Science.gov

Sample records for 3-5 fold higher

  1. Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Bednyakov, A.; Ruiz de Austri, R.

    2015-04-01

    We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale αs and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections.

  2. Attempts to detect cyclic adenosine 3':5'-monophosphate in higher plants by three assay methods.

    PubMed

    Bressan, R A; Ross, C W

    1976-01-01

    Endogenous levels of cyclic adenosine-3':5'-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-(14)C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies. PMID:16659419

  3. A new topology of the HK97-like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 Å resolution

    PubMed Central

    Zhang, Xing; Guo, Huatao; Jin, Lei; Czornyj, Elizabeth; Hodes, Asher; Hui, Wong H; Nieh, Angela W; Miller, Jeff F; Zhou, Z Hong

    2013-01-01

    Bacteriophage BPP-1 infects and kills Bordetella species that cause whooping cough. Its diversity-generating retroelement (DGR) provides a naturally occurring phage-display system, but engineering efforts are hampered without atomic structures. Here, we report a cryo electron microscopy structure of the BPP-1 head at 3.5 Å resolution. Our atomic model shows two of the three protein folds representing major viral lineages: jellyroll for its cement protein (CP) and HK97-like (‘Johnson’) for its major capsid protein (MCP). Strikingly, the fold topology of MCP is permuted non-circularly from the Johnson fold topology previously seen in viral and cellular proteins. We illustrate that the new topology is likely the only feasible alternative of the old topology. β-sheet augmentation and electrostatic interactions contribute to the formation of non-covalent chainmail in BPP-1, unlike covalent inter-protein linkages of the HK97 chainmail. Despite these complex interactions, the termini of both CP and MCP are ideally positioned for DGR-based phage-display engineering. DOI: http://dx.doi.org/10.7554/eLife.01299.001 PMID:24347545

  4. Six-fold-symmetry internal rotation in toluenes: the low barrier challenge of 2,6- and 3,5-difluorotoluene.

    PubMed

    Nair, K P Rajappan; Jahn, Michaela K; Lesarri, Alberto; Ilyushin, Vadim V; Grabow, Jens-Uwe

    2015-10-21

    Pure six-fold symmetry (V6) internal rotation poses significant challenges to experimental and theoretical determination, as the very low torsional barriers result in huge tunneling splittings difficult to identify and to model. Here we resolved the methyl group internal rotation dynamics of 2,6- and 3,5-difluorotoluene using a newly developed computer code especially adapted to V6 problems. The jet-cooled rotational spectra of the title molecules in the 5-25 GHz region revealed internal rotation tunneling doublings of up to 3.6 GHz, which translated in methyl group potential barriers of V6 = 0.14872(24) and 0.0856(10) kJ mol(-1), respectively, in the vibrational ground-state. Additional information on Stark effects and carbon isotopic species in natural abundance provided structural data and the electric dipole moments for both molecules. Ab initio calculations at the MP2 level do not reproduce the tiny torsional barriers, calling for experiments on other systems and additional theoretical models. PMID:26393883

  5. Folding paper-based lithium-ion batteries for higher areal energy densities.

    PubMed

    Cheng, Qian; Song, Zeming; Ma, Teng; Smith, Bethany B; Tang, Rui; Yu, Hongyu; Jiang, Hanqing; Chan, Candace K

    2013-10-01

    Paper folding techniques are used in order to compact a Li-ion battery and increase its energy per footprint area. Full cells were prepared using Li4Ti5O12 and LiCoO2 powders deposited onto current collectors consisting of paper coated with carbon nanotubes. Folded cells showed higher areal capacities compared to the planar versions with a 5 × 5 cell folded using the Miura-ori pattern displaying a ~14× increase in areal energy density. PMID:24059538

  6. The role of alphoid higher order repeats (HORs) in the centromere folding.

    PubMed

    Rosandić, Marija; Gluncić, Matko; Paar, Vladimir; Basar, Ivan

    2008-10-01

    Understanding the folding of centromere DNA in the maximally condensed methaphase chromosome remains a basic challenge in cell biology. We propose here a set of structural models with a graphical presentation of alphoid higher order repeat (HOR) distribution in the centromere folding, based on the assumption of encryption key for microtubule-centromere interaction which arises from chromosome-specific crystal-like structure of HORs. Specific HOR leads to a characteristic geometrical pattern which may be responsible for individual microtubule to recognize a specific structure of centromere in each chromosome. PMID:18625244

  7. Creative Responses to Changing Realities: A Conference for Northwest Postsecondary and Higher Education (Portland, Oregon, November 3-5, 1981).

    ERIC Educational Resources Information Center

    Highline Community Coll., Midway, WA. Northwest Program Development and Coordination Center.

    Proceedings of the 1981 Creative Responses Conference, which explored approaches to the rapidly changing realities of postsecondary and higher education, are presented. The following major addresses and authors are included: "Hard Times: Constraints or Opportunities," Dale Parnell; "Leadership in the Challenge of Global Competition," George B.…

  8. Development of cellulose derivatives as novel enteric coating agents soluble at pH 3.5-4.5 and higher.

    PubMed

    Kokubo, H; Obara, S; Minemura, K; Tanaka, T

    1997-08-01

    Hydroxypropyl methylcellulose (HPMC) was selected as a base polymer to develop novel enteric coating agents for acid protection which can dissolve at pH around 4, and was modified with trimellitic acid or maleic acid at various degrees of substitution. These carboxylic acids have higher dissociation constants and higher solubility in water than the carboxylic acids of existing enteric coating polymers. The synthesized polymers were micronized and dispersed in aqueous medium to determine their pKa values by potentiometric titration. The pH of dissolution and the water vapor permeability of the cast films prepared from organic solutions were also evaluated. Hydroxypropyl methylcellulose trimellitate (HPMCT) showed good acid resistance, and the pH at which it dissolves can be controlled in the range of pH 3.5 to 4.5 by varying the content of trimellityl groups and the methoxyl substitution of the base polymer. PMID:9301034

  9. Human type 3 5α-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride.

    PubMed

    Yamana, Kazutoshi; Labrie, Fernand; Luu-The, Van

    2010-08-01

    5α-Reductases are crucial enzymes involved in the biosynthesis of dihydrotestosterone, the most potent natural androgen. To date, three types of 5α-reductases, chronologically named types 1, 2 and 3 5α-reductases (SRD5a-1, 2 and 3) have been described. In the present paper, we characterized the activity and compared the mRNA expression levels of SRD5a-3 with those of SRD5a-1 and 2 in various human tissues, and determined its sensitivity to finasteride and dutasteride. We have established HEK-293 cell line that stably expressed SRD5a-3 for studying its activity and the inhibitory effect of finasteride, using [14C]labeled steroids. mRNA expression levels were quantified using real-time PCR in many male and female human tissues including the prostate, adipose tissue, mammary gland, as well as breast and prostate cancer cell lines. Incubation of HEK-SRD5a-3 cells with [14C]4-androstenedione and [14C]testosterone allowed us to show that SRD5a-3 can catalyze very efficiently both substrates 4-androstenedione and testosterone into 5α-androstanedione and dihydrotestosterone, respectively. We observed that the affinity of the enzyme for 4-androstenedione is higher than for testosterone. The activity of SRD5a-3 and SRD5a-2 are similarly sensitive to finasteride, whereas dutasteride is a much more potent inhibitor of SRD5a-3 than SRD5a-2. Tissue distribution analysis shows that SRD5a-3 mRNA expression levels are higher than those of SRD5a-1 and SRD5a-2 in 20 analyzed tissues. In particular, it is highly expressed in the skin, brain, mammary gland and breast cancer cell lines, thus suggesting that SRD5a-3 could play an important role in the production of androgens in these and other peripheral tissues. PMID:25961201

  10. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  11. Transtensional folding

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Teyssier, Christian; Whitney, Donna L.

    2014-05-01

    For now three decades transpression has dominated the concepts that underlie oblique tectonics, but in more recent years transtension has garnered much interest as a simple model that can be applied to shallow and deep crustal tectonics. One fundamental aspect that distinguishes transtension from transpression is that material lines in transtension rotate toward the direction of oblique divergence. Another point that may be less intuitive when thinking of transtension is that while transtensional strain involves shortening in the vertical direction, one of the horizontal axes is also a shortening axis, whatever the angle of divergence. It is the combination of these two shortening axes that leads to constrictional finite strain in transtension. The existence of a horizontal shortening strain axis implies that transtension offers the potential for folds of horizontal layers to form and then rotate toward the direction of oblique divergence. An investigation of transtensional folding using 3D strain modeling reveals that folding is more likely for simple shear dominated transtension (large wrench component). Transtensional folds can only accumulate a fixed amount of horizontal shortening and tightness that are prescribed by the angle of oblique divergence, regardless of finite strain. Transtensional folds are characterized by hinge-parallel stretching that exceeds that expected from pure wrenching. In addition, the magnitude of hinge-parallel stretching always exceeds hinge-perpendicular shortening, causing constrictional fabrics and hinge-parallel boudinage to develop. Because the dominant vertical strain axis is shortening, transtensional fold growth is generally suppressed, but when folds do develop their limbs enter the field of shortening, resulting in possible fold interference patterns akin to cascading folds. Application of these transtensional folding principles to regions of oblique rifting (i.e. Gulf of California) or exhumation of deep crust (i.e. Western

  12. The Long-term Risk of Upper-extremity Lymphedema is Two-fold Higher in Breast Cancer Patients than in Melanoma Patients

    PubMed Central

    Voss, Rachel K.; Cromwell, Kate D.; Chiang, Yi-Ju; Armer, Jane M.; Ross, Merrick I.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Stewart, Bob R.; Shaitelman, Simona F.; Cormier, Janice N.

    2015-01-01

    Background and Objectives We assessed the cumulative incidence, symptoms, and risk factors for upper-extremity lymphedema in breast cancer and melanoma patients undergoing sentinel lymph node biopsy or axillary lymph node dissection. Methods Patients were recruited preoperatively (time 0) and assessed at 6, 12, and 18 months postoperatively. Limb volume change (LVC) was measured by perometry. Lymphedema was categorized as none, mild (LVC 5–9.9%), or moderate/severe (LVC≥10%). Symptoms were assessed with a validated lymphedema instrument. Longitudinal logistic regression analyses were conducted to identify risk factors associated with moderate/severe lymphedema. Results Among 205 breast cancer and 144 melanoma patients, the cumulative incidence of moderate/severe lymphedema at 18 months was 36.5% and 35.0, respectively. However, in adjusted analyses, factors associated with moderate/severe lymphedema were breast cancer (OR 2.0, p=0.03), body mass index ≥30 kg/m2 (OR 1.6, p=0.04), greater number of lymph nodes removed (OR 1.05, p<0.01), and longer interval since surgery (OR 2.33 at 18 months, p<0.01). Conclusions: Lymphedema incidence increased over time in both cohorts. However, the adjusted risk of moderate/severe lymphedema was two-fold higher in breast cancer patients. These results may be attributed to surgical treatment of the primary tumor in the breast and more frequent use of radiation. PMID:26477877

  13. The dexmedetomidine concentration required after remifentanil anesthesia is three-fold higher than that after fentanyl anesthesia or that for general sedation in the ICU

    PubMed Central

    Kunisawa, Takayuki; Fujimoto, Kazuhiro; Kurosawa, Atsushi; Nagashima, Michio; Matsui, Koji; Hayashi, Dai; Yamamoto, Kunihiko; Goto, Yuya; Akutsu, Hiroaki; Iwasaki, Hiroshi

    2014-01-01

    Purpose The general dexmedetomidine (DEX) concentration required for sedation of intensive care unit patients is considered to be approximately 0.7 ng/mL. However, higher DEX concentrations are considered to be required for sedation and/or pain management after major surgery using remifentanil. We determined the DEX concentration required after major surgery by using a target-controlled infusion (TCI) system for DEX. Methods Fourteen patients undergoing surgery for abdominal aortic aneurysms (AAA) were randomly, double-blindly assigned to two groups and underwent fentanyl- or remifentanil-based anesthetic management. DEX TCI was started at the time of closing the peritoneum and continued for 12 hours after stopping propofol administration (M0); DEX TCI was adjusted according to the sedation score and complaints of pain. The doses and concentrations of all anesthetics and postoperative conditions were investigated. Results Throughout the observation period, the predicted plasma concentration of DEX in the fentanyl group was stable at approximately 0.7 ng/mL. In contrast, the predicted plasma concentration of DEX in the remifentanil group rapidly increased and stabilized at approximately 2 ng/mL. The actual DEX concentration at 540 minutes after M0 showed a similar trend (0.54±0.14 [fentanyl] versus 1.57±0.39 ng/mL [remifentanil]). In the remifentanil group, the dopamine dose required and the duration of intubation decreased, and urine output increased; however, no other outcomes improved. Conclusion The DEX concentration required after AAA surgery with remifentanil was three-fold higher than that required after AAA surgery with fentanyl or the conventional DEX concentration for sedation. High DEX concentration after remifentanil affords some benefits in anesthetic management. PMID:25328395

  14. 1,3,5-Trinitrobenzene

    Integrated Risk Information System (IRIS)

    1,3,5 - Trinitrobenzene ; CASRN 99 - 35 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  15. 43 CFR 3.5 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Application. 3.5 Section 3.5 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.5 Application. Each application for a permit should be filed with the Secretary having jurisdiction, and must...

  16. 43 CFR 3.5 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Application. 3.5 Section 3.5 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.5 Application. Each application for a permit should be filed with the Secretary having jurisdiction, and must...

  17. 43 CFR 3.5 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Application. 3.5 Section 3.5 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.5 Application. Each application for a permit should be filed with the Secretary having jurisdiction, and must...

  18. 43 CFR 3.5 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Application. 3.5 Section 3.5 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.5 Application. Each application for a permit should be filed with the Secretary having jurisdiction, and must...

  19. 43 CFR 3.5 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Application. 3.5 Section 3.5 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.5 Application. Each application for a permit should be filed with the Secretary having jurisdiction, and must...

  20. Folding of proteins with diverse folds.

    PubMed

    Mohanty, Sandipan; Hansmann, Ulrich H E

    2006-11-15

    Using parallel tempering simulations with high statistics, we investigate the folding and thermodynamic properties of three small proteins with distinct native folds: the all-helical 1RIJ, the all-sheet beta3s, and BBA5, which has a mixed helix-sheet fold. In all three cases, simulations with our energy function find the native structures as global minima in free energy at experimentally relevant temperatures. However, the folding process strongly differs for the three molecules, indicating that the folding mechanism is correlated with the form of the native structure. PMID:16950845

  1. Structural Bridges through Fold Space

    PubMed Central

    Edwards, Hannah; Deane, Charlotte M.

    2015-01-01

    Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes. PMID:26372166

  2. 41 CFR 51-3.5 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Fees. 51-3.5 Section 51-3... FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 3-CENTRAL NONPROFIT AGENCIES § 51-3.5 Fees. A central nonprofit agency may charge fees to nonprofit agencies for facilitating...

  3. Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

    PubMed

    Sweeney, Lisa M; Okolica, Michelle R; Gut, Chester P; Gargas, Michael L

    2012-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, CAS No. 121-82-4) is a component of munitions formulations, and has been detected in groundwater samples collected at various US military sites. Clean up target levels for RDX may be derived based on consideration of acceptable cumulative human exposure as expressed in toxicity reference values. Evaluations of the cancer weight of evidence and possible modes of action (MOA) for RDX-induced cancer were conducted. It was concluded that the available data provide suggestive evidence of human carcinogenic potential for RDX. While a mutagenic/genotoxic MOA for RDX is unlikely, no alterative MOA is strongly supported by the available data. A nonlinear (threshold) approach to the assessment of human cancer risk was recommended, and a recommended chronic cancer reference dose of 0.08mg/kg/day was derived. For comparison only, computations using a linear approach were also conducted, yielding a cancer risk specific dose of 0.000235mg/kg/day for 1 in 10(5) risk; this value is 2.6-fold higher the current US EPA risk specific dose for 1 in 10(5) risk. Thus, cleanup standards based on human health risk from RDX exposure could potentially depend on the willingness of risk managers to accept a nonlinear MOA and nonlinear toxicity risk value derivation. PMID:22841928

  4. Let Them Fold

    ERIC Educational Resources Information Center

    Grant, Nicholas; Tobin, Alexander

    1972-01-01

    Directions are given for seven activities involving the folding of paper strips to illustrate geometric concepts. Properties of pentagons, triangles, hexagons, and Mobius bands resulting from the various foldings are discussed. (DT)

  5. Protein folding by motion planning

    NASA Astrophysics Data System (ADS)

    Thomas, Shawna; Song, Guang; Amato, Nancy M.

    2005-12-01

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L. This research was supported in part by NSF CAREER Award CCR-9624315, NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937, EIA-0079874 and the Texas Higher Education Coordinating Board grant ATP-000512-0261-2001. ST was supported in part by an NSF Graduate Research Fellowship. GS was supported in part by an IBM PhD Fellowship.

  6. Teaching polymers to fold

    SciTech Connect

    Judson, R.S. )

    1992-12-10

    A new method is presented for predicting folding pathways of polymers. The folding pathway is described as a generic program or sequence of logical steps of such a form that a computer can carry them out to produce a folded structure. A genetic (GA) is used to learn specific sequences or folding pathways that carry a denatured conformation into a target final conformation. The method is demonstrated on a model 2-dimensional polymer for which the global energy minimum is known. The GA learns a program that will fold a denatured polymer into its global energy minimum conformation. 27 refs., 4 figs.

  7. Mechanics of Curved Folds

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2011-03-01

    Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.

  8. Water Sourcebook. Grades 3-5.

    ERIC Educational Resources Information Center

    Tennessee Valley Authority, Knoxville.

    The goal of this supplemental activity guide for elementary students in grades 3-5 is to develop awareness, knowledge, and skills for sound water use decisions. Materials developed for the program are compatible with existing curriculum standards established by State Boards of Education throughout the United States and teach concepts included in…

  9. 32 CFR 3.5 - Appropriate use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE ACQUISITION TRANSACTIONS OTHER THAN CONTRACTS, GRANTS, OR COOPERATIVE AGREEMENTS FOR PROTOTYPE PROJECTS § 3.5 Appropriate use. In accordance... is participating to a significant extent in the prototype project; or (b) No nontraditional...

  10. 32 CFR 3.5 - Appropriate use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE ACQUISITION TRANSACTIONS OTHER THAN CONTRACTS, GRANTS, OR COOPERATIVE AGREEMENTS FOR PROTOTYPE PROJECTS § 3.5 Appropriate use. In accordance... is participating to a significant extent in the prototype project; or (b) No nontraditional...

  11. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 13149, as Cycle 20.

  12. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 12778, as Cycle 19.

  13. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {11863} during Cycle 17.

  14. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis, Proposal 12416, as Cycle 18.

  15. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

    Integrated Risk Information System (IRIS)

    Hexahydro - 1,3,5 - trinitro - 1,3,5 - triazine ( RDX ) ; CASRN 121 - 82 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health

  16. Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    Integrated Risk Information System (IRIS)

    Octahydro - 1,3,5,7 - tetranitro - 1,3,5,7 - tetr . . . ( HMX ) ; CASRN 2691 - 41 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I

  17. A galaxy of folds.

    PubMed

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains. PMID:19937658

  18. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  19. Experimental evaluation of a Mach 3.5 axisymmetric inlet

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Koncsek, J. L.

    1975-01-01

    Wind tunnel test results for a large scale inlet model designed for Mach 3.5 are presented and compared with analytical predictions. The inlet is an axisymmetric mixed-compression type with a lip diameter of 49.723 cm. The inlet design was developed using analytical procedures. Data are shown for freestream Mach numbers from 0.6 to 3.5. The test results indicate that boundary layer bleed requirements can be accurately predicted. Good agreement was obtained with analytical predictions of the flowfield structure and boundary layer development in the supersonic diffuser yielding high performance at the design Mach number. The highest engine face total pressure recovery at Mach 3.5 was 85.8%; this was obtained at 0.05 Mach tolerance with only 2.8% total pressure distortion and 13.4% bleed. In the started Mach number range from 1.6 to 3.5, the total pressure recovery in the throat, downstream of the terminal normal shock, ranged between 91% and 95%. Total pressure losses in the subsonic diffuser varied from 3% to 13%. The higher losses occuring between Mach 2.5 and 3.2 were believed to be caused by the rapid rate of increase in the area of the diffuser just downstream of the throat, possibly coupled with inadequate centerbody throat bleed. In the unstarted mode at transonic speeds, the maximum inlet flow was over 99% of the theoretical maximum capture mass-flow.

  20. Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

    PubMed Central

    McCormick, N. G.; Cornell, J. H.; Kaplan, A. M.

    1981-01-01

    Biodegradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) occurs under anaerobic conditions, yielding a number of products, including: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine, hexahydro-1,3,5-trinitroso-1,3,5-triazine, hydrazine, 1,1-dimethyl-hydrazine, 1,2-dimethylhydrazine, formaldehyde, and methanol. A scheme for the biodegradation of RDX is proposed which proceeds via successive reduction of the nitro groups to a point where destabilization and fragmentation of the ring occurs. The noncyclic degradation products arise via subsequent reduction and rearrangement reactions of the fragments. The scheme suggests the presence of several additional compounds, not yet identified. Several of the products are mutagenic or carcinogenic or both. Anaerobic treatment of RDX wastewaters, which also contain high nitrate levels, would permit the denitrification to occur, with concurrent degradation of RDX ultimately to a mixture of hydrazines and methanol. The feasibility of using an aerobic mode in the further degradation of these products is discussed. PMID:16345884

  1. Six-fold coordinated carbon dioxide VI.

    PubMed

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2007-01-01

    Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530-650 K. Together with the previously reported CO2-V (refs 3-5) and a-carbonia, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp3 hybridization. PMID:17160005

  2. Multiply folded graphene

    NASA Astrophysics Data System (ADS)

    Kim, Kwanpyo; Lee, Zonghoon; Malone, Brad D.; Chan, Kevin T.; Alemán, Benjamín; Regan, William; Gannett, Will; Crommie, M. F.; Cohen, Marvin L.; Zettl, A.

    2011-06-01

    The folding of paper, hide, and woven fabric has been used for millennia to achieve enhanced articulation, curvature, and visual appeal for intrinsically flat, two-dimensional materials. For graphene, an ideal two-dimensional material, folding may transform it to complex shapes with new and distinct properties. Here, we present experimental results that folded structures in graphene, termed grafold, exist, and their formations can be controlled by introducing anisotropic surface curvature during graphene synthesis or transfer processes. Using pseudopotential-density-functional-theory calculations, we also show that double folding modifies the electronic band structure of graphene. Furthermore, we demonstrate the intercalation of C60 into the grafolds. Intercalation or functionalization of the chemically reactive folds further expands grafold's mechanical, chemical, optical, and electronic diversity.

  3. The 3.5-meter telescope enclosure

    NASA Astrophysics Data System (ADS)

    Brady, Michael H.

    1994-04-01

    The 3.5-m telescope enclosure is designed to perform two functions as part of the U.S. Air Force's 3.5-m telescope system: (1) to provide weather and temperature protection when the telescope is not in use and (2) to permit open-air operation of the telescope while minimizing atmospheric disturbances in the field of view (FOV). The use of a standard rotating dome is impractical because of the large telescope and its high rotational rate and acceleration. The enclosure is a 40-ft tall cylinder with a diameter of 72 ft. This steel and aluminum structure does not rotate but collapses vertically to fully expose the telescope to the open air and to provide it with an unobscured view of the horizon at all azimuthal angles. To lessen wind disturbances in the FOV, the enclosure has a moderately sloped roof and smooth, vertical walls. To minimize thermal flow, the outer surface has a high-reflectivity, low-emissivity coating and ambient air is forced through the double-skinned walls and roof. These measures make it possible to keep the enclosure surface temperature near that of the ambient air during viewing. With these features, the enclosure adds minimal degradation to the seeing.

  4. Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Park, Joonhong

    2012-10-01

    In the present work, current knowledge on the potential fate, microbial degradation, and toxicity of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) was thoroughly reviewed, focusing on the toxicological assessment of a variety of potential RDX degradation pathways in bacteria and fungi. The present review on microbial degradation pathways and toxicities of degradation intermediates suggests that, among aerobic RDX degradation pathways, the one via denitration may be preferred in a toxicological perspective, and that among anaerobic pathways, those forming 4- nitro-2,4-diazabutanal (NDAB) via ring cleavage of 1-nitroso- 3,5-dinitro-1,3,5-triazinane (MNX) may be toxicologically advantageous owing to its potential mineralization under partial or complete anoxic conditions. These findings provide important information on RDX-degrading microbial pathways, toxicologically most suitable to be stimulated in contaminated fields. PMID:23075780

  5. Folding of a miniprotein with mixed fold.

    PubMed

    Mohanty, Sandipan; Hansmann, U H E

    2007-07-21

    Using the 28 residue betabetaalpha protein FSD-EY as a target system, we examine correction terms for the ECEPP/3 force field. We find an increased probability of formation of the native state at low temperatures resulting from a reduced propensity to form alpha helices and increased formation of beta sheets. Our analysis of the observed folding events suggests that the C-terminal helix of FSD-EY is much more stable than the N-terminal beta hairpin and forms first. The hydrophobic groups of the helix provide a template which promotes the formation of the beta hairpin that is never observed to form without the helix. PMID:17655464

  6. Multiple folding pathways of proteins with shallow knots and co-translational folding

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-07-01

    We study the folding process in the shallowly knotted protein MJ0366 within two variants of a structure-based model. We observe that the resulting topological pathways are much richer than identified in previous studies. In addition to the single knot-loop events, we find novel, and dominant, two-loop mechanisms. We demonstrate that folding takes place in a range of temperatures and the conditions of most successful folding are at temperatures which are higher than those required for the fastest folding. We also demonstrate that nascent conditions are more favorable to knotting than off-ribosome folding.

  7. Multiple folding pathways of proteins with shallow knots and co-translational folding.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-07-28

    We study the folding process in the shallowly knotted protein MJ0366 within two variants of a structure-based model. We observe that the resulting topological pathways are much richer than identified in previous studies. In addition to the single knot-loop events, we find novel, and dominant, two-loop mechanisms. We demonstrate that folding takes place in a range of temperatures and the conditions of most successful folding are at temperatures which are higher than those required for the fastest folding. We also demonstrate that nascent conditions are more favorable to knotting than off-ribosome folding. PMID:26233164

  8. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress

  9. Protein Folding Stages and Universal Exponents

    NASA Astrophysics Data System (ADS)

    Huang, Kerson

    We propose three stages in protein folding, based on physical arguements involving the interplay between the hydrophobic effect and hydrogen bonding, and computer simulations using the CSAW (conditioned self-avoiding walk) model. These stages are characterized by universal exponents ν = 3/5, 3/7, 2/5 in the power law R ~ Nν, where R is the radius of gyration and N is the number of residues. They correspond to the experimentally observed stages: unfolded, preglobule, molten globule.

  10. Protein Folding Stages and Universal Exponents

    NASA Astrophysics Data System (ADS)

    Huang, Kerson

    2011-11-01

    We propose three stages in protein folding, based on physical arguements involving the interplay between the hydrophobic effect and hydrogen bonding, and computer simulations using the CSAW (conditioned self-avoiding walk) model. These stages are characterized by universal exponents ν = 3/5, 3/7, 2/5 in the power law R ˜ Nν, where R is the radius of gyration and N is the number of residues. They correspond to the experimentally observed stages: unfolded, preglobule, molten globule.

  11. Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees

    SciTech Connect

    Thompson, P.L.; Ramer, L.A.; Schnoor, J.L.

    1999-02-01

    This article evaluates the translocation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in hybrid poplar trees (Populus deltoides x nigra, DN34) grown in hydroponic solutions. Mass balances with [U-{sup 14}C]RDX were used to assess RDX translocation. Up to 60% of the RDX uptaken by the tree accumulated in leaf tissues. Analysis of plant extracts by high-performance liquid chromatography equipped with radiochemical detection indicated that RDX was not significantly transformed during exposure periods of up to 7 d. The bioaccumulation of RDX may be an important concern for phytoremediation efforts.

  12. 1,3,5-Hydroxybenzene structures in mosses

    USGS Publications Warehouse

    Wilson, M.A.; Sawyer, J.; Hatcher, P.G.; Lerch, H. E., III

    1989-01-01

    A number of mosses from widely different families have been studied by cross polarization solid state 13C NMR spectroscopy. Although polysaccharide-type materials dominate the NMR spectra, significant amounts of aromatic carbons are observed in some mosses. Some of this material can be removed by ultrasonic bath treatment, and is lignin derived, probably from impurities from fine root material from associated higher plants. However other material is truly moss-derived and appears to be from 1,3,5-hydroxybenzene structures. This is inconsistent with lignin as being a component of mosses, and suggests a tannin or hydroxybenzofuran polymer is responsible for moss rigidity. ?? 1989.

  13. Programmable matter by folding

    PubMed Central

    Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J.

    2010-01-01

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions. PMID:20616049

  14. Folding without charges

    PubMed Central

    Kurnik, Martin; Hedberg, Linda; Danielsson, Jens; Oliveberg, Mikael

    2012-01-01

    Surface charges of proteins have in several cases been found to function as “structural gatekeepers,” which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges. PMID:22454493

  15. Synthesizing folded band chaos.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics. PMID:17500950

  16. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  17. The uteroglobin fold.

    PubMed

    Callebaut, I; Poupon, A; Bally, R; Demaret, J P; Housset, D; Delettré, J; Hossenlopp, P; Mornon, J P

    2000-01-01

    Uteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to the cap domain of Xanthobacter autotrophicus haloalkane dehalogenase. We show here that UTG fold is adopted by several other cap domains within the alpha/beta hydrolase family, making it a well-suited "geode" structure allowing it to sequester various hydrophobic molecules. Additionally, some data about a new crystal form of oxidized rabbit UTG are presented, completing previous structural studies, as well as results from molecular dynamics, suggesting an alternative way for the ligand to reach the internal cavity. PMID:11193783

  18. The protein folding network

    NASA Astrophysics Data System (ADS)

    Rao, Francesco; Caflisch, Amedeo

    2004-03-01

    Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)

  19. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  20. Chirality and protein folding

    NASA Astrophysics Data System (ADS)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  1. Folding within seconds

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas

    2002-03-01

    Hypervelocity impacts of cosmic projectiles larger than ˜200 m diameter are capable of forming complex craters on Earth. At these craters, shock loading, shock damage, and excavation flow are followed by a gravity-driven collapse of the deep transient cavity. Such impact structures are characterized by a central uplift, a flat crater floor, and a terraced crater rim. Collapse-induced deformation features, like folds and brittle fault zones, have many similarities to tectonic structures. Typical deformation patterns of complex terrestrial impact craters of 5 15 km diameter are compiled and analyzed with respect to their kinematic development. Unlike their tectonic counterparts, deformation structures are always the result of non-plane-strain deformation and are formed in a single event that takes place in seconds to minutes. To understand the high-strain-rate processes, the microstructure of an impact-induced fold of the Crooked Creek impact crater (˜7 km diameter), Missouri, United States, is investigated in detail. A period of 20 30 s at the most is determined for the collapse phase of this crater. The gross plastic deformation behavior of the fold is achieved by localized brittle deformation along millimeter- to centimeter-spaced fault zones, forming a network of veins. Shock damage has fractured ˜40% of grain boundaries. The onset of collapse and associated deformation started in rocks with a reduced cohesion and is friction controlled.

  2. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. PMID:25993396

  3. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  4. Purification and characterization of DNase VII, a 3'. -->. 5'-directed exonuclease from human placenta

    SciTech Connect

    Hollis, G.F.; Grossman, L.

    1981-01-01

    An exonuclease, DNase VII, has been purified 6000-fold from human placenta. The enzyme has an apparent molecular weight of 43,000, requires Mg/sup 2 +/ for activity, and has a pH optimum of 7.8. The enzyme hydrolyzes single-stranded and nicked duplex DNA at the same rate proceeding in a 3' ..-->.. 5' direction liberating 5'-mononucleotides. It does not measurably hydrolyze polyribonucleotides.

  5. Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

    SciTech Connect

    Etnier, E.L.

    1989-04-01

    The occurrence of the munitions compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater surrounding Army ammunition plants may result in contamination of local drinking water supplies. RDX exerts its primary toxic effect in humans on the central nervous system, but also involves gastrointestinal and renal effects. Symptomatic effects following acute exposure include hyperirritability, nausea, vomiting, generalized epileptiform seizures, and prolonged postictal confusion and amnesia. Health effects data were analyzed for RDX, and although no controlled human studies exist concerning the acute or chronic toxic effects of exposure to RDX, sufficient animal toxicity data are available to derive an ambient water quality criterion for the protection of human health. This paper summarizes the available literature on metabolism of RDX and human and animal toxicity. Based on noncarcinogenic mammalian toxicity data, and following the methodologies of the U.S. Environmental Protection Agency, an ambient water quality criterion for the protection of human health of 103 micrograms/liter is proposed for ingestion of drinking water and aquatic foodstuffs. A criterion of 105 micrograms/liter is proposed for ingestion of drinking water alone.54 references.

  6. Kinematics of constant arc length folding for different fold shapes

    NASA Astrophysics Data System (ADS)

    Ghassemi, Mohammad R.; Schmalholz, Stefan M.; Ghassemi, Ali R.

    2010-06-01

    Basic mathematical functions are applied for the two-dimensional geometrical and kinematical analysis of different fold shapes. Relationships between different fold parameters are established and related to the bulk shortening taking place during folding under upper crustal conditions. The bulk shortening taking place during constant arc length folding is mathematically related to the bulk shortening during homogenous pure shear using a particular aspect ratio, which is for folding the ratio of amplitude to half wavelength and for pure shear the ratio of vertical to horizontal length of the deformed, initially square body. The evolution of the fold aspect ratio with bulk shortening is similar for a wide range of fold shapes and indicates that the fold aspect ratio allows a good estimate of the bulk shortening. The change of the geometry of individual layers across a multilayer sequence in disharmonic folding indicates a specific kinematics of multilayer folding, referred to here as "wrap folding", which does not require significant flexural slip nor flexural flow. The kinematic analysis indicates that there is a critical value for constant arc length folding between shortening values of 30-40% (depending on the fold geometry). For shortening values smaller than the critical value limb rotation and fold amplitude growth are dominating. For shortening larger than this value, faulting, boudinage and foliation development are likely the dominating deformation process during continued shortening. The kinematical analysis of constant arc length folding can be used for estimating the bulk shortening taking place during multilayer folding which is an important component of the deformation of crustal rocks during the early history of shortening. The bulk shortening is estimated for a natural, multilayer detachment fold and the shortening estimates based on the kinematic analysis are compared and supported by numerical finite element simulations of multilayer detachment

  7. Information from folds: A review

    NASA Astrophysics Data System (ADS)

    Hudleston, Peter J.; Treagus, Susan H.

    2010-12-01

    Folds are spectacular geological structures that are seen in layered rock on many different scales. To mark 30 years of the Journal of Structural Geology, we review the information that can be gained from studies of folds in theory, experiment and nature. We first review theoretical considerations and modeling, from classical approaches to current developments. The subject is dominated by single-layer fold theory, with the assumption of perfect layer-parallel shortening, but we also review multilayer fold theory and modeling, and folding of layers that are oblique to principal stresses and strains. This work demonstrates that viscosity ratio, degree of non-linearity of the flow law, anisotropy, and the thickness and spacing distribution of layers of different competence are all important in determining the nature and strength of the folding instability. Theory and modeling provide the basis for obtaining rheological information from natural folds, through analysis of wavelength/thickness ratios of single layer folds, and fold shapes. They also provide a basis for estimating the bulk strain from folded layers. Information about folding mechanisms can be obtained by analysis of cleavage and fabric patterns in folded rocks, and the history of deformation can be revealed by understanding how asymmetry can develop in folds, by how folds develop in shear zones, and how folds develop in more complex three-dimensional deformations.

  8. Molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane).

    PubMed

    Boyd, Sylke; Murray, Jane S; Politzer, Peter

    2009-11-28

    In the context of a continuing investigation of factors that affect the sensitivities of energetic materials to detonation initiation, we have carried out a molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclo-hexane). An empirical force field that is capable of handling flexible molecules in a pliable crystal was used. Voids ranging in size from 2 to 30 adjacent vacated sites were created in model lattices of 216 or 512 molecules. Energetic and geometric ground state properties were determined. The void formation energy per molecule removed was found to decrease from 50 kcal/mol for a single vacancy to about 23+/-2 kcal/mol for voids larger than one unit cell (8 molecules). Analysis of the local binding energies in the vicinity of a void reveals not only the expected decrease for molecules directly on the void surface but also a wide spread of values in the first 5-10 A away from the surface; this includes some molecules with local binding energies significantly higher than in the defect-free lattice. Molecular conformational changes and reorientations begin to be found in the vicinities of voids larger than one unit cell. Thermal behavior investigated includes void and molecular diffusion coefficients and fluctuations in void size. PMID:19947705

  9. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene from 3,5-dichloroanisole

    DOEpatents

    Ott, D.G.; Benziger, T.M.

    1991-03-05

    Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) from 3,5-dichloroanisole is described. Nitration of 3,5-dichloroanisole under relatively mild conditions gave 3,5-dichloro-2,4,6-trinitroanisole in high yield and purity. Ammonolysis of this latter compound gave the desired TATB. Another route to TATB was through the treatment of the 3,5-dichloro-2,4,6-trinitroanisole with thionyl chloride and dimethylformamide to yield 1,3,5-trichloro-2,4,6-trinitrobenzene. Ammonolysis of this product produced TATB. 8 figures.

  10. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  11. 29 CFR 5.3-5.4 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false 5.3-5.4 Section 5.3-5.4 Labor Office of the Secretary of Labor LABOR STANDARDS PROVISIONS APPLICABLE TO CONTRACTS COVERING FEDERALLY FINANCED AND ASSISTED... WORK HOURS AND SAFETY STANDARDS ACT) Davis-Bacon and Related Acts Provisions and Procedures §§ 5.3-5.4...

  12. 29 CFR 5.3-5.4 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false 5.3-5.4 Section 5.3-5.4 Labor Office of the Secretary of Labor LABOR STANDARDS PROVISIONS APPLICABLE TO CONTRACTS COVERING FEDERALLY FINANCED AND ASSISTED... WORK HOURS AND SAFETY STANDARDS ACT) Davis-Bacon and Related Acts Provisions and Procedures §§ 5.3-5.4...

  13. 29 CFR 5.3-5.4 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false 5.3-5.4 Section 5.3-5.4 Labor Office of the Secretary of Labor LABOR STANDARDS PROVISIONS APPLICABLE TO CONTRACTS COVERING FEDERALLY FINANCED AND ASSISTED... WORK HOURS AND SAFETY STANDARDS ACT) Davis-Bacon and Related Acts Provisions and Procedures §§ 5.3-5.4...

  14. 38 CFR 3.5 - Dependency and indemnity compensation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Dependency and indemnity compensation. 3.5 Section 3.5 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.5 Dependency and indemnity compensation. (a) Dependency...

  15. 38 CFR 3.5 - Dependency and indemnity compensation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Dependency and indemnity compensation. 3.5 Section 3.5 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.5 Dependency and indemnity compensation. (a) Dependency...

