation. Each flat shape can be constructed with a variety of material and manufacturing techniques, such as honeycomb composite panels or a pocketed skinstringer configuration, using conventional means. The flat shapes can be connected together and sealed to create a pressurizable volume by the use of any conventional means including welding or fastening devices and sealant. The node can then be connected to other elements to allow transfer between those elements, or it could serve as an airlock. The Octanode can be manufactured on the ground and can be integrated with subsystems including hatches and ports. The node can then be transported to its intended location, whether on orbit or on surface. Any of the flat panels could be replaced by curved ones, turning the node into a copula. Windows may be placed on flat panes with optimal viewing angles that are not blocked by large connecting nodes. The advantage of using flat panels to represent a spherical approximation is that this allows for easier integration of subsystems and design features.

  14. J-2X Engine Tested at Stennis

    NASA Video Gallery

    Another key component of NASA's new Space Launch System, the J-2X rocket engine, is put to a 500-second firing test at NASA's Stennis Space Center on Nov. 9 The J-2X rocket engine will help carry t...

  15. NASA Continues J-2X Powerpack Testing

    NASA Video Gallery

    NASA conducted a long duration test of the J-2X powerpack, 340 seconds total, at the Stennis Space Center in southern Mississippi on May 10, marking another step in SLS development, the next-genera...

  16. J-2X: Back in the Saddle

    NASA Video Gallery

    A J-2X power pack assembly burns brightly during a hot fire test Nov. 27 at NASA's Stennis Space Center in Mississippi. Engineers pulled the assembly from the test stand in September to install add...

  17. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the

  18. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B.; Talbot, Edward B.; Mayer, Laurence E.

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  19. The relationship between P2X4 and P2X7: a physiologically important interaction?

    PubMed

    Craigie, Eilidh; Birch, Rebecca E; Unwin, Robert J; Wildman, Scott S

    2013-01-01

    Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function. PMID:23966951

  20. Lymph node biopsy

    MedlinePlus

    Biopsy - lymph nodes; Open lymph node biopsy; Fine needle aspiration biopsy; Sentinel lymph node biopsy ... then sent to the laboratory for examination. A needle biopsy involves inserting a needle into a lymph ...

  1. J-2X Abort System Development

    NASA Technical Reports Server (NTRS)

    Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.

    2008-01-01

    The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.

  2. Final J-2X Test of 2011

    NASA Video Gallery

    NASA conducted its final J-2X rocket engine test of the year Dec. 14, the 10th firing in a series of tests on the new upper-stage engine that will carry humans farther into space than ever before. ...

  3. J-2X Powerpack Completes Testing

    NASA Video Gallery

    The J-2X powerpack assembly was fired up one last time on Dec. 13 at NASA’s Stennis Space Center in Mississippi, finishing a year of testing on an important component of America’s next heavy-li...

  4. Extending immersion lithography down to 1x nm production nodes

    NASA Astrophysics Data System (ADS)

    de Boeij, Wim P.; Pieternella, Remi; Bouchoms, Igor; Leenders, Martijn; Hoofman, Marjan; de Graaf, Roelof; Kok, Haico; Broman, Par; Smits, Joost; Kuit, Jan-Jaap; McLaren, Matthew

    2013-04-01

    In this paper we report on the performance enhancements on the NXT immersion scanner platform to support the immersion lithography roadmap. We particular discuss scanner modules that enable future overlay and focus requirements. Among others we describe the improvements in grid calibrations and grid matching; thermal control of reticle heating with dynamic systems adjustments; aberration tuning and FlexWave-lens heating control as well as aberration- and overlay-metrology on wafer-2-wafer timescales. Finally we address reduction of leveling process dependencies, stage servo dynamics and wafer table flatness to enhance on-product focus and leveling performance. We present and discuss module- and system-data of the above mentioned scanner improvements.

  5. Development Status of the J-2X

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Vilja, John

    2008-01-01

    In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because

  6. Color-Space-Based Visual-MIMO for V2X Communication †

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  7. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  8. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  9. Entanglement monogamy inequality in a 2 x 2 x 4 system

    SciTech Connect

    Ren Xijun; Jiang Wei

    2010-02-15

    In this report, we show explicitly that the tangles of an arbitrary pure state in a 2 x 2 x 4 system satisfy the monogamy relation. This relation is also generalized to mixed states. As the tangle is always larger than the square of the concurrence, our result implies that the monogamy relation holds for concurrence too. It also supports the idea that the tangle could qualify as an elementary bipartite entanglement measure.

  10. Modulation of Cu(2-x)S Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer.

    PubMed

    Alam, Rabeka; Labine, Molly; Karwacki, Christopher J; Kamat, Prashant V

    2016-02-23

    Copper sulfide (Cu(2-x)S) nanocrystals with nonstoichiometric composition exhibit plasmon resonance in the near-infrared region. Compositional changes and varying electron density markedly affect the position and intensity of the plasmon resonance. We report a photochemically induced phenomenon of modulating the plasmon resonance in a controlled fashion. As photogenerated reduced methyl viologen radicals transfer electrons to Cu(2-x)S in inert solutions, we observe a decrease in localized surface plasmon resonance (LSPR) absorbance at 1160 nm. Upon exposure to air, the plasmon resonance band recovers as stored electrons are scavenged away by oxygen. This cycle of electron charge and discharge of Cu(2-x)S nanocrystals is reversible and can be repeated through photoirradiation in N2 saturated solution followed by exposure of the suspension to air. The spectroscopic studies that provide mechanistic insights into the reversible charging and discharging of plasmonic Cu(2-x)S are discussed.

  11. Lymph node hyalinization in elderly Japanese.

    PubMed

    Taniguchi, I; Murakami, G; Sato, A; Fujiwara, D; Ichikawa, H; Yajima, T; Kohama, G

    2003-10-01

    Lymph node hyalinization has been comprehensively investigated using specimens obtained from elderly Japanese and white Americans. Onion-peel lesions and associated meshwork areas were often found in the medullary sinus of the thoracic node (mediastinal-type hyalinization), while eosinophilic, glassy and spotty lesions were consistently seen in B lymphocyte areas of the pelvic node (pelvic-type hyalinization). The mediastinal-type hyalinization was comprised of thin collagen fibrils (ca 50 nm in diameter), whereas the pelvic-type hyalinization had thick fibrils (ca 150 nm in diameter). This difference seemed to be consistent with a difference in composite collagen fibrils of vascular walls between the thoracic and pelvic regions. The pelvic-type hyalinization was often or sometimes seen in other nodes, such as cervical, axillary, abdominal and inguinal nodes, especially in white Americans. The mediastinal-type hyalinization, usually in combination with a sinus filled with anthracotic macrophages, tended to be observed in Japanese more frequently than in white Americans. Anthracosis seemed to be connected to the pathogenesis of the hyalinization. On the other hand, because the lesion was weakly positive for Factor VIII immunohistochemistry and because lesions were located along thin vessels, the pelvic-type hyalinization seemed to originate from vascular degeneration in the nodal cortex. Due to the high incidence and large proportion in total volume of the node, the hyalinization seems to be one of the major events that diminish the nodal filtration function and ruin the node with aging. PMID:12973685

  12. Multiple node remote messaging

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  13. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  14. Sentinel node biopsy (image)

    MedlinePlus

    ... cancer, allows a more accurate staging of the cancer, and leaves unaffected nodes behind to continue the important job of draining fluids. The procedure involves the injection of a dye (sometimes mildly radioactive) to pinpoint the lymph node ...

  15. P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis

    PubMed Central

    Viering, Daan H. H. M.; Bos, Caro; Bindels, René J. M.; Hoenderop, Joost G. J.

    2016-01-01

    ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The purinergic cation channel P2X6 has been previously localized to the distal convoluted tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a normal phenotype and did not differ physiologically from wild type mice. Differences in serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to examine potential compensatory changes in renal expression levels of other P2x subunits and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1, Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2 and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant changes in expression were not detected. Furthermore, no compensatory changes in gene expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the P2x6+/+ mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly involved in the regulation of renal electrolyte handling under normal physiological conditions. PMID:27254077

  16. Intramammary lymph nodes.

    PubMed

    Egan, R L; McSweeney, M B

    1983-05-15

    Radiographic, gross, and histopathologic studies on 158 whole breasts with primary operable carcinoma revealed intramammary lymph nodes in 28%, and of these breasts, 10% contained a metastatic deposit of carcinoma. Cancerous and noncancerous nodes were found in all quadrants of the breast with the positive ones being in the same quadrant as the carcinoma only 50% of the time. There was no demonstrable connection with the usual lymphatic drainage of the breast. With Stage II carcinoma, positive intramammary lymph nodes had no direct effect on prognosis, merely representing advanced disease and indicating a greater likelihood of axillary metastatic disease. There was a trend toward poorer prognosis in Stage I lesions with positive intramammary lymph nodes. This may indicate the Stage I carcinomas that have a similar prognosis as Stage II tumors. Conceivably, a Stage Ia, positive intramammary lymph node(s) but normal axillary lymph nodes, could be defined and used.

  17. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  18. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1994-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  19. 32nm overlay improvement capabilities

    NASA Astrophysics Data System (ADS)

    Eichelberger, Brad; Huang, Kevin; O'Brien, Kelly; Tien, David; Tsai, Frank; Minvielle, Anna; Singh, Lovejeet; Schefske, Jeffrey

    2008-03-01

    The industry is facing a major challenge looking forward on the technology roadmap with respect to overlay control. Immersion lithography has established itself as the POR for 45nm and for the next few nodes. As the gap closes between scanner capability and device requirements new methodologies need to be taken into consideration. Double patterning lithography is an approach that's being considered for 32 and below, but it creates very strict demands for overlay performance. The fact that a single layer device will need to be patterned using two sequential single processes creates a strong coupling between the 1st and 2nd exposure. The coupling effect during the double patterning process results in extremely tight tolerances for overlay error and scanner capabilities. The purpose of this paper is to explore a new modeling method to improve lithography performance for the 32nm node. Not necessarily unique for double patterning, but as a general approach to improve overlay performance regardless of which patterning process is implemented. We will achieve this by performing an in depth source of variance analysis of current scanner performance and project the anticipated improvements from our new modeling approach. Since the new modeling approach will involve 2nd and 3rd order corrections we will also provide and analysis that outlines current metrology capabilities and sampling optimizations to further expand the opportunities of an efficient implementation of such approach.

  20. Photoelectron spectroscopy of GaX2-, Ga2X-, Ga2X2-, and Ga2X3-(X=P,As)

    NASA Astrophysics Data System (ADS)

    Taylor, Travis R.; Gómez, Harry; Asmis, Knut R.; Neumark, Daniel M.

    2001-09-01

    Anion photoelectron spectra taken at various photodetachment wavelengths have been obtained for GaX2-, Ga2X-, Ga2X2-, and Ga2X3- (X=P,As). The incorporation of a liquid nitrogen cooled channel in the ion source resulted in substantial vibrational cooling of the cluster anions, resulting in resolved vibrational progressions in the photoelectron spectra of all species except Ga2X2-. Electron affinities, electronic term values, and vibrational frequencies are reported and compared to electronic structure calculations. In addition, similarities and differences between the phosphorus and arsenic-containing isovalent species are discussed.

  1. Twin laser 2x1 MMI coupler

    NASA Astrophysics Data System (ADS)

    de Pedraza, M. L.

    2005-07-01

    In previous studies, it was shown that using a Y waveguide, a twin laser output signal could be mixed and coupled to a fiber. The need to adapt the dimensions of the Y waveguide and apply the more restrictive conditions of a coherent regime for laser emission and waveguide mixing, led us to try an MMI coupler to focus the output signal. Herein, ideal 2x1 MMI for this purpose are presented in schematic form. Using a TE mode approximated with Gaussian distributions for the twin laser output signal (the input signal to the MMI coupler), an optimally focused output signal requirement is considered. Possible longitudinal and width dimensions for the couplers are calculated. Similar values of the MMI refraction index to the laser magnitude values were assumed to avoid the drop in transmission produced by reflections at the boundary surface. We also assumed no air gap between the laser and MMI coupler. The functioning of these ideal devices for coherent and incoherent twin laser emission is discussed.

  2. High electron mobility in epitaxial SnO2-x in semiconducting regime

    NASA Astrophysics Data System (ADS)

    Mun, Hyosik; Yang, Hyeonseok; Park, Jisung; Ju, Chanjong; Char, Kookrin

    2015-07-01

    We investigated the electronic transport properties of epitaxial SnO2-x thin films on r-plane sapphire substrates. The films were grown by pulsed laser deposition technique and its epitaxial growth direction was [101] and the in-plane alignment was of SnO2-x [010]// Al 2 O 3 [ 1 2 ¯ 10 ] . When the SnO2-x films were grown in the oxygen pressure of 30 mTorr, we have found the electron mobility of the 30 nm thick SnO2-x thin films strongly dependent on the thicknesses of the fully oxidized insulating SnO2 buffer layer. When the buffer layer thickness increased from 100 nm to 700 nm, the electron mobility of values increased from 23 cm2 V-1 s-1 to 106 cm2 V-1 s-1 and the carrier density increased from 9 × 1017 cm-3 to 3 × 1018 cm-3, which we attribute to reduction of large density of dislocations as the buffer layer thickness increases. In addition, we studied the doping dependence of the electron mobility of SnO2-x thin films grown on top of 500 nm thick insulating SnO2 buffer layers. The oxygen vacancy doping level was controlled by the oxygen pressure during deposition. As the oxygen pressure increased to 47.5 mTorr, the carrier density was found to decrease to 9.1 × 1016 cm-3 and the electron mobility values to 13 cm2 V-1 s-1, which is consistent with the dislocation limited transport properties. We also checked the conductance change of the SnO2-x during thermal annealing cycles, demonstrating unusual stability of its oxygen. The correlation between the electronic transport properties and microstructural defects investigated by the transmission electron microscopy was drawn. The excellent oxygen stability and high electron mobility of low carrier density SnO2-x films demonstrate its potential as a transparent oxide semiconductor.

  3. Potent Suppressive Effects of 1-Piperidinylimidazole Based Novel P2X7 Receptor Antagonists on Cancer Cell Migration and Invasion.

    PubMed

    Park, Jin-Hee; Williams, Darren R; Lee, Ji-Hyung; Lee, So-Deok; Lee, Je-Heon; Ko, Hyojin; Lee, Ga-Eun; Kim, Sujin; Lee, Jeong-Min; Abdelrahman, Aliaa; Müller, Christa E; Jung, Da-Woon; Kim, Yong-Chul

    2016-08-25

    The P2X7 receptor (P2X7R) has been reported as a key mediator in inflammatory processes and cancer invasion/metastasis. In this study, we report the discovery of novel P2X7R antagonists and their functional activities as potential antimetastatic agents. Modifications of the hydantoin core-skeleton and the side chain substituents of the P2X7R antagonist 7 were performed. The structure-activity relationships (SAR) and optimization demonstrated the importance of the sulfonyl group at the R1 position and the substituted position and overall size of R2 for P2X7R antagonism. The optimized novel analogues displayed potent P2X7 receptor antagonism (IC50 = 0.11-112 nM) along with significant suppressive effects on IL-1β release (IC50 = 0.32-210 nM). Moreover, representative antagonists (12g, 13k, and 17d) with imidazole and uracil core skeletons significantly inhibited the invasion of MDA-MB-231 triple negative breast cancer cells and cancer cell migration in a zebrafish xenograft model, suggesting the potential therapeutic application of these novel P2X7 antagonists to block metastatic cancer. PMID:27427902

  4. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    SciTech Connect

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi; Lee, Cho-Rong; Park, Chul-Seung; Chang, Sunghoe; Park, Sung-Gyoo; Song, Mi-Ryoung; Kim, Yong-Chul

    2011-04-15

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5 in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted

  5. Ultrasmall Cu2-x S Nanodots for Highly Efficient Photoacoustic Imaging-Guided Photothermal Therapy.

    PubMed

    Mou, Juan; Li, Pei; Liu, Chengbo; Xu, Huixiong; Song, Liang; Wang, Jin; Zhang, Kun; Chen, Yu; Shi, Jianlin; Chen, Hangrong

    2015-05-20

    Monodisperse, ultrasmall (<5 nm) Cu(2-x)S nanodots (u-Cu(2-x)S NDs) with significantly strong near-infrared absorption and conversion are successfully demonstrated for effective deep-tissue photoacoustic imaging-guided photothermal therapy both in vitro and in vivo. Owing to ultrasmall nanoparticle size and high water dispersibility as well as long stability, such nanodots possess a prolonged circulation in blood and good passive accumulation within tumors through the enhanced permeability and retention effect. These u-Cu(2-x)S NDs have negligible side effects to both blood and normal tissues according to in vivo toxicity evaluations for up to 3 months, showing excellent hemo/histocompatibility. Furthermore, these u-Cu(2-x)S NDs can be thoroughly cleared through feces and urine within 5 days, showing high biosafety for further potential clinical translation. This novel photoacoustic imaging-guided photothermal therapy based on u-Cu(2-x)S NDs composed of a single component shows great prospects as a multifunctional nanoplatform with integration and multifunction for cancer diagnosis and therapy.

  6. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin

    PubMed Central

    Xu, Ji; Chai, Hua; Ehinger, Konstantin; Egan, Terrance M.; Srinivasan, Rahul; Frick, Manfred

    2014-01-01

    P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs

  7. Paroxetine suppresses recombinant human P2X7 responses.

    PubMed

    Dao-Ung, Phuong; Skarratt, Kristen K; Fuller, Stephen J; Stokes, Leanne

    2015-12-01

    P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC(50) of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC(50) of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14(+) monocytes was suppressed with trifluoperazine and paroxetine.

  8. The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages.

    PubMed

    Pérez-Flores, Gabriela; Lévesque, Sébastien A; Pacheco, Jonathan; Vaca, Luis; Lacroix, Steve; Pérez-Cornejo, Patricia; Arreola, Jorge

    2015-11-20

    The ATP-gated P2X4 and P2X7 receptors are cation channels, co-expressed in excitable and non-excitable cells and play important roles in pain, bone development, cytokine release and cell death. Although these receptors interact the interacting domains are unknown and the functional consequences of this interaction remain unclear. Here we show by co-immunoprecipitation that P2X4 interacts with the C-terminus of P2X7 and by fluorescence resonance energy transfer experiments that this receptor-receptor interaction is driven by ATP. Furthermore, disrupting the ATP-driven interaction by knocking-out P2X4R provoked an attenuation of P2X7-induced cell death, dye uptake and IL-1β release in macrophages. Thus, P2X7 interacts with P2X4 via its C-terminus and disrupting the P2X7/P2X4 interaction hinders physiological responses in immune cells.

  9. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.

    PubMed

    Wang, Y Q; Yu, X J; Sun, D Z

    2007-06-01

    Nitrogen-doped titanium dioxide powders were prepared by wet method, that is, the hydrolysis of acidic tetra-butyl titanate using aqueous ammonia solution, followed by calcination at temperatures about 350 degrees C. The catalysts exhibited photocatalytic activity in the visible light region owing to N-doping. The light absorption onset of TiO(2-x)N(x) was shifted to the visible region at 459 nm compared to 330 nm of pure TiO(2). An obvious decrease in the band gap was observed by the optical absorption spectroscopy, which resulted from N2p localized states above the valence band of TiO(2-x)N(x) (compared to TiO(2)). The TiO(2-x)N(x) catalyst was characterized to be anatase with oxygen-deficient stoichiometry by X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS) and X-ray photoelectron spectroscopy (XPS). The binding energy of N1s measured by XPS characterization was 396.6 eV (TiN bonds, beta-N) and 400.9 eV (NN bonds, gamma-N(2)), respectively. The photocatalytic activity of TiO(2-x)N(x) under visible light was induced by the formation of beta-N in the structure. Photocatalytic decomposition of benzoic acid solutions was carried out in the ultraviolet and visible (UV-vis) light region, and the TiO(2-x)N(x) catalyst showed higher activity than pure TiO(2). PMID:17116365

  10. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  11. Comparison between HMME mediated photodynamic therapy using 413nm and 532nm for port wine stains: a mathematical simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gu, Y.; Chen, R.; Xu, L. Q.; Liao, X. H.; Huang, N. Y.; Wang, Y. Y.

    2007-11-01

    Introduction: As it is always difficult to find the optimal combination of photosensitizer and of laser wavelength to achieve selective vascular damage in PWS-PDT, the selective vascular effects of HMME (Hematoporphyrin monomethyl ether) mediated PDT with 413 nm and with 532 nm were compared by mathematical simulation in this study. Materials & Methods: Firstly, distribution of 413 nm, 532 nm light in PWS tissue was simulated by Monte Carlo model. Two energy density groups were set, one is 80mW/cm2x40min for both 413 nm and 532 nm, the other is 80mW/cm2x40min for 532 nm while 80mW/cm2x20min in for 413 nm. Secondly, the productivity of reactive oxygen species (ROS) in target vessels and normal tissue were simulated using a simulation system for PDT of PWS established in our lab, which considering the amount of light and photosensitizer in tissue, the molar extinction coefficient of photosensitizer, and quantum yield of ROS. Concentration of HMME for each wavelength were same. Finally, the productivity of ROS n in target vessels and normal tissue were compared between 413 nm PDT and 532 nm PDT under different energy density. Result: Under the same energy density, ROS productivity in target vessels of 413 nm PDT was significantly higher than that of 532 nm PDT. Moreover, it was still higher at low energy density than that of 532nm PDT with high energy density. Conclusion: HMME mediated PDT using 413 nm has the potential to increase the selective vascular effect of PDT for PWS by shortening treatment time.

  12. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  13. P2X2 and P2X5 Receptors Mediate Bladder Hyperesthesia in ICC in Female Overactive Bladder.

    PubMed

    Meng, Mingsen; Zheng, Ji; Yan, Junan; Li, Qianwei; Fang, Qiang; Li, Weibing

    2015-06-01

    This study was set to explore the role of P2X2 and P2X5 as the important molecules in sensory afferent of bladder in female overactive bladder (OAB) patients with the bladder hyperesthesia. Sixty-eight OAB patients admitted in Southwest Hospital affiliated to the Third Military Medical University during September, 2011-December, 2012 were selected and included in the experimental group (OAB group) and 30 healthy volunteers during the same period were included as the control group. We recorded voiding diary and urodynamic results, and immunohistochemistry analysis was used to detect P2X2 and P2X5 receptor in interstitial cell of Caja (ICC) in bladder tissue of female OAB patients and healthy volunteers, to tentatively explore the effect of P2X2 and P2X5 in bladder hyperesthesia. Urodynamic study has important diagnostic value in the diagnosis and differential diagnosis of OAB. P2X2 receptor was significantly up-regulated in bladder ICC in OAB group. The blockage of P2X2 receptor could significantly inhibit the contraction of bladder muscle strips, decrease the bladder pressure and the electric discharge of pelvic nerve. PET and urodynamic study showed that micturition desire sense in PAG area of pons in OAB patients was significantly increased compared with the control group. The up-regulation of P2X2 in ICC is an important factor to cause bladder hyperesthesia in OAB patients. PET and urodynamic study indicate that the bladder-originated nervous impulses are important cause of OAB. This study provides a basis for the study of P2X2 receptor in ICC in bladder hyperesthesia of OAB patients.

  14. Swollen lymph nodes

    MedlinePlus

    ... fingers) include: Groin Armpit Neck (there is a chain of lymph nodes on either side of the front of the neck, both sides of the neck, and down each side of the back of the neck) Under the jaw and chin Behind the ears On the back of the head

  15. XQL and Proximal Nodes.

    ERIC Educational Resources Information Center

    Baeza-Yates, Ricardo; Navarro, Gonzalo

    2002-01-01

    Discussion of models that have been developed to structure text documents for information retrieval focuses on XML and its proposed query language XQL. Considers efficiency of the query engine and shows that an already existing model, Proximal Nodes, can be used as an efficient query engine behind an XQL front-end. (Author/LRW)

  16. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection

    PubMed Central

    Ramos-Junior, E.S.; Morandini, A.C.; Almeida-da-Silva, C.L.C.; Franco, E.J.; Potempa, J.; Nguyen, K.A.; Oliveira, A.C.; Zamboni, D.S.; Ojcius, D.M.; Scharfstein, J.

    2015-01-01

    Emerging evidence suggests a role for purinergic signaling in the activation of multiprotein intracellular complexes called inflammasomes, which control the release of potent inflammatory cytokines, such as interleukin (IL) -1β and -18. Porphyromonas gingivalis is intimately associated with periodontitis and is currently considered one of the pathogens that can subvert the immune system by limiting the activation of the NLRP3 inflammasome. We recently showed that P. gingivalis can dampen eATP-induced IL-1β secretion by means of its fimbriae in a purinergic P2X7 receptor–dependent manner. Here, we further explore the role of this purinergic receptor during eATP-induced IL-1β processing and secretion by P. gingivalis–infected macrophages. We found that NLRP3 was necessary for eATP-induced IL-1β secretion as well as for caspase 1 activation irrespective of P. gingivalis fimbriae. Additionally, although the secretion of IL-1β from P. gingivalis–infected macrophages was dependent on NLRP3, its adaptor protein ASC, or caspase 1, the cleavage of intracellular pro-IL-1β to the mature form was found to occur independently of NLRP3, its adaptor protein ASC, or caspase 1. Our in vitro findings revealed that P2X7 receptor has a dual role, being critical not only for eATP-induced IL-1β secretion but also for intracellular pro-IL-1β processing. These results were relevant in vivo since P2X7 receptor expression was upregulated in a P. gingivalis oral infection model, and reduced IFN-γ and IL-17 were detected in draining lymph node cells from P2rx7-/- mice. Furthermore, we demonstrated that P2X7 receptor and NLRP3 transcription were modulated in human chronic periodontitis. Overall, we conclude that the P2X7 receptor has a role in periodontal immunopathogenesis and suggest that targeting of the P2X7/NLRP3 pathway should be considered in future therapeutic interventions in periodontitis. PMID:26152185

  17. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  18. Sodium manganese oxide nanobelts with a 2 x 4 tunnel structure: one-step hydrothermal synthesis and electrocatalytic properties.

    PubMed

    Zhang, Xiong; Yang, Wensheng; Chen, Xu; Ma, Yanwei

    2009-10-01

    Sodium manganese oxide nanobelts with a 2 x 4 tunnel structure (Na-2 x 4) have been one-step hydrothermally synthesized at 200 degrees C for a relatively short time (16 h). The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The Na-2 x 4 tunnel manganese oxide nanobelts have the thickness of about 20 nm, the width with ranges from 50 to 200 nm and the length up to several micrometers. The synthetic temperature is critical to the crystal structure of the final products and Na-birnessite is obtained at 120 degrees C. The electrocatalytic activities of the above products are studied for oxygen reduction reaction in aqueous basic medium. The Na-2 x 4 tunnel manganese oxide nanobelts exhibit higher oxygen reduction activity (12.8 mA cm(-2) or 9.09 A g(-1)) than that of Na-birnessite (5.6 mA cm(-2) or 3.98 A g(-1)) at -0.44 V. The Na-2 x 4 tunnel manganese oxide nanobelts could be potentially used as air electrode materials for catalytic reduction of O2 in alkaline fuel cells and metal/air batteries. PMID:19908465

  19. Helium release and microstructural changes in Er(D,T)2-x3Hex films).

    SciTech Connect

    Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon; Banks, James Clifford; Mangan, Michael A.; Rodriguez, Mark Andrew; Brewer, Luke N.; Kotula, Paul Gabriel

    2007-12-01

    Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.

  20. J-2X Rocket Engine, 40-Second Test

    NASA Video Gallery

    NASA conducted a 40-second test of the J-2X rocket engine Sept. 28, the most recent in a series of tests of the next-generation engine selected as part of the Space Launch System architecture that ...

  1. Successful First J-2X Combustion Stability Test

    NASA Video Gallery

    NASA conducted a key stability test firing of the J-2X rocket engine Dec. 1, marking another step forward in development of the upper-stage engine that will carry humans farther into space than eve...

  2. J-2X Nozzle Extension Goes the Distance

    NASA Video Gallery

    NASA engineers conducted a 550-second test of the new J-2X rocket engine at Stennis Space Center in Mississippi on July 13. The test, conducted on the A-2 Test Stand, continued a series of firings ...

  3. J-2X Engine 'Goes the Distance' at Stennis

    NASA Video Gallery

    J-2X rocket engine testing continues at NASA's Stennis Space Center in Mississippi with the second in a series of tests conducted on Feb. 27. The 550-second, full-duration test provided critical in...

  4. Start Me Up! J-2X Rocket Test

    NASA Video Gallery

    NASA engineers conducted the first in a new round of tests on the next-generation J-2X rocket engine Feb. 15 at Stennis Space Center. The 35-second test continued progress in development of the eng...

  5. Close Encounter With 'Fired Up' J-2X Engine

    NASA Video Gallery

    This video shows a spillway view of the 550-second, full-duration test of the J-2X engine on Feb. 27 at Stennis Space Center in Mississippi. Data from the test will provide critical information abo...

  6. J-2X Powerpack Test, July 24, 2012

    NASA Video Gallery

    NASA engineers surpassed their previously set J-2X powerpack record at Stennis's Test Complex A with a 1,350-second test on July 24. In this video there are three aspects featured:the outside test ...

  7. J-2X Engine Ready For Second Test Series

    NASA Video Gallery

    Time-lapse video of the installation of J-2X engine 10001 in the A-2 test-stand at Stennis, complete with clamshell assembly and nozzle extension. With these enhancements test engineers will measur...

  8. Throttle Up! J-2X Powerpack Test Sets Record

    NASA Video Gallery

    During a record-breaking June 8 test, engineers throttled the J-2X powerpack up and down several times to explore numerous operating points required for the fuel and oxidizer turbopumps. The result...

  9. J-2X Engine Test Goes Full Duration

    NASA Video Gallery

    NASA conducted a 260-second J-2X engine test at the Stennis Space Center in southern Mississippi on June 13 marking another step in developing the Space Launch System, the next-generation rocket th...

  10. J-2X Engine Test, May 16, 2012

    NASA Video Gallery

    The shake, rattle and roar lasted just seven seconds, but the short J-2X test conducted May 16 at NASA's John C. Stennis Space Center moved the space agency closer to a return to deep space. NASA o...

  11. J-2X Powerpack Test Lights Up the Sky

    NASA Video Gallery

    A burst of flame from a J-2X Powerpack test-firing lights up the sky on Dec. 5, 2012 at NASA's Stennis Space Center in Mississippi. For the first time, the Space Launch System team invited Twitter ...

  12. J-2X Test Articles Using FDM Process

    NASA Technical Reports Server (NTRS)

    Anderson, Ted; Ruf, Joe; Steele, Phil

    2010-01-01

    This viewgraph presentation gives a brief history of the J-2X engine, along with detailed description of the material demonstrator and test articles that were created using Fused Deposition Modeling (FDM) process.

  13. Keep Kids' Mouths Healthy: Brush 2min2X

    MedlinePlus

    ... Kids’ Teeth Teeth Helpful Resources Links Keep Kids’ Mouths Healthy Roll over or click the time line below for healthy mouth information. Email Link Kids' Care Timeline Brush 2min2x - ...

  14. J-2X Engine Continues to Set Standards

    NASA Video Gallery

    Testing of the next-generation J-2X rocket engine continues to set standards. Last fall, the engine attained 100 percent power in just its fourth test and became the fastest U.S. rocket engine to a...

  15. The lymph node neutrophil.

    PubMed

    Hampton, Henry R; Chtanova, Tatyana

    2016-04-01

    Secondary lymphoid organs provide a specialized microenvironment tailored to foster communication between cells of the innate and adaptive immune systems. These interactions allow immune cells to coordinate multilayered defense against pathogens. Until recently dendritic cells and macrophages were thought to comprise the main innate immune cell subsets responsible for delivering signals that drive the adaptive immune response, while the function of neutrophils was largely confined to the innate immune system. However, the discovery of neutrophils in lymph nodes has raised the question of whether neutrophils might play a more extensive role not only in innate immunity per se, but also in coordinating the interactions between innate and adaptive immune responses. In this review we discuss the mechanisms and consequences of neutrophil recruitment to lymph nodes and how this recruitment influences subsequent immune responses both in situ and at distant sites. PMID:27025975

  16. One node driving synchronisation.

    PubMed

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S

    2015-01-01

    Abrupt changes of behaviour in complex networks can be triggered by a single node. This work describes the dynamical fundamentals of how the behaviour of one node affects the whole network formed by coupled phase-oscillators with heterogeneous coupling strengths. The synchronisation of phase-oscillators is independent of the distribution of the natural frequencies, weakly depends on the network size, but highly depends on only one key oscillator whose ratio between its natural frequency in a rotating frame and its coupling strength is maximum. This result is based on a novel method to calculate the critical coupling strength with which the phase-oscillators emerge into frequency synchronisation. In addition, we put forward an analytical method to approximately calculate the phase-angles for the synchronous oscillators.

  17. La2-xSrxCuO4 superconductor nanowire devices

    NASA Astrophysics Data System (ADS)

    Litombe, N. E.; Bollinger, A. T.; Hoffman, J. E.; Božović, I.

    2014-11-01

    La2-xSrxCuO4 nanowire devices have been fabricated and characterized using electrical transport measurements. Nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on the refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale.

  18. La2-xSrxCuO4 superconductor nanowire devices

    DOE PAGES

    Litombe, N. E.; Bollinger, A. T.; Hoffman, J. E.; Božović, I.

    2014-07-02

    La2-xSrxCuO₄ nanowire devices have been fabricated and characterized using electrical transport measurements. In addition, nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale.

  19. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  20. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  1. Relaxation of O2(X 3Σg-, υ = 1) by Atmospherically Relevant Colliders

    NASA Astrophysics Data System (ADS)

    Pejakovic, D. A.; Saran, D. V.; Copeland, R. A.

    2010-12-01

    Emission from H2O molecules in the 6.3-μm band is an important atmospheric observable, because it allows the atmospheric water vapor density profiles to be derived from measured emission intensities. This procedure is reliable only if the collisional processes that affect this emission are accounted for accurately. The two most important such processes involve vibrationally excited O2 molecules: (1) O2(X 3Σg-, υ = 1) + O(3P) ↔ O2(X 3Σg-, υ = 0) + O(3P) and (2) O2(X 3Σg-, υ = 1) + H2O ↔ O2(X 3Σg-, υ = 0) + H2O(ν2). Process (1) was previously investigated in our laboratory using an experimental approach in which O2(X 3Σg-, υ = 1) is probed indirectly, through its interaction with O2(a1Δg, υ = 1), and the latter species is probed via resonance-enhanced multiphoton ionization (REMPI). Both oxygen atoms and O2(a1Δg, υ = 1) are produced by laser photolysis of ozone at 285 nm. With O2 present in the system, O2(X 3Σg-, υ = 1) is rapidly produced in the near-resonant process O2(a1Δg, υ = 1) + O2(X 3Σg-, υ = 0) ↔ O2(X 3Σg-, υ = 1) + O2(a1Δg, υ = 0). The long-time decay of the experimental REMPI signals reflects the kinetics of the coupled O2(X 3Σg-, υ = 1) and O2(a1Δg, υ = 1) populations, and the decay rate is controlled primarily by process (1). This approach proved to be more practical than the one in which O2(X 3Σg-, υ = 1) is probed directly, and it allows for a number of other collisional processes to be investigated by a simple variation of experimental parameters. However, extraction of the rate coefficient for process (1) from the data is nontrivial. We report a refined data analysis approach, based on a combination of numerical and analytical modeling, which allows contributions of competing processes to the measured kinetics to be identified and quantified. This improved data analysis results in a more reliable and more tightly constrained value for the rate coefficient for process (1) compared with the previously reported

  2. Determination of complex index of immersion liquids at 193 nm

    NASA Astrophysics Data System (ADS)

    Stehle, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require the scanners to use the 193 nm ArF* laser line with a very large numerical aperture and a liquid between the optics and the resist. (1) Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation is using the deionized Water (DIW) very pure and not recycled, but when a new optical material for the last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid could be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this high Index fluids (HIF).

  3. Emerging roles of P2X receptors in cancer.

    PubMed

    Adinolfi, Elena; Capece, Marina; Amoroso, Francesca; De Marchi, Elena; Franceschini, Alessia

    2015-01-01

    Tumor microenvironment composition strongly conditions cancer growth and progression, acting not only at cancer itself but also modifying its interactions with immune, endothelial and nervous cells. Extracellular ATP and its receptors recently gained increasing attention in the oncological field. ATP accumulates in cancer milieu through spontaneous release, tumor necrosis or chemotherapy exerting a trophic activity on cancer cells, modulating the cross talk among tumor, and surrounding tissues. Accordingly, ATP gated P2X receptors emerged as central players in tumor development, invasion, progression and related symptoms. Indeed, P2X receptors are expressed and are functional not only on tumor cells but also in immune-infiltrate and nearby neurons. In this review, we summarize recent findings on P2X receptors role in tumor cell differentiation, bioenergetics, angiogenesis, metastasis and associated pain, giving an outline of the potential anti-neoplastic activity of receptor agonists and antagonists. PMID:25312206

  4. Testing for the J-2X Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2010-01-01

    NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.

  5. Witnessing quantum discord in 2xN systems

    SciTech Connect

    Bylicka, Bogna; Chruscinski, Dariusz

    2010-06-15

    Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2xN states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states strong PPT (SPPT). Therefore, we provide a natural witness for a quantum discord: if a 2xN state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.

  6. Maltodextrin and fat preference deficits in "taste-blind" P2X2/P2X3 knockout mice.

    PubMed

    Sclafani, Anthony; Ackroff, Karen

    2014-07-01

    Adenosine triphosphate is a critical neurotransmitter in the gustatory response to the 5 primary tastes in mice. Genetic deletion of the purinergic P2X2/P2X3 receptor greatly reduces the neural and behavioral response to prototypical primary taste stimuli. In this study, we examined the behavioral response of P2X double knockout mice to maltodextrin and fat stimuli, which appear to activate additional taste channels. P2X double knockout and wild-type mice were given 24-h choice tests (vs. water) with ascending concentrations of Polycose and Intralipid. In Experiment 1, naive double knockout mice, unlike wild-type mice, were indifferent to dilute (0.5-4%) Polycose solutions but preferred concentrated (8-32%) Polycose to water. In a retest, the Polycose-experienced double knockout mice, like wild-type mice, preferred all Polycose concentrations. In Experiment 2, naive double knockout mice, unlike wild-type mice, were indifferent to dilute (0.313-2.5%) Intralipid emulsions but preferred concentrated (5-20%) Intralipid to water. In a retest, the fat-experienced double knockout mice, like wild-type mice, strongly preferred 0.313-5% Intralipid to water. These results indicate that the inherent preferences of mice for maltodextrin and fat are dependent upon adenosine triphosphate taste cell signaling. With experience, however, P2X double knockout mice develop strong preferences for the nontaste flavor qualities of maltodextrin and fat conditioned by the postoral actions of these nutrients.

  7. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  8. Coarse-node computations with an adaptive node structure

    SciTech Connect

    Tzanos, C.P.

    1988-01-01

    The analysis with COMMIX of liquid metal reactor (LMR) intermediate heat exchanger (IHX) transients that are characterized by low flows, and especially imbalanced low flows, shows that if a coarse-node structure is used the predicted temperatures are significantly different than those given by a fine-node structure. If a fine-node structure is used, for problems that involve a large part of the plant, the computation time becomes excessive. This paper presents an improved version of an adaptive node structure. At this stage this version has been applied only to one-dimensional problems.

  9. J-2X Powerpack Test Lights Up the Night

    NASA Video Gallery

    In a brief but dazzling display, a 1.86-second burst of flame emerges from the A-1 test stand at Stennis Space Center as NASA kicks off the first in a series of J-2X powerpack tests the evening of ...

  10. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  11. Testing and Functions of the J2X Gas Generator

    NASA Technical Reports Server (NTRS)

    Miller, Nicholas

    2009-01-01

    The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.

  12. Credit WCT. Original 2'" x 2%" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-%" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the propellant cutter as it was originally installed (JPL negative no. 381-2274A, 29 June 1962) - Jet Propulsion Laboratory Edwards Facility, Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  13. 4. Credit WCT. Original 2'" x 21" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Original 2-'" x 2-1" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the control room in use, with JPL employees Ron Wright, Harold Anderson, and John Morrow presiding. (JPL negative no. JPL-10288A, 27 January 1989.) - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  14. Ac Impedance Spectroscopic Studies on Li2xPb2xBaP2O7

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Selvasekarapandian, S.

    2002-12-01

    The complex diphosphate (P2O7)4- ions have been used as a building blocks in wide variety of crystal phases for a wide spectrum of physical and chemical properties. Lithium barium diphsophate doped with lead {Li2-xPb2xBaP2O7 (x = 0, 0.2 & 0.4)} has been prepared by solid state reaction method The conductivity is found to be decreasing with the doping of lead. The lithium ion dynamics parameters such as hopping frequency and relaxation frequency were calculated from the frequency dependent conductivity and modulus analysis.

  15. Compression in wearable sensor nodes: impacts of node topology.

    PubMed

    Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther

    2014-04-01

    Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory.

  16. Compression in wearable sensor nodes: impacts of node topology.

    PubMed

    Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther

    2014-04-01

    Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory. PMID:24658233

  17. Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights.

    PubMed

    Dwibedi, Debasmita; Ling, Chris D; Araujo, Rafael B; Chakraborty, Sudip; Duraisamy, Shanmughasundaram; Munichandraiah, Nookala; Ahuja, Rajeev; Barpanda, Prabeer

    2016-03-23

    Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe(II)2(SO4)3 has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe(II)2-x(SO4)3. It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM(II)2-x(SO4)3 (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 °C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe(II)2-x(SO4)3 having tunable size (300 nm ∼5 μm) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.

  18. Engine Gimbal Requirements for Ground Testing of J-2X

    NASA Technical Reports Server (NTRS)

    Kovalcik, Julia; Leahy, Joe

    2009-01-01

    Based on the Apollo-era J-2 that powered the second and third stages of the Saturn V, the current J-2X is the liquid hydrogen and oxygen high-altitude rocket engine in development for both the Ares I Upper Stage and Ares V Earth Departure Stage. During my summer 2009 internship, J-2X was at a stage in its design maturity where verification testing needed to be considered for the benefit of adequate test facility preparation. My task was to focus on gimbal requirements and gimbal related hot-fire test plans. Facility capabilities were also of interest, specifically for hot-fire testing slated to occur at test stands A-1, A-2, and A-3 at Stennis Space Center(SSC) in Bay St. Louis, Mississippi. Gimbal requirements and stage interface conditions were investigated by applying a top-to-bottom systems engineering approach, which involved system level requirements, engine level requirements from both government and engine contractor perspectives, component level requirements, and the J-2X to Upper Stage and Earth Departure Stage interface control documents. Previous hydrogen and oxygen liquid rocket engine gimbal verification methods were researched for a glimpse at lessons learned. Discussion among the J-2X community affected by gimballing was organized to obtain input relative to proper verification of their respective component. Implementing suggestions such as gimbal pattern, angulated dwell time, altitude testing options, power level, and feed line orientation, I was able to match tests to test stands in the A Complex at SSC. Potential test capability gaps and risks were identified and pursued. The culmination of all these efforts was to coordinate with SSC to define additional facility requirements for both the A-3 altitude test stand that is currently under construction and the A-1 sea level test stand which is being renovated

  19. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  20. J-2X, The Engine of the Future

    NASA Technical Reports Server (NTRS)

    Smith, Gail

    2009-01-01

    My project was two-fold, with both parts involving the J-2X Upper Stage engine (which will be used on both the Ares I and V). Mainly, I am responsible for using a program called Iris to create visual represen tations of the rocket engine's telemetry data. Also, my project includes the application of my newly acquired Pro Engineer skills in develo ping a 3D model of the engine's nozzle.

  1. 11nm logic lithography with OPC-lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Hara, Arisa

    2014-03-01

    CMOS logic at the 22nm node and below is being done with a highly regular layout style using Gridded Design Rules (GDR). Smaller nodes have been demonstrated using a "lines and cuts" approach with good pattern fidelity and process margin, with extendibility to ~7nm.[1] In previous studies, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective down to the 12nm node.[2,3,4,5,6] The transition from single- to double- and in some cases triple- patterning was evaluated for different layout styles, with highly regular layouts delaying the need for multiple-patterning compared to complex layouts. To address mask complexity and cost, OPC for the "cut" patterns was studied and relatively simple OPC was found to provide good quality metrics such as MEEF and DOF.[3,7,8] This is significant since mask data volumes of >500GB per layer are projected for pixelated masks created by complex OPC or inverse lithography; writing times for such masks are nearly prohibitive. In our present work, we extend the scaling using SMO with "OPC Lite" beyond 12nm. The focus is on the contact pattern since a "hole" pattern is similar to a "cut" pattern so a similar technique should be useful. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous studies. The contact pattern is a relatively dense layer since it connects two underlying layers - active and gate - to one overlying layer - metal-1. Several design iterations were required to get suitable layouts while maintaining circuit functionality. Experimental demonstration of the contact pattern using OPC-Lite will be presented. Wafer results have been obtained at a metal-1 half-pitch of 18nm, corresponding to the 11nm CMOS node. Additional results for other layers - FINs, local interconnect, and metal-1 - will also be discussed.

  2. Electrical properties of NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Kwizera, P.; Dresselhaus, M. S.; Adler, D.

    1980-03-01

    We report results of measurements of electrical conductivity, thermoelectric power, and Hall effect on single crystals of NiS2-xSex (0.1<=x<=1.5). These results cannot be understood using the one-electron approximation but are explained quantitatively by assuming both strong electronic correlations and strong electron-phonon interactions in the 3d eg band associated with the nickel ions. The NiS2-xSex compounds are of particular interest insofar as they permit study of the effect of increasing bandwidth without a change of the basic occupation of states in the correlation-split eg bands. In our model, pure stoichiometric NiS2-xSex (x<0.6) is a Mott insulator with an energy gap due to the correlation splitting of the nickel eg band. However, in all real samples, nonstoichiometry and/or traces of impurities lead to a small concentration of free carriers at all temperatures. These carriers form small polarons, which ordinarily conduct only by means of thermally activated hopping in a very narrow band. For 0.45<=x<0.6, the conductivity decreases with increasing temperature below about 100 K. We interpret this unusual behavior as due to small-polaron band conduction, a phenomenon predicted by Holstein and others at low temperatures but heretofore unconfirmed. For x>=0.6, small polarons do not form, and the system is metallic at all temperatures.

  3. P2X4R+ microglia drive neuropathic pain

    PubMed Central

    Beggs, Simon; Trang, Tuan; Salter, Michael W

    2016-01-01

    Neuropathic pain, the most debilitating of all clinical pain syndromes, may be a consequence of trauma, infection or pathology from diseases that affect peripheral nerves. Here we provide a framework for understanding the spinal mechanisms of neuropathic pain as distinct from those of acute pain or inflammatory pain. Recent work suggests that a specific microglia response phenotype characterized by de novo expression of the purinergic receptor P2X4 is critical for the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Stimulating P2X4 receptors initiates a core pain signaling pathway mediated by release of brain-derived neurotrophic factor, which produces a disinhibitory increase in intracellular chloride in nociceptive (pain-transmitting) neurons in the spinal dorsal horn. The changes caused by signaling from P2X4R+ microglia to nociceptive transmission neurons may account for the main symptoms of neuropathic pain in humans, and they point to specific interventions to alleviate this debilitating condition. PMID:22837036

  4. J-2X Fuel Pump Impeller Seal Simulations

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.; West, Jeffrey S.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the previously cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. The rotor-dynamic stability of the fuel turbopump is highly dependent on the tangential velocity of the fluid as it enters the the front face impeller seal. Rotor-dynamic analysis predicts that a much lower tangential velocity will be required for stability than was needed for previous engines. The geometry at the seal entrance for this engine is very complex and vastly different than previous engines. In order to better determine the fluid dynamics and tangential velocity in this seal several CFD simulations were performed. The results of these simulations show that for this seal geometry a great reduction in the tangential velocity is to be expected. The simulations also provided insight into methods that could be employed to drive the swirl velocity to near zero. Unsteady and time-averaged results of several simulations will be presented.

  5. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  6. [Lymph node metastasis of osteosarcomas].

    PubMed

    Vasil'ev, N V

    2016-01-01

    Lymph node metastasis of osteosarcomas is a rather rare phenomenon; according to different authors, the incidence of lymph node metastasis is 4 to 11%. The detection of lymph node metastases in osteosarcoma is associated with a significant reduction in the 5-year survival of patients and allows its classification as clinical stage IV tumor. The risk factors for lymph node metastases in patients with bone sarcomas are age (≥64 years), gender (female), nosological entity (undifferentiated pleomorphic sarcoma, osteosarcoma, chondrosarcoma), tumor depth (muscle, bone), and the size of primary tumor (>5 сm). The mechanism of lymph node metastasis of osteosarcomas seems to be related to mesenchymal-to-epithelial transition. PMID:27600784

  7. A fluorescent approach for identifying P2X1 ligands

    PubMed Central

    Ruepp, Marc-David; Brozik, James A.; de Esch, Iwan J.P.; Farndale, Richard W.; Murrell-Lagnado, Ruth D.; Thompson, Andrew J.

    2015-01-01

    There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology

  8. Synthesis of a new CaxY2-xVxSn2-xO7 yellow pigment

    NASA Astrophysics Data System (ADS)

    Gargori, C.; Galindo, R.; Cerro, S.; García, A.; Llusar, M.; Monrós, G.

    In this communication a new ceramic pigment based on codoping pyrochlore Y 2Sn2O7 with V 5+ and Ca2+ has been obtained. The limit of solid solution of CaxY 2-xV xSn2-xO7 is around x = 0.16. Pigment becomes stable in double firing glazes (CIEL∗a∗b∗=78/5/35 5% w. enamelled) but unstable in single firing glazes such as based on CaO-ZnO-SiO2 chemical system. Using unconventional methods of synthesis the reactivity of the system and final pigmenting power of the powder is enhanced in the case of ammonia coprecipitation of a mixture of nitrates and tin chloride.

  9. Global analysis of general SU(2)xSU(2)xU(1) models with precision data

    SciTech Connect

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.-P.; Schmitz, Kai

    2010-08-01

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2)xSU(2)xU(1), often denoted as G(221) models, which include as examples the left-right, the leptophobic, the hadrophobic, the fermiophobic, the un-unified, and the nonuniversal models. Using an effective Lagrangian approach, we compute the shifts to the coefficients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z{sup '} and W{sup '} bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours.

  10. Lymph node mapping using quantum dot-labeled polymersomes.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Nikolova, Biliana; Murayama, Shuhei; Lazarova, Desislava; Tsoneva, Iana; Aoki, Ichio

    2015-10-01

    The present study was designed to investigate whether poly-ion complex hollow vesicles (polymersomes), based on chemically-modified chitosan, are appropriate for lymph node mapping in the context of their application in the development of theranostic nanosized drug delivery systems (nano-DDS). The experiments were performed on Balb/c nude mice (colon cancer-grafted). The mice were subjected to anesthesia and quantum dot (QD(705))-labeled polymersomes (d-120 nm) were injected intravenously via the tail vein. The optical imaging was carried out on Maestro EX Imaging System (excitation filter: 435-480 nm; emission filter: 700 nm). A strong fluorescent signal, corresponding to QD(705) fluorescence, was detected in the lymph nodes, as well as in the tumor. A very weak fluorescent signal was found in the liver area. The half-life of QD(705)-labelled polymersomes was 6 ± 2 hours in the bloodstream and 11 ± 3 hours in the lymph nodes. The data suggest that polymersomes are very promising carriers for lymph node mapping using QD as a contrast agent. They are useful matrix for development of nano-formulations with theranostic capabilities.

  11. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  12. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  13. Connecting node and method for constructing a connecting node

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    A connecting node comprises a polyhedral structure comprising a plurality of panels joined together at its side edges to form a spherical approximation, wherein at least one of the plurality of panels comprises a faceted surface being constructed with a passage for integrating with one of a plurality of elements comprising a docking port, a hatch, and a window that is attached to the connecting node. A method for manufacturing a connecting node comprises the steps of providing a plurality of panels, connecting the plurality of panels to form a spherical approximation, wherein each edge of each panel of the plurality is joined to another edge of another panel, and constructing at least one of the plurality of panels to include a passage for integrating at least one of a plurality of elements that may be attached to the connecting node.

  14. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface.

  15. Differential gene expression patterns and colocalization of ATP-gated P2X6/P2X4 ion channels during rat small intestine ontogeny.

    PubMed

    Padilla, Karla; Gonzalez-Mendoza, David; Berumen, Laura C; Escobar, Jesica E; Miledi, Ricardo; García-Alcocer, Guadulupe

    2016-07-01

    Gene coding for ATP-gated receptor ion channels (P2X1-7) has been associated with the developmental process in various tissues; among these ion channel subtypes, P2X6 acts as a physiological regulator of P2X4 receptor functions when the two receptors form heteroreceptors. The P2X4 receptor is involved in pain sensation, the inflammatory process, and body homeostasis by means of Mg(2+) absorption through the intestine. The small intestine is responsible for the absorption and digestion of nutrients; throughout its development, several gene expressions are induced that are related to nutrients received, metabolism, and other intestine functions. Previous work has shown a differential P2X4 and P2X6 protein distribution in the small intestine of newborn and adult rats; however, it is not well-known at what age the change in the relationship between the gene and protein expression occurs and whether or not these receptors are colocalized. In this work, we evaluate P2X4 and P2X6 gene expression patterns by qPCR from embryonic (E18, P0, P7, P17, P30) to adult age in rat gut, as well as P2X6/P2X4 colocalization using qRT-PCR and confocal immunofluorescence in proximal and distal small intestine sections. The results showed that P2X6 and P2X4 gene expression levels of both receptors decreased at the embryonic-perinatal transition, whereas from ages P17 to P30 (suckling-weaning transition) both receptors increased their gene expression levels. Furthermore, P2X4 and P2X6 proteins were expressed in a different way during rat small intestine development, showing a higher colocalization coefficient at age P30 in both intestine regions. Those results suggest that purinergic receptors may play a role in intestinal maturation, which is associated with age and intestinal region.

  16. Deletion of P2X2 and P2X3 Receptor Subunits Does Not Alter Motility of the Mouse Colon

    PubMed Central

    DeVries, Matthew P.; Vessalo, Megan; Galligan, James J.

    2010-01-01

    Purinergic P2X receptors contribute to neurotransmission in the gut. P2X receptors are ligand-gated cation channels that mediate synaptic excitation in subsets of enteric neurons. The present study evaluated colonic motility in vitro and in vivo in wild type (WT) and P2X2 and P2X3 subunit knockout (KO) mice. The muscarinic receptor agonist, bethanechol (0.3–3 μM), caused similar contractions of the longitudinal muscle in colon segments from WT, P2X2 and P2X3 subunit KO mice. Nicotine (1–300 μM), acting at neuronal nicotinic receptors, caused similar longitudinal muscle relaxations in colonic segments from WT and P2X2 and P2X3 subunit KO mice. Nicotine-induced relaxations were inhibited by nitro-l-arginine (NLA, 100 μM) and apamin (0.1 μM) which block inhibitory neuromuscular transmission. ATP (1–1000 μM) caused contractions only in the presence of NLA and apamin. ATP-induced contractions were similar in colon segments from WT, P2X2 and P2X3 KO mice. The mouse colon generates spontaneous migrating motor complexes (MMCs) in vitro. The MMC frequency was higher in P2X2 KO compared to WT tissues; other parameters of the MMC were similar in colon segments from WT, P2X2 and P2X3 KO mice. 5-Hydroxytryptophan-induced fecal output was similar in WT, P2X2 and P2X3 KO mice. These data indicate that nicotinic receptors are located predominately on inhibitory motor neurons supplying the longitudinal muscle in the mouse colon. P2X2 or P2X3 subunit containing receptors are not localized to motor neurons supplying the longitudinal muscle. Synaptic transmission mediated by P2X2 or P2X3 subunit containing receptors is not required for propulsive motility in the mouse colon. PMID:20582262

  17. 10 Years of Car-2-X Communication - a Success Story?

    NASA Astrophysics Data System (ADS)

    Wischhof, Lars; Ebner, André

    2012-05-01

    For more than ten years, car-2-x communication has been a major topic of research in the scientific community and an important development focus for the automotive industry. First, this article takes a retrospective look at the evolution of car-2-x and the two different communication paradigms: decentralized car-2-car communication and centralized cellular solutions. Afterwards, a comparison of their technical advantages and limitations is presented, respectively. The result shows that in order to implement safety-relevant applications, car-2-car communication has strong advantages compared to cellular technologies but requires high market penetration. However, its introduction solely for safety applications is difficult since the required penetration will not be achieved until several years after initial deployment. Therefore, car-2-car communication must provide a benefit to the customer, even in the phase of market introduction. For this purpose, the article outlines an approach called SODAD (Segment-Oriented Data Abstraction and Dissemination). It offers a possibility to introduce decentralized vehicular applications with early customer benefit, in order to enable safety applications based on car-2-car communication on a long term.

  18. The J-2X Oxidizer Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  19. Node weighted network upgrade problems

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Marathe, M.V.; Ravi, S.S.

    1996-09-01

    Consider a network where nodes represent processors and edges represent bidirectional communication links. The processor at a node v can be upgraded at an expense of cost(v). Such an upgrade reduces the delay of each link emanating from v by a fixed factor x, where 0 < x < 1. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has a spanning tree in which edge is of delay at most a given value {delta}. The authors provide both hardness and approximation results for the problem. They show that the problem is NP-hard and cannot be approximated within any factor {beta} < ln n, unless NP {improper_subset} DTIME(n{sup log log n}), where n is the number of nodes in the network. They then present the first polynomial time approximation algorithms for the problem. For the general case, the approximation algorithm comes within a factor of 2 ln n of the minimum upgrading cost. When the cost of upgrading each node is 1, they present an approximation algorithm with a performance guarantee of 4(2 + ln {Delta}), where {Delta} is the maximum node degree. Finally, they present a polynomial time algorithm for the class of treewidth-bounded graphs.

  20. Node, Node-Link, and Node-Link-Group Diagrams: An Evaluation.

    PubMed

    Saket, Bahador; Simonetto, Paolo; Kobourov, Stephen; Börner, Katy

    2014-12-01

    Effectively showing the relationships between objects in a dataset is one of the main tasks in information visualization. Typically there is a well-defined notion of distance between pairs of objects, and traditional approaches such as principal component analysis or multi-dimensional scaling are used to place the objects as points in 2D space, so that similar objects are close to each other. In another typical setting, the dataset is visualized as a network graph, where related nodes are connected by links. More recently, datasets are also visualized as maps, where in addition to nodes and links, there is an explicit representation of groups and clusters. We consider these three Techniques, characterized by a progressive increase of the amount of encoded information: node diagrams, node-link diagrams and node-link-group diagrams. We assess these three types of diagrams with a controlled experiment that covers nine different tasks falling broadly in three categories: node-based tasks, network-based tasks and group-based tasks. Our findings indicate that adding links, or links and group representations, does not negatively impact performance (time and accuracy) of node-based tasks. Similarly, adding group representations does not negatively impact the performance of network-based tasks. Node-link-group diagrams outperform the others on group-based tasks. These conclusions contradict results in other studies, in similar but subtly different settings. Taken together, however, such results can have significant implications for the design of standard and domain snecific visualizations tools. PMID:26356937

  1. LCP nanoparticle for tumor and lymph node metastasis imaging

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Cheng

    A lipid/calcium/phosphate (LCP) nanoparticle formulation (particle diameter ˜25 nm) has previously been developed to delivery siRNA with superior efficiency. In this work, 111In was formulated into LCP nanoparticles to form 111In-LCP for SPECT/CT imaging. With necessary modifications and improvements of the LCP core-washing and surface-coating methods, 111In-LCP grafted with polyethylene glycol exhibited reduced uptake by the mononuclear phagocytic system. SPECT/CT imaging supported performed biodistribution studies, showing clear tumor images with accumulation of 8% or higher injected dose per gram tissue (ID/g) in subcutaneous, human-H460, lung-cancer xenograft and mouse-4T1, breast cancer metastasis models. Both the liver and the spleen accumulated ˜20% ID/g. Accumulation in the tumor was limited by the enhanced permeation and retention effect and was independent of the presence of a targeting ligand. A surprisingly high accumulation in the lymph nodes (˜70% ID/g) was observed. In the 4T1 lymph node metastasis model, the capability of intravenously injected 111In-LCP to visualize the size-enlarged and tumor-loaded sentinel lymph node was demonstrated. By analyzing the SPECT/CT images taken at different time points, the PK profiles of 111In-LCP in the blood and major organs were determined. The results indicated that the decrement of 111In-LCP blood concentration was not due to excretion, but to tissue penetration, leading to lymphatic accumulation. Larger LCP (diameter ˜65 nm) nanoparticles were also prepared for the purpose of comparison. Results indicated that larger LCP achieved slightly lower accumulation in the tumor and lymph nodes, but much higher accumulation in the liver and spleen; thus, larger nanoparticles might not be favorable for imaging purposes. We also demonstrated that LCP with a diameter of ˜25 nm were better able to penetrate into tissues, travel in the lymphatic system and preferentially accumulate in the lymph nodes due to 1) small

  2. Anatomy and histology of Virchow's node.

    PubMed

    Mizutani, Masaomi; Nawata, Shin-ichi; Hirai, Ichiro; Murakami, Gen; Kimura, Wataru

    2005-12-01

    A regional lymphatic system is composed of the first, second, third and even fourth or much more intercalated nodes along the lymptatic route from the periphery to the venous angle or the thoracic duct. The third or fourth node is usually termed the last-intercalated node or end node along the route. Similarly, one of the supraclavicular nodes is known to correspond to the end node along the thoracic duct. It is generally called 'Virchow's node', in which the famous 'Virchow's metastasis' of advanced gastric cancer occurs. The histology of this node has not been investigated, although region-specific differences in histology are evident in human lymph nodes. We found macroscopically the end node in five of 30 donated cadavers. Serial sections were prepared for these five nodes and sections stained with hematoxylin and eosin. Histological investigation revealed that, on the inferior or distal side of the end node, the thoracic duct divided into three to 10 collateral ducts and these ducts surrounded the node. The node communicated with the thoracic duct and its collaterals at multiple sites in two to three hilus-like portions, as well as along the subcapsular sinus. Thus, the end node was aligned parallel to the thoracic duct. Moreover, the superficial and deep cortex areas of the end node were fragmented to make an island-like arrangement, which may cause the short-cut intranodal shunt. Consequenly, the filtration function of most of Virchow's node seemed to be quite limited.

  3. Management of optics. [for HEAO-2 X ray telescope

    NASA Technical Reports Server (NTRS)

    Kirchner, T. E.; Russell, M.

    1981-01-01

    American Science and Engineering, Inc., designed the large X-ray optic for the HEAO-2 X-ray Telescope. The key element in this project was the High Resolution Mirror Assembly (HRMA), subcontracting the fabrication of the optical surfaces and their assembly and alignment. The roles and organization of the key participants in the creation of HRMA are defined, and the degree of interaction between the groups is described. Management of this effort was extremely complex because of the intricate weaving of responsibilities, and AS&E, as HEAO-2 Program managers, needed to be well versed in the scientific objectives, the technical requirements, the program requirements, and the subcontract management. Understanding these factors was essential for implementing both technical and management controls, such as schedule and budget constraints, in-process control, residence requirements, and scientist review and feedback. Despite unforeseen technical problems and interaction differences, the HEAO-2 was built on schedule and to specification.

  4. J-2X: Progress on the Ares Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas D.; Kynard, Michael H.

    2007-01-01

    NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle (CaLV). The J-2X engine epitomizes NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system. As envisioned by the Exploration Systems Architecture Study (ESAS), the reference lunar mission would begin by launching the Ares V into orbit with the Earth Departure Stage (EDS) transporting the Lunar Surface Access Module (LSAM), followed by the Ares I, carrying the Orion Crew Exploration Vehicle, which would rendezvous with the EDS/LSAM before beginning its journey to the Moon.

  5. Semiconductivity in YBa2 - xSrxCu3Oy

    NASA Astrophysics Data System (ADS)

    Uluǧ, A.; Uluǧ, B.; Şener, E.

    1996-08-01

    Structural and electrical properties of YBa2-xSrxCu3Oy prepared under ambient oxygen pressure were systematically investigated for 0≤x≤2.0. Samples with high Sr contents, x≥1.7, showed semiconductive properties with an activation energy of ˜150 meV at high temperature, T≥80 K. At low temperatures, T≤80 K, activation energy dropped to ˜3.00 and ˜0.85 meV for x=1.7-1.8 and x=1.9-2.0, respectively. It is argued that YSr2Cu3Oy is likely to have a tetragonal structure and that the disorder introduced by Sr substitution affects electrical conduction, which involves charge hopping between the CuO chains at high Sr contents.

  6. Thermodynamics of fission products in UO2+-x

    SciTech Connect

    Nerikar, Pankaj V

    2009-01-01

    The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.

  7. Subscale Injector Testing to Support J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Elam, Sandy; Weber, Jim; Miller, Ken

    2008-01-01

    The J-2X engine being pursued for the Ares I will be a derivative of the J-2 engine developed by Pratt & Whitney Rocketdyne (PWR). As part of the engine development, a subscale injector was fabricated by PWR and hot-fire tested at NASA s Marshall Space Flight Center (MSFC) to evaluate performance data. This subscale injector had a reduced injector diameter and fewer elements than the full scale design, but the element density (#elements / injector area), and element geometries nearly identical to the full scale design. Three different materials were used for the LOX posts in order to test for durability. The subscale injector included 46 standard elements and 6 baffle elements, corresponding to the ratio of baffled elements to core elements in the full scale design. The baffle elements were included to demonstrate thermal compatibility of the baffles and to more closely represent the full scale performance. Fifteen hot-fire tests were conducted totaling over 200 seconds of mainstage time on the injector. Chamber pressures with oxygen/hydrogen propellants ranged from 870-1380 psig with mixture ratios ranging from 4.8-6.1. Fuel manifold inlet temperatures were varied from 190 to 300 R. Modular, water cooled, calorimeter chamber assemblies were used to provide heating rate data and evaluate the effects of characteristic length (L*). Performance was evaluated relative to the resulting characteristic velocity (C*) efficiency. Performance met the value required in order to proceed with this design for the full scale hardware. Hardware inspections show no evidence of cracking at the tip of the LOX post for any of the materials tested. Minor erosion of the baffle element tips was observed in the early testing. A design change was quickly implemented and tested, and this change resolved the issue. Development of the J-2X is continuing with this element density and design.

  8. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  9. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines.

    PubMed

    Lee, Changho; Kim, Jeesu; Zhang, Yumiao; Jeon, Mansik; Liu, Chengbo; Song, Liang; Lovell, Jonathan F; Kim, Chulhong

    2015-12-01

    Demarking lymph node networks is important for cancer staging in clinical practice. Here, we demonstrate in vivo dual-color photoacoustic lymphangiography using all-organic nanoformulated naphthalocyanines (referred to as nanonaps). Nanonap frozen micelles were self-assembled from two different naphthalocyanine dyes with near-infrared absorption at 707 nm or 860 nm. These allowed for noninvasive, nonionizing, high resolution photoacoustic identification of separate lymphatic drainage systems in vivo. With both types of nanonaps, rat lymph nodes buried deeply below an exogenously-placed 10 mm thick layer of chicken breast were clearly visualized in vivo. These results show the potential of multispectral photoacoustic imaging with nanonaps for detailed mapping of lymphatic drainage systems. PMID:26408999

  10. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines.

    PubMed

    Lee, Changho; Kim, Jeesu; Zhang, Yumiao; Jeon, Mansik; Liu, Chengbo; Song, Liang; Lovell, Jonathan F; Kim, Chulhong

    2015-12-01

    Demarking lymph node networks is important for cancer staging in clinical practice. Here, we demonstrate in vivo dual-color photoacoustic lymphangiography using all-organic nanoformulated naphthalocyanines (referred to as nanonaps). Nanonap frozen micelles were self-assembled from two different naphthalocyanine dyes with near-infrared absorption at 707 nm or 860 nm. These allowed for noninvasive, nonionizing, high resolution photoacoustic identification of separate lymphatic drainage systems in vivo. With both types of nanonaps, rat lymph nodes buried deeply below an exogenously-placed 10 mm thick layer of chicken breast were clearly visualized in vivo. These results show the potential of multispectral photoacoustic imaging with nanonaps for detailed mapping of lymphatic drainage systems.

  11. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors.

    PubMed

    Kowalski, Maria; Hausmann, Ralf; Schmid, Julia; Dopychai, Anke; Stephan, Gabriele; Tang, Yong; Schmalzing, Günther; Illes, Peter; Rubini, Patrizia

    2015-12-01

    The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits. PMID:26184350

  12. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors.