  16. 38 CFR 3.5 - Dependency and indemnity compensation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Dependency and indemnity compensation. 3.5 Section 3.5 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.5 Dependency and indemnity compensation. (a) Dependency...

  17. 43 CFR 3435.3-5 - Notice of public hearing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Notice of public hearing. 3435.3-5 Section 3435.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND....3-5 Notice of public hearing. After the lessee or lease applicant and the Secretary agree on...

  18. 43 CFR 3435.3-5 - Notice of public hearing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Notice of public hearing. 3435.3-5 Section 3435.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND....3-5 Notice of public hearing. After the lessee or lease applicant and the Secretary agree on...

  19. 43 CFR 3435.3-5 - Notice of public hearing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Notice of public hearing. 3435.3-5 Section 3435.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND....3-5 Notice of public hearing. After the lessee or lease applicant and the Secretary agree on...

  20. 28 CFR 3.5 - Forfeiture of gambling devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Forfeiture of gambling devices. 3.5 Section 3.5 Judicial Administration DEPARTMENT OF JUSTICE GAMBLING DEVICES § 3.5 Forfeiture of gambling devices. For purposes of seizure and forfeiture of gambling devices see section 8 of this chapter....

  1. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Preparation for appeal. 1210.3-5 Section 1210.3-5 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for...

  2. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  3. Folds on Europa

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, acquired by NASA's Galileo spacecraft on September 26, 1998, shows features on the surface of Jupiter's moon Europa that a scientific report published today interprets as signs of compressive folding.

    The imaged area is in the Astypalaea Linea region of Europa's southern hemisphere, seen with low-angle sunshine coming from the upper right. North is toward the top.

    Astypalaea Linea is the smooth, gray area that stretches from north to south across the image mosaic. It is thought to have formed by a combination of pulling apart and sliding of the icy surface. The telltale fold features are within the smoother portions of the surface between the more dominant ridges, which are attributed to upwelling of material through surface ice. In the smooth areas, the surface has gentle swells and dips, which show most clearly in the version on the right, processed to accentuate broader-scale shapes. For example, a dip about 15 kilometers (about 10 miles) wide cuts diagonally across the northern half of the largest smooth area, and a rise runs parallel to that in the southern half of the smooth area. closeup detail

    Louise M. Prockter, at Johns Hopkins University, and Robert T. Pappalardo, at Brown University, report in the journal Science today that those rises, or anticlines, and dips, or synclines, appear to be the result of compression causing the crust to fold.

    Additional evidence comes from smaller features more visible in the version on the left, covering the same area. At the crest of the gentle rise in the largest smooth area are small fractures that could be caused by the stretching stress of bending the surface layer upwards. Similarly, at the bottom of the adjacent dip are small, wrinkle-like ridges that could be caused by stress from bending the surface layer downwards.

    The Jet Propulsion Laboratory, Pasadena, Calif., manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California

  4. Cellular folding pathway of a metastable serpin.

    PubMed

    Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning; Goodwin, Theresa; Gierasch, Lila M; Gershenson, Anne; Hebert, Daniel N

    2016-06-01

    Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes. PMID:27222580

  5. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  6. Protein folding. Translational tuning optimizes nascent protein folding in cells.

    PubMed

    Kim, Soo Jung; Yoon, Jae Seok; Shishido, Hideki; Yang, Zhongying; Rooney, LeeAnn A; Barral, Jose M; Skach, William R

    2015-04-24

    In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, α-helical, and α/β-core subdomains. Moreover, the timing of these events was critical; premature α-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying α-subdomain compaction, facilitating β-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis. PMID:25908822

  7. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1.

    PubMed

    Mendoza, A; Navarrete-Ramírez, P; Hernández-Puga, G; Villalobos, P; Holzer, G; Renaud, J P; Laudet, V; Orozco, A

    2013-08-01

    Several liganded nuclear receptors have alternative ligands acting in a tissue-specific fashion and playing important biological roles. We present evidence that 3,5-diiodothyronine (T(2)), a naturally occurring iodothyronine that results from T(3) outer-ring deiodination, is an alternative ligand for thyroid hormone receptor β1 (TRβ1). In tilapia, 2 TRβ isoforms differing by 9 amino acids in the ligand-binding domain were cloned. Binding and transactivation studies showed that T(2) activates the human and the long tilapia TRβ1 isoform, but not the short one. A chimeric human TRβ1 (hTRβ1) that contained the 9-amino-acid insert showed no response to T(2), suggesting that the conformation of the hTRβ1 naturally allows T(2) binding and that other regions of the receptor are implicated in TR activation by T(2). Indeed, further analysis showed that the N terminus is essential for T(2)-mediated transactivation but not for that by T(3) in the long and hTRβ1, suggesting a functional interaction between the N-terminal domain and the insertion in the ligand-binding domain. To establish the functional relevance of T(2)-mediated TRβ1 binding and activation, mRNA expression and its regulation by T(2) and T(3) was evaluated for both isoforms. Our data show that long TRβ1expression is 10(6)-fold higher than that of the short isoform, and T(3) and T(2) differentially regulate the expression of these 2 TRβ1 isoforms in vivo. Taken together, our results prompted a reevaluation of the role and mechanism of action of thyroid hormone metabolites previously believed to be inactive. More generally, we propose that classical liganded receptors are only partially locked to very specific ligands and that alternative ligands may play a role in the tissue-specific action of receptors. PMID:23736295

  8. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  9. Protein folding in the ER.

    SciTech Connect

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  10. Rethinking the biological relationships of the thyroid hormones, l-thyroxine and 3,5,3'-triiodothyronine.

    PubMed

    Maher, Stacey K; Wojnarowicz, Pola; Ichu, Taka-Aki; Veldhoen, Nik; Lu, Linghong; Lesperance, Mary; Propper, Catherine R; Helbing, Caren C

    2016-06-01

    Thyroid hormones (THs), l-thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are essential for vertebrate growth and development. Classically, T4 is 5'-deiodinated to the active hormone, T3, in target tissues which then binds nuclear TH receptors (TRs) and regulates gene transcription. However, it is possible that T4 acts directly on target tissues. Frog metamorphosis is a powerful TR-dependent model for studying TH action. Premetamorphic Rana (Lithobates) catesbeiana tadpoles were injected with 0.1-50 T3 or 0.5-250T4pmol/gbodyweight to account for their 5-fold difference in biological activity and the mRNA profiles in six tissues from well-characterized TH-responsive genes were evaluated after 48h using quantitative real time polymerase chain reaction. 5'-deiodinase-poor tissues should produce superimposable dose-response curves if T4 does not require conversion to T3. This was the case in lung and tail fin; the latter tissue recapitulating these responses in organ culture. 5'-deiodinase-rich tissues should convert T4 to T3. Because T3 has a higher affinity to TRs, a 5-fold higher T4 dose compared to T3 should produce greater transcript induction. This was observed in the brain and for most intestinal transcripts. However, some gene transcripts in the intestine and all transcripts in the back skin produced superimposable response curves suggesting that a direct mode of T4 action is plausible in these tissues. While the liver showed results consistent with its 5'-deiodinase-poor status, we found evidence of an alternate, non-genomic mechanism for two gene transcripts. Therefore, mechanisms not requiring T4 conversion to T3 may play a far greater role than previously thought. PMID:27085304

  11. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  12. Computational analysis of hydrogenated graphyne folding

    NASA Astrophysics Data System (ADS)

    Lenear, Christopher; Becton, Matthew; Wang, Xianqiao

    2016-02-01

    This letter employs molecular mechanics simulations to analyze the geometric changes of foreign-atom-doped graphyne. Simulation results show that higher the density of dopant and the greater area covered by the dopant correlates to a greater folding angle of the graphyne sheet. Compared to graphene, graphyne folding could prove to be more effective for various nanodevices based on its unique band gap, especially when doped, and its tunable interactions with and absorption of foreign molecules. Therefore, our findings may offer unique perspectives into the development of novel graphyne-based nanodevices and stimulate the community's research interest in graphene-related origami.

  13. Bioavailability of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) to the Praire Vole (Microtus ochrogaster).

    SciTech Connect

    Fellows, Robert J.; Driver, Crystal J.; Cataldo, Dominic A.; Harvey, Scott D.

    2006-07-01

    Estimating risk to wildlife requires that measures of exposure be equivalent to that of the laboratory studies from which toxic responses were observed. Exposure measures are often based on modeled estimates of uptake through the food web. These modeled estimates use largely untested assumptions that can lead to inaccurate, uncertain, and unreliable estimates of exposure. Recently, concerns have been raised over the potential bioavailability and biotransfer of munitions or energetics materials such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). RDX is more recalcitrant in the soil, may remain as the parent compound for extended periods of time, and is rapidly taken up by the roots of higher plants and partitioned predominantly into the above ground, herbivore-accessible tissues. This study assessed plant incorporated [14C]-RDX and plant derived [14C]-RDX-metabolites ingestion by a representative hindgut herbivore, the prairie vole (Microtus ochrogaster). The animals were fed the labeled chow (≤10 g/ day max) for five or seven days followed by a six or four day chase period with the control chow prior to final weighing and sacrifice. Animal excreta including feces, urine, and respired CO2 were collected and measured. Greater than 95% of all label presented to the voles was recovered in the summed excreta. Seventy-four percent of the label in the total excreta was found in the fecal non-absorbed bulk. This means that greater than 20% of the presented 14C-RDX and plant-derived 14C-RDX-metabolites were absorbed by the animal’s digestive tracts over the time course of the experiment and modified prior to release. These materials were either metabolized to 14CO2 (8 to 10% of the total label) or removed as nitrogenous waste through the kidneys (10 to 14%). The feeding regimes were followed by a rapid, 2 to 3 day, clearing of label from the bulk feces with the cessation of exposure. Both 14C-urine and 14CO2 excretion continued after the feces cleared indicating

  14. Evolutionary optimization of protein folding.

    PubMed

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  15. 43 CFR 9269.3-5 - Timber management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Timber management. 9269.3-5 Section 9269.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Timber management. (a) Sales of forest products; general. (b) Non-sale disposals;...

  16. 43 CFR 9269.3-5 - Timber management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Timber management. 9269.3-5 Section 9269.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Timber management. (a) Sales of forest products; general. (b) Non-sale disposals;...

  17. 43 CFR 9269.3-5 - Timber management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Timber management. 9269.3-5 Section 9269.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Timber management. (a) Sales of forest products; general. (b) Non-sale disposals;...

  18. 43 CFR 9269.3-5 - Timber management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Timber management. 9269.3-5 Section 9269.3-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Timber management. (a) Sales of forest products; general. (b) Non-sale disposals;...

  19. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues

    PubMed Central

    Padron, Alvaro Souto; Neto, Ruy Andrade Louzada; Pantaleão, Thiago Urgal; de Souza dos Santos, Maria Carolina; Araujo, Renata Lopes; de Andrade, Bruno Moulin; da Silva Leandro, Monique; de Castro, João Pedro Saar Werneck; Ferreira, Andrea Claudia Freitas; de Carvalho, Denise Pires

    2014-01-01

    In general, 3,5-diiodothyronine (3,5-T2) increases the resting metabolic rate and oxygen consumption, exerting short-term beneficial metabolic effects on rats subjected to a high-fat diet. Our aim was to evaluate the effects of chronic 3,5-T2 administration on the hypothalamus–pituitary–thyroid axis, body mass gain, adipose tissue mass, and body oxygen consumption in Wistar rats from 3 to 6 months of age. The rats were treated daily with 3,5-T2 (25, 50, or 75 μg/100 g body weight, s.c.) for 90 days between the ages of 3 and 6 months. The administration of 3,5-T2 suppressed thyroid function, reducing not only thyroid iodide uptake but also thyroperoxidase, NADPH oxidase 4 (NOX4), and thyroid type 1 iodothyronine deiodinase (D1 (DIO1)) activities and expression levels, whereas the expression of the TSH receptor and dual oxidase (DUOX) were increased. Serum TSH, 3,3′,5-triiodothyronine, and thyroxine were reduced in a 3,5-T2 dose-dependent manner, whereas oxygen consumption increased in these animals, indicating the direct action of 3,5-T2 on this physiological variable. Type 2 deiodinase activity increased in both the hypothalamus and the pituitary, and D1 activities in the liver and kidney were also increased in groups treated with 3,5-T2. Moreover, after 3 months of 3,5-T2 administration, body mass and retroperitoneal fat pad mass were significantly reduced, whereas the heart rate and mass were unchanged. Thus, 3,5-T2 acts as a direct stimulator of energy expenditure and reduces body mass gain; however, TSH suppression may develop secondary to 3,5-T2 administration. PMID:24692290

  20. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  1. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {11891} during Cycle 17.

  2. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {12723} during Cycle 19.

  3. Limited cooperativity in protein folding.

    PubMed

    Muñoz, Victor; Campos, Luis A; Sadqi, Mourad

    2016-02-01

    Theory and simulations predict that the structural concert of protein folding reactions is relatively low. Experimentally, folding cooperativity has been difficult to study, but in recent years we have witnessed major advances. New analytical procedures in terms of conformational ensembles rather than discrete states, experimental techniques with improved time, structural, or single-molecule resolution, and combined thermodynamic and kinetic analysis of fast folding have contributed to demonstrate a general scenario of limited cooperativity in folding. Gradual structural disorder is already apparent on the unfolded and native states of slow, two-state folding proteins, and it greatly increases in magnitude for fast folding domains. These results demonstrate a direct link between how fast a single-domain protein folds and unfolds, and how cooperative (or structurally diverse) is its equilibrium unfolding process. Reducing cooperativity also destabilizes the native structure because it affects unfolding more than folding. We can thus define a continuous cooperativity scale that goes from the 'pliable' two-state character of slow folders to the gradual unfolding of one-state downhill, and eventually to intrinsically disordered proteins. The connection between gradual unfolding and intrinsic disorder is appealing because it suggests a conformational rheostat mechanism to explain the allosteric effects of folding coupled to binding. PMID:26845039

  4. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  5. Paradoxical Vocal Fold Movement (PVFM)

    MedlinePlus

    ... Careers Certification Publications Events Advocacy Continuing Education Practice Management Research Home / Information for the Public / Speech, Language and Swallowing / Disorders and Diseases Paradoxical Vocal Fold ...

  6. Folding superfunnel to describe cooperative folding of interacting proteins.

    PubMed

    Smeller, László

    2016-07-01

    This paper proposes a generalization of the well-known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein-protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein-protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009-1016. © 2016 Wiley Periodicals, Inc. PMID:27090200

  7. Understanding the folding rates and folding nuclei of globular proteins.

    PubMed

    Finkelstein, Alexei V; Ivankov, Dmitry N; Garbuzynskiy, Sergiy O; Galzitskaya, Oxana V

    2007-12-01

    The first part of this paper contains an overview of protein structures, their spontaneous formation ("folding"), and the thermodynamic and kinetic aspects of this phenomenon, as revealed by in vitro experiments. It is stressed that universal features of folding are observed near the point of thermodynamic equilibrium between the native and denatured states of the protein. Here the "two-state" ("denatured state" <--> "native state") transition proceeds without accumulation of metastable intermediates, but includes only the unstable "transition state". This state, which is the most unstable in the folding pathway, and its structured core (a "nucleus") are distinguished by their essential influence on the folding/unfolding kinetics. In the second part of the paper, a theory of protein folding rates and related phenomena is presented. First, it is shown that the protein size determines the range of a protein's folding rates in the vicinity of the point of thermodynamic equilibrium between the native and denatured states of the protein. Then, we present methods for calculating folding and unfolding rates of globular proteins from their sizes, stabilities and either 3D structures or amino acid sequences. Finally, we show that the same theory outlines the location of the protein folding nucleus (i.e., the structured part of the transition state) in reasonable agreement with experimental data. PMID:18220841

  8. 21 CFR 176.230 - 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione. 176.230 Section 176.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER...

  9. IRIS Toxicological Review of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (Rdx) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On March 10, 2016, the public comment draft Toxicological Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine and the draft charge to external peer reviewers were released for public review and comment. The Toxicological Review and charge were reviewed internally by EPA and by othe...

  10. IRIS Toxicological Review of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (Rdx) (Public Comment Draft)

    EPA Science Inventory

    EPA is developing an Integrated Risk Information System (IRIS) assessment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and has released the draft assessment for public comment. When final, the assessment will appear on the IRIS database.

  11. Identification of ovine ruminal microbes capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioremediation is of great interest in the detoxification of soil contaminated with residues from explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although there are numerous forms of in situ and ex situ bioremediation, ruminants would provide the option of an in situ bioreactor tha...

  12. Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation

    NASA Astrophysics Data System (ADS)

    Chan, Roger Wai Kai

    Viscoelastic shear properties of vocal fold mucosal tissues and phonosurgical biomaterials were measured with a parallel-plate rotational rheometer. Elastic, viscous and damping properties were quantified as a function of frequency (0.01 Hz to 15 Hz) for human vocal fold mucosal tissues (N = 15), implantable biomaterials commonly used in the treatment of vocal fold paralysis (Teflon, gelatin, and collagen) (the non-mucosal group), and biomaterials currently or potentially useful in the treatment of vocal fold mucosal defects (adipose tissue or fat, hyaluronic acid, and fibronectin) (the mucosal group). It was found that intersubject differences as large as an order of magnitude were often observed for the shear properties of vocal fold mucosal tissues, part of which may be age- and gender-related. Shear properties of the non-mucosal group biomaterials were often much higher than those of the mucosal group biomaterials, which were relatively close to the shear properties of mucosal tissues. Viscoelastic and rheological modeling showed that shear properties of human vocal fold mucosa may be described by a quasi-linear viscoelastic theory and a statistical network theory, based upon which extrapolations to audio frequencies were possible. A theory of small-amplitude vocal fold oscillation was revisited to describe the effects of tissue shear properties on vocal fold oscillation and phonation threshold pressure, a measure of the 'ease' of phonation and an objective indication of vocal function. It was found that phonation threshold pressure is directly related to the viscous shear modulus or the 'effective damping modulus', a concept proposed to quantify the effective amount of damping in vocal fold oscillation. The mucosal group biomaterials were incorporated into the artificial vocal fold mucosa of a physical model in order to empirically assess their effects on phonation threshold pressure. Results showed that higher threshold pressures were consistently observed

  13. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin

    PubMed Central

    Castellarin, Simone D; Di Gaspero, Gabriele; Marconi, Raffaella; Nonis, Alberto; Peterlunger, Enrico; Paillard, Sophie; Adam-Blondon, Anne-Francoise; Testolin, Raffaele

    2006-01-01

    Background Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Results Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. Conclusion We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between

  14. Pseudoknots in RNA folding landscapes

    PubMed Central

    Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing

    2016-01-01

    Motivation: The function of an RNA molecule is not only linked to its native structure, which is usually taken to be the ground state of its folding landscape, but also in many cases crucially depends on the details of the folding pathways such as stable folding intermediates or the timing of the folding process itself. To model and understand these processes, it is necessary to go beyond ground state structures. The study of rugged RNA folding landscapes holds the key to answer these questions. Efficient coarse-graining methods are required to reduce the intractably vast energy landscapes into condensed representations such as barrier trees or basin hopping graphs (BHG) that convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuristic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary structures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an important role in guiding folding trajectories, were usually excluded. Results: We generalize the BHG framework to include pseudoknotted RNA structures and systematically study the differences in predicted folding behavior depending on whether pseudoknotted structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseudoknotted ground state structures tend to have more pseudoknotted folding intermediates than RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknotted intermediates on the folding pathway, however, appear to depend very strongly on the individual RNAs so that no general rule can be inferred. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and Supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  15. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 20 proposal 13128.

  16. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  17. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings.

  18. Delaware Student Testing Program. State Summary Report: Reading, Mathematics, Writing Spring. 2002 Administration: Grades 3, 5, 8, and 10.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover. Assessment and Accountability Branch.

    The results in this report, from the fifth administration of the grades 3, 5, 8, and 10 reading, mathematics, and writing portions of the Delaware Student Testing Program (DSTP), represent an important step in Delawares efforts to educate all students to a higher level. Reading, mathematics, and writing data for grades 3, 5, 8, and 10 are…

  19. Effects of Knots on Protein Folding Properties

    PubMed Central

    Soler, Miguel A.; Faísca, Patrícia F. N.

    2013-01-01

    This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism) via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin) can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation. PMID:24023962

  20. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1.

    PubMed Central

    Binks, P R; Nicklin, S; Bruce, N C

    1995-01-01

    A mixed microbial culture capable of metabolizing the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A bacterium, Stenotrophomonas maltophilia PB1, isolated from the culture used RDX as a sole source of nitrogen for growth. Three moles of nitrogen was used per mole of RDX, yielding a metabolite identified by mass spectroscopy and 1H nuclear magnetic resonance analysis as methylene-N-(hydroxymethyl)-hydroxylamine-N'-(hydroxymethyl)nitroamin e. The bacterium also used s-triazine as a sole source of nitrogen but not the structurally similar compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, cyanuric acid, and melamine. An inducible RDX-degrading activity was present in crude cell extracts. PMID:7747953

  1. Human monocyte killing of Staphylococcus aureus: modulation by agonists of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate.

    PubMed Central

    O'Dorisio, M S; Vandenbark, G R; LoBuglio, A F

    1979-01-01

    This study was designed to test whether cyclic nucleotides play a role in the regulation of bacterial killing by human monocytes. Agents were tested for their ability to activate monocyte adenylate or guanylate cyclase in cell-free preparations, to increase cyclic adenosine 3',5'-monophosphate (cAMP) or cyclic guanosine 3',5'-monophosphate (cGMP) in intact human monocytes, and to modulate monocyte-induced killing of Staphylococcus aureus in vitro. Prostaglandin E1 and cholera toxin activated monocyte adenylate cyclase and inhibited monocyte killing of S. aureus. An adenylate cyclase inhibitor, RMI 12330A, reversed the prostaglandin E1-mediated inhibition of bacterial killing, thus implicating cAMP as the intracellular mediator of this inhibition. In contrast, monocyte cGMP levels were increased 5- and 17-fold by 5-hydroxytryptamine and N-methyl-N' -nitro-N-nitrosoguanidine, respectively, but neither agent was effective in modulating monocyte bactericidal activity. Thus, modulation of bactericidal activity in human monocytes did not conform to the yin/yang theory of opposing actions by cAMP and cGMP, for although monocyte-mediated killing of S. aureus was inhibited by cAMP agonists, it was not enhanced by cGMP agonists. PMID:44704

  2. Fast events in protein folding

    SciTech Connect

    Woodruff, W.; Callender, R.; Causgrove, T.; Dyer, R.; Williams, S.

    1996-04-01

    The primary objective of this work was to develop a molecular understanding of how proteins achieve their native three-dimensional (folded) structures. This requires the identification and characterization of intermediates in the protein folding process on all relevant timescales, from picoseconds to seconds. The short timescale events in protein folding have been entirely unknown. Prior to this work, state-of-the-art experimental approaches were limited to milliseconds or longer, when much of the folding process is already over. The gap between theory and experiment is enormous: current theoretical and computational methods cannot realistically model folding processes with lifetimes longer than one nanosecond. This unique approach to employ laser pump-probe techniques that combine novel methods of laser flash photolysis with time-resolved vibrational spectroscopic probes of protein transients. In this scheme, a short (picosecond to nanosecond) laser photolysis pulse was used to produce an instantaneous pH or temperature jump, thereby initiating a protein folding or unfolding reaction. Structure-specific, time-resolved vibrational probes were then used to identify and characterize protein folding intermediates.

  3. 21 CFR 176.230 - 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione. 176.230 Section 176.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only...

  4. 21 CFR 176.230 - 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione. 176.230 Section 176.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only...

  5. 21 CFR 176.230 - 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione. 176.230 Section 176.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only...

  6. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  7. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  8. Rearrangement of dypnones to 1,3,5-triarylbenzenes.

    PubMed

    Deng, Kai; Huai, Qi-Yong; Shen, Zhi-Lun; Li, Hui-Jing; Liu, Chen; Wu, Yan-Chao

    2015-03-20

    Rearrangement of dypnones to 1,3,5-triarylbenzenes is described. The reaction is proposed to involve an aldol-type self-condensation of dypnones, followed by an intramolecular [2 + 2] cycloaddition and a retro-[2 + 2] cycloaddition. The reaction goes smoothly under obviously milder conditions in comparison to the cyclotrimerization of acetophenones to 1,3,5-triarylbenzenes (10 mol % of TsOH, 80 °C versus 130-148 °C). This unexpected rearrangement would provide new possible considerations in dypnone-involved organic synthesis. PMID:25740008

  9. Absorption, distribution, and biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine in B6C3F1 mice (Mus musculus).

    PubMed

    Pan, Xiaoping; Ochoa, Kelly M; Francisco, Michael J San; Cox, Stephen B; Dixon, Kenneth; Anderson, Todd A; Cobb, George P

    2013-06-01

    Absorption, distribution, and biotransformation are 3 critical aspects affecting toxicant action in animals. In the present study, B6C3F1 mice (Mus musculus) were exposed for 28 d to contaminated feed that contained 1 of 5 different hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) concentrations: 0 mg/kg, 0.5 mg/kg, 5 mg/kg, 50 mg/kg, and 500 mg/kg. The authors quantified RDX and its reductive transformation products hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in the stomach, intestine, plasma, liver, and brain of these mice. Average RDX concentrations followed a dose-dependent pattern for all matrices tested. No controls had concentrations above limits of detection. Average RDX concentrations in tissues of exposed mice ranged from 11.1 ng/mL to 182 ng/mL, 25.6 ng/g to 3319 ng/g, 123 ng/g to 233 ng/g, 144 ng/g to 35 900 ng/g, and 51.1 ng/g to 2697 ng/g in the plasma, brain, liver, stomach, and intestine, respectively. A considerable amount of RDX was present in the brain, especially in the highest-exposure group. This is consistent with the widely observed central nervous system effects caused by γ-aminobutyric acid inhibition associated with RDX exposure. N-nitroso metabolites of RDX were also present in tested tissues in a dose-dependent pattern. Average MNX concentrations in the stomachs of mice exposed to RDX ranged from nondetectable in control exposures to 490 ng/g in the highest-exposure groups. In the brain, MNX accumulated at a maximum average concentration of 165.1 ng/g, suggesting the potential formation of MNX from RDX within the brain. At higher exposures, DNX and TNX were present in the stomach, plasma, and brain of mice. The presence of RDX metabolites at notable amounts in different tissues suggests that RDX can transform into its N-nitroso metabolites in vivo by an undefined mechanism. PMID:23423972

  10. Practical auxiliary basis implementation of Rung 3.5 functionals.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2014-07-21

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r(->), r(->)'). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r(->), r(->)') onto a semilocal model density matrix γ(SL)(ρ(r(->)), ∇ρ(r(->)), r(->) - r(->)'). γSL depends on the electron density ρ(r(->) at reference point r(->), and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expanding the r(->) - r(->)' dependence of γSL in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γSL yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms. PMID:25053297

  11. 9 CFR 3.5 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.5 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities for dogs and cats must be sufficiently heated and cooled when necessary to protect the dogs and cats from temperature...

  12. 9 CFR 3.5 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.5 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities for dogs and cats must be sufficiently heated and cooled when necessary to protect the dogs and cats from temperature...

  13. 9 CFR 3.5 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.5 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities for dogs and cats must be sufficiently heated and cooled when necessary to protect the dogs and cats from temperature...

  14. 9 CFR 3.5 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.5 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities for dogs and cats must be sufficiently heated and cooled when necessary to protect the dogs and cats from temperature...

  15. 9 CFR 3.5 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.5 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities for dogs and cats must be sufficiently heated and cooled when necessary to protect the dogs and cats from temperature...

  16. Science in Action Series: AGATE ( pt 3/5 )

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This show was made for the Office of Education at NASA Langley. The objective is to make math and science appealing to a middle school audience. This clip (pt 3/5 ) tells us more about the plane. How much will it cost to run, and how will we learn to fly?

  17. 21 CFR 556.220 - 3,5-Dinitrobenzamide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... temperature. The 3,5-DNBA therefrom is treated a second time with activated carbon and then recrystallized three more times from specially denatured alcohol 3A. The third crystallization is washed with diethyl... be run five different times. Plot equivalent concentration in tissue versus mean absorbance at...

  18. Differentiating Instruction with Menus Grades 3-5: Social Studies

    ERIC Educational Resources Information Center

    Westphal, Laurie E.

    2007-01-01

    "Differentiating Instruction With Menus Grades 3-5" offers teachers everything they need to create a student-centered learning environment based on choice. Addressing the four main subject areas (language arts, math, science, and social studies) and the major concepts taught within these areas, these books provide a number of different types of…

  19. Differentiating Instruction with Menus Grades 3-5: Language Arts

    ERIC Educational Resources Information Center

    Westphal, Laurie E.

    2007-01-01

    "Differentiating Instruction With Menus Grades 3-5" offers teachers everything they need to create a student-centered learning environment based on choice. Addressing the four main subject areas (language arts, math, science, and social studies) and the major concepts taught within these areas, these books provide a number of different types of…

  20. Differentiating Instruction with Menus Grades 3-5: Science

    ERIC Educational Resources Information Center

    Westphal, Laurie E.

    2007-01-01

    "Differentiating Instruction With Menus Grades 3-5" offers teachers everything they need to create a student-centered learning environment based on choice. Addressing the four main subject areas (language arts, math, science, and social studies) and the major concepts taught within these areas, these books provide a number of different types of…

  1. Differentiating Instruction with Menus Grades 3-5: Math

    ERIC Educational Resources Information Center

    Westphal, Laurie E.

    2007-01-01

    "Differentiating Instruction With Menus Grades 3-5" offers teachers everything they need to create a student-centered learning environment based on choice. Addressing the four main subject areas (language arts, math, science, and social studies) and the major concepts taught within these areas, these books provide a number of different types of…

  2. Lessons for Algebraic Thinking. Grades 3-5.

    ERIC Educational Resources Information Center

    Wickett, Maryann; Kharas, Katharine; Burns, Marilyn

    Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help 3-5 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…

  3. 39 CFR 3.5 - Delegation of authority by Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE BOARD OF GOVERNORS (ARTICLE III) § 3.5 Delegation of authority by Board. As authorized by 39 U.S.C. 402, these bylaws... that this delegation of authority does not conflict with powers reserved to the Governors or to...

  4. Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine and Its Mononitroso Derivative Hexahydro-1-Nitroso-3,5-Dinitro-1,3,5-Triazine by Klebsiella pneumoniae Strain SCZ-1 Isolated from an Anaerobic Sludge

    PubMed Central

    Zhao, Jian-Shen; Halasz, Annamaria; Paquet, Louise; Beaulieu, Chantale; Hawari, Jalal

    2002-01-01

    In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degraded RDX to formaldehyde (HCHO), methanol (CH3OH) (12% of total C), carbon dioxide (CO2) (72% of total C), and nitrous oxide (N2O) (60% of total N) through intermediary formation of methylenedinitramine (O2NNHCH2NHNO2). Likewise, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was degraded to HCHO, CH3OH, and N2O (16.5%) with a removal rate (0.39 μmol · h−1 · g [dry weight] of cells−1) similar to that of RDX (0.41 μmol · h−1 · g [dry weight] of cells−1) (biomass, 0.91 g [dry weight] of cells · liter−1). These findings suggested the possible involvement of a common initial reaction, possibly denitration, followed by ring cleavage and decomposition in water. The trace amounts of MNX detected during RDX degradation and the trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine detected during MNX degradation suggested that another minor degradation pathway was also present that reduced —NO2 groups to the corresponding —NO groups. PMID:12406722

  5. Chemiluminescence detection of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine explosives.

    PubMed

    Donaldson, David N; Barnett, Neil W; Agg, Kent M; Graham, Duncan; Lenehan, Claire E; Prior, Chad; Lim, Kieran F; Francis, Paul S

    2012-01-15

    A simple controlled chemical reduction of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine compounds with zinc amalgam generates species that elicit intense chemiluminescence with tris(2,2'-bipyridine)ruthenium(III), which extends this widely utilised chemiluminescence reagent to a new class of analyte and presents a sound chemical basis for a screening test for nitramine high explosives. Examination of the chemiluminescence profiles under stopped-flow conditions revealed contributions from multiple transient species formed in the initial reduction step. PMID:22265569

  6. Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core.

    PubMed

    Xia, Lianpeng; Xue, Yuyuan; Xiong, Kang; Cai, Chaosheng; Peng, Zuosheng; Wu, Ying; Li, Yuan; Miao, Jingsheng; Chen, Dongcheng; Hu, Zhanhao; Wang, Jianbin; Peng, Xiaobin; Mo, Yueqi; Hou, Lintao

    2015-12-01

    We present an investigation of deep-blue fluorescent polymer light-emitting diodes (PLEDs) with a novel functional 1,3,5-triazine core material (HQTZ) sandwiched between poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) layer and poly(vinylcarbazole) layer as a hole injection layer (HIL) without interface intermixing. Ultraviolet photoemission spectroscopy and Kelvin probe measurements were carried out to determine the change of anode work function influenced by the HQTZ modifier. The thin HQTZ layer can efficiently maximize the charge injection from anode to blue emitter and simultaneously enhance the hole mobility of HILs. The deep-blue device performance is remarkably improved with the maximum luminous efficiency of 4.50 cd/A enhanced by 80% and the maximum quantum efficiency of 4.93%, which is 1.8-fold higher than that of the conventional device without HQTZ layer, including a lower turn-on voltage of 3.7 V and comparable Commission Internationale de L'Eclairage coordinates of (0.16, 0.09). It is the highest efficiency ever reported to date for solution-processed deep-blue PLEDs based on the device structure of ITO/HILs/poly(9,9-dialkoxyphenyl-2,7-silafluorene)/CsF/AL. The results indicate that HQTZ based on 1,3,5-triazine core can be a promising candidate of interfacial materials for deep-blue fluorescent PLEDs. PMID:26422296

  7. A novel imaging method revealed phosphatidylinositol 3,5-bisphosphate-rich domains in the endosome/lysosome membrane

    PubMed Central

    Takatori, Sho; Fujimoto, Toyoshi

    2016-01-01

    ABSTRACT We developed a new method to observe distribution of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] using electron microscopy. In freeze-fracture replicas of quick-frozen samples, PtdIns(3,5)P2 was labeled specifically using recombinant ATG18 tagged with glutathione S-transferase and 4×FLAG, which was mixed with an excess of recombinant PX domain to suppress binding of ATG18 to phosphatidylinositol 3-phosphate. Using this method, PtdIns(3,5)P2 was found to be enriched in limited domains in the yeast vacuole and mammalian endosomes. In the yeast vacuole exposed to hyperosmolar stress, PtdIns(3,5)P2 was distributed at a significantly higher density in the intramembrane particle (IMP)-deficient liquid-ordered domains than in the surrounding IMP-rich domains. In mammalian cells, PtdIns(3,5)P2 was observed in endosomes of tubulo-vesicular morphology labeled for RAB5 or RAB7. Notably, distribution density of PtdIns(3,5)P2 in the endosome was significantly higher in the vesicular portion than in the tubular portion. The nano-scale distribution of PtdIns(3,5)P2 revealed in the present study is important to understand its functional roles in the vacuole and endosomes. PMID:27195064

  8. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  9. Hearings on the Reauthorization of the Higher Education Act. Hearings before the Subcommittee on Postsecondary Education of the Committee on Education and Labor. House of Representatives, Ninety-Eighth Congress, Second Session on H.R. 5240. (Washington, DC, March 27-29, April 3-5, and April 10-12; St. Louis, Missouri, March 30; Flushing, New York, April 2; Winona, Minnesota, April 6, and Eau Claire, Wisconsin, April 7, 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    Hearings on a bill to reauthorize the Higher Education Act of 1965 are presented, with attention to policy formulations of the Higher Education Act Amendments of 1984 and the Administration's fiscal year (FY) 1985 budget and legislative proposals. Consideration is given to the appropriate federal role in higher education, the proper focus of…

  10. Synthetic routes to 3(5)-phosphonylated pyrazoles

    NASA Astrophysics Data System (ADS)

    Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P.

    2016-07-01

    This review comprehensively covers the currently available synthetic routes to 3(5)-phosphonylated pyrazoles. There are demonstrated significant advances in this field over the last 10–15 years caused by the use of the Bestmann–Ohira reagent [as well as (diazomethyl)phosphonates and phosphonylated hydrazonoyl halides] in reactions with diverse dipolarophiles. 1,3-Dipolar cycloaddition of diazo compounds to α,β-unsaturated phosphonates as well as intramolecular heterocyclization of (1-diazoallyl)phosphonates and (3--diazo-1-propenyl)phosphonates are discussed. Synthetic potential of cyclocondensation of organophosphorus 1,3-dielectrophilic compounds with hydrazines is shown. Ways to introduce a phosphonate group into the pyrazole ring are considered. Examples of chemical transformations of 3(5)-phosphonylated pyrazoles are reported. The bibliography includes 88 references.

  11. Subchronic inhalation toxicity of 1,3,5-trichlorobenzene

    SciTech Connect

    Sasmore, D.P.; Mitoma, C.; Tyson, C.A.; Johnson, J.S.

    1982-10-11

    Male and female rats were exposed to 0, 10, 100 or 1000 ppM of 1,3,5-trichlorobenzene vapors for 6 hours daily, 5 days a week, for up to 13 weeks. After 4 and 13 weeks of exposure, animals were sacrificed and examined for changes in blood, clinical chemistry, internal organs, and tissues resulting from the 1,3,5-trichlorobenzene treatment. No treatment-related effects on the blood and clinical chemistry were evident. The only effects that were considered treatment-related were a squamous metaplasia and hyperplasia in the respiratory epithelium in the nasal passages of high-dose rats and the increased incidence of dried red material on the faces of these rats during exposures compared with other groups.

  12. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Galbičková, Blanka; Ševčíková, Janka; Soldán, Maroš

    2014-12-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  13. Dendrimers Based on [1,3,5]-Triazines

    PubMed Central

    STEFFENSEN, MACKAY B.; HOLLINK, EMILY; KUSCHEL, FRANK; BAUER, MONIKA; SIMANEK, ERIC E.

    2009-01-01

    A comprehensive and chronological account of dendrimers based on [1,3,5]-triazines is provided. Synthetic strategies to install the triazine through cycloaddition, cyclotrimerization, and nucleophilic aromatic substitution of cyanuric chloride are discussed. Motivations and applications of these architectures are surveyed, including the preparation of supra-molecular assemblies in the solution and solid states and their use in medicines, advanced materials, and separations when anchored to solid supports. PMID:19953202

  14. Delayed myelosuppression with acute exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and environmental degradation product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) in rats.

    PubMed

    Jaligama, Sridhar; Kale, Vijay M; Wilbanks, Mitchell S; Perkins, Edward J; Meyer, Sharon A

    2013-02-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ~50% loss of granulocytes (NOAELs=47 mg/kg) in female Sprague-Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs=24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte-erythrocyte-monocyte-megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1(+)) or erythroid (CD71(+)) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes. PMID:23219714

  15. Practical auxiliary basis implementation of Rung 3.5 functionals

    SciTech Connect

    Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.

    2014-07-21

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expanding the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.