    PubMed

    Kowalski, Maria; Hausmann, Ralf; Schmid, Julia; Dopychai, Anke; Stephan, Gabriele; Tang, Yong; Schmalzing, Günther; Illes, Peter; Rubini, Patrizia

    2015-12-01

    The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits.

  13. Swiss EMBnet node web server.

    PubMed

    Falquet, Laurent; Bordoli, Lorenza; Ioannidis, Vassilios; Pagni, Marco; Jongeneel, C Victor

    2003-07-01

    EMBnet is a consortium of collaborating bioinformatics groups located mainly within Europe (http://www.embnet.org). Each member country is represented by a 'node', a group responsible for the maintenance of local services for their users (e.g. education, training, software, database distribution, technical support, helpdesk). Among these services a web portal with links and access to locally developed and maintained software is essential and different for each node. Our web portal targets biomedical scientists in Switzerland and elsewhere, offering them access to a collection of important sequence analysis tools mirrored from other sites or developed locally. We describe here the Swiss EMBnet node web site (http://www.ch.embnet.org), which presents a number of original services not available anywhere else.

  14. La2-xSrxCuO4 superconductor nanowire devices

    SciTech Connect

    Litombe, N. E.; Bollinger, A. T.; Hoffman, J. E.; Božović, I.

    2014-07-02

    La2-xSrxCuO₄ nanowire devices have been fabricated and characterized using electrical transport measurements. In addition, nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale.

  15. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  16. EUV reticle inspection with a 193nm reticle inspector

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Inderhees, Gregg; Yamamoto, Tetsuya; Lee, Isaac; Lim, Phillip

    2013-06-01

    The prevailing industry opinion is that EUV Lithography (EUVL) will enter High Volume Manufacturing (HVM) in the 2015 - 2017 timeframe at the 16nm HP node. Every year the industry assesses the key risk factors for introducing EUVL into HVM - blank and reticle defects are among the top items. To reduce EUV blank and reticle defect levels, high sensitivity inspection is needed. To address this EUV inspection need, KLA-Tencor first developed EUV blank inspection and EUV reticle inspection capability for their 193nm wavelength reticle inspection system - the Teron 610 Series (2010). This system has become the industry standard for 22nm / 3xhp optical reticle HVM along with 14nm / 2xhp optical pilot production; it is further widely used for EUV blank and reticle inspection in R and D. To prepare for the upcoming 10nm / 1xhp generation, KLA-Tencor has developed the Teron 630 Series reticle inspection system which includes many technical advances; these advances can be applied to both EUV and optical reticles. The advanced capabilities are described in this paper with application to EUV die-to-database and die-to-die inspection for currently available 14nm / 2xhp generation EUV reticles. As 10nm / 1xhp generation optical and EUV reticles become available later in 2013, the system will be tested to identify areas for further improvement with the goal to be ready for pilot lines in early 2015.

  17. SU(2) x U(1) vacuum and the Centauro events

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.

    1984-01-01

    It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E is approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately = 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. Assuming further, that the Centauro events are to the explosive decay of these metastable bubbles, a relationship between their lifetime, tau, and the threshold energy for bubble formation, E sub th, is derived. The minimum lifetime consistent with such an interpretation in tau is approximately 10 to the -8th power sec, while the E sub th appears to be insensitive to the value of tau and always close to E sub th is approximately 10 to the 15th power eV. Finally it is speculated that if the available CM energy is thermalized in such collisions, these bubbles might be manifestations of excitations of the SU(2) x U(1) false vacuum. The absence of neutral pions in the Centauro events is then explained by the decay of these excitations.

  18. Effects of antidepressants on P2X7 receptors.

    PubMed

    Wang, Wei; Xiang, Zheng-Hua; Jiang, Chun-Lei; Liu, Wei-Zhi; Shang, Zhi-Lei

    2016-08-30

    Antidepressants including paroxetine, fluoxetine and desipramine are commonly used for treating depression. P2×7 receptors are member of the P2X family. Recent studies indicate that these receptors may constitute a novel potential target for the treatment of depression. In the present study, we examined the action of these antidepressants on cloned rat P2×7 receptors that were stably expressed in human embryonic kidney (HEK) 293 cells by using the whole-cell patch-clamp technique, and found that paroxetine at a dose of 10µM could significantly reduce the inward currents evoked by the P2×7 receptors agonist BzATP by pre-incubation for 6-12 but not by acute application (10µM) or pre-incubation for 2-6h at a dose of 1µM, 3µM or 10µM paroxetine. Neither fluoxetine nor desipramine had significant effects on currents evoked by BzATP either applied acutely or by pre-incubation at various concentrations. These results suggest that the sensitivity of rat P2×7 receptors to antidepressants is different, which may represent an unknown mechanism by which these drugs exert their therapeutic effects and side effects. PMID:27318632

  19. SensorNet Node Suite

    2004-09-01

    The software in the SensorNet Node adopts and builds on IEEE 1451 interface principles to read data from and control sensors, stores the data in internal database structures, and transmits it in adapted Web Feature Services protocol packets to the SensorNet database. Failover software ensures that at least one available mode of communication remains alive.

  20. Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma.

    PubMed

    Giuliani, Anna Lisa; Colognesi, Davide; Ricco, Tiziana; Roncato, Carlotta; Capece, Marina; Amoroso, Francesca; Wang, Qi Guang; De Marchi, Elena; Gartland, Allison; Di Virgilio, Francesco; Adinolfi, Elena

    2014-01-01

    The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca(2+) mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently

  1. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  2. P2X3, but not P2X1, receptors mediate ATP-activated current in neurons innervating tooth-pulp.

    PubMed

    Liu, Yu-wei; Chen, Xiao-qing; Tian, Xiang; Chen, Lin; Wu, Yu-xiang; Huang, Dan; Yi, Hui-ling; Yi, Chu-li; Li, Chao-ying

    2013-06-01

    We developed a method that allows us to label nociceptive neurons innervating tooth-pulp in rat trigeminal ganglion neurons using a retrograde fluorescence-tracing method, to record ATP-activated current in freshly isolated fluorescence-labeled neurons and to conduct single cell immunohistochemical staining for P2X1 and P2X3 subunits in the same neuron. Three types of ATP-activated current in these neurons (F, I and S) were recorded. The cells exhibiting the type F current mainly showed positive staining for P2X3, but negative staining for P2X1. The results provide direct and convincing evidence at the level of single native nociceptive neurons for correlation of the characteristics of ATP-activated currents with their composition of P2X1 and P2X3 subunits and cell size. The results also suggest that the P2X3, but not P2X1, is the main subunit that mediates the fast ATP-activated current in nociceptive neurons.

  3. Comparison of ANOVA, McSweeney, Bradley, Harwell-Serlin, and Blair-Sawilowsky Tests in the Balanced 2x2x2 Layout.

    ERIC Educational Resources Information Center

    Kelley, D. Lynn; And Others

    The Type I error and power properties of the 2x2x2 analysis of variance (ANOVA) and tests developed by McSweeney (1967), Bradley (1979), Harwell-Serlin (1989; Harwell, 1991), and Blair-Sawilowsky (1990) were compared using Monte Carlo methods. The ANOVA was superior under the Gaussian and uniform distributions. The Blair-Sawilowsky test was…

  4. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus.

    PubMed

    Cardoso, Adauto Lima; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2015-05-01

    Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes. PMID:26273225

  5. Correlation between reticle- and wafer-CD difference of multiple 28nm reticle-sites

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Richter, Frank; Thamm, Thomas; Ackmann, Paul; Staples, Marc; Weisbuch, Francois; Kurth, Karin; Schenker, Joerg; Leschok, Andre; GN, Fang Hong

    2012-11-01

    Reticle critical dimension uniformity (CDU) is an important criterion for the qualification of mask layer processes. Normally, the smaller the three sigma value of reticle CDU is, the better is the reticle CDU performance. For qualification of mask processes, the mask layers to be qualified should have a comparable reticle CDU compared to the process of record (POR) mask layers. Because the reticle critical dimension (CD) measurement is based on algorithms like "middle side lobe measurement", evaluation of the reticle CD-values can not reflect aspects like the sidewall angle of the reticle and variation in corner rounding which may be critical for 45nm technology nodes (and below). All involved tools and processes contribute to the wafer intra-field CDU (scanner, track, reticle, metrology). Normally, the reticle contribution to the wafer CDU should be as small as possible. In order to reduce the process contributions to the wafer intra-field CDU during the mask qualification process, the same toolset (exposure tool, metrology tool) should be applied as for the POR. Out of the results of these investigations the correlation between wafer measurement to target (MTT) and reticle MTT can be obtained in order to accurately qualify the CDU performance of the mask processes. We will demonstrate the correlation between reticle MTT and wafer MTT by use of multiple mask processes and alternative mask blank materials. We will investigate the results of four process-layers looking at advanced binary maskblank material from two different suppliers (moreover the results of a 2X-via layer as an example for a phase-shift maskblank is discussed). Objective of this article is to demonstrate the distribution between reticle MTT and wafer MTT as a qualification criterion for mask processes. The correlation between wafer CD-difference and reticle CD-difference of these mask processes are demonstrated by having performed investigations of dense features of different 28nmtechnology

  6. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  7. Mask patterning for the 22nm node using a proton multi-beam projection pattern generator

    NASA Astrophysics Data System (ADS)

    Butschke, Joerg; Irmscher, Mathias; Sailer, Holger; Nedelmann, Lorenz; Pritschow, Marcus; Loeschner, Hans; Platzgummer, Elmar

    2008-10-01

    Decreasing throughput of high-end pattern generators and insufficient line edge roughness (LER) of chemically amplified resists (CAR) might become limitations for future mask making. An alternative could be the introduction of less sensitive resists, linked to a turning away from today's electron beam pattern generators. Moderate exposure doses of around 25μC/cm2 could be achieved for non-CAR materials like HSQ by the use of 10keV protons. Targeting optimized absorber performance, Shin-Etsu has developed an Opaque-molybdenum-over-glass (OMOG) material, designed for 32mn mask technology and beyond. This hard mask concept allows using thin resist layers, as required by an ion beam exposure. Goal of this work was to assess a HSQ based non-CAR process using a multiple ion beam pattern generator including subsequent transfer into the absorber by dry etch processes. Proton exposures have been done on the IMS Nanofabrication proof of concept tool which is designed for 40,000 programmable ion beams. For comparison, an electron based reference process has been set up in parallel to the proton multi-beam approach. Hard mask opening and subsequent absorber etching have been accomplished in a state of the art mask etcher. Assessment of the process flow has been done in terms of feature profile, LER and resolution capability.

  8. Detectability and printability of EUVL mask blank defects for the32 nm HP node

    SciTech Connect

    Cho, Wonil; Han, Hak-Seung; Goldberg, Kenneth A.; Kearney,Patrick A.; Jeon, Chan-Uk

    2007-08-01

    The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time to start developing a 3rd generation tool for EUVL mask blank inspection. The goal of this tool is to detect all printable defects; therefore, understanding defect printability criteria is critical to this tool development. In this paper, we will investigate the defect detectability of a 2nd generation blank inspection tool and a patterned EUVL mask inspection tool. We will also compare the ability of the inspection tools to detect programmed defects whose printability has been estimated from wafer printing results and actinic aerial images results.

  9. Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.

    2016-03-01

    This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.

  10. Optimum ArFi laser bandwidth for 10nm node logic imaging performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien

    2015-03-01

    Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.

  11. Spectroscopic investigation on tunable luminescence by energy transfer in Tb2-xSmx(MoO4)3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Kamal, P. Mani; Vimal, G.; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

    2015-04-01

    New Sm3+ activated Tb2-xSmx(MoO4)3 nanophosphors were synthesized through sol-gel method. The structural and luminescence properties have been studied by XRD, TEM and photoluminescence measurements. The XRD pattern confirms that the Tb2-xSmx(MoO4)3 crystallizes in the same orthorhombic structure of Tb2(MoO4)3. The spectroscopic and laser parameters of Sm3+ ion in Tb2-x(MoO4)3 matrix were evaluated for the first time using Judd-Ofelt theoretical analysis. The higher value of stimulated emission cross-section of 4G5/2 → 6H7/2 transition of Sm3+ is favorable for low threshold and high gain to obtain continuous wave laser action. The photoluminescence excitation spectra suggest that this novel phosphor can be excited over a broad range from nUV to blue light (300-490 nm). Under the excitation of UV, Tb2-xSmx(MoO4)3 nanophosphor exhibits the characteristic emissions of Tb3+ and Sm3+. By varying the doping concentration of Sm3+, the emission color of the phosphors can be tuned and white emission in a single composition can be obtained under host excitation, in which an energy transfer from MoO42- → Sm3+/ Tb3+ and Tb3+ → Sm3+ was observed. The investigation of the luminescence decay curves and lifetime values implies the energy transfer between Tb3+ → Sm3+ and confirms the absence of Sm3+ → Tb3+ energy transfer. These phosphors might be a promising material for use in nUV LEDs and can exhibit tricolor luminescence under single excitation wavelength.

  12. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  13. Clinical Overview of MDM2/X-Targeted Therapies

    PubMed Central

    Burgess, Andrew; Chia, Kee Ming; Haupt, Sue; Thomas, David; Haupt, Ygal; Lim, Elgene

    2016-01-01

    MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy. PMID:26858935

  14. Decellularized Lymph Nodes as Scaffolds for Tissue Engineered Lymph Nodes

    PubMed Central

    Cuzzone, Daniel A.; Albano, Nicholas J.; Aschen, Seth Z.; Ghanta, Swapna

    2015-01-01

    Abstract Background: The lymphatic system is commonly injured during cancer treatment. However, despite the morbidity of these injuries, there are currently no options for replacing damaged lymphatics. The purpose of this study was to optimize methods for decellularization of murine lymph nodes (LN) and to determine if these scaffolds can be used to tissue engineer lymph node-like structures. Methods and Results: LNs were harvested from adult mice and subjected to various decellularization protocols. The degree of decellularization and removal of nuclear material was analyzed histologically and quantitatively using DNA isolation. In addition, we analyzed histological architecture by staining for matrix proteins. After the optimal method of decellularization was identified, decellularized constructs were implanted in the renal capsule of syngeneic or allogeneic recipient mice and analyzed for antigenicity. Finally, to determine if decellularized constructs could deliver lymphocytes to recipient animals, the matrices were repopulated with splenocytes, implanted in submuscular pockets, and harvested 14 days later. Decellularization was best accomplished with the detergent sodium dodecyl sulfate (SDS), resulting in negligible residual cellular material but maintenance of LN architecture. Implantation of decellularized LNs into syngeneic or allogeneic mice did not elicit a significant antigenic response. In addition, repopulation of decellularized LNs with splenocytes resulted in successful in vivo cellular delivery. Conclusions: We show, for the first time, that LNs can be successfully decellularized and that these matrices have preserved extracellular matrix architecture and the potential to deliver leukocytes in vivo. Future studies are needed to determine if tissue engineered lymph nodes maintain immunologic function. PMID:25144673

  15. Tubby-RFP Balancers for Developmental Analysis: FM7c 2xTb-RFP, CyO 2xTb-RFP and TM3 2xTb-RFP

    PubMed Central

    Pina, Cara; Pignoni, Francesca

    2012-01-01

    We report here the construction of Tubby-RFP balancers for the X, 2nd and 3rd chromosomes of Drosophila melanogaster. The insertion of a 2xTb-RFP transgene on the FM7c, CyO and TM3 balancer chromosomes introduces two easily scorable, dominant, developmental markers. The strong Tb phenotype is visible to the naked eye at the larval L2, L3 and pupal stages. The RFP associated with the cuticle is easily detected at all stages from late embryo to adult with the use of a fluorescence stereomicroscope. The FM7c Bar 2xTb-RFP, CyO Cy 2xTb-RFP and TM3 Sb 2xTb-RFP balancers will greatly facilitate the analysis of lethals and other developmental mutants in L2/L3 larvae and pupae, but also provide coverage of other stages beginning in late embryogenesis through to the adult. PMID:21913310

  16. Lymph node staging in prostate cancer.

    PubMed

    Sankineni, Sandeep; Brown, Anna M; Fascelli, Michele; Law, Yan Mee; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2015-05-01

    Nodal staging is important in prostate cancer treatment. While surgical lymph node dissection is the classic method of determining whether lymph nodes harbor malignancy, this is a very invasive technique. Current noninvasive approaches to identifying malignant lymph nodes are limited. Conventional imaging methods rely on size and morphology of lymph nodes and have notoriously low sensitivity for detecting malignant nodes. New imaging techniques such as targeted positron emission tomography (PET) imaging and magnetic resonance lymphography (MRL) with iron oxide particles are promising for nodal staging of prostate cancer. In this review, the strengths and limitations of imaging techniques for lymph node staging of prostate cancer are discussed.

  17. Identifying node importance in complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Fan, Wenli; Mei, Shengwei

    2015-07-01

    In this paper, we propose a novel node importance evaluation method from the perspective of the existence of mutual dependence among nodes. The node importance comprises its initial importance and the importance contributions from both the adjacent and non-adjacent nodes according to the dependence strength between them. From the simulation analyses on an example network and the ARPA network, we observe that our method can well identify the node importance. Then, the cascading failures on the Netscience and E-mail networks demonstrate that the networks are more vulnerable when continuously removing the important nodes identified by our method, which further proves the accuracy of our method.

  18. Spectroscopic and phonon side band analysis of Tb2-xEux(MoO4)3 nanophosphor

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Vimal, G.; Biju, P. R.; Unnikrishnan, N. V.; Ittyachen, M. A.; Joseph, Cyriac

    2016-02-01

    Theoretical calculation of the spectroscopic parameters of Tb2-xEux(MoO4)3 nanophosphor using Judd-Ofelt (J-O) theory and its experimental verification were presented along with Phonon side band (PSB) analysis. The intensity parameters, radiative properties and stimulated emission parameters of the samples were evaluated using J-O theory and are compared with experimental results. Raman spectroscopy was used to analyze the vibrational modes associated with the sample and the chemical composition was confirmed using energy dispersive spectroscopy (EDS). The phonon side band analysis and nonradiative decay due to multiphonon relaxation in Tb2-xEux(MoO4)3 were also reported. PSB are observed in the excitation spectra of Eu3+ at 446 and 427 nm, on monitoring the 5D0→7F2 transition at 612 nm. PSB in Eu3+ ions are associated with the 7F0→5D2 transition or zero phonon line, and are used to analyze the phonon energy, electron-phonon coupling strength and multiphonon relaxation of the sample. The correlation between Raman vibrational modes and PSB spectra were established. The photoluminescence excitation and emission spectra were used to study the luminescence properties of the sample. Under host excitation, the prepared sample exhibit the characteristic emission of Eu3+ corresponding to 5D0→7F1,2,3,4 transitions due to an energy transfer from MoO42- and Tb3+ to Eu3+. These studies indicate that Tb2-xEux(MoO4)3 phosphor is a promising material for photonic applications such as fluorescent lamps and color display fields.

  19. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells

    PubMed Central

    Sathanoori, Ramasri; Swärd, Karl; Olde, Björn; Erlinge, David

    2015-01-01

    Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase

  20. Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1).

    PubMed

    Wildman, Scott S; Brown, Sean G; Rahman, Mary; Noel, Carole A; Churchill, Linda; Burnstock, Geoffrey; Unwin, Robert J; King, Brian F

    2002-10-01

    The recombinant rat P2X(5) (rP2X(5)) receptor, a poorly understood ATP-gated ion channel, was studied under voltage-clamp conditions and compared with the better understood homomeric rP2X(1) receptor with which it may coexist in vivo. Expressed in defolliculated Xenopus laevis oocytes, rP2X(5) responded to ATP with slowly desensitizing inward currents that, for successive responses, ran down in the presence of extracellular Ca(2+) (1.8 mM). Replacement of Ca(2+) with either Ba(2+) or Mg(2+) prevented rundown, although agonist responses were very small, whereas reintroduction of Ca(2+) for short periods of time (<300 s) before and during agonist application yielded consistently larger responses. Using this Ca(2+)-pulse conditioning, rP2X(5) responded to ATP and other nucleotides (ATP, 2-methylthio-ATP, adenosine-5'-O-(thiotriphosphate), 2'-&-3'-O-(4-benzoylbenzoyl)-ATP, alpha,beta-methylene-ATP, P(1)-P((4))-diadenosine-5'-phosphate, and more) with pEC(50) values within 1 log unit of respective determinations for rP2X(1). Only GTP was selective for rP2X(5), although 60-fold less potent than ATP. At rP2X(5), lowering extracellular pH reduced the potency and efficacy of ATP, whereas extracellular Zn(2+) ions (0.1-1000 microM) potentiated then inhibited ATP responses in a concentration-dependent manner. However, these modulators affected rP2X(1) receptors in subtly different ways-with increasing H(+) and Zn(2+) ion concentrations reducing agonist potency. For P2 receptor antagonists, the potency order at rP2X(5) was pyridoxal-5-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) > 2',3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP) > suramin > reactive blue 2 (RB-2) > diinosine pentaphosphate (Ip(5)I). In contrast, the potency order at rP2X(1) was TNP-ATP = Ip(5)I > PPADS > suramin = RB-2. Thus, the Ca(2+)-sensitized homomeric rP2X(5) receptor is similar in agonist profile to homomeric rP2X(1)-although it can be distinguished from the latter by GTP agonism, antagonist profile

  1. Controlling data transfers from an origin compute node to a target compute node

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2011-06-21

    Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.

  2. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  3. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  4. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  5. New anatase-type Til-2xNbxAlxO2 solid solution nanoparticles: direct formation, phase stability, and photocatalytic performance.

    PubMed

    Hirano, Masanori; Ito, Takaharu

    2006-12-01

    New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated. PMID:17256336

  6. Dynamics of quasiparticles and antiferromagnetic correlations in electron-doped cuprate La2-xCexCuO4+/-δ (LCCO)

    NASA Astrophysics Data System (ADS)

    Vishik, I. M.; Mahmood, F.; Alpichshev, Z.; Higgins, J. S.; Greene, R. L.; Gedik, N.

    We studied quasiparticle dynamics in thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO) via optical pump-probe spectroscopy. In underdoped LCCO, the quasiparticle recombination dynamics imply a nodeless superconducting gap, which can be realized with dx2-y2 symmetry if a nodal hole-pocket is absent. Meanwhile, optimally doped LCCO shows recombination dynamics consistent with line nodes. Above Tc, fluence-dependent dynamics indicate a fully-formed gap in the density of states, which is associated with antiferromagnetic correlations, and limits can be placed on the correlation length and time.

  7. Synthesis, crystal structure and luminescence properties of CaY2-xEuxGe3O10 (x=0-2)

    NASA Astrophysics Data System (ADS)

    Lipina, Olga A.; Surat, Ludmila L.; Melkozerova, Marina A.; Tyutyunnik, Alexander P.; Leonidov, Ivan I.; Zubkov, Vladimir G.

    2013-10-01

    The novel red emitting phosphors based on CaY2-xEuxGe3O10 (x=0-2) have been prepared using both a conventional solid-state reaction and a synthesis route via EDTA-complexing process. Powder XRD study has revealed that CaY2-xEuxGe3O10 (x=0.1-0.8, 2.0) crystallizes in the monoclinic space group P21/c, Z=4. The trivalent europium ions occupy three different sites (4e) with the C1 symmetry. The phosphors exhibit a strong red emission under excitations at 250 nm and 393 nm. The light emission efficiency depends on the excitation wavelength, the activator content and the method of synthesis. Appropriate CIE chromaticity coordinates for CaY1.7Eu0.3Ge3O10 are x=0.54 and y=0.29.

  8. Purinergic P2X3 heteroreceptors enhance parasympathetic motor drive in isolated porcine detrusor, a reliable model for development of P2X selective blockers for detrusor hyperactivity.

    PubMed

    D'Agostino, Gianluigi; Condino, Anna Maria; Calvi, Valentina; Boschi, Federica; Gioglio, Luciana; Barbieri, Annalisa

    2012-01-01

    Various forms of low urinary tract symptoms (LUTS) seem dependant upon dysregulation of the purinergic pathway which produces sensory- or motor-activated incontinence. A body of evidence in human urinary bladders supports a link between up-regulation of purinergic activity and the pathogenesis of detrusor instability. This study investigated the potential role of adenosine 5'-triphosphate (ATP) in the control of detrusor motor drive in a model of porcine urinary bladder. The involvement of ATP on excitatory activity was assessed by measuring neurally-evoked [(3)H]-acetylcholine (ACh) release and smooth muscle contraction in detrusor strips. Epithelium-deprived preparations were used to minimize the influence of non-neural sources of ACh and ATP on parasympathetic neurotransmission. ACh release and smooth muscle contractility were not significantly affected by neural ATP in normal detrusor, but markedly enhanced when ATP hydrolysis was reduced by ectoATPase inhibitors, as well as by α,β-methylene-ATP (ABMA), agonist resistant to ecto-enzymes degradation. Prejunctional P2X receptors located on cholinergic nerves are involved in such potentiating effect. These purinergic heteroreceptors were characterized as P2X(3) subunits by means of the putative antagonists: NF449 (P2X(1,3) selective), NF023 (P2X(1,3) selective), PPNDS (P2X(1) selective) and A-317491 (P2X(3) selective). In porcine detrusor, P2X(3) receptors are functionally expressed at neural site facilitating neurogenic ACh release. When purine breakdown is experimentally down-regulated to mimicking the impaired purinergic pathway observed in pathological human bladders, endogenous ATP can markedly enhance detrusor contractility through activation of these receptors. Since P2X(3) blockade represents a potential therapeutic approach for diseases of the urinary tract, isolated porcine detrusor represents a reliable model for development of novel selective P2X(3) antagonists beneficial in the treatment of detrusor

  9. Sinus Node and Atrial Arrhythmias.

    PubMed

    John, Roy M; Kumar, Saurabh

    2016-05-10

    Although sinus node dysfunction (SND) and atrial arrhythmias frequently coexist and interact, the putative mechanism linking the 2 remain unclear. Although SND is accompanied by atrial myocardial structural changes in the right atrium, atrial fibrillation (AF) is a disease of variable interactions between left atrial triggers and substrate most commonly of left atrial origin. Significant advances have been made in our understanding of the genetic and pathophysiologic mechanism underlying the development and progression of SND and AF. Although some patients manifest SND as a result of electric remodeling induced by periods of AF, others develop progressive atrial structural remodeling that gives rise to both conditions together. The treatment strategy will thus vary according to the predominant disease phenotype. Although catheter ablation will benefit patients with predominantly AF and secondary SND, cardiac pacing may be the mainstay of therapy for patients with predominant fibrotic atrial cardiomyopathy. This contemporary review summarizes current knowledge on sinus node pathophysiology with the broader goal of yielding insights into the complex relationship between sinus node disease and atrial arrhythmias.

  10. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  11. Z2 x Z3 Symmetry of Multferroic Vortices

    NASA Astrophysics Data System (ADS)

    Cheong, Sang-Wook

    2014-03-01

    Hexagonal REMnO3 (RE = rare earths) with RE =Ho-Lu, Y, and Sc, is an improper ferroelectric where the size mismatch between RE and Mn induces a trimerization-type structural phase transition, and this structural transition leads to three structural domains, each of which can support two directions of ferroelectric polarization. We reported that domains in h-REMnO3 meet in cloverleaf arrangements that cycle through all six domain configurations, Occurring in pairs, the cloverleafs can be viewed as vortices and antivortices, in which the cycle of domain configurations is reversed. Vortices and antivortices are topological defects: even in a strong electric field they won't annihilate. These ferroelectric vortices/antivortices are found to be associated with intriguing collective magnetism at domain walls, reflecting the multiferroic nature of vortices. We have found that an intriguing, but seemingly irregular network of a zoo of multiferroic vortices and antivortices in h-REMnO3 can be neatly analyzed in terms of graph theory, and this graph theoretical analysis reveals the emergence of Z2 × Z3 symmetry in the vortices/antivortices network. In addition, poling or self-poling due to a surface charge boundary condition induces global topological condensation of the network through breaking of the Z2 part of the Z2 × Z3 symmetry. The opposite process of restoring the Z2 symmetry can be considered as topological evaporation. It turns out that these Z2xZ3 vortices are, in fact, three-dimensional vortex loops, which result from the emergent continuous U(1) symmetry near the critical temperature. This spontaneous trapping of topological defects in the process of undergoing a continuous phase transition is important to understand numerous novel phenomena such as the early stage of universe after big bang. The so-called Kibble-Zurek mechanism was proposed for the trapping process of topological defects right after big bang. It appears that the Kibble-Zurek mechanism is also

  12. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  13. [Extracorporeal shockwave lithotripsy and lymph node calcification].

    PubMed

    Higashihara, E; Fujime, M; Niijima, T

    1987-05-01

    A female patient with calculi in the left kidney and calcified lymph nodes in the vicinity of the left renal pelvis was treated successfully with extracorporeal shock wave lithotripsy. The simultaneous action of the shock waves on the calcified lymph nodes did not cause any alteration of the lymph node structure. Thus a shock-wave treatment can be carried out even in the presence of a calcified lymph node without complications.

  14. A 4-node Bilinear Isoparametric Element in Rockwell NASTRAN

    NASA Technical Reports Server (NTRS)

    Liao, C.; Allison, R. E.

    1985-01-01

    The development and evaluation of the Rockwell NASTRAN four node quadrilateral (QUAD4) element is presented. The element derivation utilizes bilinear isoparametric techniques both for membrane and bending characteristics. The QUAD4 element coordinate system, membrane properties, lumped mass matrix, and treatment of warping are based upon the COSMIC/NASTRAN QDMEMI element while the bending characteristics are based on a paper by T. J. R. Hughes. The effects of warping on the bending stiffness, consistent mass, and geometric stiffness are based upon a paper by R. H. MacNeal. Numerical integration is accomplished by Gaussian quadrature on a 2 x 2 grid. Practical user support features include variable element thickness, thermal analysis and layered composite material definitions.

  15. T.Node, industrial version of supernode

    NASA Astrophysics Data System (ADS)

    Flieller, Sylvain

    1989-12-01

    The Esprit I P1085 "SuperNode" project developed a modular reconfigurable archtecture, based on transputers. This highly parallel machine is now marketed by Telmat Informatique under the name T.Node. This paper presents the P1085 project, the architecture of SuperNode, its industrial implementation and its software enviroment.

  16. Axillary lymph node analysis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jenny; Christie-Brown, Jonathan; Sammon, Alastair; Stone, Nicholas

    2004-07-01

    Raman Spectroscopy is an optical diagnostic technique applied in this study to classify axillary lymph nodes from breast cancer patients as positive or negative for metastases. The mapping technique in this study is 81% sensitive and 97% specific for the correct classification of positive lymph nodes. Raman spectral images of lymph node sections are constructed to facilitate interpretation of tissue features.

  17. Structural transformation in nano-structured CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} system

    SciTech Connect

    Mehta, D. K.; Chhantbar, M. C.; Joshi, H. H.

    2015-06-24

    Polycrystalline spinel ferrite system CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} (x=0.2, 0.6) was synthesized by solid-state reaction route. Nanoparticles of the samples have been prepared by using high energy ball milling technique with different milling durations and characterized by X-ray Diffraction and Tunneling Electron Microscope. It is observed that the structural transformation occurred from Cubic to tetragonal and particle size varied between 29 nm -14 nm with increase of milling time.

  18. Selective cation exchange in the core region of Cu2-xSe/Cu2-xS core/shell nanocrystals.

    PubMed

    Miszta, Karol; Gariano, Graziella; Brescia, Rosaria; Marras, Sergio; De Donato, Francesco; Ghosh, Sandeep; De Trizio, Luca; Manna, Liberato

    2015-09-30

    We studied cation exchange (CE) in core/shell Cu2-xSe/Cu2-xS nanorods with two cations, Ag(+) and Hg(2+), which are known to induce rapid exchange within metal chalcogenide nanocrystals (NCs) at room temperature. At the initial stage of the reaction, the guest ions diffused through the Cu2-xS shell and reached the Cu2-xSe core, replacing first Cu(+) ions within the latter region. These experiments prove that CE in copper chalcogenide NCs is facilitated by the high diffusivity of guest cations in the lattice, such that they can probe the whole host structure and identify the preferred regions where to initiate the exchange. For both guest ions, CE is thermodynamically driven as it aims for the formation of the chalcogen phase characterized by the lower solubility under the specific reaction conditions. PMID:26360611

  19. Selective cation exchange in the core region of Cu2-xSe/Cu2-xS core/shell nanocrystals.

    PubMed

    Miszta, Karol; Gariano, Graziella; Brescia, Rosaria; Marras, Sergio; De Donato, Francesco; Ghosh, Sandeep; De Trizio, Luca; Manna, Liberato

    2015-09-30

    We studied cation exchange (CE) in core/shell Cu2-xSe/Cu2-xS nanorods with two cations, Ag(+) and Hg(2+), which are known to induce rapid exchange within metal chalcogenide nanocrystals (NCs) at room temperature. At the initial stage of the reaction, the guest ions diffused through the Cu2-xS shell and reached the Cu2-xSe core, replacing first Cu(+) ions within the latter region. These experiments prove that CE in copper chalcogenide NCs is facilitated by the high diffusivity of guest cations in the lattice, such that they can probe the whole host structure and identify the preferred regions where to initiate the exchange. For both guest ions, CE is thermodynamically driven as it aims for the formation of the chalcogen phase characterized by the lower solubility under the specific reaction conditions.

  20. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors.

    PubMed

    Khoja, Sheraz; Shah, Vivek; Garcia, Damaris; Asatryan, Liana; Jakowec, Michael W; Davies, Daryl L

    2016-10-01

    Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential

  1. Residual Chemoresponsiveness to Acids in the Superior Laryngeal Nerve in “Taste-Blind” (P2X2/P2X3 Double-KO) Mice

    PubMed Central

    Ohkuri, Tadahiro; Horio, Nao; Stratford, Jennifer M.; Finger, Thomas E.; Ninomiya, Yuzo

    2012-01-01

    Mice lacking both the P2X2 and the P2X3 purinergic receptors (P2X-dblKO) exhibit loss of responses to all taste qualities in the taste nerves innervating the tongue. Similarly, these mice exhibit a near total loss of taste-related behaviors in brief access tests except for a near-normal avoidance of acidic stimuli. This persistent avoidance of acids despite the loss of gustatory neural responses to sour was postulated to be due to continued responsiveness of the superior laryngeal (SL) nerve. However, chemoresponses of the larynx are attributable both to taste buds and to free nerve endings. In order to test whether the SL nerve of P2X-dblKO mice remains responsive to acids but not to other tastants, we recorded responses from the SL nerve in wild-type (WT) and P2X-dblKO mice. WT mice showed substantial SL responses to monosodium glutamate, sucrose, urea, and denatonium—all of which were essentially absent in P2X-dblKO animals. In contrast, the SL nerve of P2X-dblKO mice exhibited near-normal responses to citric acid (50 mM) although responsiveness of both the chorda tympani and the glossopharyngeal nerves to this stimulus were absent or greatly reduced. These results are consistent with the hypothesis that the residual avoidance of acidic solutions by P2X-dblKO mice may be attributable to the direct chemosensitivity of nerve fibers innervating the laryngeal epithelium and not to taste. PMID:22362867

  2. Quantum spin liquid and electric quadrupolar states of single crystal Tb2+xTi2-xO7+y

    NASA Astrophysics Data System (ADS)

    Wakita, M.; Taniguchi, T.; Edamoto, H.; Takatsu, H.; Kadowaki, H.

    2016-02-01

    The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y, sensitively depending on the small off-stoichiometry parameter x, have been studied by specific heat measurements using well characterized samples. Single crystal Tb2+xTi2-xO7+y boules grown by the standard floating zone technique are shown to exhibit concentration (x) gradient. This off-stoichiometry parameter is determined by precisely measuring the lattice constant of small samples cut from a crystal boule. Specific heat shows that the phase boundary of the electric quadrupolar state has a dome structure in the x-T phase diagram with the highest Tc ≃ 0.5 K at about x = 0.01. This phase diagram suggests that the putative U(1) quantum spin-liquid state of Tb2+xTi2-xO7+y exists in the range x < xc ≃ -0.0025, which is separated from the quadrupolar state via a first-order phase-transition line x = xc.

  3. Novel Protective Role of Endogenous Cardiac Myocyte P2X4 Receptors in Heart Failure

    PubMed Central

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A.; Liang, Bruce T.

    2014-01-01

    Background Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Methods and Results Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation–induced postinfarct or transverse aorta constriction–induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N5-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. Conclusions This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. PMID:24622244

  4. Sociocommunicative and sensorimotor impairments in male P2X4-deficient mice.

    PubMed

    Wyatt, Letisha R; Godar, Sean C; Khoja, Sheraz; Jakowec, Michael W; Alkana, Ronald L; Bortolato, Marco; Davies, Daryl L

    2013-09-01

    Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders. PMID:23604007

  5. Sociocommunicative and Sensorimotor Impairments in Male P2X4-Deficient Mice

    PubMed Central

    Wyatt, Letisha R; Godar, Sean C; Khoja, Sheraz; Jakowec, Michael W; Alkana, Ronald L; Bortolato, Marco; Davies, Daryl L

    2013-01-01

    Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5′-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders. PMID:23604007

  6. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Eibl, Matthias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-03-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  7. Approach to intensely enhancing neck nodes

    PubMed Central

    Karandikar, Amit; Gummalla, Krishna Mohan; Loke, Siu Cheng; Goh, Julian; Tan, Tiong Yong

    2016-01-01

    Cervical node evaluation is one of the most common problems encountered by a radiologist. Here, we present a pictorial review of intensely enhancing neck nodes. While enhancement in a cervical node is a common radiologic finding on contrast-enhanced computed tomography scan, only few conditions cause intense enhancement in cervical nodes. We discuss the common causes of intensely enhancing neck nodes along with pertinent radiologic features and key differentiating points that aid radiologists in reaching a diagnosis. In addition, we discuss certain potential non-nodal mimics, which need to be excluded. PMID:26782154

  8. Untraceable Mobile Node Authentication in WSN

    PubMed Central

    Han, Kyusuk; Kim, Kwangjo; Shon, Taeshik

    2010-01-01

    Mobility of sensor node in Wireless Sensor Networks (WSN) brings security issues such as re-authentication and tracing the node movement. However, current security researches on WSN are insufficient to support such environments since their designs only considered the static environments. In this paper, we propose the efficient node authentication and key exchange protocol that reduces the overhead in node re-authentication and also provides untraceability of mobile nodes. Compared with previous protocols, our protocol has only a third of communication and computational overhead. We expect our protocol to be the efficient solution that increases the lifetime of sensor network. PMID:22399886

  9. Black sentinel lymph node and 'scary stickers'.

    PubMed

    Yang, Arthur S; Creagh, Terrence A

    2013-04-01

    An unusual case is presented of a young adult patient with two black-stained, radio-nucleotide tracer-active sentinel lymph nodes biopsied following her primary cutaneous melanoma treatment. This was subsequently confirmed to be secondary to cutaneous tattoos, averting the need of an elective regional node dissection. History of tattooing and tattoo removal should therefore be obtained as a routine in all melanoma patients considered for sentinel node biopsy (SLN). SLN biopsy and any subsequent completion node dissection should be strictly staged so that proper histologic diagnosis of the sentinel node is available for correct decision making and treatment. PMID:23010587

  10. The crystal structures of m,o-Ce3Pt4Sn6 and Ce1-xPt6Al13+2x

    NASA Astrophysics Data System (ADS)

    Paschinger, Werner; Yubuta, Kunio; Saiga, Yuta; Takabatake, Toshiro; Giester, Gerald; Rogl, Peter

    2016-05-01

    The crystal structures of two novel ternary compounds, Ce3Pt4Sn6 and Ce1-xPt6Al13+2x (x = 0.207), have been derived by direct methods from X-ray single crystal data. Whereas Ce1-xPt6Al13+2x is of a new structure type (a = 1.42224(2) nm, c = 0.87367(1) nm, space group P 6 bar 2 m), Ce3Pt4Sn6 was found to crystallize in two different crystal modifications, (i) a monoclinic variant (a = 0.93682(2) nm, b = 0.46145(1) nm, c = 1.40434(3) nm, β = 99.635(1)°, space group P21/m), which is isotypic with the Y3Pt4Ge6-type and (ii) an orthorhombic modification (a = 2.76394(4) nm, b = 0.460588(7) nm, c = 0.93530(1) nm, space group Pnma), which crystallizes with the ordered Pr3Pt4Ge6-type. For the monoclinic arrangement m-Ce3Pt4Sn6 an intrinsically defect growth pattern was found - it grows in two related motifs (opposite directions of pentagonal units) in the ratio of 90% : 10% ensuring a stoichiometric composition. TEM observation directly revealed intrinsic building defects detected by single crystal X-ray diffraction for m-Ce3Pt4Sn6. Diffuse streaks in electron diffraction and inhomogeneous contrasts in a high resolution TEM image indicate the existence of a random stacking sequence between two related motifs.

  11. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  12. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  13. P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control

    PubMed Central

    Engel, Tobias; Jimenez-Pacheco, Alba; Miras-Portugal, Maria Teresa; Diaz-Hernandez, Miguel; Henshall, David C

    2012-01-01

    The P2X7 receptor is an ATP-gated non-selective cation-permeable ionotropic receptor selectively expressed in neurons and glia in the brain. Activation of the P2X7 receptor has been found to modulate neuronal excitability in the hippocampus and it has also been linked to microglia activation and neuroinflammatory responses. Accordingly, interest developed on the P2X7 receptor in disorders of the nervous system, including epilepsy. Studies show that expression of the P2X7 receptor is elevated in damaged regions of the brain after prolonged seizures (status epilepticus) in both neurons and glia. P2X7 receptor expression is also increased in the hippocampus in experimental epilepsy. Recent data show that mice lacking the P2X7 receptor display altered susceptibility to status epilepticus and that drugs targeting the P2X7 receptor have potent anticonvulsant effects. Together, this suggests that P2X7 receptor ligands may be useful adjunctive treatments for refractory status epilepticus or perhaps pharmacoresistant epilepsy. This review summarizes the evidence of P2X7 receptor involvement in the pathophysiology of epilepsy and the potential of drugs targeting this receptor for seizure control. PMID:23320131

  14. Accelerated tumor progression in mice lacking the ATP receptor P2X7.

    PubMed

    Adinolfi, Elena; Capece, Marina; Franceschini, Alessia; Falzoni, Simonetta; Giuliani, Anna L; Rotondo, Alessandra; Sarti, Alba C; Bonora, Massimo; Syberg, Susanne; Corigliano, Domenica; Pinton, Paolo; Jorgensen, Niklas R; Abelli, Luigi; Emionite, Laura; Raffaghello, Lizzia; Pistoia, Vito; Di Virgilio, Francesco

    2015-02-15

    The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion. PMID:25542861

  15. Regulation of P2X2 Receptors by the Neuronal Calcium Sensor VILIP1

    PubMed Central

    Chaumont, Severine; Compan, Vincent; Toulme, Estelle; Richler, Esther; Housley, Gary D.; Rassendren, Francois; Khakh, Baljit S.

    2012-01-01

    Extracellular adenosine triphosphate (ATP) activates P2X receptors, which are involved in diverse physiological functions. Using a proteomic approach, we identified the neuronal calcium sensor VILIP1 as interacting with P2X2 receptors. We found that VILIP1 forms a signaling complex in vitro and in vivo with P2X2 receptors and regulates P2X2 receptor sensitivity to ATP, peak response, surface expression, and diffusion. VILIP1 constitutively binds to P2X2 receptors and displays enhanced interactions in an activation- and calcium-dependent manner owing to exposure of its binding segment in P2X2 receptors. VILIP1-P2X2 interactions are also enhanced in hippocampal neurons during conditions of action potential firing known to trigger P2X2 receptor activation. Our data thus reveal a previously unrecognized function for the neuronal calcium sensor protein VILIP1 and a mechanism for regulation of ATP-dependent P2X receptor signaling by neuronal calcium sensors. PMID:18922787

  16. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  17. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.

  18. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival.

    PubMed

    Gehring, Marina P; Kipper, Franciele; Nicoletti, Natália F; Sperotto, Nathalia D; Zanin, Rafael; Tamajusuku, Alessandra S K; Flores, Debora G; Meurer, Luise; Roesler, Rafael; Filho, Aroldo B; Lenz, Guido; Campos, Maria M; Morrone, Fernanda B

    2015-11-01

    Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival. PMID:26358881

  19. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787. PMID:27219534

  20. Lipopolysaccharide inhibits the channel activity of the P2X7 receptor.

    PubMed

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  1. Node assignment in heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy

    1993-01-01

    A number of node assignment schemes, both static and dynamic, are explored for the Algorithm to Architecture Mapping Model (ATAMM). The architecture under consideration consists of heterogeneous processors and implements dataflow models of real-time applications. Terminology is developed for heterogeneous computing. New definitions are added to the ATAMM for token and assignment classifications. It is proved that a periodic execution is possible for dataflow graphs. Assignment algorithms are developed and proved. A design procedure is described for satisfying an objective function in an heterogeneous architecture. Several examples are provided for illustration.

  2. Dedicated heterogeneous node scheduling including backfill scheduling

    DOEpatents

    Wood, Robert R.; Eckert, Philip D.; Hommes, Gregg

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  3. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  4. Optical properties and upconversion emission in Yb3+-sensitized Er3+- and Pr3+-codoped PbGeO3:PbF2:xF2 (x = Mg, Ba) glass

    NASA Astrophysics Data System (ADS)

    Silva, Alexandre O.; Gouveia-Neto, A. S.; Bueno, Luciano A.; Oliveira, Carlos E. N.

    2016-03-01

    In this report the optical properties and energy-transfer upconversion luminescence of Er3+- and Pr3+/Yb3+-codoped PbGeO3-PbF2-xF2(Mg, Ba) glass and glass-ceramic under infrared excitation at 975 nm is investigated. In Er3+/Yb3+- codoped samples, green(525, and 550 nm), and red(662 nm) luminescence corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 e 4F9/2→4I15/2, respectively, was readily observed. In the Pr3+/Yb3+ co-doped system, emission peaks around 485, 530, 610, and 645 which were ascribed to the 3P0 - 3HJ (J=4,5,6), and 3P0 - 3FJ (J=2,3,4), transitions, respectively, were observed. The population of the praseodymium 3P0 emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the 2F7/2, energy-transfer Yb3+(2F5/2) - Pr3+(3H4), and excited-state absorption of Pr3+ ions provoking the 1G4 - 3P0 transition. The dependence of the upconversion emission on glass composition, pump power, and doping contents was also examined. Glassy and glass-ceramic samples was compared in order determine the system with better luminescence efficiency.

  5. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death

    PubMed Central

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  6. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells.

    PubMed

    Giannuzzo, Andrea; Saccomano, Mara; Napp, Joanna; Ellegaard, Maria; Alves, Frauke; Novak, Ivana

    2016-12-01

    The ATP-gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu-1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu-1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7(-/-) animals. PancTu-1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120-treated mice showed reduced bioluminescence compared to saline-treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120-treated tumours. PMID:27513892

  7. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors

    PubMed Central

    Nörenberg, W; Sobottka, H; Hempel, C; Plötz, T; Fischer, W; Schmalzing, G; Schaefer, M

    2012-01-01

    BACKGROUND AND PURPOSE In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon. EXPERIMENTAL APPROACH Complementary electrophysiological and fluorometric methods were applied to evaluate the effect of ivermectin on recombinantly expressed and on native P2X7 receptors. A biophysical characterization of ionic currents and of the pore dilation properties is provided. KEY RESULTS Unexpectedly, ivermectin potentiated currents in human monocyte-derived macrophages that endogenously express hP2X7 receptors. Likewise, currents and [Ca2+]i influx through recombinant human (hP2X7) receptors were potently enhanced by ivermectin at submaximal or saturating ATP concentrations. Since intracellular ivermectin did not mimic or prevent its activity when applied to the bath solution, the binding site of ivermectin on hP2X7 receptors appears to be accessible from the extracellular side. In contrast to currents through P2X4 receptors, ivermectin did not cause a delay in hP2X7 current decay upon ATP removal. Interestingly, NMDG+ permeability and Yo-Pro-1 uptake were not affected by ivermectin. On rat or mouse P2X7 receptors, ivermectin was only poorly effective, suggesting a species-specific mode of action. CONCLUSIONS AND IMPLICATIONS The data indicate a previously unrecognized species-specific modulation of human P2X7 receptors by ivermectin that should be considered when using this cell-biological tool in human cells and tissues. PMID:22506590

  8. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death.

    PubMed

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  9. Implementation of reflected light die-to-die inspection and ReviewSmart to improve 65nm DRAM mask fabrication

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Cho, Won Il; Park, Jin Hyung; Chung, Dong Hoon; Cha, Byung Chul; Choi, Seong Woon; Han, Woo Sung; Park, Ki Hun; Kim, Nam Wook; Hess, Carl; Ma, Weimin; Kim, David

    2005-11-01

    As the design rule continues to shrink towards 65nm size and beyond the defect criteria are becoming ever more challenging. Pattern fidelity and reticle defects that were once considered as insignificant or nuisance are now becoming significant yield impacting defects. The intent of this study is to utilize the new generation DUV system to compare Die-to-Die Reflected Light inspection and Die-to-Die Transmitted Light Inspection to increase defect detection for optimization of the 65nm node process. In addition, the ReviewSmart will be implemented to help categorically identify systematic tool and process variations and thus allowing user to expedite the learning process to develop a production worthy 65nm node mask process. The learning will be applied to Samsung's pattern inspection strategy, complementing Transmitted Light Inspection, on critical layers of 65 nm node to gain ability to find defects that adversely affect process window.

  10. A dual-modal magnetic nanoparticle probe for preoperative and intraoperative mapping of sentinel lymph nodes by magnetic resonance and near infrared fluorescence imaging.

    PubMed

    Zhou, Zhengyang; Chen, Hongwei; Lipowska, Malgorzata; Wang, Liya; Yu, Qiqi; Yang, Xiaofeng; Tiwari, Diana; Yang, Lily; Mao, Hui

    2013-07-01

    The ability to reliably detect sentinel lymph nodes for sentinel lymph node biopsy and lymphadenectomy is important in clinical management of patients with metastatic cancers. However, the traditional sentinel lymph node mapping with visible dyes is limited by the penetration depth of light and fast clearance of the dyes. On the other hand, sentinel lymph node mapping with radionucleotide technique has intrinsically low spatial resolution and does not provide anatomic details in the sentinel lymph node mapping procedure. This work reports the development of a dual modality imaging probe with magnetic resonance and near infrared imaging capabilities for sentinel lymph node mapping using magnetic iron oxide nanoparticles (10 nm core size) conjugated with a near infrared molecule with emission at 830 nm. Accumulation of magnetic iron oxide nanoparticles in sentinel lymph nodes leads to strong T2 weighted magnetic resonance imaging contrast that can be potentially used for preoperative localization of sentinel lymph nodes, while conjugated near infrared molecules provide optical imaging tracking of lymph nodes with a high signal to background ratio. The new magnetic nanoparticle based dual imaging probe exhibits a significant longer lymph node retention time. Near infrared signals from nanoparticle conjugated near infrared dyes last up to 60 min in sentinel lymph node compared to that of 25 min for the free near infrared dyes in a mouse model. Furthermore, axillary lymph nodes, in addition to sentinel lymph nodes, can be also visualized with this probe, given its slow clearance and sufficient sensitivity. Therefore, this new dual modality imaging probe with the tissue penetration and sensitive detection of sentinel lymph nodes can be applied for preoperative survey of lymph nodes with magnetic resonance imaging and allows intraoperative sentinel lymph node mapping using near infrared optical devices.

  11. A dual-modal magnetic nanoparticle probe for preoperative and intraoperative mapping of sentinel lymph nodes by magnetic resonance and near infrared fluorescence imaging

    PubMed Central

    Zhou, Zhengyang; Chen, Hongwei; Lipowska, Malgorzata; Wang, Liya; Yu, Qiqi; Yang, Xiaofeng; Tiwari, Diana; Yang, Lily; Mao, Hui

    2016-01-01

    The ability to reliably detect sentinel lymph nodes for sentinel lymph node biopsy and lymphadenectomy is important in clinical management of patients with metastatic cancers. However, the traditional sentinel lymph node mapping with visible dyes is limited by the penetration depth of light and fast clearance of the dyes. On the other hand, sentinel lymph node mapping with radionucleotide technique has intrinsically low spatial resolution and does not provide anatomic details in the sentinel lymph node mapping procedure. This work reports the development of a dual modality imaging probe with magnetic resonance and near infrared imaging capabilities for sentinel lymph node mapping using magnetic iron oxide nanoparticles (10 nm core size) conjugated with a near infrared molecule with emission at 830 nm. Accumulation of magnetic iron oxide nanoparticles in sentinel lymph nodes leads to strong T2 weighted magnetic resonance imaging contrast that can be potentially used for preoperative localization of sentinel lymph nodes, while conjugated near infrared molecules provide optical imaging tracking of lymph nodes with a high signal to background ratio. The new magnetic nanoparticle based dual imaging probe exhibits a significant longer lymph node retention time. Near infrared signals from nanoparticle conjugated near infrared dyes last up to 60 min in sentinel lymph node compared to that of 25 min for the free near infrared dyes in a mouse model. Furthermore, axillary lymph nodes, in addition to sentinel lymph nodes, can be also visualized with this probe, given its slow clearance and sufficient sensitivity. Therefore, this new dual modality imaging probe with the tissue penetration and sensitive detection of sentinel lymph nodes can be applied for preoperative survey of lymph nodes with magnetic resonance imaging and allows intraoperative sentinel lymph node mapping using near infrared optical devices. PMID:23812946

  12. A dual-modal magnetic nanoparticle probe for preoperative and intraoperative mapping of sentinel lymph nodes by magnetic resonance and near infrared fluorescence imaging.

    PubMed

    Zhou, Zhengyang; Chen, Hongwei; Lipowska, Malgorzata; Wang, Liya; Yu, Qiqi; Yang, Xiaofeng; Tiwari, Diana; Yang, Lily; Mao, Hui

    2013-07-01

    The ability to reliably detect sentinel lymph nodes for sentinel lymph node biopsy and lymphadenectomy is important in clinical management of patients with metastatic cancers. However, the traditional sentinel lymph node mapping with visible dyes is limited by the penetration depth of light and fast clearance of the dyes. On the other hand, sentinel lymph node mapping with radionucleotide technique has intrinsically low spatial resolution and does not provide anatomic details in the sentinel lymph node mapping procedure. This work reports the development of a dual modality imaging probe with magnetic resonance and near infrared imaging capabilities for sentinel lymph node mapping using magnetic iron oxide nanoparticles (10 nm core size) conjugated with a near infrared molecule with emission at 830 nm. Accumulation of magnetic iron oxide nanoparticles in sentinel lymph nodes leads to strong T2 weighted magnetic resonance imaging contrast that can be potentially used for preoperative localization of sentinel lymph nodes, while conjugated near infrared molecules provide optical imaging tracking of lymph nodes with a high signal to background ratio. The new magnetic nanoparticle based dual imaging probe exhibits a significant longer lymph node retention time. Near infrared signals from nanoparticle conjugated near infrared dyes last up to 60 min in sentinel lymph node compared to that of 25 min for the free near infrared dyes in a mouse model. Furthermore, axillary lymph nodes, in addition to sentinel lymph nodes, can be also visualized with this probe, given its slow clearance and sufficient sensitivity. Therefore, this new dual modality imaging probe with the tissue penetration and sensitive detection of sentinel lymph nodes can be applied for preoperative survey of lymph nodes with magnetic resonance imaging and allows intraoperative sentinel lymph node mapping using near infrared optical devices. PMID:23812946

  13. Strain-induced giant second-harmonic generation in monolayered 2H-MoX2 (X = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Kim, Yong Soo; Freeman, A. J.

    2015-12-01

    Dynamic second-order nonlinear susceptibilities, χ(2)(2 ω,ω,ω)≡χ(2)(ω) , are calculated here within a fully first-principles scheme for monolayered molybdenum dichalcogenides, 2H-MoX2 (X = S, Se, and Te). The absolute values of χ(2)(ω) across the three chalcogens critically depend on the band gap energies upon uniform strain, yielding the highest χ(2)(0 )˜140 pm/V for MoTe2 in the static limit. Under this uniform in-plane stress, 2H-MoX2 can undergo direct-to-indirect transition of band gaps, which in turn substantially affects χ(2)(ω) . The tunability of χ(2)(ω) by either compressive or tensile strain is demonstrated especially for two important experimental wavelengths, 1064 nm and 800 nm, where resonantly enhanced non-linear effects can be exploited: χ(2) of MoSe2 and MoTe2 approach ˜800 pm/V with -2% strain at 1064 nm.

  14. Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2-xErx)O7-x/2 (x = 0-0.667)

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Xu, C. P.; Fu, E. G.; Wen, J.; Liu, C. G.; Zhang, K. Q.; Wang, Y. Q.; Li, Y. H.

    2015-08-01

    Er-stuffed pyrochlore series Er2(Ti2-xErx)O7-x/2 (x = 0, 0.162, 0.286, 0.424 and 0.667) were synthesized using conventional ceramic processing procedures. The structure of Er2(Ti2-xErx)O7-x/2 is effectively tailored by the Er stuffing level (x). In order to study the radiation effect of Er-stuffed pyrochlores, irradiation experiments were performed with 400 keV Ne2+ ions to fluences ranging from 5 × 1014 to 3.0 × 1015 ions/cm2 at cryogenic condition. Irradiation induced microstructural evolution was examined using a grazing incidence X-ray diffraction technique. It is found that the irradiated layer of Er2(Ti2-xErx)O7-x/2 undergoes significant lattice disordering and swelling at fluences of ⩽1.5 × 1015 ions/cm2 and amorphization at fluences of ⩾1.5 × 1015 ions/cm2. The radiation effect depends strongly on the chemical compositions of the samples. Both the lattice swelling percentage and the amorphous fraction decrease with increasing x. The experimental results are discussed in the context of cation antisite defect. The defect formation energy which varies as a function of x is responsible for the difference in the structural behaviors of Er2(Ti2-xErx)O7-x/2 under 400 keV Ne2+ ion irradiation.

  15. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid.

    PubMed

    Masuch, Annette; Shieh, Chu-Hsin; van Rooijen, Nico; van Calker, Dietrich; Biber, Knut

    2016-01-01

    Recently, we have demonstrated that ramified microglia are neuroprotective in N-methyl-D-aspartate (NMDA)-induced excitotoxicity in organotypic hippocampal slice cultures (OHSCs). The present study aimed to elucidate the underlying neuron-glia communication mechanism. It is shown here that pretreatment of OHSC with high concentrations of adenosine 5'-triphosphate (ATP) reduced NMDA-induced neuronal death only in presence of microglia. Specific agonists and antagonists identified the P2X7 receptor as neuroprotective receptor which was confirmed by absence of ATP-dependent neuroprotection in P2X7-deficient OHSC. Microglia replenished chimeric OHSC consisting of wild-type tissue replenished with P2X7-deficient microglia confirmed the involvement of microglial P2X7 receptor in neuroprotection. Stimulation of P2X7 in primary microglia induced tumor necrosis factor α (TNFα) release and blocking TNFα by a neutralizing antibody in OHSC abolished neuroprotection by ATP. OHSC from TNFα-deficient mice show increased exicitoxicity and activation of P2X7 did not rescue neuronal survival in the absence of TNFα. The neuroprotective effect of valproic acid (VPA) was strictly dependent on the presence of microglia and was mediated by upregulation of P2X7 in the cells. The present study demonstrates that microglia-mediated neuroprotection depends on ATP-activated purine receptor P2X7 and induction of TNFα release. This neuroprotective pathway was strengthened by VPA elucidating a novel mechanism for the neuroprotective function of VPA.

  16. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors

    PubMed Central

    Woehrle, Tobias; Yip, Linda; Manohar, Monali; Sumi, Yuka; Yao, Yongli; Chen, Yu; Junger, Wolfgang G.

    2010-01-01

    Hypertonic saline (HS) resuscitation increases T cell function and inhibits posttraumatic T cell anergy, which can reduce immunosuppression and sepsis in trauma patients. We have previously shown that HS induces the release of cellular ATP and enhances T cell function. However, the mechanism by which HS induces ATP release and the subsequent regulation of T cell function by ATP remain poorly understood. In the present study, we show that inhibition of the gap junction hemichannel pannexin-1 (Panx1) blocks ATP release in response to HS, and HS exposure triggers significant changes in the expression of all P2X-type ATP receptors in Jurkat T cells. Blocking or silencing of Panx1 or of P2X1, P2X4, or P2X7 receptors blunts HS-induced p38 MAPK activation and the stimulatory effects of HS on TCR/CD28-induced IL-2 gene transcription. Moreover, treatment with HS or agonists of P2X receptors overcomes T cell suppression induced by the anti-inflammatory cytokine IL-10. These findings indicate that Panx1 hemichannels facilitate ATP release in response to hypertonic stress and that P2X1, P2X4, and P2X7 receptor activation enhances T cell function. We conclude that HS and P2 receptor agonists promote T cell function and thus, could be used to improve T cell function in trauma patients. PMID:20884646

  17. Vatalanib decrease the positive interaction of VEGF receptor-2 and P2X2/3 receptor in chronic constriction injury rats.

    PubMed

    Liu, Shuangmei; Xu, Changshui; Li, Guilin; Liu, Han; Xie, Jinyan; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Liang, Shangdong

    2012-05-01

    Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1

  18. Energy transfer processes in Ca3Tb2-xEuxSi3O12 (x = 0-2)

    NASA Astrophysics Data System (ADS)

    Carrasco, I.; Bartosiewicz, K.; Nikl, M.; Piccinelli, F.; Bettinelli, M.

    2015-10-01

    The luminescent properties of Tb3+ and Eu3+ have been studied in several silicates having a silico-carnotite-type structure. Fast energy migration among Tb3+ ions has been found in Ca3Tb2Si3O12 and Ca3Tb2-xEuxSi3O12 (x = 0-0.1). In the case of Ca3Tb2-xEuxSi3O12, Tb3+-Eu3+ energy transfer is observed upon excitation in the UV bands of Tb3+. The transfer gives rise to strong emission from Eu3+ in the red spectral region at 612 nm. The efficiency of the transfer at room temperature in Ca3Tb1.9Eu0.1Si3O12 has been evaluated. The temperature evolution of the luminescent properties of Ca3Tb2Si3O12 and Ca3Tb1.9Eu0.1Si3O12 has been studied at temperatures ranging from 8 to 330 K.

  19. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.

    PubMed Central

    Ng, D S; Leiter, L A; Vezina, C; Connelly, P W; Hegele, R A

    1994-01-01

    We report a Canadian kindred with a novel mutation in the apolipoprotein (apo) A-I gene causing analphalipoproteinemia. The 34-yr-old proband, product of a consanguineous marriage, had bilateral retinopathy, bilateral cataracts, spinocerebellar ataxia, and tendon xanthomata. High density lipoprotein cholesterol (HDL-C) was < 0.1 mM and apoA-I was undetectable. Genomic DNA sequencing of the proband's apoA-I gene identified a nonsense mutation at codon [-2], which we designate as Q[-2]X. This mutation causes a loss of endonuclease digestion sites for both BbvI and Fnu4HI. Genotyping identified four additional homozygotes, four heterozygotes, and two unaffected subjects among the first-degree relatives. Q[-2]X homozygosity causes a selective failure to produce any portion of mature apoA-I, resulting in very low plasma level of HDL. Heterozygosity results in approximately half-normal apoA-I and HDL. Gradient gel electrophoresis and differential electroimmunodiffusion assay revealed that the HDL particles of the homozygotes had peak Stokes diameter of 7.9 nm and contained apoA-II without apoA-I (Lp-AII). Heterozygotes had an additional fraction of HDL3-like particles. Two of the proband's affected sisters had documented premature coronary heart disease. This kindred, the third reported apoA-I gene mutation causing isolated complete apoA-I deficiency, appears to be at significantly increased risk for atherosclerosis. Images PMID:8282791

  20. Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments

    NASA Astrophysics Data System (ADS)

    Wahba, Adel Maher; Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    In the present work, ZnCoxAl2 - xO4 (x = 0.00-1.50) nanosized pigments were synthesized for the first time by citrate-precursor autocombustion method and heat treatment at 900 °C. In this new nanopigment system the vacancies participate in the spinel structure since the divalent cobalt ions substitute the trivalent Al ions. Structural, microstructural and optical properties were investigated using XRD, FTIR, TEM, HRSEM, XRF, and PL techniques. XRD and FTIR spectra proved the formation of a pure cubic spinel phase. Size of the synthesized nano-crystals ranges from 15 to 60 nm, which is further confirmed with TEM micrographs. HRSEM confirms the microporous nature with flower-like morphology of the prepared nanopigments. Cation distribution has been suggested for the whole samples that matches quite well with XRD and IR experimental data. PL results show that the ZnCoxAl2 - xO4 pigments have good potential for use as a yellow-orange phosphor for displays and/or white light-emitting diodes.

  1. Design strategy for integrating DSA via patterning in sub-7 nm interconnects

    NASA Astrophysics Data System (ADS)

    Karageorgos, Ioannis; Ryckaert, Julien; Tung, Maryann C.; Wong, H.-S. P.; Gronheid, Roel; Bekaert, Joost; Karageorgos, Evangelos; Croes, Kris; Vandenberghe, Geert; Stucchi, Michele; Dehaene, Wim

    2016-03-01

    In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCPs). As a result, the insertion of DSA for IC fabrication is being actively considered for the sub-7nm nodes. At these nodes the DSA technology could alleviate costs for multiple patterning and limit the number of litho masks that would be required per metal layer. One of the most straightforward approaches for DSA implementation would be for via patterning through templated DSA, where hole patterns are readily accessible through templated confinement of cylindrical phase BCP materials. Our in-house studies show that decomposition of via layers in realistic circuits below the 7nm node would require at least many multi-patterning steps (or colors), using 193nm immersion lithography. Even the use of EUV might require double patterning in these dimensions, since the minimum via distance would be smaller than EUV resolution. The grouping of vias through templated DSA can resolve local conflicts in high density areas. This way, the number of required colors can be significantly reduced. For the implementation of this approach, a DSA-aware mask decomposition is required. In this paper, our design approach for DSA via patterning in sub-7nm nodes is discussed. We propose options to expand the list of DSA-compatible via patterns (DSA letters) and we define matching cost formulas for the optimal DSA-aware layout decomposition. The flowchart of our proposed approach tool is presented.

  2. P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus.

    PubMed

    Henshall, David C; Engel, Tobias

    2015-08-01

    There remains a need for more efficacious treatments for status epilepticus. Prolonged seizures result in the release of ATP from cells which activates the P2 class of ionotropic and metabotropic purinoceptors. The P2X receptors gate depolarizing sodium and calcium entry and are expressed by both neurons and glia throughout the brain, and a number of subtypes are upregulated after status epilepticus. Recent studies have explored the in vivo effects of targeting ATP-gated P2X receptors in preclinical models of status epilepticus, with particular focus on the P2X7 receptor (P2X7R). The P2X7R mediates microglial activation and the release of the proepileptogenic inflammatory cytokine interleukin 1β. The receptor may also directly modulate neurotransmission and gliotransmission and promote the recruitment of immune cells into brain parenchyma. Data from our group and collaborators show that status epilepticus produced by intraamygdala microinjection of kainic acid increases P2X7R expression in the hippocampus and neocortex of mice. Antagonism of the P2X7R in the model reduced seizure severity, microglial activation and interleukin 1β release, and neuronal injury. Coadministration of a P2X7R antagonist with a benzodiazepine also provided seizure suppression in a model of drug-refractory status epilepticus when either treatment alone was minimally effective. More recently, we showed that status epilepticus in immature rats is also reduced by P2X7R antagonism. Together, these findings suggest that P2X receptors may be novel targets for seizure control and interruption of neuroinflammation after status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus".