  16. Cusp-related Pc3-5 Wave Activity

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Engebretson, M. J.; Kozlovsky, A.; Belakhovsky, V.; Lessard, M.; Yeoman, T. K.

    2009-12-01

    Pc3-5 pulsations were found to be an ubiquitous element of dayside ULF wave activity at the cusp region. We examine observations of Pc3-5 wave activity by search coil and flux-gate magnetometers at three locations on Svalbard, covering geomagnetic latitudes 74o-76o. To identify the ionospheric projections of the cusp, we use the width of the return signal from the SuperDARN Finland radar covering the Svalbard archipelago. The ULF meridional spatial structure is examined using the amplitude-phase gradient technique. This analysis shows no specific mode conversion pattern near the cusp region. The amplitude gradient mainly has the same direction at all frequencies, and only during periods when the cusp is shifted to very high latitudes, the gradient may change sign. The phase delay is chaotic and does not show any consistent pattern. This behavior corresponds to the occurrence of a localized peak in the latitudinal distribution of Pc3-5 power, but not under the cusp proper as was previously thought, but about several degrees southward from the equatorward cusp boundary. We suppose that compressional Pc3 fluctuations leaking from the magnetosheath into the entry layer of the magnetosphere can modulate the precipitating electron fluxes, which produce the ground response.

  17. Rapid folding of DNA into nanoscale shapes at constant temperature.

    PubMed

    Sobczak, Jean-Philippe J; Martin, Thomas G; Gerling, Thomas; Dietz, Hendrik

    2012-12-14

    We demonstrate that, at constant temperature, hundreds of DNA strands can cooperatively fold a long template DNA strand within minutes into complex nanoscale objects. Folding occurred out of equilibrium along nucleation-driven pathways at temperatures that could be influenced by the choice of sequences, strand lengths, and chain topology. Unfolding occurred in apparent equilibrium at higher temperatures than those for folding. Folding at optimized constant temperatures enabled the rapid production of three-dimensional DNA objects with yields that approached 100%. The results point to similarities with protein folding in spite of chemical and structural differences. The possibility for rapid and high-yield assembly will enable DNA nanotechnology for practical applications. PMID:23239734

  18. The structure of rat liver vault at 3.5 angstrom resolution.

    PubMed

    Tanaka, Hideaki; Kato, Koji; Yamashita, Eiki; Sumizawa, Tomoyuki; Zhou, Yong; Yao, Min; Iwasaki, Kenji; Yoshimura, Masato; Tsukihara, Tomitake

    2009-01-16

    Vaults are among the largest cytoplasmic ribonucleoprotein particles and are found in numerous eukaryotic species. Roles in multidrug resistance and innate immunity have been suggested, but the cellular function remains unclear. We have determined the x-ray structure of rat liver vault at 3.5 angstrom resolution and show that the cage structure consists of a dimer of half-vaults, with each half-vault comprising 39 identical major vault protein (MVP) chains. Each MVP monomer folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain, and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing the particle. The shoulder domain is structurally similar to a core domain of stomatin, a lipid-raft component in erythrocytes and epithelial cells. PMID:19150846

  19. Polymer principles and protein folding.

    PubMed Central

    Dill, K. A.

    1999-01-01

    This paper surveys the emerging role of statistical mechanics and polymer theory in protein folding. In the polymer perspective, the folding code is more a solvation code than a code of local phipsi propensities. The polymer perspective resolves two classic puzzles: (1) the Blind Watchmaker's Paradox that biological proteins could not have originated from random sequences, and (2) Levinthal's Paradox that the folded state of a protein cannot be found by random search. Both paradoxes are traditionally framed in terms of random unguided searches through vast spaces, and vastness is equated with impossibility. But both processes are partly guided. The searches are more akin to balls rolling down funnels than balls rolling aimlessly on flat surfaces. In both cases, the vastness of the search is largely irrelevant to the search time and success. These ideas are captured by energy and fitness landscapes. Energy landscapes give a language for bridging between microscopics and macroscopics, for relating folding kinetics to equilibrium fluctuations, and for developing new and faster computational search strategies. PMID:10386867

  20. Osmolyte solutions and protein folding

    PubMed Central

    Hu, Char Y; Roesgen, Joerg

    2009-01-01

    In this brief review we discuss the evolution of recent thought regarding the role and mechanism of osmolytes with respect to protein stability. Osmolytes are naturally occurring intracellular compounds that change the protein folding landscape. Contributions from experiments are considered in the context of current theory and simulation results. PMID:19960095

  1. Predicting RNA pseudoknot folding thermodynamics.

    PubMed

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  2. Is Protein Folding Sub-Diffusive?

    PubMed Central

    Krivov, Sergei V.

    2010-01-01

    Protein folding dynamics is often described as diffusion on a free energy surface considered as a function of one or few reaction coordinates. However, a growing number of experiments and models show that, when projected onto a reaction coordinate, protein dynamics is sub-diffusive. This raises the question as to whether the conventionally used diffusive description of the dynamics is adequate. Here, we numerically construct the optimum reaction coordinate for a long equilibrium folding trajectory of a Go model of a -repressor protein. The trajectory projected onto this coordinate exhibits diffusive dynamics, while the dynamics of the same trajectory projected onto a sub-optimal reaction coordinate is sub-diffusive. We show that the higher the (cut-based) free energy profile for the putative reaction coordinate, the more diffusive the dynamics become when projected on this coordinate. The results suggest that whether the projected dynamics is diffusive or sub-diffusive depends on the chosen reaction coordinate. Protein folding can be described as diffusion on the free energy surface as function of the optimum reaction coordinate. And conversely, the conventional reaction coordinates, even though they might be based on physical intuition, are often sub-optimal and, hence, show sub-diffusive dynamics. PMID:20862361

  3. Homogeneous Crystal Nucleation: To Fold or Not to Fold?

    NASA Astrophysics Data System (ADS)

    Crist, Buckley

    2007-03-01

    Recent simulations and related theories have addressed interesting aspects of homogeneous nucleation of polymer crystals in very dilute solutions; embryos and very small crystals are composed of folded chains. At the same time there has been renewed activity with experimental studies of homogeneous nucleation in molten polymers, either with dispersed droplets or with microphase-separated block copolymers. Compared to dilute solutions, melts offer enhanced possibilities for nucleation by fringed micelle structures with stems from different chains. Basal or ``end'' surface energy is estimated for unfolded and folded chain nuclei and employed with classical nucleation theory to distinguish between nucleation rates in the two cases. The effect of chain length on the nucleation barrier offers a way to test model predictions.

  4. Lateral Transfer of Genes for Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Degradation▿ †

    PubMed Central

    Andeer, Peter F.; Stahl, David A.; Bruce, Neil C.; Strand, Stuart E.

    2009-01-01

    Recent studies demonstrated that degradation of the military explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by species of Rhodococcus, Gordonia, and Williamsia is mediated by a novel cytochrome P450 with a fused flavodoxin reductase domain (XplA) in conjunction with a flavodoxin reductase (XplB). Pulse field gel analysis was used to localize xplA to extrachromosomal elements in a Rhodococcus sp. and distantly related Microbacterium sp. strain MA1. Comparison of Rhodococcus rhodochrous 11Y and Microbacterium plasmid sequences in the vicinity of xplB and xplA showed near identity (6,710 of 6,721 bp). Sequencing of the associated 52.2-kb region of the Microbacterium plasmid pMA1 revealed flanking insertion sequence elements and additional genes implicated in RDX uptake and degradation. PMID:19270122

  5. Delayed myelosuppression with acute exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and environmental degradation product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) in rats

    SciTech Connect

    Jaligama, Sridhar; Kale, Vijay M.; Wilbanks, Mitchell S.; Perkins, Edward J.; Meyer, Sharon A.

    2013-02-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ∼ 50% loss of granulocytes (NOAELs = 47 mg/kg) in female Sprague–Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs = 24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte–erythrocyte–monocyte–megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1{sup +}) or erythroid (CD71{sup +}) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes. Highlights: ► Acute oral exposure to munitions RDX causes myelosuppression. ► Environmental degradation product MNX is comparable in effect. ► RDX and MNX are cytotoxic to both myeloid and erythroid

  6. Sequential Injection/Electrochemical Immunoassay for Quantifying the Pesticide Metabolite 3, 5, 6-Trichloro-2-Pyridinol

    SciTech Connect

    Liu, Guodong; Riechers, Shawn L.; Timchalk, Chuck; Lin, Yuehe

    2005-12-04

    An automated and sensitive sequential injection electrochemical immunoassay was developed to monitor a potential insecticide biomarker, 3, 5, 6-trichloro-2-pyridinol. The current method involved a sequential injection analysis (SIA) system equipped with a thin-layer electrochemical flow cell and permanent magnet, which was used to fix 3,5,6-trichloro-2-pyridinol (TCP) antibody coated magnetic beads (TCP-Ab-MBs) in the reaction zone. After competitive immunoreactions among TCP-Ab-MBs, TCP analyte, and horseradish peroxidase (HRP) labeled TCP, a 3, 3?, 5, 5?-tetramethylbenzidine dihydrochloride and hydrogen peroxide (TMB-H2O2) substrate solution was injected to produce an electroactive enzymatic product. The activity of HRP tracers was monitored by a square wave voltammetric scanning electroactive enzymatic product in the thin-layer flow cell. The voltammetric characteristics of the substrate and the enzymatic product were investigated under batch conditions, and the parameters of the immunoassay were optimized in the SIA system. Under the optimal conditions, the system was used to measure as low as 6 ng L-1 (ppt) TCP, which is around 50-fold lower than the value indicated by the manufacturer of the TCP RaPID Assay? kit (0.25 ug/L, colorimetric detection). The performance of the developed immunoassay system was successfully evaluated on tap water and river water samples spiked with TCP. This technique could be readily used for detecting other environmental contaminants by developing specific antibodies against contaminants and is expected to open new opportunities for environmental and biological monitoring.

  7. Plastic folding of buckling structures.

    PubMed

    Colin, Jérôme; Coupeau, Christophe; Grilhé, Jean

    2007-07-27

    Atomic force microscopy observations of the free surface of gold thin films deposited on silicon substrates have evidenced the buckling of the films and the formation of blister patterns undergoing plastic folding. The classical elastic buckling and plastic deformation of the films are analyzed in the framework of the Föppl-Von Kármán theory of thin plates introducing the notion of low-angle tilt boundaries and dislocation distributions to describe this folding effect. It is demonstrated that, in agreement with elementary plasticity of bent crystals, the presence of such tilt-boundaries results in the formation of buckling patterns of lower energy than "classical" elastic blisters. PMID:17678376

  8. Quantitative Morphology of Epithelial Folds.

    PubMed

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  9. Folded supersymmetry with a twist

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; Pinner, David

    2016-03-01

    Folded supersymmetry ( f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. These models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.

  10. Folding and assembly of proteorhodopsin.

    PubMed

    Klyszejko, Adriana L; Shastri, Sarika; Mari, Stefania A; Grubmüller, Helmut; Muller, Daniel J; Glaubitz, Clemens

    2008-02-01

    Proteorhodopsins (PRs), the recently discovered light-driven proton pumps, play a major role in supplying energy for microbial organisms of oceans. In contrast to PR, rhodopsins found in Archaea and Eukarya are structurally well characterized. Using single-molecule microscopy and spectroscopy, we observed the oligomeric assembly of native PR molecules and detected their folding in the membrane. PR showed unfolding patterns identical with those of bacteriorhodopsin and halorhodopsin, indicating that PR folds similarly to archaeal rhodopsins. Surprisingly, PR predominantly assembles into hexameric oligomers, with a smaller fraction assembling into pentamers. Within these oligomers, PR arranged into radial assemblies. We suggest that this structural assembly of PR may have functional implications. PMID:18155728

  11. 3.5 D temperature model of a coal stockpile

    SciTech Connect

    Ozdeniz, A.H.; Corumluoglu, O.; Kalayci, I.; Sensogut, C.

    2008-07-01

    Overproduced coal mines that are not sold should remain in coal stock sites. If these coal stockpiles remain at the stock yards over a certain period of time, a spontaneous combustion can be started. Coal stocks under combustion threat can cost too much economically to coal companies. Therefore, it is important to take some precautions for saving the stockpiles from the spontaneous combustion. In this research, a coal stock which was 5 m wide, 10 m long, and 3 m in height, with a weight of 120 tons, was monitored to observe internal temperature changes with respect to time under normal atmospheric conditions. Internal temperature measurements were obtained at 20 points distributed all over the two layers in the stockpile. Temperatures measured by a specially designed mechanism were then stored into a computer every 3 h for a period of 3 months. Afterward, this dataset was used to delineate 3.5 D temporal temperature distribution models for these two levels, and they were used to analyze and interpret what was seen in these models to derive some conclusions. It was openly seen, followed, and analyzed that internal temperature changes in the stockpile went up to 31{sup o}C by 3.5 D models created for this research.

  12. Evolutionary Strategies for Protein Folding

    NASA Astrophysics Data System (ADS)

    Murthy Gopal, Srinivasa; Wenzel, Wolfgang

    2006-03-01

    The free energy approach for predicting the protein tertiary structure describes the native state of a protein as the global minimum of an appropriate free-energy forcefield. The low-energy region of the free-energy landscape of a protein is extremely rugged. Efficient optimization methods must therefore speed up the search for the global optimum by avoiding high energy transition states, adapt large scale moves or accept unphysical intermediates. Here we investigate an evolutionary strategies(ES) for optimizing a protein conformation in our all-atom free-energy force field([1],[2]). A set of random conformations is evolved using an ES to get a diverse population containing low energy structure. The ES is shown to balance energy improvement and yet maintain diversity in structures. The ES is implemented as a master-client model for distributed computing. Starting from random structures and by using this optimization technique, we were able to fold a 20 amino-acid helical protein and 16 amino-acid beta hairpin[3]. We compare ES to basin hopping method. [1]T. Herges and W. Wenzel,Biophys.J. 87,3100(2004) [2] A. Verma and W. Wenzel Stabilization and folding of beta-sheet and alpha-helical proteins in an all-atom free energy model(submitted)(2005) [3] S. M. Gopal and W. Wenzel Evolutionary Strategies for Protein Folding (in preparation)

  13. Expression of Porcine Fusion Protein IRF7/3(5D) Efficiently Controls Foot-and-Mouth Disease Virus Replication

    PubMed Central

    Ramírez-Carvajal, Lisbeth; Díaz-San Segundo, Fayna; Hickman, Danielle; Long, Charles R.; Zhu, James; Rodríguez, Luis L.

    2014-01-01

    ABSTRACT Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified the functional properties of a porcine fusion protein, poIRF7/3(5D), as a biotherapeutic and enhancer of IFN activity against FMD virus (FMDV). We showed that poIRF7/3(5D) is a potent inducer of type I IFNs, including alpha IFN (IFN-α), IFN-β, and IFN-ω but not type III IFN (interleukin-28B), without inducing cytotoxicity. Expression of poIRF7/3(5D) significantly and steadily reduced FMDV titers by up to 6 log10 units in swine and bovine cell lines. Treatment with an IFN receptor inhibitor (B18R) combined with an anti-IFN-α antibody neutralized the antiviral activity in the supernatants of cells transduced with an Ad5 vector expressing poIRF7/3(5D) [Ad5-poIRF7/3(5D)]. However, several transcripts with known antiviral function, including type I IFNs, were still highly upregulated (range of increase, 8-fold to over 500-fold) by poIRF7/3(5D) in the presence of B18R. Furthermore, the sera of mice treated with Ad5-poIRF7/3(5D) showed antiviral activity that was associated with the induction of high levels of IFN-α and resulted in complete protection against FMDV challenge at 6, 24, or 48 h posttreatment. This study highlights for the first time the antiviral potential of Ad5-poIRF7/3(5D) in vitro and in vivo against FMDV. IMPORTANCE FMD remains one of the most devastating diseases that affect livestock worldwide. Effective vaccine formulations are available but are serotype specific and require approximately 7 days before they are able to elicit protective immunity. We have shown that vector-delivered IFN is an option to protect animals against many FMDV serotypes as soon as 24 h

  14. Ventricular-Fold Dynamics in Human Phonation

    ERIC Educational Resources Information Center

    Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus

    2014-01-01

    Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…

  15. Protein folding in a force clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, P.

    2006-05-01

    Kinetics of folding of a protein held in a force clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed variations in the end-to-end distance reflect microscopic events during folding. However, the folding scenarios in and out of the force clamp are distinct.

  16. Magnetic hard disk overcoats in the 3-5 nm thickness range

    NASA Astrophysics Data System (ADS)

    Anoikin, E. V.; Yang, M. M.; Chao, J. L.; Russak, M. A.

    1999-04-01

    Protective properties of 3-5 nm thick carbon overcoat layers deposited on magnetic hard disks by ion beam deposition (IBD) and plasma-enhanced chemical vapor deposition (PECVD) were investigated. It is found that these overcoats are superior to the sputtered carbon films at thicknesses below 5 nm. Low-stiction performance of 3-nm-thick IBD films without any detectable wear was observed during 50 000 contact start-stop cycles at 55 °C and 10% relative humidity. Surface concentration of cobalt ions is reduced by as much as an order of magnitude as compared to the media with sputtered overcoats. Polarization resistivity values for IBD and PECVD overcoats are by an order of magnitude higher. The results show that thickness of protective carbon overcoats on magnetic hard disks can be reduced to 3-5 nm without compromising media reliability requirements. This reduction is critical for the continuing growth of storage density.

  17. Quantifying the similarities within fold space.

    PubMed

    Harrison, Andrew; Pearl, Frances; Mott, Richard; Thornton, Janet; Orengo, Christine

    2002-11-01

    We have used GRATH, a graph-based structure comparison algorithm, to map the similarities between the different folds observed in the CATH domain structure database. Statistical analysis of the distributions of the fold similarities has allowed us to assess the significance for any similarity. Therefore we have examined whether it is best to represent folds as discrete entities or whether, in fact, a more accurate model would be a continuum wherein folds overlap via common motifs. To do this we have introduced a new statistical measure of fold similarity, termed gregariousness. For a particular fold, gregariousness measures how many other folds have a significant structural overlap with that fold, typically comprising 40% or more of the larger structure. Gregarious folds often contain commonly occurring super-secondary structural motifs, such as beta-meanders, greek keys, alpha-beta plait motifs or alpha-hairpins, which are matching similar motifs in other folds. Apart from one example, all the most gregarious folds matching 20% or more of the other folds in the database, are alpha-beta proteins. They also occur in highly populated architectural regions of fold space, adopting sandwich-like arrangements containing two or more layers of alpha-helices and beta-strands.Domains that exhibit a low gregariousness, are those that have very distinctive folds, with few common motifs or motifs that are packed in unusual arrangements. Most of the superhelices exhibit low gregariousness despite containing some commonly occurring super-secondary structural motifs. In these folds, these common motifs are combined in an unusual way and represent a small proportion of the fold (<10%). Our results suggest that fold space may be considered as continuous for some architectural arrangements (e.g. alpha-beta sandwiches), in that super-secondary motifs can be used to link neighbouring fold groups. However, in other regions of fold space much more discrete topologies are observed with

  18. Microbially Mediated Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5- Triazine by Extracellular Electron Shuttling Compounds

    PubMed Central

    Kwon, Man Jae; Finneran, Kevin T.

    2006-01-01

    The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments. PMID:16957213

  19. Alkaline hydrolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine: M06-2X investigation.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynska, Danuta; Okovytyy, Sergiy I; Leszczynski, Jerzy

    2015-09-01

    Alkaline hydrolysis mechanism of possible environmental contaminant RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Results obtained show that the initial deprotonation of RDX by hydroxide leads to nitrite elimination and formation of a denitrated cyclohexene intermediate. Further nucleophilic attack by hydroxide onto cyclic CN double bond results in ring opening. It was shown that the presence of hydroxide is crucial for this stage of the reaction. The dominant decomposition pathway leading to a ring-opened intermediate was found to be formation of 4-nitro-2,4-diazabutanal. Hydrolytic transformation of its byproduct (methylene nitramine) leads to end products such as formaldehyde and nitrous oxide. Computational results are in a good agreement with experimental data on hydrolysis of RDX, suggesting that 4-nitro-2,4-diazabutanal, nitrite, formaldehyde, and nitrous oxide are main products for early stages of RDX decomposition under alkaline conditions. PMID:25911044

  20. Folded MEMS approach to NMRG

    NASA Astrophysics Data System (ADS)

    Gundeti, Venu Madhav

    Atomic gyroscopes have a potential for good performance advantages and several attempts are being made to miniaturize them. This thesis describes the efforts made in implementing a Folded MEMS based NMRG. The micro implementations of all the essential components for NMRG (Nuclear Magnetic Resonance Gyroscope) are described in detail in regards to their design, fabrication, and characterization. A set of micro-scale Helmholtz coils are described and the homogeneity of the generated magnetic field is analyzed for different designs of heaters. The dielectric mirrors and metallic mirrors are compared in terms of reflectivity and polarization change up on reflection. A pyramid shaped folded backbone structure is designed, fabricated, and assembled along with all the required components. A novel double-folded structure 1/4th the size of original version is fabricated and assembled. Design and modeling details of a 5 layered shield with shielding factor > 106 and total volume of around 90 cc are also presented. A table top setup for characterization of atomic vapor cell is described in detail. A micro vapor cell based Rb magnetometer with a sensitivity of 108 pT/√Hz is demonstrated. The challenges due to DC heating are addressed and mitigated using an AC heater. Several experiments related to measuring the relaxation time of Xe are provided along with results. For Xe131, relaxation times of T1 = 23.78 sec, T2 = 18.06 sec and for Xe129, T1 = 21.65 sec and T2 = 20.45 sec are reported.

  1. All-or-none folding of a polymer in confinement

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    A flexible homopolymer chain with sufficiently short-range interactions undergoes a discontinuous transition from an expanded coil to a compact crystallite analogous to the all-or-none folding transition exhibited by fast-folding proteins. One anticipates that geometric confinement will reduce the entropy of the unfolded chain, thereby stabilizing the folded state and shifting the transition to higher temperature. In this work we study a flexible square-well N-mer chain (monomer diameter d) located between two hard walls forming a slit-like pore (width W) with the chain end-tethered to one wall. We carry out Monte simulations with Wang-Landau sampling to construct the single-chain density of states and use both microcanonical and canonical analyses to characterize phase transitions. When the slit width is similar to the size of the folded chain we observe a modest stabilization effect. Further reduction of the slit width geometrically prohibits the chain from folding into the free-chain ground state. However, a discontinuous all-or-none folding transition still occurs to a flattened crystallite that spans the pore. All-or-none folding persists even to the limit of a very narrow pore (W d) where the ground-state structure is a quasi-two-dimensional crystal. Funding: NSF DMR-1204747.

  2. Paradoxic vocal fold movement disorder.

    PubMed

    Matrka, Laura

    2014-02-01

    Paradoxical Vocal Fold Movement Disorder (PVFMD) is a cause of dyspnea that can mimic or occur alongside asthma or other pulmonary disease. Treatment with Laryngeal Control Therapy is very effective once the entity is properly diagnosed and contributing comorbidities are managed appropriately. In understanding the etiology of PVFMD, focus has broadened beyond psychiatric factors alone to include the spectrum of laryngeal irritants (laryngopharyngeal reflux, allergic and sinus disease, sicca, and possibly obstructive sleep apnea). The following is a discussion of the history, terminology, epidemiology, diagnosis, comorbid conditions, and treatment of this entity. PMID:24286687

  3. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  4. Hydrodynamic interactions in protein folding.

    PubMed

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-28

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state. PMID:19334888

  5. Hydrogen Bonds in Polymer Folding

    NASA Astrophysics Data System (ADS)

    Borg, Jesper; Jensen, Mogens H.; Sneppen, Kim; Tiana, Guido

    2001-02-01

    We studied the thermodynamics of a homopolymeric chain with both van der Waals and directed hydrogen bond interaction. The effect of hydrogen bonds is to reduce dramatically the entropy of low-lying states and to give rise to long-range order and to conformations displaying secondary structures. For compact polymers a transition is found between helix-rich states and low-entropy sheet-dominated states. The consequences of this transition for protein folding and, in particular, for the problem of prions are discussed.

  6. Chaperonin-mediated Protein Folding

    PubMed Central

    Horwich, Arthur L.

    2013-01-01

    We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments. PMID:23803606

  7. Improving protein fold recognition by random forest

    PubMed Central

    2014-01-01

    Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. PMID:25350499

  8. Structure based prediction of protein folding intermediates.

    PubMed

    Xie, D; Freire, E

    1994-09-01

    The complete unfolding of a protein involves the disruption of non-covalent intramolecular interactions within the protein and the subsequent hydration of the backbone and amino acid side-chains. The magnitude of the thermodynamic parameters associated with this process is known accurately for a growing number of globular proteins for which high-resolution structures are also available. The existence of this database of structural and thermodynamic information has facilitated the development of statistical procedures aimed at quantifying the relationships existing between protein structure and the thermodynamic parameters of folding/unfolding. Under some conditions proteins do not unfold completely, giving rise to states (commonly known as molten globules) in which the molecule retains some secondary structure and remains in a compact configuration after denaturation. This phenomenon is reflected in the thermodynamics of the process. Depending on the nature of the residual structure that exists after denaturation, the observed enthalpy, entropy and heat capacity changes will deviate in a particular and predictable way from the values expected for complete unfolding. For several proteins, these deviations have been shown to exhibit similar characteristics, suggesting that their equilibrium folding intermediates exhibit some common structural features. Employing empirically derived structure-energetic relationships, it is possible to identify in the native structure of the protein those regions with the higher probability of being structured in equilibrium partly folded states. In this work, a thermodynamic search algorithm aimed at identifying the structural determinants of the molten globule state has been applied to six globular proteins; alpha-lactalbumin, barnase, IIIGlc, interleukin-1 beta, phage T4 lysozyme and phage 434 repressor. Remarkably, the structural features of the predicted equilibrium intermediates coincide to a large extent with the known

  9. Learning Protein Folding Energy Functions

    PubMed Central

    Guan, Wei; Ozakin, Arkadas; Gray, Alexander; Borreguero, Jose; Pandit, Shashi; Jagielska, Anna; Wroblewska, Liliana; Skolnick, Jeffrey

    2014-01-01

    A critical open problem in ab initio protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function. PMID:25311546

  10. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees.

    PubMed

    Schoenmuth, Bernd; Mueller, Jakob O; Scharnhorst, Tanja; Schenke, Detlef; Büttner, Carmen; Pestemer, Wilfried

    2014-03-01

    For decades, the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) has been used for military and industrial applications. Residues of RDX pollute soils in large areas globally and the persistence and high soil mobility of these residues can lead to leaching into groundwater. Dendroremediation, i.e. the long-term use of trees to clean up polluted soils, is gaining acceptance as a green and sustainable strategy. Although the coniferous tree species Norway spruce and Scots pine cover large areas of military land in Central Europe, the potential of any coniferous tree for dendroremediation of RDX is still unknown. In this study, uptake experiments with a (14)C-labelled RDX solution (30 mg L(-1)) revealed that RDX was predominantly retained in the roots of 6-year-old coniferous trees. Only 23 % (pine) to 34 % (spruce) of RDX equivalents (RDXeq) taken up by the roots were translocated to aboveground tree compartments. This finding contrasts with the high aerial accumulation of RDXeq (up to 95 %) in the mass balances of all other plant species. Belowground retention of RDXeq is relatively stable in fine root fractions, since water leaching from tissue homogenates was less than 5 %. However, remobilisation from milled coarse roots and tree stubs reached up to 53 %. Leaching from homogenised aerial tree material was found to reach 64 % for needles, 58 % for stems and twigs and 40 % for spring sprouts. Leaching of RDX by precipitation increases the risk for undesired re-entry into the soil. However, it also opens the opportunity for microbial mineralisation in the litter layer or in the rhizosphere of coniferous forests and offers a chance for repeated uptake of RDX by the tree roots. PMID:24281674

  11. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)

    USGS Publications Warehouse

    Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Elastic energy of proteins and the stages of protein folding

    NASA Astrophysics Data System (ADS)

    Lei, J.; Huang, K.

    2009-12-01

    We propose a universal elastic energy for proteins, which depends only on the radius of gyration Rg and the residue number N. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg~Nν in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding.

  13. Six-fold coordinated carbon dioxide VI

    SciTech Connect

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2008-06-16

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  14. CLEFMA- An Anti-Proliferative Curcuminoid from Structure Activity Relationship Studies on 3,5-bis(benzylidene)-4-piperidones

    PubMed Central

    Lagisetty, Pallavi; Vilekar, Prachi; Sahoo, Kaustuv; Anant, Shrikant; Awasthi, Vibhudutta

    2010-01-01

    3,5-bis(benzylidene)-4-piperidones are being advanced as synthetic analogs of curcumin for anticancer and anti-inflammatory properties. We performed structure-activity relationship studies, by testing several synthesized 3,5-bis(benzylidene)-4-piperidones for anti-proliferative activity in lung adenocarcinoma H441 cells. Compared to the lead compound 1, or 3,5-bis(2-fluorobenzylidene)-4-piperidone, five compounds were found to be more potent (IC50 < 30 μM), and sixteen compounds possessed reduced cell-killing efficacy (IC50 > 50 μM). Based on the observations, we synthesized 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] (29 or CLEFMA) as a novel analog of 1. CLEFMA was evaluated for anti-proliferative activity in H441 cells, and was found to be several folds more potent than compound 1. We did not find apoptotic cell population in flow cytometry, and the absence of apoptosis was confirmed by the lack of caspase cleavage. The electron microscopy of H441cells indicated that CLEFMA and compound 1 induce autophagic cell death that was inhibited by specific autophagy inhibitor 3-methyladenine. The results suggest that the potent and novel curcuminoid, CLEFMA, offers an alternative mode of cell death in apoptosis-resistant cancers. PMID:20638855

  15. Kinematics and thermodynamics of a folding heteropolymer.

    PubMed Central

    Fukugita, M; Lancaster, D; Mitchard, M G

    1993-01-01

    In order to elucidate the folding dynamics of protein, we have carried out numerical simulations of a heteropolymer model of self-interacting random chains. We find that folding propensity depends strongly on sequence and that both folding and nonfolding sequences exist. Furthermore we show that folding is a two-step process: the transition from coil state to unique folded state takes place through a globule phase. In addition to the continuous coil-globule transition, there exists an abrupt transition that separates the unique folded state from the globule state and ensures the stability of the native state. PMID:8327518

  16. Magnetostructural transition in Gd5Sb0.5Ge3.5

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. S.; Mudryk, Ya.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.

    2009-11-01

    Magnetic and crystallographic properties of Gd5Sb0.5Ge3.5 were investigated using dc magnetization, ac magnetic susceptibility, and heat capacity of an oriented single crystal, combined with temperature and magnetic field dependent x-ray powder diffraction. The compound undergoes an unusual magnetostructural transition at 40 K and a nonmagnetic second-order transition around 63 K. The detailed crystallographic study of Gd5Sb0.5Ge3.5 shows that contrary to the R5(SixGe1-x)4 systems ( R is a rare-earth metal), the structural transition occurs without shear displacements of the [R5T4]∞2 slabs ( T=Si , Ge, and Sb), and a substantial volume change (-0.5%) does not lead to a change in crystallographic symmetry. The first-principles electronic structure calculations show higher interslab than intraslab ferromagnetic exchange interaction indicating that Sm5Ge4 type of structure supports a ferromagnetic ground state in Gd5Sb0.5Ge3.5 .

  17. Tuning the formations of metal-1,3,5-benzenetricarboxylate frameworks via the assistance of amino acids

    SciTech Connect

    Lei, Xiao-Ping; Lian, Ting-Ting; Chen, Shu-Mei; Zhang, Jian

    2015-03-15

    Seven new metal-1,3,5-benzenetricarboxylate coordination polymers have been synthesized by modification of auxiliary components during the assembly reactions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by XRD and TGA. Interestingly, they show fascinating topological structures. Compounds 1 and 2 possess the undulating layer structure with 3-connected hcb network and (3,6)-connected kgd network. Compound 3 possesses three-dimensional (3D) pillared-layer structure with 3-connected 2-fold interpenetrating srs net. Compound 4 also has the 3D 2-fold interpenetrating pillared-layer structure; however, it has (3,5)-connected hms topology because the Cd(II) center is 5-connected. Compound 5 possess 3D structure through hydrogen bonding interactions between ladder-like layers. Compounds 6 and 7 have the similar 3D frameworks with 4-connected umc net and (3,7)-connected (3.4.5)(3{sup 2}.4{sup 6}.5{sup 5}.6{sup 8}) topology, respectively. The photoluminescent properties of compounds 2–7 were also investigated. - Graphical abstract: Presented here are seven new metal-1,3,5-benzenetricarboxylate coordination polymers with diverse structures from 2D layers to 3D open frameworks. The synthesis and structural diversity of these compounds are determined by the additional amino acids as unusual buffering agents. - Highlights: • Structural diversity of metal-1,3,5-benzenetricarboxylate frameworks. • Tuning structural topologies of MOFs via the assistance of amino acids. • Amino acids as unusual buffering agents for the synthesis of MOFs.

  18. Optical spectroscopy of europium 3,5-dinitrosalicylates-Intense red luminophores.

    PubMed

    Zhuravlev, K; Tsaryuk, V; Kudryashova, V; Zolin, V; Yakovlev, Yu; Legendziewicz, J

    2009-06-01

    It was found, that alkali metal-europium dinitrosalicylates of composition M(3)Eu(3,5-NO(2)-Sal)(3).nH(2)O (M=Li, Na, K, Cs) are intense red luminophores with wide excitation band. Using methods of optical spectroscopy we studied the influence of nitrogroups and alkali metal counterions on Eu(3+) luminescence efficiency and on processes of excitation energy transfer to Eu(3+) ion in compounds synthesized. The Eu(3+) luminescence and Eu(3+) luminescence excitation spectra, as well as vibrational IR and Raman spectra were investigated. Details of the structure of compounds were discussed. The network of hydrogen bonds in lanthanide dinitrosalicylates is weakening at introduction of large alkali metal ions in compounds and at the increase of the temperature. As a consequence, the long-wavelength shift of the intraligand charge transfer (ILCT) band in Eu(3+) excitation spectra arises at inclusion of Cs(+) cations instead of Li(+) in the crystal lattice of europium dinitrosalicylates and at heating of these compounds. To obtain the energy of the lowest excited triplet state the phosphorescence spectra of alkali metal-gadolinium compounds M(3)Gd(3,5-NO(2)-Sal)(3).nH(2)O, of alkali metal dinitrosalicylate and salicylate salts were measured with time delay. Change of the energies of ligand electronic states and ligand-metal charge transfer state (LM CTS) can give a two-three orders of magnitude enhancement of the Eu(3+) luminescence efficiency in dinitrosalicylates in comparison with salicylates and ten-fold enhancement at the substitution of Li(+) and Na(+) for Cs(+) in dinitrosalicylates. PMID:19186098

  19. Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

    PubMed

    Eaton, H L; De Lorme, M; Chaney, R L; Craig, A M

    2011-08-01

    Bioremediation is of great interest in the detoxification of soil contaminated with residues from explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although there are numerous forms of in situ and ex situ bioremediation, ruminants would provide the option of an in situ bioreactor that could be transported to the site of contamination. Bovine rumen fluid has been previously shown to transform 2,4,6-trinitrotoluene (TNT), a similar compound, in 4 h. In this study, RDX incubated in whole ovine rumen fluid was nearly eliminated within 4 h. Whole ovine rumen fluid was then inoculated into five different types of media to select for archaeal and bacterial organisms capable of RDX biotransformation. Cultures containing 30 μg mL(-1) RDX were transferred each time the RDX concentration decreased to 5 μg mL(-1) or less. Time point samples were analyzed for RDX biotransformation by HPLC. The two fastest transforming enrichments were in methanogenic and low nitrogen basal media. After 21 days, DNA was extracted from all enrichments able to partially or completely transform RDX in 7 days or less. To understand microbial diversity, 16S rRNA-gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting was conducted. Cloning and sequencing of partial 16S rRNA fragments were performed on both low nitrogen basal and methanogenic media enrichments. Phylogenetic analysis revealed similar homologies to eight different bacterial and one archaeal genera classified under the phyla Firmicutes, Actinobacteria, and Euryarchaeota. After continuing enrichment for RDX degraders for 1 year, two consortia remained: one that transformed RDX in 4 days and one which had slowed after 2 months of transfers without RDX. DGGE comparison of the slower transforming consortium to the faster one showed identical banding patterns except one band. Homology matches to clones from the two consortia identified the same uncultured Clostridia genus in both; Sporanaerobacter

  20. Thermal oxidation of 3-5 compound semiconductors

    NASA Astrophysics Data System (ADS)

    Monteironeto, Othon Derego

    1988-11-01

    Thermal oxidation of 3-5 compound semiconductors has been studied in the temperature range of 300 to 600 C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400 C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400 C, the oxidation of both materials resulted in crystalline products. Precipitation of the group 5 element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga2O3interface, As precipitates were formed with a truncated square pyramid shape bound by (111) sub GaAs planes. The precipitates found at the InPO4/InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs.

  1. Protein folding in the endoplasmic reticulum: lessons from the human chorionic gonadotropin beta subunit.

    PubMed Central

    Ruddon, R. W.; Sherman, S. A.; Bedows, E.

    1996-01-01

    There have been few studies of protein folding in the endoplasmic reticulum of intact mammalian cells. In the one case where the in vivo and in vitro folding pathways of a mammalian secretory protein have been compared, the folding of the human chorionic gonadotropin beta subunit (hCG-beta), the order of formation of the detected folding intermediates is the same. The rate and efficiency with which multidomain proteins such as hCG-beta fold to native structure in intact cells is higher than in vitro, although intracellular rates of folding of the beta subunit can be approached in vitro in the presence of an optimal redox potential and protein disulfide isomerase. Understanding how proteins fold in vivo may provide a new way to diagnose and treat human illnesses that occur due to folding defects. PMID:8844836

  2. Protein folding in a force-clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, Piotr

    2006-03-01

    Kinetics of folding of a protein held in a force-clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed rapid changes in the end-to-end distance mirror microscopic events during folding. However, the folding scenarios in and out of the force-clamp are distinct.

  3. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  4. Folded Symplectic Toric Four-Manifolds

    ERIC Educational Resources Information Center

    Lee, Christopher R.

    2009-01-01

    A folded symplectic form on an even-dimensional manifold is a closed two-form that degenerates in a suitably controlled way along a smooth hypersurface. When a torus having half the dimension of the manifold acts in a way preserving the folded symplectic form and admitting a moment map, the manifold is called a folded symplectic toric manifold.…

  5. Dynamics of Folds in the Plane

    ERIC Educational Resources Information Center

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  6. Enhanced protein fold recognition using a structural alphabet.