  3. P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus.

    PubMed

    Henshall, David C; Engel, Tobias

    2015-08-01

    There remains a need for more efficacious treatments for status epilepticus. Prolonged seizures result in the release of ATP from cells which activates the P2 class of ionotropic and metabotropic purinoceptors. The P2X receptors gate depolarizing sodium and calcium entry and are expressed by both neurons and glia throughout the brain, and a number of subtypes are upregulated after status epilepticus. Recent studies have explored the in vivo effects of targeting ATP-gated P2X receptors in preclinical models of status epilepticus, with particular focus on the P2X7 receptor (P2X7R). The P2X7R mediates microglial activation and the release of the proepileptogenic inflammatory cytokine interleukin 1β. The receptor may also directly modulate neurotransmission and gliotransmission and promote the recruitment of immune cells into brain parenchyma. Data from our group and collaborators show that status epilepticus produced by intraamygdala microinjection of kainic acid increases P2X7R expression in the hippocampus and neocortex of mice. Antagonism of the P2X7R in the model reduced seizure severity, microglial activation and interleukin 1β release, and neuronal injury. Coadministration of a P2X7R antagonist with a benzodiazepine also provided seizure suppression in a model of drug-refractory status epilepticus when either treatment alone was minimally effective. More recently, we showed that status epilepticus in immature rats is also reduced by P2X7R antagonism. Together, these findings suggest that P2X receptors may be novel targets for seizure control and interruption of neuroinflammation after status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus". PMID:25843343

  4. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons

    PubMed Central

    Saloman, Jami L.; Chung, Man-Kyo; Ro, Jin Y.

    2012-01-01

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) affect a large percentage of the population. Identifying mechanisms underlying hyperalgesia could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. In this study, we provide evidence of functional interactions between two ligand-gated channels, P2X3 and TRPV1, in trigeminal sensory neurons, and propose that the interactions serve as an underlying mechanism for the development of mechanical hyperalgesia. Mechanical sensitivity of the masseter muscle was assessed in lightly anesthetized rats via an electronic anesthesiometer (Ro et al., 2009). Direct intramuscular injection of a selective P2X3 agonist, αβmeATP, induced a dose- and time-dependent hyperalgesia. Mechanical sensitivity in the contralateral muscle was unaffected suggesting local P2X3 mediate the hyperalgesia. Anesthetizing the overlying skin had no effect on αβmeATP-induced hyperalgesia confirming the contribution of P2X3 from muscle. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810. P2X3 was co-expressed with TRPV1 in masseter muscle afferents confirming the possibility for intracellular interactions. Additionally, in a subpopulation of P2X3/TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly amplified following P2X3 activation. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal ganglia cultures. Significant phosphorylation was observed at 15 min, the time point at which behavioral hyperalgesia was prominent. Previously, activation of either P2X3 or TRPV1 had been independently implicated in the development of mechanical hyperalgesia. Our data propose P2X3 and TRPV1 interact in a facilitatory manner, which could contribute to the peripheral sensitization

  5. Luminescence properties of a novel promising red phosphor Na3Gd2-x(BO3)3:xEu3+

    NASA Astrophysics Data System (ADS)

    Wei, Tengyue; Ren, Qiang; Wu, Xiulan; Shi, Xiaolei; Wang, Baoxing; Huo, Zhezhe

    2016-11-01

    The novel red-emitting Na3Gd2-x(BO3)3:xEu3+ phosphors were synthesized by a solid-state method. Under near ultraviolet excitation, the phosphors exhibit dominant emission peak at 614 nm and generate bright red light, which is attributed to the electric-dipole transition 5D0→7F2. The optimal doping amount of Eu3+ in Na3Gd2-x(BO3)3:xEu3+ phosphors is x=0.3 for the maximum emission. The exchange interaction between Eu3+ ions is identified to be the main mechanism in the concentration quenching process. The CIE color coordinates of the Na3Gd2-x(BO3)3:xEu3+ phosphors (x=0.650, y=0.350) are close to the NTSC standard values of red. With a relatively high quantum efficiency of 35.2%, Na3Gd2-x(BO3)3:xEu3+ red-emitting phosphor is probably a promising candidate for near ultraviolet-based white LEDs application.

  6. A facile synthesis of versatile Cu2-xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging.

    PubMed

    Mou, Juan; Liu, Chengbo; Li, Pei; Chen, Yu; Xu, Huixiong; Wei, Chenyang; Song, Liang; Shi, Jianlin; Chen, Hangrong

    2015-07-01

    A novel type of intelligent nanoprobe by using single component of Cu2-xS for multimodal imaging has been facilely and rapidly synthesized in scale via thermal decomposition followed by biomimetic phospholipid modification, which endows them with uniform and small nanoparticle size (ca.15 nm), well phosphate buffer saline (PBS) dispersity, high stability, and excellent biocompatibility. The as-synthesized Cu2-xS nanoprobes (Cu2-xS NPs) are capable of providing contrast enhancement for T1-weighted magnetic resonance imaging (MRI), as demonstrated by the both in vitro and in vivo imaging investigations for the first time. In addition, due to their strong near infrared (NIR) optical absorption, they can also serve as a candidate contrast agent for enhanced infrared thermal/photoacoustic imaging, to meet the shortfalls of MRI. Hence, complementary and potentially more comprehensive information can be acquired for the early detection and accurate diagnosis of cancer. Furthermore, negligible systematic side effects to the blood and tissue were observed in a relatively long period of 3 months. The distinctive multimodal imaging capability with excellent hemo/histocompatibility of the Cu2-xS NPs could open up a new molecular imaging possibility for detecting and diagnosing cancer or other diseases in the future.

  7. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

    PubMed

    Nagarale, Rajaram K; Hoss, Udo; Heller, Adam

    2012-12-26

    Cations of mixed valence at surfaces of metal oxide nanoparticles constitute electrochemical half-cells, with potentials intermediate between those of the dissolved cations and those in the solid. When only cations at surfaces of the particles are electrochemically active, the ratio of electrochemically active/all cations is ~0.1 for 15 nm diameter CeO(2-x) particles. CeO(2-x) nanoparticle-loaded hydrogel films on printed carbon and on sputtered gold constitute reference electrodes having a redox potential similar to that of Ag/AgCl in physiological (0.14 M) saline solutions. In vitro the characteristics of potentially subcutaneously implantable glucose monitoring sensors made with CeO(2-x) nanoparticle reference electrodes are undistinguishable from those of sensors made with Ag/AgCl reference electrodes. Cerium is 900 times more abundant than silver, and commercially produced CeO(2-x) nanoparticle solutions are available at prices well below those of the Ag/AgCl pastes used in the annual manufacture of ~10(9) reference electrodes of glucose monitoring strips for diabetes management. PMID:23171288

  8. Bodega Ocean Observing Node (BOON).

    NASA Astrophysics Data System (ADS)

    Largier, J. L.; Chow, V. I.; Williams, S. L.; Botsford, L. W.; Morgan, S. G.; Nyden, B.; Tustin, J. A.; McAfee, S.; Shideler, D.

    2004-12-01

    The Bodega Ocean Observing Node (BOON) is comprised of radar mapping of surface currents, a moored current profiler, and shoreline oceanographic and meteorological observations. Ongoing shoreline data on temperature and salinity date back to 1955, with continuous records of sealevel, wind, meteorology, and chlorophyll fluorescence starting more recently. Radar observations started in 2001 with deployment of two CODAR antennae. Together with a third CODAR unit deployed in 2002, these provide coverage from Pt Reyes north to the CODE line. Real-time ADCP data from the mooring started in late 2004. Plans include nearshore wave data, CTD/fluorescence data from the mooring, and deployment of a nutrient sensor at the shoreline. This coastal ocean observing node is part of the state-funded COCMP-NC program and the CeNCOOS regional association for central and northern California. Ancillary regional data are available on offshore winds (NDBC buoys), offshore waves (CDIP buoy), river flow, and satellite observations. The value of this suite of measurements is built on (1) detailed understanding of circulation, derived from WEST, CODE, and other prior studies of this region, including mesoscale atmosphere and ocean modeling, (2) active integration of circulation patterns in ongoing studies of planktonic and benthic ecology, and (3) direct interaction with local, state and federal agencies with interest in this region. To-date, the ongoing data series have shown potential for improved understanding and monitoring of fishery populations such as salmon and crab, as well as water quality concerns including oil spills and toxic pollutants. Through an active involvement in local studies and environmental management issues, BOON seeks to develop alternatives to supply-side thinking in the design of coastal ocean observing systems. BOON is based at the Bodega Marine Laboratory and thus provides invaluable support for academic study of more fundamental questions, such as carbon budgets

  9. A four-interleaving HBD SRAM cell based on dual DICE for multiple node collection mitigation

    NASA Astrophysics Data System (ADS)

    Lin, Liu; Suge, Yue; Shijin, Lu

    2015-11-01

    A 4-interleaving cell of 2-dual interlocked cells (DICE) is proposed, which reduces single event induced multiple node collection between the sensitive nodes of sensitive pairs in a DICE storage cell in 65 nm technology. The technique involves the 4-interleaving of dual DICE cells at a layout level to meet the required spacing between sensitive nodes in an area-efficient manner. Radiation experiments using a 65 nm CMOS test chip demonstrate that the LETth of our 4-interleaving cell of dual DICE encounters are almost 4× larger and the SEU cross section per bit for our proposed dual DICE design is almost two orders of magnitude less compared to the reference traditional DICE cell.

  10. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP. PMID:22508081

  11. [Effect of Zhuangyao Jianshen Wan (ZYJCW) on P2X1 and P2X3 mRNA expressions in rats with diuresis caused by kidney deficiency].

    PubMed

    Chen, Jia-yi; Jiang, Wei-wen; He, Feng-lei; Mo, Guo-qiang; Guo, Zhong-hui; Wang, Xiao-dan; Wu, Qing-he; Cao, Hong-yin

    2015-08-01

    To investigate the urination-reducing effect and mechanism of Zhuangyao Jianshen Wan (ZYJCW). In this study, SI rats were subcutaneously injected with 150 mg · kg(-1) dose of D-galactose to prepare the sub-acute aging model and randomly divided into the model group, the Suoquan Wan group (1.17 g · kg(-1) · d(-1)), and ZYJCW high, medium and low dose groups (2.39, 1.20, 0.60 g · kg(-1) · d(-1)) , with normal rats in the blank group. They were continuously administered with drugs for eight weeks. The metabolic cage method was adopted to measure the 24 h urine volume and 5 h water load urine volume in rats. The automatic biochemistry analyzer was adopted to detect urine concentrations of Na+, Cl-, K+. The ELISA method was used to determine serum aldosterone (ALD) and antidiuretic hormone (ADH). The changes in P2X1 and P2X3 mRNA expressions in bladder tissues of rats were detected by RT-PCR. According to the results, both ZYJCW high and medium dose groups showed significant down-regulations in 24 h urine volume and 5 h water load urine volume in (P <0.05, P <0.01), declines in Na+ and Cl- concentrations in urine (P <0.01), notable rises in plasma ALD and ADH contents (P <0.05, P <0.01) and remarkable down-regulations in the P2X1 and P2X3 mRNA expressions in bladder tissues (P <0.01). The ZYJCW low dose group revealed obvious reductions in Na+ and Cl- concentrations in urine (P <0.01). The results indicated that ZYJCW may show the urination-reducing effect by down-regulating the P2X1 and P2X3 mRNA expressions in bladder tissues of rats with diuresis caused by kidney deficiency.

  12. Composition and Interface Engineering of Alloyed MoS2 x Se2(1- x ) Nanotubes for Enhanced Hydrogen Evolution Reaction Activity.

    PubMed

    Zhang, Junjun; Wu, Mei-Hui; Shi, Zheng-Tian; Jiang, Miao; Jian, Wen-Jing; Xiao, Zhangru; Li, Jixue; Lee, Chun-Sing; Xu, Jun

    2016-08-01

    Hierarchical MoS2 x Se2(1- x ) nanotubes assembled from several-layered nanosheets featuring tunable chalcogen compositions, expanded interlayer spacing and carbon modification, are synthesized for enhanced electrocatalytic hydrogen evolution reaction (HER). The chalcogen compositions of the MoS2 x Se2(1- x ) nanotubes are controllable by adjusting the selenization temperature and duration while the expanded (002) interlayer spacing varies from 0.98 to 0.68 nm. It is found that the MoS2 x Se2(1- x ) (x = 0.54) nanotubes with expanded interlayer spacing of 0.98 nm exhibit the highest electrocatalytic HER activity with a low onset potential of 101 mV and a Tafel slope of 55 mV dec(-1) . The improved electrocatalytic performance is attributed to the chalcogen composition tuning and the interlayer distance expansion to achieve benefitting hydrogen adsorption energy. The present work suggests a potential way to design advanced HER electrocatalysts through modulating their compositions and interlayer distances.

  13. Composition and Interface Engineering of Alloyed MoS2 x Se2(1- x ) Nanotubes for Enhanced Hydrogen Evolution Reaction Activity.

    PubMed

    Zhang, Junjun; Wu, Mei-Hui; Shi, Zheng-Tian; Jiang, Miao; Jian, Wen-Jing; Xiao, Zhangru; Li, Jixue; Lee, Chun-Sing; Xu, Jun

    2016-08-01

    Hierarchical MoS2 x Se2(1- x ) nanotubes assembled from several-layered nanosheets featuring tunable chalcogen compositions, expanded interlayer spacing and carbon modification, are synthesized for enhanced electrocatalytic hydrogen evolution reaction (HER). The chalcogen compositions of the MoS2 x Se2(1- x ) nanotubes are controllable by adjusting the selenization temperature and duration while the expanded (002) interlayer spacing varies from 0.98 to 0.68 nm. It is found that the MoS2 x Se2(1- x ) (x = 0.54) nanotubes with expanded interlayer spacing of 0.98 nm exhibit the highest electrocatalytic HER activity with a low onset potential of 101 mV and a Tafel slope of 55 mV dec(-1) . The improved electrocatalytic performance is attributed to the chalcogen composition tuning and the interlayer distance expansion to achieve benefitting hydrogen adsorption energy. The present work suggests a potential way to design advanced HER electrocatalysts through modulating their compositions and interlayer distances. PMID:27400859

  14. Sub-20nm hybrid lithography using optical, pitch-division, and e-beam

    NASA Astrophysics Data System (ADS)

    Belledent, J.; Smayling, M.; Pradelles, J.; Pimenta-Barros, P.; Barnola, S.; Mage, L.; Icard, B.; Lapeyre, C.; Soulan, S.; Pain, L.

    2012-03-01

    A roadmap extending far beyond the current 22nm CMOS node has been presented several times. [1] This roadmap includes the use of a highly regular layout style which can be decomposed into "lines and cuts."[2] The "lines" can be done with existing optical immersion lithography and pitch division with self-aligned spacers.[3] The "cuts" can be done with either multiple exposures using immersion lithography, or a hybrid solution using either EUV or direct-write ebeam.[ 4] The choice for "cuts" will be driven by the availability of cost-effective, manufacturing-ready equipment and infrastructure. Optical lithography improvements have enabled scaling far beyond what was expected; for example, soft x-rays (aka EUV) were in the semiconductor roadmap as early as 1994 since optical resolution was not expected for sub-100nm features. However, steady improvements and innovations such as Excimer laser sources and immersion photolithography have allowed some manufacturers to build 22nm CMOS SOCs with single-exposure optical lithography. With the transition from random complex 2D shapes to regular 1D-patterns at 28nm, the "lines and cuts" approach can extend CMOS logic to at least the 7nm node. The spacer double patterning for lines and optical cuts patterning is expected to be used down to the 14nm node. In this study, we extend the scaling to 18nm half-pitch which is approximately the 10-11nm node using spacer pitch division and complementary e-beam lithography. For practical reasons, E-Beam lithography is used as well to expose the "mandrel" patterns that support the spacers. However, in a production mode, it might be cost effective to replace this step by a standard 193nm exposure and applying the spacer technique twice to divide the pitch by 3 or 4. The Metal-1 "cut" pattern is designed for a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops. Since the final conductor is defined by a Damascene process, the "cut" patterns become islands

  15. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors.

    PubMed

    Corso, Lucia; Cavallero, Anna; Baroni, Debora; Garbati, Patrizia; Prestipino, Gianfranco; Bisti, Silvia; Nobile, Mario; Picco, Cristiana

    2016-03-01

    P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases. PMID:26739703

  16. P2X7 Mediates ATP-Driven Invasiveness in Prostate Cancer Cells

    PubMed Central

    Qiu, Ying; Li, Wei-hua; Zhang, Hong-quan; Liu, Yan; Tian, Xin-Xia; Fang, Wei-Gang

    2014-01-01

    The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer. PMID:25486274

  17. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage

    PubMed Central

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-01-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise. PMID:25605289

  18. P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells*

    PubMed Central

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R.

    2011-01-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca2+-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca2+ concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca2+ and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation. PMID:21292765

  19. System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2012-01-01

    Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.

  20. New P2X3 receptor antagonists. Part 1: Discovery and optimization of tricyclic compounds.

    PubMed

    Szántó, Gábor; Makó, Attila; Bata, Imre; Farkas, Bence; Kolok, Sándor; Vastag, Mónika; Cselenyák, Attila

    2016-08-15

    Purinergic P2X3 receptors are trimeric ligand-gated ion channels whose antagonism is an appealing yet challenging and not fully validated drug development idea. With the aim of identification of an orally active, potent human P2X3 receptor antagonist compound that can penetrate the central nervous system, the compound collection of Gedeon Richter was screened. A hit series of tricyclic compounds was subjected to a rapid, two-step optimization process focusing on increasing potency, improving metabolic stability and CNS penetrability. Attempts resulted in compound 65, a potential tool compound for testing P2X3 inhibitory effects in vivo. PMID:27423478

  1. New P2X3 receptor antagonists. Part 2: Identification and SAR of quinazolinones.

    PubMed

    Szántó, Gábor; Makó, Attila; Vágó, István; Hergert, Tamás; Bata, Imre; Farkas, Bence; Kolok, Sándor; Vastag, Mónika

    2016-08-15

    Numerous potent P2X3 antagonists have been discovered and the therapeutic potential of P2X3 antagonism already comprises proof-of-concept data obtained in clinical trials with the most advanced compound. We have lately reported the discovery and optimization of thia-triaza-tricycle compounds with potent P2X3 antagonistic properties. This Letter describes the SAR of a back-up series containing a 4-oxo-quinazoline central ring. The discovery of the highly potent compounds 51 is presented. PMID:27426300

  2. N-Type Negative Resistance in M/NiS2 - xSex/M Structures

    NASA Astrophysics Data System (ADS)

    Chudnovskii, F. A.; Pergament, A. L.; Stefanovich, G. B.; Somasundaram, P.; Honig, J. M.

    1997-06-01

    We present measurements of the current-voltage characteristics of metal/NiS2 - xSex/metal structures. Due to the unusual metal-insulator phase transition in NiS2 - xSex, in which the low-temperature phase is metallic-like, whereas above the transition temperature the material is a semiconductor, we observed N-type current-voltage characteristics. The switching time for NiS2 - xSex thin films is estimated to be roughly 10 - 8 s, which is sufficiently short to be of interest for applications.

  3. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists.

    PubMed

    Caseley, Emily A; Muench, Stephen P; Fishwick, Colin W; Jiang, Lin-Hua

    2016-09-15

    The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3μM, 4.8±0.8μM and 3.2±0.2μM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3μM and 1.2±0.1μM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100μM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9μM, 1.0±0.1μM and 0.8±0.2μM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation. PMID:27481062

  4. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    SciTech Connect

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  5. Classification between Failed Nodes and Left Nodes in Mobile Asset Tracking Systems †

    PubMed Central

    Kim, Kwangsoo; Jin, Jae-Yeon; Jin, Seong-il

    2016-01-01

    Medical asset tracking systems track a medical device with a mobile node and determine its status as either in or out, because it can leave a monitoring area. Due to a failed node, this system may decide that a mobile asset is outside the area, even though it is within the area. In this paper, an efficient classification method is proposed to separate mobile nodes disconnected from a wireless sensor network between nodes with faults and a node that actually has left the monitoring region. The proposed scheme uses two trends extracted from the neighboring nodes of a disconnected mobile node. First is the trend in a series of the neighbor counts; the second is that of the ratios of the boundary nodes included in the neighbors. Based on such trends, the proposed method separates failed nodes from mobile nodes that are disconnected from a wireless sensor network without failures. The proposed method is evaluated using both real data generated from a medical asset tracking system and also using simulations with the network simulator (ns-2). The experimental results show that the proposed method correctly differentiates between failed nodes and nodes that are no longer in the monitoring region, including the cases that the conventional methods fail to detect. PMID:26901200

  6. Charge distribution and local structure and speciation in the UO{sub 2+x} and PuO{sub 2+x} binary oxides for x=<0.25

    SciTech Connect

    Conradson, Steven D. . E-mail: conradson@lanl.gov; Begg, Bruce D.; Clark, David L.

    2005-02-15

    The local structure and chemical speciation of the mixed valence, fluorite-based oxides UO{sub 2+x} (0.00=2+x}/PuO{sub 2+x-y}(OH){sub 2y}.zH{sub 2}O have been determined by U/Pu L{sub III} XAFS spectroscopy. The U spectra indicate (1) that the O atoms are incorporated as oxo groups at short (1.75A) U-O distances consistent with U(VI) concomitant with a large range of U displacements that reduce the apparent number of U neighbors and (2) that the UO{sub 2} fraction remains intact implying that these O defects interact to form clusters and give the heterogeneous structure consistent with the diffraction patterns. The PuO{sub 2+x} system, which does not show a separate phase at its x=0.25 endpoint, also displays (1) oxo groups at longer 1.9A distances consistent with Pu(V+{delta}), (2) a multisite Pu-O distribution even when x is close to zero indicative of the formation of stable species with H{sub 2}O and its hydrolysis products with O{sup 2-}, and (3) a highly disordered, spectroscopically invisible Pu-Pu component. The structure and bonding in AnO{sub 2+x} are therefore more complicated than have previously been assumed and show both similarities but also distinct differences among the different elements.

  7. Sinus node dysfunction complicating viper bite.

    PubMed

    Agarwal, Ashish; Kumar, Tarun; Ravindranath, Khandenahally S; Bhat, Prabhavathi; Manjunath, Cholenahally N; Agarwal, Neena

    2015-02-01

    Viper venom toxicities comprise mainly bleeding disorders and nephrotoxicity. Cardiotoxicity is a rare manifestation of viper bite. We describe the case of a previously healthy 35-year-old man who developed coagulopathy and sinus node dysfunction following a viper bite. Electrocardiography showed sinus arrest and junctional escape rhythm. This is the first account of sinus node dysfunction caused by a viper bite.

  8. Sinus node dysfunction: recognition and treatment.

    PubMed

    Rusk, Karla; Scordo, Kristine

    2012-12-10

    Sinus node dysfunction (SND) refers to a wide range of abnormalities involving sinus node and atrial impulse generation and propagation. SND occurs at any age and is commonly encountered in clinical practice. Clinicians must be able to accurately diagnose this syndrome, which can present from asymptomatic bradycardia to atrial standstill.

  9. A multiple node software development environment

    SciTech Connect

    Heinicke, P.; Nicinski, T.; Constanta-Fanourakis, P.; Petravick, D.; Pordes, R.; Ritchie, D.; White, V.

    1987-06-01

    Experimenters on over 30 DECnet nodes at Fermilab use software developed, distributed, and maintained by the Data Acquisition Software Group. A general methodology and set of tools have been developed to distribute, use and manage the software on different sites. The methodology and tools are of interest to any group developing and using software on multiple nodes.

  10. Testnodes: a Lightweight Node-Testing Infrastructure

    NASA Astrophysics Data System (ADS)

    Fay, R.; Bland, J.

    2014-06-01

    A key aspect of ensuring optimum cluster reliability and productivity lies in keeping worker nodes in a healthy state. Testnodes is a lightweight node testing solution developed at Liverpool. While Nagios has been used locally for general monitoring of hosts and services, Testnodes is optimised to answer one question: is there any reason this node should not be accepting jobs? This tight focus enables Testnodes to inspect nodes frequently with minimal impact and provide a comprehensive and easily extended check with each inspection. On the server side, Testnodes, implemented in python, interoperates with the Torque batch server to control the nodes production status. Testnodes remotely and in parallel executes client-side test scripts and processes the return codes and output, adjusting the node's online/offline status accordingly to preserve the integrity of the overall batch system. Testnodes reports via log, email and Nagios, allowing a quick overview of node status to be reviewed and specific node issues to be identified and resolved quickly. This presentation will cover testnodes design and implementation, together with the results of its use in production at Liverpool, and future development plans.

  11. Mediastinal lymph node size in lung cancer

    SciTech Connect

    Libshitz, H.I.; McKenna, R.J. Jr.

    1984-10-01

    Using a size criterion of 1 cm or greater as evidence for abnormality, the size of mediastinal lymph nodes identified by computed tomography (CT) was a poor predictor of mediastinal lymph node metastases in a series of 86 patients who had surgery for bronchogenic carcinoma. The surgery included full nodal sampling in all patients. Of the 86 patients, 36 had nodes greater than or equal to 1 cm identified by CT. Of the 21 patients with mediastinal metastases proven at surgery, 14 had nodes greater than or equal to 1 cm (sensitivity = 67%). Of the 65 patients without mediastinal metastases, 22 had nodes greater than or equal to 1 cm. Obstructive pneumonia and/or pulmonary collapse distal to the cancer was present in 39 patients (45%). Obstructive pneumonia and/or pulmonary collapse is a common occurrence in bronchogenic carcinoma, but mediastinal nodes greater than or equal to 1 cm in this circumstance cannot be presumed to represent metastatic disease. Metastatic mediastinal lymph node involvement was related to nodal size also in patients with evidence of prior granulomatous disease and in patients with no putative benign cause for nodes greater than or equal to 1 cm.

  12. Cosine transform generalized to lie groups SU(2)xSU(2), O(5), and SU(2)xSU(2)xSU(2): application to digital image processing

    NASA Astrophysics Data System (ADS)

    Germain, Mickaël; Patera, Jiri; Allard, Yannick

    2006-02-01

    We propose to apply three of the multiple variants of the 2 and 3-dimensional of the cosine transform. We consider the Lie groups leading to square lattices, namely SU(2)xSU(2) and O(5) in the 2-dimensional space, and the cubic lattice SU(2)xSU(2)xSU(2) in the 3-dimensional space. We aim at evaluating the benefits of some Discrete Group Transform (DGT) techniques, in particular the Continuous Extension of the Discrete Cosine Transform (CEDCT), and at developing new techniques that refine image quality: this refinement is called the high-resolution process. This highest quality is useful to increase the effectiveness of standard features extraction, fusion and classification algorithms. All algorithms based on the 2 and 3-dimensional DGT have the advantage to give the exact value of the original data at the points of the grid lattice, and interpolate well the data values between the grid points. The quality of the interpolation is comparable with the most efficient data interpolation, which are currently used for purposes of image zooming. In our first application, we use DGT techniques to refine fully polarimetric radar images, and to increase the effectiveness of standard features extraction algorithms. In our second application, we apply DGT techniques on medical images extracted from a system and a Magnetic Resonance Imaging (MRI) system.

  13. Front-end-of-line process development using 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan K.; Ercken, Monique; Eliat, Astrid; Delvaux, Christie; Jaenen, Patrick; Ronse, Kurt G.

    2001-04-01

    It is expected that 193nm lithography will be introduced in front-end-of-line processing for all critical layers at the 100nm node, and possibly also for some layers at the 130nm node, where critical layers are required to have the lowest mask cost. These processes are currently being investigated at IMEC for CMOS logic applications. While the lithographic performance of 193 nm resists has improved significantly in the last year, most materials still have important processing issues that need further improvement. On one hand, the resists material itself suffers from for example poor dry etch resistance and SEM CD shrinkage. On the other hand, interaction with other materials such as SiON inorganic ARCs becomes more challenging in terms of footing behavior, adhesion, and line edge roughness. In this paper, the 193nm processing experience gained at IMEC will be outlined, as well as solutions for manufacturability. Front- end-of-line integration results will also be shown, mainly for gate applications. It will be demonstrated that currently several commercial resist are capable of printing 130nm gates within the +/- 10 percent CD tolerance, even after gate etch. The impact of line edge roughness will also be discussed. Finally, the feasibility of printing 100nm logic patterns using only binary masks has been demonstrated, including gate etch.

  14. High speed polling protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.

  15. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  16. Locating influential nodes in complex networks

    NASA Astrophysics Data System (ADS)

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network.

  17. Expandable and reconfigurable instrument node arrays

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)

    2012-01-01

    An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.

  18. 8. DETAIL AT UPSTREAM ELEVATION SHOWING 2X6 VERTICAL WOOD DECKING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL AT UPSTREAM ELEVATION SHOWING 2X6 VERTICAL WOOD DECKING, RAIL SUPPORT, AND SCUPPER; VIEW TO NORTH-NORTHWEST. - Auwaiakeakua Bridge, Spanning Auwaiakekua Gulch at Mamalahoa Highway, Waikoloa, Hawaii County, HI

  19. Doping effect on the physical properties of LixFe2-xAs

    NASA Astrophysics Data System (ADS)

    Han, W.; Wang, X. C.; Gu, J. J.; Liu, Q. Q.; Deng, Z.; Jin, C. Q.

    2015-12-01

    We have studied the physical properties of Li-doped compound Fe2As, which is isostructural to the famous iron-based superconductor LiFeAs. The results indicate that both a-axis and c-axis of LixFe2-xAs increases with the increase in Li content when it is less than 0.2. The Néel temperature of LixFe2-xAs decreases with the increase in Li content, which may be related to the changes of distance for FeII-FeII layers. The resistivity of LixFe2-xAs is similar to that of Fe2As at low doping level 0-0.2. As the doping amount is increased to 0.9, the resistivity of LixFe2-xAs approaches the value of LiFeAs.

  20. Window type: 2x3 fixed multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 2x3 fixed multipaned steel window flanked by 1x3 multipaned steel casements. Concrete sill and spandrel also illustrated. Building 43, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  1. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    PubMed

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  2. Structural, Morphological Characterization of Fe2-xAlxCoO4 Nanoparticles Synthesized by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Raghavender, A. T.; Jadhav, K. M.

    A series of Fe2-xAlxCoO4 ferrite nanoparticles have been synthesized by sol-gel method. Powder X-ray diffraction (XRD), thermo gravimetric (TG) and differential thermal analysis (DTA), transmission electron microscopy (TEM) and IR spectroscopy analysis were employed to study structural and morphological characterization of these ferrite nanoparticles. The effect of substitution of Fe3+ by Al3+ ions on the structural properties of cobalt ferrite nanoparticles was investigated. The crystallite (D) is found in the range 39 nm to 6 nm, which decreases with increasing aluminum content. The values of lattice parameters (a), X-ray density (dx), hopping length (LA, LB) decreases with aluminum content. The tetrahedral bond (dAX), octahedral bond (dBX), tetra edge (dAXE) and octa edge (dBXE) (shared and unshared) showed the linear decrease with the increasing aluminum content x. IR spectroscopy analysis revealed the chemical and structural changes taking place in the combustion reaction.

  3. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models

    PubMed Central

    Fischer, Wolfgang; Franke, Heike; Krügel, Ute; Müller, Heiko; Dinkel, Klaus; Lord, Brian; Letavic, Michael A.; Henshall, David C.; Engel, Tobias

    2016-01-01

    The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders. PMID:27281030

  4. Pharmacological blockage and P2X7 deletion hinder aversive memories: reversion in an enriched environment.

    PubMed

    Campos, R C; Parfitt, G M; Polese, C E; Coutinho-Silva, R; Morrone, F B; Barros, D M

    2014-11-01

    Adenosine triphosphate (ATP) plays a role in cell signaling. It was soon proposed that ATP activates ionotropic P2X receptors, exerting an influence on neurons as well as on glial cells. In addition to the fact that the activation of P2X and P2Y receptors can stimulate or inhibit the release of glutamate from rat hippocampal neurons, the release of ATP has been implicated in hippocampal long-term potentiation (LTP). Through different behavioral paradigms, this study aimed to investigate the participation of P2X7R in genetically modified (knockout (KO)) mice with the suppressed expression of this receptor and in the pharmacological blockage of this receptor in rats, as well as to evaluate the effect of environmental enrichment on potential mnemonic deficits. The results suggest that P2X7R participates in aversive memory processes: pharmacological blockage with the selective P2X7R antagonist, A-740003, in different time frames elicited dose-dependent impairments in memory acquisition, consolidation and retrieval in rats that were submitted to the contextual fear-conditioning (FC) task, and the deletion of P2X7R hampered the aversive memory processes of mice that were subjected to the FC paradigm. Experiments using mice that were subjected to environmental enrichment suggest that this form of stimulation reverses mnemonic impairments that are ascribed to the absence of the P2X7R, suggesting that these receptors do not participate on such a reversal. Finally, no alterations were observed in the habituation memory of P2X7KO mice.

  5. Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia

    PubMed Central

    Nörenberg, W; Schunk, J; Fischer, W; Sobottka, H; Riedel, T; Oliveira, JF; Franke, H; Illes, P

    2010-01-01

    Background and purpose: P2X7 receptors are ATP-gated cation channels mediating important functions in microglial cells, such as the release of cytokines and phagocytosis. Electrophysiological evidence that these receptors also occur in CNS astroglia is rare and rather incomplete. Experimental approach: We used whole-cell patch-clamp recordings to search for P2X7 receptors in astroglial–neuronal co-cultures prepared from the cerebral cortex of rats. Key results: All the astroglial cells investigated responded to ATP with membrane currents, reversing around 0 mV. These currents could be also detected in isolated outside-out patch vesicles. The results of the experiments with the P2X [α,β-methylene ATP and 2′-3′-O-(4-benzoyl) ATP] and P2Y receptor agonists [adenosine 5′-O-(2-thiodiphosphate), uridine 5′-diphosphate, uridine 5′-triphosphate (UTP) and UDP-glucose] suggested the involvement of P2X receptors in this response. The potentiation of ATP responses in a low divalent cation or alkaline bath, but not by ivermectin, made it likely that a P2X7 receptor is operational. Blockade of the ATP effect by the P2X7 antagonists Brilliant Blue G, calmidazolium and oxidized ATP corroborated this assumption. Conclusions and implications: Rat cultured cortical astroglia possesses functional P2X7 receptors. It is suggested that astrocytic P2X7 receptors respond to high local ATP concentrations during neuronal injury. PMID:20649592

  6. Pharmacological blockage and P2X7 deletion hinder aversive memories: reversion in an enriched environment.

    PubMed

    Campos, R C; Parfitt, G M; Polese, C E; Coutinho-Silva, R; Morrone, F B; Barros, D M

    2014-11-01

    Adenosine triphosphate (ATP) plays a role in cell signaling. It was soon proposed that ATP activates ionotropic P2X receptors, exerting an influence on neurons as well as on glial cells. In addition to the fact that the activation of P2X and P2Y receptors can stimulate or inhibit the release of glutamate from rat hippocampal neurons, the release of ATP has been implicated in hippocampal long-term potentiation (LTP). Through different behavioral paradigms, this study aimed to investigate the participation of P2X7R in genetically modified (knockout (KO)) mice with the suppressed expression of this receptor and in the pharmacological blockage of this receptor in rats, as well as to evaluate the effect of environmental enrichment on potential mnemonic deficits. The results suggest that P2X7R participates in aversive memory processes: pharmacological blockage with the selective P2X7R antagonist, A-740003, in different time frames elicited dose-dependent impairments in memory acquisition, consolidation and retrieval in rats that were submitted to the contextual fear-conditioning (FC) task, and the deletion of P2X7R hampered the aversive memory processes of mice that were subjected to the FC paradigm. Experiments using mice that were subjected to environmental enrichment suggest that this form of stimulation reverses mnemonic impairments that are ascribed to the absence of the P2X7R, suggesting that these receptors do not participate on such a reversal. Finally, no alterations were observed in the habituation memory of P2X7KO mice. PMID:25239372

  7. Regulation of GABAA Receptor Dynamics by Interaction with Purinergic P2X2 Receptors*

    PubMed Central

    Shrivastava, Amulya Nidhi; Triller, Antoine; Sieghart, Werner; Sarto-Jackson, Isabella

    2011-01-01

    γ-Aminobutyric acid type A receptors (GABAARs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X2 receptors (P2X2Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABAARs. Here, we investigated a possible “dynamic” interaction between GABAARs and P2X2Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X2Rs forms a transient complex with GABAARs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X2Rs and GABAARs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X2Rs results in a Ca2+-dependent as well as an apparently Ca2+-independent increase in the mobility and an enhanced degradation of GABAARs, whereas P2X2Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X2Rs and GABAARs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABAARs. PMID:21343285

  8. Sentinel lymph nodes detection with an imaging system using Patent Blue V dye as fluorescent tracer

    NASA Astrophysics Data System (ADS)

    Tellier, F.; Steibel, J.; Chabrier, R.; Rodier, J. F.; Pourroy, G.; Poulet, P.

    2013-03-01

    Sentinel lymph node biopsy is the gold standard to detect metastatic invasion from primary breast cancer. This method can help patients avoid full axillary chain dissection, thereby decreasing the risk of morbidity. We propose an alternative to the traditional isotopic method, to detect and map the sentinel lymph nodes. Indeed, Patent Blue V is the most widely used dye in clinical routine for the visual detection of sentinel lymph nodes. A Recent study has shown the possibility of increasing the fluorescence quantum yield of Patent Blue V, when it is bound to human serum albumin. In this study we present a preclinical fluorescence imaging system to detect sentinel lymph nodes labeled with this fluorescent tracer. The setup is composed of a black and white CCD camera and two laser sources. One excitation source with a laser emitting at 635 nm and a second laser at 785 nm to illuminate the region of interest. The prototype is operated via a laptop. Preliminary experiments permitted to determine the device sensitivity in the μmol.L-1 range as regards the detection of PBV fluorescence signals. We also present a preclinical evaluation performed on Lewis rats, during which the fluorescence imaging setup detected the accumulation and fixation of the fluorescent dye on different nodes through the skin.

  9. Inhibitory interaction between P2X4 and GABA(C) rho1 receptors.

    PubMed

    Xia, Rong; Mei, Zhu-Zhong; Milligan, Carol; Jiang, Lin-Hua

    2008-10-10

    Reciprocal functional inhibition between P2X and GABA(A/C) receptors represents a novel mechanism fine-tuning neuronal excitability. However, the participating receptors and underlying mechanisms are not fully understood. P2X(4) receptor is widely found in neurons that express GABA(C) rho1 receptor. Thus, we co-expressed P2X(4) and rho1 receptors in HEK293 cells and, using patch-clamp recording, examined whether they have mutual functional inhibition. Currents evoked by simultaneous application of ATP and GABA (I(ATP+GABA)) were significantly smaller compared to the addition of I(ATP) and I(GABA). Furthermore, I(ATP) were strongly suppressed during rho1 receptor activation. Similarly, I(GABA) were greatly attenuated during P2X(4) receptor activation. Such mutual inhibition was absent in cells only expressing P2X(4) or rho1 receptor. Taken together, these functional data support negative cross-talk between P2X(4) and rho1 receptors.

  10. Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling.

    PubMed

    Kumagai, Shohei; Matsui, Kazuki; Kawaguchi, Haruyo; Yamashita, Tomomi; Mohri, Tomomi; Fujio, Yasushi; Nakayama, Hiroyuki

    2013-08-01

    Fibrosis is one of the most common pathological alterations in heart failure, and fibroblast migration is an essential process in the development of cardiac fibrosis. Experimental autoimmune myocarditis (EAM) is a model of inflammatory heart disease characterized by inflammatory cell infiltration followed by healing without residual fibrosis. However, the precise mechanisms mediating termination of inflammation and nonfibrotic healing remain to be elucidated. Microarray analysis of hearts from model mice at multiple time points after EAM induction identified several secreted proteins upregulated during nonfibrotic healing, including the anti-inflammatory cathelicidin antimicrobial peptide (CAMP). Treatment with LL-37, a human homolog of CAMP, activated MAP kinases in fibroblasts but not in cardiomyocytes, indicating that fibroblasts were the target of CAMP activity. In addition, LL-37 decreased fibroblast migration in the in vitro scratch assay. P2X7 receptor (P2X7R), a well-known receptor for LL-37, was involved in LL-37 mediated biological effect on cardiac fibroblasts. Stimulation of BzATP, a P2X7R agonist, activated MAPK in fibroblasts, whereas the P2X7R antagonist, BBG, as well as P2X7R deletion abolished both LL-37-mediated MAPK activation and LL-37-induced reduction in fibroblast migration. These results strongly suggest that CAMP upregulation during myocarditis prevents myocardial fibrosis by restricting fibroblast migration via activation of the P2X7R-MAPK signaling pathway. PMID:23867818

  11. Molecular and functional properties of P2X receptors--recent progress and persisting challenges.

    PubMed

    Kaczmarek-Hájek, Karina; Lörinczi, Eva; Hausmann, Ralf; Nicke, Annette

    2012-09-01

    ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.

  12. Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain

    PubMed Central

    Masuda, Takahiro; Iwamoto, Shosuke; Yoshinaga, Ryohei; Tozaki-Saitoh, Hidetoshi; Nishiyama, Akira; Mak, Tak W.; Tamura, Tomohiko; Tsuda, Makoto; Inoue, Kazuhide

    2014-01-01

    In response to neuronal injury or disease, microglia adopt distinct reactive phenotypes via the expression of different sets of genes. Spinal microglia expressing the purinergic P2X4 receptor (P2X4R) after peripheral nerve injury (PNI) are implicated in neuropathic pain. Here we show that interferon regulatory factor-5 (IRF5), which is induced in spinal microglia after PNI, is responsible for direct transcriptional control of P2X4R. Upon stimulation of microglia by fibronectin, IRF5 induced de novo expression of P2X4R by directly binding to the promoter region of the P2rx4 gene. Mice lacking Irf5 did not upregulate spinal P2X4R after PNI, and also exhibited substantial resistance to pain hypersensitivity. Furthermore, we found that expression of IRF5 in microglia is regulated by IRF8. Thus, an IRF8-IRF5 transcriptional axis may contribute to shifting spinal microglia toward a P2X4R-expressing reactive state after PNI. These results may provide a new target for treating neuropathic pain. PMID:24818655

  13. Tattoo-pigmented cervical lymph node that masqueraded as the sentinel lymph node in oral squamous cell carcinoma.

    PubMed

    Pinto, Amith; Wieshmann, Hulya; Triantafyllou, Asterios; Shaw, Richard

    2015-11-01

    We describe a case of a pigmented cervical lymph node mimicking the sentinel node during sentinel lymph node biopsy (SLNB) on a patient with oral squamous cell carcinoma (OSCC). The patient had extensive tattoos on his neck. This pigmented lymph node was not identified to be the sentinel lymph node using static and dynamic lymphoscintigraphy. Subsequent histological analysis revealed tattoo pigment within this lymph node. It is important during cervical SLNB to be aware that cutaneous tattoos can pigment lymph nodes. PMID:26188933

  14. [INTRAOPERATIVE DETECTION OF SENTINEL LYMPH NODES USING INFRARED IMAGING SYSTEM IN LOCAL NON-SMALL CELL CARCINOMA OF LUNG].

    PubMed

    Akopov, A L; Papayan, G V; Chistyakov, I V; Karlson, A; Gerasin, A V; Agishev, A S

    2015-01-01

    The article presents the results of the first domestic experience of intraoperative fluorescence mapping of sentinel lymph nodes in lung cancer. The research included 10 patients, who underwent surgery over the period of time from September 2013 to May 2014. After performing thoracotomy, the solution of indocyanine green (ICG) was injected using subpleural position above the tumor in 3-4 points. Fluorescence (ICG) image guided surgery was carried out by using infrared radiation (wave length 808 nm) on lung surface, root of lung, mediastinum in real time. Fluorescence lymph nodes were mapped. In case that metastatic lesions weren't revealed in sentinel lymph nodes, they weren't noted in other nodes. Method specificity consisted of 100%. Biopsy and histological study of sentinel lymph nodes mapped during fluorescence (ICG) image guided surgery could be useful for prevention of lymphodissection in patients with non-small cell carcinoma of lung. PMID:26601511

  15. Sentinel node evaluation in gynecologic cancer.

    PubMed

    Plante, Marie; Renaud, Marie-Claude; Roy, Michel

    2004-01-01

    The sentinel node evaluation has revolutionized the modern surgical management of cutaneous melanoma and breast cancer. In gynecologic oncology, sentinel node mapping has been mainly studied in vulvar and cervical cancer. In vulvar cancer, data from 12 studies including 353 cases indicate that the sentinel node detection rate is 92% and the negative-predictive value is 99%. Three groin recurrences have been documented so far (< 1%). The technique has more recently been studied in cervical cancer. Data from 12 studies including 323 cases indicate a lower sentinel node detection rate of 80% to 86% and a negative-predictive value of 99%. Three false-negative cases have been reported so far (< 1%). Review of the literature suggests that the combined approach with blue dye and lymphoscintigraphy is superior to the blue dye alone for sentinel node detection. It also suggests that the sentinel node mapping technique is feasible in vulvar and cervical cancer and that it may become a valuable alternative to the traditional groin and pelvic lymphadenectomy. However, results have not been duplicated in large multi-institutional trials, and the technique should still be performed in the context of clinical trials. Complications of the sentinel node mapping technique are rare and usually benign but physicians should be aware of the serious risk of anaphylactic reaction to the blue dye (1% to 2%). Before this technique becomes a standard approach in the management of gynecologic malignancies, more data will be needed to clarify some of the related controversies.

  16. Transport optimization considering the node aggregation ability

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Li, Lian; Guo, Jiawei; Li, Zheng

    2015-10-01

    Using the theories of complex networks and gravitational field, we study the dynamic routing process under the framework of node gravitational field, define the equation of gravitation of travel path to data package and introduce two parameters α and γ for adjusting the dependences of transmission data on the unblocked degree of node, the transmission capacity of node and the path length. Based on the path's attraction, a gravitational field routing strategy under node connection ability constraint is proposed with considering the affect of node aggregation ability to transport process, and a parameter is used to adjust the control strength of routing process to node aggregation ability. In order to clarify the efficiency of suggested method, we introduce an order parameter η to measure the throughput of the network by the critical value of phase transition from free state to congestion state, and analyze the distribution of betweenness centrality and traffic jam. Simulation results show that, compared with the traditional shortest path routing strategy, our method greatly improve the throughput of a network, balance the network traffic load and most of the network nodes are used efficiently. Moreover, the network throughput is maximized under μ = -1, and the transmission performance of the algorithm is independent of the values of α and γ, which indicate the routing strategy is stable and reliable.

  17. Parallel node placement method by bubble simulation

    NASA Astrophysics Data System (ADS)

    Nie, Yufeng; Zhang, Weiwei; Qi, Nan; Li, Yiqiang

    2014-03-01

    An efficient Parallel Node Placement method by Bubble Simulation (PNPBS), employing METIS-based domain decomposition (DD) for an arbitrary number of processors is introduced. In accordance with the desired nodal density and Newton’s Second Law of Motion, automatic generation of node sets by bubble simulation has been demonstrated in previous work. Since the interaction force between nodes is short-range, for two distant nodes, their positions and velocities can be updated simultaneously and independently during dynamic simulation, which indicates the inherent property of parallelism, it is quite suitable for parallel computing. In this PNPBS method, the METIS-based DD scheme has been investigated for uniform and non-uniform node sets, and dynamic load balancing is obtained by evenly distributing work among the processors. For the nodes near the common interface of two neighboring subdomains, there is no need for special treatment after dynamic simulation. These nodes have good geometrical properties and a smooth density distribution which is desirable in the numerical solution of partial differential equations (PDEs). The results of numerical examples show that quasi linear speedup in the number of processors and high efficiency are achieved.

  18. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}

    SciTech Connect

    Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian; Freyer, Daniela

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these two metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes

  19. Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x x 2x sexual hybridisation and its application to extensive breeding programs.

    PubMed

    Aleza, P; Juárez, J; Cuenca, J; Ollitrault, P; Navarro, Luis

    2010-09-01

    Seedlessness is one of the most important characteristics for mandarins for the fresh-fruit market and mandarin triploid hybrids have this trait. Citrus triploid plants can be recovered by 2x x 2x sexual hybridisations as a consequence of the formation of unreduced gametes at low frequency. Triploid embryos are found in small seeds that do not germinate under greenhouse conditions. Extensive breeding programs based on this type of hybridisation require very effective methodologies for embryo rescue and ploidy evaluation. In this work, we describe an effective methodology to recover triploid hybrids from 2x x 2x hybridisations based on in vitro embryo rescue and ploidy level determination by means of flow cytometry. The influence of parents and environmental conditions on obtaining triploid hybrids has been analysed. The strongest effect was associated with the genotype of the female parent while a strong interaction was found between the male parent genotype and environmental conditions. The effect of the female parent genotype on the length of the juvenile phase was also demonstrated by observing a large number of progenies over the last 10 years. The methodology described here has enabled us to obtain over 4,000 triploid hybrids so far, of which 13 have been protected in the European Union and two are being extensively planted by citrus growers to establish new commercial plots. These triploid hybrids have been analysed with simple sequence repeats markers to differentiate all the new triploid varieties and their parents, and thus molecular identification will help defend plant breeders' rights.

  20. Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-05-01

    To identify thermoelectric materials containing abundant, low-cost and non-toxic elements, we have studied the electronic structures and thermoelectric properties of (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices with state-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ) exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 are semi-metals using mBJ plus spin-orbit coupling (mBJ + SOC), while (Mg2Si)2/ (Mg2Ge)2 is predicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV and mBJ + SOC gap value of 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmann transport equations within the constant scattering time approximation. It is found that (Mg2Si)2/ (Mg2Ge)2 has a larger Seebeck coefficient and power factor than (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 for both p-type and n-type doping. The detrimental influence of SOC on the power factor of p-type (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as a function of the carrier concentration, but there is a negligible SOC effect for n-type. These results can be explained by the influence of SOC on their valence and conduction bands near the Fermi level.

  1. Inguinal Lymph Node Anthracosis: A Case Report.

    PubMed

    Biguria, Rafael; Soto, Carlos Alberto

    2016-07-01

    Anthracosis is defined as black, dense pigments in tissues, usually carbon deposits. We, as surgeons, have to make decisions during surgery to the best of our knowledge and based on what the literature provides us. We present the case of a 30-year-old female patient who underwent abdominoplasty. During surgery, bilateral inguinal pigmented and enlarged lymph nodes were seen. Biopsy of the nodes was done to rule out any malignancy. The results showed tattoo pigments on all lymph nodes. We present this case as tattoo pigment migration, which has been rarely described. PMID:27536493

  2. Checkpointing for a hybrid computing node

    DOEpatents

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  3. Inguinal Lymph Node Anthracosis: A Case Report

    PubMed Central

    Soto, Carlos Alberto

    2016-01-01

    Summary: Anthracosis is defined as black, dense pigments in tissues, usually carbon deposits. We, as surgeons, have to make decisions during surgery to the best of our knowledge and based on what the literature provides us. We present the case of a 30-year-old female patient who underwent abdominoplasty. During surgery, bilateral inguinal pigmented and enlarged lymph nodes were seen. Biopsy of the nodes was done to rule out any malignancy. The results showed tattoo pigments on all lymph nodes. We present this case as tattoo pigment migration, which has been rarely described. PMID:27536493

  4. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  5. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain.

    PubMed

    Ford, Anthony P

    2012-05-01

    SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues - limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.

  6. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567

    PubMed Central

    Bhattacharya, Anindya; Wang, Qi; Ao, Hong; Shoblock, James R; Lord, Brian; Aluisio, Leah; Fraser, Ian; Nepomuceno, Diane; Neff, Robert A; Welty, Natalie; Lovenberg, Timothy W; Bonaventure, Pascal; Wickenden, Alan D; Letavic, Michael A

    2013-01-01

    BACKGROUND AND PURPOSE An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. EXPERIMENTAL APPROACH We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain. KEY RESULTS JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL−1 (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg−1) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test. Conclusion and Implications JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology. PMID:23889535

  7. An Improved Method for P2X7R Antagonist Screening

    PubMed Central

    Soares-Bezerra, Rômulo José; Ferreira, Natiele Carla da Silva; Alberto, Anael Viana Pinto; Bonavita, André Gustavo; Fidalgo-Neto, Antônio Augusto; Calheiros, Andrea Surrage; Frutuoso, Valber da Silva; Alves, Luiz Anastacio

    2015-01-01

    ATP physiologically activates the P2X7 receptor (P2X7R), a member of the P2X ionotropic receptor family. When activated by high concentrations of ATP (i.e., at inflammation sites), this receptor is capable of forming a pore that allows molecules of up to 900 Da to pass through. This receptor is upregulated in several diseases, particularly leukemia, rheumatoid arthritis and Alzheimer's disease. A selective antagonist of this receptor could be useful in the treatment of P2X7R activation-related diseases. In the present study, we have evaluated several parameters using in vitro protocols to validate a high-throughput screening (HTS) method to identify P2X7R antagonists. We generated dose-response curves to determine the EC50 value of the known agonist ATP and the ICs50 values for the known antagonists Brilliant Blue G (BBG) and oxidized ATP (OATP). The values obtained were consistent with those found in the literature (0.7 ± 0.07 mM, 1.3-2.6 mM and 173-285 μM for ATP, BBG and OATP, respectively). The Z-factor, an important statistical tool that can be used to validate the robustness and suitability of an HTS assay, was 0.635 for PI uptake and 0.867 for LY uptake. No inter-operator variation was observed, and the results obtained using our improved method were reproducible. Our data indicate that our assay is suitable for the selective and reliable evaluation of P2X7 activity in multiwell plates using spectrophotometry-based methodology. This method might improve the high-throughput screening of conventional chemical or natural product libraries for possible candidate P2X7R antagonist or agonist PMID:25993132

  8. The planarian P2X homolog in the regulation of asexual reproduction.

    PubMed

    Sakurai, Toshihide; Lee, Hayoung; Kashima, Makoto; Saito, Yumi; Hayashi, Tetsutaro; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; Agata, Kiyokazu; Shibata, Norito

    2012-01-01

    The growth in size of freshwater planarians in response to nutrient intake is limited by the eventual separation of tail and body fragments in a process called fission. The resulting tail fragment regenerates the entire body as an artificially amputated tail fragment would do, and the body fragment regenerates a tail, resulting in two whole planarians. This regenerative ability is supported by pluripotent somatic stem cells, called neoblasts, which are distributed throughout almost the entire body of the planarian. Neoblasts are the only planarian cells with the ability to continuously proliferate and give rise to all types of cells during regeneration, asexual reproduction, homeostasis, and growth. In order to investigate the molecular characteristics of neoblasts, we conducted an extensive search for neoblast-specific genes using the High Coverage Expression Profiling (HiCEP) method, and tested the function of the resulting candidates by RNAi. Disruption of the expression of one candidate gene, DjP2X-A (Dugesia japonica membrane protein P2X homologue), resulted in a unique phenotype. DjP2X-A RNAi leads to an increase of fission events upon feeding. We confirmed by immunohistochemistry that DjP2X-A is a membrane protein, and elucidated its role in regulating neoblast proliferation, thereby explaining its unique phenotype. We found that DjP2X-A decreases the burst of neoblast proliferation that normally occurs after feeding. We also found that DjP2X-A is required for normal proliferation in starved animals. We propose that DjP2X-A modulates stem cell proliferation in response to the nutritional condition.

  9. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    SciTech Connect

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  10. Improved CD control for 45-40 nm CMOS logic patterning: anticipation for 32-28 nm

    NASA Astrophysics Data System (ADS)

    Le Gratiet, Bertrand; Sundermann, Frank; Massin, Jean; Decaux, Marianne; Thivolle, Nicolas; Baron, Fabrice; Ostrovsky, Alain; Monget, Cedric; Chapon, Jean Damien; Blancquaert, Yoann; Dabertrand, Karen; Thevenon, Lionel; Bry, Benedicte; Cluet, Nicolas; Borot, Bertrand; Bingert, Raphael; Devoivre, Thierry; Gourard, Pascal; Babaud, Laurène; Buttgereit, Ute; Birkner, Robert; Joyner, Mark; Graitzer, Erez; Cohen, Avi

    2010-03-01

    Since 2008, we have been presenting some papers regarding CMOS 45nm logic gate patterning activity to reduce CD dispersion. After a global CD budget evaluation at SPIE08, we have been focusing on Intrafield CD corrections using Dose MapperTM. The story continues and since then we have pursued our intrafield characterisation and focus on ways to get Dose MapperTM dose recipe created before the first silicon is coming. In fact 40nm technology is already more demanding and we must be ready with integrated solutions for 32/28nm node. Global CD budget can be divided in Lot to Lot, Wafer to Wafer, Intra wafer and Intra field component. We won't talk here about run to run solutions which are put in place for Lot to Lot and Wafer to Wafer. We will emphasize on the intrafield / intrawafer process corrections and outline process compensation control and strategy. A lot of papers regarding intrafield CD compensation are available in the litterature but they do not necesserally fit logic manufacturing needs or possibilities. We need to put similar solutions in place which are comprehensive and flexible. How can we correct upfront an Etch chamber CD profile combined with a mask and scanner CD signature? How can we get intrafield map from random logic devices? This is what we will develop in this paper.

  11. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2015-01-27

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  12. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2014-12-30

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  13. Percutaneous Vertebroplasty in Painful Schmorl Nodes

    SciTech Connect

    Masala, Salvatore Pipitone, Vincenzo; Tomassini, Marco; Massari, Francesco; Romagnoli, Andrea; Simonetti, Giovanni

    2006-02-15

    The Schmorl node represents displacement of intervertebral disc tissue into the vertebral body. Both Schmorl nodes and degenerative disc disease are common in the human spine. We performed a retrospective study, for the period from January 2003 to February 2005, evaluating 23 patients affected by painful Schmorl nodes, who underwent in our department percutaneous transpedicular injection of polymethylmethacrylate (vertebroplasty) in order to solve their back pain not responsive to medical and physical management. Eighteen patients reported improvement of the back pain and no one reported a worsening of symptoms. Improvement was swift and persistent in reducing symptoms. Painful Schmorl nodes, refractory to medical or physical therapy, should be considered as a new indication within those vertebral lesions adequately treatable utilizing Vertebroplasty procedure.

  14. Mesenteric lymph node cavitation in coeliac disease.

    PubMed Central

    Holmes, G K

    1986-01-01

    A patient with coeliac disease and mesenteric lymph node cavitation is reported. This is a rare occurrence and has received very little attention in the English literature. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3721297

  15. Earth transportation node requirements and design

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray; Ayers, J. Kirk; Cirillo, William M.

    1988-01-01

    The objective of this paper is to establish the requirements for an inhabited earth orbiting transportation node and to develop design concepts for such a facility. The use of an earth orbiting transportation node is required to support many of the space flight projects proposed for the beginning of the 21st century. The requirements for such an orbiting facility are derived from the missions which they support. Future missions investigated include automated and human exploration of the solar system, support of a lunar base, and missions to planet earth. Design concepts are presented for transportation nodes based on a variation of the current Space Station Freedom design. Designs accommodate a variety of earth-to-orbit, orbit-to-orbit, and deep-space probe transportation systems. Finally, the technology needed to develop such a transportation node is summarized.

  16. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    PubMed

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  17. Synthesis and magnetic characterization of Sr-based Ni{sub 2}X-type hexaferrite

    SciTech Connect

    Kamishima, K. Mashiko, T.; Kakizaki, K.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-10-15

    We have investigated the synthesis conditions, and the magnetic properties of the Sr{sub 2}Ni{sub 2}X-type hexagonal ferrite, Sr{sub 2}Ni{sub 2}Fe{sub 28}O{sub 46}. The Sr{sub 2}Ni{sub 2}X-type hexaferrite was synthesized at 1240{sup ∘}C. The spontaneous magnetization at 5 K was 44.2 μ{sub B}/f.u., suggesting that most of the Ni{sup 2+} ions are at the up-spin octahedral sites in the spinel-structure blocks within the model of a Néel-type collinear ferrimagnetic structure. The Curie temperature of the Sr{sub 2}Ni{sub 2}X-type hexaferrite was estimated to be T{sub C}[Sr{sub 2}Ni{sub 2}X] = 472{sup ∘}C. This is consistent with the difference of the block stacking structures of SrM-type, Sr{sub 2}Ni{sub 2}X-type, SrNi{sub 2}W-type, and nickel spinel ferrites.

  18. Expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in equine laminitis.

    PubMed

    Zamboulis, Danae E; Senior, Mark; Clegg, Peter D; Milner, Peter I

    2013-11-01

    Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.

  19. P2X7 Receptor Function in Bone-Related Cancer

    PubMed Central

    Adinolfi, Elena; Amoroso, Francesca; Giuliani, Anna Lisa

    2012-01-01

    Modulation of tumor microenvironment by different mediators is central in determining neoplastic formation and progression. Among these molecules extracellular ATP is emerging as a good candidate in promoting cell growth, neovascularization, tumor-host interactions, and metastatization. This paper summarizes recent findings on expression and function of P2X7 receptor for extracellular ATP in primary and metastatic bone cancers. Search of mRNA expression microchip databases and literature analysis demonstrate a high expression of P2X7 in primary bone tumors as well as in other malignancies such as multiple myeloma, neuroblastoma, breast, and prostate cancer. Evidence that P2X7 triggers NFATc1, PI3K/Akt, ROCK, and VEGF pathways in osteoblasts promoting either primary tumor development or osteoblastic lesions is also reported. Moreover, P2X7 receptor is involved in osteoclast differentiation, RANKL expression, matrix metalloproteases and cathepsin secretion thus promoting bone resorption and osteolytic lesions. Taken together these data point to a pivotal role for the P2X7 receptor in bone cancer biology. PMID:22970409

  20. Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain.

    PubMed

    Mio, Kazuhiro; Kubo, Yoshihiro; Ogura, Toshihiko; Yamamoto, Tomomi; Sato, Chikara

    2005-11-25

    The P2X2 purinergic receptor permeates cationic ions in response to stimulation by ATP and mediates fast synaptic transmission. Here, we purified the P2X2 receptor using baculovirus-Sf9 cell expression system and observed its structure using electron microscopy. The FLAG-tagged P2X2 receptor, which has intact ion channel function, was purified to be a single peak by affinity purification and gel filtration chromatography. It was confirmed to be a trimer by introducing cross-linking. Negatively stained P2X2 protein images were homogeneous and picked up by automated pick-up programs, aligned, and classified using the modified growing neural gas network method. Similarly oriented projections were averaged to decrease the signal-to-noise ratio. These images demonstrate an inverted three-sided pyramid with the dimensions of 215 A in height and 200 A in side length. It is composed of a high-density trunk and a stain-permeable swollen extracellular domain of a crown-shaped structure. The internal cavities and constituent segments were clearly demonstrated in both the raw images and the averaged images. The threefold symmetrical top view demonstrates the first visual evidence of the trimeric composition of the P2X receptor family. PMID:16219297

  1. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  2. Theoretical investigation of superconductivity in MgB2-xCx alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Gargee; Sharma, Smita

    2016-05-01

    In this paper we investigated the superconducting properties of MgB2-xCx alloys where x is the concentration (0.0, 0.03, 0.11 and 0.20). The superconducting state parameters, namely, the electron-phonon coupling strength (λ), Coulomb pseudopotential (μ*), transition temperature (Tc), isotope effect exponent (α) and interaction strength (NoV) of MgB2-xCx alloys have been investigated in the BCS-Eliashberg-McMillan framework, as modified for MgB2-xCx alloys. Pseudo ions with average properties have been considered to replace different types of ions in the system. It is observed that all the superconducting parameters go on decreasing as the concentration of C is increased. The magnitudes of λ and Tc indicate that MgB2-xCx is strong-to-intermediate coupling superconductor. It is also observed that Tc is composition dependent. Present computations yield almost linear variation of Tc with concentration x of C in the MgB2-xCx system, which is in agreement with the experimental data. A linear Tc equation is proposed by fitting the present results.

  3. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2.

    PubMed

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-12-15

    Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca(2+) signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions.

  4. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2

    PubMed Central

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-01-01

    ABSTRACT Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. PMID:26542019

  5. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.

    PubMed

    Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan

    2015-02-25

    MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries. PMID:25688582

  6. International Lunar Network (ILN) Anchor Nodes

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This slide presentation reviews what we know about the interior and surface of the moon and the need to establish a robotic set of geophysical monitoring stations on the surface of the Moon for the purpose of providing significant scientific value to the exploration of the Moon. The ILN Anchor Nodes will provide the backbone of the network in a way that accomplishes new science and allows other nodes to be flexible contributors to the network.

  7. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  8. [Regional lymph nodes at a distance].

    PubMed

    Kroon, B B R; Hoefnagel, C A; Valdés Olmos, R A; Nieweg, O E

    2008-09-13

    In 3 patients, two men aged 22 years and 38 years with melanoma, and one woman aged 46 years with breast cancer, local tumour growth recurred following regional lymph node dissection. All three developed metastasis in new distant regional basins, which were once more dissected. The first melanoma patient died from haematogenous metastasis, 2 years after the excision of his primary melanoma. The other melanoma patient was alive, without evidence of disease, 8 years after the treatment of his primary tumour. The breast cancer patient, who underwent contralateral axillary lymph node dissection, was also alive, without evidence of disease, 27 years after the treatment of her primary tumour. Diversion of lymphatic flow as a result of regional lymph node dissection for cancer may lead to metastasis to a distant lymph node basin if tumour growth recurs in the original area. Knowledge of this usually unknown phenomenon is important since metastasis to these new regional basins can still be treated curatively, in the form of another lymph node dissection. These distant lymph node basins must therefore be carefully checked during follow-up monitoring.

  9. Cervical lymph node diseases in children

    PubMed Central

    Lang, Stephan; Kansy, Benjamin

    2014-01-01

    The lymph nodes are an essential part of the body’s immune system and as such are affected in many infectious, autoimmune, metabolic and malignant diseases. The cervical lymph nodes are particularly important because they are the first drainage stations for key points of contact with the outside world (mouth/throat/nose/eyes/ears/respiratory system) – a critical aspect especially among children – and can represent an early clinical sign in their exposed position on a child’s slim neck. Involvement of the lymph nodes in multiple conditions is accompanied by a correspondingly large number of available diagnostic procedures. In the interests of time, patient wellbeing and cost, a careful choice of these must be made to permit appropriate treatment. The basis of diagnostic decisions is a detailed anamnesis and clinical examination. Sonography also plays an important role in differential diagnosis of lymph node swelling in children and is useful in answering one of the critical diagnostic questions: is there a suspicion of malignancy? If so, full dissection of the most conspicuous lymph node may be necessary to obtain histological confirmation. Diagnosis and treatment of childhood cervical lymph node disorders present the attending pediatric and ENT physicians with some particular challenges. The spectrum of differential diagnoses and the varying degrees of clinical relevance – from banal infections to malignant diseases – demand a clear and considered approach to the child’s individual clinical presentation. Such an approach is described in the following paper. PMID:25587368

  10. [Regional lymph nodes at a distance].

    PubMed

    Kroon, B B R; Hoefnagel, C A; Valdés Olmos, R A; Nieweg, O E

    2008-09-13

    In 3 patients, two men aged 22 years and 38 years with melanoma, and one woman aged 46 years with breast cancer, local tumour growth recurred following regional lymph node dissection. All three developed metastasis in new distant regional basins, which were once more dissected. The first melanoma patient died from haematogenous metastasis, 2 years after the excision of his primary melanoma. The other melanoma patient was alive, without evidence of disease, 8 years after the treatment of his primary tumour. The breast cancer patient, who underwent contralateral axillary lymph node dissection, was also alive, without evidence of disease, 27 years after the treatment of her primary tumour. Diversion of lymphatic flow as a result of regional lymph node dissection for cancer may lead to metastasis to a distant lymph node basin if tumour growth recurs in the original area. Knowledge of this usually unknown phenomenon is important since metastasis to these new regional basins can still be treated curatively, in the form of another lymph node dissection. These distant lymph node basins must therefore be carefully checked during follow-up monitoring. PMID:18825884

  11. Layout dependent effects analysis on 28nm process

    NASA Astrophysics Data System (ADS)

    Li, Helen; Zhang, Mealie; Wong, Waisum; Song, Huiyuan; Xu, Wei; Hurat, Philippe; Ding, Hua; Zhang, Yifan; Cote, Michel; Huang, Jason; Lai, Ya-ch

    2015-03-01

    Advanced process nodes introduce new variability effects due to increased density, new material, new device structures, and so forth. This creates more and stronger Layout Dependent effects (LDE), especially below 28nm. These effects such as WPE (Well Proximity Effect), PSE (Poly Spacing Effect) change the carrier mobility and threshold voltage and therefore make the device performances, such as Vth and Idsat, extremely layout dependent. In traditional flows, the impact of these changes can only be simulated after the block has been fully laid out, the design is LVS and DRC clean. It's too late in the design cycle and it increases the number of post-layout iteration. We collaborated to develop a method on an advanced process to embed several LDE sources into a LDE kit. We integrated this LDE kit in custom analog design environment, for LDE analysis at early design stage. These features allow circuit and layout designers to detect the variations caused by LDE, and to fix the weak points caused by LDE. In this paper, we will present this method and how it accelerates design convergence of advanced node custom analog designs by detecting early-on LDE hotspots on partial or fully placed layout, reporting contribution of each LDE component to help identify the root cause of LDE variation, and even providing fixing guidelines on how to modify the layout and to reduce the LDE impact.