    PubMed

    Deschavanne, Patrick; Tufféry, Pierre

    2009-07-01

    Fold recognition from sequence can be an important step in protein structure and function prediction. Many methods have tackled this goal. Most of them, based on sequence alignment, fail for sequences of low similarity. Alignment-free approaches can provide an efficient alternative. For such approaches, the identification of efficient fold discriminatory features is critical. We propose a new fold recognition approach that relies on the encoding of the local structure of proteins using a Hidden Markov Model Structural Alphabet. This encoding provides a 1D description of the conformation of complete proteins structures, including loops. At the fold level, compared with the classical secondary structure helix, strand, and coil states, such encoding is expected to provide the means of a better discrimination between loop conformations, hence providing better fold identification. Compared with previous related approaches, this supplement of information results in significant improvement. When combining this information with supplementary information of secondary structure and residue burial, we obtain a fold recognition accuracy of 78% for 27 protein families, that is, 8% higher than the best available method so far, and of 68% for 60 families. Corresponding scores at the class level are of 92% and 90% indicating that mispredictions are mostly within structural classes. PMID:19089985

  7. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats.

    PubMed

    Racine, Christopher R; Ferguson, Travis; Preston, Debbie; Ward, Dakota; Ball, John; Anestis, Dianne; Valentovic, Monica; Rankin, Gary O

    2016-02-01

    Among the mono- and dichloroanilines, 3,5-dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (∼ 4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-l-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro. PMID:26808022

  8. Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine by the earthworm Eisenia andrei in a sandy loam soil.

    PubMed

    Sarrazin, Manon; Dodard, Sabine G; Savard, Kathleen; Lachance, Bernard; Robidoux, Pierre Y; Kuperman, Roman G; Hawari, Jalal; Ampleman, Guy; Thiboutot, Sonia; Sunahara, Geoffrey I

    2009-10-01

    The heterocyclic polynitramine hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a highly energetic compound found as a soil contaminant at some defense installations. Although RDX is not lethal to soil invertebrates at concentrations up to 10,000 mg/kg, it decreases earthworm cocoon formation and juvenile production at environmentally relevant concentrations found at contaminated sites. Very little is known about the uptake of RDX in earthworms and the potential risks for food-chain transfer of RDX in the environment. Toxicokinetic studies were conducted to quantify the bioaccumulation factors (BAFs) using adult earthworms (Eisenia andrei) exposed for up to 14 d to sublethal concentrations of nonlabeled RDX or [14C]RDX in a Sassafras sandy loam soil. High-performance liquid chromatography of acetonitrile extracts of tissue and soil samples indicated that nonlabeled RDX can be accumulated by the earthworm in a concentration- and time-dependent manner. The BAF, expressed as the earthworm tissue to soil concentration ratio, decreased from 6.7 to 0.1 when the nominal soil RDX concentrations were increased from 1 to 10,000 mg/kg. Tissue concentrations were comparable in earthworms exposed to nonlabeled RDX or [14C]RDX. The RDX bioaccumulation also was estimated using the kinetically derived model (BAFK), based on the ratio of the uptake to elimination rate constants. The established BAFK of 3.6 for [14C]RDX uptake was consistent with the results for nonlabeled RDX. Radioactivity also was present in the tissue residues of [14C]RDX-exposed earthworms following acetonitrile extraction, suggesting the formation of nonextractable [14C]RDX metabolites associated with tissue macromolecules. These findings demonstrated a net accumulation of RDX in the earthworm and the potential for food-chain transfer of RDX to higher-trophic-level receptors. PMID:19432505

  9. Folding of viscous sheets and filaments

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, M.; Mahadevan, L.

    2000-12-01

    We consider the nonlinear folding behavior of a viscous filament or a sheet under the influence of an external force such as gravity. Everyday examples of this phenomenon are provided by the periodic folding of a sheet of honey as it impinges on toast, or the folding of a stream of shampoo as it falls on one's hand. To understand the evolution of a fold, we formulate and solve a free-boundary problem for the phenomenon, give scaling laws for the size of the folds and the frequency with which they are laid out, and verify these experimentally.

  10. The effect of free radicals on hepatic 5'-monodeiodination of thyroxine and 3,3',5'-triiodothyronine.

    PubMed

    Huang, T S; Boado, R J; Chopra, I J; Solomon, D H; Teco, G N

    1987-08-01

    Free radicals have been implicated in many pathological processes, including ischemia, inflammation, and malignancy. Since a reduction in extrathyroidal outer ring monodeiodination of T4 and rT3 occurs in virtually all systemic illnesses, we have studied the effect of free radicals on iodothyronine (T4 and rT3) 5'-monodeiodinating activity (MA) of liver tissue in vitro. Rat liver microsomes or homogenate were preincubated in Tris buffer for 30 min with a free radical-generating system (FRGS) and then incubated with T4 (2.5 microM) or [125I]rT3 (0.4 nM) and dithiothreitol (DTT; 5-20 mM with T4 and 20-150 mM with [125I]rT3) in the same buffer for 10 or 30 min. T3 generated during incubation was quantified by RIA of ethanol extracts of the incubation mixture. 125I generated from [125I]rT3 was quantified after precipitation of the incubation mixture with trichloroacetic acid or by paper chromatography. Free radicals caused 55% or more reduction in hepatic T4 MA and 44% or more reduction in rT3 MA in various experiments. The inhibition of hepatic rT3 MA after incubation with FRGS persisted despite removal of FRGS and washing of microsomes preincubated with FRGS before studying the MA. However, inclusion of DTT (1-60 mM) during preincubation of tissue with FRGS prevented the FRGS-induced inhibition of rT3 MA. Depletion of the iodothyronine substrate did not occur when FRGS inhibited T4 and rT3 5'-monodeiodination. Free radical scavengers, i.e. superoxide dismutase (600 IU/ml), catalase (300 U/ml), tocopherol (10 mg/ml), thiourea (0.15 M), and tert-butanol (0.15 M), all significantly reduced the inhibition of hepatic rT3 MA caused by FRGS. The FRGS-induced inhibition of hepatic T4 MA was reduced by the same doses of tocopherol, thiourea, and tert-butanol, but not by superoxide dismutase or catalase. Since free radicals may effect tissue damage by lipid peroxidation and since the latter results in generation of malondialdehyde (MDA) as a by-product of the reaction, we

  11. Tuning the formations of metal-1,3,5-benzenetricarboxylate frameworks via the assistance of amino acids

    NASA Astrophysics Data System (ADS)

    Lei, Xiao-Ping; Lian, Ting-Ting; Chen, Shu-Mei; Zhang, Jian

    2015-03-01

    Seven new metal-1,3,5-benzenetricarboxylate coordination polymers have been synthesized by modification of auxiliary components during the assembly reactions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by XRD and TGA. Interestingly, they show fascinating topological structures. Compounds 1 and 2 possess the undulating layer structure with 3-connected hcb network and (3,6)-connected kgd network. Compound 3 possesses three-dimensional (3D) pillared-layer structure with 3-connected 2-fold interpenetrating srs net. Compound 4 also has the 3D 2-fold interpenetrating pillared-layer structure; however, it has (3,5)-connected hms topology because the Cd(II) center is 5-connected. Compound 5 possess 3D structure through hydrogen bonding interactions between ladder-like layers. Compounds 6 and 7 have the similar 3D frameworks with 4-connected umc net and (3,7)-connected (3.4.5)(32.46.55.68) topology, respectively. The photoluminescent properties of compounds 2-7 were also investigated.

  12. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  13. Folded waveguide cavity coupler for ICRF heating

    SciTech Connect

    Owens, T.L.

    1986-01-01

    This paper introduces a new type of waveguide coupler for ion cyclotron range of frequencies (ICRF) heating which is an adaptation of a concept known as a ''folded waveguide'' reported by Barrow and Schaevitz in connection with low-frequency waveguide transmission systems. The basic idea involves ''folding'' a simple rectangular waveguide to form a more compact structure. Cutoff for the folded waveguide occurs when one-half of a free-space wavelength equals the path length around the ''folds'' of the structure. By adding a large number of folds, the path length around the folds can be made large, leading to very low cutoff frequencies relative to those for simple rectangular waveguides having comparable outside dimensions. Folded waveguide couplers are practical for frequencies as low as 60 MHz for some ports found on present-day experients.

  14. Heteroadamantanes and their derivatives. 4. Synthesis of 1,3,5-triazaadamantane

    SciTech Connect

    Kuznetsov, A.I.; Kosmakov, V.A.; Unkovskii, B.V.

    1985-12-01

    Reduction of 7-nitro-1,3,5-triazaadamantane with hydrazine hydrate in the presence of Raney nickel gave 7-hydroxyamino- and 7-amino-1,3,5-triazaadamantane, from which 7-chloro-, 7-bromo-, and 7-thiocyanato-1,3,5-triazaadamantanes were synthesized by substitutive deamination. Desulfurization of 7-thiocyanato-1,3,5-triazaadamantane in the presence of Raney nickel gave 1,3,5-triazaadamantane.

  15. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  16. Fabrication of ten-fold photonic quasicrystalline structures

    SciTech Connect

    Sun, XiaoHong Wu, YuLong; Liu, Wen; Liu, Wei; Han, Juan; Jiang, Lei

    2015-05-15

    Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  17. The energy landscape for folding and function

    NASA Astrophysics Data System (ADS)

    Onuchic, Jose

    2006-03-01

    Globally the energy landscape of a folding protein resembles a partially rough funnel. The local roughness of the funnel reflects transient trapping of the protein configurations in local free energy minima. The kinetics of folding is best considered as a progressive organization of an ensemble of partially folded structures through which the protein passes through on its way to the folded structure. The folding mechanisms for several fast-folding proteins can be described using an energy landscape theory to set up the correspondence with simulations of protein minimalist models. Using these simulations together with analytical theory, we can learn about good (minimally frustrated) folding sequences and non-folding (frustrated) sequences. An important idea that emerges from this theory is that subtle features of the protein landscape can profoundly affect the apparent mechanism of folding. Experiments on the dependence of the folding/unfolding times, and the stability of these proteins to denaturant concentration and site-directed mutagenesis, and on the early events of folding allow to infer the global characteristics of the landscape. In addition to need to minimize energetic frustration, the topology of the native fold also plays a major role in the folding mechanism. Some folding motifs are easier to design than others suggesting the possibility that evolution not only selected sequences with sufficiently small energetic frustration but also selected more easily designable native structures. Several proteins (such as CI2 and SH3) have sufficiently reduced energetic frustration) that much of the heterogeneity observed in their transition state ensemble (TSE) is determined by topology. Topological effects go beyond the structure of the TSE. The overall structure of the on-route and off-route (traps) intermediates for the folding of more complex proteins is also influenced by topology. Utilizing this theoretical framework, simulations of minimalist models and

  18. Asymmetric hindwing foldings in rove beetles

    PubMed Central

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-01-01

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right–left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  19. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  20. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  1. Reduced alphabet for protein folding prediction.

    PubMed

    Huang, Jitao T; Wang, Titi; Huang, Shanran R; Li, Xin

    2015-04-01

    What are the key building blocks that would have been needed to construct complex protein folds? This is an important issue for understanding protein folding mechanism and guiding de novo protein design. Twenty naturally occurring amino acids and eight secondary structures consist of a 28-letter alphabet to determine folding kinetics and mechanism. Here we predict folding kinetic rates of proteins from many reduced alphabets. We find that a reduced alphabet of 10 letters achieves good correlation with folding rates, close to the one achieved by full 28-letter alphabet. Many other reduced alphabets are not significantly correlated to folding rates. The finding suggests that not all amino acids and secondary structures are equally important for protein folding. The foldable sequence of a protein could be designed using at least 10 folding units, which can either promote or inhibit protein folding. Reducing alphabet cardinality without losing key folding kinetic information opens the door to potentially faster machine learning and data mining applications in protein structure prediction, sequence alignment and protein design. PMID:25641420

  2. Viscoelastic properties of the false vocal fold

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.

    2001-05-01

    The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.

  3. Some aspects of vocal fold bowing.

    PubMed

    Tanaka, S; Hirano, M; Chijiwa, K

    1994-05-01

    Bowing of the vocal fold frequently occurs in patients with vocal fold paralysis (VFP), those with sulcus vocalis, and those who have had laser surgery. Additionally, there are vocal folds that present bowing with no noticeable organic lesion. For the purpose of investigating the causes and mechanisms of vocal fold bowing, consecutive fiberscopic videorecordings of 127 patients with VFP, 33 with sulcus vocalis, 33 with laser surgery, and 33 with dysphonia having no clinically noticeable organic lesion were reviewed. Sixty-nine percent of the paralyzed vocal folds had bowing, and the occurrence of bowing was significantly related to the activity of the thyroarytenoid muscle as measured by electromyography. The cricothyroid activity had no significant relationship to vocal fold bowing. All vocal folds with sulcus presented with bowing. Thirty-five percent of the vocal folds that had had laser surgery had bowing. The extent of tissue removal was closely related to the occurrence of bowing. Twelve cases with no organic lesion had vocal fold bowing. Of these 12 patients, 8 were male and 9 were older than 60 years. Some aging process in the mucosa was presumed to be the cause of the bowing in this age group of patients without clinically noticeable organic lesions. Causes of vocal fold bowing in the younger group of patients without organic lesions were not determined in this study. PMID:8179251

  4. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  5. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  6. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides

    PubMed Central

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram; Fredholm, Simon; Fink-Puches, Regina; Cerroni, Lorenzo; Odum, Niels; O'Malley, John T.; Gniadecki, Robert; Wolf, Peter

    2016-01-01

    Purpose Sustained inflammation is a key feature of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). Resident IL9–producing T cells have been found in skin infections and certain inflammatory skin diseases, but their role in MF is currently unknown. Experimental Design We analyzed lesional skin from patients with MF for the expression of IL9 and its regulators. To determine which cells were producing IL9, high-throughput sequencing was used to identify malignant clones and Vb-specific antibodies were employed to visualize malignant cells in histologic preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice. Results Malignant and reactive T cells produce IL9 in lesional skin. Expression of the Th9 transcription factor IRF4 in malignant cells was heterogeneous, whereas reactive T cells expressed it uniformly. PUVA or UVB phototherapy diminished the frequencies of IL9- and IL9r-positive cells, as well as STAT3/5a and IRF4 expression in lesional skin. IL9 production was regulated by STAT3/5 and silencing of STAT5 or blockade of IL9 with neutralizing antibodies potentiated cell death after PUVA treatment in vitro. IL9-depleted mice exhibited a reduction of tumor growth, higher frequencies of regulatory T cells, and activated CD4 and CD8 T lymphocytes. Conclusion Our results suggest that IL9 and its regulators are promising new targets for therapy development in mycosis fungoides. PMID:26851186

  7. Assessment of optimized Markov models in protein fold classification.

    PubMed

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  8. Possible Population III remnants at redshift 3.5

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; O'Meara, John M.; Murphy, Michael T.

    2016-03-01

    The first stars, known as Population III (PopIII), produced the first heavy elements, thereby enriching their surrounding pristine gas. Previous detections of metals in intergalactic gas clouds, however, find a heavy element enrichment larger than 1/1000 times that of the solar environment, higher than expected for PopIII remnants. In this letter, we report the discovery of a Lyman limit system (LLS) at z = 3.53 with the lowest metallicity seen in gas with discernable metals, 10-3.41±0.26 times the solar value, at a level expected for PopIII remnants. We make the first relative abundance measurement in such low metallicity gas: the carbon-to-silicon ratio is 10-0.26±0.17 times the solar value. This is consistent with models of gas enrichment by a PopIII star formation event early in the Universe, but also consistent with later, Population II enrichment. The metals in all three components comprising the LLS, which has a velocity width of 400 km s-1, are offset in velocity by ˜+6 km s-1 from the bulk of the hydrogen, suggesting the LLS was enriched by a single event. Relative abundance measurements in this near-pristine regime open a new avenue for testing models of early gas enrichment and metal mixing.

  9. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    SciTech Connect

    Saito, Hiroaki National Institute of Polar Research, Tokyo ); Sato, Natsuo ); Tonegawa, Yutaka ); Yoshino, Takeo ); Saemundsson, T. )

    1989-06-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere.

  10. Protein Folding in Confined and Crowded Environments

    PubMed Central

    Zhou, Huan-Xiang

    2007-01-01

    Confinement and crowding are two major factors that can potentially impact protein folding in cellular environments. Theories based on considerations of excluded volumes predict disparate effects on protein folding stability for confinement and crowding: confinement can stabilize proteins by over 10kBT but crowding has a very modest effect on stability. On the other hand, confinement and crowding are both predicted to favor conformations of the unfolded state which are compact, and consequently may increase the folding rate. These predictions are largely borne out by experimental studies of protein folding under confined and crowded conditions in the test tube. Protein folding in cellular environments is further complicated by interactions with surrounding surfaces and other factors. Concerted theoretical modeling and test-tube and in vivo experiments promise to elucidate the complexity of protein folding in cellular environments. PMID:17719556

  11. Folding with thermal-mechanical feedback: Discussion

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Hudleston, Peter J.

    2009-07-01

    A recent paper in this Journal by Bruce Hobbs, Klaus Regenauer-Lieb and Alison Ord [Hobbs, B., Regenauer-Lieb, K., Ord, A., 2008. Folding with thermal-mechanical feedback. Journal of Structural Geology 30, 1572-1592] presents an alternative theory to the traditional Biot-Ramberg theory for folding of viscous rocks that involves non-equilibrium thermodynamics and thermal-mechanical feedback. The authors convey a strong message throughout their paper that the folds produced by this theoretical and numerical modelling are geologically realistic and provide a better explanation for many natural folds than the traditional theory. They promise the same approach for boudinage, and present this folding paper as part of a "unified framework for rock deformation processes". Readers of the Journal of Structural Geology might be led to conclude that this paper provides a good alternative model for folding of rocks. Our discussion will disagree, on four counts.

  12. Hierarchical classification of protein folds using a novel ensemble classifier.

    PubMed

    Lin, Chen; Zou, Ying; Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp. PMID:23437146

  13. Hierarchical Classification of Protein Folds Using a Novel Ensemble Classifier

    PubMed Central

    Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp. PMID:23437146

  14. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  15. [Design of a medical folding fridge].

    PubMed

    Sun, Jianjun; Wei, Jiancang; Wu, Taihu; Meng, Xingju

    2011-07-01

    This article introduces a design of a medical folding fridge, which consists of three major components, base, folding frame and insulated cover. The base has a cooling system. The frame and cover are expanded during normal use and folded during storage or transportation. The device is compact, durable, transportable and well environmental adaptable. The system design is proved proper and the temperature inside is reliable. It is very suitable for temperature sensitive supplies stored in the medical emergency field. PMID:22097750

  16. IN VITRO CHARACTERIZATION OF LIPOSOMES AND OPTISON® BY ACOUSTIC SCATTERING AT 3.5 MHZ

    PubMed Central

    Coussios, Constantin-C.; Holland, Christy K.; Jakubowska, Ludwika; Huang, Shao-Ling; Macdonald, Robert C.; Nagaraj, Ashwin; McPherson, David D.

    2016-01-01

    Liposomes are phospholipid vesicles that can encapsulate both gas and fluid. With antibody conjugation, new formulations, known as immunoliposomes, can be targeted to atheroma and other pathologic components and are, thus, being developed as novel diagnostic ultrasound (US) echo contrast agents to enhance atherosclerosis imaging. The majority of these echogenic liposomes range in diameter from 0.25 to 5.0 µm. To quantify the echogenicity of liposome suspensions of varying concentrations, the backscattering coefficient at 3.5 MHz was determined experimentally. The backscattering coefficient was also estimated theoretically as a function of air volume fraction by modeling the encapsulated air as a free air bubble and assuming single bubble scattering. For most of the liposome concentrations examined in this study (on the order of 108/mL), the backscattering coefficient equals or exceeds that of Optison® at the human clinical dosage (on the order of 104/mL). Experimental measurement of the decrease in backscattering coefficient shows promise as a sensitive method for determining whether liposomes are left intact or destroyed during imaging; thus, helping to explore their potential as a vehicle for targeted drug delivery. In addition, the attenuation of US through liposome suspensions is negligible at 3.5 MHz relative to the attenuation through Optison® (0.25 dB/cm), suggesting that liposomes have a much higher scatter-to-attenuation ratio and could be more efficient as contrast agents. PMID:14998670

  17. Acoustic characterization of liposome suspensions and Optison® at 3.5 MHz

    NASA Astrophysics Data System (ADS)

    Coussios, Constantin-C.; Holland, Christy K.; Jakubowska, Ludwika; Huang, Shao-Ling; MacDonald, Robert C.; Nagaraj, Ashwin; McPherson, David D.

    2003-04-01

    Liposomes-phospholipid vesicles that can encapsulate both gas and fluid-are currently being developed as contrast agents and vehicles for targeted drug delivery. The backscattering coefficient and attenuation of liposome suspensions were measured at 3.5 MHz as a function of liposome concentration and compared to those of Optison®. The backscattering coefficient of liposomes at concentrations in excess of 1.15×108/ml exceeds that of Optison® at the clinical dose (5.0-8.0×104/ml). On the other hand, the attenuation of ultrasound through liposome suspensions is negligible relative to the attenuation through Optison® (0.25 dB/cm), suggesting that liposomes have a much higher scatter-to-attenuation ratio and could be more efficient as contrast agents. A theoretical model that treats the gas within the liposomes as a free air bubble was used to estimate the backscattering coefficient and correlated well with experimental results. Church's model [J. Acoust. Soc. Am. 97, 1510-1521 (1995)] for Albunex® was also found to provide an accurate estimate of the backscattering coefficient of Optison®. These models suggest that the marked difference in attenuation between the two agents can be attributed to the fact that liposomes are sub-resonant in size at 3.5 MHz, but Optison® microspheres act as resonant scatterers. a)Currently at Boston University.

  18. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  19. COS Side 2 NUV MAMA Fold Test

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {13128} during Cycle 20.This proposal is an exact duplication of nominal COS MAMA Fold Analysis {proposal 13128, Cycle 20}. Any changes 13128 or subsequent cycle submissions should be reflected in this proposal and vice versa.

  20. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  1. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGESBeta

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Robinson, Howard; Wan, Yiqian; Wang, Yousheng; Ke, Hengming

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s⁻¹ for cAMP and a KM of 105 μM and a kcat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural foldingmore » that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  2. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    EPA Science Inventory

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  3. Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9.

    PubMed

    Indest, Karl J; Jung, Carina M; Chen, Hao-Ping; Hancock, Dawn; Florizone, Christine; Eltis, Lindsay D; Crocker, Fiona H

    2010-10-01

    Several microorganisms have been isolated that can transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a cyclic nitramine explosive. To better characterize the microbial genes that facilitate this transformation, we sequenced and annotated a 182-kb plasmid, pGKT2, from the RDX-degrading strain Gordonia sp. KTR9. This plasmid carries xplA, encoding a protein sharing up to 99% amino acid sequence identity with characterized RDX-degrading cytochromes P450. Other genes that cluster with xplA are predicted to encode a glutamine synthase-XplB fusion protein, a second cytochrome P450, Cyp151C, and XplR, a GntR-type regulator. Rhodococcus jostii RHA1 expressing xplA from KTR9 degraded RDX but did not utilize RDX as a nitrogen source. Moreover, an Escherichia coli strain producing XplA degraded RDX but a strain producing Cyp151C did not. KTR9 strains cured of pGKT2 did not transform RDX. Physiological studies examining the effects of exogenous nitrogen sources on RDX degradation in strain KTR9 revealed that ammonium, nitrite, and nitrate each inhibited RDX degradation by up to 79%. Quantitative real-time PCR analysis of glnA-xplB, xplA, and xplR showed that transcript levels were 3.7-fold higher during growth on RDX than during growth on ammonium and that this upregulation was repressed in the presence of various inorganic nitrogen sources. Overall, the results indicate that RDX degradation by KTR9 is integrated with central nitrogen metabolism and that the uptake of RDX by bacterial cells does not require a dedicated transporter. PMID:20709853

  4. Functional Characterization of pGKT2, a 182-Kilobase Plasmid Containing the xplAB Genes, Which Are Involved in the Degradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine by Gordonia sp. Strain KTR9 ▿

    PubMed Central

    Indest, Karl J.; Jung, Carina M.; Chen, Hao-Ping; Hancock, Dawn; Florizone, Christine; Eltis, Lindsay D.; Crocker, Fiona H.

    2010-01-01

    Several microorganisms have been isolated that can transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a cyclic nitramine explosive. To better characterize the microbial genes that facilitate this transformation, we sequenced and annotated a 182-kb plasmid, pGKT2, from the RDX-degrading strain Gordonia sp. KTR9. This plasmid carries xplA, encoding a protein sharing up to 99% amino acid sequence identity with characterized RDX-degrading cytochromes P450. Other genes that cluster with xplA are predicted to encode a glutamine synthase-XplB fusion protein, a second cytochrome P450, Cyp151C, and XplR, a GntR-type regulator. Rhodococcus jostii RHA1 expressing xplA from KTR9 degraded RDX but did not utilize RDX as a nitrogen source. Moreover, an Escherichia coli strain producing XplA degraded RDX but a strain producing Cyp151C did not. KTR9 strains cured of pGKT2 did not transform RDX. Physiological studies examining the effects of exogenous nitrogen sources on RDX degradation in strain KTR9 revealed that ammonium, nitrite, and nitrate each inhibited RDX degradation by up to 79%. Quantitative real-time PCR analysis of glnA-xplB, xplA, and xplR showed that transcript levels were 3.7-fold higher during growth on RDX than during growth on ammonium and that this upregulation was repressed in the presence of various inorganic nitrogen sources. Overall, the results indicate that RDX degradation by KTR9 is integrated with central nitrogen metabolism and that the uptake of RDX by bacterial cells does not require a dedicated transporter. PMID:20709853

  5. Retinal and Choroidal Folds in Papilledema

    PubMed Central

    Sibony, Patrick A.; Kupersmith, Mark J.; Feldon, Steven E.; Wang, Jui-Kai; Garvin, Mona

    2015-01-01

    Purpose To determine the frequency, patterns, associations, and biomechanical implications of retinal and choroidal folds in papilledema due to idiopathic intracranial hypertension (IIH). Methods Retinal and choroidal folds were studied in patients enrolled in the IIH Treatment Trial using fundus photography (n = 165 study eyes) and spectral-domain optical coherence tomography (SD-OCT; n = 125). We examined the association between folds and peripapillary shape, retinal nerve fiber layer (RNFL) thickness, disc volume, Frisén grade, acuity, perimetric mean deviation, intraocular pressure, intracranial pressure, and refractive error. Results We identified three types of folds in IIH patients with papilledema: peripapillary wrinkles (PPW), retinal folds (RF), and choroidal folds (CF). Frequency, with photos, was 26%, 19%, and 1%, respectively; SD-OCT frequency was 46%, 47%, and 10%. At least one type of fold was present in 41% of patients with photos and 73% with SD-OCT. Spectral-domain OCT was more sensitive. Structural parameters related to the severity of papilledema were associated with PPW and RF, whereas anterior deformation of the peripapillary RPE/basement membrane layer was associated with CF and RF. Folds were not associated with vision loss at baseline. Conclusions Folds in papilledema are biomechanical signs of stress/strain on the optic nerve head and load-bearing structures induced by intracranial hypertension. Folds are best imaged with SD-OCT. The patterns of retinal and choroidal folds are the products of a complex interplay between the degree of papilledema and anterior deformation of the load-bearing structures (sclera and possibly the lamina cribrosa), both modulated by structural geometry and material properties of the optic nerve head. (ClinicalTrials.gov number, NCT01003639.) PMID:26335066

  6. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  7. A 3.5 year diary study: Remembering and life story importance are predicted by different event characteristics.

    PubMed

    Thomsen, Dorthe Kirkegaard; Jensen, Thomas; Holm, Tine; Olesen, Martin Hammershøj; Schnieber, Anette; Tønnesvang, Jan

    2015-11-01

    Forty-five participants described and rated two events each week during their first term at university. After 3.5 years, we examined whether event characteristics rated in the diary predicted remembering, reliving, and life story importance at the follow-up. In addition, we examined whether ratings of life story importance were consistent across a three year interval. Approximately 60% of events were remembered, but only 20% of these were considered above medium importance to life stories. Higher unusualness, rehearsal, and planning predicted whether an event was remembered 3.5 years later. Higher goal-relevance, importance, emotional intensity, and planning predicted life story importance 3.5 years later. There was a moderate correlation between life story importance rated three months after the diary and rated at the 3.5 year follow-up. The results suggest that autobiographical memory and life stories are governed by different mechanisms and that life story memories are characterized by some degree of stability. PMID:26164104

  8. Aromatic fluorine compounds. I. The synthesis of 2,5- and 3,5-difluorobenzotrifluorides

    USGS Publications Warehouse

    Finger, G.C.; Reed, F.H.

    1944-01-01

    The preparation of 2,5- and 3,5-difluorobenzotrifluoride and some of their intermediates is described. 3,5-Dinitrobenzotrifluoride was prepared from 3-nitrobenzotrifluoride with a fuming nitric-sulfuric acid mixture.

  9. Energy Landscapes and Solved Protein Folding Problems

    NASA Astrophysics Data System (ADS)

    Wolynes, Peter

    2004-03-01

    Peter G. Wolynes Center for Theoretical Biological Physics Department of Chemistry and Biochemistry and Physics University of California, San Diego La Jolla, CA 92093-0371 Fifteen years ago, how proteins folded into organized structures on the basis of their sequence was a great mystery. By characterizing the energy landscapes of proteins with tools from the statistical mechanics of disordered systems like spin glasses, a "new view' of the folding process became possible. Energy landscape theory provided an incentive to pursue heroic new experiments and to carry out difficult computer simulations addressing protein folding mechanisms. Many aspects of folding kinetics revealed by these studies can be quantitatively understood using the simple idea that the topography of the energy landscape is that of a "rugged funnel". Energy landscape theory provided a quantitative means of characterizing which amino acid sequences can rapidly fold. Algorithms based on energy landscape theory have been used to successfully design novel sequences that fold to a given structure in the laboratory. Energy landscape ideas have begun to transform the prediction of protein structure from sequence data from being an art to being a science. The success of energy landscape- based algorithms in predicting protein structure from sequence will be highlighted. While there is still much to learn about folding mechanisms and much work to do achieving universally reliable structure prediction, many parts of what used to be called "the protein folding problem" can now be considered solved.

  10. Stochastic Resonance in Protein Folding Dynamics.

    PubMed

    Davtyan, Aram; Platkov, Max; Gruebele, Martin; Papoian, Garegin A

    2016-05-01

    Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics. PMID:26992148

  11. Protein folding: When ribosomes pick the structure

    NASA Astrophysics Data System (ADS)

    Sivertsson, Elin M.; Itzhaki, Laura S.

    2014-05-01

    Anfinsen's principle tells us that the folded structure of a protein is determined solely by its sequence. Now, it has been shown that the rate at which a polypeptide chain is synthesized in the cell can affect which of two alternative folded structures it adopts.

  12. Folding Polyominoes from One Level to Two

    ERIC Educational Resources Information Center

    Frederickson, Greg N.

    2011-01-01

    For any given polyomino, is it possible to cut it into pieces and then hinge the pieces, so that the polyomino folds up into a similar version of itself but two levels thick? While we don't know how to do this for every polyomino, the article does show how to cut, hinge, and fold polyominoes from several infinite classes, providing an…

  13. Truss Structure Could Be Folded For Transport

    NASA Technical Reports Server (NTRS)

    Theer, Douglas S.

    1996-01-01

    Proposed truss structure comprises cubical bays and folded for compactness during transport. When folded, truss 1/25.6 as long as when fully extended. Conceived for transport and deployment in outerspace, suitable for terrestrial structures that must be transported compactly and erected quickly.

  14. A Canonical Biomechanical Vocal Fold Model

    PubMed Central

    Bhattacharya, Pinaki; Siegmund, Thomas H.

    2012-01-01

    Summary The present article aimed at constructing a canonical geometry of the human vocal fold (VF) from subject-specific image slice data. A computer-aided design approach automated the model construction. A subject-specific geometry available in literature, three abstractions (which successively diminished in geometric detail) derived from it, and a widely used quasi two-dimensional VF model geometry were used to create computational models. The first three natural frequencies of the models were used to characterize their mechanical response. These frequencies were determined for a representative range of tissue biomechanical properties, accounting for underlying VF histology. Compared with the subject-specific geometry model (baseline), a higher degree of abstraction was found to always correspond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified the VF geometry compared with the baseline geometry but can be recalibrated in a consistent manner to match the baseline response. Models providing only a marginally higher degree of abstraction were found to have significant deviation in predicted frequency response. The quasi two-dimensional model presented an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific model. This deficiency was attributed to complex support conditions at anterior-posterior extremities of the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating canonical models by leveraging advances in clinical imaging techniques, the automated design procedure makes VF modeling based on subject-specific geometry more realizable. PMID:22209063

  15. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Procedures for identifying the designated agency component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PRODUCT JURISDICTION Assignment of Agency Component for Review of Premarket Applications § 3.5 Procedures for identifying...

  16. 40 CFR 721.4265 - Hydrazinecarboxamide, N-(3,5-difluorophenyl-).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrazinecarboxamide, N-(3,5... Specific Chemical Substances § 721.4265 Hydrazinecarboxamide, N-(3,5-difluorophenyl-). (a) Chemical... hydrazinecarboxamide, N-(3,5-difluorophenyl-) (PMN P-97-649; CAS No. 167412-23-9) is subject to reporting under...

  17. 40 CFR 721.4265 - Hydrazinecarboxamide, N-(3,5-difluorophenyl-).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrazinecarboxamide, N-(3,5... Specific Chemical Substances § 721.4265 Hydrazinecarboxamide, N-(3,5-difluorophenyl-). (a) Chemical... hydrazinecarboxamide, N-(3,5-difluorophenyl-) (PMN P-97-649; CAS No. 167412-23-9) is subject to reporting under...

  18. 40 CFR 721.4265 - Hydrazinecarboxamide, N-(3,5-difluorophenyl-).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrazinecarboxamide, N-(3,5... Specific Chemical Substances § 721.4265 Hydrazinecarboxamide, N-(3,5-difluorophenyl-). (a) Chemical... hydrazinecarboxamide, N-(3,5-difluorophenyl-) (PMN P-97-649; CAS No. 167412-23-9) is subject to reporting under...

  19. 40 CFR 721.4265 - Hydrazinecarboxamide, N-(3,5-difluorophenyl-).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrazinecarboxamide, N-(3,5... Specific Chemical Substances § 721.4265 Hydrazinecarboxamide, N-(3,5-difluorophenyl-). (a) Chemical... hydrazinecarboxamide, N-(3,5-difluorophenyl-) (PMN P-97-649; CAS No. 167412-23-9) is subject to reporting under...

  20. 41 CFR 102-3.5 - What does this subpart cover and how does it apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What does this subpart cover and how does it apply? 102-3.5 Section 102-3.5 Public Contracts and Property Management Federal...? § 102-3.5 What does this subpart cover and how does it apply? This subpart provides the policy...

  1. 41 CFR 102-3.5 - What does this subpart cover and how does it apply?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What does this subpart cover and how does it apply? 102-3.5 Section 102-3.5 Public Contracts and Property Management Federal...? § 102-3.5 What does this subpart cover and how does it apply? This subpart provides the policy...

  2. 41 CFR 102-3.5 - What does this subpart cover and how does it apply?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What does this subpart cover and how does it apply? 102-3.5 Section 102-3.5 Public Contracts and Property Management Federal...? § 102-3.5 What does this subpart cover and how does it apply? This subpart provides the policy...

  3. 41 CFR 102-3.5 - What does this subpart cover and how does it apply?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What does this subpart cover and how does it apply? 102-3.5 Section 102-3.5 Public Contracts and Property Management Federal...? § 102-3.5 What does this subpart cover and how does it apply? This subpart provides the policy...

  4. 14 CFR 3.5 - Statements about products, parts, appliances and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Statements about products, parts, appliances and materials. 3.5 Section 3.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION DEFINITIONS GENERAL REQUIREMENTS § 3.5 Statements about products, parts,...

  5. 41 CFR 102-3.5 - What does this subpart cover and how does it apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What does this subpart cover and how does it apply? 102-3.5 Section 102-3.5 Public Contracts and Property Management Federal...? § 102-3.5 What does this subpart cover and how does it apply? This subpart provides the policy...

  6. Cooperative Tertiary Interaction Network Guides RNA Folding

    SciTech Connect

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A.

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  7. Molecular gymnastics: serpin structure, folding and misfolding.

    PubMed

    Whisstock, James C; Bottomley, Stephen P

    2006-12-01

    The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding. PMID:17079131

  8. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  9. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. Visualizing chaperone-assisted protein folding.

    PubMed

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S; Martin, Raoul; Quan, Shu; Afonine, Pavel V; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C; Brooks, Charles L; Bardwell, James C A

    2016-07-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone. PMID:27239796

  11. Similarities between protein folding and granular jamming

    PubMed Central

    Jose, Prasanth P; Andricioaei, Ioan

    2012-01-01

    Grains and glasses, widely different materials, arrest their motions upon decreasing temperature and external load, respectively, in common ways, leading to a universal jamming phase diagram conjecture. However, unified theories are lacking, mainly because of the disparate nature of the particle interactions. Here we demonstrate that folded proteins exhibit signatures common to both glassiness and jamming by using temperature- and force-unfolding molecular dynamics simulations. Upon folding, proteins develop a peak in the interatomic force distributions that falls on a universal curve with experimentally measured forces on jammed grains and droplets. Dynamical signatures are found as a dramatic slowdown of stress relaxation upon folding. Together with granular similarities, folding is tied not just to the jamming transition, but a more nuanced picture of anisotropy, preparation protocol and internal interactions emerges. Results have implications for designing stable polymers and can open avenues to link protein folding to jamming theory. PMID:23093180

  12. Single-molecule Studies of Riboswitch Folding

    PubMed Central

    Savinov, Andrew; Perez, Christian F.; Block, Steven M.

    2014-01-01

    The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. PMID:24727093

  13. Fold interaction and wavelength selection in 3D models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.

    2014-09-01

    Many fold-and-thrust belts are dominated by folding and exhibit a fairly regular fold-spacing. Yet, in map-view, the aspect ratio of doubly-plunging anticlines varies considerably from very elongated, and sometimes slightly curved, cylindrical folds to nearly circular, dome-like structures. In addition, the fold spacing often varies significantly around an average value. So far, it remains unclear whether these features are consistent with a folding instability. Therefore, we here study the dynamics of multilayer detachment folding, process by which shortening can be accommodated in thin-skinned fold-and-thrust belts. We start by analysing the physics of this process by using both a semi-analytical thick plate theory and numerical simulations. Results show that several different folding modes occur, about half of which are affected by gravity and have a wavelength that depends on the background deformation rate. Non-dimensional expressions are derived that predict the dominant wavelength and growth rate of each of these folding modes and mechanical phase diagrams are presented that illustrate the applicability of each of the modes. Next, we perform 3D simulations and compare the results with those of 2D models and analytical theory. Both 2D and 3D numerical simulations have wavelengths that are in good agreement with the analytical predictions. In the high-resolution 3D simulations the lateral growth of folds is studied, in particular with respect to fold segment interactions and evolution of fold width-length aspect ratio. The numerical simulations show a number of similarities with the Fars region of the Zagros fold-and-thrust belt including a large range of fold aspect ratio and a normally distributed fold wavelength around a dominant one.

  14. Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1,3,5-triazine hydrazones

    NASA Astrophysics Data System (ADS)

    Machakanur, Shrinath S.; Patil, Basavaraj R.; Badiger, Dayananda S.; Bakale, Raghavendra P.; Gudasi, Kalagouda B.; Annie Bligh, S. W.