  12. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A.; Parker, Jeffrey J.

    2011-05-24

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local direct put transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  13. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A.

    2011-02-15

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local memory FIFO data transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  14. A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu(2-x)S, and Ge.

    PubMed

    Ha, Don-Hyung; Ly, Tiffany; Caron, Joseph M; Zhang, Haitao; Fritz, Kevin E; Robinson, Richard D

    2015-11-18

    In this work, we demonstrate a general lithium-ion battery electrode fabrication method for colloidal nanoparticles (NPs) using electrophoretic deposition (EPD). Our process is capable of forming robust electrodes from copper sulfide, manganese sulfide, and germanium NPs without the use of additives such as polymeric binders and conductive agents. After EPD, we show two postprocessing treatments ((NH4)2S and inert atmosphere heating) to effectively remove surfactant ligands and create a linked network of particles. The NP films fabricated by this simple process exhibit excellent electrochemical performance as lithium-ion battery electrodes. Additive-free Cu(2-x)S and MnS NP films show well-defined plateaus at ∼1.7 V, demonstrating potential for use as cathode electrodes. Because of the absence of additives in the NP film, this additive-free NP film is an ideal template for ex situ analyses of the particles to track particle morphology changes and deterioration as a result of Li ion cycling. To this end, we perform a size-dependent investigation of Cu(2-x)S NPs and demonstrate that there is no significant relationship between size and capacity when comparing small (3.8 nm), medium (22 nm), and large (75 nm) diameter Cu(2-x)S NPs up to 50 cycles; however, the 75 nm NPs show higher Coulombic efficiency. Ex situ TEM analysis suggests that Cu(2-x)S NPs eventually break into smaller particles (<10 nm), explaining a weak correlation between size and performance. We also report for the first time on additive-free Ge NP films, which show stable capacities for up to 50 cycles at 750 mAh/g. PMID:26535449

  15. Dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job

    SciTech Connect

    Budnik, Thomas A.; Knudson, Brant L.; Megerian, Mark G.; Miller, Samuel J.; Stockdell, William M.

    2012-03-20

    Methods, systems, and products for dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job that include: identifying that a job failed to execute on the block of compute nodes because connectivity failed between a compute node assigned as at least one of the connected nodes for the block of compute nodes and its supporting I/O node; and re-launching the job, including selecting an alternative connected node that is actively coupled for data communications with an active I/O node; and assigning the alternative connected node as the connected node for the block of compute nodes running the re-launched job.

  16. Role of dynamic sentinel node biopsy in carcinoma penis with or without palpable nodes

    PubMed Central

    Kathiresan, N.; Raja, Anand; Ramachandran, Krishna Kumar; Sundersingh, Shirley

    2016-01-01

    Introduction: We aimed to evaluate the role of dynamic sentinel node biopsy (DSLNB) in patients diagnosed with carcinoma penis and clinically N0 disease using superficial inguinal dissection as the standard staging modality. Materials and Methods: Twenty consecutive men (40 groins) with carcinoma penis having clinically N0 status were enrolled in the study. Patients underwent DSLNB if fine needle aspiration cytology from the groin nodes was negative, followed by injection of radiocolloid and blue dye. The sentinel lymph node(s) were harvested. The inguinal incision was then extended and a modified superficial inguinal dissection was performed and all nodes were labeled separately and sent for frozen section. A completion deep inguinal with pelvic dissection was performed if any of the nodes were reported positive for malignancy. Results: The median age of the patients was 52.5 years. Ten patients were smokers. Phimosis was present in five patients. Lesions were present over the glans penis and shaft in 18 and two patients, respectively. Wide local excision, partial penectomy and total penectomy were performed in one, 15 and four patients, respectively. Clinically palpable nodes were found in 19 groins. Median follow-up was 26 months. Nodes were positive in 10 groins. DSLNB missed the sentinel node in one groin. The accuracy and false-negative rate of DSLNB was 97.5% and 10%, respectively. Conclusion: DSLNB is a useful and reliable technique to identify the involved node(s) in patients diagnosed as having carcinoma penis with clinical N0 status (with or without palpable nodes). It helps to avoid the morbidity associated with a staging inguinal dissection in these patients. PMID:26941496

  17. Electroacupuncture at He-Mu points reduces P2X4 receptor expression in visceral hypersensitivity.

    PubMed

    Guo, Xinxin; Chen, Jifei; Lu, Yuan; Wu, Luyi; Weng, Zhijun; Yang, Ling; Xin, Yuhu; Lin, Xianming; Liang, Yi; Fang, Jianqiao

    2013-08-01

    Electroacupuncture at Shangjuxu (ST37) and Tianshu (ST25) was reported to improve visceral hypersensitivity in rats. Colorectal distension was utilized to generate a rat model of chronic visceral hypersensitivity in irritable bowel syndrome. Results showed that abdominal withdrawal reflex scores noticeably increased after model establishment. Simultaneously, P2X4 receptor immureactivity significantly increased in the colon and spinal cord. Electroacupuncture and pinaverium bromide therapy both markedly decreased abdominal withdrawal reflex scores in rats with visceral hypersensitivity, and significantly decreased P2X4 receptor immunoreactivity in the colon and spinal cord. These data suggest that electroacupuncture treatment can improve visceral hypersensitivity in rats with irritable bowel syndrome by diminishing P2X4 receptor immunoreactivity in the colon and spinal cord. PMID:25206515

  18. Electroacupuncture at He-Mu points reduces P2X4 receptor expression in visceral hypersensitivity

    PubMed Central

    Guo, Xinxin; Chen, Jifei; Lu, Yuan; Wu, Luyi; Weng, Zhijun; Yang, Ling; Xin, Yuhu; Lin, Xianming; Liang, Yi; Fang, Jianqiao

    2013-01-01

    Electroacupuncture at Shangjuxu (ST37) and Tianshu (ST25) was reported to improve visceral hypersensitivity in rats. Colorectal distension was utilized to generate a rat model of chronic visceral hypersensitivity in irritable bowel syndrome. Results showed that abdominal withdrawal reflex scores noticeably increased after model establishment. Simultaneously, P2X4 receptor immureactivity significantly increased in the colon and spinal cord. Electroacupuncture and pinaverium bromide therapy both markedly decreased abdominal withdrawal reflex scores in rats with visceral hypersensitivity, and significantly decreased P2X4 receptor immunoreactivity in the colon and spinal cord. These data suggest that electroacupuncture treatment can improve visceral hypersensitivity in rats with irritable bowel syndrome by diminishing P2X4 receptor immunoreactivity in the colon and spinal cord. PMID:25206515

  19. Design and Fabrication Development of J-2X Engine Metallic Nozzle Extension

    NASA Technical Reports Server (NTRS)

    Kopicz, C.; Gradl, P.

    2015-01-01

    Maximized rocket engine performance is in part derived from expanding combustion gasses through the rocket nozzle. For upper stage engines the nozzles can be quite large. On the J-2X engine, an uncooled extension of a regeneratively cooled nozzle is used to expand the combustion gasses to a targeted exit pressure which is defined by an altitude for the desired maximum performance. Creating a J-2X nozzle extension capable of surviving the loads of test and flight environments while meeting engine system performance requirements required development of new processes and facilities. Meeting the challenges of the development resulted in concurrent J-2X nozzle extension design and fabrication. This paper describes how some of the design and fabrication challenges were resolved.

  20. Spin reorientation transition in ultrathin Co film on InP(2x4) reconstructed surface

    SciTech Connect

    Park, Yong-Sung; Jeong, Jong-Ryul; Shin, Sung-Chul

    2005-05-15

    We have investigated magnetic properties of monolayer (ML)-thickness Co film deposited on InP(2x4) reconstructed surface using in situ surface magneto-optical Kerr effects (SMOKE) measurement system. InP(2x4) reconstructed surface, obtained by several cycles of sputtering-and-annealing process, was confirmed by reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) measurements. Co film grown on InP(2x4) reconstructed surface shows three distinguishable thickness regions which have different magnetic properties, depending on Co film thickness. In the Co film thickness region smaller than 7 ML, no SMOKE signal was detected. In the thickness region between 8 ML and 15 ML, both longitudinal and polar Kerr hysteresis loops were observed. In the film thickness larger than 16 ML, only longitudinal SMOKE signal without polar signal was detected.

  1. The P2X4 receptor is required for neuroprotection via ischemic preconditioning

    PubMed Central

    Ozaki, Tomohiko; Muramatsu, Rieko; Sasai, Miwa; Yamamoto, Masahiro; Kubota, Yoshiaki; Fujinaka, Toshiyuki; Yoshimine, Toshiki; Yamashita, Toshihide

    2016-01-01

    Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance. PMID:27173846

  2. Thermochemical modeling of the U1-yGdyO2 x phase

    SciTech Connect

    McMurray, Jacob; Shin, Dongwon; Slone, Benjamin W; Besmann, Theodore M

    2013-01-01

    A thermodynamic model for the U1-yGdyO2 x phase was developed using the compound energy formalism (CEF) with a three sublattice approach and is an extension of the already successful CEF representation of the fluorite UO2 x phase. The Gibbs energies for the end-members created by the addition of Gd to the cation sublattice are estimated using the lattice stability of a fictive gadolinium oxide fluorite structure compound from density functional theory. The model interaction parameters are determined from reported oxygen potential-temperature-composition measurements. The calculated results are in good agreement with the experimental data and the trends are consistent. The CEF for the U1-yGdyO2 x solid solution can be combined with other representations of actinide and fission product containing fluorite UO2 phases to develop multi-component models within the CEF framework.

  3. 32 nm logic patterning options with immersion lithography

    NASA Astrophysics Data System (ADS)

    Lai, K.; Burns, S.; Halle, S.; Zhuang, L.; Colburn, M.; Allen, S.; Babcock, C.; Baum, Z.; Burkhardt, M.; Dai, V.; Dunn, D.; Geiss, E.; Haffner, H.; Han, G.; Lawson, P.; Mansfield, S.; Meiring, J.; Morgenfeld, B.; Tabery, C.; Zou, Y.; Sarma, C.; Tsou, L.; Yan, W.; Zhuang, H.; Gil, D.; Medeiros, D.

    2008-03-01

    The semiconductor industry faces a lithographic scaling limit as the industry completes the transition to 1.35 NA immersion lithography. Both high-index immersion lithography and EUV lithography are facing technical challenges and commercial timing issues. Consequently, the industry has focused on enabling double patterning technology (DPT) as a means to circumvent the limitations of Rayleigh scaling. Here, the IBM development alliance demonstrate a series of double patterning solutions that enable scaling of logic constructs by decoupling the pattern spatially through mask design or temporally through innovative processes. These techniques have been successfully employed for early 32nm node development using 45nm generation tooling. Four different double patterning techniques were implemented. The first process illustrates local RET optimization through the use of a split reticle design. In this approach, a layout is decomposed into a series of regions with similar imaging properties and the illumination conditions for each are independently optimized. These regions are then printed separately into the same resist film in a multiple exposure process. The result is a singly developed pattern that could not be printed with a single illumination-mask combination. The second approach addresses 2D imaging with particular focus on both line-end dimension and linewidth control [1]. A double exposure-double etch (DE2) approach is used in conjunction with a pitch-filling sacrificial feature strategy. The third double exposure process, optimized for via patterns also utilizes DE2. In this method, a design is split between two separate masks such that the minimum pitch between any two vias is larger than the minimum metal pitch. This allows for final structures with vias at pitches beyond the capability of a single exposure. In the fourth method,, dark field double dipole lithography (DDL) has been successfully applied to BEOL metal structures and has been shown to be

  4. Allosteric nature of P2X receptor activation probed by photoaffinity labelling

    PubMed Central

    Bhargava, Y; Rettinger, J; Mourot, A

    2012-01-01

    BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera – BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding. PMID:22725669

  5. Principles and properties of ion flow in P2X receptors.

    PubMed

    Samways, Damien S K; Li, Zhiyuan; Egan, Terrance M

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5'-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca(2+) concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na(+) and Ca(2+) in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate.

  6. Principles and properties of ion flow in P2X receptors

    PubMed Central

    Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  7. Purinergic control of inflammation and thrombosis: Role of P2X1 receptors

    PubMed Central

    Oury, Cécile; Lecut, Christelle; Hego, Alexandre; Wéra, Odile; Delierneux, Céline

    2014-01-01

    Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation. PMID:25709760

  8. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  9. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo

    PubMed Central

    Osmond, David A.

    2010-01-01

    In vitro experiments demonstrate that P2X1 receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X1 receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X1 receptor blockade with IP5I, or A1 receptor blockade with DPCPX. Both P2X1 and A1 receptor stimulation with α,β-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X1 receptor stimulation. Likewise, administration of DPCPX significantly blocked A1 receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100–120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80–100 mmHg, suggesting that A1 receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X1 receptor activation is important for whole kidney autoregulation in vivo. PMID:20335318

  10. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    SciTech Connect

    Ballard, Richard O.

    2008-01-21

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  11. Lymph node revealing solution: a new method for lymph node sampling: results in gastric adenocarcinoma.

    PubMed

    Koren, R; Kyzer, S; Levin, I; Klein, B; Halpern, M; Rath-Wolfson, L; Paz, A; Melloul, M M; Mishali, M; Gal, R

    1998-01-01

    Staging of gastric carcinoma depends on exact lymph node status. However, very small nodes are not easily found as they are obscured by the surrounding adipose tissue. The purpose of the present study was to demonstrate the usefulness of a Olymph node revealing solutionO (LNRS) in gastric cancer. The perigastric adipose tissue of ten OproblematicO cases of gastric carcinoma, in which <10 lymph nodes were found using the traditional method, was immersed in LNRS for 6-12 h. Subsequently, the lymph nodes stood out as white chalky nodules. They were excised and processed routinely. The traditional method yielded a total of 30 lymph nodes with a mean size of 6.69 +/- 3.43 mm. The LNRS revealed 89 additional nodes with a mean size of 3.03 +/- 3.43 mm, which was significantly smaller. The Node (N) stage was changed in four cases from Nx to N0, in one case from N1 to N2, and in one case from N0 to N2. LNRS seems to be the technique of choice for staging of patients with gastric adenocarcinoma in whom <10 lymph nodes were found with the traditional method and accurate staging was not possible. PMID:9468553

  12. Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    NASA Technical Reports Server (NTRS)

    SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.

    2010-01-01

    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft

  13. Synthesis and spectroscopic characterization of Yb3+ in Ca1-XYbXF2+X crystals

    NASA Astrophysics Data System (ADS)

    Ito, M.; Goutaudier, C.; Guyot, Y.; Lebbou, K.; Fukuda, T.; Boulon, G.

    2004-11-01

    Ca1-XYbXF2+X crystals were grown by two different methods: simple melting under CF{4} atmosphere and laser heated pedestal growth (LHPG) method under Ar atmosphere. Spectroscopic characterization has been carried out to separate different crystallographic site in Ca1-XYbXF2+X crystals and to identify Stark's levels of Yb3+ transitions. Experimental decay time dependence of Yb3+ concentration was analyzed by using concentration gradient fiber in order to understand concentration quenching mechanisms. Energy transfer to unexpected rare earth impurities observed by up-conversion emission spectra in visible region under IR Yb3+ ion pumping seems to be an efficient process.

  14. Raman spectroscopy as a tool for the identification and differentiation of neoplasias contained within lymph nodes of the head and neck

    NASA Astrophysics Data System (ADS)

    Orr, Linda E.; Christie-Brown, Jonathan; Hutchings, Joanne C.; McCarthy, Keith; Rose, Simon; Thomas, Michael; Stone, Nicholas

    2010-02-01

    The use of Raman spectroscopy in the detection and classification of malignancy within lymph nodes of the head and neck has been evaluated. Currently histopathology is considered the diagnostic gold standard. A consensus (majority) opinion from three expert histopathologists has been obtained and spectral diagnostic models developed by correlation with their opinions. Raman spectra have been measured at 830nm from 103 lymph nodes collected from patients undergoing surgery for a suspicious node. The pathologies covered reactive lymph nodes, primaries from Hodgkin's and non-Hodgkin's lymphomas and metastases from squamous cell carcinomas and adenocarcinomas. Spectral diagnostic models were constructed using PCA-fed-LDA and tested using leave-one-specimen-out cross validation. Models were constructed to distinguish between reactive and malignant nodes as well as a four group model to distinguish between the benign, metastatic and primary conditions. They achieved 89% and 84% correct prediction by node versus the gold standard, majority histopathology.

  15. Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 CellsV⃞

    PubMed Central

    Morelli, Anna; Chiozzi, Paola; Chiesa, Anna; Ferrari, Davide; Sanz, Juana M.; Falzoni, Simonetta; Pinton, Paolo; Rizzuto, Rosario; Olson, Michael F.; Di Virgilio, Francesco

    2003-01-01

    The P2X7 ATP receptor mediates the cytotoxic effect of extracellular ATP. P2X7-dependent cell death is heralded by dramatic plasma membrane bleb formation. Membrane blebbing is a complex phenomenon involving as yet poorly characterized intracellular pathways. We have investigated the effect of extracellular ATP on HEK293 cells transfected with the cytotoxic/pore-forming P2X7 receptor. Addition of ATP to P2X7-transfected, but not to wt P2X7-less, HEK293 cells caused massive membrane blebbing within 1–2 min. UTP, a nucleotide incapable of activating P2X7, had no early effects on cell shape and bleb formation. Bleb formation triggered by ATP was reversible and required extracellular Ca2+ and an intact cytoskeleton. Furthermore, it was completely prevented by preincubation with the P2X blocker oxidized ATP. It was recently observed that the ROCK protein is a key determinant of bleb formation. Preincubation of HEK293-P2X7 cells with the ROCK blocker Y-27632 completely prevented P2X7-dependent blebbing. Although ATP triggered cleavage of the ROCK I isoform in P2X7-transfected HEK293 cells, the wide range caspase inhibitor z-VAD-fluoromethylketone had no effect. These observations suggest that P2X7-dependent plasma membrane blebbing depends on the activation of the serine/threonine kinase ROCK I. PMID:12857854

  16. Short-range demonstrations of monocular passive ranging using O2 (X3Σg- → b1Σg+) absorption spectra.

    PubMed

    Hawks, Michael R; Vincent, R Anthony; Martin, Jacob; Perram, Glen P

    2013-05-01

    The depth of absorption bands in observed spectra of distant, bright sources can be used to estimate range to the source. Experimental results are presented based on observations of the O2 X(v" = 0) → b(v' = 0) absorption band centered around 762 nm and the O2 X(v" = 0) → b(v' = 1) band around 689 nm. Range is estimated by comparing observed values of band-average absorption against predicted curves derived from either historical data or model predictions. Accuracy of better than 0.5% was verified in short-range (up to 3 km), static experiments using a high-resolution (1 cm(-1)) spectroradiometer. This method was also tested against the exhaust plume of a Falcon 9 rocket launched from Cape Canaveral, Florida. The rocket was launched from an initial range of 13 km and tracked for 90 s after ignition. Range error was below 2% for the first 30 s and consistent with predicted error throughout the track.

  17. Stochastic effects in 11 nm imaging of extreme ultraviolet lithography with chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2014-03-01

    The resolution of extreme ultraviolet (EUV) lithography with chemically amplified resist processes has reached 16 nm (half-pitch). The development of chemically amplified resists is ongoing toward the 11 nm node. However, the stochastic effects are increasingly becoming a significant concern with the continuing shrinkage of features. In this study, the fluctuation of protected unit distribution caused by the stochastic effects during image formation was investigated assuming line-and-space patterns with 11 nm half-pitch. Contrary to expectations, the standard deviation of the number of protected units connected to a polymer after postexposure baking (PEB) did not differ from that for 16 nm half-pitch. The standard deviation after PEB increased with the effective reaction radius for deprotection and the initial standard deviation before PEB. Because of the severe requirements for resist processes, the stochastic effects in chemical reactions should be taken into account in the design of next-generation resists.

  18. Distribution of purinergic P2X receptors in the equine digit, cervical spinal cord and dorsal root ganglia.

    PubMed

    Zamboulis, D E; Senior, J M; Clegg, P D; Gallagher, J A; Carter, S D; Milner, P I

    2013-09-01

    Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1-5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1-3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1-3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1-3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.

  19. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300

  20. Synthesis, Average Structure, and Magnetic Properties of Oxygen Deficient Perovskites (Ba 2-3 xBi 3 x-1 )(Fe 2 xBi 1-2 x)O 2+3/2 x

    NASA Astrophysics Data System (ADS)

    Boullay, Ph.; Hervieu, M.; Nguyen, N.; Raveau, B.

    1999-10-01

    A new family of oxygen deficient perovskite [Ba2-3xBi3x-1] [Fe2xBi1-2x]O2+3x/2 has been synthesized for 1/3≤x≤1/2. The average structure of these phases is determined using a combination of X-ray, neutron powder diffraction, and electron diffraction. The compounds exhibit a cubic subcell (a=ap) for x≤0.43 and a tetragonal subcell (a≈c≈ap) for 0.43

  1. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Pramanik, Manojit; Song, Kwang Hyun; Swierczewska, Magdalena; Green, Danielle; Sitharaman, Balaji; Wang, Lihong V.

    2009-06-01

    Sentinel lymph node biopsy (SLNB), a less invasive alternative to axillary lymph node dissection (ALND), has become the standard of care for patients with clinically node-negative breast cancer. In SLNB, lymphatic mapping with radio-labeled sulfur colloid and/or blue dye helps identify the sentinel lymph node (SLN), which is most likely to contain metastatic breast cancer. Even though SLNB, using both methylene blue and radioactive tracers, has a high identification rate, it still relies on an invasive surgical procedure, with associated morbidity. In this study, we have demonstrated a non-invasive single-walled carbon nanotube (SWNT)-enhanced photoacoustic (PA) identification of SLN in a rat model. We have successfully imaged the SLN in vivo by PA imaging (793 nm laser source, 5 MHz ultrasonic detector) with high contrast-to-noise ratio (=89) and good resolution (~500 µm). The SWNTs also show a wideband optical absorption, generating PA signals over an excitation wavelength range of 740-820 nm. Thus, by varying the incident light wavelength to the near infrared region, where biological tissues (hemoglobin, tissue pigments, lipids and water) show low light absorption, the imaging depth is maximized. In the future, functionalization of the SWNTs with targeting groups should allow the molecular imaging of breast cancer.

  2. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  3. Lipid-Calcium Phosphate Nanoparticles for Delivery to the Lymphatic System and SPECT/CT Imaging of Lymph Node Metastases

    PubMed Central

    Tseng, Yu-Cheng; Xu, Zhenghong; Guley, Kevin; Yuan, Hong; Huang, Leaf

    2014-01-01

    A lipid/calcium/phosphate (LCP) nanoparticle (NP) formulation (particle diameter ~25 nm) with superior siRNA delivery efficiency was developed and reported previously. Here, we describe the successful formulation of 111In into LCP for SPECT/CT imaging. Imaging and biodistribution studies showed that, polyethylene glycol grafted 111In-LCP preferentially accumulated in the lymph nodes at ~70% ID/g in both C57BL/6 and nude mice when the improved surface coating method was used. Both the liver and spleen accumulated only ~25% ID/g. Larger LCP (diameter ~67 nm) was less lymphotropic. These results indicate that 25 nm LCP was able to penetrate into tissues, enter the lymphatic system, and accumulate in the lymph nodes via lymphatic drainage due to 1) small size, 2) a well-PEGylated lipid surface, and 3) a slightly negative surface charge. The capability of intravenously injected 111In-LCP to visualize an enlarged, tumor-loaded sentinel lymph node was demonstrated using a 4T1 breast cancer lymph node metastasis model. Systemic gene delivery to the lymph nodes after IV injection was demonstrated by the expression of red fluorescent protein cDNA. The potential of using LCP for lymphatic drug delivery is discussed. PMID:24613050

  4. Node Survival in Networks under Correlated Attacks.

    PubMed

    Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten

    2015-01-01

    We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles.

  5. Node Survival in Networks under Correlated Attacks

    PubMed Central

    Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten

    2015-01-01

    We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635

  6. Sentinel lymph node biopsy in breast cancer

    PubMed Central

    Alsaif, Abdulaziz A.

    2015-01-01

    Objectives: To report our experience in sentinel lymph node biopsy (SLNB) in early breast cancer. Methods: This is a retrospective study conducted at King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia between January 2005 and December 2014. There were 120 patients who underwent SLNB with frozen section examination. Data collected included the characteristics of patients, index tumor, and sentinel node (SN), SLNB results, axillary recurrence rate and SLNB morbidity. Results: There were 120 patients who had 123 cancers. Sentinel node was identified in 117 patients having 120 tumors (97.6% success rate). No SN was found intraoperatively in 3 patients. Frozen section results showed that 95 patients were SN negative, those patients had no immediate axillary lymph node dissection (ALND), whereas 25 patients were SN positive and subsequently had immediate ALND. Upon further examination of the 95 negative SN’s by hematoxylin & eosin (H&E) and immunohistochemical staining for doubtful H&E cases, 10 turned out to have micrometastases (6 had delayed ALND and 4 had no further axillary surgery). Median follow up of patients was 35.5 months and the mean was 38.8 months. There was one axillary recurrence observed in the SN negative group. The morbidity of SLNB was minimal. Conclusion: The obtainable results from our local experience in SLNB in breast cancer, concur with that seen in published similar literature in particular the axillary failure rate. Sentinel lymph node biopsy resulted in minimal morbidity. PMID:26318461

  7. Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co1- x Mn x Fe2-2 x Mn2 x O4

    NASA Astrophysics Data System (ADS)

    Kumar, Lawrence; Kumar, Pawan; Kar, Manoranjan

    2013-02-01

    Nanocrystalline Mn substituted cobalt ferrite Co1- x Mn x Fe2-2 x Mn2 x O4 ( x = 0.0-0.4) has been synthesized by the standard citrate-gel method. The structural and magnetic characteristics of all samples have been studied using powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM) and VSM techniques. Distributions of cations between the two interstitial sites (tetrahedral and octahedral site) have been estimated qualitatively by analyzing the powder X-ray diffraction patterns by employing the Rietveld refinement technique. All samples are found to be mixed spinel with cubic structure ( Fdmathop 3limits^{ - } m space group). The FT-IR study shows the presence of absorption bands in the range of 390-750 cm-1, which confirm the spinel structure of the sample. The stoichiometry of Co, Fe, Mn and O ions in the sample has been obtained by using energy-dispersive spectrum with help of an FE-SEM. The magnetizations in saturation have been analyzed by employing the "law of approach" technique. The saturation magnetization, coercivity and magnetocrystalline anisotropy constant depend upon Mn ion concentration and crystallite size.

  8. Structure cristalline du composé Hg3-x Sb x (S+Se)2+x I2-x (x ≃ 0.1).

    PubMed

    Kars, Mohammed; Herrero, Adrian Gómez; Roisnel, Thierry; Rebbah, Allaoua; Otero-Diáz, L Carlos

    2016-03-01

    Single crystals of the mercury chalcohalide Hg3-x Sb x (S+Se)2+x I2-x (x ≃ 0.1) (mercury anti-mony sulfide selenide iodide), were grown by a chemical transport reaction. The structure contains three independent A (Hg/Sb) atoms; each atom is strongly covalently bonded with two X (Se/S) atoms to form approximately linear X-A-X units. The X-A-X units link to form A 4 X 4 rings, which are combined into infinite crankshaft-type bands running along the [100] direction. Four equatorial E (I/X = Se,S) atoms at relatively long distances complete the distorted octa-hedral coordination of A (Hg/Sb). The crystal under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.814 (6):0.186 (6). The structure is isotypic with Hg3Se2I2 [Beck & Hedderich (2000 ▸). J. Solid State Chem. 151, 73-76], but the current determination reveals a coupled substitution, with partial replacement of Hg(+2) by Sb(+3), balanced by the equivalent substitution of I(-1) by S(-2) and Se(-2). Bond-valence calculations are consistent with this relative substitution model. PMID:27006793

  9. Structure cristalline du composé Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1)

    PubMed Central

    Kars, Mohammed; Herrero, Adrian Gómez; Roisnel, Thierry; Rebbah, Allaoua; Otero-Diáz, L. Carlos

    2016-01-01

    Single crystals of the mercury chalcohalide Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1) (mercury anti­mony sulfide selenide iodide), were grown by a chemical transport reaction. The structure contains three independent A (Hg/Sb) atoms; each atom is strongly covalently bonded with two X (Se/S) atoms to form approximately linear X–A–X units. The X–A–X units link to form A 4 X 4 rings, which are combined into infinite crankshaft-type bands running along the [100] direction. Four equatorial E (I/X = Se,S) atoms at relatively long distances complete the distorted octa­hedral coordination of A (Hg/Sb). The crystal under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.814 (6):0.186 (6). The structure is isotypic with Hg3Se2I2 [Beck & Hedderich (2000 ▸). J. Solid State Chem. 151, 73–76], but the current determination reveals a coupled substitution, with partial replacement of Hg+2 by Sb+3, balanced by the equivalent substitution of I−1 by S−2 and Se−2. Bond-valence calculations are consistent with this relative substitution model. PMID:27006793

  10. Structure cristalline du composé Hg3-x Sb x (S+Se)2+x I2-x (x ≃ 0.1).

    PubMed

    Kars, Mohammed; Herrero, Adrian Gómez; Roisnel, Thierry; Rebbah, Allaoua; Otero-Diáz, L Carlos

    2016-03-01

    Single crystals of the mercury chalcohalide Hg3-x Sb x (S+Se)2+x I2-x (x ≃ 0.1) (mercury anti-mony sulfide selenide iodide), were grown by a chemical transport reaction. The structure contains three independent A (Hg/Sb) atoms; each atom is strongly covalently bonded with two X (Se/S) atoms to form approximately linear X-A-X units. The X-A-X units link to form A 4 X 4 rings, which are combined into infinite crankshaft-type bands running along the [100] direction. Four equatorial E (I/X = Se,S) atoms at relatively long distances complete the distorted octa-hedral coordination of A (Hg/Sb). The crystal under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.814 (6):0.186 (6). The structure is isotypic with Hg3Se2I2 [Beck & Hedderich (2000 ▸). J. Solid State Chem. 151, 73-76], but the current determination reveals a coupled substitution, with partial replacement of Hg(+2) by Sb(+3), balanced by the equivalent substitution of I(-1) by S(-2) and Se(-2). Bond-valence calculations are consistent with this relative substitution model.

  11. Nonlinear Composition-Dependent Optical Spectroscopy of Ba2xSr2-2xV2O7.

    PubMed

    Fang, Hongwei; Wei, Xiantao; Zhou, Shaoshuai; Chen, Yonghu; Duan, Changkui; Yin, Min

    2016-09-19

    In general, adjusting the composition of a fluorescent material is an effective way to tune its luminescent properties such as peak energy and bandwidth. In most solid-solutions, the emission peak shifts linearly with the materials' composition, which is referred to as Vegard's Law. However, we found extraordinary variations in our samples Ba2xSr2-2xV2O7, that is, both the excitation and emission peaks show nonlinear dependence on the composition x, and the same is true for the spectral bandwidths. The nonlinearities are not due to structural anomaly, as all the samples are confirmed to be solid-solutions by X-ray diffraction measurements. To explain these phenomena, we proposed a model by considering the disorder of Ba(2+) and Sr(2+) distributions in solid-solutions and the changes of configurations between the ground and excited electronic states. This novel phenomenon could be applied to further exploit new fluorescent materials. PMID:27584044

  12. Diameter Control of K3Li2-xNb5+xO15+2x Single-Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Matsukura, Makoto; Murakami, Junichi; Karaki, Tomoaki; Adachi, Masatoshi

    2000-09-01

    Potassium lithium niobate, K3Li2-xNb5+xO15+2x (KLN) single-crystal fibers have been grown using the laser-heated pedestal growth (LHPG) technique. Ceramic source rods of K3.00Li1.70Nb5.30O15.6 (KLN53) and K3.00Li1.85Nb5.15O15.3 (KLN51.5) were adapted to grow the fibers with the same compositions. The diameter deviations at various growth rates were estimated. For the < 110 > oriented KLN53 fibers, increase of the growth rate decreased the diameter deviation and the minimum root mean square diameter deviation was 1.8% when the growth rate was 66 mm/h. For the < 110 > oriented KLN51.5 fibers, the minimum diameter deviation was 1.7% when the growth rate was 40 mm/h. From the dielectric properties along the grown fiber, the fiber without diameter deviation was determined to have homogeneous composition along the fiber. However, the Curie temperature measurements revealed that the composition of the KLN51.5 fiber did not coincide with that of the ceramic source rods.

  13. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  14. Nonlinear optical studies of hydrogen interaction with silicon(001)-2 x 1

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet Burak

    The adsorption and desorption of H2/Si have attracted a great deal of interest over the last two decades as a model system of covalent bonding on semiconductor surfaces. Nonlinear optical techniques (especially the surface second harmonic generation) have emerged as the method of choice for the study of hydrogen on silicon as most standard surface analytical techniques are insensitive to hydrogen. In addition, second harmonic generation (SHG) technique is noninvasive, and sensitive to very small amounts of hydrogen on the silicon surface. This work contains a detailed study of the surface second harmonic generation efficiency at Si(001)-2x1, a model description of this process (which includes an exact solution for the cluster size distribution in the one dimensional Ising model) and the details of a (1+1) resonantly enhanced multi photon ionization (REMPI) setup for analyzing hydrogen desorbing from surfaces. We have measured the SHG efficiency as a function of hydrogen coverage, relative to that of the clean surface, at a fundamental wavelength of 1064 nm, for substrate temperatures between 200 and 600 K, and for different polarization directions of both the fundamental and the second harmonic beams. The dependence of hydrogen induced SHG quenching on H coverage is explained with a statistical mechanical model that has previously been invoked to describe the kinetics and dynamics of H2 adsorption/desorption. The model predicts an increase in the SHG intensity upon rearranging randomly adsorbed H atoms by thermal annealing, which was confirmed experimentally. An empirical parametrization of the SHG efficiency curves is presented which may be used as a practical calibration to determine hydrogen coverage on Si(001) as a function of SHG signal and temperature. As part of the model description of the quenching of the SHG, we solved the cluster size distribution in the one-dimensional Ising model exactly. In the thermodynamic limit the result is a simple analytical

  15. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    NASA Astrophysics Data System (ADS)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-01

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the ‘cytoplasmic cap’, which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  16. Testing of the J-2X Augmented Spark Igniter (ASI) and Its Electronics

    NASA Technical Reports Server (NTRS)

    Osborne, Robin

    2015-01-01

    Reliable operation of the spark ignition system electronics in the J-2X Augmented Spark Igniter (ASI) is imperative in assuring ASI ignition and subsequent Main Combustion Chamber (MCC) ignition events are reliable in the J-2X Engine. Similar to the man-rated J-2 and RS-25 engines, the J-2X ignition system electronics are equipped with spark monitor outputs intended to indicate that the spark igniters are properly energized and sparking. To better understand anomalous spark monitor data collected on the J-2X development engines at NASA Stennis Space Center (SSC), a comprehensive subsystem study of the engine's low- and high-tension spark ignition system electronics was conducted at NASA Marshall Space Flight Center (MSFC). Spark monitor output data were compared to more detailed spark diagnostics to determine if the spark monitor was an accurate indication of actual sparking events. In addition, ignition system electronics data were closely scrutinized for any indication of an electrical discharge in some location other than the firing tip of the spark igniter - a problem not uncommon in the development of high voltage ignition systems.