    2012-03-01

    A series of novel trisubstituted triazine hydrazones [N3C3(sbnd OC6H4-p-CHdbnd Nsbnd NHsbnd C(O)sbnd C6H4-p-X)3] (X = H, Br, Cl, F, OH, OCH3, CH3, NO2, NH2) were prepared by a three-fold condensation reaction of 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine with p-substituted benzoic acid hydrazides [NH2sbnd NHsbnd C(O)sbnd C6H4-p-X] with excellent yields. The structures were confirmed by elemental analysis, FT-IR, 1H, 13C, 2D-HSQC NMR and mass spectrometry (MALDI-TOF). These derivatives bearing hydrolysable hydrazone linkages were evaluated for their invitro antiproliferative activity against the human liver carcinoma cell line (HepG2) and human cervix carcinoma cell line (HeLa).

  15. Synthesis and structure activity relationship study of N-substituted 3,5-diarylidenepiperidin- 4-ones as potential antitumor agents.

    PubMed

    El-Nassan, Hala Bakr

    2014-02-01

    A new series of N-substituted diarylidenepiperidin-4-ones was synthesized and screened for their possible anticancer activity at the NCI Developmental Therapeutic Program. Almost all the synthesized compounds showed more potent antiproliferative activity than curcumin. The most active compound in this study was 3,5-bis(4-bromobenzylidene)-1-propanoylpiperidin-4-one (8a) with MG-MID GI50, TGI, and LC50 values of 0.35, 1.62 and 9.12 µM, respectively. Compound 8a displayed broad spectrum antiproliferative activity with GI50 values below 1 µM in 81% of the tested cell lines and was found to be two folds more potent than EF-24. A detailed study of the structure activity relationship of the N-substitution was also described. PMID:24102314

  16. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  17. Quantification of a Helical Origami Fold

    NASA Astrophysics Data System (ADS)

    Dai, Eric; Han, Xiaomin; Chen, Zi

    2015-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has served as a source of inspiration for innovations in science and engineering. Here, we present the geometric and mechanical properties of a twisting origami fold. The origami structure created by the fold exhibits several interesting properties, including rigid foldibility, local bistability and finely tunable helical coiling, with control over pitch, radius and handedness of the helix. In addition, the pattern generated by the fold closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. We use six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. Finally, we present a mathematical model of the local bistability of the twisting origami fold. Our study elucidates the mechanisms behind the helical coiling and local bistability of the twisting origami fold, with potential applications in robotics and deployable structures. Acknowledgment to Branco Weiss Fellowship for funding.

  18. The nature of protein folding pathways.

    PubMed

    Englander, S Walter; Mayne, Leland

    2014-11-11

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼ 20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the "new view" model for protein folding. Emergent macroscopic foldon-foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the "how" and the "why" questions. The protein folding pathway depends on the same foldon units and foldon-foldon interactions that construct the native structure. PMID:25326421

  19. Folding Elastic Thermal Surface - FETS

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio

    2013-01-01

    the FETS is also self-locking so the panels stay in a rigid and extended configuration after deployment. This unexpected benefit makes the tape-spring hinge design of the FETS a light, simple, reliable, compact, non-outgassing hinge, spring, and latch. While tape-spring hinges are not novel, they have never been used to deploy passive unfolding thermal surfaces (radiator panels, covers, sun shades, or IR thermal shields). Furthermore, because this technology is compact, it has minimal impact on the launch envelope and mass specifications. FETS enhances the performance of hosted payload instruments where the science data is limited by dark noise. Incorporating FETS into a thermal control system increases radiator area, which lowers the optical detector temperature. This results in higher SNR (signal-to-noise ratio) and improved science data.

  20. Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil.

    PubMed Central

    Kitts, C L; Cunningham, D P; Unkefer, P J

    1994-01-01

    Three species of the family Enterobacteriaceae that biochemically reduced hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were isolated from nitramine explosive-contaminated soil. Two isolates, identified as Morganella morganii and Providencia rettgeri, completely transformed both RDX and the nitroso-RDX reduction intermediates. The third isolate, identified as Citrobacter freundii, partially transformed RDX and generated high concentrations of nitroso-RDX intermediates. All three isolates produced 14CO2 from labeled RDX under O2-depleted culture conditions. While all three isolates transformed HMX, only M. morganii transformed HMX in the presence of RDX. PMID:7811097

  1. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study.

    PubMed

    Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang

    2016-01-01

    The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation. PMID:26669878

  2. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  3. Folding pathways of the Tetrahymena ribozyme

    PubMed Central

    Mitchell, David; Russell, Rick

    2014-01-01

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min–1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here, we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min–1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the ‘choice’ is enforced by energy barriers that grow larger as folding progresses. PMID:24747051

  4. The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9.

    PubMed

    Zhu, Song-Hua; Reuther, Jens; Liu, Jie; Crocker, Fiona H; Indest, Karl J; Eltis, Lindsay D; Mohn, William W

    2015-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a major soil and groundwater contaminant. Organisms such as Gordonia sp. KTR9, capable of degrading RDX and using it as an N source, may prove useful for bioremediation of contaminated sites. XplA is a cytochrome P450 monooxygenase responsible for RDX degradation. Expression of xplA in KTR9 was not induced by RDX but was strongly induced (50-fold) during N-limited growth. When glnR, encoding a regulatory protein affecting N assimilation in diverse Actinobacteria, was deleted from KTR9, the bacterium lost the ability to use nitrate, nitrite, and RDX as N sources. Deletion of glnR also abolished the inhibition of xplA expression by nitrite. Our results confirm the essential role of GlnR in regulating assimilation of nitrite, but there was no evidence for a direct role of GlnR in regulating XplA expression. Rather, the general availability of nitrogen repressed XplA expression. We conclude that the inability of the glnR mutant to use RDX as an N source was due to its inability to assimilate nitrite, an intermediate in the assimilation of nitrogen from RDX. Regulation of XplA does not seem adaptive for KTR9, but it is important for RDX bioremediation with KTR9 or similar bacteria. PMID:25142696

  5. Role of Nitrogen Limitation in Transformation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Gordonia sp. Strain KTR9

    PubMed Central

    Hancock, Dawn E.; Jung, Carina M.; Eberly, Jed O.; Mohn, William W.; Eltis, Lindsay D.; Crocker, Fiona H.

    2013-01-01

    The transcriptome of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading strain Gordonia sp. strain KTR9 and its glnR mutant were studied as a function of nitrogen availability to further investigate the observed ammonium-mediated inhibition of RDX degradation. The results indicate that nitrogen availability is a major determinant of RDX degradation and xplA gene expression in KTR9. PMID:23275513

  6. Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9.

    PubMed

    Indest, Karl J; Hancock, Dawn E; Jung, Carina M; Eberly, Jed O; Mohn, William W; Eltis, Lindsay D; Crocker, Fiona H

    2013-03-01

    The transcriptome of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading strain Gordonia sp. strain KTR9 and its glnR mutant were studied as a function of nitrogen availability to further investigate the observed ammonium-mediated inhibition of RDX degradation. The results indicate that nitrogen availability is a major determinant of RDX degradation and xplA gene expression in KTR9. PMID:23275513

  7. Osteochondrodysplasia in three Scottish Fold cats.

    PubMed

    Chang, Jinhwa; Jung, Joohyun; Oh, Sunkyoung; Lee, Sungok; Kim, Gyeongmin; Kim, Haksang; Kweon, Ohkyeong; Yoon, Junghee; Choi, Mincheol

    2007-09-01

    This report explains typical radiographic features of Scottish Fold osteochondrodysplasia. Three Scottish Fold cats suffering from lameness were referred to the Veterinary Medical Teaching Hospital, Seoul National University, Korea. Based on the breed predisposition, history, clinical signs, physical examination, and radiographic findings, Scottish Fold osteochondrodysplasia was confirmed in three cases. Radiographic changes mainly included exostosis and secondary arthritis around affected joint lesions, and defective conformation in the phalanges and caudal vertebrae. The oral chondroprotective agents such as glucosamine and chondroitin sulfate make the patients alleviate their pain without adverse effects. PMID:17679781

  8. Mechanical Models of Fault-Related Folding

    SciTech Connect

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  9. Network measures for protein folding state discrimination

    PubMed Central

    Menichetti, Giulia; Fariselli, Piero; Remondini, Daniel

    2016-01-01

    Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, possible configurations compatible with the native protein structure, and folding cooperativity. The relevance of these observables is supported by a classification performance up to 90%, even with simple classifiers such as discriminant analysis. PMID:27464796

  10. Protein Folding and Unfolding Under Force

    PubMed Central

    Jagannathan, Bharat; Marqusee, Susan

    2014-01-01

    The recent revolution in optics and instrumentation has enabled the study of protein folding using extremely low mechanical forces as the denaturant. This exciting development has led to the observation of the protein folding process at single molecule resolution and its response to mechanical force. Here, we describe the principles and experimental details of force spectroscopy on proteins, with a focus on the optical tweezers instrument. Several recent results will be discussed to highlight the importance of this technique in addressing a variety of questions in the protein folding field. PMID:23784721

  11. Influence of glycosaminoglycan identity on vocal fold fibroblast behavior.

    PubMed

    Jimenez-Vergara, Andrea Carolina; Munoz-Pinto, Dany J; Becerra-Bayona, Silvia; Wang, Bo; Iacob, Alexandra; Hahn, Mariah S

    2011-11-01

    Poly(ethylene glycol) (PEG) hydrogels have recently begun to be studied for the treatment of scarred vocal fold lamina propria due, in part, to their tunable mechanical properties, resistance to fibroblast-mediated contraction, and ability to be polymerized in situ. However, pure PEG gels lack intrinsic biochemical signals to guide cell behavior and generally fail to mimic the frequency-dependent viscoelastic response critical to normal superficial lamina propria function. Recent results suggest that incorporation of viscoelastic bioactive substances, such as glycosaminoglycans (GAGs), into PEG networks may allow these gels to more closely approach the mechanical responses of normal vocal fold lamina propria while also stimulating desired vocal fold fibroblast behaviors. Although a number of vocal fold studies have examined the influence of hyaluronan (HA) on implant mechanics and vocal fold fibroblast responses, the effects of other GAG types have been relatively unexplored. This is significant, since recent studies have suggested that chondroitin sulfate C (CSC) and heparan sulfate (HS) are substantially altered in scarred lamina propria. The present study was therefore designed to evaluate the effects of CSC and HS incorporation on the mechanical response of PEG gels and vocal fold fibroblast behavior relative to HA. As with PEG-HA, the viscoelasticity of PEG-CSC and PEG-HS gels more closely approached that of the normal vocal fold lamina propria than pure PEG hydrogels. In addition, collagen I deposition and fibronectin production were significantly higher in CSC than in HA gels, and levels of the myofibroblast marker smooth muscle α-actin (SM α-actin) were greater in CSC and HS gels than in HA gels. Since collagen I, fibronectin, and SM α-actin are generally elevated in scarred lamina propria these results suggest that CSC and HS may be undesirable for vocal fold implants relative to HA. Investigation of various signaling intermediates indicated that

  12. Folded waveguide coupler for ion cyclotron heating

    SciTech Connect

    Owens, T.L.; Chen, G.L.

    1986-01-01

    A new type of waveguide coupler for plasma heating in the ion cyclotron range of frequencies is described. The coupler consists of a series of interleaved metallic vanes within a rectangular enclosure analogous to a wide rectangular waveguide that has been ''folded'' several times. At the mouth of the coupler, a plate is attached which contains coupling apertures in each fold or every other fold of the waveguide, depending upon the wavenumber spectrum desired. This plate serves primarily as a wave field polarizer that converts coupler fields to the polarization of the fast magnetosonic wave within the plasma. Theoretical estimates indicate that the folded waveguide is capable of high-efficiency, multimegawatt operation into a plasma. Bench tests have verified the predicted field structure within the waveguide in preparation for high-power tests on the Radio Frequency Test Facility at the Oak Ridge National Laboratory.

  13. Topology Explains Why Automobile Sunshades Fold Oddly

    ERIC Educational Resources Information Center

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  14. Unexplained Profound Hypoglycemia After Vocal Fold Lipoinjection.

    PubMed

    Modanlou, Shohreh; Marie Giglio, Nicole; Carroll, Thomas; Pancaro, Carlo

    2016-02-01

    Vocal fold injection is used for the management of glottal incompetence from various causes. The procedure is well tolerated and has few reported complications. We present a case of a 66-year-old man with long-lasting hoarseness secondary to vocal fold atrophy, who underwent an uneventful bilateral vocal fold injection with autologous fat. While in the recovery area, he experienced profuse sweating approximately 30 minutes after the surgical procedure. His blood glucose value was measured at 24 mg/dL, and plasmatic insulin level was 246 mU/L. To our knowledge, this is the first reported case of a systemic side effect after vocal fold lipoinjection. PMID:26491839

  15. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  16. Monster Mash: Protein Folding Gone Wrong

    MedlinePlus

    ... Articles | Inside Life Science Home Page Monster Mash: Protein Folding Gone Wrong By Joseph Piergrossi Posted October 31, 2013 In this image, globs of misfolded proteins called amyloid plaques (blobs) are found outside neurons ( ...

  17. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  18. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  19. Cotranslational folding of deeply knotted proteins

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  20. Cotranslational folding of deeply knotted proteins.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot. PMID:26292194

  1. Reinke Edema: Watch For Vocal Fold Cysts.

    PubMed

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi

    2015-06-01

    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts. PMID:26080256

  2. Folded Resonant Horns for Power Ultrasonic Applications

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Askins, Stephen; Gradziel, Michael; Bao, Xiaoqi; Chang, Zensheu; Dolgin, Benjamin; Bar-Cohen, Yoseph; Peterson, Tom

    2003-01-01

    Folded horns have been conceived as alternatives to straight horns used as resonators and strain amplifiers in power ultrasonic systems. Such systems are used for cleaning, welding, soldering, cutting, and drilling in a variety of industries. In addition, several previous NASA Tech Briefs articles have described instrumented drilling, coring, and burrowing machines that utilize combinations of sonic and ultrasonic vibrational actuation. The main advantage of a folded horn, relative to a straight horn of the same resonance frequency, is that the folded horn can be made shorter (that is, its greatest linear dimension measured from the outside can be made smaller). Alternatively, for a given length, the resonance frequency can be reduced. Hence, the folded-horn concept affords an additional degree of design freedom for reducing the length of an ultrasonic power system that includes a horn.

  3. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  4. Dew-driven folding of insect wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Beadles, Sam; Clement, Courtney; Hu, David

    2013-11-01

    Small insect wings fold into tacos when exposed to dewfall or fog for extended times. Such shapes are tightly held together and require great force or long evaporation times for the wings to unfold. In this experimental investigation, we use time-lapse and high-speed videography on a mosquito wing exposed to fog to characterize the folding process from a flat wing to a taco. We observe a taco is formed through a series of processes involving wing bending, unbending, and subsequent tight folding of the wing following the sliding of the drop off the wing. We use a simplified 2D model to determine the forces coalescing drops exert on the wing, and present folding-resistant design suggestions for micro-aerial vehicle wings.

  5. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  6. [Surgery of benign vocal fold lesions].

    PubMed

    Olthoff, A

    2016-09-01

    Surgical treatment of benign vocal fold lesions can be indicated for clinical or functional reasons. The principles of phonosurgery have to be maintained in either case. The appropriate phonosurgical technique depends on the type of vocal fold lesion. Depending on the findings, phonosurgery aims to maintain or improve voice quality. The evaluation of clinical and functional results includes indirect laryngoscopy, videostroboscopy, and voice analysis. PMID:27552826

  7. Protein folding and misfolding: mechanism and principles.

    PubMed

    Englander, S Walter; Mayne, Leland; Krishna, Mallela M G

    2007-11-01

    Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors

  8. Protein folding, protein homeostasis, and cancer

    PubMed Central

    Van Drie, John H.

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery. PMID:21272445

  9. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs

    PubMed Central

    Towler, Benjamin P; Jones, Christopher I; Viegas, Sandra C; Apura, Patricia; Waldron, Joseph A; Smalley, Sarah K; Arraiano, Cecilia M; Newbury, Sarah F

    2015-01-01

    Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a “no wing” phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥2-fold and 6 (5.5%) decreasing in level ≥2-fold. Of these microRNAs, miR-252–5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252–5p for degradation during normal wing development. Another microRNA, miR-982–5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease. PMID:25892215

  10. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs.

    PubMed

    Towler, Benjamin P; Jones, Christopher I; Viegas, Sandra C; Apura, Patricia; Waldron, Joseph A; Smalley, Sarah K; Arraiano, Cecilia M; Newbury, Sarah F

    2015-01-01

    Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a "no wing" phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥ 2-fold and 6 (5.5%) decreasing in level ≥ 2-fold. Of these microRNAs, miR-252-5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252-5p for degradation during normal wing development. Another microRNA, miR-982-5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease. PMID:25892215

  11. Folding thermodynamics of pseudoknotted chain conformations

    NASA Astrophysics Data System (ADS)

    Kopeikin, Zoia; Chen, Shi-Jie

    2006-04-01

    We develop a statistical mechanical framework for the folding thermodynamics of pseudoknotted structures. As applications of the theory, we investigate the folding stability and the free energy landscapes for both the thermal and the mechanical unfolding of pseudoknotted chains. For the mechanical unfolding process, we predict the force-extension curves, from which we can obtain the information about structural transitions in the unfolding process. In general, a pseudoknotted structure unfolds through multiple structural transitions. The interplay between the helix stems and the loops plays an important role in the folding stability of pseudoknots. For instance, variations in loop sizes can lead to the destabilization of some intermediate states and change the (equilibrium) folding pathways (e.g., two helix stems unfold either cooperatively or sequentially). In both thermal and mechanical unfolding, depending on the nucleotide sequence, misfolded intermediate states can emerge in the folding process. In addition, thermal and mechanical unfoldings often have different (equilibrium) pathways. For example, for certain sequences, the misfolded intermediates, which generally have longer tails, can fold, unfold, and refold again in the pulling process, which means that these intermediates can switch between two different average end-end extensions.

  12. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-06-01

    When the all- cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all- trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all- cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e. , "we t" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  13. Protein Folding and Misfolding on Surfaces

    PubMed Central

    Stefani, Massimo

    2008-01-01

    Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand how a protein folds rapidly and efficiently to the compact, biologically active structure. The increased knowledge on protein folding has highlighted its strict relation to protein misfolding and aggregation, either process being in close competition with the other, both relying on the same physicochemical basis. The theory has also provided information to better understand the structural and environmental factors affecting protein folding resulting in protein misfolding and aggregation into ordered or disordered polymeric assemblies. Among these, particular importance is given to the effects of surfaces. The latter, in some cases make possible rapid and efficient protein folding but most often recruit proteins/peptides increasing their local concentration thus favouring misfolding and accelerating the rate of nucleation. It is also emerging that surfaces can modify the path of protein misfolding and aggregation generating oligomers and polymers structurally different from those arising in the bulk solution and endowed with different physical properties and cytotoxicities. PMID:19330090

  14. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  15. Communication: Three-fold covariance imaging of laser-induced Coulomb explosions.

    PubMed

    Pickering, James D; Amini, Kasra; Brouard, Mark; Burt, Michael; Bush, Ian J; Christensen, Lauge; Lauer, Alexandra; Nielsen, Jens H; Slater, Craig S; Stapelfeldt, Henrik

    2016-04-28

    We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination. PMID:27131523

  16. Communication: Three-fold covariance imaging of laser-induced Coulomb explosions

    NASA Astrophysics Data System (ADS)

    Pickering, James D.; Amini, Kasra; Brouard, Mark; Burt, Michael; Bush, Ian J.; Christensen, Lauge; Lauer, Alexandra; Nielsen, Jens H.; Slater, Craig S.; Stapelfeldt, Henrik

    2016-04-01

    We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination.

  17. Protein kinase C (PKC) phosphorylates human platelet inositol trisphosphate 5/sup +/-/-phosphomonoesterase (IP/sub 3/ 5'-p'tase) increasing phosphatase activity

    SciTech Connect

    Connolly, T.M.; Majerus, P.W.

    1986-05-01

    Phosphoinositide breakdown in response to thrombin stimulation of human platelets generates messenger molecules that activate PKC (diglyceride) and mobilize Ca/sup + +/ (inositol tris-phosphates). The water soluble products of phospholipase C-mediated metabolism of phosphatidylinositol 4,5-diphosphate are inositol 1,4,5 P/sub 3/ (IP/sub 3/) and inositol 1:2-cyclic 4,5 P/sub 3/ (cIP/sub 3/). A specific phosphatase, IP/sub 3/ 5'-p'tase, cleaves the 5 phosphate from IP/sub 3/ or cIP/sub 3/ to form IP/sub 2/ or cIP/sub 2/ and P/sub i/, none of which mobilizes Ca/sup + +/. Thus, the IP/sub 3/ 5'-p'tase may regulate cellular responses to IP/sub 3/ or cIP/sub 3/. The authors find that IP/sub 3/ 5'-p'tase isolated from human platelets is phosphorylated by rat brain PKC, resulting in a 4-fold increase in IP/sub 3/ 5'-p'tase activity. The authors phosphorylated IP/sub 3/ 5'-p'tase using ..gamma.. /sup 32/P-ATP and found that the labeled enzyme comigrated on SDS-PAGE with the previously described 40K protein phosphorylated in response to thrombin stimulation of platelets. The similarity of the PKC-phosphorylated IP/sub 3/ 5'-p'tase observed in vitro and the thrombin-stimulated phosphorylated 40K protein known to be phosphorylated by PKC in vivo, suggests that these proteins may be the same. These results suggest that platelet Ca/sup + +/ mobilization maybe regulated by PKC phosphorylation of the IP/sub 3/ 5'-p'tase and can explain the observation that phorbol ester treatment of intact human platelets results in decreased production of IP/sub 3/ and decreased Ca/sup + +/ mobilization upon subsequent thrombin addition.

  18. Characterization of Metabolites during Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) with Municipal Anaerobic Sludge†

    PubMed Central

    Hawari, Jalal; Halasz, Annamaria; Sheremata, Tamara; Beaudet, Sylvie; Groom, Carl; Paquet, Louise; Rhofir, Chakib; Ampleman, Guy; Thiboutot, Sonia

    2000-01-01

    The biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in liquid cultures with municipal anaerobic sludge showed that at least two degradation routes were involved in the disappearance of the cyclic nitramine. In one route, RDX was reduced to give the familiar nitroso derivatives hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX). In the second route, two novel metabolites, methylenedinitramine [(O2NNH)2CH2] and bis(hydroxymethyl)nitramine [(HOCH2)2NNO2], formed and were presumed to be ring cleavage products produced by enzymatic hydrolysis of the inner C—N bonds of RDX. None of the above metabolites accumulated in the system, and they disappeared to produce nitrous oxide (N2O) as a nitrogen-containing end product and formaldehyde (HCHO), methanol (MeOH), and formic acid (HCOOH) that in turn disappeared to produce CH4 and CO2 as carbon-containing end products. PMID:10831452

  19. Characteristics of tropopause folds over Arctic latitudes

    NASA Astrophysics Data System (ADS)

    Rao, T. Narayana; Kirkwood, S.

    2005-09-01

    Characteristics of tropopause folds over Arctic latitudes have been studied using VHF radar measurements supplemented by balloon measurements. The variation of the radar parameters during the passage of tropopause folds is discussed in detail. To our knowledge, these observations constitute the first spaced antenna (SA) radar measurements during the passage of tropopause folds. This allows us to compare the parameters detectable using this mode with those observed using other configurations, such as the Doppler beam swinging (DBS) technique. In general, the structural characteristics, such as the slope of folds, seem to be similar at Arctic latitudes to that at midlatitudes; however, the height of the tropopause and the axis of the jet stream (and hence the folding) are found to be lower by 1-2 km than their counterparts in midlatitudes. In the case studies the radar-derived parameters, such as the signal-to-noise ratio (SNR) and vertical shear of horizontal wind, clearly show the upper-air frontal zone. The frontal circulation, conceived from vertical velocity, including the warm conveyer belt flow and the dry intrusion, is clearly visible in the first case, whereas it is masked by high-amplitude mountain lee waves in the second case. Further, the frontal zone seems to be acting as a critical layer to mountain lee wave activity by absorbing/filtering the wave activity. The aspect angles derived from the present analysis agree well with those estimated by vertical beam spectral width but are small in comparison with those estimated by the power ratio method. The mean full correlation analysis (FCA) turbulent velocity is estimated using the ESRAD data obtained during the passage of 15 tropopause folds. The mean eddy diffusion coefficients, Kz, near the tropopause and in the upper portion of the fold, where strong turbulence is seen in case studies, are found to be 3.54 and 6.4 m2 s-1, respectively. Utilizing the mean Kz and the mean ozone gradient (obtained from

  20. Folding patterns and shape optimization using SMA-based self-folding laminates

    NASA Astrophysics Data System (ADS)

    Peraza-Hernandez, Edwin A.; Frei, Katherine R.; Hartl, Darren J.; Lagoudas, Dimitris C.

    2014-03-01

    Origami engineering, a discipline encompassing the creation of practical three-dimensional structures from two- dimensional entities via folding operations, has the potential to impact multiple fields of manufacturing and design. In some circumstances, it may be practical to have self-folding capabilities instead of creating folds by external manipulations (as in morphing structures in outer space or on the ocean floor). This paper considers the use of a self-folding laminate composite consisting of two outer layers of thermally actuated shape memory alloy (SMA) wire meshes separated by an inner compliant insulating layer. Methods for designing folding patterns and determining temperature fields to obtain desired shapes and behaviors are proposed. Sheets composed of the self-folding laminate are modeled via finite element analysis (FEA) and the proposed methods are implemented to test their capabilities. One method uses a previously developed and freely available software called Freeform Origami for folding pattern design. The second method entails the use of optimization to determine the localized activation temperatures required to obtain desired shapes or to perform specific functions. The proposed methods are demonstrated to be applicable for the design of folding patterns and determination of activation temperatures for the self-folding laminate by showing successful examples of their implementation. This exploratory study provides new tools that can be integrated into the design framework of self-folding origami structures.

  1. Identification of adducts formed by reaction of N-acetoxy-3,5-dimethylaniline with DNA

    PubMed Central

    Cui, Liang; Sun, Hsiao-Lan; Wishnok, John S.; Tannenbaum, Steven R.; Skipper, Paul L.

    2008-01-01

    Aromatic amines constitute one of the most extensively studied classes of chemical carcinogens. Although monocyclic aromatic amines are generally regarded as weak carcinogens, a recent epidemiologic study of bladder cancer found that the arylamine 3,5-dimethylaniline (3,5-DMA) may play a significant role in the etiology of this disease in man. Investigations using experimental animals also strongly suggested that DNA adducts—of indeterminate structure—formed by 3,5-DMA might account for its presumptive activity. The present study was undertaken to determine the structures of the major DNA adducts formed in vitro by the known, and possibly carcinogenic, N-hydroxylated metabolite. Calf thymus DNA (ct-DNA) was modified by reaction with N-acetoxy-3,5-dimethylaniline (N-AcO-3,5-DMA). After enzymatic hydrolysis of DNA to individual 2'-deoxyribonucleosides, adduct profiles were determined using HPLC/MS. 3,5-DMA formed four major DNA adducts, one to 2’-deoxyguanosine (dG), two to 2’-deoxyadenosine (dA), and one to 2’-deoxycytidine (dC). Reactions of N-AcO-3,5-DMA with dG, dA, and dC produced the same adducts as reaction with ct-DNA with very similar profiles. Adducts were isolated chromatographically and unambiguously characterized as N-(deoxyguanosin-8-yl)-3,5-dimethylaniline (dG-C8−3,5-DMA), 4-(deoxyadenosin-N6-yl)-3,5-dimethylaniline (dA-N6-3,5-DMA), N-(deoxyadenosin-8-yl)-3,5-dimethylaniline (dA-C8−3,5-DMA), and N-(deoxycytidin-5-yl)-3,5-dimethylaniline (dC-C5−3,5-DMA) by high-resolution mass spectra (HR-MS) and NMR spectroscopy including 1H-NMR, 13C-NMR, and two-dimensional NMR. This report includes the first detailed description of a dC adduct of an aromatic amine. The present results provide chemical support for a carcinogenic mechanism of action by 3,5-DMA based on N-hydroxylation and the intermediacy of a nitrenium ion in the formation of DNA adducts. PMID:18020398

  2. The nature of protein folding pathways

    PubMed Central

    Englander, S. Walter; Mayne, Leland

    2014-01-01

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure. PMID:25326421

  3. Cross folding in southern Bighorn basin

    SciTech Connect

    Gubbels, T.L.

    1986-08-01

    Analysis of Landsat Thematic Mapper imagery coupled with surface structural investigations of well-exposed folds in the southern Bighorn basin have revealed two northwest-trending folds that have been refolded. The eastern boundary of the Owl Creek Mountains is characterized by a well-defined alignment of folds that extend north-northwest from the Owl Creek thrust front. Bridger monocline, Wildhorse Butte anticline, and Red Hole anticline lie along this trend. Initial Laramide folding, probably during latest Cretaceous time, resulted in a single, continuous, north-northwest-trending anticline with a southwestward vergence. This anticline was progressively unfolded from south to north as the Owl Creek Range was thrust southward over the Wind River basin in earliest Eocene time; scissors-like vertical motion along this flexure rotated the axial surface of the early formed Bridger anticline, resulting in a monocline with a reversed vergence (northeastward). Formation of the Thermopolis/East Warm Springs anticline parallel to the north flank of the range accompanied thrusting and effectively refolded the northern end of the Wildhorse Butte anticline along an east-west axis. Faulting of the oversteepened south limb of the Red Hole cross fold was contemporaneous with folding. Cross-cutting fold axes in this area and the Mud Creek area to the west are best explained by a counterclockwise change in stress direction during the latest phase of the Laramide orogeny. Vertical movement along the eastern side of the Owl Creek Range results from differential motion in the hanging wall of the crystalline thrust sheet.

  4. Novel 3,5-bis(arylidene)-4-oxo-1-piperidinyl dimers: structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity.

    PubMed

    Santiago-Vazquez, Yahaira; Das, Swagatika; Das, Umashankar; Robles-Escajeda, Elisa; Ortega, Nora M; Lema, Carolina; Varela-Ramírez, Armando; Aguilera, Renato J; Balzarini, Jan; De Clercq, Erik; Dimmock, Stephen G; Gorecki, Dennis K J; Dimmock, Jonathan R

    2014-04-22

    Novel clusters of 3,5-bis(benzylidene)-4-oxo-1-piperidinyl dimers 3-5 were evaluated against human Molt4/C8 and CEM T-lymphocytes and human HeLa cervix adenocarcinoma cells as well as murine L1210 leukemia neoplasms. Several of these compounds demonstrated IC50 values in the submicromolar and low micromolar range and compounds possessing 4-fluoro, 4-chloro and 3,4,5-trimethoxy substituents in the series 3 and 4 were identified as potent molecules. A heat map revealed the very high cytotoxic potencies of representative compounds against a number of additional leukemic and lymphoma cell lines and displayed greater toxicity to these cells than nonmalignant MCF10A and Hs-27 neoplasms. These dienones are more refractory to breast and prostate cancers. The evaluation of representative compounds in series 3-5 against a panel of human cancer cell lines revealed them to be potent cytotoxins with average IC50 values ranging from 0.05 to 8.51 μM. In particular, the most potent compound 4g demonstrated over 382-fold and 590-fold greater average cytotoxic potencies in this screen than the reference drugs, melphalan and 5-fluorouracil, respectively. A mode of action investigation of two representative compounds 3f and 4f indicated that they induce apoptosis which is due, at least in part, to the activation of caspase-3 and depolarization of the mitochondrial membrane potential. PMID:24657568

  5. Biodegradation of the Hexahydro-1,3,5-Trinitro-1,3,5-Triazine Ring Cleavage Product 4-Nitro-2,4-Diazabutanal by Phanerochaete chrysosporium

    PubMed Central

    Fournier, Diane; Halasz, Annamaria; Spain, Jim; Spanggord, Ronald J.; Bottaro, Jeffrey C.; Hawari, Jalal

    2004-01-01

    Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies. PMID:14766596

  6. Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium.

    PubMed

    Fournier, Diane; Halasz, Annamaria; Spain, Jim; Spanggord, Ronald J; Bottaro, Jeffrey C; Hawari, Jalal

    2004-02-01

    Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 micromol kg(-1)), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 micromol kg(-1)), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 micromol kg(-1)), and traces of NDAB (3.8 micromol kg(-1)). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 +/- 22 micromol kg(-1)) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies. PMID:14766596

  7. Estimation of vocal fold plane in 3D CT images for diagnosis of vocal fold abnormalities.

    PubMed

    Hewavitharanage, Sajini; Gubbi, Jayavardhana; Thyagarajan, Dominic; Lau, Ken; Palaniswami, Marimuthu

    2015-01-01

    Vocal folds are the key body structures that are responsible for phonation and regulating air movement into and out of lungs. Various vocal fold disorders may seriously impact the quality of life. When diagnosing vocal fold disorders, CT of the neck is the commonly used imaging method. However, vocal folds do not align with the normal axial plane of a neck and the plane containing vocal cords and arytenoids does vary during phonation. It is therefore important to generate an algorithm for detecting the actual plane containing vocal folds. In this paper, we propose a method to automatically estimate the vocal fold plane using vertebral column and anterior commissure localization. Gray-level thresholding, connected component analysis, rule based segmentation and unsupervised k-means clustering were used in the proposed algorithm. The anterior commissure segmentation method achieved an accuracy of 85%, a good estimate of the expert assessment. PMID:26736949

  8. Viral infections of the folds (intertriginous areas).

    PubMed

    Adışen, Esra; Önder, Meltem

    2015-01-01

    Viruses are considered intracellular obligates with a nucleic acid, either RNA or DNA. They have the ability to encode proteins involved in viral replication and production of the protective coat within the host cells but require host cell ribosomes and mitochondria for translation. The members of the families Herpesviridae, Poxviridae, Papovaviridae, and Picornaviridae are the most commonly known agents for the cutaneous viral diseases, but other virus families, such as Adenoviridae, Togaviridae, Parvoviridae, Paramyxoviridae, Flaviviridae, and Hepadnaviridae, can also infect the skin. Though the cutaneous manifestations of viral infections are closely related to the type and the transmission route of the virus, viral skin diseases may occur in almost any part of the body. In addition to friction caused by skin-to-skin touch, skin folds are warm and moist areas of the skin that have limited air circulation. These features provide a fertile breeding ground for many kinds of microorganisms, including bacteria and fungi. In contrast to specific bacterial and fungal agents that have an affinity for the skin folds, except for viral diseases of the anogenital area, which have well-known presentations, viral skin infections that have a special affinity to the skin folds are not known. Many viral exanthems may affect the skin folds during the course of the infection, but here we focus only on the ones that usually affect the fold areas and also on the less well-known conditions or recently described associations. PMID:26051057

  9. Protein Folding and Mechanisms of Proteostasis

    PubMed Central

    Díaz-Villanueva, José Fernando; Díaz-Molina, Raúl; García-González, Victor

    2015-01-01

    Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis. PMID:26225966

  10. Petrofabric test of viscous folding theory

    NASA Astrophysics Data System (ADS)

    Onasch, Charles M.

    1984-06-01

    Compression and extension axes are deduced from quartz deformation lamellae in a quartzite and a graywacke folded into an asymetrical syncline. Deformation lamellae fabrics in the two sandstones are distinctly different. In the graywacke, regardless of bedding orientation or position on the fold, compression axes are normal or nearly normal to the axial planar rough cleavage. Extension axes generally lie in the cleavage plane, parallel to dip. In most quartzite samples, compression axes are parallel or subparallel to bedding, at high angles to the fold axis and extension axes are normal to bedding. Two samples from the very base of the formation indicate compression parallel to the fold axis with extension parallel to bedding, at high angles to the fold axis. One of these two shows both patterns. The lamellae fabric geometry in these two samples suggests the presence of a neutral surface in the quartzite. The lamellae-derived compression and extension axes are in good agreement with the buckling behavior of a viscous layer (quartzite) embedded in a less viscous medium (graywacke and shale below and shale and carbonate above).

  11. Protein Folding and Mechanisms of Proteostasis.

    PubMed

    Díaz-Villanueva, José Fernando; Díaz-Molina, Raúl; García-González, Victor

    2015-01-01

    Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis. PMID:26225966

  12. Towards a systematic classification of protein folds

    NASA Astrophysics Data System (ADS)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-10-01

    A lattice model Hamiltonian is suggested for protein structures that can explain the division into structural fold classes during the folding process. Proteins are described by chains of secondary structure elements, with the hinges in between being the important degrees of freedom. The protein structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure in the usual protein data base coordinate format can be transformed into the proposed chain representation. Taking into account hydrophobic forces we have found a mechanism for the formation of domains with a unique fold containing predicted magic numbers \\{4,6,9,12,16,18,...\\} of secondary structures and multiples of these domains. It is shown that the same magic numbers are robust and occur as well for packing on other nonclosed packed lattices. We have performed a statistical analysis of available protein structures and found agreement with the predicted preferred abundances of proteins with a predicted magic number of secondary structures. Thermodynamic arguments for the increased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high symmetry phase, the parent structures, between the molten globule and the native states. We have made an exhaustive enumeration of dense lattice animals on a cubic lattice for acceptance number Z=4 and Z=5 up to 36 vertices.

  13. Bleaching effect of a 405-nm diode laser irradiation used with titanium dioxide and 3.5% hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Kato, J.; Nakazawa, T.; Hirai, Y.

    2007-09-01

    A 405-nm diode laser has recently been developed for soft tissue problems in dentistry. A new in-office bleaching agent consisting of a titanium dioxide photocatalyst and 3.5% hydrogen peroxide has proven to react well with light irradiated at a wavelength of around 400 nm. In this study, we evaluated the bleaching efficacy of a newly developed 405-nm diode laser on bovine teeth treated with a bleaching agent composed of titanium dioxide and 3.5% hydrogen peroxide. Sixteen bovine incisors were randomly divided into two groups: Group A, irradiated by the 405-nm diode laser at 200 mW; Group B, irradiated by the 405-nm diode laser at 400 mW. The bleaching agent with titanium dioxide and 3.5% hydrogen peroxide was applied to bovine enamel and irradiated for 1 min. The specimens were then washed and dried, and the same procedure was repeated nine more times. After irradiation, we assessed the effects of bleaching on the enamel by measuring the color of the specimens with a spectrophotometer and examining the enamel surfaces with a scanning electron microscope. L* rose to a high score, reaching a significantly higher post-treatment level in comparison to pretreatment. In a comparison of the color difference (Δ E) between Group A and Group B, the specimens in Group B showed significantly higher values after 10 min of irradiation for the post-treatment. No remarkable differences in the enamel surface morphology were found between the unbleached and bleached enamel. The use of a 405-nm diode laser in combination with a bleaching agent of titanium dioxide and 3.5% hydrogen peroxide may be an effective method for bleaching teeth without the risk of tooth damage.