  17. The 2 x 2 Model of Perfectionism: A Comparison across Asian Canadians and European Canadians

    ERIC Educational Resources Information Center

    Franche, Veronique; Gaudreau, Patrick; Miranda, Dave

    2012-01-01

    The 2 x 2 model of perfectionism posits that the 4 within-person combinations of self-oriented and socially prescribed perfectionism (i.e., pure SOP, mixed perfectionism, pure SPP, and nonperfectionism) can be distinctively associated with psychological adjustment. This study examined whether the relationship between the 4 subtypes of…

  18. Magneto-Optical Response of Electron Doped Cuprates Pr2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Margankunte, Naveen; Zimmers, Alexandra; Tanner, D. B.; Greene, R. L.; Wang, Y. J.

    2006-09-01

    We report mid-infrared transmission measurements of electron doped Pr2-xCexCuO4 (PCCO) thin films for a wide range of dopings, in the large energy pseudogap regime both as a function of temperature and magnetic field. While the temperature dependent measurements show clear signatures of pseudogap, there is no magnetic field induced effect.

  19. Synthesis and radiation tolerance of Lu2-xCexTi2O7 pyrochlores

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Liu, C. G.; Yang, D. Y.; Wen, J.; Liu, H.; Mu, P. C.; Li, Y. H.

    2016-11-01

    As a nonradioactive surrogate for Pu, Ce is selected to study the solubility and radiation tolerance in pyrochlore matrixes. In this paper, we synthesized a series of Lu2-xCexTi2O7 (x = 0-0.7) samples. X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to study the structure of Lu2-xCexTi2O7 (x = 0-0.7) with different Ce3+ content x. The results show that the maximum solubility of Ce3+ in Lu2Ti2O7 is 32 mol%. In order to study the radiation tolerance of these compounds, 400 keV Ne2+ was used to perform the irradiation experiments. The grazing incident X-ray diffraction patterns revealed that the radiation tolerance of the Lu2-xCexTi2O7 decreases with increasing Ce-content. This correlation between radiation tolerance and Ce-content was interpreted in terms of the antisite defect formation energies of Lu2-xCexTi2O7 (x = 0, 0.5, 1) based on the density functional theory.

  20. Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)

    NASA Technical Reports Server (NTRS)

    Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.

  1. Gender Differences in the Factor Structure of the 2x2 Achievement Goal Framework

    ERIC Educational Resources Information Center

    Alkharusi, Hussain; Aldhafri, Said

    2010-01-01

    The present study examined gender differences in the factor structure of the 2x2 achievement goal framework using a multi-sample invariance analysis. A total of 117 male and 125 female undergraduate teacher education students completed Elliot and Murayama's (2008) Achievement Goal Questionnaire-Revised (AGQ-R). Results provided empirical evidence…

  2. Oxygen-Deficient Zirconia (ZrO2-x): A New Material for Solar Light Absorption.

    PubMed

    Sinhamahapatra, Apurba; Jeon, Jong-Pil; Kang, Joonhee; Han, Byungchan; Yu, Jong-Sung

    2016-06-06

    Here, we present oxygen-deficient black ZrO2-x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails. Generation of large amounts of oxygen vacancies or surface defects clearly visualized by the HR-TEM and HR-SEM images is the main reason for the drastic alteration of the optical properties through the formation of new energy states near valence band and conduction band towards Fermi level in black ZrO2-x as indicated by XPS and DFT calculations of black ZrO2-x. Current reduction method using Mg and H2 is mild, but highly efficient to produce solar light-assisted photocatalytically active black ZrO2-x.

  3. Extending the 2 x 2 Achievement Goal Framework: Development of a Measure of Scientific Achievement Goals

    ERIC Educational Resources Information Center

    Deemer, Eric D.; Carter, Alice P.; Lobrano, Michael T.

    2010-01-01

    The current research sought to extend the 2 x 2 achievement goal framework by developing and testing the Achievement Goals for Research Scale (AGRS). Participants (N = 317) consisted of graduate students in the life, physical, and behavioral sciences. A principal components analysis (PCA) extracted five components accounting for 72.59% of the…

  4. Window type: paired 2x4 multipaned steel windows flanked by 1x4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 2x4 multipaned steel windows flanked by 1x4 multipaned steel casements, breaking building corner. Raised panel door front entry also illustrated. Ground floor detail Building 19, facing north - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  5. Window types: (from left to right) Pair of 2x2 multipaned ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window types: (from left to right) Pair of 2x2 multipaned steel casements; triplet of 1x4 multipaned steel casements (center panel fixed); 1x3 multipaned steel casements. Building 20, facing southwest - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  6. Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles.

    PubMed

    Zhou, Donglei; Liu, Dali; Xu, Wen; Yin, Ze; Chen, Xu; Zhou, Pingwei; Cui, Shaobo; Chen, Zhanguo; Song, Hongwei

    2016-05-24

    Localized surface plasmon resonances (LSPRs) are achieved in heavily doped semiconductor nanoparticles (NPs) with appreciable free carrier concentrations. In this paper, we present the photonic, electric, and photoelectric properties of plasmonic Cu2-xS NPs/films and the utilization of LSPRs generated from semiconductor NPs as near-infrared antennas to enhance the upconversion luminescence (UCL) of NaYF4:Yb(3+),Er(3+) NPs. Our results suggest that the LSPRs in Cu2-xS NPs originate from ligand-confined carriers and that a heat treatment resulted in the decomposition of ligands and oxidation of Cu2-xS NPs; these effects led to a decrease of the Cu(2+)/Cu(+) ratio, which in turn resulted in the broadening, decrease in intensity, and red-shift of the LSPRs. In the presence of a MoO3 spacer, the UCL intensity of NaYF4:Yb(3+),Er(3+) NPs was substantially improved and exhibited extraordinary power-dependent behavior because of the energy band structure of the Cu2-xS semiconductor. These findings provide insights into the nature of LSPR in semiconductors and their interaction with nearby emitters and highlight the possible application of LSPR in photonic and photoelectric devices.

  7. Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles.

    PubMed

    Zhou, Donglei; Liu, Dali; Xu, Wen; Yin, Ze; Chen, Xu; Zhou, Pingwei; Cui, Shaobo; Chen, Zhanguo; Song, Hongwei

    2016-05-24

    Localized surface plasmon resonances (LSPRs) are achieved in heavily doped semiconductor nanoparticles (NPs) with appreciable free carrier concentrations. In this paper, we present the photonic, electric, and photoelectric properties of plasmonic Cu2-xS NPs/films and the utilization of LSPRs generated from semiconductor NPs as near-infrared antennas to enhance the upconversion luminescence (UCL) of NaYF4:Yb(3+),Er(3+) NPs. Our results suggest that the LSPRs in Cu2-xS NPs originate from ligand-confined carriers and that a heat treatment resulted in the decomposition of ligands and oxidation of Cu2-xS NPs; these effects led to a decrease of the Cu(2+)/Cu(+) ratio, which in turn resulted in the broadening, decrease in intensity, and red-shift of the LSPRs. In the presence of a MoO3 spacer, the UCL intensity of NaYF4:Yb(3+),Er(3+) NPs was substantially improved and exhibited extraordinary power-dependent behavior because of the energy band structure of the Cu2-xS semiconductor. These findings provide insights into the nature of LSPR in semiconductors and their interaction with nearby emitters and highlight the possible application of LSPR in photonic and photoelectric devices. PMID:27149281

  8. Understanding Student Goal Orientation Tendencies to Predict Student Performance: A 2x2 Achievement Goal Orientation

    ERIC Educational Resources Information Center

    Miller, Mark Alan

    2013-01-01

    The study tested the 2X2 model of the Achievement Goal Orientation (AGO) theory in a military technical training environment while using the Air Force Officers Qualifying Test's academic aptitude score to control for the differences in the students' academic aptitude. The study method was quantitative and the design was correlational.…

  9. 16. Photocopy of photograph (original 51/2 x 31/4 inch print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original 5-1/2 x 3-1/4 inch print located in the Recreation files, Mt. Baker-Snoqualmie N. F.). R. L. Fromme, photographer, 1941 INTERIOR OF MAIN ROOM, AUSTIN PASS SKI SHELTER. MT. BAKER NATIONAL FOREST. - Austin Pass Warming Hut, Washington Highway 542, Glacier, Whatcom County, WA

  10. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  11. Procrastination and the 2 x 2 Achievement Goal Framework in Malaysian Undergraduate Students

    ERIC Educational Resources Information Center

    Ganesan, Rajalakshmi; Mamat, Norul Hidayah Bt; Mellor, David; Rizzuto, Laura; Kolar, Christina

    2014-01-01

    The present study investigated academic procrastination in the context of the 2 x 2 goal achievement theoretical framework within a population of 450 Malaysian undergraduate students, aged 18 to 25 years. Participants completed the Achievement Goal Questionnaire and the Tuckman Procrastination Test. Approach dimensions of both the mastery and…

  12. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  13. Cohen's Linearly Weighted Kappa Is a Weighted Average of 2 x 2 Kappas

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2011-01-01

    An agreement table with [n as an element of N is greater than or equal to] 3 ordered categories can be collapsed into n - 1 distinct 2 x 2 tables by combining adjacent categories. Vanbelle and Albert ("Stat. Methodol." 6:157-163, 2009c) showed that the components of Cohen's weighted kappa with linear weights can be obtained from these n - 1…

  14. Scanning tunneling microscopic studies of laser-induced modifications of Si(001)-(2 x 1) surface

    SciTech Connect

    Yasui, Kosuke; Kanasaki, Jun'ichi

    2011-11-15

    Scanning tunneling microscopic studies of Si(001)-2 x 1 surfaces excited with 532-nm laser pulses of intensities below melting and ablation thresholds have revealed two different modes of structural modifications, strongly depending on the intensity of laser lights. The excitation below 100 mJ/cm{sup 2} causes bond rupture at individual dimer-sites leading to the formation of vacancies selectively on the outermost layer. The bond rupture, which shows a strongly site-sensitive rate, forms efficiently vacancy-strings elongated along the surface dimer-rows. Selective removal of surface dimers results in the exposure of flat and defect-less underlying layer as reported previously, which is resistive to the excitation at this range of intensity. At intensities above 100 mJ/cm{sup 2}, on the other hand, the excitation forms not only vacancies but also ad-dimers on terraces. The number density of ad-dimers is in proportion to the square of that for vacancies, indicating strongly that silicon atoms released by laser-induced bond rupture are associated with each other to form ad-dimers. The repeated irradiations at this range of intensities induce anisotropic growth of ad-dimer islands and of vacancy clusters on terrace regions, leading to multiply terraced structure. The primary processes of the structural modifications are discussed based on the quantitative analyses of the growth of vacancy and ad-dimer under excitation.

  15. Photovoltaic p-n structure of MoSb2-xCuxSe4/CdS absorber films obtained via chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Vijila, J. J. J.; Mohanraj, K.; Sivakumar, G.

    2016-07-01

    In this work, a novel mixed metal chalcogenide MoSb2-xCuxSe4 nanocrystalline thin film was deposited for different copper concentrations (x = 0.0 M, 0.1 M, 0.2 M & 0.3 M) on glass substrate by chemical bath deposition method at room temperature. XRD patterns revealed the incorporation of copper content by the conversion of orthorhombic Sb2Se3 into Cu3SbSe3 with a shift to lower angles. Average crystallite was found to be 69 nm, 17 nm, 10 nm and 9 nm for the deposited films. FTIR spectra confirm the presence of functional groups of Trisodium citrate (TSC) and the metal oxide vibrations. FESEM analysis depicted the morphological changes with the addition of Cu content. UV-vis analysis shows higher absorption in the visible region and the band gap values are found to be 2.16-1.76 eV. Hall effect analysis confirms the p-type nature of the material. The photo-current analysis shows higher photo-conversion efficiency of 1.86% for 0.3 M copper content.

  16. Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities

    SciTech Connect

    Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos

    2014-01-28

    We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.

  17. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  18. Space Station resource node flow field analysis

    NASA Technical Reports Server (NTRS)

    Kania, Lee; Kumar, Ganesh; Mcconnaughey, Paul

    1991-01-01

    An analysis of the flow field within the Space Station Freedom resource node with operational intermodule ventilation and temperature/humidity control ventilation systems has been conducted. The INS3D code, an incompressible, steady-state Navier-Stokes solver has been used to assess the design of the ventilation system via quantification of the level of fluid mixing and identification of 'dead air' regions and short-circuit ventilation. Numerical results indicate significant short-circuit ventilation in the forward and midsections of the node and insufficient fluid mixing is found to exist in the aft node section. These results as well as results from a solution grid dependence study are presented.

  19. Vital nodes identification in complex networks

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Chen, Duanbing; Ren, Xiao-Long; Zhang, Qian-Ming; Zhang, Yi-Cheng; Zhou, Tao

    2016-09-01

    Real networks exhibit heterogeneous nature with nodes playing far different roles in structure and function. To identify vital nodes is thus very significant, allowing us to control the outbreak of epidemics, to conduct advertisements for e-commercial products, to predict popular scientific publications, and so on. The vital nodes identification attracts increasing attentions from both computer science and physical societies, with algorithms ranging from simply counting the immediate neighbors to complicated machine learning and message passing approaches. In this review, we clarify the concepts and metrics, classify the problems and methods, as well as review the important progresses and describe the state of the art. Furthermore, we provide extensive empirical analyses to compare well-known methods on disparate real networks, and highlight the future directions. In spite of the emphasis on physics-rooted approaches, the unification of the language and comparison with cross-domain methods would trigger interdisciplinary solutions in the near future.

  20. Energy Options for Wireless Sensor Nodes

    PubMed Central

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-01-01

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.

  1. SpicyNodes Radial Map Engine

    NASA Astrophysics Data System (ADS)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  2. Saddle-node bifurcation of viscous profiles

    NASA Astrophysics Data System (ADS)

    Achleitner, Franz; Szmolyan, Peter

    2012-10-01

    Traveling wave solutions of viscous conservation laws, that are associated to Lax shocks of the inviscid equation, have generically a transversal viscous profile. In the case of a non-transversal viscous profile we show by using Melnikov theory that a parametrized perturbation of the profile equation leads generically to a saddle-node bifurcation of these solutions. An example of this bifurcation in the context of magnetohydrodynamics is given. The spectral stability of the traveling waves generated in the saddle-node bifurcation is studied via an Evans function approach. It is shown that generically one real eigenvalue of the linearization of the viscous conservation law around the parametrized family of traveling waves changes its sign at the bifurcation point. Hence this bifurcation describes the basic mechanism of a stable traveling wave which becomes unstable in a saddle-node bifurcation.

  3. Diagnosis of pelvic lymph node metastasis in prostate cancer using single optical fiber probe.

    PubMed

    Denkçeken, Tuba; Canpolat, Murat; Baykara, Mehmet; Başsorgun, İbrahim; Aktaş-Samur, Anıl

    2016-09-01

    Elastic light single-scattering spectroscopy system (ELSSS) is a biomedical tool which is used for detection of cancerous tissues ex-vivo. ELSSS spectra depend primarily on the size of scatterers in the tissue and are not directly related to changes in the absorption which are caused by variations of the biological macromolecules. In the present study, we aimed to detect metastasis in the pelvic lymph node by using combination of Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA). Single-scattering spectra in the 450-750nm wavelength regions were obtained from the total of 83 reactive lymph node and 12 metastatic lymph node samples from 10 prostatic cancer patients. The ELSSS spectral data were compared against the "gold standard" histopathology results. Data analyses were done via using PCA, followed by LDA. Receiver Operating Characteristic (ROC) curve analysis was employed for differentiating performance. The classification based on discriminant score provided sensitivity of 100% and specificity of 96.4%, in differentiating non-metastatic (reactive) from metastatic pelvic lymph nodes, with a Positive Predictive Value (PPV) of 0.8, a Negative Predictive Value (NPV) of 0.99 and the area under the ROC curve (AUC) of 0.99, respectively. In this study, it was shown that ELSSS system can accurately distinguish reactive and metastatic pelvic lymph nodes of prostate cancer with high PPV and NPV. It can be concluded that diagnostic accuracy of ELSSS system allows detecting metastatic tissues during operation.

  4. Post-translational allosteric activation of the P2X7 receptor through glycosaminoglycan chains of CD44 proteoglycans

    PubMed Central

    Moura, GEDD; Lucena, SV; Lima, MA; Nascimento, FD; Gesteira, TF; Nader, HB; Paredes-Gamero, EJ; Tersariol, ILS

    2015-01-01

    Here, we present evidence for the positive allosteric modulation of the P2X7 receptor through glycosaminoglycans (GAGs) in CHO (cell line derived from the ovary of the Chinese hamster) cells. The marked potentiation of P2X7 activity through GAGs in the presence of non-saturating agonists concentrations was evident with the endogenous expression of the receptor in CHO cells. The presence of GAGs on the surface of CHO cells greatly increased the sensitivity to adenosine 5′-triphosphate and changed the main P2X7 receptor kinetic parameters EC50, Hill coefficient and Emax. GAGs decreased the allosteric inhibition of P2X7 receptor through Mg2+. GAGs activated P2X7 receptor-mediated cytoplasmic Ca2+ influx and pore formation. Consequently, wild-type CHO-K1 cells were 2.5-fold more sensitive to cell death induced through P2X7 agonists than mutant CHO-745 cells defective in GAGs biosynthesis. In the present study, we provide the first evidence that the P2X7 receptor interacts with CD44 on the CHO-K1 cell surface. Thus, these data demonstrated that GAGs positively modulate the P2X7 receptor, and sCD44 is a part of a regulatory positive feedback loop linking P2X7 receptor activation for the intracellular response mediated through P2X7 receptor stimulation. PMID:27551441

  5. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function

    PubMed Central

    Aprile-Garcia, Fernando; Metzger, Michael W.; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C.; Senin, Sergio A.; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M.; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations. PMID:26986975

  6. Spatiotemporal modeling of node temperatures in supercomputers

    DOE PAGES

    Storlie, Curtis Byron; Reich, Brian James; Rust, William Newton; Ticknor, Lawrence O.; Bonnie, Amanda Marie; Montoya, Andrew J.; Michalak, Sarah E.

    2016-06-10

    Los Alamos National Laboratory (LANL) is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this andmore » other machine rooms. This paper focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1,600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. Lastly, this same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.« less

  7. Structures and magnetism of two types of c(2x2)-Mn/Pd(001) surface alloys

    SciTech Connect

    Tsuboi, N.; Okuyama, H.; Aruga, T.

    2005-05-15

    Mn/Pd(001) surface alloy was investigated by a tensor low-energy electron diffraction (LEED) analysis. After deposition of Mn on Pd(001) at room temperature, the surface was annealed at 570-620 K, which produced two types of c(2x2) surface alloys, according to the Mn coverage. At a low-Mn coverage, we obtained a Pd-capped c(2x2) surface, in which the first layer was composed of a (1x1)-Pd layer, and the second layer was a c(2x2)-MnPd mixed layer [{alpha}-c(2x2)]. The deposition of greater amounts of Mn followed by annealing resulted in another c(2x2) surface, in which Mn atoms existed in the substitutional sites of the first and third layers [{beta}-c(2x2)]. The first layer consisted of a c(2x2)-MnPd mixed layer, the second layer was a (1x1)-Pd layer, and the third layer was another c(2x2)-MnPd mixed layer. The structure of the {beta}-c(2x2) surface qualitatively agreed with the one previously investigated by LEED. These two types of surface alloys, {alpha}-c(2x2) and {beta}-c(2x2), may be considered as being precursors to the formation of the bulk MnPd{sub 3} alloy. We also investigated the magnetic properties of the {alpha}-c(2x2) and {beta}-c(2x2) surfaces by using surface magneto-optic Kerr effect (MOKE) and self-consistent, total-energy calculations. The MOKE measurements for both surface alloys show no hysterisis loop, even at 10 K. The total-energy calculation shows that Mn atoms have a local-spin moment of 3.9-4.1 {mu}{sub B} and that they are antiferromagnetically ordered in the ground state.

  8. Incidence of metastasis in circumflex iliac nodes distal to the external iliac nodes in cervical cancer

    PubMed Central

    Okamoto, Kazuhira; Kato, Hidenori

    2016-01-01

    Objective A causal relationship between removal of circumflex iliac nodes distal to the external iliac nodes (CINDEIN) and lower leg edema has been recently suggested. The aim of this study was to elucidate the incidence of CINDEIN metastasis in cervical cancer. Methods A retrospective chart review was carried out for 531 patients with cervical cancer who underwent lymph node dissection between 1993 and 2014. CINDEIN metastasis was pathologically identified by microscopic investigation. After 2007, sentinel lymph node biopsy was performed selectively in patients with non-bulky cervical cancer. The sentinel node was identified using 99mTc-phytate and by scanning the pelvic cavity with a γ probe. Results Two hundred and ninety-seven patients (55.9%) underwent CINDEIN dissection and 234 (44.1%) did not. The percentage of International Federation of Gynecology and Obstetrics stage IIb to IV (42.4% vs. 23.5%, p<0.001) was significantly higher in patients who underwent CINDEIN dissection than those who did not. CINDEIN metastasis was identified in 1.9% overall and in 3.4% of patients who underwent CINDEIN dissection. For patients with stage Ia to IIa disease, CINDEIN metastasis was identified in 0.6% overall and in 1.2% of patients who underwent CINDEIN dissection. Of 115 patients with sentinel node mapping, only one (0.9%) had CINDEIN detected as a sentinel node. In this case, the other three lymph nodes were concurrently detected as sentinel lymph nodes. Conclusion CINDEIN dissection can be eliminated in patients with stage Ia to IIa disease. CINDEIN might not be regional lymph nodes in cervical cancer. PMID:27102250

  9. Intravertebral disk herniations: cartilaginous (Schmorl's) nodes.

    PubMed

    Resnick, D; Niwayama, G

    1978-01-01

    Cartilaginous (Schmorl's) nodes are related to prolapses of intervertebral disk material into the vertebral body. These nodes can be produced by any process which weakens either the cartilaginous plate covering the superior and inferior surfaces of the vertebral body or the subchondral trabeculae of the vertebra. Such processes include juvenile kyphosis, trauma, metabolic and neoplastic disorders, and degenerative disk disease. Radiographic abnormalities include indentations of vertebral outline and radiolucencies within the vertebral body with varying degrees of sclerosis. These can be readily differentiated from other vertebral alterations such as "butterfly", "fish", and "H" vertebrae.

  10. Transbronchial aspiration of subcarinal lymph nodes.

    PubMed

    Blainey, A D; Curling, M; Green, M

    1988-04-01

    Transbronchial needle aspiration of subcarinal lymph nodes has been undertaken in 60 consecutive patients with pulmonary malignancies undergoing routine fibreoptic bronchoscopy. Four aspirates from the subcarinal nodes contained malignant cells; three squamous cell carcinoma and one adenocarcinoma. Four of 40 (10%) of patients with non-small-cell carcinoma of the lung had a positive aspirate. We have not confirmed the high positive rate previously reported, but nevertheless transbronchial needle aspiration provided useful staging information in some patients. The technique is rapid, safe and simple, and can easily be applied in a routine bronchoscopy service for all patients with suspected cancer, or selected patients under active consideration for surgery. PMID:3166928

  11. Functional morphology of the pig sinoatrial node.

    PubMed

    Opthof, T; de Jonge, B; Jongsma, H J; Bouman, L N

    1987-12-01

    The porcine sinoatrial node in an isolated right atrium preparation is characterized by unifocal impulse generation. It has a rather elongated shape and the larger part of its volume is taken up by collagen and fibroblasts. The impulse appears to emerge from a site where the percentage of myofilaments is relatively low. The impulse is propagated faster towards the crista terminalis than to the interatrial septum with preference for the oblique-upward direction. A very large zone of cells with low excitability is located at the interatrial septal side of the node.

  12. Searching for nodes in random graphs.

    PubMed

    Lancaster, David

    2011-11-01

    We consider the problem of searching for a node on a labeled random graph according to a greedy algorithm that selects a route to the desired node using metric information on the graph. Motivated by peer-to-peer networks two types of random graph are proposed with properties particularly amenable to this kind of algorithm. We derive equations for the probability that the search is successful and also study the number of hops required, finding both numerical and analytic evidence of a transition as the number of links is varied.

  13. Preparation and characterization of Al{sub 2x}In{sub 2−2x}O{sub 3} films deposited on MgO (1 0 0) by MOCVD

    SciTech Connect

    Li, Zhao; Ma, Jin Zhao, Cansong; Du, Xuejian; Mi, Wei; Luan, Caina; Feng, Xianjin

    2015-07-15

    Highlights: • Ternary Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films were deposited on MgO (1 0 0) by MOCVD. • The microstructure of the Al{sub 2x}In{sub 2−2x}O{sub 3} films were studied upon HRTEM. • Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films exhibited great optical transparency in the visible wavelength range. • The band gap of the Al{sub 2x}In{sub 2−2x}O{sub 3} films can be modulated by controlling the Al contents in the samples. - Abstract: The ternary Al{sub 2x}In{sub 2−2x}O{sub 3} films with different compositions x[Al/(Al + In) atomic ratio] have been fabricated on the MgO (1 0 0) substrates by the metal organic chemical vapor deposition (MOCVD) method. The influence of different Al contents on the structural, optical and electrical properties of Al{sub 2x}In{sub 2−2x}O{sub 3} films has been studied. The structural studies reveal a change from single crystalline structure of cubic In{sub 2}O{sub 3} to amorphous as the Al content increases. The average transmittances of all samples in the visible range are over 80%. The optical band gap is observed to increase monotonically from 3.67 to 5.38 eV as the Al content increases from 0.1 to 0.9.

  14. Improvement of microstructure, initial permeability, magnetization and dielectric properties of nanocrystalline LixCu0.1Co0.1Zn0.8-2xFe2+xO4

    NASA Astrophysics Data System (ADS)

    Parvin, Roksana; Momin, A. A.; Hossain, A. K. M. Akther

    2016-03-01

    Structural, magnetic and dielectric properties of Li substituted LixCu0.1Co0.1Zn0.8-2xFe2+xO4 (where x=0.00-0.40) prepared by auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. Disc- and toroid-shaped samples are prepared from each composition and sintered at various temperatures (1100-1300 °C) in air for 1 h. The lattice parameter decreases with the increase in Li1+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 24 to 46 nm. The bulk density and permeability increases up to a certain level of Li1+ substitution, beyond that all these properties decrease with increase in Li1+ content. The bulk density increases with increase in sintering temperatures up to 1150 °C both for the parent and substituted compositions. Due to substitution of Li1+, the real part of the initial permeability increases from 18 to 61 for x=0.10 for the samples sintered at 1150 °C. The ferrites with higher initial permeability have relatively lower resonance frequency which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity but at higher sintering temperatures some voids are present in the samples which reduce the density and hence permeability of the samples. The ferri to paramagnetic transition temperature, TC, for the parent sample is below room temperature. The TC increases almost linearly with increasing Li content.The saturation magnetization, Ms, and the number of Bohr magneton, n (μB), increases up to x=0.30 due to the enhancement of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n (μB) values are decreased. The substitution of Li1+ influences the magnetic parameters due to modification of the cation distribution. Dielectric constant (ε ‧) decreases with increase in frequency which is rapid at lower frequencies and

  15. Absolute spectral irradiance measurements of lightning from 375 to 880 nm

    NASA Technical Reports Server (NTRS)

    Orville, R. E.; Henderson, R. W.

    1984-01-01

    The time-integrated emissions from cloud-to-ground lightning have been recorded in the 375-880 nm region, using a spectrometer-detector and multichannel analyzer system capable of absolute spectral irradiance measurements. A schematic drawing of the detector-analyzer system is presented, and the experimental setup is described. A total of ten flashes containing 46 individual strikes were recorded and compared to recordings of 500 flashes from 1981. The average spectral irradiance from 375 to 695 nm for flashes at about 15 km was 3.5 x 10 to the -5th J/sq m per stroke with a standard deviation of 2.0 x 10 to the -5th and a range from 0.7 x 10 to the 0.7-6.8 x 10 to the -5th J/sq m per stroke. The average stroke spectra irradiance from 650 to 880 nm for the same strokes was 1.2 x 10 to the -5th, with a standard deviation of 0.7 x 10 to the -5th and a range from 0.5 to 3.2 x 10 to the -5th J/sq m per stroke. A summary table of spectral irradiance values in 50 nm increment is presented. Analysis of the spectral emission data show that unresolved neutral hydrogen lines (NI) at 744.2 nm were more intense than H-alpha emission at 656.3 nm. The strong emission of a flash with a continuing current was identified as cyanogen (CN) emission.

  16. Enhancement of node connectivity for mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shi, Xiyu; Li, Fanzhi; Adams, Christopher

    2006-05-01

    For secure mobile wireless networks whose topologies are changed dynamically in insecure environments, mobile users need to keep in contact with each other for the purpose of user authentications. For instance, the network formed by a group of soldiers equipped with wireless devices in a battlefield. Maintaining a high connectivity is crucial in such networks in order to authenticate scattered individuals and to be able to communicate with each other. To establish connections, different mobile ad hoc network routing protocols have been developed. However, much research has shown that these protocols are incapable of maintaining high connectivity when the node density is lower in the network. This paper proposes a mechanism to enhance the node connectivity, which is specifically effective for mobile ad hoc networks with lower node densities. It selects some nodes with larger transmission power as strategic nodes to assist in establishing connections with remote nodes, which are unable to connect with otherwise. The strategic nodes have the ability to connect with each other. Whenever a remote mobile node has a request to connect to another remote mobile node, the strategic nodes function as normal mobile nodes and may forward the connection requests to the desired remote destination node. The mechanism is simulated in different scenarios with various node densities, and the results show that the node connectivity is generally enhanced with the benefit of lower node density network, gaining significant improvement.

  17. Synthesis and luminescence properties of (Lu0.95‑xCe0.05)2Ca1+2xMg2Si3O12 silicate garnet phosphors and its applications

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Zhang, Xiyan; Lu, Liping

    2016-06-01

    Silicate garnet phosphors (Lu0.95‑xCe0.05)2Ca1+2xMg2Si3O12 with x=0, 0.05, 0.1, and 0.15 were prepared by high-temperature solid-state reaction in a reducing atmosphere. The crystal structure, photoluminescence and luminescence of the phosphors were investigated. The optimum excitation peak wavelength of the phosphors ranged from 450nm to 490nm, matching the emission spectra of a blue light-emitting diode chip. The phosphors emit orange-red light after excitation that can be tuned from 589nm to 597nm by changing the concentration of calcium ions. In addition, their emission made them suitable for use in warm-white LEDs with a high-color rendering index.

  18. Computational study on the characteristics of the interaction in naphthalene...(H2X)n=1,2 (X = O,S) clusters.

    PubMed

    Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús; Peña-Gallego, Angeles

    2008-07-17

    The characteristics of the interaction between the pi cloud of naphthalene and up to two H2O or H2S molecules were studied. Calculations show that clusters formed by naphthalene and one H2O or H2S molecule have similar geometric features, and also present similar interaction energies. Our best estimates for the interaction energy amount to -2.95 and -2.92 kcal/mol for H2O and H2S, respectively, as obtained with the CCSD(T) method. Calculations at the MP2 level employing large basis sets should be avoided because they produce highly overestimated interaction energies, especially for hydrogen sulfide complexes. The MPWB1K functional, however, provides values pretty similar to those obtained with the CCSD(T) method. Although the magnitude of the interaction is similar with both H2X molecules, its nature is somewhat different: the H2O complex presents electrostatic and dispersion contributions of similar magnitude, whereas for H2S the interaction is dominated by dispersion. In clusters containing two H2X molecules several minima were characterized. In water clusters, the total interaction energy is dominated by the presence of a O-H...O hydrogen bond and, as a consequence, structures where this contact is present are the most stable. However, clusters containing H2S show structures with no interaction between H2S moieties which are as stable as the hydrogen bonded ones, because they allow an optimal H2S...naphthalene interaction, which is stronger than the S-H...S contact. Therefore it is possible that in larger polycycles hydrogen sulfide molecules will be spread onto the surface maximizing S-H...pi interactions rather than aggregated, forming H2S clusters.

  19. Unstable spin-ice order in the stuffed metallic pyrochlore Pr2+xIr2-xO7-δ

    DOE PAGES

    MacLaughlin, D. E.; Bernal, O. O.; Shu, Lei; Ishikawa, Jun; Matsumoto, Yosuke; Wen, Jia -Jia; Mourigal, Martin P.; Stock, C.; Ehlers, Georg; Broholm, C. L.; et al

    2015-08-24

    Specific heat, elastic neutron scattering, and muon spin rotation experiments have been carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr2+xIr2-xO7-δ. Elastic neutron scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at 0.93 kelvin, with an ordered moment of 1.7(1) Bohr magnetons per Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstroms and 0.7 nanosecond, respectively. Muon spin rotation experiments yield an upper bound 2.6(7) milliteslas on the local field B4floc at the muon site, which is nearly two orders of magnitude smaller thanmore » the expected dipolar field for long-range spin-ice ordering of 1.7-Bohr magneton moments (120–270 milliteslas, depending on the muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by the positive-muon-induced lattice distortion. For this to be the only effect, however, ~160 Pr moments out to a distance of ~14 angstroms must be suppressed. An alternative scenario—one consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat—invokes slow correlated Pr-moment fluctuations in the ordered state that average B4floc on the μSR time scale (~10-7 second), but are static on the time scale of the elastic neutron scattering experiments (~10-9 second). In this picture, the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds, which should