  14. Proteopedia: Rossmann Fold: A Beta-Alpha-Beta Fold at Dinucleotide Binding Sites

    ERIC Educational Resources Information Center

    Hanukoglu, Israel

    2015-01-01

    The Rossmann fold is one of the most common and widely distributed super-secondary structures. It is composed of a series of alternating beta strand (ß) and alpha helical (a) segments wherein the ß-strands are hydrogen bonded forming a ß-sheet. The initial beta-alpha-beta (ßaß) fold is the most conserved segment of Rossmann folds. As this segment…

  15. Competition between surface adsorption and folding of fibril-forming polypeptides

    NASA Astrophysics Data System (ADS)

    Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.

    2015-02-01

    Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].

  16. Influence of the ventricular folds on a voice source with specified vocal fold motion1

    PubMed Central

    McGowan, Richard S.; Howe, Michael S.

    2010-01-01

    The unsteady drag on the vocal folds is the major source of sound during voiced speech. The drag force is caused by vortex shedding from the vocal folds. The influence of the ventricular folds (i.e., the “false” vocal folds that protrude into the vocal tract a short distance downstream of the glottis) on the drag and the voice source are examined in this paper by means of a theoretical model involving vortex sheets in a two-dimensional geometry. The effect of the ventricular folds on the output acoustic pressure is found to be small when the movement of the vocal folds is prescribed. It is argued that the effect remains small when fluid-structure interactions account for vocal fold movement. These conclusions can be justified mathematically when the characteristic time scale for change in the velocity of the glottal jet is large compared to the time it takes for a vortex disturbance to be convected through the vocal fold and ventricular fold region. PMID:20329852

  17. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    NASA Astrophysics Data System (ADS)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  18. Proteins with Highly Similar Native Folds Can Show Vastly Dissimilar Folding Behavior When Desolvated**

    PubMed Central

    Schennach, Moritz; Breuker, Kathrin

    2014-01-01

    Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution. PMID:24259450

  19. Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4).

    PubMed

    Booth, B L; Pitters, E; Mayer, B; Sorenson, J R

    1999-01-01

    Purposes of this work were to examine the plausible down-regulation of porcine heart diaphorase (PHD) enzyme reactivity and nitric oxide synthase (NOS) enzyme reactivity by trimanganese hexakis(3,5-diisopropylsalicylate), [Mn(3)(3,5-DIPS)(6)] as well as dicopper tetrakis(3,5- diisopropylsalicylate, [Cu(II)(2)(3,5-DIPS)(4)] as a mechanistic accounting for their pharmacological activities.Porcine heart disease was found to oxidize 114 muM reduced nicotinamide-adenine- dinucleotide-'(3)-phosphate (NADPH) with a corresponding reduction of an equivalent concentration of 2,6-dichlorophenolindophenol (DCPIP). As reported for Cu(II)(2) (3,5-DIPS)(4), addition of Mn(3)(3,5-DIPS)(6) to this reaction mixture decreased the reduction of DCPIP without significantly affecting the oxidation of NADPH. The concentration of Mn(3)(3,5-DIPS)(6) that produced a 50% decrease in DCPIP reduction (IC(50)) was found to be 5muM. Mechanistically, this inhibition of DCPIP reduction with ongoing NADPH oxidation by PHD was found to be due to the ability of Mn(3)(3,5-DIPS)(6) to serve as a catalytic electron acceptor for reduced PHD as had been reported for Cu(II)(2)(3,5-DIPS)(4). This catalytic decrease in reduction of DCPIP by Mn(3)(3,5-DIPS)(6) was enhanced by the presence of a large concentration of DCPIP and decreased by the presence of a large concentration of NADPH, consistent with what had been observed for the activity of Cu(II)(2)(3,5-DIPS)(4)Oxidation of NADPH by PHD in the presence of Mn(3)(3,5-DIPS)(6) and the absence of DCPIP was linearly related to the concentration of added Mn(3)(3,5-DIPS)(6) through the concentration range of 2.4 muM to 38muM with a 50% recovery of NADPH oxidation by PHD at a concentration of 6 muM Mn(3)(3,5-DIPS)(6)Conversion of [(3)H] L-Arginine to [(3)H] L-Citrulline by purified rat brain nitric oxide synthase (NOS) was decreased in a concentrated related fashion with the addition of Mn(3)(3,5-DIPS)(6) as well as Cu(II)(2)(3,5-DIPS)(4) which is an extention of

  20. Nanocellulose 3, 5-Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    PubMed

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-05-01

    Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5-dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC-coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative-coated CSP was also prepared as contrast. The chiral separation performance of NCC-based CSP was evaluated and compared with MCC-based CSP by high-performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC-based CSP with better peak shape and higher column efficiency than MCC-based CSP, which confirmed that NCC-based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376-381, 2016. © 2016 Wiley Periodicals, Inc. PMID:26949227

  1. Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance.

    PubMed

    Zhang, Jiaheng; Dharavath, Srinivas; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-06-22

    Molecular modification of known explosives is considered to be an efficient route to design new energetic materials. A new family of energetic salts based on the 3,5-bis(dinitromethyl)-1,2,4-triazole monoanion and dianion were controllably synthesized by using 1-diamino-2,2-dinitroethene as a precursor. X-ray structure determination of monohydrazinium 3,5-bis(dinitromethyl)-1,2,4-triazolate (5) and monoammonium (6) and diammonium 3,5-bis(dinitromethyl)-1,2,4-triazolate hydrate (8·H2O) further confirmed the structures of these anions. In addition, as supported by X-ray data, in the monoanion system, the roving proton on the ring nitrogen rather than on the gem-dinitro carbon results in extensive hydrogen-bonding interactions and higher packing coefficients. Interestingly, 5 and 6 possess the highest calculated crystal densities, 1.965 and 1.957 g cm(-3) at 150 K, for hydrazinium and ammonium energetic salts, respectively. Energetic evaluation indicates that 5 (detonation velocity vD = 9086 m s(-1); detonation pressure P = 38.7 GPa) and 6 (vD, 9271 m s(-1); P = 41.0 GPa) exhibit great detonation properties, superior to those of current highly explosive benchmarks, such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). PMID:27267735

  2. Stretching and folding in finite time.

    PubMed

    Ma, Tian; Ouellette, Nicholas T; Bollt, Erik M

    2016-02-01

    Complex flows mix efficiently, and this process can be understood by considering the stretching and folding of material volumes. Although many metrics have been devised to characterize stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable flows. Here, we extend our previous methods based on the finite-time curving of fluid-element trajectories to nonzero scales and show that this finite-scale finite-time curvature contains information about both stretching and folding. We compare this metric to the more commonly used finite-time Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian methods for characterizing mixing in complex, aperiodic fluid flows. PMID:26931593

  3. Stretching and folding in finite time

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Ouellette, Nicholas T.; Bollt, Erik M.

    2016-02-01

    Complex flows mix efficiently, and this process can be understood by considering the stretching and folding of material volumes. Although many metrics have been devised to characterize stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable flows. Here, we extend our previous methods based on the finite-time curving of fluid-element trajectories to nonzero scales and show that this finite-scale finite-time curvature contains information about both stretching and folding. We compare this metric to the more commonly used finite-time Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian methods for characterizing mixing in complex, aperiodic fluid flows.

  4. Thermal stability of idealized folded carbyne loops.

    PubMed

    Cranford, Steven W

    2013-01-01

    Self-unfolding items provide a practical convenience, wherein ring-like frames are contorted into a state of equilibrium and subsequently  pop up' or deploy when perturbed from a folded structure. Can the same process be exploited at the molecular scale? At the limiting scale is a closed chain of single atoms, used here to investigate the limits of stability of such folded ring structures via full atomistic molecular dynamics. Carbyne is a one-dimensional carbon allotrope composed of sp-hybridized carbon atoms. Here, we explore the stability of idealized carbyne loops as a function of chain length, curvature, and temperature, and delineate an effective phase diagram between folded and unfolded states. We find that while overall curvature is reduced, in addition to torsional and self-adhesive energy barriers, a local increase in curvature results in the largest impedance to unfolding. PMID:24252156

  5. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar. PMID:22757520

  6. Computing folding pathways between RNA secondary structures.

    PubMed

    Dotu, Ivan; Lorenz, William A; Van Hentenryck, Pascal; Clote, Peter

    2010-03-01

    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder. PMID:20044352

  7. Microbial Manipulation of the Amyloid Fold

    PubMed Central

    DePas, William H.

    2012-01-01

    Microbial biofilms are encased in a protein, DNA and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells to adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review. PMID:23108148

  8. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Evaluation and Research, the Center for Devices and Radiological Health, and the Center for Drug Evaluation... for Drug Evaluation and Research and the Center for Devices and Radiological Health;” “Intercenter... component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT......

  9. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Evaluation and Research, the Center for Devices and Radiological Health, and the Center for Drug Evaluation... for Drug Evaluation and Research and the Center for Devices and Radiological Health;” “Intercenter... component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT......

  10. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Evaluation and Research, the Center for Devices and Radiological Health, and the Center for Drug Evaluation... for Drug Evaluation and Research and the Center for Devices and Radiological Health;” “Intercenter... component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT......

  11. AquaSMART: Water & Boating Safety, Grades 3-5. Teacher's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This teacher's guide accompanies a program designed to teach water and boating safety to students in grades 3-5. The written curriculum accompanies a video, AquaSMART 3-5. The theme of the curriculum is AquaSMART. To become AquaSMART, students must learn 10 basic lessons for water and boating safety. The written curriculum begins with an overview…

  12. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Procedures for identifying the designated agency component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PRODUCT JURISDICTION Assignment of Agency Component for Review of Premarket...

  13. Method of refining 2,2-isopropylidenebis-3,5- dibromophenylene-4-oxydiethanol

    NASA Technical Reports Server (NTRS)

    Kobayashi, T.; Nawata, K.; Hiratsuka, K.

    1982-01-01

    A method of refining 2,2-isopropylidenebis-3,5-dibromophenylene-4-oxydiethanol is described which is characterized by recrystallization of 2,2-isopropylidenebis-3,5-dibromophenylene-4-oxydiethanol using one or more aromatic hydrocarbons such as benzene, xylene, toluene, ethylbenzene or pseudocumene.

  14. IMMUNOASSAY METHODS FOR MEASURING ATRAZINE AND 3,5,6-TRICHLORO-2-PYRIDINOL IN FOODS

    EPA Science Inventory

    This chapter describes the use of enzyme-linked immunosorbent assay (ELISA) methods for the analysis of two potential environmental contaminants in food sample media, atrazine and 3,5,6-trichloro-2-pyridinol (3,5,6-TCP). Two different immunoassay formats are employed: a magnetic...

  15. 40 CFR 721.10158 - 2-Pentanone, 3,5-dichloro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (organic vapor, acid gas, or substance-specific). (ii) Hazard communication program. Requirements as... Substances § 721.10158 2-Pentanone, 3,5-dichloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-pentanone, 3,5-dichloro- (PMN P-06-16; CAS No....

  16. 40 CFR 721.10158 - 2-Pentanone, 3,5-dichloro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (organic vapor, acid gas, or substance-specific). (ii) Hazard communication program. Requirements as... Substances § 721.10158 2-Pentanone, 3,5-dichloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-pentanone, 3,5-dichloro- (PMN P-06-16; CAS No....

  17. 40 CFR 721.10158 - 2-Pentanone, 3,5-dichloro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (organic vapor, acid gas, or substance-specific). (ii) Hazard communication program. Requirements as... Substances § 721.10158 2-Pentanone, 3,5-dichloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-pentanone, 3,5-dichloro- (PMN P-06-16; CAS No....

  18. 40 CFR 721.10158 - 2-Pentanone, 3,5-dichloro-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (organic vapor, acid gas, or substance-specific). (ii) Hazard communication program. Requirements as... Substances § 721.10158 2-Pentanone, 3,5-dichloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-pentanone, 3,5-dichloro- (PMN P-06-16; CAS No....

  19. 40 CFR 721.10158 - 2-Pentanone, 3,5-dichloro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (organic vapor, acid gas, or substance-specific). (ii) Hazard communication program. Requirements as... Substances § 721.10158 2-Pentanone, 3,5-dichloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-pentanone, 3,5-dichloro- (PMN P-06-16; CAS No....

  20. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Gregory, Dennis E.

    Decisions made by federal and state courts during 1983 concerning higher education are reported in this chapter. Issues of employment and the treatment of students underlay the bulk of the litigation. Specific topics addressed in these and other cases included federal authority to enforce regulations against age discrimination and to revoke an…

  1. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.

    Litigation in 1987 was very brisk with an increase in the number of higher education cases reviewed. Cases discussed in this chapter are organized under four major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining and denial of employee benefits; (3)…

  2. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Finnegan, Dorothy E.

    The higher education case law in 1988 is extensive. Cases discussed in this chapter are organized under five major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining, and denial of employee benefits; (3) students, involving admissions, financial aid, First…

  3. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.

    This eighth chapter of "The Yearbook of School Law, 1986" summarizes and analyzes over 330 state and federal court cases litigated in 1985 in which institutions of higher education were involved. Among the topics examined were relationships between postsecondary institutions and various governmental agencies; discrimination in the employment of…

  4. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-04-01

    When the all-cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all-trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all-cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e., "wet" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  5. Fast gravitational wave radiometry using data folding

    NASA Astrophysics Data System (ADS)

    Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit

    2015-07-01

    Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.

  6. Untemplated nonenzymatic polymerization of 3',5'cGMP: a plausible route to 3',5'-linked oligonucleotides in primordia.

    PubMed

    Šponer, Judit E; Šponer, Jiří; Giorgi, Alessandra; Di Mauro, Ernesto; Pino, Samanta; Costanzo, Giovanna

    2015-02-19

    The high-energy 3',5' phosphodiester linkages conserved in 3',5' cyclic GMPs offer a genuine solution for monomer activation required by the transphosphorylation reactions that could lead to the emergence of the first simple oligonucleotide sequences on the early Earth. In this work we provide an in-depth characterization of the effect of the reaction conditions on the yield of the polymerization reaction of 3',5' cyclic GMPs both in aqueous environment as well as under dehydrating conditions. We show that the threshold temperature of the polymerization is about 30 °C lower under dehydrating conditions than in solution. In addition, we present a plausible exergonic reaction pathway for the polymerization reaction, which involves transient formation of anionic centers at the O3' positions of the participating riboses. We suggest that excess Na(+) cations inhibit the polymerization reaction because they block the anionic mechanism via neutralizing the negatively charged O3'. Our experimental findings are compatible with a prebiotic scenario, where gradual desiccation of the environment could induce polymerization of 3',5' cyclic GMPs synthesized in liquid. PMID:25625780

  7. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  8. Hypocrellin B graft on activated carbon and photocatalytic oxidation of 2,3,5-trimethylphenol

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Ying; Zhang, Pei; Zhang, Jucheng; Min, Yong; Yi, Zhongzhou; Zhang, Canbang; Wu, Mingzhu; Chen, Rui

    2008-12-01

    Hypocrellin B, a photosensitizer isolated from Hypocrella Bambuase sacc in Yunnan province, has significant anti-tumor and anti-virus character. In this article, hypocrellin B, which was grafted on activated carbon, was used as photocatalysts to catalytic oxidize 2,3,5-trimethylphenol to 2,3,5-trimethylhydrobenzoquinone because of its high photons efficiency. This study realized nearly 100% selectivity for 2,3,5-trimethylhydrobenzoquinone under visible light irradiation (>400nm) at aerobic atmosphere. The photocatalytic oxidation process has been studied by different parameters like the pretreatment of activated carbon, synthetic mehtod of grafted hypocrellin, and photo-assisted oxidation catalysis of 2,3,5-trimethylphenol to 2,3,5-trimethylhdrobenzoquinone. Compared to the conventional methods, this process could be more eco-friendly.

  9. Understanding protein folding: small proteins in silico.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-01-01

    Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins. PMID:18036571

  10. Extramedullary plasmacytoma of the true vocal fold.

    PubMed

    De Zoysa, Nilantha; Sandler, Belinda; Amonoo-Kuofi, Kwame; Swamy, Rajiv; Kothari, Prasad; Mochloulis, George

    2012-08-01

    We report a rare case of extramedullary plasmacytoma (EMP) of the true vocal fold. Our patient, a 62-year-old woman, presented with dysphonia. On workup, fiberoptic laryngoscopy detected a lesion arising from the anterior half of her left true vocal fold. No evidence of other pathology was noted. The patient underwent radical radiotherapy, and the lesion resolved. Follow-up revealed no sign of recurrence. A type of myeloma, EMP is rare, especially in the larynx. To the best of our knowledge, our patient represents the sixth case of glottic EMP to be reported in the literature. PMID:22930090

  11. Circular permutant GFP insertion folding reporters

    SciTech Connect

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  12. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  13. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  14. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  15. Control of folding by gravity and matrix thickness: Implications for large-scale folding

    NASA Astrophysics Data System (ADS)

    Schmalholz, S. M.; Podladchikov, Y. Y.; Burg, J.-P.

    2002-01-01

    We show that folding of a non-Newtonian layer resting on a homogeneous Newtonian matrix with finite thickness under influence of gravity can occur by three modes: (1) matrix-controlled folding, dependent on the effective viscosity contrast between layer and matrix, (2) gravity-controlled folding, dependent on the Argand number (the ratio of the stress caused by gravity to the stress caused by shortening), and (3) detachment folding, dependent on the ratio of matrix thickness to layer thickness. We construct a phase diagram that defines the transitions between each of the three folding modes. Our priority is transparency of the analytical derivations (e.g., thin-plate versus thick-plate approximations), which permits complete classification of the folding modes involving a minimum number of dimensionless parameters. Accuracy and sensitivity of the analytical results to model assumptions are investigated. In particular, depth dependence of matrix rheology is only important for folding over a narrow range of material parameters. In contrast, strong depth dependence of the viscosity of the folding layer limits applicability of ductile rheology and leads to a viscoelastic transition. Our theory is applied to estimate the effective thickness of the folded central Asian upper crust using the ratio of topographic wavelength to Moho depth. Phase diagrams based on geometrical parameters show that gravity does not significantly control folding in the Jura and the Zagros Mountains but does control folding in central Asia. Applicability conditions of viscous and thin sheet models for large-scale lithospheric deformation, derived in terms of the Argand number, have implications for the plate-like style of planetary tectonics.

  16. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics

    PubMed Central

    Li, Xinran; Wang, Xiang; Zhang, Xiaoli; Zhao, Mingkun; Tsang, Wai Lok; Zhang, Yanling; Yau, Richard Gar Wai; Weisman, Lois S.; Xu, Haoxing

    2013-01-01

    Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phosphoinositide presumed to be localized to endosomes and lysosomes, where it recruits cytoplasmic peripheral proteins and regulates endolysosome-localized membrane channel activity. Cells lacking PI(3,5)P2 exhibit lysosomal trafficking defects, and human mutations in the PI(3,5)P2-metabolizing enzymes cause lysosome-related diseases. The spatial and temporal dynamics of PI(3,5)P2, however, remain unclear due to the lack of a reliable detection method. Of the seven known phosphoinositides, only PI(3,5)P2 binds, in the low nanomolar range, to a cytoplasmic phosphoinositide-interacting domain (ML1N) to activate late endosome and lysosome (LEL)-localized transient receptor potential Mucolipin 1 (TRPML1) channels. Here, we report the generation and characterization of a PI(3,5)P2-specific probe, generated by the fusion of fluorescence tags to the tandem repeats of ML1N. The probe was mainly localized to the membranes of Lamp1-positive compartments, and the localization pattern was dynamically altered by either mutations in the probe, or by genetically or pharmacologically manipulating the cellular levels of PI(3,5)P2. Through the use of time-lapse live-cell imaging, we found that the localization of the PI(3,5)P2 probe was regulated by serum withdrawal/addition, undergoing rapid changes immediately before membrane fusion of two LELs. Our development of a PI(3,5)P2-specific probe may facilitate studies of both intracellular signal transduction and membrane trafficking in the endosomes and lysosomes. PMID:24324172

  17. The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5

    NASA Astrophysics Data System (ADS)

    Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.

    2007-02-01

    We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.

  18. Characterization and proteomic analysis of the Pseudomonas sp. HK-6 xenB knockout mutant under RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) stress.

    PubMed

    Lee, Bheong-Uk; Choi, Moon-Seop; Oh, Kye-Heon

    2015-01-01

    Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 10(2)-10(4)-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress. PMID:25239011

  19. Use of an algD promoter-driven expression system for the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Pseudomonas sp. HK-6.

    PubMed

    Lee, Bheong-Uk; Baek, Hyun; Oh, Kye-Heon

    2013-10-01

    Pseudomonas sp. HK-6 is able to utilize hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a sole nitrogen source. The HK-6 strain was stimulated to produce an exopolymer, mainly alginate, as a stress response when grown in LB broth containing RDX, synthesizing ~230 μg/mL after 48 h. The algA mRNA levels in HK-6 increased by 7-8-fold after 2-6 h of exposure to 0.1 mM RDX, as measured by RT-qPCR. HK-6 was able to degrade ~25 % of 0.1 mM RDX after 20 days and 60 % after 50 days, whereas the pnrB null mutant only degraded less than 1 % after 50 days. The introduction of an algD promoter-pnrB gene fusion into the pnrB mutant fully restored RDX-degradation capability. To facilitate a study of PnrB action on RDX, a His6-PnrB fusion protein was heterologously expressed in E. coli BL21 cells, and the enzymatic activity on RDX was assayed by measuring the decrease in absorbance at 340 nm due to NADH oxidation. At the fixed condition of 0.1 mM RDX, 0.2 mM NADH, and 1 μg His6-PnrB, the absorbance at 340 nM gradually decreased and reached to its minimum value after 30 min. However, calculating the V max and K m values of PnrB for RDX was challenging due to extremely low solubility of RDX in water. The results clearly indicate the potential use of the algD promoter in studies of some genes in Pseudomonas species. PMID:23715665

  20. Regulation of cerebral cortex size and folding by expansion of basal progenitors

    PubMed Central

    Nonaka-Kinoshita, Miki; Reillo, Isabel; Artegiani, Benedetta; Ángeles Martínez-Martínez, Maria; Nelson, Mark; Borrell, Víctor; Calegari, Federico

    2013-01-01

    Size and folding of the cerebral cortex increased massively during mammalian evolution leading to the current diversity of brain morphologies. Various subtypes of neural stem and progenitor cells have been proposed to contribute differently in regulating thickness or folding of the cerebral cortex during development, but their specific roles have not been demonstrated. We report that the controlled expansion of unipotent basal progenitors in mouse embryos led to megalencephaly, with increased surface area of the cerebral cortex, but not to cortical folding. In contrast, expansion of multipotent basal progenitors in the naturally gyrencephalic ferret was sufficient to drive the formation of additional folds and fissures. In both models, changes occurred while preserving a structurally normal, six-layered cortex. Our results are the first experimental demonstration of specific and distinct roles for basal progenitor subtypes in regulating cerebral cortex size and folding during development underlying the superior intellectual capability acquired by higher mammals during evolution. PMID:23624932

  1. De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints.

    PubMed

    Smock, Robert G; Yadid, Itamar; Dym, Orly; Clarke, Jane; Tawfik, Dan S

    2016-01-28

    Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence. PMID:26806127

  2. De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints

    PubMed Central

    Smock, Robert G.; Yadid, Itamar; Dym, Orly; Clarke, Jane; Tawfik, Dan S.

    2016-01-01

    Summary Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence. PMID:26806127

  3. Nomenclature proposal to describe vocal fold motion impairment.

    PubMed

    Rosen, Clark A; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E; Young, VyVy N; Hantzakos, Anastasios; Yung, Katherine C; Dikkers, Frederik G

    2016-08-01

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold impairment. Overarching terms of vocal fold immobility and hypomobility are rigorously defined. This includes assessment techniques and inclusion and exclusion criteria for determining vocal fold immobility and hypomobility. In addition, criteria for use of the following terms have been outlined in detail: vocal fold paralysis, vocal fold paresis, vocal fold immobility/hypomobility associated with mechanical impairment of the crico-arytenoid joint and vocal fold immobility/hypomobility related to laryngeal malignant disease. This represents the first rigorously defined vocal fold motion impairment nomenclature system. This provides detailed definitions to the terms vocal fold paralysis and vocal fold paresis. PMID:26036851

  4. Protein GB1 Folding and Assembly from Structural Elements

    PubMed Central

    Bauer, Mikael C.; Xue, Wei-Feng; Linse, Sara

    2009-01-01

    Folding of the Protein G B1 domain (PGB1) shifts with increasing salt concentration from a cooperative assembly of inherently unstructured subdomains to an assembly of partly pre-folded structures. The salt-dependence of pre-folding contributes to the stability minimum observed at physiological salt conditions. Our conclusions are based on a study in which the reconstitution of PGB1 from two fragments was studied as a function of salt concentrations and temperature using circular dichroism spectroscopy. Salt was found to induce an increase in β-hairpin structure for the C-terminal fragment (residues 41 – 56), whereas no major salt effect on structure was observed for the isolated N-terminal fragment (residues 1 – 41). In line with the increasing evidence on the interrelation between fragment complementation and stability of the corresponding intact protein, we also find that salt effects on reconstitution can be predicted from salt dependence of the stability of the intact protein. Our data show that our variant (which has the mutations T2Q, N8D, N37D and reconstitutes in a manner similar to the wild type) displays the lowest equilibrium association constant around physiological salt concentration, with higher affinity observed both at lower and higher salt concentration. This corroborates the salt effects on the stability towards denaturation of the intact protein, for which the stability at physiological salt is lower compared to both lower and higher salt concentrations. Hence we conclude that reconstitution reports on molecular factors that govern the native states of proteins. PMID:19468325

  5. The geometry and topology of natural sheath folds: a new tool for structural analysis

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Holdsworth, R. E.

    2004-09-01

    Curvilinear sheath folds are classically depicted as displaying symmetrical geometries about two orthogonal mirror planes centred along the (X-Y) axial surface and the (X-Z) medial (culmination/depression) surface which bisects the fold nose. However, 10,000 geometric analyses of minor folds and fabrics formed during ductile thrusting in the Caledonides of northern Scotland reveals that major dome and basin sheath folds can display distinct and predictable asymmetries across both axial and medial surfaces. The strain is typically heterogeneous so that structural fabrics and younging evidence are preserved within sheath folds at varying stages of development. This allows an analysis of the evolution of such structures from 'tongue' folds to more extreme 'tubular' forms. Geometric relationships between measured orientations of fold hinges, axial planes, extension lineations and foliations are compared on fabric topology plots (FTPs), which provide an effective tool for monitoring planar and linear fabric rotations with increasing progressive non-coaxial deformation. They consistently display systematic variation from regions of lower to higher strain on passing from upper to lower fold limbs across major axial surfaces, and on crossing medial surfaces from short to long hinge-line segments. Axial and medial surfaces effectively therefore divide major sheath folds into quadrants with different amounts, senses and combinations of planar and linear fabric rotation within each domain. Such heterogeneous deformation implies that models of intense non-coaxial deformation uniformly affecting pre-existing folds may overestimate bulk displacement and shear strain. Variable fold hinge-line rotation about medial surfaces also provides an effective mechanism for the closure of major sheaths, which may otherwise project for unfeasible distances in the X direction. Bedding/cleavage intersections are developed at greater angles to the transport direction than fold hinges which they

  6. Self-folding graphene-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-01

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  7. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  8. Folded cavity design for a ruby resonator

    NASA Technical Reports Server (NTRS)

    Arunkumar, K. A.; Trolinger, James D.

    1988-01-01

    A folded cavity laser resonator operating in the TEM(00) mode has been built and tested. The new oscillator configuration leads to an increase in efficiency and to better line narrowing due to the increased number of passes through the laser rod and tuning elements, respectively. The modification is shown to lead to cavity ruggedization.

  9. Folding and faulting of an elastic continuum

    PubMed Central

    Gourgiotis, Panos A.

    2016-01-01

    Folding is a process in which bending is localized at sharp edges separated by almost undeformed elements. This process is rarely encountered in Nature, although some exceptions can be found in unusual layered rock formations (called ‘chevrons’) and seashell patterns (for instance Lopha cristagalli). In mechanics, the bending of a three-dimensional elastic solid is common (for example, in bulk wave propagation), but folding is usually not achieved. In this article, the route leading to folding is shown for an elastic solid obeying the couple-stress theory with an extreme anisotropy. This result is obtained with a perturbation technique, which involves the derivation of new two-dimensional Green's functions for applied concentrated force and moment. While the former perturbation reveals folding, the latter shows that a material in an extreme anisotropic state is also prone to a faulting instability, in which a displacement step of finite size emerges. Another failure mechanism, namely the formation of dilation/compaction bands, is also highlighted. Finally, a geophysical application to the mechanics of chevron formation shows how the proposed approach may explain the formation of natural structures. PMID:27118925

  10. Sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-08-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We present results for different slip surface orientations and shapes. Cross-sections perpendicular to the shear direction through the sheath fold display closed contours, so called eye-structures. The aspect ratio of the outermost closed contour is strongly dependent on the initial slip surface configuration. The center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness across the sheath fold length, questioning the usefulness of eye-structures as shear sense indicators. The location of the center of the eye structure is largely invariant to the initial configurations of the slip surface as well as to strain. The values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed contour (Ry'z') shows values above and below 1. R' shows dependence on the slip surface shape and orientation but not on the number of involved contours. Using R' measurements to deduce the bulk strain type may be erroneous.

  11. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, Robert M.; Wright, David D.

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  12. Force-extension behavior of folding polymers

    NASA Astrophysics Data System (ADS)

    Cocco, S.; Marko, J. F.; Monasson, R.; Sarkar, A.; Yan, J.

    2003-03-01

    The elastic response of flexible polymers made of elements which can be either folded or unfolded, having different lengths in these two states, is discussed. These situations are common for biopolymers as a result of folding interactions intrinsic to the monomers, or as a result of binding of other smaller molecules along the polymer length. Using simple flexible-chain models, we show that even when the energy ɛ associated with maintaining the folded state is comparable to k_B T, the elastic response of such a chain can mimic usual polymer linear elasticity, but with a force scale enhanced above that expected from the flexibility of the chain backbone. We discuss recent experiments on single-stranded DNA, chromatin fiber and double-stranded DNA with proteins weakly absorbed along its length which show this effect. Effects of polymer semiflexiblity and torsional stiffness relevant to experiments on proteins binding to dsDNA are analyzed. We finally discuss the competition between electrostatic self-repulsion and folding interactions responsible for the complex elastic response of single-stranded DNA.

  13. Coiling and Folding of Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  14. Fast phase randomization via two-folds

    PubMed Central

    Jeffrey, M. R.

    2016-01-01

    A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold. PMID:27118901

  15. Self-folding graphene-polymer bilayers

    SciTech Connect

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  16. Fold in Origami and Unfold Math

    ERIC Educational Resources Information Center

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  17. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.

    PubMed

    Reinwarth, Michael; Glotzbach, Bernhard; Tomaszowski, Michael; Fabritz, Sebastian; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions. PMID:23229141

  18. sym-Trisubstituted 1,3,5-Triazine Derivatives as Promising Organic Corrosion Inhibitors for Steel in Acidic Solution.

    PubMed

    El-Faham, Ayman; Dahlous, Kholood A; Al Othman, Zeid A; Al-Lohedan, Hamad A; El-Mahdy, Gamal A

    2016-01-01

    Triazine derivatives, namely, 2,4,6-tris(quinolin-8-yloxy)-1,3,5-triazine (T3Q), N²,N⁴,N⁶-tris(pyridin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine (T3AMPy) and 2,2',2''-[(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)] tris(ethan-1-ol) (T3EA) were synthesized and their inhibition of steel corrosion in hydrochloric acid solution was investigated using electrochemical techniques. The corrosion protection of the prepared compounds increased with increasing concentration and reached up to 98% at 250 ppm. The adsorption of T3Q, T3AMPy, and T3EA on the steel surface was in accordance with the Langmuir adsorption isotherm. The electrochemical results revealed that T3Q, T3AMPy and T3EA act as excellent organic inhibitors and can labeled as mixed type inhibitors. The efficiencies of the tested compounds were affected by the nature of the side chain present in the triazine ring, where T3EA gave the least inhibition while T3Q and T3AMPy gave higher and almost the same inhibition effects. The inhibition efficiencies obtained from the different electrochemical techniques were in good agreement. PMID:27043517

  19. The X-Ray Line Feature at 3.5 KeV in Galaxy Cluster Spectra

    NASA Astrophysics Data System (ADS)

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J.

    2015-08-01

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema & Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectral resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.

  20. Protein folding guides disulfide bond formation

    PubMed Central

    Qin, Meng; Wang, Wei; Thirumalai, D.

    2015-01-01

    The Anfinsen principle that the protein sequence uniquely determines its structure is based on experiments on oxidative refolding of a protein with disulfide bonds. The problem of how protein folding drives disulfide bond formation is poorly understood. Here, we have solved this long-standing problem by creating a general method for implementing the chemistry of disulfide bond formation and rupture in coarse-grained molecular simulations. As a case study, we investigate the oxidative folding of bovine pancreatic trypsin inhibitor (BPTI). After confirming the experimental findings that the multiple routes to the folded state contain a network of states dominated by native disulfides, we show that the entropically unfavorable native single disulfide [14–38] between Cys14 and Cys38 forms only after polypeptide chain collapse and complete structuring of the central core of the protein containing an antiparallel β-sheet. Subsequent assembly, resulting in native two-disulfide bonds and the folded state, involves substantial unfolding of the protein and transient population of nonnative structures. The rate of [14–38] formation increases as the β-sheet stability increases. The flux to the native state, through a network of kinetically connected native-like intermediates, changes dramatically by altering the redox conditions. Disulfide bond formation between Cys residues not present in the native state are relevant only on the time scale of collapse of BPTI. The finding that formation of specific collapsed native-like structures guides efficient folding is applicable to a broad class of single-domain proteins, including enzyme-catalyzed disulfide proteins. PMID:26297249

  1. Folding of Layers of Finite Length

    NASA Astrophysics Data System (ADS)

    Schmid, D. W.; Podladchikov, Yu. Yu.; Marques, F.

    All existing folding theories assume that the layers are infinitely long or, which is mathematically equivalent, that the compression is directly applied to the lateral boundaries. These assumptions are not always justified for natural geological sys- tems. In fact we can observe that on all scales, from veins to sub-ducting slabs, the layers are of finite length and that there are no distinct, rigid walls pushing the lay- ers from the side. Using the method of Muskhelishvili we have derived the complete two-dimensional solution of an elliptic object embedded in a matrix and subject to far field boundary conditions; pure shear, simple shear and arbitrary combinations thereof. The rheology of the matrix is viscous, the layer may behave either elastically or viscous. Using the values from this background state analysis, stress, pressure and strain rate, we performed the classical linear stability analysis to examine the mech- anism of folding in the described setup. The resulting expressions maximum growth rates and dominant wavelengths are applicable to general geological systems; in the limit of an infinite aspect ratio of the layer the classical expressions of Biot are ob- tained for all other cases new expressions result. Our main results are: 1. Folding of finite length layers is controlled by the ratio of aspect ratio to competence contrast. 2. The described setup explains why in nature only folds can be observed with a rela- tively small wavelength to thickness ratio, suggesting small viscosity contrast 3. The problem of the unknown compressive stress value for the elastic layer is solved. 4. For finite length elastic layers the dominant wavelength selection shows a cubic, instead of square, root dependence. 5. A complete table, describing the folding in all the possible limits is presented and the applicability to natural systems discussed. All the presented results were checked numerically and/or with analogue models.

  2. Generation of buckle folds in Naga fold thrust belt, north-east India

    NASA Astrophysics Data System (ADS)

    Saha, B.; Dietl, C.

    2009-04-01

    Naga fold thrust belt (NFTB), India, formed as a result of northward migration of the Indian plate initiated in Eocene and its subsequent collision with the Burmese plate during Oligocene. The NW-SE oriented compression generated a spectrum of structures; among them, we intend to focus on the folds- varying from gentle to tight asymmetric in geometry. Large recumbent folds are often associated with thrusting. Buckle folds forming under shallow crustal conditions are frequently reported from NFTB. Buckle folding occurs mainly within sandstones with intercalated shale layers which are in the study area typical for the Barail, Surma and Tipam Groups. We have tried to explain the controlling factors behind the variation of the buckle fold shapes and their varying wavelengths throughout the fold thrust belt with the aid of analogue (sand box) modelling. It is undoubted that competence contrast along with the layer parallel compressive stress are the major influencing factors in generation of buckle folds. Schmalholz and Podladchikov (1999) and Jeng et al. (2002) have shown that when low strain rate and low temperature are applicable, not only the viscosity contrast, but also the elasticity contrast govern the geometry of the developing buckle folds. Rocks deforming under high temperature and high pressure deform in pure viscous manner, whereas, rocks undergoing less confining stress and less temperature, are subjected to pure elastic deformation. However, they are the end members, and most of the deformations are a combination of these two end members, i.e. of viscoelastic nature. Our models are made up of sieved sand (0.5 mm grain size) and mica layers (1-5 mm) This interlayering imparts a mechanical anisotropy in the model. Mica is not a pure viscous material, rather it displays more elastic behaviour. The mica layers in the model produce bedding parallel slip during shortening through internal reorganization of the individual mica crystals leading to the thickening

  3. SUZUKI-MIYAURA COUPLING REACTIONS OF 3,5-DICHLORO-1,2,4-THIADIAZOLE

    PubMed Central

    Farahat, Abdelbasset A.; Boykin, David W.

    2014-01-01

    3,5-Dichloro-1,2,4-thiadiazole was allowed to react with different arylboronic acids under different Suzuki-Miyaura coupling conditions: at room temperature 5-aryl-3-chloro-1,2,4-thiadiazoles were obtained and at toluene reflux temperature the products were 3,5-diaryl-1,2,4-thiadiazoles. Sequential coupling reactions lead to 3,5-diaryl-1,2,4-thiadiazoles with non-identical aryl groups. The structure of 3-methoxy-5-(4-methoxyphenyl)-1,2,4-thiadiazole was established from X-ray crystallographic data. PMID:24644388

  4. Novel reaction of N,N'-bisarylmethanediamines with formaldehyde. Synthesis of some new 1,3,5-triaryl-1,3,5-hexahydrotriazines.

    PubMed

    Ghandi, Mehdi; Salimi, Farshid; Olyaei, Abolfazl

    2006-01-01

    The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2-pyrazinyl and 4-nitrophenyl) methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa-hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino-pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyl)dimethylenetriamine (7a) as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated. PMID:17971727

  5. Theoretical study of the thermodynamic properties, phase transition wave, and phase transition velocity for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

    SciTech Connect

    Long, Yao; Chen, Jun

    2015-09-21

    We develop a phonon-electron free energy model to study the thermodynamic properties and phase transitions of δ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The bulk modulus, thermal expansion coefficient, specific heat, Hugoniot curve, and phase transition curve are calculated in wide temperature and pressure ranges. The results are in agreement with the available experiments at zero pressure, and are reasonable predictions at high pressure for the lack of experiment. Two kinds of phase transition waves are investigated. We find the velocity of shock-induced phase transition wave is between 3400 m/s and 4700 m/s, and the velocity of self-sustaining phase transition wave is between 1300 m/s and 1900 m/s.

  6. Anion-controlled assembly of metal 3,5-bis(benzimidazol-1-ylmethyl) benzoate complexes: Synthesis, characterization and property

    NASA Astrophysics Data System (ADS)

    Kuai, Hai-Wei; Lv, Gao-Chao; Hou, Chao; Sun, Wei-Yin

    2015-03-01

    Hydrothermal reactions of 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid (HL) with Cd(II), Cu(II) and Zn(II) salts provide eight new metal complexes which were characterized by single crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. Two cadmium frameworks [Cd(L)2]·2H2O (1) and [Cd(L)Cl] (2) have 3D structures with (42.65.83)(42.6) and rtl (4.62)2(42.610.83) topologies, respectively. Structural diversity of four copper complexes [Cu3(L)2]·NO3·0.5H2O (3), [Cu2(HL)2(SO4)]·3.5H2O (4), [Cu(L)(bdc)0.5]·1.5H2O (5) and [Cu2(L)(HL)(Hbdc)] (6) (H2bdc=1,4-benzenedicarboxylic acid) is achieved through the alteration of copper salts and addition of auxiliary ligand. As a result, 3 has a 1D ladder structure, 4 is a discrete dinuclear complex, 5 displays a (3,4)-connected 2-nodal 3-fold interpenetrating framework with (42.6.102.12)(42.6) topology, 6 exhibits a 4-connected uninodal 2D sql (44.62) network. Within the zinc series, ZnCl2 and ZnSO4 were used for the syntheses of [Zn(L)Cl] (7) and [Zn(L)(SO4)0.5]·2H2O (8), respectively. 7 shows a 3-connected uninodal 2D hcb network with (63) topology and 8 is a (3,6)-connected 2-nodal 3D framework with (42.6)2(44.62.88.10) topology. The luminescent properties of the Cd(II) and Zn(II) complexes were investigated.

  7. Oligoribonucleotides containing 2',5'-phosphodiester linkages exhibit binding selectivity for 3',5'-RNA over 3',5'-ssDNA.

    PubMed Central

    Giannaris, P A; Damha, M J

    1993-01-01

    Oligoribonucleotides containing 2',5'-phosphodiester linkages have been synthesized on a solid support by the 'silyl-phosphoramidite' method. The stability of complexes formed between these oligonucleotides and complementary 3',5'-RNA strands have been studied using oligoadenylates and a variety of oligonucleotides of mixed base sequences including phosphorothioate backbones. In many cases, particularly for 2',5'-linked adenylates, the UV melting profiles are quite sharp and exhibit large hyperchromic changes. Substituting a few 3',5'-linkages with the 2',5'-linkage within an oligomer lowers the Tm of the complex and the degree of destabilization depends on the neighboring residues and neighboring linkages. The 2',5'-linked oligoribonucleotides prepared in this study exhibited remarkable selectivity for complementary single stranded RNA over DNA. For example, in 0.01 M phosphate buffer--0.10 M NaCl (pH 7.0), no association was observed between 2',5'-r(CCC UCU CCC UUC U) and its Watson-Crick DNA complement 3',5'-d(AGAAGGGAGAGGG). However, 2',5'-r(CCC UCU CCC UUC U) with its RNA complement 3',5'-r(AGAAGGGAGAGGG) forms a duplex which melts at 40 degrees C. The decamer 2',5'-r(Ap)9A forms a complex with both poly dT and poly rU but the complex [2',5'-r(Ap)9A]:[poly dT] is unstable (Tm, -1 degree C) and is seen only at high salt concentrations. In view of their unnatural character and remarkable selectivity for single stranded RNA, 2',5'-oligo-RNAs and their derivatives may find use as selective inhibitors of viral mRNA translation, and as affinity ligands for the purification of cellular RNA. Images PMID:7694233

  8. Dehalogenation of the Herbicides Bromoxynil (3,5-Dibromo-4-Hydroxybenzonitrile) and Ioxynil (3,5-Diiodino-4-Hydroxybenzonitrile) by Desulfitobacterium chlororespirans

    PubMed Central

    Cupples, Alison M.; Sanford, Robert A.; Sims, Gerald K.

    2005-01-01

    Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans. PMID:16000784

  9. Start2Fold: a database of hydrogen/deuterium exchange data on protein folding and stability

    PubMed Central

    Pancsa, Rita; Varadi, Mihaly; Tompa, Peter; Vranken, Wim F.

    2016-01-01

    Proteins fulfil a wide range of tasks in cells; understanding how they fold into complex three-dimensional (3D) structures and how these structures remain stable while retaining sufficient dynamics for functionality is essential for the interpretation of overall protein behaviour. Since the 1950's, solvent exchange-based methods have been the most powerful experimental means to obtain information on the folding and stability of proteins. Considerable expertise and care were required to obtain the resulting datasets, which, despite their importance and intrinsic value, have never been collected, curated and classified. Start2Fold is an openly accessible database (http://start2fold.eu) of carefully curated hydrogen/deuterium exchange (HDX) data extracted from the literature that is open for new submissions from the community. The database entries contain (i) information on the proteins investigated and the underlying experimental procedures and (ii) the classification of the residues based on their exchange protection levels, also allowing for the instant visualization of the relevant residue groups on the 3D structures of the corresponding proteins. By providing a clear hierarchical framework for the easy sharing, comparison and (re-)interpretation of HDX data, Start2Fold intends to promote a better understanding of how the protein sequence encodes folding and structure as well as the development of new computational methods predicting protein folding and stability. PMID:26582925

  10. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

    PubMed

    Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier

    2010-05-01

    Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations. PMID:21117769

  11. Microfluidic Mixers for Studying Protein Folding

    PubMed Central

    Waldauer, Steven A.; Wu, Ling; Yao, Shuhuai; Bakajin, Olgica; Lapidus, Lisa J.

    2012-01-01

    The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms

  12. Photochemical carbonylation of adamantanes; simple synthesis of 1,3,5,7-tetranitroadamantane

    SciTech Connect

    Bashir-Hashemi, A.; Li, J.; Gelber, N.

    1995-12-01

    1,3,5,7-Tetranitroadamantane (2) was obtained from the irradiation of a mixture of 1-adamantanecarboxylic acid (1) and oxalylchloride followed by conversion of chlorocarbonyl functions to nitro groups using the method of Eaton et. al.

  13. Progreso con el "Telescopio de Nueva Tecnologia" de 3.5 m (NTT)

    NASA Astrophysics Data System (ADS)

    1982-09-01

    Desde septiembre de 1980 cuando el primer artlculo sobre el Telescopio ESO de Nueva Tecnologla de 3.5 m fue publicado en "EI Mensajero", el diserio para este instrumento ha hecho progresos satisfactorios.

  14. Adenosine 3', 5'-cyclic monophosphate levels in Thermomonospora curvata during cellulase biosynthesis

    SciTech Connect

    Fennington, G.; Neubauer, D.; Stutzenberger, F.

    1983-01-01

    The enzymatic degradation of cellulose requires the synergistic activity of at least three enzymes: exo-beta-1,4-glucanase (EC3.2.1.91), endo-beta-1,4-glucanase (EC3.2.1.4), and beta-glucosidase (EC3.2.1.21). Despite extensive studies on a variety of cellulolytic bacteria and fungi, the mechanism(s) regulating the biosynthesis of this inducible catabolic enzyme complex remains unknown. The intracellular concentrations of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate (cAMP) have been shown to play a major role in mediating catabolite repression of enzyme biosynthesis. The cAMP acts through a cAMP receptor protein (termed CRP or CAP) which is a dimer having two identical subunits each capable of binding one molecule of cAMP. The N-terminal domain of the CRP binds the cAMP while the C-terminal domain binds to DNA at the promotor region of a cAMP-dependent operon and stimulates transcription by promoting the formation of a preinitiation complex between RNA polymerase and the DNA. Intracellular cAMP levels in E. coli (the prototype organism for such studies) are influenced by the type and availability of carbon source used for growth. High intracellular cAMP levels should lead to higher concentrations of cAMP-CRP complexes which should increase the transcription rates for cAMP-dependent operons (such as the lac operon of beta-galactosidase) and indeed the differential rate of beta-galactosidase biosynthesis correlates to intracellular cAMP levels. In the case of cellulase, catabolite repression by glucose or other readily metabolizable compounds closely controls production in an apparently similar manner and therefore a correlation may exist between enzyme biosynthesis and intracellular cAMP levels. This communication describes the fluctuation in cAMP levels during cellulase induction and repression in the thermophilic actinomycete, Thermomonospora curvata.

  15. An updated set of nutations derived from the reanalysis of 3.5 decades VLBI observations

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Koot, Laurence; Rivoldini, Attilio; Dehant, Veronique

    2016-04-01

    The global VLBI observation started in the 1979. After that the qualities of the measurements are continuously improving by taking into account various instrumental and environmental effects. The MHB2000 models was introduced in 2002 (Mathews, et.al. 2002, [1]) and it has a good agreement (5 μas) on the short period nutation series (<400 days) with the values derived from 2 decades (1979-2000) VLBI data while a higher uncertainties up to 56 μas for those longer periods (>400 days) nutation series (Herring et.al. 2002). In MHB2000, the forcing frequencies of the nutation series are solved by least-squares fitting to the VLBI data in frequency domain. Koot et al. (2008), have processed another similar set of nutation series by inversing the time series of VLBI data (1984-2005) using a Bayesian approach. In the present work, we will repeat both approaches using the up-to-date 3.5 decades VLBI observations (1980-2014) meanwhile paying more attention on the results of longer period (>400 days). Finally some features of Earth's interior structure will be discussed based on the determined nutation series. [1] Mathews, P.M., Herring, T.A. & Buffett, B.A., 2002. Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior, J. Geophys. Res., 107, 2068, doi: 10.1029/2001JB000390. [2] Herring, T. A., P. M. Mathews, and B. A. Buffett, Modeling of nutation and precession: Very long baseline interferometry results, J. Geophys. Res., 107, B4, 2069, doi: 10.1029/2001JB000165, 2002 [3] Koot, L., Rivoldini, A., de Viron, O. & Dehant, V., 2008. Estimation of Earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series, J. Geophys. Res., 113, 8414, doi: 10.1029/2007JB005409.

  16. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    NASA Astrophysics Data System (ADS)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  17. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms

    PubMed Central

    Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J

    2016-01-01

    Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI: http://dx.doi.org/10.7554/eLife.13023.001 PMID:27008179

  18. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells

    PubMed Central

    Hammond, Gerald R. V.; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid’s synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2. PMID:26460749

  19. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms.

    PubMed

    Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J

    2016-01-01

    Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1(+) and Rab7(+) vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1(+)perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. PMID:27008179

  20. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  1. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  2. Dynamic Coupling between Folding, Binding and Function

    NASA Astrophysics Data System (ADS)

    Wolynes, Peter G.

    2003-03-01

    Elementary presentations of biophysics suggest a clear separation between the events of protein folding and function. The situation is much more interesting and complex. Many proteins in the cell are unfolded until called upon to interact with targets. Why? Energy landscape theory suggest some interesting kinetic advantages and possible explanations concerning the promiscuity of protein-protein interactions. This will be discussed in the context of protein DNA recognition. The energy landscapes for binding surfaces show interesting systematic differences from those of protein interiors. Energy landscape ideas also raise the prospect that folded proteins partially unfold during their function. I will illustrate this with a specific example of large scale conformation change in a kinase.

  3. RNA Hairpin Folding in the Crowded Cell.

    PubMed

    Gao, Mimi; Gnutt, David; Orban, Axel; Appel, Bettina; Righetti, Francesco; Winter, Roland; Narberhaus, Franz; Müller, Sabine; Ebbinghaus, Simon

    2016-02-24

    Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin-structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high-molecular-weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer. PMID:26833452

  4. Elastic models of vocal fold tissues.

    PubMed

    Alipour-Haghighi, F; Titze, I R

    1991-09-01

    Elastic properties of canine vocal fold tissue (muscle and mucosa) were obtained through a series of experiments conducted in vitro and were modeled mathematically. The elastic properties play a significant role in quantitative analysis of vocal fold vibrations and theory of pitch control. Samples of vocalis muscle and mucosa were dissected and prepared from dog larynges a few minutes premortem and kept in a Krebs solution at a temperature of 37 +/- 1 degrees C and a pH of 7.4 +/- 0.05. Samples of muscle tissue and mucosa were stretched and released in a slow, sinusoidal fashion. Force and displacement of the samples were measured with a dual-servo system (ergometer). After digitization, stress-strain data for samples of muscle tissue and cover tissue were averaged. The stress-strain data were then fitted numerically by polynomial and exponential models. PMID:1939897

  5. Ca-Dependent Folding of Human Calumenin

    PubMed Central

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  6. Chevron folding patterns and heteroclinic orbits

    NASA Astrophysics Data System (ADS)

    Budd, Christopher J.; Chakhchoukh, Amine N.; Dodwell, Timothy J.; Kuske, Rachel

    2016-09-01

    We present a model of multilayer folding in which layers with bending stiffness EI are separated by a very stiff elastic medium of elasticity k2 and subject to a horizontal load P. By using a dynamical system analysis of the resulting fourth order equation, we show that as the end shortening per unit length E is increased, then if k2 is large there is a smooth transition from small amplitude sinusoidal solutions at moderate values of P to larger amplitude chevron folds, with straight limbs separated by regions of high curvature when P is large. The chevron solutions take the form of near heteroclinic connections in the phase-plane. By means of this analysis, values for P and the slope of the limbs are calculated in terms of E and k2.

  7. RNA Hairpin Folding in the Crowded Cell

    PubMed Central

    Gao, Mimi; Gnutt, David; Orban, Axel; Appel, Bettina; Righetti, Francesco; Winter, Roland; Narberhaus, Franz; Müller, Sabine

    2016-01-01

    Abstract Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin‐structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high‐molecular‐weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer. PMID:26833452

  8. Recognizing the fold of a protein structure.

    PubMed

    Harrison, Andrew; Pearl, Frances; Sillitoe, Ian; Slidel, Tim; Mott, Richard; Thornton, Janet; Orengo, Christine

    2003-09-22

    This paper reports a graph-theoretic program, GRATH, that rapidly, and accurately, matches a novel structure against a library of domain structures to find the most similar ones. GRATH generates distributions of scores by comparing the novel domain against the different types of folds that have been classified previously in the CATH database of structural domains. GRATH uses a measure of similarity that details the geometric information, number of secondary structures and number of residues within secondary structures, that any two protein structures share. Although GRATH builds on well established approaches for secondary structure comparison, a novel scoring scheme has been introduced to allow ranking of any matches identified by the algorithm. More importantly, we have benchmarked the algorithm using a large dataset of 1702 non-redundant structures from the CATH database which have already been classified into fold groups, with manual validation. This has facilitated introduction of further constraints, optimization of parameters and identification of reliable thresholds for fold identification. Following these benchmarking trials, the correct fold can be identified with the top score with a frequency of 90%. It is identified within the ten most likely assignments with a frequency of 98%. GRATH has been implemented to use via a server (http://www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl). GRATH's speed and accuracy means that it can be used as a reliable front-end filter for the more accurate, but computationally expensive, residue based structure comparison algorithm SSAP, currently used to classify domain structures in the CATH database. With an increasing number of structures being solved by the structural genomics initiatives, the GRATH server also provides an essential resource for determining whether newly determined structures are related to any known structures from which functional properties may be inferred. PMID:14512345

  9. Chen’s Double Eyelid Fold Ratio

    PubMed Central

    Chen, Chen-Chia; Tai, Hao-Chih

    2016-01-01

    Background: Double eyelidplasty can construct palpebral folds and enhance beauty perception for Asians with single eyelids. A new palpebral parameter for the quantitative interpretation of surgical outcomes is proposed on the basis of a photometric study of the altered proportions of Asian eyes after double eyelid operation. Methods: A total of 100 Asian adults with single upper eyelids who were satisfied with the enlarged eyes by operation were included in the study. A retrospective measurement of palpebral parameters in the frontal profile both preoperatively and 6 months postoperatively was performed. The proportions of various parameters in the eyebrow–eye aesthetic unit were calculated and analyzed. Results: Double eyelidplasty can augment the vertical dimension of palpebral fissure by 27.9% increase on average. The vertical ratio of palpebral fissure to the eyebrow–eye unit is augmented by 34.4% increase. The vertical ratio of the subunit below double eyelid fold peak to the unit is augmented by 82.6% increase. Conclusions: Double eyelidplasty can substantially enlarge the vertical dimensions of the eyes of Asians with single eyelids. The eyes are perceived to be larger because of the visually assimilated illusion of the superimposed eyelid fold and the relative proportions of the eyebrow–eye unit. The authors propose using a vertical ratio of the subunit below double eyelid fold peak in the eyebrow–eye unit to measure the visually perceived proportion of the eye in the unit. This ratio can be applied clinically for a quantitative evaluation of the surgical outcome after double eyelidplasty. PMID:27200243

  10. Coherent topological phenomena in protein folding.

    PubMed

    Bohr, H; Brunak, S; Bohr, J

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long-range excitations, 'wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force. PMID:9218961

  11. Folded fibre bus interconnects with distributed amplification

    NASA Astrophysics Data System (ADS)

    Lorenzo, Raul Hernandez; Urquhart, Paul; Lopez-Amo, Manuel

    1998-06-01

    An optical fibre network for application as an interconnect within major nodes is investigated theoretically. The network is configured as a folded bus in which the spine consists of erbium doped fibre to overcome the power division at the couplers. It is argued that high received powers with a narrow dynamic range can be obtained simultaneously with bit rates in the order of 10 Gbit/s and bit error rates of 10 -12 or less.

  12. A Simple Model for Protein Folding

    NASA Astrophysics Data System (ADS)

    Henry, Eric R.; Eaton, William A.

    We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

  13. Iontophoresis across the proximal nail fold to target drugs to the nail matrix.

    PubMed

    Manda, Prashanth; Sammeta, Srinivasa M; Repka, Michael A; Murthy, S Narasimha

    2012-07-01

    The main objective of the present study was to investigate the plausibility of iontophoretic delivery of drugs to the nail matrix via proximal nail fold. The in vitro drug transport studies were performed in Franz diffusion cells across folded epidermis, which is used as a model for the proximal nail fold. The amount of drug transported into the receiver compartment following iontophoresis for 3 h at 0.5 mA/cm(2) was 150-fold higher than the control (0.008 ± 0.002 μg/cm(2)). The amount of drug present in the skin after iontophoresis (0.45 ± 0.12 μg/mg) was approximately fivefold higher as compared with that of the control (0.08 ± 0.01 μg/mg). Iontophoresis of terbinafine across the proximal nail fold was assessed using excised cadaver toe model as well. A custom-designed foam-pad-type patch system was used for iontophoresis in cadaver toes. The amount of the drug delivered into the nail matrix following iontophoresis for 3 h was significantly higher than the minimum inhibition concentration of terbinafine. However, on the contrary, passive delivery for about 24 h did not result in any detectable drug levels in the nail matrix. Iontophoresis across the proximal nail fold could be developed as a potential method to target drugs to nail matrix. PMID:22487899

  14. Evolution of the beta-propeller fold.

    PubMed

    Chaudhuri, Indronil; Söding, Johannes; Lupas, Andrei N

    2008-05-01

    beta-Propellers are toroidal folds, in which repeated, four-stranded beta-meanders are arranged in a circular and slightly tilted fashion, like the blades of a propeller. They are found in all domains of life, with a strong preponderance among eukaryotes. Propellers show considerable sequence diversity and are classified into six separate structural groups by the SCOP and CATH databases. Despite this diversity, they often show similarities across groups, not only in structure but also in sequence, raising the possibility of a common origin. In agreement with this hypothesis, most propellers group together in a cluster map of all-beta folds generated by sequence similarity, because of numerous pairwise matches, many of which are individually nonsignificant. In total, 45 of 60 propellers in the SCOP25 database, covering four SCOP folds, are clustered in this group and analysis with sensitive sequence comparison methods shows that they are similar at a level indicative of homology. Two mechanisms appear to contribute to the evolution of beta-propellers: amplification from single blades and subsequent functional differentiation. The observation of propellers with nearly identical blades in genomic sequences show that these mechanisms are still operating today. PMID:17979191

  15. Cellular pathways controlling integron cassette site folding.

    PubMed

    Loot, Céline; Bikard, David; Rachlin, Anna; Mazel, Didier

    2010-08-01

    By mobilizing small DNA units, integrons have a major function in the dissemination of antibiotic resistance among bacteria. The acquisition of gene cassettes occurs by recombination between the attI and attC sites catalysed by the IntI1 integron integrase. These recombination reactions use an unconventional mechanism involving a folded single-stranded attC site. We show that cellular bacterial processes delivering ssDNA, such as conjugation and replication, favour proper folding of the attC site. By developing a very sensitive in vivo assay, we also provide evidence that attC sites can recombine as cruciform structures by extrusion from double-stranded DNA. Moreover, we show an influence of DNA superhelicity on attC site extrusion in vitro and in vivo. We show that the proper folding of the attC site depends on both the propensity to form non-recombinogenic structures and the length of their variable terminal structures. These results draw the network of cell processes that regulate integron recombination. PMID:20628355

  16. Trp-Cage Folding on Organic Surfaces.

    PubMed

    Levine, Zachary A; Fischer, Sean A; Shea, Joan-Emma; Pfaendtner, Jim

    2015-08-20

    Trp-cage is an artificial miniprotein that is small, stable, and fast folding due to concerted hydrophobic shielding of a Trp residue by polyproline helices. Simulations have extensively characterized Trp-cage; however, the interactions of Trp-cage with organic surfaces (e.g., membranes) and their effect on protein conformation are largely unknown. To better understand these interactions we utilized a combination of replica-exchange molecular dynamics (REMD) and metadynamics (MetaD), to investigate Trp-cage folding on self-assembled monolayers (SAMs). We found that, with REMD and MetaD, Trp-cage strongly binds to neutral CH3 surfaces (-25kT) and moderately adsorbs to anionic COOH interfaces (-7.6kT), with hydrophobic interactions driving CH3 adhesion and electrostatic attractions driving COOH adhesion. Similar to solid-state surfaces, SAMs facilitate a number of intermediate Trp-cage conformations between folded and unfolded states. Regarding Trp-cage's aromatic groups in neutral CH3 systems, Tyr becomes oriented parallel to the surface in order to maximize hydrophobic interactions while Trp remains caged perpendicular to the surface; however, Trp can reorient itself parallel to the interface as the miniprotein more closely binds to the surface. In contrast, Tyr and Trp are both repelled from COOH surfaces, though the Trp-cage still adheres to the anionic interface via Lys and its N-terminated Asn residue. PMID:26207727

  17. Inframammary Fold Reconstruction: A Biomechanical Analysis

    PubMed Central

    Schell, Julia; Uener, Jens; Prescher, Andreas; Scaal, Martin; Puppe, Julian; Warm, Mathias

    2016-01-01

    Background: Inframammary fold reconstruction has scarcely been evaluated in literature. No biomechanical analyses have been performed comparing different reconstructive methods. This evaluation compares the gold-standard suture reconstruction with an intrarib anchor system (Micro BioComposite SutureTak, Arthrex). Methods: Three analysis groups were compared including 8 Sawbone blocks, 22 embalmed cadaver, and 27 regular cadaver specimens (N = 57). Transient mechanical analysis was performed at 5 N/s using an Instron 5565 test frame. Results: Ultimate load favored the anchor system (compared with the gold-standard suture) by a factor of 9.8 (P < 0.0001) for the regular cadaver group and a factor of 1.7 (P < 0.038) for the embalmed cadaver group. A similar statistically significant benefit was shown for stiffness and load at 2-mm displacement. Conclusions: This analysis showed an anchor system to be the biomechanically superior fixation method in terms of ultimate load, fixation stiffness, and displacement at failure when compared with the gold-standard suture method in inframammary fold reconstruction. Because of superior stability in every aspect, an anchor system may be considered for inframammary fold reconstruction. PMID:27257564

  18. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. PMID:26610273

  19. RNA folding pathways in stop motion.

    PubMed

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-07-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  20. Computing the conformational entropy for RNA folds

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Chen, Shi-Jie

    2010-06-01

    We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.

  1. Fold assisted transport in graphene systems

    NASA Astrophysics Data System (ADS)

    Carrillo-Bastos, Ramon; Faria, Daiara; Jiang, Yuhang; Mao, Jinhai; Li, Guohong; Andrei, Eva Y.; Latge, Andrea; Sandler, Nancy

    Sasaki pointed out that a constant uniaxial strain applied along the zigzag direction in graphene causes localized states, akin to edge states in nanoribbons. These states are dispersionless and can carry ballistic transport. Recent experiments reported the presence of ballistic channels in graphene grown on SiC characterized with STM spectroscopy. In this work, we show that out-of plane deformations in the form of folds produce states as those predicted by Sasaki. Using tight-binding calculations and recursive Green's function methods, we obtain conductance, density of states (DOS), local density of states, and band structure (BS) for graphene nanoribbons with zigzag termination. Regions with enhanced DOS are identified in the deformed area corresponding to states in new flattened bands in the BS and new ballistic channels in the conductance. Adjusting the fold parameters, desired properties of these states can be tailored. Our results show that folds could serve as pathways for electronic transport and open the possibility of circuitry design within a simple graphene membrane. Support: DOE-FG02-99ER45742, NSF-DMR 1207108 and 1508325.

  2. RNA folding pathways in stop motion

    PubMed Central

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-01-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  3. Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy

    NASA Astrophysics Data System (ADS)

    Pourmajidian, M.; Mahmudi, R.; Geranmayeh, A. R.; Hashemizadeh, S.; Gorgannejad, S.

    2016-01-01

    The effect of separate additions of 1.5 wt.% Zn and 1.5 wt.% Sb on the creep behavior of Sn-3.5 wt.% Ag lead-free solder alloy was investigated by impression testing. The tests were carried out under constant punching stresses in the range of 60-120 MPa and at temperatures in the range of 298-370 K. Both of the ternary alloys showed creep resistances higher than that of the eutectic binary Sn-3.5Ag alloy. The superior creep resistance of the ternary Sn-3.5Ag-1.5Sb alloy is attributed to the strong solid solutioning effect of antimony in the tin matrix, while the formation of AgZn particles and refinement of the Ag3Sn precipitates account for the higher creep resistance of the Sn-3.5Ag-1.5Zn alloy. The average stress exponents of 8.2, 8.5, and 8.6 and activation energies of 47.4 kJ mol-1, 45.3 kJ mol-1, , and 43.3 kJ mol-1 were obtained for Sn-3.5Ag, Sn-3.5Ag-1.5Zn, and Sn-3.5Ag-1.5Sb, respectively. These activation energies are close to 46 kJ mol-1 for dislocation pipe diffusion of tin. This, together with the stress exponents of 8.2-8.6, suggests that dislocation climb controlled by dislocation pipe diffusion is the predominant creep mechanism in these alloys.

  4. Calibration and Validation of WRF 3.0-CLM3.5 in Snowpack Simulations

    NASA Astrophysics Data System (ADS)

    Jin, J.; Wen, L.; Subin, Z. M.; Miller, N. L.

    2009-12-01

    The Community Land Model version 3.5 (CLM3.5) developed by the National Center for Atmospheric Research (NCAR) was coupled into the Weather Research and Forecasting (WRF) Model version 3.0. The performance of WRF3.0-CLM3.5 in simulating snowpack was extensively evaluated with in-situ observations from a mountainous site called Col de Porte, located in northern Alps region of France, and the Columbia River Basin, located in the northwestern United States. CLM3.5 was configured with a five-layer snow scheme, and includes snow compaction and liquid water transfer processes, and a sophisticated snow albedo scheme. WRF3.0-CLM3.5 was forced with the National Center for Atmospheric Research/National Centers for Environmental Prediction Reanalysis data to simulate for the 1988-1989 snow season for the Col de Porte site and the 2001-2002 season for the Columbia River Basin, with 60km-20km two-way nested domains. The initial simulations show that WRF3.0-CLM3.5 significantly improves snow simulations when compared to those produced with the WRF3.0 coupled to the Noah land surface scheme at the both study sites. However, WRF3.0-CLM3.5 still tends to underestimate the observed snowpack. Calibration with the observed data from the Col de Porte site indicates that the snow water content bias mainly results from stronger, high elevation incoming solar radiation. An adjustment for the radiation scheme in WRF3.0 was made to reduce the incoming radiation to better fit with the observations. This adjustment improves snow simulations at both Col de Porte site and the Columbia River Basin. Additional offline snow simulations with CLM3.5 driven with observed forcing data were performed at the Col de Porte site. These offline simulations are compared to the results produced with the coupled WRF3.0-CLM3.5. Through this comparison, snow-atmosphere interactions are quantitatively indentified. The improved snow simulations in WRF3.0-CLM3.5 will benefit regional hydro-climate research and

  5. Formation, structure and magnetism of the metastable defect fluorite phases AVO{sub 3.5+x} (A=In, Sc)

    SciTech Connect

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-12-15

    We report the preparation and stability of ScVO{sub 3.5+x} and the novel phase InVO{sub 3.5+x}. AVO{sub 3.5+x} (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO{sub 3} bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO{sub 3.5+x} structures following this pathway are 0.00{<=}x{<=}0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO{sub 3.54} and ScVO{sub 3.70} crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A{sup 3+}/V{sup 4+} disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V{sup 4+} and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO{sub 3} bixbyite to AVO{sub 3.5} defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O{sub 6} fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O{sub 7} cubic environment in the defect fluorite structure.

  6. A Rat Excised Larynx Model of Vocal Fold Scar

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  7. Conjugate-shear folding: A model for the relationships between foliations, folds and shear zones

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.; Sayab, Mohammad; Bouybaouene, Mohamed L.

    2010-08-01

    Microstructural mapping of whole thin sections cut from two samples of micaschist containing cm-scale folds plus garnet porphyroblasts has provided new insight in the relationships between folding, shearing and foliation development. The garnets exhibit coherent inclusion-trail patterns that place important constraints on the kinematic development of both samples, which are shown to be representative of coaxial versus non-coaxial deformation in rocks containing a pre-existing schistosity. A comparison of crenulations-cleavages geometries in both samples and a review of the geometry of natural and experimental multilayer folds leads to the conclusion that folding involves conjugate shearing at different scales. At microscopic scales, crenulation cleavages nucleate as conjugate-kink or shear instabilities and develop further as a function of the macroscopic partitioning of deformation. In fold-hinge domains, bulk-coaxial deformation results in equal development of conjugate crenulations that progressively coalescence into symmetrical crenulation patterns so that, macroscopically, parallelism is achieved between foliation, fold-axial planes and long axes of strain ellipses. Fold-limb domains represent a system of conjugate-shear zones where single sets of crenulation instabilities with synthetic shearing component preferentially develop producing oblique relationships between the aforementioned elements. Cleavage fanning is inferred as a direct consequence of this conjugate-shear origin of folds. The model implies that crenulation cleavages and S-C fabrics in shear zones form by analogous processes, in both cases involving a component of shearing along foliation planes. The development of conjugate sets of foliation planes surrounding porphyroblasts during early, relatively coaxial stages of deformation explains continued "gyrostatic" behaviour during more advanced non-coaxial stages, as indicated by consistently oriented inclusion trails in the studied samples.

  8. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase.

    PubMed

    Rosman, G J; Martins, T J; Sonnenburg, W K; Beavo, J A; Ferguson, K; Loughney, K

    1997-05-20

    Human cyclic GMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2A3) cDNAs were cloned from hippocampus and fetal brain cDNA libraries. A 4.2-kb composite DNA sequence constructed from overlapping cDNA clones encodes a 941 amino acid protein with a predicted molecular mass of 105,715 Da. Extracts prepared from yeast expressing the human PDE2A3 hydrolyzed both cyclic AMP (cAMP) and cyclic GMP (cGMP). This activity was inhibited by EHNA, a selective PDE2 inhibitor, and was stimulated three-fold by cGMP. Human PDE2A is expressed in brain and to a lesser extent in heart, placenta, lung, skeletal muscle, kidney and pancreas. The human PDE2A3 differs from the bovine PDE2A1 and rat PDE2A2 proteins at the amino terminus but its amino-terminal sequence is identical to the bovine PDE2A3 sequence. The different amino termini probably arise from alternative exon splicing of the PDE2A mRNA. PMID:9210593

  9. Synthesis, structure and adsorption properties of lanthanide-organic frameworks with pyridine-3,5-bis(phenyl-4-carboxylate).

    PubMed

    Cui, Pei-Pei; Zhang, Xiu-Du; Zhao, Yue; Fu, Ai-Yun; Sun, Wei-Yin

    2016-02-14

    Under solvothermal conditions, reactions of pyridine-3,5-bis(phenyl-4-carboxylic acid) (H2L) with lanthanide metal salts give rise to three new metal-organic frameworks (MOFs) with the formula {[Ln4(L)3(μ3-OH)4(H2O)4]·(NO3)2·solvent}n [Ln = Er (1), Yb (2) and Lu (3)]. The complexes were characterized by single crystal and powder X-ray diffraction, IR and thermogravimetric analyses. They have the same two-fold interpenetrating three-dimensional (3D) framework structures with [Ln4(COO)6(μ3-OH)4(H2O)4] clusters as secondary building units (SBUs) and a rare 6-connected lcy topology with the point (Schläfli) symbol of {3(3)·5(9)·6(3)}. Interestingly, 1-3 show selective and hysteretic sorption of CO2 over N2, and the photoluminescence properties of the complexes were also investigated. PMID:26731120

  10. Folding of a single polygrain layer

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin

    2013-04-01

    Shortening of a mechanically layered rock in the direction parallel to the layering leads to the formation of buckle folds. Simultaneously, the rock microstructure undergoes modification due to changes in geometry and arrangement of the minerals leading to the development of the shape preferred orientation (SPO) and mechanical anisotropy. The progressive deformation influences the effective mechanical properties, which may affect the evolution of the folds. The mechanical anisotropy is considered to have a first-order effect on the fold growth, thus its evolution is potentially a crucial factor in folding process. In contrast to the previous studies, where the anisotropy is often considered as a prescribed (or inherited) property, we treat the anisotropy as a parameter that develops and evolves during deformation. In our numerical model, we study a polygrain, two-phase medium consisting of an effectively strong layer embedded in a weaker matrix. Both the layer and the matrix comprise the same material types but in different proportions. The layer and the matrix are initially mechanically isotropic. The viscosity of individual grains is isotropic, thus the role of the crystallographic orientation is not taken into account. The recrystallization and pressure solution processes are neglected. We investigate the influence of 1) the viscosity ratio between the mineral phases and 2) the effective viscosity ratio between the layer and the matrix on the development and evolution of anisotropy and folding. The complex, polygrain structure is represented using Voronoi polygons, which are then discretized with an unstructured mesh using Triangle software developed by Shewchuk (2007) and then used for the finite element approximations. We solve the incompressible Stokes equations under zero gravity using the finite element method (FEM) solver MILAMIN (Dabrowski et al., 2008). The normal components of the velocity vectors are prescribed at the boundaries according to a pure

  11. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    NASA Astrophysics Data System (ADS)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  12. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion.

    PubMed

    Kleinschmidt, Jörg H

    2015-09-01

    In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25983306

  13. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode

    NASA Astrophysics Data System (ADS)

    Collignon, M.; Fernandez, N.; Kaus, B. J. P.

    2015-08-01

    Elongation of randomly distributed fold segments and their potential linkage are important for hydrocarbon exploration because it can greatly influence the morphology of the reservoir and both migration and accumulation of hydrocarbons in antiformal traps. Here we study the effects of surface processes and the presence of a topographic slope on the different linkage modes that can occur, and how these parameters affect the required horizontal offset for perturbations to link. The proposed numerical model represents a sedimentary cover detached over a much weaker basal décollement layer. The upper surface is modified by mass redistribution, which is achieved by a combination of fluvial and hillslope processes. Several series of simulations were performed: (1) without surface processes or regional slope, (2) with regional slope only, (3) with fluvial incision and hillslope processes, and (4) with hillslope processes only. Model results show that the presence of a regional slope reduces the critical distance required for the transition between linkage and no linkage modes, whereas erosion and redeposition of sediments, on the contrary, increase this distance. The location of the saddle point, where fold segments link, and its vertical distance to the crests of the anticlines are different compared to the case without erosion or initial topographic slope, which potentially can affect the morphology of hydrocarbon traps. Moreover, both erosion and redeposition of sediments enhance the fold elongation (growth along the fold axis), once the erosion velocity exceeds the folding velocity. Model results have been compared to the Zagros Fold Belt.

  14. Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct.

    PubMed

    Koyama, Hiroshi; Shi, Dongbo; Suzuki, Makoto; Ueno, Naoto; Uemura, Tadashi; Fujimori, Toshihiko

    2016-08-01

    Epithelia exhibit various three-dimensional morphologies linked to organ function in animals. However, the mechanisms of three-dimensional morphogenesis remain elusive. The luminal epithelium of the mouse oviduct forms well-aligned straight folds along the longitudinal direction of the tubes. Disruption of the Celsr1 gene, a planar cell polarity-related gene, causes ectopically branched folds. Here, we evaluated the mechanical contributions of the epithelium to the fold pattern formation. In the mutant oviduct, the epithelium was more intricate along the longitudinal direction than in the wild-type, suggesting a higher ratio of the longitudinal length of the epithelial layer to that of the surrounding smooth muscle (SM) layer (L-Epi/SM ratio). Our mathematical modeling and computational simulations suggested that the L-Epi/SM ratio could explain the differences in fold branching between the two genotypes. Longitudinal epithelial tensions were increased in well-aligned folds compared with those in disorganized folds both in the simulations and in experimental estimations. Artificially increasing the epithelial tensions suppressed the branching in simulations, suggesting that the epithelial tensions can regulate fold patterning. The epithelial tensions could be explained by the combination of line tensions along the epithelial cell-cell boundaries with the polarized cell arrays observed in vivo. These results suggest that the fold pattern is associated with the polarized cell array through the longitudinal epithelial tension. Further simulations indicated that the L-Epi/SM ratio could contribute to fold pattern diversity, suggesting that the L-Epi/SM ratio is a critical parameter in the fold patterning in tubular organs. PMID:27508448

  15. Complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol and related ligands.

    PubMed

    Morgenstern, Bernd; Steinhauser, Stefan; Hegetschweiler, Kaspar; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele; Nagy, László

    2004-05-17

    The complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) was studied in aqueous solution and in the solid state. The formation constants of [V(IV)O(taci)](2+), [V(IV)O(tdci)](2+), and [V(IV)(tdci)(2)](4+) and of the deprotonation product [V(IV)(tdci)(2)H(-)(1)](3+) were determined (25 degrees C, 0.1 M KNO(3)). Cyclic voltammetry measurements established a reversible one-electron transfer for the [V(IV)(tdci)(2)H(-)(m)]((4)(-)(m))/[V(III)(tdci)(2)H(-)(n)]((3)(-)(n)) couple (0

  16. Mechanical restoration of large-scale folded multilayers using the finite element method: Application to the Zagros Simply Folded Belt, N-Iraq

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2010-05-01

    and digital elevation models using the dip-domain method for balancing the cross-section. The lithology consists of Cretaceous to Cenozoic sediments. Massive carbonate rock units act as the competent layers compared to the incompetent behavior of siltstone, claystone and marl layers. We show the first results of the mechanical restoration of the Zagros cross-section and we discuss advantages and disadvantages, as well as some technical aspects of the applied method. First results indicate that a shortening of at least 50% was necessary to create the present-day folded cross-section. This value is higher than estimates of the amount of shortening solely based on kinematic or geometric restoration. One particular problem that is discussed is the presence of (unnaturally) sharp edges in a balanced cross-section produced using the dip-domain method, which need to be eliminated for mechanical restoration calculations to get reasonable results.

  17. Synthesis and Thermal Decomposition Mechanism of the Energetic Compound 3,5-Dinitro-4-nitroxypyrazole

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Qin; Cao, Duan-Lin; Cui, Jian-Lan

    2016-07-01

    A novel energetic material, 3,5-dinitro-4-nitroxypyrazole (DNNP), was synthesized via nitration and nucleophilic substitution reaction using 4-chloropyrazole as raw material. The structure of DNNP was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. Its detonation properties were calculated and compared with those of other commonly used energetic compounds. The thermal decomposition mechanism of DNNP was studied by means of thermogravimetry and differential scanning calorimetry coupled with a mass spectrometry (DSC-MS). The results show that the detonation properties of DNNP were better than those of TNT and comparable to those of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In addition, the thermal decomposition mechanism of DNNP was supposed. Initially, the O-NO2 bond was broken, thereby producing a nitropyrazole oxygen radical. Subsequently, the nitropyrazole oxygen radical was decomposed by free radical cleavage of nitro or isomerized to nitritepyrazole and subsequently decomposed by free radical cleavage of the nitroso group. Finally, pyrazole ring fission occurred and produced N2, NO, N2O, and CO2.

  18. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber.

    PubMed

    Zhu, Gongwen; Geng, Lixiang; Zhu, Xiushan; Li, Li; Chen, Qian; Norwood, R A; Manzur, T; Peyghambarian, N

    2015-03-23

    Raman lasers based on mid-infrared fibers operating at 3-5 µm atmospheric transparency window are attractive sources for several applications. Compared to fluoride and chalcogenide fibers, tellurite fibers are more advantageous for high power Raman fiber laser sources at 3-5 µm because of their broader Raman gain bandwidth, much larger Raman shift and better physical and chemical properties. Here we report on our simulations for the development of 10-watt-level 3-5 µm Raman lasers using tellurite fibers as the nonlinear gain medium and readily available continuous-wave (cw) and Q-switched erbium-doped fluoride fiber lasers at 2.8 µm as the pump sources. Our results show that a watt-level or even ten-watt-level fiber laser source in the 3-5 µm atmospheric transparency window can be achieved by utilizing the 1st- and 2nd-order Raman scattering in the tellurite fiber. The presented numerical study provides valuable guidance for future 3-5 um Raman fiber laser development. PMID:25837094

  19. Ab initio equation of state of the organic molecular crystal: beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

    PubMed

    Zerilli, Frank J; Kuklja, Maija M

    2010-04-29

    We apply a simple strategy for calculating from first principles a thermodynamically complete equation of state for molecular crystals using readily available quantum chemistry techniques. The strategy involves a combination of separate methods for the temperature-independent mechanical compression and the thermal vibrational contributions to the free energy. A first principles equation of state for beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (beta-HMX) has been calculated for temperatures between 0 and 400 K and for specific volumes from 0.42 to 0.55 cm(3)/g, corresponding to relative volumes from 0.8 to 1.03. The calculated 300 K isotherm agrees very well with the experimentally measured pressure-volume relation. We also discuss thermodynamic properties of the material such as the volumetric thermal expansion coefficient, the Gruneisen parameter, and the specific heat (1.0 kJ/kg/K at 300 K and atmospheric pressure). The developed computational approach exhibits a reliable predictive power and is easily transferable to other molecular materials. PMID:20364852

  20. Synthesis, structural and computational characterization of 2-amino-3,5-diiodobenzoic acid and 2-amino-3,5-dibromobenzoic acid

    NASA Astrophysics Data System (ADS)

    Yıldırım, M. Hakkı; Paşaoğlu, Hümeyra; Odabaşoğlu, Hakkı Yasin; Odabaşoğlu, Mustafa; Yıldırım, Arzu Özek

    2015-07-01

    The benzoic acid compounds 2-amino-3,5-dibromobenzoic acid (2A35Br) and 2-amino-3,5-diiodobenzoic (2A35I) acid have been synthesized and characterized by single-crystal X-ray diffraction, FT-IR spectroscopy, UV-Vis spectroscopy and computational methods. Molecular geometry, intra- and inter-molecular interactions have been investigated by using X-ray diffraction technique. Fundamental vibrational bands of the title compounds were founded by FT-IR and UV-Vis method was used to obtain electronic bands. Geometry optimizations and the calculation of IR frequencies were performed both Gaussian type orbitals at Gaussian 09W and Slater type orbitals at ADF2009.01 software. The calculations are compatible with the experiment results. In addition, geometrical parameters, energies, HOMO-LUMO gaps and electrophilicity indexes have been calculated for thirty possible positional isomers of 2A35Br and 2A35I. Calculations show that 2A35Br and 2A35I isomers have the lowest energy, the narrowest HOMO-LUMO gap and the highest electrophilicity index values. Molecular electrostatic potential maps, Fukui indices, natural bond orbital analysis, thermodynamic parameters and non-linear optical properties of the 2A35Br and 2A35I were also investigated by theoretical calculations.

  1. Assessing the non-cancer risk for RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) using physiologically based pharmacokinetic (PBPK) modeling.

    PubMed

    Sweeney, Lisa M; Gut, Chester P; Gargas, Michael L; Reddy, Gunda; Williams, Larry R; Johnson, Mark S

    2012-02-01

    RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is an explosive used in military applications. It has been detected in ground water surrounding US military installations and at manufacturing facilities. RDX has been shown to produce hepatotoxicity, testicular, and neurological effects in animals, the latter also in humans. The current chronic oral reference dose (RfD) of 0.003 mg/kg/day was derived based on prostate effects in rats. Here, we provide a reevaluation of the risk associated with RDX exposure by examining old and new data and using physiologically based pharmacokinetic (PBPK) modeling approaches. Candidate non-cancer endpoints in rodents were evaluated and the most plausible mode(s) of action were determined. A PBPK model was used to derive appropriate internal doses based on the mode of action, and then a benchmark dose (BMD) and the lower confidence limit on the BMD (BMDL) were determined using these internal doses in animals. Uncertainty factors (UF) were applied to the animal BMDL or no-observed effect level and a human PBPK model was used to determine a human equivalent dose resulting in the candidate RfDs (cRfDs). A proposed chronic RfD of 0.07 mg/kg/day, based on multiple effects observed in rats, was selected from among the cRfDs. PMID:22197625

  2. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere.

    PubMed

    Lorenz, Astrid; Rylott, Elizabeth L; Strand, Stuart E; Bruce, Neil C

    2013-03-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a serious environmental pollutant on military land. This compound is the most widely used explosive and pollution has arisen primarily as the result of military training, along with munition manufacturing and disassembly processes. This toxic explosive is recalcitrant to degradation in the environment and leaches rapidly into groundwater, where accumulation in aquifers is threatening drinking water supplies (Clausen, et al., 2004). While plants have only limited degradative activity towards RDX, microorganisms, including Rhodococcus rhodochrous 11Y, have been isolated from contaminated land. Despite the presence of microbial RDX-metabolising activity in contaminated soils, the persistence of RDX in leachate from contaminated soil indicates that this activity or biomass is insufficient, limiting its use to remediate polluted soils. Bacterial activity in the rhizosphere is of magnitudes greater than in the surrounding soil, and the roots of grass species on training ranges in the United States are known to penetrate deeply into the soil, producing a compact root system and providing an ideal environment to support the capture of RDX by microorganisms in the rhizosphere. Here, we have investigated the ability of the root-colonising bacterium Pseudomonas fluorescens, engineered to express XplA, to degrade RDX in the rhizosphere. PMID:23289483

  3. Electron shuttle-mediated biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine adsorbed to granular activated carbon.

    PubMed

    Millerick, Kayleigh; Drew, Scott R; Finneran, Kevin T

    2013-08-01

    Granular activated carbon (GAC) effectively removes hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from groundwater but generates RDX-laden GAC that must be disposed of or regenerated. Batch reactors containing GAC to which RDX was preadsorbed were used in experiments to test the potential for adsorbed RDX reduction and daughter product formation using (i) chemically reduced anthrahydroquinone-2,6-disulfonate (AH2QDS), (ii) resting Geobacter metallireducens strain GS-15, and (iii) a combined system containing AQDS and GS-15. Approximately 97.0% of the adsorbed RDX was transformed in each of these experimental systems by 90 h. Chemically reduced AQDS (AH2QDS) transformed 99.2% of adsorbed RDX; formaldehyde was produced rapidly and was stoichiometric (3 mol HCHO per mol RDX). Geobacter metallireducens also reduced RDX with and without AQDS present. This is the first study to demonstrate biological transformation of RDX adsorbed to GAC. Formaldehyde increased and then decreased in biological systems, suggesting a previously unreported capacity for G. metallireducens to oxidize formaldehyde, which was confirmed with resting cell suspensions. These data suggest the masses of GAC waste currently produced by activated carbon at RDX remediation sites can be minimized, decreasing the carbon footprint of the treatment technology. Alternatively, this strategy may be used to develop a Bio-GAC system for ex situ RDX treatment. PMID:23837558

  4. Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane and water

    NASA Astrophysics Data System (ADS)

    Burkey, Daniel D.; Gleason, Karen K.

    2003-05-01

    Pulsed-plasma chemical vapor deposition of 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane (V3D3) and water produced thin films with significant Si-OH content. Subsequent annealing of the films resulted in condensation of proximal Si-OH groups, further generating a Si-O-Si network and strengthening the film. Fourier-transform infrared spectroscopy analysis showed increasing OH content with increasing plasma duty cycle, and nanoindentation results confirmed increasing hardness with duty cycle, with the 10-40 duty cycle annealed sample having a hardness value of 0.527 GPa. These results were explained within the context of the continuous random network theory and percolation of rigidity arguments. Thermal stability was excellent, with a best-case thickness retention of 99.25% after a 2 h anneal at 400 °C under N2. Dielectric constants for the annealed films ranged between 2.55 and 2.9. The moderate power involved (200 W peak) is amenable to inclusion of a porogen species, opening the possibility of using this methodology to generate a porous thin film with adequate mechanical properties via chemical vapor deposition.

  5. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens

    SciTech Connect

    Young, D.M.; Ogden, K.L.; Unkefer, P.J.

    1997-03-05

    The biotransformation of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) has been observed in liquid culture by a consortium of bacteria found in horse manure. Five types of bacteria were found to predominate in the consortium and were isolated. The most effective of these isolates at transforming RDX was Serratia marcescens. The biotransformation of RDX by all of these bacteria was found to occur only in the anoxic stationary phase. The process of bacterial growth and RDX biotransformation was quantified for the purpose of developing a predictive type model. Cell growth was assumed to follow Monod kinetics. All of the aerobic and anoxid growth parameters were determined: {mu}{sub max}, K{sub s}, and Y{sub x/s}. RDX was found to competitively inhibit cell growth in both atmospheres. Degradation of RDX by Serratia marcescens was found to proceed through the stepwise reduction of the three nitro groups to nitroso groups. Each of these reductions was found to be first order in both component and cell concentrations. The degradation rate constant for the first step in this reduction process by the consortium was 0.022 L/g cells {center_dot} h compared to 0.033 L/g cells {center_dot} h for the most efficient isolate.

  6. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes. PMID:21601233

  7. Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants

    SciTech Connect

    Harvey, S.D.; Fellows, R.J.; Cataldo, D.A.; Bean, R.M. )

    1991-01-01

    Soils amended with [[sup 14]C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were sampled over 60 d and subjected to exhaustive Soxhlet extraction followed by HPLC analysis. RDX was the only radiolabeled compound observed in soil extracts. Emission of volatile organics and [sup 14]CO[sub 2] from soil accounted for only 0.31 % of the amended radiolabel. Mass balance for RDX-amended soil was better than 84% throughout the two-month study. The analytical method developed for plants involved acid hydrolysis, solvent extraction, fractionation on Florisil adsorbent and separation by HPLC. The described methodology allowed for RDX recovery of 86 [+-] 3% from fortified bush bean leaf tissue. Further experiments were conducted with bush bean plants maintained on RDX-containing hydroponic solutions. Hydroponic plants did not emit detectable amounts of [sup 14]CO[sub 2] or radiolabeled volatile organics. Analysis of the plant tissue indicated bioaccumulation of RDX in the aerial tissues of hydroponic plants exposed for either 1 or 7 d. Metabolism of RDX to polar metabolites was observed in plants exposed for 7 d.

  8. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation in aquifer sediments under manganese-reducing conditions

    USGS Publications Warehouse

    Bradley, Paul M.; Dinicola, Richard S.

    2005-01-01

    A shallow, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)–contaminated aquifer at Naval Submarine Base Bangor has been characterized as predominantly manganese-reducing, anoxic with local pockets of oxic conditions. The potential contribution of microbial RDX degradation to localized decreases observed in aquifer RDX concentrations was assessed in sediment microcosms amended with [U-14C] RDX. Greater than 85% mineralization of14C-RDX to 14CO2 was observed in aquifer sediment microcosms under native, manganese-reducing, anoxic conditions. Significant increases in the mineralization of 14C-RDX to 14CO2 were observed in anoxic microcosms under NO3-amended or Mn(IV)-amended conditions. No evidence of 14C-RDX biodegradation was observed under oxic conditions. These results indicate that microbial degradation of RDX may contribute to natural attenuation of RDX in manganese-reducing aquifer systems.

  9. Anaerobic transformation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by ovine rumen microorganisms.

    PubMed

    Perumbakkam, Sudeep; Craig, A M

    2012-01-01

    Explosives such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) provide a challenge in terms of bioremediation. In the present study, sheep rumen was studied for its potential to detoxify HMX using analytical chemistry and molecular microbial ecology tools. Results indicated significant loss (p < 0.05) of HMX at 8 h post-incubation and complete disappearance of the parent molecule after 16 h. Qualitative LC-MS/MS analysis provided evidence for the formation of 1-NO-HMX and MEDINA metabolites. A total of 1006 16S rRNA-V3 clones were sequenced and the Classifier tool of the RDPII database was used to sort the sequences at their phylum level. Most sequences were associated with either the phylum Bacteroidetes or Firmicutes. Significant differences at the phylum level (p < 0.001) were found between 0 h and 8 h HMX treatments. Using LibCompare analysis, 8 h HMX treatment showed enrichment of clones (p < 0.01) belonging to the genus Prevotella. From these results, it could be concluded that members of the genus Prevotella are enriched in the rumen and are capable of detoxifying HMX. PMID:22903090

  10. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  11. The role of ascorbate in protein folding.

    PubMed

    Szarka, András; Lőrincz, Tamás

    2014-05-01

    Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation. PMID:24150425

  12. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals

    PubMed Central

    Toda, Tomohisa; Shinmyo, Yohei; Dinh Duong, Tung Anh; Masuda, Kosuke; Kawasaki, Hiroshi

    2016-01-01

    Because folding of the cerebral cortex in the mammalian brain is believed to be crucial for higher brain functions, the mechanisms underlying its formation during development and evolution are of great interest. Although it has been proposed that increased neural progenitors in the subventricular zone (SVZ) are responsible for making cortical folds, their roles in cortical folding are still largely unclear, mainly because genetic methods for gyrencephalic mammals had been poorly available. Here, by taking an advantage of our newly developed in utero electroporation technique for the gyrencephalic brain of ferrets, we investigated the role of SVZ progenitors in cortical folding. We found regional differences in the abundance of SVZ progenitors in the developing ferret brain even before cortical folds began to be formed. When Tbr2 transcription factor was inhibited, intermediate progenitor cells were markedly reduced in the ferret cerebral cortex. Interestingly, outer radial glial cells were also reduced by inhibiting Tbr2. We uncovered that reduced numbers of SVZ progenitors resulted in impaired cortical folding. When Tbr2 was inhibited, upper cortical layers were preferentially reduced in gyri compared to those in sulci. Our findings indicate the biological importance of SVZ progenitors in cortical folding in the gyrencephalic brain. PMID:27403992

  13. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals.

    PubMed

    Toda, Tomohisa; Shinmyo, Yohei; Dinh Duong, Tung Anh; Masuda, Kosuke; Kawasaki, Hiroshi

    2016-01-01

    Because folding of the cerebral cortex in the mammalian brain is believed to be crucial for higher brain functions, the mechanisms underlying its formation during development and evolution are of great interest. Although it has been proposed that increased neural progenitors in the subventricular zone (SVZ) are responsible for making cortical folds, their roles in cortical folding are still largely unclear, mainly because genetic methods for gyrencephalic mammals had been poorly available. Here, by taking an advantage of our newly developed in utero electroporation technique for the gyrencephalic brain of ferrets, we investigated the role of SVZ progenitors in cortical folding. We found regional differences in the abundance of SVZ progenitors in the developing ferret brain even before cortical folds began to be formed. When Tbr2 transcription factor was inhibited, intermediate progenitor cells were markedly reduced in the ferret cerebral cortex. Interestingly, outer radial glial cells were also reduced by inhibiting Tbr2. We uncovered that reduced numbers of SVZ progenitors resulted in impaired cortical folding. When Tbr2 was inhibited, upper cortical layers were preferentially reduced in gyri compared to those in sulci. Our findings indicate the biological importance of SVZ progenitors in cortical folding in the gyrencephalic brain. PMID:27403992

  14. Protein-facilitated ribozyme folding and catalysis.

    PubMed

    Zingler, Nora; Solem, Amanda; Pyle, Anna Marie

    2008-01-01

    In vivo, large RNAs rely on proteins to fold to their native conformation. In the case of the S. cerevisiae group II intron ai5 gamma, the DEAD-box protein Mss116 has been shown to promote the formation of the catalytically active structure. However, it is a matter of debate whether it does this by stabilizing on-pathway intermediates or by disrupting misfolded structures. Here we present the available experimental evidence to distinguish between those mechanisms and discuss the possible interpretations. PMID:18776256

  15. Foldons as independently folding units of proteins

    NASA Astrophysics Data System (ADS)

    Panchenko, Anna R.; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1997-02-01

    Independently folding units of proteins, foldons, have been identified by maxima in a scan of the ratio of an energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. Foldon boundaries, unlike structural domains, depend on the sequence of the protein. Therefore, domains defined by purely structural criteria and the foldons of a given protein may differ in size and structure. The predicted foldons have been compared to the exons and structural modules. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules. There is only a weak correlation of foldons to exons.

  16. Sensitivity of 2,6-Diamino-3, 5-Dinitropyrazine-1-Oxide

    SciTech Connect

    Tarver, C M; Urtiew, P A; Tran, T D

    2005-01-20

    The thermal and shock sensitivities of plastic bonded explosive formations based on 2,6-diamino-3,5-dinitropyrazine-1-oxide (commonly called LLM-105 for Lawrence Livermore Molecule No.105) are reported. The One Dimensional Time to Explosion (ODTX) apparatus was used to generate times to thermal explosion at various initial temperatures. A four-reaction chemical decomposition model was developed to calculate the time to thermal explosion versus inverse temperature curve. Three embedded manganin pressure gauge experiments were fired at different initial pressures to measure the pressure buildup and the distance required for transition to detonation. An Ignition and Growth reactive model was calibrated to this shock initiation data. LLM-105 exhibited thermal and shock sensitivities intermediate between those of triaminotrinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX).

  17. Mars - Subsurface properties from observed longitudinal variation of the 3.5-mm brightness temperature

    NASA Technical Reports Server (NTRS)

    Epstein, E. E.; Andrew, B. H.; Briggs, F. H.; Jakosky, B. M.; Palluconi, F. D.

    1983-01-01

    Extensive 3.5-mm measurements are reported which show a variation in the brightness temperature of Mars, with the Central Meridian Longitude that is generally in phase with the variation at 2.8 cm and is opposite in sign from the variations at 20 microns. It is pointed out that the phase result is not unexpected, since 3.5 mm is longer than the wavelength at which the phase behavior is expected to change. The result that the 3.5-mm rotation curve amplitude is larger than the amplitudes at both 20 microns and 2.8 cm, however, is unexpected. This result, it is noted, can be explained as a consequence of subsurface scattering from rocks smaller than 1.5 cm in radius. A correlation of subsurface scatterers with the location of the high-thermal inertial regions would be consistent with the hypothesis that rock abundance predominates in determining the thermal inertia.

  18. Hydrostatic supports for telescopes: the experience of 3.5 NTT with a glance at VTL.

    NASA Astrophysics Data System (ADS)

    Andreolli, C.; Andreolli, C.

    1988-10-01

    Today's large telescopes use hydrostatic supports to give their axes of motion the highest precision and stiffness. Since their performance of a hydrostatic bearing depend as much on the pad as on the structures directly concerned, certain designing expedients that are peculiar of large machine tools can be adopted profitably with telescopes as well. This was the case with 3.5 m NTT. It may be assumed correctly that the experience made with 3.5 m NTT, may be extended successfully to telescopes of a larger size.

  19. Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol.

    PubMed

    Bessems, J G; Te Koppele, J M; Van Dijk, P A; Van Stee, L L; Commandeur, J N; Vermeulen, N P

    1996-06-01

    1. The cytochrome P450-dependent binding of paracetamol and a series of 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -CH3, -C2H5, -iC3H7) have been determined with beta-naphthoflavone (beta NF)-induced rat liver microsomes and produced reverse type I spectral changes. Ks,app varied from 0.14 mM for 3,5-diiC3H7-paracetamol to 2.8 mM for paracetamol. 2. All seven analogues underwent rat liver microsomal cytochrome P450-dependent oxidation, as reflected by the formation of GSSG in the presence of GSH. The GSSG-formation was increased in all cases upon pretreatment of rats by beta-naphthoflavone (beta NF) and was generally decreased upon pretreatment by phenobarbital (PB). 3. Rat liver microsomal cytochrome P450 as well as horseradish peroxidase catalysed the formation of 3,5-disubstituted NAPQI analogues from the corresponding parent compounds, as identified by UV-spectrophotometry of the NAPQI analogues and by GC/MS detection of the following GSH-conjugates: 2-glutathione-S-yl-3,5-dimethyl-1,4-dihydroxybenzene, 2-glutathione-S-yl-3,5-dichloro-paracetamol, and 2-glutathione-S-yl-3,5-dibromo-paracetamol. 4. In liver microsomal (beta NF-induced) incubations, apparent K(m) values, as determined for the cytochrome P450 catalysis-dependent oxidation of GSH, for seven 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -CH3, -C2H5, iC3H7) varied from 0.07 to 0.64 mM. Paracetamol exhibited an apparent K(m) of 0.73 mM. Apparent Vmax values for the cytochrome P450 catalysis dependent oxidation of GSH varied from 0.66 nmol min-1 mg-1 protein for paracetamol to 3.0 nmol min-1 mg-1 protein for 3,5-dimethyl-paracetamol. PMID:8810035

  20. Access to Pyrazolidin-3,5-diones through Anodic N-N Bond Formation.

    PubMed

    Gieshoff, Tile; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2016-08-01

    Pyrazolidin-3,5-diones are important motifs in heterocyclic chemistry and are of high interest for pharmaceutical applications. In classic organic synthesis, the hydrazinic moiety is installed through condensation using the corresponding hydrazine building blocks. However, most N,N'-diaryl hydrazines are toxic and require upstream preparation owing to their low commercial availability. We present an alternative and sustainable synthetic approach to pyrazolidin-3,5-diones that employs readily accessible dianilides as precursors, which are anodically converted to furnish the N-N bond. The electroconversion is conducted in a simple undivided cell under constant-current conditions. PMID:27392318

  1. Ninety-day study of inhaled 1,3,5-trichlorobenzene in rats. Progress report

    SciTech Connect

    Sasmore, D.P.; Palmer, D.

    1981-09-23

    Male and female rats were exposed to 0, 10, 100 or 1000 ppM of 1,3,5-trichlorobenzene vapors for 6 hours daily, 5 days a week, for up to 13 weeks. After 4 weeks or 13 weeks of exposure, animals were sacrificed and examined for changes in blood, clinical chemistry, internal organs, and tissues resulting from the 1,3,5-trichlorobenzene treatment. No treatment-related effects on the blood and clinical chemistry were evident. Squamous metaplasia and hyperplasia were observed in the respiratory epithelium in the nasal passages of several high-dose rats.

  2. Folding of the hammerhead ribozyme: Pyrrolo-cytosine fluorescence separates core folding from global folding and reveals a pH-dependent conformational change

    PubMed Central

    Buskiewicz, Iwona A.; Burke, John M.

    2012-01-01

    The catalytic activity of the hammerhead ribozyme is limited by its ability to fold into the native tertiary structure. Analysis of folding has been hampered by a lack of assays that can independently monitor the environment of nucleobases throughout the ribozyme–substrate complex in real time. Here, we report the development and application of a new folding assay in which we use pyrrolo-cytosine (pyC) fluorescence to (1) probe active-site formation, (2) examine the ability of peripheral ribozyme domains to support native folding, (3) identify a pH-dependent conformational change within the ribozyme, and (4) explore its influence on the equilibrium between the folded and unfolded core of the hammerhead ribozyme. We conclude that the natural ribozyme folds in two distinct noncooperative steps and the pH-dependent correlation between core folding and activity is linked to formation of the G8-C3 base pair. PMID:22274955

  3. Structure of a Folding Intermediate Reveals the Interplay Between Core and Peripheral Elements in RNA Folding

    SciTech Connect

    Baird, Nathan J.; Westhof, Eric; Qin, Hong; Pan, Tao; Sosnick, Tobin R.

    2010-07-13

    Though the molecular architecture of many native RNA structures has been characterized, the structures of folding intermediates are poorly defined. Here, we present a nucleotide-level model of a highly structured equilibrium folding intermediate of the specificity domain of the Bacillus subtilis RNase P RNA, obtained using chemical and nuclease mapping, circular dichroism spectroscopy, small-angle X-ray scattering and molecular modeling. The crystal structure indicates that the 154 nucleotide specificity domain is composed of several secondary and tertiary structural modules. The structure of the intermediate contains modules composed of secondary structures and short-range tertiary interactions, implying a sequential order of tertiary structure formation during folding. The intermediate lacks the native core and several long-range interactions among peripheral regions, such as a GAAA tetraloop and its receptor. Folding to the native structure requires the local rearrangement of a T-loop in the core in concert with the formation of the GAAA tetraloop-receptor interaction. The interplay of core and peripheral structure formation rationalizes the high degree of cooperativity observed in the folding transition leading to the native structure.

  4. Scaled-up in vitro experiments of vocal fold paralysis

    NASA Astrophysics Data System (ADS)

    Peterson, Keith; Wei, Timothy; Krane, Michael

    2006-11-01

    Vocal fold paralysis is the inability of either one, or both vocal folds to open and close properly. Digital Particle Image Velocimetry (DPIV) measurements were taken to further understand the consequences paralyzed vocal folds have on the fluid dynamics downstream of the vocal folds during human phonation. The experiments were taken in a free-stream water tunnel using a simplified scaled-up model of human vocal folds. The Reynolds and Strouhal numbers ranged from 4500 to 10000, and 0.01 to 0.04, respectively. Various configuration setups were tested to emulate several types of vocal fold paralyses. These configurations include unilateral vocal fold immobility (UVFI), bilateral vocal fold immobility (BVFI) and the vocal folds operating at different oscillating frequencies. Data from these different conditions will be compared with an eye toward understanding the critical dynamics associated with this class of disease.

  5. The folding of knotted proteins: insights from lattice simulations.

    PubMed

    Faísca, Patrícia F N; Travasso, Rui D M; Charters, Tiago; Nunes, Ana; Cieplak, Marek

    2010-01-01

    We carry out systematic Monte Carlo simulations of Gō lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system. PMID:20130340

  6. The folding of knotted proteins: insights from lattice simulations

    NASA Astrophysics Data System (ADS)

    Faísca, Patrícia F. N.; Travasso, Rui D. M.; Charters, Tiago; Nunes, Ana; Cieplak, Marek

    2010-03-01

    We carry out systematic Monte Carlo simulations of Gō lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.

  7. Equation to Line the Borders of the Folding-Unfolding Transition Diagram of Lysozyme.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T

    2016-07-21

    It is important for the formulators of biopharmaceuticals to predict the folding-unfolding transition of proteins. This enables them to process proteins under predetermined conditions, without denaturation. Depending on the apparent denaturation temperature (Tm) of lysozyme, we have derived an equation describing its folding-unfolding transition diagram. According to the water content and temperature, this diagram was divided into three different areas, namely, the area of the water-folded lysozyme phase, the area of the water-folded lysozyme phase and the bulk water phase, and the area of the denatured lysozyme phase. The water content controlled the appearance and intensity of the Raman band at ∼1787 cm(-1) when lysozyme powders were thermally denatured at temperatures higher than Tm. PMID:27341101

  8. Mesozoic folds, fossil fields, and future finds ( )

    SciTech Connect

    Newman, G.W.; Witter, G.G.

    1988-02-01

    Drilling and surface geologic mapping have shown that pre-Tertiary, post-Triassic folds and upthrusted anticlines in an eastern Nevada fold-belt have accumulated major oil columns. This Mesozoic foldbelt involves a Cambrian through Triassic section, which has hundreds of feet of porosity in Ordovician sandstones, Silurian and Devonian carbonates, and Mississippian sandstones. In addition to the Devonian Pilot and Mississippian Chainman shales, source rocks are found in Cambrian and Ordovician shales and in some Paleozoic carbonates. The occurrence of live and dead oil shows in hundreds of vertical feet of porosity in wells drilled on several of these Mesozoic structures is interpreted as evidence that these structures were giant oil fields prior to being breached by Tertiary Basin and Range extensional faulting, which allowed vertical hydrocarbon leakage. Noting that undrilled Mesozoic structures still exist in the foldbelt and noting that natural processes are seldom 100% efficient - including, probably, the disruptive effects of Basin and range extensional faulting - the authors suggest that there is a very good chance of finding one or more giant fields in the remaining structures of this foldbelt.

  9. The folding landscape of the epigenome

    NASA Astrophysics Data System (ADS)

    Olarte-Plata, Juan D.; Haddad, Noelle; Vaillant, Cédric; Jost, Daniel

    2016-04-01

    The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes—and how—to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.

  10. Fungal infections of the folds (intertriginous areas).

    PubMed

    Metin, Ahmet; Dilek, Nursel; Demirseven, Duriye Deniz

    2015-01-01

    Superficial fungal infections are widespread, regardless of age and gender, in populations all around the world and may affect the skin and skin appendages. Although there are thousands of fungal infections from various genera and families in nature, those that are pathogenic for humans and nesting in skin folds are limited in number. The prevalence and distribution of these fungi vary according to the patients and certain environmental factors. Because the areas including the lids, external auditory canal, behind the ears, navel, inguinal region, and axillae, also called flexures, are underventilated and moist areas exposed to friction, they are especially sensitive to fungal infections. Fungi can both directly invade the skin, leading to infections, and indirectly stimulate immune mechanisms due to tissue interaction and their antigenic character and contribute to the development or exacerbation of secondary bacterial infections, seborrheic dermatitis, atopic dermatitis, and psoriasis. Superficial fungal infections can be classified and studied as dermatophyte infections, candidal infections, Malassezia infections, and other superficial infections independently from the involved skin fold areas. PMID:26051058

  11. Aspheric doublets and precision adjustable fold mirrors for 20 K operation in CLAES

    NASA Technical Reports Server (NTRS)

    Zinky, William R.; Morrow, Howard E.

    1989-01-01

    A cooled, infrared spectrometer is required to operate in earth orbit. The spectrometer performance requirements are discussed to show how package volume constraints and the stressing environment of cryogenic operation affect the detailed design of spectrometer components such as relay imaging optics and fold mirrors. Design steps are described that were taken to insure that the spectrometer would perform well in orbit, with components that are easily manufactured, readily aligned and stable in operation. This design procedure has produced two components of special interest, fast doublets suitable for use at 20 K over the wavelength band from 3.5 to 12 microns, and fold mirrors that can be adjusted to arc second tolerances.

  12. Single-chain folding of polymers for catalytic systems in water.

    PubMed

    Terashima, Takaya; Mes, Tristan; De Greef, Tom F A; Gillissen, Martijn A J; Besenius, Pol; Palmans, Anja R A; Meijer, E W

    2011-04-01

    Enzymes are a source of inspiration for chemists attempting to create versatile synthetic catalysts. In order to arrive at a polymeric chain carrying catalytic units separated spatially, it is a prerequisite to fold these polymers in water into well-defined compartmentalized architectures thus creating a catalytic core. Herein, we report the synthesis, physical properties, and catalytic activity of a water-soluble segmented terpolymer in which a helical structure in the apolar core is created around a ruthenium-based catalyst. The supramolecular chirality of this catalytic system is the result of the self-assembly of benzene-1,3,5-tricarboxamide side chains, while the catalyst arises from the sequential ruthenium-catalyzed living radical polymerization of the different monomers followed by ligand exchange. The polymers exhibit a two-state folding process and show transfer hydrogenation in water. PMID:21405022

  13. Evaluation of Biostimulation and Bioaugmentation To Stimulate Hexahydro-1,3,5-trinitro-1,3,5,-triazine Degradation in an Aerobic Groundwater Aquifer.

    PubMed

    Michalsen, Mandy M; King, Aaron S; Rule, Rebecca A; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Istok, Jack D

    2016-07-19

    Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a toxic and mobile groundwater contaminant common to military sites. This study compared in situ RDX degradation rates following bioaugmentation with Gordonia sp. strain KTR9 (henceforth KTR9) to rates under biostimulation conditions in an RDX-contaminated aquifer in Umatilla, OR. Bioaugmentation was achieved by injecting site groundwater (6000 L) amended with KTR9 cells (10(8) cells mL(-1)) and low carbon substrate concentrations (<1 mM fructose) into site wells. Biostimulation (no added cells) was performed by injecting groundwater amended with low (<1 mM fructose) or high (>15 mM fructose) carbon substrate concentrations in an effort to stimulate aerobic or anaerobic microbial activity, respectively. Single-well push-pull tests were conducted to measure RDX degradation rates for each treatment. Average rate coefficients were 1.2 day(-1) for bioaugmentation and 0.7 day(-1) for high carbon biostimulation; rate coefficients for low carbon biostimulation were not significantly different from zero (p values ≥0.060). Our results suggest that bioaugmentation with KTR9 is a feasible strategy for in situ biodegradation of RDX and, at this site, is capable of achieving RDX concentration reductions comparable to those obtained by high carbon biostimulation while requiring ~97% less fructose. Bioaugmentation has potential to minimize substrate quantities and associated costs, as well as secondary groundwater quality impacts associated with anaerobic biostimulation processes (e.g., hydrogen sulfide, methane production) during full-scale RDX remediation. PMID:27301804

  14. Accumulation and effects of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) exposure in the green anole (Anolis carolinensis).

    PubMed

    McMurry, S T; Jones, L E; Smith, P N; Cobb, G P; Anderson, T A; Lovern, M B; Cox, S; Pan, X

    2012-03-01

    Environmental contamination by energetic compounds is an increasing international concern, although little is known of their accumulation in and affect on wildlife. Reptiles are often good models for contaminants studies due to natural history traits that increase their potential for exposure. We report a study to assess accumulation and effects of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, High Melting Explosive) in green anoles (Anolis carolinensis). Acute oral toxicity (LD(50)) was estimated to exceed 2000 mg/kg body weight in adult male and female anoles using a standard up-and-down method. Accumulation of HMX was assessed in adult females via dietary exposure and into eggs by two routes (directly from the soil and via maternal transfer). HMX readily accumulated into adult females in a dose-dependent manner and into eggs following both exposure pathways. However, total HMX in soil-exposed eggs was up to 40-times greater than those exposed via maternal transfer. Although there was a suggestion of an HMX-induced reduction in body weight in adult females, overall there were no effects observed over the 12 week exposure period. The only significant effect on eggs was a 50% reduction in hatching success for eggs exposed to 2000 mg/kg HMX in the soil during incubation. Growth and survival of hatchlings was not affected by HMX exposure. Our results demonstrate that HMX accumulates through the food chain and into eggs from the soil, but likely poses minimal threat to lizards except to hatching success in eggs incubated in soils with HMX levels near maximum environmental concentrations. PMID:21947615

  15. Validation of a novel extraction method for studying hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) biodegradation by ruminal microbiota.

    PubMed

    Giarrizzo, J G; Murty, L; Tanaree, D; Walker, K; Craig, A M

    2013-04-15

    A simple, fast liquid-liquid extraction method was developed for studying hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) biodegradation using small sample volumes. The method was tested in vitro with anaerobic incubations of RDX with whole rumen fluid (WRF) and a commercial Sporanaerobacter acetigenes strain in methanogenic media for RDX. Additionally, validation experiments were conducted in deionized water in order to show applicability toward various aqueous matrices. Conditions for extraction were as follows: 300 μL of sample were mixed with an equal volume of a 0.34 M ammonium hydroxide solution to reach a basic pH, extracted with a hexane/ethyl acetate 1:1 (v/v) solution (1 mL) and shaken vigorously for 10 s. The resulting organic phase was transferred, then dried under a constant flow of N2 and reconstituted with acetonitrile (300 μL) for HPLC-UV and LC-MS/MS analysis. Percent recovery values were obtained (83-101%) in all matrices for RDX. In WRF (n=3 animals), RDX degradation was observed with almost 100% elimination of RDX after 4 h. The five nitroso and ring cleavage metabolites were observed by mass spectrometry. Liquid cultures of S. acetigenes did not show significant RDX biodegradation activity. RDX extractions from deionized water samples indicated acceptable recoveries with low variability, suggesting suitability of the method for aqueous matrices. Overall, the new method demonstrated acceptable efficiency and reproducibility across three matrices, providing an advantageous alternative for studies where complex matrices and small volume samples are in use. PMID:23523880

  16. Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine.

    PubMed

    Chong, Chun Shiong; Sabir, Dana Khdr; Lorenz, Astrid; Bontemps, Cyril; Andeer, Peter; Stahl, David A; Strand, Stuart E; Rylott, Elizabeth L; Bruce, Neil C

    2014-11-01

    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX. PMID:25128343

  17. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Antonopoulos, Dionysios A; Finneran, Kevin T

    2011-08-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions. PMID:21664641

  18. Analysis of the xplAB-Containing Gene Cluster Involved in the Bacterial Degradation of the Explosive Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

    PubMed Central

    Chong, Chun Shiong; Sabir, Dana Khdr; Lorenz, Astrid; Bontemps, Cyril; Andeer, Peter; Stahl, David A.; Strand, Stuart E.; Rylott, Elizabeth L.

    2014-01-01

    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX. PMID:25128343

  19. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-06-01

    A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.

  20. Mineralization of the Cyclic Nitramine Explosive Hexahydro-1,3,5-Trinitro-1,3,5-Triazine by Gordonia and Williamsia spp.

    PubMed Central

    Thompson, Karen T.; Crocker, Fiona H.; Fredrickson, Herbert L.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics. PMID:16332812